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ABSTRACT OF THE DISSERTATION 

The unconventional amino acid starvation response 

of the malaria parasite, Plasmodium falciparum 

by 

Shalon Elizabeth Ledbetter 

Doctor of Philosophy in Biology and Biomedical Sciences 

(Molecular Microbiology and Microbial Pathogenesis) 

Washington University in St. Louis, 2012 

Dr. Daniel E. Goldberg, Chairperson 

 

The apicomplexan parasite, Plasmodium falciparum, is the causative agent of the 

most severe form of malaria, resulting in nearly 1 million deaths each year.  The parasite 

establishes its replicative niche within human erythrocytes, where it degrades massive 

amounts of host cell hemoglobin, salvaging the released amino acids for its own use.  

However, human hemoglobin does not contain the amino acid isoleucine, which is one of 

the most prevalent amino acids in the parasite’s proteome.  Since P. falciparum cannot 

synthesize isoleucine, it must acquire this amino acid from human serum.  Optimal 

growth and, ultimately, the survival of P. falciparum depend on the availability of 

circulating essential nutrients such as isoleucine, which is often scarce in undernourished 

malaria patients.   

To understand how P. falciparum responds to isoleucine starvation, we monitored 

parasite growth in isoleucine-limiting conditions.  We observed that in vitro parasite 

growth is notably slower in medium containing low concentrations of isoleucine, but 
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completion of the life cycle, consisting of steady progression through the ring, 

trophozoite, and schizont stages, followed by subsequent rounds of re-invasion and 

gradual expansion of the culture, continues at a reduced rate.  However, when subjected 

to isoleucine starvation, parasites progress only through the trophozoite stage.  

Interestingly, supplementation with isoleucine restores normal asexual growth, 

suggesting the involvement of sensory/response elements in the growth control 

mechanism of the parasite.  The focus of this thesis was to characterize the dynamic 

metabolic properties of this remarkable starvation-induced state in P. falciparum and 

uncover the molecular basis behind this response.   

In this work, it was found that isoleucine starvation effectively slows down the 

metabolic growth of P. falciparum, resulting in cell cycle inhibition, reduced protein 

translation, and delayed gene expression.  Although appreciable parasite growth could be 

recovered upon isoleucine repletion even after several days of starvation, active 

proteolysis during extended starvation was required to maintain viability.  The canonical 

amino acid-starvation responsive GCN2/ eIF2α signaling pair is functionally conserved 

in P. falciparum, exhibiting remarkable specificity in detecting isoleucine availability, 

however, its activity was not essential to preserving the parasite in a growth-competent 

state during starvation.  These data indicate that the starvation response of P. falciparum 

is unique:  although the parasite maintains an active remnant of a conventional eukaryotic 

amino acid-stress response pathway, its regulatory role is inconsequential.  We conclude 

that isoleucine starvation induces a hibernating state in P. falciparum, an effective default 

pathway suitable for its parasitic lifestyle. 



 iv 

ACK�OWLEDGEME�TS 

I sincerely thank all those who had a role in making the completion of this work 

possible.  First, of course, I thank my mentor, Dan Goldberg, who has guided me 

throughout this journey, imparting immensely valuable knowledge and providing infinite 

wisdom that has truly impacted me as a scientist in training.  I also thank the members of 

the Goldberg lab, both past and present, who have, through the years, provided not only 

sound advice and constructive critique, but also encouragement to work through 

challenging situations.  It has been a real pleasure to work with such individuals and I 

truly appreciate your generous support.  To my thesis committee, I sincerely thank you 

for helping me focus my project and providing your insight to ultimately get me to this 

point.  I thank you all for being truly dedicated scientists and going beyond expectations 

to assist me in this journey.  Finally, I must give a special thanks to my wonderful family.  

You have not only given me your endless love and support, but you have also been very 

patient and understanding, always offering me encouragement during those uncertain 

times when I could not see myself being here.  Again, I thank you all.      



 v 

TABLE OF CO�TE�TS 

 

 

Abstract of the Dissertation...................................................................................................ii 

Acknowledgements....................................................................................................... ......iv 

Table of Contents.......................................................................................................... .......v 

List of Figures............................................................................................................... ......ix 

List of Tables.................................................................................................................

 

.....xii 

Chapter 1:  Introduction....................................................................................................1 

Malaria: A global health and humanitarian crisis.................................................................2 

Growth and development of Plasmodium..................................................................... .......4 

Nutrient acquisition in Plasmodium and the essentiality of isoleucine.................................5 

Impact of nutrient stress in a malaria infection............................................................. .......8 

Parasite stress responses.....................................................................................................10 

Mechanisms of growth control...........................................................................................11 

Aim and Scope of Thesis....................................................................................................13 

References..................................................................................................................... .....16 

Figures and Legends..................................................................................................... 

 

.....22 

Chapter II:  PfeIK1 identified as the amino acid-starvation responsive eIF2α 

kinase in Plasmodium falciparum....................................................................................26 

Preface................................................................................................................................27 

Abstract......................................................................................................................... .....28 



 vi 

Background................................................................................................................... .....30 

Methods..............................................................................................................................33 

Results and Discussion.......................................................................................................40 

Acknowledgements....................................................................................................... .....50 

References..................................................................................................................... .....51 

Figures and Legends..................................................................................................... 

 

.....54 

Chapter III:  Plasmodium falciparum responds to amino acid starvation by 

entering into a hibernatory state.....................................................................................67 

Preface................................................................................................................................68 

Abstract......................................................................................................................... .....69 

Introduction................................................................................................................... .....70 

Results........................................................................................................................... .....71 

Discussion...........................................................................................................................79 

Materials and Methods.................................................................................................. .....83 

Acknowledgements....................................................................................................... .....90 

References..................................................................................................................... .....90 

Figures and Legends..................................................................................................... 

 

.....93 

Chapter IV: Conclusions and Future Directions.........................................................111 

Conclusions................................................................................................................... ...112 

Future Directions..............................................................................................................122 

References..................................................................................................................... ...127 



 vii 

Appendix:  Supplementary characterization of the P. falciparum amino acid 

starvation-stress response..............................................................................................131 

Preface..............................................................................................................................132 

Part I: Construction, expression, and binding analysis of P. falciparum 14-3-3:  

a eukaryotic phospho-adapter protein...................................................................... ...133 

a.  Abstract................................................................................................................134 

b.  Introduction..................................................................................................... ....135 

c.  Methods........................................................................................................... ...137 

d.  Results and Discussion.......................................................................................139 

e.  Acknowledgements......................................................................................... ...141 

f.  References...........................................................................................................142 

g.  Figures and Legends...........................................................................................144 

Part II:  Microarray analysis of short term isoleucine-starved P. falciparum..........148 

a.  Abstract...............................................................................................................149 

b.  Introduction..................................................................................................... ...150 

c.  Methods........................................................................................................... ...152 

d.  Results and Discussion.......................................................................................155 

e.  Acknowledgements......................................................................................... ...157 

f.  References...........................................................................................................158 

g.  Figures and Legends...........................................................................................159 

Part III:  Evaluating the tR�A-binding properties of the putative amino acyl-

tR�A synthetase-like domain (PfaaRS) of PfeIK1......................................................165 

a.  Abstract................................................................................................................166 



 viii 

b.  Introduction..................................................................................................... ....167 

c.  Methods........................................................................................................... ....168 

d.  Results and Discussion........................................................................................172 

e.  Acknowledgements......................................................................................... ...174 

f.  References...........................................................................................................175 

g.  Figures and Legends...........................................................................................176 

Part IV:  Electron microscopy of isoleucine-starved P. falciparum...........................181 

a.  Abstract................................................................................................................182 

b.  Introduction..................................................................................................... ....183 

c.  Methods........................................................................................................... ....185 

d.  Results and Discussion........................................................................................186 

e.  Acknowledgements......................................................................................... ....187 

f.  References............................................................................................................188 

g.  Figures and Legends...........................................................................................189 

 



 ix 

LIST OF FIGURES 

 

 

Chapter I:  Introduction  

Figure 1.  Illustration of global malaria prevalence in 2010...............................................23 

Figure 2.  Life cycle of Plasmodium falciparum................................................................24 

Figure 3.  Schematic illustration of eIF2α pathway activation via amino acid 

starvation........................................................................................................

 

....25 

Chapter II:  PfeIK1 identified as the amino acid-starvation responsive eIF2α 

kinase in Plasmodium falciparum 

 

Figure 1.  The P. falciparum eIF2α orthologue is phosphorylated in response to amino 

acid starvation................................................................................................ ....59 

Figure 2.  Bioinformatic analyses of P. falciparum eIF2α kinases.....................................60 

Figure 3.  Kinase activity of PfeIK1.............................................................................. ....61 

Figure 4.  Disruption of pfeik1 gene...................................................................................62 

Figure 5.  Disruption of the pfeik1 gene does not affect asexual growth rate............... ....63 

Figure 6.  pfeik1- parasites do not phosphorylate eIF2α in amino acid-limiting 

conditions...........................................................................................................64 

Figure 7.  Analysis of the parasite genotypes in mosquito infections............................ 

 

....65 

Chapter III:  Plasmodium falciparum responds to amino acid starvation by 

entering into a hibernatory state 

 

Figure 1.  P. falciparum growth during and recovery from isoleucine starvation.............100 



 x 

Figure 2.  Protease activity is required to maintain viability during isoleucine 

starvation..........................................................................................................101 

Figure 3.  Developmental progression of hibernating parasites..................................... ..102 

Figure 4.  Expression of metabolic, organellar, and functional pathway genes in 

starved parasites............................................................................................. ..103 

Figure 5.  Parasite eIF2α phosphorylation status depends on the isoleucine 

environment......................................................................................................104 

Figure 6.  PfeIK1 activity is not required for maintenance of viability during 

hibernation........................................................................................................105 

Figure S1.  Parasite recovery does not depend on pre-existing isoleucine stores.............106 

Figure S2.  Hibernating parasites remain susceptible to artemisinin................................107 

Figure S3.  Protein translation is reduced in PfeIK1 mutants during isoleucine 

starvation.......................................................................................................108 

Figure S4.  PfeIF2α remains unphosphorylated in PfeIK1 KO parasites during 

prolonged starvation....................................................................................

 

...109 

Appendix Part I:  Construction, expression, and binding analysis of P. 

falciparum 14-3-3:  a eukaryotic phospho-adapter protein 

 

Figure 1.  Expression of 14-3-3 in P. falciparum.............................................................145 

Figure 2.  Recombinant Pf14-3-3 expression and interaction with Plasmodium 

proteins.............................................................................................................146 

Figure 3.  Recombinant Pf14-3-3 interaction with phosphorylated P. falciparum 

proteins.............................................................................................................147 



 xi 

Appendix Part II:  Microarray analysis of short term isoleucine-starved P. 

falciparum 

 

Figure 1.  Transcriptional profile comparison between isoleucine-starved and control 

parasites with in vivo isolates........................................................................ ..162 

Figure 2.  Transcriptional profile comparison between isoleucine-starved and control 

parasites across the complete intraerythrocytic developmental cycle (IDC) 

of P. falciparum................................................................................................163 

Figure 3.  Growth recovery of PFI1710w deletion and complemented 3D7 parasites 

post isoleucine starvation...............................................................................

 

..164 

Appendix Part III:  Evaluating the tR�A-binding properties of the putative 

amino acyl-tR�A synthetase-like domain (PfaaRS) of PfeIK1 

 

Figure 1.  GCN2 complemented mutant phosphorylates eIF2α in amino acid depleted 

conditions.........................................................................................................177 

Figure 2.  Growth assessment of yeast strains on selective medium................................178 

Figure 3.  Expression of HisPfaaRSFLAG..........................................................................

 

..179 

Appendix Part IV:  Electron microscopy of isoleucine-starve P. falciparum  

Figure 1.  Transmission electron micrographs of control and isoleucine-starved P. 

falciparum...................................................................................................... ..190 

 



 xii 

LIST OF TABLES 

 

 

Chapter II:  PfeIK1 identified as the amino acid-starvation responsive eIF2α 

kinase of Plasmodium falciparum 

 

Table 1.  Oocyst and sporozoite formation by pfeik1- parasite clones...........................

 

....66 

Chapter III:  Plasmodium falciparum responsds to amino acid starvation by 

entering into a hibernatory state 

 

Table S1.  R-squared correlation of gene expression between fed and isoleucine-

starved parasites............................................................................................. 

 

..110 

Appendix Part II:  Microarray analysis of short term isoleucine-starved P. 

falciparum 

 

Table 1.  Genes upregulated in isoleucine-starved P. falciparum..................................

 

...161 

Appendix Part III:  Evaluating the tR�A-binding properties of the putative 

amino acyl-tR�A synthetase-like domain (PfaaRS) of PfeIK1 

 

Table 1-1.  Yeast growth assay (by turbidity) starting at OD600 0.005.......................... ..180 

Table 1-2.  Yeast growth assay (by turbidity) starting at OD600 0.05............................ ..180 

 

  

 



 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I: 

 

I�TRODUCTIO� 

 



 2 

Malaria: A global health and humanitarian crisis 

Malaria remains a major threat to public health in many developing countries. 

This dreadful disease continues to affect roughly 200 to 500 million lives globally each 

year, causing the deaths of nearly one million people [1, 2], making it one of the deadliest 

infectious diseases known to man. Sadly, children under the age of five are the 

unfortunate victims who make up most of this alarming death toll [3].  This disease 

predominately affects those living in tropical and sub-tropical climates, which are found 

in areas such as Central and South America, India, Southeast Asia, and Africa, with the 

majority of malaria cases and fatalities occurring in sub-Saharan Africa [1] (Figure 1).  

Commonly referred to as a disease of the poor, the economic plight of the regions most 

affected by malaria is further exacerbated by rising expenses for continuous preventative 

care, increased costs for government-managed healthcare programs, and work-

absenteeism due to disease-related illness or, worse, death, amounting to over US$12 

billion in revenue losses each year [4].    

The causative agent of malaria is an apicomplexan, protozoan parasite from the 

Plasmodium genus, which first infects a mosquito vector, allowing for transmission to a 

secondary host upon blood meal acquisition via mosquito bite.  Of the five Plasmodium 

species known to cause disease in humans [2], Plasmodium falciparum is the culprit 

behind the deadliest form of human malaria. Symptoms of malaria include joint and 

muscle pain, nausea, vomiting, and headaches, which are all common signs of the general 

malaise associated with many other types of infection.  However, malaria infection is 

distinctly characterized by cyclical waves of fever and chills, the timing of which 

coinciding with the remarkably synchronous growth cycle of the parasite [5].  Severe 
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malaria infection often results in acute anemia due to the mass destruction of host red 

blood cells (RBCs) parasitized by Plasmodium [1].  Other complications such as 

hypoglycemia, metabolic acidosis, spleen enlargement, and kidney failure also contribute 

to the clinical pathology of the disease [5].  A major and often fatal complication of 

falciparum malaria arises once the parasite enters the brain, leading to cerebral malaria.  

When the disease progresses to cerebral malaria, patients experience seizures and 

impaired consciousness, which can escalate to coma and ultimately death [5].  Such 

serious complications often account for the high mortality rate of this disease in young 

children.         

With proper and timely treatment, patient outcome following malaria infection is 

usually promising.  However, re-infection rates remain high in malaria-endemic regions 

[1], thus continuing the vicious cycle of disease and poverty.  Several efforts have been 

made to curb the endemic spread of this odious parasite, including the use of insecticide-

treated bed nets for vector control and prophylactic administration of anti-malarial drugs 

[5].  Unfortunately, such efforts have proved inadequate given that P. falciparum 

continues to thrive.  This is partly due to the many financial, logistical, and compliance 

barriers associated with preventative care in the developing world [5].  But also, 

importantly, the parasite is adapting to the once potent arsenal used to kill it, becoming 

increasingly resistant or tolerant to many of the currently available therapies [6].  Further 

compounding the problem, attempts to develop an effective vaccine have been, to date, 

largely unsuccessful [7].  Therefore, there remains a great need to continue studying 

malaria, in the hope that the future development of rational therapeutics will outpace the 

devious evolution of this deadly parasite.    
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Growth and development of Plasmodium 

The complex life cycle of P. falciparum consists of both primary and secondary 

hosts: the mosquito vector and human, respectively (Figure 2).  During a blood meal, 

infected female Anopheles mosquitoes inject the sporozoite form of the parasite into the 

bloodstream of the human host upon biting.  The sporozoites migrate from the site of the 

initial bite to the liver, where they invade the residing hepatocytes and differentiate into 

exoerythrocytic forms [8, 9].  The liver stage in falciparum malaria takes place for a 

period of up to 2 weeks.  During this time, the parasite undergoes multiple rounds of 

replication, generating thousands of merozoites, which upon synchronized release, leave 

the liver, re-enter the bloodstream, and go on to infect erythrocytes [10].   

In the RBC, P. falciparum undergoes three distinct intraerythrocytic stages during 

its characteristic 48-hour asexual development.  First, upon invasion, the merozoite 

invaginates the RBC membrane, creating a cup-shaped form known as the ring-stage.  

This stage lasts for up to 24 hours and can be likened to a G0/G1 phase in cell cycle 

terms, given that little metabolic activity occurs here [11].  Second, the parasite 

transitions into the highly metabolically active trophozoite stage, lasting for 12 to 14 

hours.  During this stage, the parasite enters its G1 phase, acquiring nutrients required for 

its growth, hydrolyzing most of the host cell hemoglobin, and increasing its size [12].  In 

addition, initiation of DNA replication, or S-phase, takes place toward the latter end of 

the trophozoite stage [11, 13].  Third, the parasite continues S-phase and enters the G2-

and M-phases in the schizont stage, lasting for approximately 10 hours, where multiple 

copies of its DNA are generated, equally partitioned, and packaged in up to 32 individual 

merozoites, the invasive ring-stage precursor [14].  The resulting merozoites rupture the 
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host RBC and quickly go on to infect new RBCs, repeating multiple rounds of asexual 

development, thus exponentially increasing the parasite’s population while depleting the 

healthy RBC count of the human host.  With regular coordinated invasion/ egress cycles, 

it is during the erythrocytic asexual proliferation of the parasite that the infected 

individual first begins to exhibit symptoms of malaria [15].   

A portion of the merozoites exit asexual development and differentiate into male 

or female gametocytes, the sexual forms of the parasite [16].  RBCs containing mature 

asexual trophozoites and schizonts tend to sequester along the capillary endothelium due 

to the presentation of parasite-derived adhesive structures on the surface of the infected 

RBC known as knobs [17, 18].  These structures are largely absent on RBCs containing 

mature gametocytes and young asexual parasites, therefore, these forms are often 

enriched in the peripheral blood [19].   This enrichment allows the gametocyte forms to 

be readily taken up by a mosquito during a blood meal.  It is in the mosquito where the 

sexual phase of the parasite initiates, ultimately giving rise to the sporozoite form which 

can again be transmitted to another human host, thus completing the cycle.   

 

�utrient acquisition in Plasmodium and the essentiality of isoleucine 

Obligate intracellular organisms often lose the ability to make certain metabolites 

due to genome condensation, a selective process that dispenses genes coding for effector 

proteins or even entire enzymatic pathways when the desired end-product is abundantly 

available from the parasitized host [20].  According to genome analysis [21], P. 

falciparum does not encode the enzymes necessary to synthesize several biologically 

relevant molecules such as sugars [22], purine nucleotides [23], the B5 vitamin 
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pantothenate [24], and a number of amino acids [25].  Therefore, the parasite is 

dependent on the host to supply it with these essential molecules to sustain its growth.  

In the case of sugar utilization, extracellular glucose is imported and metabolized 

for energy production by both the host RBC and the parasite [26].  During 

intraerythrocytic development, the rapid consumption of glucose by the parasite requires 

that it be continuously available, particularly since P. falciparum does not maintain a 

surplus energy store [27].  In terms of nucleotide uptake, the parasite depends on a 

purine-salvage pathway that allows it to import and convert various extracellular purine 

derivatives and nucleosides to purine nucleotides used for DNA and RNA synthesis [28].  

Regarding the B5 vitamin pantothenate, which is used to derive the ubiquitous metabolic 

cofactor, coenzyme A (CoA), the parasite imports this molecule via new permeability 

pathways (NPPs) introduced into the RBC membrane during the course of an infection 

[24, 29, 30].  For amino acids, which are required for protein synthesis and serve as 

substrates for use in other metabolic pathways [31, 32], the parasite can utilize three 

methods of acquisition:  1) catabolism of the host cell hemoglobin [33], 2) de novo 

biosynthesis (of only a few) [25], and 3) active uptake of extracellular free amino acids 

via NPPs [26].  

 All of the molecules discussed above have been found to be essential to support 

the optimal growth and development of the parasite [34]; however, in terms of the amino 

acid requirements of P. falciparum, it appears that only exogenous isoleucine is necessary 

to sustain its continuous intraerythrocytic growth [33].  This is contrary to previous 

reports that determined that P. falciparum growth depends on the exogenous supply of at 

least seven amino acids, namely tyrosine, proline, cysteine, glutamate, glutamine, 
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methionine, and isoleucine [34].  The parasite maintains enzymes for the biosynthesis of 

three of these amino acids [25] and all, except the latter, can be obtained through 

hemoglobin degradation, as isoleucine is the only amino acid not present in adult human 

hemoglobin [35, 36].  Considering that the parasite is also unable to synthesize any of the 

branched-chain amino acids [25], it follows that isoleucine must be acquired from an 

extracellular source (i.e. human serum or supplied in the in vitro culture medium).   

The essentiality of isoleucine to the growth of P. falciparum was discovered upon 

monitoring the progression of its intraerythrocytic developmental cycle (IDC) while 

maintained in various amino acid-dropout media conditions.  Only in the absence of 

isoleucine did parasites fail to proliferate.  Furthermore, parasite growth was virtually 

normal when only isoleucine was supplemented to amino acid-free culture medium, thus 

requiring the parasite to obtain all other amino acids from hemoglobin degradation or 

potentially, in the case of 6 amino acids, de novo biosynthesis [33].   It is possible that the 

addition of other amino acids in earlier studies may have appeared to enhance parasite 

growth due to the in vitro culturing peculiarities of the parasite strain used in the analysis.  

Nonetheless, the updated study discussed above clearly disputes the absolute requirement 

for extracellular amino acids other than isoleucine.                 

 The host RBC is equipped with an endogenous transport system suitable for the 

uptake of neutral amino acids [26].  However, it has been shown that P. falciparum 

infected RBCs take up amino acids, including isoleucine, more efficiently than 

uninfected RBCs [37].  This increase in amino acid flux is mediated by the new 

permeation pathway,  a parasite-derived transport system that increases the permeability 

of the RBC membrane to various small molecules [30].  The traversal of substrates across 
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the parasitophorous vacuolar membrane (PVM) appears to be via large, non-selective 

pores [38] and uptake across the parasite plasma membrane (PPM) is mediated by 

parasite-encoded integral membrane transporters, some of which have been identified and 

characterized as having substrate-specific properties [39].  In regard to isoleucine flux, it 

has been shown that the parasite most likely uses an antiport system in which intracellular 

leucine, presumably released from digested hemoglobin, is exchanged for extracellular 

isoleucine, which rapidly accumulates within the parasite [37].  Considering that P. 

falciparum is wholly dependent on an external supply of isoleucine, the transporter that 

mediates its uptake is naturally regarded as a critical antimalarial target.   

 

Impact of nutrient stress in a malaria infection 

 In the context of a human infection, the nutritional status of malaria patients has 

been implicated in modulating the severity of the disease [40].  As mentioned previously, 

malaria-endemic regions are commonly burdened with extreme poverty, which in most 

cases directly correlates with poor nutrition [41].  Malnourished patients experience a 

variety of nutritional deficiencies (e.g. iron, vitamins A, B, C, and E, zinc, folate, 

protein), which can directly (competition between the parasite and the host for a limited 

supply of essential nutrients) or indirectly (diminished capacity of the host immune 

system to fight infection) impact parasite burden [42-46].    

In the case of protein malnutrition and malaria infection, human clinical studies 

have yielded conflicting data regarding the effects of malnutrition on patient mortality 

[46-50].  However, in more controlled animal studies in which malaria-infected primates 

or rodents were fed protein-restricted diets, the data consistently showed that although the 
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animals failed to clear the infection, parasite burden remained low and prevalence of 

cerebral malaria was virtually absent [51-53].  Interestingly, in the rodent studies, once 

the low-protein diets were supplemented with the amino acids threonine, methionine, 

valine, and isoleucine, the animals experienced a surge in parasitemia with accompanying 

morbidity, while the addition of other amino acids did not have this effect [54].    

Of note, rodent hemoglobin contains all of the amino acids, including isoleucine, 

which is present in low abundance [35], therefore unlike human malaria parasites, rodent 

malaria species are not totally dependent on an extracellular source of this amino acid.  

However, optimal in vitro growth of P. falciparum has been shown to require an 

isoleucine concentration above 20 µM [33].  Provided that rodent malaria species have 

similar growth requirements, the dramatic outgrowth of the parasite upon re-feeding 

suggests that Plasmodium may be capable of modulating its growth cycle in response to 

nutrient availability.  With regard to human malaria, this premise is particularly 

intriguing, considering that in malnourished children, plasma isoleucine levels often fall 

well below 20 µM [55] [normal serum isoleucine concentrations in healthy individuals 

are typically in the 80 - 100 µM range [56]], which is correlative with protein limitation, 

since in mammals, this amino acid is essential and must be acquired through the diet [25].   

In the earlier human clinical studies mentioned above, malaria-infected patients 

most likely suffered from multiple nutrient deficiencies in addition to protein 

malnutrition, hence the ambiguity regarding the impact of malnutrition on parasite 

growth and disease progression.  However, the protein-restriction studies carried out with 

rodent and primate malarias indicate that the parasite exhibits some degree of amino acid-
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sensitive growth regulation, which could represent a stress response mechanism 

conserved in Plasmodium spp.   

 

Parasite stress response 

Stress response mechanisms allow organisms to adapt to and survive in less than 

favorable conditions.  Malaria parasites also utilize various mechanisms that allow them 

to overcome host defenses and establish successful infections [57-60].  Regarded as a 

general response to stress in the parasite, commitment to gametocytogenesis confers a 

degree of protection against the harsh host environment [61], since gametocytes are 

terminally differentiated and effectively metabolically inert at maturation [62].  However, 

asexual parasites are considerably more vulnerable, therefore blood-stage parasites must 

use alternative means to survive the volatile conditions of the host environment, which, 

during the course of an infection, experiences fluctuations in temperature, oxidative 

bursts, and nutrient shortages [63].   

A drug-tolerance mechanism associated with reduced susceptibility to the 

antimalarial artemisinin has been recognized as a stress response utilized by the parasite 

to withstand drug pressure [64, 65].  This protection from killing stems from an apparent 

metabolic shift that gives rise to a putative dormant state, which stalls parasite 

development at the ring stage [65].   It seems that once drug therapy ends, the parasite 

reanimates and continues its asexual developmental cycle, consequently leading to 

recrudescent malaria infections [66].  This concept of stress-induced dormancy further 

suggests that P. falciparum has the capacity to control its growth in a signal/ response-

type relay.  In other organisms, such processes often affect critical cellular functions (e.g. 
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energy production, replication, transcription, translation) and require several layers of 

regulation [67], an area that remains ill-defined in Plasmodium.   

Although the putative quiescence mechanism of P. falciparum is not well-

understood, stress-induced dormancy is a phenomenon exhibited by various organisms, 

including a related parasite, Toxoplasma gondii, the causative agent of toxoplasmosis 

[68].  T. gondii parasites exist in two forms: the proliferative tachyzoite, which can infect 

virtually any nucleated cell in a broad range of hosts; and the latent cyst bradyzoite, 

which can reside in host tissues indefinitely with the potential to reactivate [68].  The 

ability of T. gondii to enter into a dormant phase allows for the establishment of 

persistent, chronic infections. When exposed to stress, actively growing tachyzoites 

convert to the dormant bradyzoite form, a process associated with reduced cell cycle 

activity [69], up-regulation of heat shock proteins [70], and translational repression [71].  

Various environmental stresses have been shown to trigger bradyzoite differentiation, 

including amino acid starvation [72], which has a well-characterized role in controlling 

the cellular growth of eukaryotic organisms [73, 74].   

 
 

Mechanisms of growth control  

Virtually all eukaryotic organisms possess a signaling protein known as the 

Target of Rapamycin (TOR), which functions as a master regulator, promoting cellular 

growth and viability under growth-permissive conditions [73].  However, the TOR 

complex is also negatively regulated by stimuli such as nutrient starvation, which leads to 

a decrease in anabolic processes (e.g. protein synthesis) and an increase in catabolic 

processes (e.g. autophagy) in an effort to adapt to the changing environment and maintain 
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cellular integrity [75].  This highly conserved protein belongs to the phosphatidylinositol 

kinase-related kinase (PIKK) family, whose members are characterized by a serine/ 

threonine protein kinase domain located at the carboxy terminal (C-terminal) end of the 

protein [73].  TOR derives its name from the inhibitory effects of the immunosuppressant 

antibiotic rapamycin, which interacts with the cellular cofactor FK506-binding protein 

(FKBP) before binding to and, subsequently, inhibiting the growth-promoting activity of 

TOR [76].  Both an FKBP-like protein and a putative TOR have been identified in the 

apicomplexan parasite T.  gondii, further demonstrating the extensive evolutionary 

conservation of this protein [77].   Interestingly, a single FKBP homolog has also been 

identified and characterized in P. falciparum [78], however genome sequence data 

indicates that homologs for TOR and its accompanying signaling components are absent 

in Plasmodium [79].  This discrepancy is particularly intriguing since previous reports 

have demonstrated that rapamycin has considerable antimalarial activity [78, 80].  

Nonetheless, the antimalarial mechanism of rapamycin in Plasmodium appears to be 

independent of conventional TOR-mediated signaling.  

A second pathway that is central to controlling cellular growth is the eukaryotic 

initiation factor 2-alpha (eIF2α)-signaling pathway (Figure 3).  This pathway mediates 

the activation of an adaptive transcriptional response to nutrient limitation, including 

amino acid starvation.  Phosphorylation of a conserved serine residue in eIF2α by its 

cognate sensor kinase results in decreased overall protein synthesis and growth inhibition.  

At the same time, there is increased transcription of genes involved in compensatory 

pathways such as those that function in amino acid biosynthesis [81].   
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Recent reports have described the relative importance of eIF2α-mediated 

signaling in the life cycle of protozoan parasites.  For instance, phosphorylation of eIF2α 

plays a role in maintaining T. gondii parasites in the dormant bradyzoite cyst form [71].  

Furthermore, in the sexual phase of Plasmodium, eIF2α kinase-mediated signaling in 

mosquito-stage sporozoites prevents premature conversion to the liver-stage form [82].  

Also in P. falciparum, a putative eIF2α kinase, PfPK4, was identified [83] and deemed 

essential for blood stage development given that the genetic locus coding for this kinase 

could not be disrupted [84].  In addition to the two Plasmodium eIF2α kinases mentioned 

above, kinome profiling revealed that the parasite also maintains a third eIF2α kinase 

ortholog, expressed during the blood stage, with similarities to a known amino acid-

starvation-sensing eIF2α kinase, GCN2, which is highly conserved from yeast to humans 

[85, 86].   

 

Aim and Scope of Thesis 

Substantial advancements have been made in elucidating the pathogenic 

properties of Plasmodium.  However many aspects concerning the complex biology of 

this seemingly simple parasite remain virtually unknown.  The aim of this thesis was to 

address questions regarding how P. falciparum regulates its growth, particularly during 

amino acid limitation, with intent to determine elements involved in its mode of 

persistence.       

Early examination of the nutrient requirements of P. falciparum revealed that the 

parasite is completely dependent on an extracellular source of the amino acid isoleucine 

[33, 34].  Furthermore, the in vitro proliferation of the parasite is inhibited when grown in 
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the absence of isoleucine [33]; and in vivo studies with rodent malarias indicate that the 

robustness of the parasite’s growth cycle is finely tuned with the composition of the 

external amino acid environment [52, 54].  In addition, homology searches indicate that 

Plasmodium maintains an ortholog of GCN2, an amino acid-starvation sensitive eIF2α 

kinase known to regulate growth in response to nutrient availability in other organisms 

[81].   

Previous studies have demonstrated that eIF2α kinase activity is present in 

Plasmodium [82, 83, 87].  However there is little evidence linking any of the identified 

kinases with a specific activating stress or trigger, a key feature that ultimately defines 

the specialized regulatory function of this kinase family.  In regard to the putative GCN2 

ortholog, this matter is directly addressed in chapter 2 of this thesis.  The identity of the 

amino acid-starvation sensitive eIF2α kinase in P. falciparum was experimentally 

confirmed using kinase-knockout parasite lines generated for this study, followed by the 

assessment of the phosphorylation status of eIF2α in these parasites under both amino 

acid-rich and limiting conditions.  Additionally, data presented in chapter 3 examined 

whether the isoleucine dependence of P. falciparum conferred exclusive specificity to the 

nutrient-sensing function of the identified kinase.    

Further metabolic characterization of isoleucine-starved P. falciparum is 

presented in chapter 3.   Interestingly, genome analysis of Plasmodium indicates that the 

parasite lacks orthologs of the effector proteins that are known to function downstream of 

GCN2-regulated signaling in higher eukaryotes (i.e. GCN4/ATF4 [74, 81, 88]).   

Considering that Plasmodium is generally deficient in regulatory transcription factors 

[89-91], coupled with the fact that the parasite also has lost the TOR pathway [79], the 
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absence of GCN2/eIF2α pathway mediators suggests that the tightly-regulated, 

conventional stress response mechanisms common to free-living organisms are not 

required by the obligate intracellular parasite to sustain its growth and viability.  In short, 

data presented in chapter 3 of this thesis indicate that the amino acid starvation-associated 

growth control measures employed by Plasmodium have been reduced to their simplest, 

most elementary form, functioning irrespective of canonical translational control, with 

features characteristic of hypometabolism.  These features were inconsistent with those 

described for the artemisinin-associated putative dormant state of P. falciparum [65, 92], 

thus the amino acid starvation-induced hypometabolic state represents a novel stationary 

phase that apparently extends the life of the parasite by delaying its growth.  This thesis 

provides the first description of this phenomenon in blood stage P. falciparum.     

 
 

 
 
 

. 
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Figure Legends 

 
 

Figure 1. Illustration of global malaria prevalence in 2010 

Source: World Health Organization (WHO) 

 

Figure 2. Life cycle of Plasmodium falciparum 

Source: Centers for Disease Control and Prevention (CDC)   

http://www.dpd.cdc.gov/dpdx 

 

Figure 3. Schematic illustration of eIF2α pathway activation via amino acid 

starvation. 

Amino acid starvation activates the eIF2α kinase GCN2, which goes on to phosphorylate 

a conserved serine residue in the translation effector eIF2α.  The appended phosphate 

moiety hinders eIF2B-mediated GTP loading of eIF2α, which is required to initiate 

productive protein synthesis.  With eIF2α phosphorylated, translation becomes rate-

limiting, thereby decreasing general protein synthesis, ultimately leading to growth 

inhibition.  Although global translation is decreased, eIF2α phosphorylation leads to 

increased expression of the stress-responsive transcription factor GCN4 due to altered 

ribosomal scanning of GCN4 transcripts [81].  GCN4 then goes on to selectively activate 

the transcription of genes involved in the adaptive response.    
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Preface 

Work presented in this chapter was conducted by SEL (SB), CF, IR, JW, and LRC.  SEL 

(SB) performed parasite starvation assays, immunoblotting analysis, and drafted portions 

of the manuscript relevant to these experiments and techniques.  The contributions of the 

other authors are provided on page 50 of this chapter.  Subsequent data in chapter 3 of 

this thesis refute the regulatory role of PfeIK1 in the amino acid starvation response of P. 

falciparum proposed here.  However, the data presented in this chapter established the 

functional role of PfeIK1 in the sensing of amino acid starvation in P. falciparum.   

 

This chapter is reprinted here essentially as published: 

Fennell C*, Babbitt S*, Russo I, Wilkes J, Ranford-Cartwright L, Goldberg DE, and 

Doerig C.  PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria 

parasite Plasmodium falciparum, regulates stress-response to amino acid starvation.  

Malaria J. 2009 May 12; 8:99.  

*These authors contributed equally to this work 
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Abstract  

Background 

Post-transcriptional control of gene expression is suspected to play an important role in 

malaria parasites.  In yeast and metazoans, part of the stress response is mediated through 

phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which results in 

the selective translation of mRNAs encoding stress-response proteins. 

Methods 

The impact of starvation on the phosphorylation state of PfeIF2α was examined.  

Bioinformatic methods were used to identify plasmodial eIF2α kinases.  The activity of 

one of these, PfeIK1, was investigated using recombinant protein with non-physiological 

substrates and recombinant PfeIF2α.  Reverse genetic techniques were used to disrupt the  

pfeik1 gene. 

Results 

The data demonstrate that the Plasmodium falciparum eIF2α orthologue is 

phosphorylated in response to starvation, and provide bioinformatic evidence for the 

presence of three eIF2α kinases in P. falciparum, only one of which (PfPK4) had been 

described previously.  Evidence is provided that one of the novel eIF2α kinases, PfeIK1, 

is able to phosphorylate the P. falciparum eIF2α orthologue in vitro.  PfeIK1 is not 

required for asexual or sexual development of the parasite, as shown by the ability of 

pfeik1
- parasites to develop into sporozoites.  However, eIF2α phosphorylation in 

response to starvation is abolished in pfeik1
- asexual parasites.  
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Conclusions 

This study strongly suggests that a mechanism for versatile regulation of translation by 

several kinases with a similar catalytic domain but distinct regulatory domains, is 

conserved in P. falciparum.   
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Background  

Human malaria is caused by infection with intracellular protozoan parasites of the 

genus Plasmodium that are transmitted by Anopheles mosquitoes.  Of four species that 

infect humans, Plasmodium falciparum is responsible for the most virulent form of the 

disease.  The transition from one stage of the life cycle to the next must be tightly 

regulated, to ensure proliferation and differentiation occur when and where appropriate; 

this is undoubtedly linked to differential gene expression.  Analysis of the P. falciparum 

transcriptome during the erythrocytic asexual cycle reveals an ordered cascade of gene 

expression [1], and the various developmental stages display distinct transcriptomes; how 

this is orchestrated remains obscure.  Initial investigation of the P. falciparum genome 

revealed a paucity of transcriptional regulators [2], although this picture has recently been 

challenged by the recent identification of the ApiAP2 transcription factor family [3].  

There is nevertheless a large body of evidence suggesting that post-transcriptional control 

is an important means of gene regulation in P. falciparum.  Examples include the 

relatively small number of identifiable transcription-associated proteins, abundance of 

CCCH-type zinc finger proteins commonly involved in modulating mRNA decay and 

translation rates [2] and translational repression during gametocytogenesis [4-6]. 

In mammalian cells, regulation of gene expression is a key mechanism in the mediation 

of stress responses, which may be achieved by influencing transcription or translation.  

The Stress Activated Protein kinases (SAPKs), specifically JNKs and p38 kinases, are 

subfamilies of mitogen activated protein kinases (MAPK) that are expressed in most 

eukaryotic cells, and respond to a variety of stress conditions [7].  Although the parasite 

kinome includes two MAPK homologues, none of these are members of the SAPK 
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subfamily [8-10].  In contrast, the P. falciparum kinome contains a phylogenetic cluster 

of three kinases with homology to eukaryotic Initiation Factor 2α (eIF2α kinases, which 

in other organisms regulate translation in response to stress [10].  Interestingly, the 

related apicomplexan parasite Toxoplasma gondii has been shown to differentiate from 

tachyzoites to bradyzoites on exposure to a number of cellular stresses, concomitant with 

an increase in phosphorylation of TgeIF2α, indicating a possible role for this mechanism 

in parasite differentiation [11]. 

Phosphorylation of eukaryotic initiation factor 2α at residue Ser51 in response to 

stress is a well-characterized mechanism of post-transcriptional control that regulates 

initiation of translation [12-17].  In mammalian cells this phosphorylation event is 

mediated by four distinct protein kinases, called the eIF2α kinases: general control non-

derepressible-2 (GCN2), haem-regulated inhibitor kinase (HRI), RNA-dependent protein 

kinase (PKR), and PKR-like endoplasmic reticulum kinase (PERK).  These enzymes 

contain a similar catalytic domain allowing them to phosphorylate the same substrate, but 

have different accessory domains that regulate kinase activation in response to different 

signals.  In GCN2 the functional kinase domain is followed by a histidyl-tRNA 

synthetase (HisRS)-like domain [18], which is the major motif for activation in response 

to amino acid starvation; PERK has a transmembrane domain allowing it to reside in the 

endoplasmic reticulum membrane;  the N-terminal domain can protrude into the lumen of 

the ER to sense unfolded proteins, while the catalytic domain extends into the cytoplasm 

where its substrate and effector mechanism lie; human PKR contains an RNA binding 

domain and responds to viral infection; and HRI contains haem binding sites to modulate 
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translation of globin chains according to the availability of haem.  In this way the eIF2α 

kinases can integrate diverse stress signals into a common pathway [12-14, 19]. 

Translation initiation requires the assembly of the 80S ribosome on the mRNA, 

which is mediated by proteins known as eukaryotic initiation factors (eIFs).  Formation 

of the 43S pre-initiation complex depends on binding of the ternary complex that consists 

of the heterotrimeric G-protein eIF2 (a, b and g subunits), methionyl-initiator tRNA (met-

tRNAi) and GTP [13]. Initiation of translation and release of the initiation factors 

involves hydrolysis of GTP to GDP, which leaves an inactive eIF2-GDP complex.  

Before further rounds of translation initiation can occur eIF2 must be reactivated by 

exchange of GDP for GTP [13].  The presence of a phosphate group on the a subunit of 

eIF2 inhibits recycling of inactive eIF2-GDP to active eIF2-GTP by limiting the activity 

of the guanine nucleotide exchange factor, eIF2B [20].  The consequence of activity of 

the eIF2α kinases therefore is global translation repression, since initiation complexes 

cannot form.  In spite of the generalized reduction in translation, some specific mRNAs 

are translated, whose products shapes the subsequent stress response.  Reduced 

translation conserves energy and nutrients, allowing time for the cell to adapt 

appropriately to the stress conditions.  This mechanism is conserved in the vast majority 

of eukaryotes. One notable exception is the Microsporidium Encephalitozoon cuniculi, 

whose kinome does not include eIF2α kinases (or other stress-response kinases), a 

probable adaptation to its parasitic lifestyle [21].  It is, therefore, of interest to investigate 

the extent to which malaria parasites may rely on eIF2α phosphorylation for stress-

response and/or life cycle progression. 
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A cluster of three sequences that includes PfPK4, a protein kinase that was 

previously described as a putative eIF2α kinase [22], was identified in the P. falciparum 

kinome on the basis of catalytic domain similarity [10, 23].  Here, evidence is provided 

that the P. falciparum eIF2α orthologue is phosphorylated in response to amino acid 

starvation.   Bioinformatics analysis reveals that P. falciparum encodes three eIF2α 

kinases, one of which, Plasmodium falciparum eukaryotic Initiation Factor Kinase-1 

(PfeIK1), is shown here to indeed be able to phosphorylate P. falciparum eIF2α  in vitro.  

Reverse genetics experiments show that inactivation of the pfeik1 gene does not affect 

asexual growth, gametocytogenesis or further sexual development, since pfeik1
-
 

sporozoites can be formed in the mosquito vector;  in contrast, pfeik1
- parasites are 

unable to phosphorylate eIF2α  in response to amino-acid starvation. 

 

Methods 

Bioinformatic analysis  

BLASTP analysis was used to identify the closest human and Plasmodium berghei 

orthologues of the PfeIF2α kinases.  Catalytic domains of the putative PfeIF2α kinases 

as defined by the alignment of P. falciparum kinases [10] were aligned with the four 

human eIF2α kinases and other P. falciparum and human sequences that were selected to 

represent all kinase subfamilies.  The sequences were aligned using the HMMER 

package against a profile generated from our previous kinome analysis [10].  After 

removal of gaps and positions with a low quality of alignment, alternate phylogenies 
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generated with the neighbour joining method were visualized using NeighbourNet 

implemented on SplitsTree verion 4 [24].   

 

BLASTP searches of PlasmoDB using metazoan eIF2α sequences were used to identify 

PF07_0117 as the P. falciparum homologue of eIF2α, which was then confirmed by 

reciprocal analysis.  Alignment of these sequences was performed using ClustalW.   

 

Molecular cloning 

PfeIK1.  A 1278bp fragment encoding the catalytic domain of PfeIK1 (PF14_0423) was 

amplified from a P. falciparum cDNA library using the Phusion polymerase 

(Finnzymes), using the following primers: forward, 

GGGGGGATCCATGGGGAAAAAAAAACATGG, reverse 

GGGGGTCGACCGTAAAAAGTACACTTTCGTG.  The primers contained BamHI and 

SalI restriction sites, respectively (underlined).  The Taq polymerase (Takara) was used 

to add adenine tails to enable cloning of the product into the pGEM-T Easy vector 

(Promega) for sequencing.  The correct sequence was removed by digestion with BamHI 

and SalI and inserted into the expression vector pGEX-4T3 (Pharmacia).  A catalytically 

inactive mutant was obtained by site directed mutagenesis of Lys458 to Met using the 

overlap extension PCR method [25] (forward: CTTATGCATTAATGATTATAAG, 

reverse: CTTATAATCATTAATGCATAAG).   

 

PfeIF2α.  α.  α.  α.  Oligonucleotide primers were designed to amplify the complete coding 

sequence of PfeIF2α (PF17_0117) by PCR from a cDNA library of the P. falciparum 
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clone 3D7, using the Phusion polymerase (Finnzymes).  The primers used were as 

follows: forward, GGGGGGATCCATGACTGAAATGCGAGTAAAAGC and reverse, 

GGGGGTCGACTTAATCTTCCTCCTCCTCGTC (restriction sites are underlined).  Taq 

polymerase (Takara) was used to add adenine tails to enable cloning of the 990bp product 

into the pGEM-T Easy vector (Promega) for amplification and sequencing.  The correct 

sequence was removed by digestion with BamHI and SalI and inserted into the 

expression vector pGEX-4T3 (Pharmacia).  A mutant of PfeIF2α designed to be 

refractory to phosphorylation was obtained by site directed mutagenesis (Ser59 - Ala) 

using the overlap extension PCR technique [25], (primers: forward, 

CTTATGCATTAATGATTATAAG, reverse, CTTATAATCATTAATGCATAAG). 

All inserts were verified by DNA sequencing (The Sequencing Service, Dundee, UK) 

prior to expression of recombinant proteins or transfection of P. falciparum. 

 

Recombinant protein expression 

Expression of recombinant GST fusion proteins was induced in E. coli (strain BL21, 

codon plus) with 0.25mM Isopropyl Thiogalactoside (IPTG).  After induction, bacteria 

were grown at 16oC overnight and the resulting bacterial pellets were stored at –20oC 

until use.  All subsequent work was done on ice, centrifugation steps at 4oC.  Protein 

extraction was performed by digestion of bacterial pellets 5 mins using lysozyme 

(Sigma), followed by 10 mins in lysis buffer (1xPBS, 2mM ethylenediaminetetraacetic 

acid (EDTA), 1mM dithiothreitol (DTT), 0.5% Triton x100, 1mM Phenyl Methyl 

Sulphonate (PMSF), Benzamidine Hydrochloride Hydrate (BHH), 1X complete cocktail 

protease inhibitors (Roche)).  Bacterial lysates were sonicated at 20% amplitude 
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(Bioblock Scientific, Vibracell 72405), 5x 15 sec pulses/ 15 sec rest, and cleared by 

centrifugation 13000g, 15 mins.  GST-fusion proteins were purified by incubation of 

cleared lysates on glutathione agarose beads (Sigma) for 2 hours, followed by four 

washes with lysis buffer and eluted for 20 minutes in elution buffer (Tris 40mM, pH8.7, 

75mM NaCl, 15mM reduced glutathione).  Protein concentration was monitored using 

the Bradford assay (Biorad reagent) A595nm.  Kinase assays were carried out immediately 

after purification. 

 

Kinase assay 

Kinase reactions (30µl) were carried out in a standard kinase buffer containing 20mM 

Tris-HCl, pH 7.5, 20mM MgCl2, 2mM MnCl2, phosphatase inhibitors; 10mM NaF, 

10mM β-glycerophosphate, 10µM ATP and 0.1MBq [γ-32P] ATP, using 2µg recombinant 

kinase, and 10µg non-physiological substrate (α-casein, β-casein), or recombinant GST-

PfeIF2α.  Reactions were allowed to proceed for 30 minutes at 30oC and stopped by 

addition of reducing Laemmli buffer, 3 minutes, 100oC.  Samples were separated by 

SDS-PAGE and phosphorylation of kinase substrates assessed by autoradiography of the 

dried gels. 

 

Plasmodium falciparum genetic manipulation 

A gene disruption plasmid was produced for PF14_0423 in the plasmid pCAM-BSD [26] 

that contains the gene conferring resistance to blasticidin.  The oligonucleotide pair 

GGGGGGATCCGTAATGAAAGTAAAAAATAAG/ 

GGGGCGCCGGCGAGGTGAAATATAATGAATTGTTCC, containing BamHI and 
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2otI sites (underlined) was used to amplify a 789bp fragment for insertion to pCAM-

BSD.  Ring stage parasites were electroporated with 50 – 100 g plasmid DNA, as 

previously described [26].  Blasticidin (Calbiochem) was added to a final concentration 

of 2.5 g/ml 48 hours after transfection to select for transformed parasites.  Resistant 

parasites appeared after 3-4 weeks and were maintained under selection.  After 

verification by PCR that pfeik1
- parasites were present, the population was cloned by 

limiting dilution in 96 well plates (0.25/0.5/1.0 parasite per well).  Genotypic analysis 

enabled selection of independent pfeik1
- clones for further phenotypic analysis. 

 

Parasite culture and mosquito infection 

Plasmodium falciparum clone 3D7 was cultured as previously described [27].  In brief, 

asexual cultures were maintained in complete RPMI at a haematocrit of 5%, between 

0.5% and 10% parasitaemia.  Asexual growth cycle was analyzed by flow cytometric 

assessment of DNA content as previously described [28].  Gametocytogenesis was 

induced as described previously [29]; briefly, gametocyte cultures were set up at 0.5-

0.7% parasitaemia in 6% haematocrit (using human blood not more than 7 days after the 

bleed), in an initial volume of 15ml in 75cm2 flasks.  Cultures were maintained for 4-5 

days until 8-10% parasitaemia was reached and parasites appeared stressed, after which 

the volume was increased to 25ml.  For each clone a mixture of day 14 and day 17 

gametocyte cultures were fed to Anopheles gambiae, through membrane feeders as 

described [29].  Female mosquitoes were dissected 10 days post-infection and midguts 

examined by light microscopy for presence of oocysts.  Sporozoite invasion of salivary 

glands was assessed by removal of salivary glands 16 days post-infection and 
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examination by light microscopy.  DNA was extracted from oocyst-positive midguts 

using previously published methods [30].  Fisher’s exact test was used to compare 

infection prevalence between oocyst and sporozoite stages, where appropriate.  

 

Preparation of parasite pellets 

Parasite pellets were obtained by saponin lysis: erythrocytes were centrifuged at 1300g 

for 2 min at room temperature, washed in an equal volume of Phosphate Buffered Saline 

(PBS), pH 7.5, and centrifuged at 1300g for 2 mins at 4oC.  Erythrocytes were lysed on 

ice by resuspension and repeated pipetting in 0.15% saponin in PBS.  The PBS volume 

was then increased and parasites recovered by centrifugation at 5500g for 5 mins, at 4oC.  

After two washes in PBS, the parasite pellets were stored at –80oC. 

 

Plasmodium falciparum amino acid starvation assay 

Plasmodium falciparum 3D7 parasites and clonal lines of pfeik1
- and pfeik2

- parasites 

were synchronized to the late ring stage, cultured in complete RPMI at 2% haematocrit, 

and grown to approximately 8 – 10% parasitaemia.  The parasites were washed two times 

in 1x PBS, equally partitioned and washed with either complete RPMI or RPMI medium 

lacking amino acids, after which, the parasites were re-plated in their respective medium.   

The plates were incubated at 37°C with 5% CO2 for 5 hours.  After 5 hours, one culture 

maintained in amino acid free medium was supplemented with complete RPMI, and re-

incubated at 37°C for an additional 45 minutes.  Post-incubation, the parasites were 

isolated by tetanolysin (List Biological) treatment, washed with 1x PBS buffer containing 

CompleteTM protease inhibitor cocktail (Roche), 2mM NaF, and 2mM Na3VO4. Samples 
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were resuspended in 2x SDS-Laemmli buffer.  Parasite proteins were resolved by SDS-

PAGE and transferred to nitrocellulose for immunoblotting.   

 

Antibodies and immunoblotting 

Rabbit anti-phosphorylated eIF2α (Ser 51) was purchased from Cell Signaling 

Technology (Danvers, MA).  Rat anti-BiP was acquired from the Malaria Research and 

Reference Reagent Resource Center (ATCC, Manassas, VA).  Secondary antibodies used 

were conjugated with horseradish peroxidase (HRP).  For immunoblotting, nitrocellulose 

membranes were blocked with 5% BSA in TBS-0.1% Tween 20 (TBST) for 1 hour at 

room temperature.  Rabbit anti-phosphorylated eIF2α (Ser 51) was diluted 1:1000 in 

TBST.  Rat anti-BiP was diluted 1:10,000 in TBST.  Respective secondary antibodies 

were diluted 1:20,000. Bound antibodies were detected with Western LightningTM 

Chemiluminescence reagent (Perkin Elmer).   

 

Southern blotting 

To obtain genomic DNA, parasite pellets were resuspended in PBS and treated with 150 

µg/ml proteinase K and 2% SDS at 55oC for 4 hours.  The DNA was extracted using 

phenol/chloroform/isoamyl alcohol (25:24:1), and precipitated in ethanol with 0.3M 

sodium acetate at -20oC.  Restriction digests were carried out with HindIII.  Probes were 

labelled with alkaline phosphatase using the Gene Images AlkPhos Direct Labelling kit 

(Amersham). 
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Results and Discussion 

Stress-dependent phosphorylation of the P. falciparum eIF2αααα orthologue 

BLASTP searches of PlasmoDB using metazoan eIF2α sequences were used to 

identify PF07_0117 as the P. falciparum orthologue, which was confirmed by reciprocal 

analysis.  The alignment of P. falciparum eIF2α with sequences from Toxoplasma 

gondii, human, rice and E. cuniculi is shown in Figure 1A.  Overall, the P. falciparum 

sequence shares ~70% identity with T. gondii eIF2α and ~ 50%, ~ 40% and ~28% with 

the orthologues in humans, rice and E. cuniculi, respectively.  Importantly, the serine that 

is targeted for phosphorylation is conserved in all species. Furthermore, eIF2α contacts 

the kinase through a large number of residues that interact with the surface of the kinase 

domain.  These residues are also conserved in most species, as are residues that protect 

the regulatory serine from the activity of other kinases [31] (Figure 1A); interestingly, 

several of these are not conserved in the E. cuniculi orthologue, which is consistent with 

the absence of eIF2α kinases in this organism [21].    

The presence of the target serine residues, and of residues which in other species 

are involved in interaction with eIF2α kinases, suggests that PfeIF2α may be regulated 

by phosphorylation under stress conditions. To test this hypothesis, cultured 

intraerythrocytic parasites were starved of amino acids, and the phosphorylation status of 

PfeIF2α was monitored by western blot using an antibody that specifically recognizes the 

phosphorylated form (Ser51) of human eIF2α, reasoning that the high level of sequence 

conservation between the human and plasmodial sequences would allow cross-reaction of 

the antibody (Figure 1B).  Indeed, the antibody recognized the expected 37-kDa band in 
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parasite extract, and the intensity of the signal was considerably stronger in the lane 

containing extracts from parasites that had been stressed by amino-acid starvation than in 

extracts from unstressed parasites, despite equal quantities of the eIF2α factor (as 

quantitated with a non-phosphodependent antibody).  Furthermore, this effect was 

removed by restoring the amino acids in the culture medium.  This demonstrates that the 

P. falciparum equivalent residue of human eIF2α Ser51 is phosphorylated in response to 

starvation. 

 

Identification of eIF2αααα kinases in P. falciparum 

Bioinformatics approaches were then used to identify P. falciparum protein 

kinase(s) potentially responsible for this response.  An analysis of the complete 

complement of P. falciparum protein kinases [10] identified a distinct phylogenetic 

cluster of three sequences, PF14_0423, PFA0380w and PFF1370, the latter of which 

(called PfPK4) had previously been characterized as an eIF2α kinase [22].  Reciprocal 

BLASTP analysis using the putative catalytic domains as queries confirmed the 

homology of these three genes with the eIF2α kinase family. A Hidden Markov Model 

(HMM) was used to generate an alignment of the three P. falciparum sequences with 

those of human eIF2α kinases; sequences of kinases from other families were used as 

outgroups.  The resulting alignment was used to generate a phylogenetic tree (Figure 

2222A), which clearly shows that the three P. falciparum genes cluster with the eIF2α 

kinases, as opposed to other kinase families, confirming their relatedness to this family.     



 42 

Interestingly PfeIK1 (PF14_0423), on which the present study focuses, clusters 

most closely with GCN2, which is suggestive of a role in response to nutrient levels.  

The PF14_0423 gene model proposed in PlasmoDB [32] predicts a single intron that falls 

close to the 5’ end of the sequence so that the kinase domain is encoded entirely within 

the second exon.  All the residues that are required for catalytic activity [33] are present 

in the kinase domain, suggesting the gene encodes an active enzyme.  The sequence 

shares the feature of insertions within the catalytic domain with other eIF2α kinases [34] 

(Figures 2B and 2C).  Three of the human eIF2α kinases have N-terminal extensions 

containing regulatory domains; the fourth, GCN2, has extensions on either side of the 

kinase domain (as reviewed in [35]).  As PfeIK1 has extensions on both sides of the 

catalytic domain, it is most similar to GCN2 not only in the sequence of its catalytic 

domain, as the phylogenetic tree (Figure 2A) demonstrates, but also in overall structure 

(Figure 1C). Furthermore, the C-terminal extension of PfeIK1 contains an “anti-codon 

binding” domain (Superfamily entry SSF52954) that may mediate binding to uncharged 

tRNAs, a function that is performed in GCN2 by the HisRS domain present in the C-

terminal extension (Figure 1C) [18].  This adds weight to the possibility that PfeIK1 is 

involved in the response to amino acid starvation, like GCN2.  The other functional 

domains present in the GCN2 extensions were not recognisable in PfeIK1. 

 

Kinase activity of recombinant PfeIK1 

In order to verify that the pfeik1 gene encodes a functional kinase, the catalytic 

domain was expressed as a GST fusion protein in E. coli.  A recombinant protein of the 

expected size (76 kDa) was obtained and purified for use in kinase assays.  The protein 
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appeared as a doublet in most preparations, with both bands reacting with an anti-GST 

antibody.  Kinase assays were performed with α- or β-casein as substrates, in the 

presence or absence of GST-PfeIK1 (Figure 3A).  A weak signal was detectable with β-

casein on the autoradiogram even in the absence of the kinase, indicating a low level of 

contaminating kinase activity in the substrate itself.  This signal was much stronger in the 

presence of GST-PfeIK1, and a signal was also observed with α-casein, which was not 

labelled in the absence of the kinase.  Furthermore, a signal at a size matching that of the 

upper band in the GST-PfeIK1 doublet was also seen, indicating possible 

autophosphorylation, an established property of at least some mammalian eIF2α kinases, 

including GCN2 [34, 36-38]. GCN2 autophosphorylation occurs on two threonine 

residues in the activation loop [36], only one of which conserved in PfeIK1 (Figure 2B).   

Autophosphorylation was more clearly seen in the absence of any exogenous substrate 

(Figure 3B).  The possible functional relevance of PfeIK1 autophosphorylation remains 

to be determined. Taken together, these data suggest that PfeIK1 possesses catalytic 

activity.  To ensure that the signals were not due to co-purified activities from the 

bacterial extract, the assays were repeated using a catalytically inactive mutant 

(Lys458�Met) of GST-PfeIK1.  These reactions yielded an identical pattern as the 

reaction containing no recombinant kinase (Figure3A), confirming that the 

phosphorylation of the caseins is due to GST-PfeIFK1, and that the recombinant kinase 

can autophosphorylate.   

 

In order to establish whether PfeIK1 is an eIF2α kinase as predicted, its activity 

was tested towards recombinant P. falciparum eIF2α expressed as a 64 kDa GST fusion.  
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Figure 3B (left lane) shows that GST-PfeIK1 can phosphorylate wild-type GST-PfeIF2α.  

The signal appears very weak, which may be explained by the fact that the recombinant 

kinase contains only the catalytic domain and may not mimic the enzyme in a fully 

activated, physiological status.  Indeed, an activation mechanism for GCN2 has been 

proposed [37], in which a conformational alteration of the so-called  “hinge region” 

of the catalytic domain is induced by uncharged tRNA binding to the HisRS domain, 

which would favour productive binding of ATP to the active site.  Such a positive 

effect of the regulatory domain would not be possible with GST-PfeIK1, since it 

contains only the catalytic domain.   

Consistent with the hypothesis that PfeIK1 may regulate translation through 

PfeIF2α phosphorylation, mutation of the predicted target for phosphorylation in the 

substrate (Ser59�Ala) prevents labelling with the recombinant enzyme (Fig. 3B).  

 

Generation of pfeik1
-
 clones 

Microarray data available in PlasmoDB [1, 39] indicate that pfeik1 is expressed in 

asexual parasites; it can be hypothesized that the kinase plays a role in the parasite’s 

stress response, and may therefore (i) not be essential for the asexual cycle, and (ii) be 

involved in regulation of gametocytogenesis, similar to the function of a eIF2α kinase in 

T. gondii stage transition from tachyzoite to bradyzoite.  P. falciparum clones that do not 

express PfeIK1 were generated to test these hypotheses.  The strategy used to disrupt 

expression of the kinase relies on single cross-over homologous recombination, and has 

been used successfully to knock-out other P. falciparum protein kinase genes [40, 41].  

Briefly, a plasmid based on the pCAM-BSD vector [26] containing a cassette conferring 
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resistance to blasticidin and an insert comprising the central region of the PfeIK1 

catalytic domain, was transferred by electroporation into asexual parasites of the 3D7 

clone.  Homologous recombination is expected to generate a pseudo-diploid locus in 

which neither of the two truncated copies encodes a functional kinase: the 5’ copy lacks 

an essential glutamate residue in subdomain VIII and all downstream sequence including 

the 3’UTR; the 3’ copy lacks the both the promoter region and the essential ATP 

orientation motif in subdomain I (Figure 4A).   

Blasticidin-resistant parasite populations were obtained and shown by PCR 

analysis to contain parasites whose pfeik1 locus was disrupted.  Clonal lines deriving 

from two independent transfection experiments were established by limiting dilution, and 

their genotypes were analysed by PCR (Figure 4B).  The amplicon corresponding to the 

wild-type locus was not detected in clones C1 and C8 (lane 1), but was observed in wild-

type parasites (lane 5).  In contrast, PCR products that are diagnostic of both the 5’ (lanes 

3 & 7) and 3’ (lanes 4 & 8) boundaries of the integrated plasmid were amplified from C8, 

but not 3D7 parasites (lanes 11 & 12).  The C1 and C8 clones also yielded a signal with 

primers that are specific for the transfection plasmid, and detect retained episomes or 

integrated concatemers. Integration was verified by Southern blot analysis of HindIII-

digested genomic DNA (Figures 4C and 4D); the 12 kb band containing the wild-type 

locus is replaced in clones C1 and C8 by the expected two bands (10.4 kb and 6.8 kb) 

resulting from integration.  The remaining 5.3 kb band is derived from linearized 

plasmid, or from digestion of concatemers of plasmid (which may or may not be 

integrated into the chromosome).  These results confirm that the pfeik1 locus was indeed 

disrupted in clones C1 and C8, and demonstrate PfeIK1 is not required for completion of 
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the asexual cycle in in vitro cultures.  Additionally, asexual parasite cultures were 

synchronized and carefully monitored through several life cycles; samples were taken 

every 30 minutes and assessed for DNA content by flow cytometry [42].  No significant 

difference was observed in asexual cycle duration of the parental 3D7 clone and that of 

pfeik1
- parasites; cycle times of 49.0 h +/- 0.5 and 49.2 h +/- 0.7, respectively, were 

measured (Figure 5). 

 

eIF2α is not phosphorylated in pfeik1- clones during amino acid starvation  

To determine whether pfeik1
- parasites were defective in responding to amino 

acid-limitation, we cultured these parasites in RPMI medium containing either all or no 

amino acids and assayed for eIF2α phosphorylation through western blot analysis 

(Figure 6).  We observed that pfeik1
- parasites were unable to modulate the 

phosphorylation state of eIF2α in response to changing amino acid conditions, in direct 

contrast to wild-type parental clone 3D7.  A further control was provided by performing 

the assay using a parasite clone lacking PfeIK2, another enzyme related to eIF2α kinases 

(see Fig. 2A; a full characterisation of PfeIK2 and pfeik2
- parasite clones is to be 

published elsewhere).  The pfeik2
- parasites, which were generated using the same 

strategy as that described here for pfeik1 and were therefore also resistant to blasticidin, 

readily phosphorylated eIF2α in amino acid starvation conditions, like wild-type 3D7 

parasites.  This demonstrates that the abolition of eIF2α phosphorylation observed in 

pfeik1
- parasites is not due to non-specific effects resulting from the genetic 

manipulations performed to obtain the mutant clones.  Taken together, these data identify 
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PfeIK1 as a crucial regulator of amino acid starvation stress response of intra-erythrocytic 

parasites.   

 

pfeik1
-
 clones are competent for sexual development and mosquito infection 

The pfeik1
- parasites were able to differentiate into gametocytes (data not shown).  

Further, qualitative results showed that pfeik1
- male gametocytes were competent to 

differentiate into gametes (in vitro exflagellation).  To investigate whether PfeIK1 plays 

an essential role in subsequent life cycle stages, mosquitoes were fed with cultures of 

pfeik1
- gametocytes.  The numbers of oocysts associated with midguts dissected 10 days 

post-feeding, and the numbers of mosquitoes with sporozoite-positive salivary glands 16 

days post-feeding, were then determined.  This revealed that the complete sexual cycle 

can occur in the absence of PfeIK1, resulting in formation of oocysts and sporozoites 

(Table 1).  Infection rates and median numbers of oocysts per infected mosquito are low 

relative to what is routinely observed in transmission experiments with the wild-type 

clone 3D7.  However, this is to be expected from parasites that have been kept in 

continuous culture for a long period of time; in the present case it had taken ~7 months in 

culture to obtain knockout clones suitable for mosquito infection experiments.  

Circumstantial evidence that low infection levels are not a direct consequence of pfeik1 

disruption is provided by the observation that our control for these experiments (sham-

transfected 3D7 that had been cultured for the same duration, in parallel to the pfeik1
- 

parasites), had completely lost the ability to produce gametocytes and therefore infect 

mosquitoes.  Importantly, to verify that the parasites infecting the mosquitoes had not 

reverted to the wild-type genotype, midguts from infected mosquitoes were collected 10 
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days post-feeding, from which total DNA was extracted and used in nested PCR 

experiments.  The wild-type locus could be amplified from mosquitoes infected with 

wild-type 3D7 parasites, but not from those infected with pfeik1
- C8 parasites (Figure 7, 

lower panel, lanes 1, 3, 5).  Conversely, the amplicon diagnostic of the 3’ boundary of the 

integrated plasmid could only be amplified from midguts of pfeik1
- C8-infected 

mosquitoes, but not from mosquitoes infected with wild-type parasites (lanes 2, 4, 8).   

On the basis of the similarities between PfeIK1 and GCN2, we hypothesized that 

PfeIK1 is involved in modulating the response to amino acid starvation depicted in 

Figure 1B.  That this is indeed the case was demonstrated through a reverse genetics 

approach:  parasites lacking PfeIK1 do not phosphorylate eIF2α in response to amino-

acid depletion (Figure 6).  Future work will determine the impact of activation of PfeIK1 

on both the rate of translation and the possible selection of specific messages that are 

translated under stress conditions.  Overall, the data presented here suggest that eIF2α 

phosphorylation in response to amino-acid starvation is not essential to parasite survival 

during the erythrocytic asexual cycle (at least in an in vitro cultivation context), or for 

completion of sporogony.   

Commitment to gametocytogenesis has been proposed to be linked to stress 

response, and eIF2α might possibly be involved in this process.  At first sight, the data 

presented here suggest that PfeIK1 does not regulate gametocytogenesis, since pfeik1
- 

parasite are able to undergo sexual development.  However, caution must be exercised, as 

compensatory mechanisms can be at play in knock-out parasites.  Indeed, in a similar 

situation concerning another protein kinase family, it was observed that disruption of the 

gene encoding one of the two P. falciparum mitogen-activated protein kinases (MAPKs), 
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pfmap-1, does not cause any detectable phenotype, but that pfmap-1
- parasites 

overexpress the second parasite MAPK, Pfmap-2 [40].  A similar compensation 

mechanism may operate between the three PfeIKs represented in the parasite kinome 

(Figure 2222A). Even though compensatory mechanisms to permit sexual differentiation are 

presumably less likely to occur than those allowing the survival of asexual parasites 

(because of the absence of a true selection pressure), it cannot be formally excluded that 

PfeIK1 plays a role in gametocytogenesis in a wild-type parasite background.  

Investigating this possibility will require inducible and/or multiple knock-outs and the 

availability of mono-specific antibodies to monitor the levels of each PfeIK in parasites 

lacking one of them.   

 

Conclusions  

Phylogenetic analysis indicates that the P. falciparum kinome includes three 

putative eIF2α kinases.  One of these, PfPK4, was previously shown to phosphorylate a 

peptide corresponding to the target region of human eIF2α [27]. It is demonstrated here 

that PfeIK1 is able to phosphorylate the conserved regulatory site on the Plasmodium 

orthologue of the translation factor in vitro, and that eIF2α phopshorylation in response 

to amino-acid starvation does not occur in pfeik1
- parasites.  The present study thus 

establishes that malaria parasites possess the molecular machinery that pertains to stress-

dependent regulation of translation, and that this machinery is actually used in stress 

response. 
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Figure Legends 

Figure 1.  The P. falciparum eIF2αααα orthologue is phosphorylated in response to 

amino-acid starvation 

A. Alignment of PfeIF2α with orthologous sequences from T. gondii (Tg), human (Hs), 

rice (Os) and E. cuniculi (Ec).  Sequences surrounding the conserved regulatory serine, 

(P. falciparum numbering: M48 - K108) are shown.  Residues that are identical in all 

sequences are highlighted in black, residues that are identical or similar are marked in 

grey.  The arrow indicates the serine that is the target of eIF2α kinases.  Open arrow 

heads (∨) indicate residues involved in contacting the kinase domain, asterisks (*) 

indicate conserved residues that protect the phosphorylation site from the activity of other 

kinases. 

B. Western blot analysis of PfeIF2α phosphorylation.  A 3D7 parasite culture 

synchronized to the late ring stage was equally partitioned into individual cultures.  

Growth of the parasites was continued up to 5 hours at 37°C in either complete RPMI 

medium (CM) or in RPMI lacking amino acids (-AA).  CM was added back to one amino 

acid-deprived culture, and re-incubated for an additional 45 minutes.  Total lysates from 

the parasites were prepared for SDS-PAGE, followed by immunoblotting with antibodies 

against phosphorylated eIF2α (anti-phospho eIF2α) and the endoplasmic reticulum (ER) 

marker, BiP (anti-BiP), which served as the loading control. 
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Figure 2.  Bioinformatic analyses of P. falciparum eIF2αααα kinases 

A. Phylogenetic tree showing clustering of PfeIF2α kinases with human eIF2α kinases.  

Sequences: PfeIK1: PF14_0114; PfeIK2: PFA0380w; PfPK4: PFF1370; PKR: 

GI:4506103; HRI: GI:6580979; PERK: GI:18203329; GCN2: GI:65287717; MEK1: 

GI:400274; IRAK1: GI:68800243; Aurora: GI:37926805; CDK2: GI:1942427; PfCK1: 

PF11_0377; PfNEK2: Pfe1290w; PfPK5: MAL13P1.279; PfPKA: PFI1685w; PFTKL3: 

PF13_0258; Pfb0815w: PfCDPK1; hCAMK1: GI:4502553; hPRKACA: GI:46909584; 

hCSNK1d: GI:20544145; hNEK7: GI:19424132; hSRC: GI:4885609. 

B. Alignment of the catalytic domains of PfeIK1, PbeIK1 and human GCN2.  Identical 

residues in all three kinases are in black boxes, residues that are identical in two 

sequences of the three sequences, or that are similar are boxed in grey.  The number of 

residues comprising the inserts between domains IV and V are marked between //-//.  

Asterisks (*) mark residues conserved among kinases in general, while open arrowheads 

(∨) indicate residues specifically conserved among eIF2α kinases.  The downwards 

arrow marks the threonine residues that are targets for autophosphorylation in GCN2.  

PlasmoDB accession numbers: PfeIK1: PF14_0423, PbeIK1: PB000582.03.0 GenBank 

accession number: HsGCN2: GI:65287717 

C.  Schematic of the domain structures of PfeIK1, PbeIK1 and GCN2.  Kinase domains 

(KD) are in grey, hatched regions represent the inserts (I) within the kinase domains and 

regions with no identified function are white.  Additional characterized domains of 

GCN2 are as follows: red; N-terminal GCN1 binding domain (GB), green; pseudo-kinase 

domain (ΨKD), blue; histidyl-tRNA synthetase (HisRS), yellow; ribosome binding and 

dimerisation domain (RB/DD). 
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Figure 3.  Kinase activity of PfeIK1 

A.  GST-PfeIK1 phosphorylates the exogenous substrates α-and β-casein.  Kinase assays 

were performed using 10µg α-casein (left 3 lanes) or β-casein (right 3 lanes), in the 

presence of 2µg wild-type kinase catalytic domain (WT), catalytically inactive mutant 

(K458M) or no kinase (-).  Upper panel; autoradiogram, lower panel; Coomassie blue-

stained gel.  

B. GST-PfeIK1 autophosphorylates and can phosphorylate recombinant GST-PfeIF2α, 

but not the mutant GST-PfeIF2α-S59A.  Kinase assays were performed using 2µg wild-

type PfeIK1 catalytic domain (WT), or catalytically inactive mutant (K458M), or no 

kinase (-), in the presence of 10µg wild-type GST-PfeIF2α (left 3 lanes), targeted mutant 

GST-PfeIF2α-S59A (middle 3 lanes) or no substrate (right 2 lanes).  The position of the 

substrate is highlighted by ovals. 

 

Figure 4.  Disruption of the pfeik1 gene 

A.  Strategy for gene disruption.  The transfection plasmid contains a PCR fragment 

spanning positions 1467-2255 of the entire 4.8kb pfeik1 coding sequence (as predicted on 

PlasmoDB).  The fragment excludes two regions essential for catalytic activity, labelled 

‘ATP’ (a glycine rich region required for orientation of ATP) and ‘E’ (a glutamate 

residue required for structural stability of the enzyme).  The positions of primers used for 

genotyping clones, and for nested PCR to genotype oocsyts are indicated by numbered 

arrows.   
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B. PCR analysis.  Genomic DNA isolated from pfeik1
- clones C1 and C8, and from 3D7 

wild-type parasites, was subjected to PCR using the indicated primers (see Fig. 4A for 

primer locations).  Lanes 1,5,9: primers 1 + 2 (diagnostic for the wild-type locus); lanes 

2,6,10: primers 3 + 4 (diagnostic for the pCAM-BSD-PfeIK1 plasmid); lanes 3,7,11: 

primers 1 + 4 (diagnostic for 5’ integration boundary); lanes 4,8,12: primers 3 + 2 

(diagnostic for 3’ integration boundary).  M= co-migrating markers. 

C. Schematic of expected sizes on Southern blot analysis of wild-type 3D7 parasites and 

pfeik1
- parasites. 

D. Southern blot analysis of the pfeik1 locus in wild-type 3D7 and pfeik1
- clones C1 and 

C8.  Genomic DNA was digested with HindIII, transferred to a Hybond membrane and 

probed with the pfeik1 fragment that was used as the insert in the pCAM-BSD-PfeIK1 

plasmid.  Positions of the bands corresponding to the wild-type locus (WT), 5’ 

integration (5’ int.), 3’ integration (3’ int.) and linearized plasmid (plasmid) are shown on 

the right.  Sizes of co-migrating markers are indicated on the left. 

 

Figure 5.  Disruption of the pfeik1 gene does not affect asexual growth rate 

Representative cycles of pfeik1
- parasites and the parental 3D7 strain (dashed). Cycle 

points were semi-automatically collected fixed and stored at 4°C every 30min over ~4 

days. After permeabilization and RNAse treatment, the DNA content was analyzed by 

flow cytometry as previously described [42]. Mature schizonts (~16-32N), red line; S-

phase (~2-8N), blue line; G1-phase (1N), black line.  Percentage values as a function of 

time are shown; hpi: hours post- infection, referring to the mature schizont maxima as 

zero.  
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Figure 6.  pfeIK1
-
 parasites do not phosphorylate eIF2α in amino acid-limiting 

conditions  

pfeik1
- clones C1 and E6, as well as the 3D7 parent clone and a pfeik2

-
 clone used as 

controls, were synchronized to the late ring stage and equally partitioned into individual 

cultures. Growth of the parasites was continued up to 5 hours at 37°C in either complete 

RPMI (CM) or in RPMI lacking amino acids (-AA).  CM was added back to one amino 

acid-deprived culture, and re-incubated for an additional 45 minutes.  Total lysates from 

the parasites were prepared for SDS-PAGE, followed by immunoblotting with antibodies 

against phosphorylated eIF2α (anti-phosho eIF2α).  Antibodies against the endoplasmic 

reticulum marker BiP (anti-BiP) served as the loading control.   

 

Figure 7.  Analysis of the parasite genotypes in mosquito infections 

Genomic DNA extracted from a wild-type 3D7-infected mosquito and from two 

mosquitoes infected with clone C8 was analysed by nested PCR; primer positions are 

indicated in Fig. 3A.  The inner PCR product is shown.  Lanes 1, 3 & 5 are diagnostic for 

the wild-type locus (primers 1 + 2, followed by 5 + 6).  Lanes 2, 4 & 6 are diagnostic for 

the 3’ boundary of plasmid integration (primers 3 + 2, followed by 7 + 6).  The 3D7 

infected mosquito used here serves as a control for PCR amplification of the wild-type 

locus from a midgut, but came from a separate experiment and hence did not provide a 

control for infection prevalence or intensity.  Upper panel: shorter exposure; lower panel:  

longer exposure to reveal the wild-type band in lane 1 and its absence in the C8 samples.  

M= co-migrating markers.   
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Figure 5 
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Table 1.  Oocyst and sporozoite formation by pfeik1
- 
parasite clones. 

Clone Exp. no % Infection  
(no. infected/ no. dissected) 

Median oocyst no. per 
infected mosquito (range) 

% Sporozoite positive  
(no. infected/ no. dissected) 

C1 1 15% (2/14) 1.5 (1-2)  ND 

C8 1 44% (7/16) 10 (1-34) 37% (7/19) 

C8 2 20% (5/25) 2 (1-5) ND 

 
There was no difference in the prevalence of mosquitoes positive for the oocyst and 

sporozoites stages (exp. 2, p=0.74). 
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Abstract 
 

The human malaria parasite Plasmodium falciparum is auxotrophic for most 

amino acids.  Its amino acid needs are largely met through the degradation of host 

erythrocyte hemoglobin, however the parasite must acquire isoleucine exogenously, as 

this amino acid is not present in adult human hemoglobin.  We report that when 

isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the 

parasite slows its metabolism and progresses through its developmental cycle at a 

reduced rate.  Isoleucine-starved parasites remain viable for 72 hours and resume rapid 

growth upon re-supplementation.  Protein degradation during starvation is important for 

maintenance of this hibernatory state.  Microarray analysis of starved parasites revealed a 

60% decrease in the rate of progression through its normal transcriptional program but no 

other apparent stress response.  Plasmodium parasites do not possess a TOR nutrient 

sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic 

initiation factor 2α (eIF2α) stress response.  Starved parasites respond specifically to 

isoleucine deprivation by GCN2-mediated phosphorylation of eIF2α, but kinase knockout 

clones are still able to hibernate and recover.  We conclude that P. falciparum, in the 

absence of canonical eukaryotic nutrient stress response pathways, can cope with an 

inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient 

to be provided.   
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Introduction 

 
Human red blood cells (RBCs) provide the intraerythrocytic malaria parasite 

Plasmodium falciparum with an abundant nutrient supply in the form of hemoglobin.  

However, human hemoglobin lacks the amino acid isoleucine [1]. Isoleucine is present in 

over 99% of the proteins encoded by P. falciparum [2] and since Plasmodium is unable to 

synthesize this amino acid de novo [3],  the parasite must obtain isoleucine from human 

serum [4, 5].  Humans also cannot make isoleucine, and must acquire this essential amino 

acid through the diet [1, 3].  In endemic regions, malaria patients are often severely 

malnourished, which drastically limits the availability of free amino acids in the plasma 

[6, 7].  Normal plasma isoleucine levels are in the 100 µM range, but in malnourished 

children can be less than one-tenth this concentration [6]. During in vitro culturing, P. 

falciparum growth is optimal above 20µM isoleucine while the parasite is unable to grow 

in medium devoid of isoleucine [4].  This observation raises the question of how P. 

falciparum responds to low isoleucine conditions that may exist during human infection. 

Eukaryotes have canonical mechanisms for responding to amino acid deprivation. 

The target of rapamycin (TOR) complex, which functions as a master regulator of cell 

growth [8], is repressed during amino acid starvation.  Conversely, the eukaryotic 

initiation factor 2 alpha (eIF2α) kinase, GCN2, is activated by amino acid-limiting 

conditions [9, 10].  Activated GCN2 mediates a reduction in translation efficiency, 

allowing for resource conservation, metabolic re-adjustment and promotion of an 

adaptive transcriptional program, inducing GCN4 in yeast and ATF4 in mammals.  These 

transcription factors control the response to amino acid deprivation by turning on 

pathways for amino acid biosynthesis, among others [11, 12].  Plasmodium does not have 
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a TOR complex [13] and lacks the downstream mediators of GCN2 action.  An ortholog 

of eIF2α and three putative eIF2α kinases have been previously identified in the P. 

falciparum genome [14-16].  One of them, PfeIK2, controls latency in sporozoite 

development in the mosquito [16].  Another, PfeIK1, has been recently confirmed as the 

amino acid sensing GCN2 ortholog, active in the blood-stage of the parasite [14].  A 

knockout of GCN2 in the related apicomplexan parasite Toxoplasma gondii has an 

extracellular tachyzoite fitness defect [17], but the biological role of the Plasmodium 

ortholog has not been defined and is tenuous, given the lack of GCN2-responsive 

transcription factors and amino acid biosynthesis pathways.  

To understand how P. falciparum responds to and survives amino acid limitation, 

we monitored the growth recovery, metabolic activity, and gene expression of cultured 

parasites exposed to isoleucine-free medium.  We show that parasites slow their 

metabolism and cell cycle progression, which allows them to survive prolonged 

isoleucine starvation.  Notably, its GCN2 amino acid sensing pathway is active but does 

not play a role in hibernation or recovery from starvation.  We conclude that P. 

falciparum, upon exposure to amino acid limitation, hibernates to allow its long-term 

survival.   

 
 
 

Results 

 

P. falciparum growth is recoverable after prolonged isoleucine starvation 

We monitored growth of synchronized ring-stage P. falciparum parasites (Fig. 1).  

In complete medium (CM), parasites progressed normally through the cell cycle, 

reinvaded fresh RBCs, and continued growth.  However, in the absence of isoleucine (-
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Ile), parasites slowly progressed to the trophozoite stage (Fig. 1A), but did not enter S-

phase, as indicated by the absence of a high DNA content peak at 24 and 72 hours-post 

incubation in flow cytometry traces (Fig. 1B).  Within hours of glucose starvation, P. 

falciparum parasites appeared as shrunken, rounded bodies with pyknotic nuclei, and fail 

to recover.  However, during isoleucine starvation, parasite morphology remained 

essentially normal (Fig. 1A).  To determine whether isoleucine-starved parasites maintain 

viability, we incubated synchronized ring-stage parasites in isoleucine-free RPMI 

medium for varying periods of time and then supplemented each starved culture with 

isoleucine at the concentration found in complete RPMI (382 µM).  Growth of the culture 

was followed for an additional 72 hours and parasitemia was measured by flow 

cytometry.  Parasites starved for isoleucine for 24, 48, and 72 hours recovered 

appreciable levels of control growth (Fig. 1C).  When parasites were starved for longer 

periods (up to 9 days), parasites were no longer detectable on Geimsa stained blood 

smears, and recovery of growth post-isoleucine supplementation dropped precipitously 

(Fig. 1C).  In cultures with lower recovery (i.e. those that had been starved for 4 days or 

more), gametocytes were undetectable and asexual forms remained prevalent, suggesting 

that vast reductions in growth recovery of parasites subjected to extended starvation was 

due to decreased viability.   

To determine whether protein translation is affected in isoleucine-starved 

parasites, we incubated synchronized parasites in either complete or isoleucine-free 

labeling medium containing [35S] methionine and cysteine.  Starved parasites 

incorporated the radiolabel into protein, but at a reduced rate, indicating a slowed 

metabolism (Fig. 1D). Recovery from starvation was similar whether parasites were 
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adapted to low (20 µM) or high (200 µM) concentrations of exogenous isoleucine prior to 

starvation (Fig. S1), suggesting that parasite survival during starvation does not require a 

pre-existing isoleucine pool.    

 

Impairment of proteolysis during isoleucine starvation abrogates recovery 

 Members of the aspartic and cysteine protease families, plasmepsins and 

falcipains respectively, reside in the digestive vacuole (DV) of P. falciparum, where they 

degrade massive amounts of host cell hemoglobin, a process that serves to supply the 

parasite with amino acids [18].  The bulk of hemoglobin degradation takes place during 

the trophozoite stage, when the metabolic activity of P. falciparum is at its highest [19].  

During long-term isoleucine starvation, parasites display evidence that hemoglobin 

degradation remains active, in that hemozoin  (the sequestered heme byproduct of 

catabolism) becomes visible in the DV within 24 hours (Fig. 1A, arrows).    

To determine whether proteolytic activity was required to maintain viability, we 

incubated ring-stage parasites in isoleucine-free RPMI and exposed them to E-64d, a 

membrane-permeable cysteine protease inhibitor, for 24 hours at different times during 

the starvation period.  Under the conditions used, growth could be restored in a fed 

control (in CM) after drug removal (Fig. 2A).  Parasites starved for 24 hours in the 

presence of E-64d recovered well after washout of the drug and re-supplementation with 

isoleucine.  Even 72 hour-starved parasites, exposed to E-64d for the last 24 hours of the 

incubation, recovered nearly half of control growth, in line with the decrease in recovery 

seen previously under similar starvation conditions without drug (Fig. 1C).  However, 
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parasites starved for 48 hours, with E-64d present during the last half of the incubation 

(the trophozoite stage with peak hemoglobin degradation), were not viable (Fig. 2A).   

We performed a similar experiment with the aspartic protease inhibitor pepstatin 

A (Pep A).  As with E-64d, pepstatin A-treated parasites cultured in complete medium 

maintained viability (Fig. 2A).  Again, 48 hour-starved parasites treated with inhibitor for 

the last 24 hours were not viable while parasites starved and treated for 24 hours 

recovered well.  Although recovery was notably lower in the pepstatin A-treated 72 hour-

starved cultures than in the corresponding E-64d-treated cultures, the surviving parasites 

consistently outgrew those from the 48 hour-starved condition.  These data suggest that 

proteolytic activity is most critical during the first 48 hours of starvation, soon after 

which the parasite appears to reach its developmental limit.   

The morphology of starved parasites over time indicates that they slowly 

transition through the trophozoite stage, displaying early characteristics of this stage at 24 

hours of starvation (Fig. 1A).  As noted above, when parasites were starved for 24 hours 

in the presence of either E-64d or pepstatin A, recovery of growth was relatively 

unaffected.  However, when starvation time was extended beyond the withdrawal of 

either drug, recovery was attenuated (Fig. 2B, compare with Fig. 2A, gray bars).  It 

appears that continuous protein degradation is essential for surviving the second day of 

starvation, and protease inhibition throughout the first or second day of isoleucine 

starvation is lethal to the parasite.   

 The cysteine protease falcipain 2 (FP2) plays a pivotal role in hemoglobin 

degradation of P. falciparum in that its genetic disruption leads to the accumulation of 

undigested hemoglobin and swelling of the DV [20], a phenotype similarly seen with E-
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64d treatment. We incubated a clonal line of fp2- parasites [4] in isoleucine-free RPMI 

and then supplemented each starved culture with isoleucine to allow for recovery.  

Parasites lacking FP2 exhibited significant defects in recovery post starvation, with only 

minimal growth restored in 24 hour-starved mutants and virtually no recovery of the 48 

and 72 hour-starved mutant parasites (Fig. 2C).  These data complement the protease 

inhibitor studies and emphasize the requirement for DV proteolysis in surviving 

isoleucine starvation. 

 

Artemisinin treatment of starved parasites 

 Monotherapy of falciparum malaria patients with artemisinin frequently results in 

parasite recrudescence [21].  Parasites recovered post-therapy remain sensitive to drug.  

A similar phenomenon has been observed in culture and has given rise to the concept of 

parasite dormancy, a state which presumably confers drug tolerance [21-23].  To 

determine whether isoleucine-starved parasites are in a similar dormant state, we cultured 

parasites in isoleucine-free medium, exposed them to artemisinin and then assessed 

viability.  There was no increased resistance to artemisinin in starved parasites.  If 

anything, there was a slight increase in sensitivity (Fig. S2), therefore isoleucine 

starvation status does not appear to be equivalent to artemisinin-associated dormancy.   

                    

Expression profile of starved parasites reveals a delayed growth phenotype 

 Global transcription in P. falciparum is characterized by successive waves of gene 

activation tightly coordinated with the parasite’s developmental progression [24, 25].  To 

examine mRNA abundance levels in isoleucine-starved parasites, we isolated RNA from 
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synchronized parasites incubated in isoleucine-free RPMI, harvesting samples after 3 and 

6 hours of incubation, and every 6 hours thereafter up to 48 hours total.  In parallel, RNA 

was isolated from a control set of synchronized parasites that were maintained in 

complete medium and harvested along with the starved samples.  The expression level of 

nearly 4800 genes was analyzed from both conditions at each time point by DNA 

microarray (Dataset S1).  We observed that gene expression of control parasites (CM) 

best correlated with isoleucine-starved parasites (-Ile) that had been grown 2.5 to 3-fold 

longer [e.g. the 18 hr –Ile sample best correlated with the 6 hr CM sample and the 30 hr –

Ile sample best correlated with the 12 hr CM sample] (Fig. 3A and Table S1).  The 

starvation-associated growth retardation occurred quickly, with significant transcriptional 

deviation between the fed and starved samples apparent within 6 hours of incubation 

(Table S1).  Using Pearson correlation, the expression profiles generated from this 

dataset were compared against those from a high resolution transcriptional array study, 

which sampled the complete intraerythrocytic developmental cycle (IDC) of in vitro 

cultured P. falciparum every hour [24].  These results demonstrate the remarkably 

retarded progression of the isoleucine-starved parasites through the trophozoite stage 

(Figs. 3B, 3C, and Dataset S2).   The developmental rate of the starved parasites through 

one life cycle decreased by 60%, ultimately ending at the mid-trophozoite stage, while 

the CM-fed control parasites progressed normally through the IDC, transitioning from 

late rings to trophozoites to schizonts, continuing on to initiate another round of invasion 

(Fig. 3C, and Dataset S2).  In other eukaryotes, amino acid starvation activates a distinct 

shift in transcriptional activity, in which genes that support adaptation and cell viability 

are selectively up-regulated [8, 12].  However, in P. falciparum, transcription remained 
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inextricably coupled with parasite development during starvation, with both gene 

expression and parasite morphology remaining in phase but displaying slowed 

progression through the IDC.  There were no obvious transcriptional alterations 

indicative of a conventional starvation-related stress response (Fig. 4 and Dataset S3).    

For instance, genes involved in glycolysis, translation/transcription, apicoplast and 

mitochondrial function, appear to follow their normal course of regulation, albeit at a 

slowed rate. 

 

 

PfeIF2α specifically responds to isoleucine levels 

 In P. falciparum, exposure to amino acid-free RPMI results in the 

phosphorylation of parasite eIF2α (PfeIF2α) [14].  Considering that isoleucine is the only 

amino acid for which the parasite can truly be starved, we examined the specificity of this 

response.  We incubated parasites in amino acid-free RPMI, followed by supplementation 

with complete medium containing all 20 amino acids, or with the following single amino 

acids:  isoleucine, methionine, or leucine, which represent amino acids that are absent, in 

low abundance, or abundantly present in human hemoglobin [1], respectively.  As seen 

previously [14], phosphorylation of PfeIF2α in amino acid-free conditions was readily 

observed by western blot analysis using antibodies specific for the phosphorylated motif 

(Fig. 5A).  Addition of complete medium resulted in the dephosphorylation of PfeIF2α, 

however, single amino acid supplementation with methionine or leucine did not elicit this 

response.  Only the addition of isoleucine to the amino acid starved cultures resulted in 

dephosphorylation of PfeIF2α similar to that achieved with complete medium 

supplementation.   Furthermore, we observed that when isoleucine was supplemented to 
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cultures maintained in isoleucine-free RPMI, PfeIF2α dephosphorylation could be 

detected by 10 minutes, with complete loss of phosphorylation by 45 minutes of 

incubation (Fig. 5B).  Remarkably, phosphorylation of eIF2α could be detected within 

minutes after isoleucine withdrawal (Fig. 5C), suggesting the absence of a significant 

intracellular isoleucine store.  Collectively, these data indicate that the eIF2α-mediated 

starvation response of P. falciparum is specifically sensitive to the isoleucine 

environment.        

 

Recovery from starvation is independent of PfeIK1 signaling 

 The amino acid sensing eIF2α kinase of P. falciparum was recently identified as 

PfeIK1, an ortholog of yeast GCN2.  Unlike the parental strain, parasite mutants lacking 

PfeIK1 do not phosphorylate PfeIF2α in amino acid-limiting medium conditions [14].  

Since long-term starved wild-type parasites maintain PfeIF2α phosphorylation (Fig. 5D) 

and are able to recover growth post re-supplementation (Fig. 1C), we investigated 

whether pfeik1- mutants lose viability after prolonged starvation.  We incubated a clonal 

line of pfeik1- parasites [14] in isoleucine-free RPMI for 24 hours, then supplemented the 

culture with isoleucine and measured outgrowth by flow cytometry.  The pfeik1- parasites 

starved for 24 hours recovered growth similar to the wild type parental strain (Fig. 6A), 

suggesting that parasite viability during starvation does not depend on PfeIK1 signaling.  

The pfeik1- parasites exhibited a reduction in the metabolic incorporation of [35S] 

methionine and cysteine during amino acid starvation (Fig. S3), indicating a decrease in 

protein synthesis, but phosphorylation of PfeIF2α remained undetectable in the mutant 

parasites (Fig. S4).   
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To further assess whether PfeIF2α phosphorylation plays a role in regulating the 

starvation stress response of P. falciparum, we generated parasites expressing an 

episomal copy of a Green Fluorescent Protein (GFP)-tagged non-phosphorylatable form 

of PfeIF2α, possessing an alanine in place of the conserved serine residue (S59A), or a 

wild-type version as a control.  When exposed to isoleucine-free conditions, the mutant 

PfeIF2α-S59A is not phosphorylated, while both the wild type episomal copy and the 

endogenous PfeIF2α are robustly phosphorylated (Fig. 6B).  In other organisms, the 

expression of a phosphorylation-insensitive eIF2α typically dampens the adaptive 

response to stress, resulting in reduced fitness [9, 26], however parasites expressing 

mutant PfeIF2α-S59A grew well and recovered as well as the wild-type expressing 

control following extended isoleucine starvation and re-supplementation (Fig. 6C).  

These data indicate that although PfeIK1 phosphorylation of PfeIF2α is induced by 

isoleucine starvation in a wild type background, the regulation of parasite growth during 

starvation, and concomitant entry into and exit from the hibernating state is independent 

not only of PfeIK1 activity, but also of PfeIF2α phosphorylation.  

    

Discussion 

In this study, we have shown that starvation for the single amino acid isoleucine 

elicits a metabolic response in P. falciparum that results in slowed parasite growth.  This 

starvation-induced stasis is reversed upon isoleucine re-supplementation, demonstrating 

the remarkable resilience of Plasmodium.  We liken this phenomenon to hibernation, in 

which an organism is able to dramatically decrease its metabolic rate to conserve energy 

and resources, ultimately leading to increased survival once growth-permissive 



 80 

conditions are restored.  Although asexual growth is recoverable post-starvation, our data 

suggests that limitations exist regarding the duration of starvation tolerable by the 

parasite.  By 72 hours a checkpoint may be reached, presumably related to S-phase, and 

viability starts to tail off.  Initially we suspected an increase in gametocyte conversion 

with extended starvation, considering that reductions in asexual parasitemia often 

correlate with induction of gametocytogenesis [27].  However, gametocytemia was 

virtually absent in the recovered cultures, suggesting that amino acid stress does not 

necessarily skew parasite commitment towards sexual differentiation, and that starvation-

induced hibernation can protect the parasite for only a limited time before viability is 

compromised.  Optimal growth of in vitro cultured P. falciparum requires an isoleucine 

concentration above 20 µM, however, slow, continuous growth is still observed in 

cultures maintained in lower isoleucine concentrations [4].  In natural infections of 

malnourished children, where isoleucine levels can fall to single digit micromolar levels 

[6], we propose that P. falciparum adjusts its metabolic growth accordingly, allowing it 

to survive and persist.   

Notably, entry into the hibernating state did not confer protection against 

treatment with the antimalarial artemisinin, which has been described to induce a putative 

quiescent state in P. falciparum [23].  However, artemisinin-tolerance has only been 

reported for ring forms [22, 23], and isoleucine-starved parasites gradually progress past 

this stage, therefore the biological mechanisms for drug-associated dormancy and 

starvation-induced hibernation may differ at the level of cell cycle kinetics.  It would 

nevertheless be of great interest to investigate PfeIF2α phosphorylation status in 

artemisinin-tolerant ring stages. 
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Proteolysis plays a role in maintaining the parasite in a growth-competent state, as 

inhibition of this activity adversely affected recovery post-isoleucine re-supplementation. 

As starved parasites slowly progress through the trophozoite stage, peak proteolytic 

activity appears to coincide with gradual maturation. Moreover, this activity becomes 

particularly crucial during long-term starvation.  Hemoglobin, which lacks isoleucine, 

makes up 95% of the soluble host cell protein [19], leaving the other 5% to supply a 

limited pool of isoleucine to sustain the parasite during extended hibernation.  There does 

not appear to be a significant isoleucine store, since parasites pre-conditioned in 

subsistence levels of isoleucine (20 µM) survived starvation as well as those conditioned 

in high (200 µM) isoleucine, and since parasites detect isoleucine withdrawal almost 

immediately, evidenced by rapid phosphorylation of PfeIF2α.   

Isoleucine starvation did not activate an alternative transcriptional program in the 

parasite, the hallmark of a conventional starvation response [11, 12].  This observation 

further illustrates the parasite’s astonishingly limited capacity for transcriptional 

regulation [28-30], and is consistent with the lack of  homologs for starvation response 

regulators such as GCN4 and ATF4.  Additionally, homologs of the prokaryotic 

transcription factor RelA, which regulates the amino acid starvation response in bacteria 

[31], could not be identified in the parasite.  Although infected RBCs reportedly take up 

amino acids, including isoleucine, an order of magnitude more efficiently than uninfected 

RBCs [32], expression of putative amino acid transporters (e.g. PFL1515c, PF11_0334, 

PFL0420w) was not upregulated during starvation (Dataset S3).   Furthermore, 

Plasmodium encodes 9 putative autophagy-related genes (ATG), representing less than 

30% of the complement of ATG genes in other eukaryotes [13]; interestingly, none of 
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these genes appeared to be specifically induced during starvation (Dataset S3). The most 

remarkable feature of the transcriptome from starved parasites in this report is the 

apparent delay in both the decay and accumulation of stage-related transcripts, 

constituting a 60% decrease in the rate of developmental progression.  Field isolates of P. 

falciparum exhibit differential expression patterns, including one described as having 

starvation response characteristics [33].  This phenomenon was not observed in our 

conditions, considering that isoleucine-starved parasites continued to express genes 

normally associated with active growth, only with significantly delayed kinetics in 

comparison with a fed control.       

In other eukaryotes, such as yeast, plants, and mammals, the amino acid starvation 

response has been extensively studied, with many conserved biological features [e.g. 

TOR signaling [8], upregulation of amino acid biosynthetic enzymes [11], and induction 

of autophagy [34]] inherently translatable to other model systems.  However, components 

of this response that are found in other organisms appear to be missing in Plasmodium [3, 

13].  Even the one component involved in the canonical starvation response that is 

conserved, the GCN2 ortholog PfeIK1, is seemingly dispensable since its absence does 

not compromise the viability of parasites under isoleucine-limiting conditions, despite a 

well-documented ability to phosphorylate PfeIF2α during starvation.  In prototrophic 

yeast, lack of GCN2 does not affect logarithmic growth in most single amino acid 

dropout medium conditions due to compensatory crosstalk between other amino acid 

regulatory pathways that function independently of GCN2-mediated signaling [35].  

However, there is no evidence to suggest that such metabolic complexity exists in P. 

falciparum, especially considering that the parasite is deficient in amino acid biosynthesis 
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and is absolutely dependant on exogenous isoleucine.  The Plasmodium genome encodes 

another blood stage-expressed eIF2α kinase [15], but we suspect that functional 

redundancy is not at play during starvation since PfeIF2α remains unphosphorylated in 

pfeik1- parasites.  Indeed, we have shown that amino acid starvation of wild-type P. 

falciparum results in the phosphorylation of PfeIF2α, with remarkable selective 

specificity for isoleucine.  Although this response is generally coupled to growth arrest, 

this does not appear to be the case for blood stage P. falciparum:   This raises the 

question of the role played by PfeIK1.  Why did malaria parasites maintain this enzyme?  

Could it have other functions independent of PfeIF2α phosphorylation?  The surprisingly 

fast response in PfeIF2α dephosphorylation upon isoleucine repletion implies an efficient 

signaling system starting with an isoleucine sensor and feeding into an effector 

phosphatase; it would be of great interest to elucidate this pathway. 

Presumably as an adaptation to erythrocyte parasitism, the malaria organism has 

evolved a stripped-down starvation response pathway.   In light of our findings, we 

propose that growth regulation in P. falciparum operates predominantly by reaction rates.  

Low isoleucine concentrations slow the rate-limiting steps of translational processivity, 

thereby restricting growth.  This primitive response to amino acid limitation is enough to 

allow the parasite to survive in its host for several days, waiting for nutrient repletion.   

          

 

Materials and Methods 

Parasite culturing 
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Plasmodium  falciparum strain 3D7 and derived knockout clones were cultured [36] in 

human O+ erythrocytes in complete RPMI 1640, containing all 20 amino acids, 

supplemented with 27 mM NaHCO3, 22 mM glucose, 0.37 mM hypoxanthine, 10 µg/ml 

gentamicin, and 5 g/l Albumax (Invitrogen). Homemade complete, isoleucine-free, and 

amino acid-free RPMI were prepared according to the RPMI 1640 recipe provided by 

Invitrogen, and supplemented with 100x RPMI 1640 Vitamins (Sigma), the appropriate 

respective amino acids (Sigma) at the concentrations found in RPMI 1640, and the 

additional supplements mentioned above.    A clone of P.  falciparum strain 3D7 (IG06), 

that has a 38 hour cycle, was used for most analyses.  This fast-growing strain allowed us 

to perform more extensive time courses.  Both 38-hour and conventional 48-hour clones 

were able to recover from starvation and correlation of gene expression profiles for 

corresponding stages was consistent.   

 

Generation of episomal PfeIF2α (WT and S59A)-GFP expressing parasites     

Full length PfeIF2α (PF07_0117) (omitting the stop codon) was PCR amplified 

from 3D7 genomic DNA using primers 5’-AATTCTCGAGATGACTGAAATGCG 

AGTAAAAGCAGATTTG-3’ (XhoI site underlined) and 5’-AATTCCTAGGATCT 

TCCTCCTCCTCGTCTTCACTAGTATT-3’ (AvrII site underlined), digested with XhoI 

and AvrII, and ligated into the same sites of the pIRCTGFP vector [37], containing the 

promoter region for PfHsp86, a C-terminal Green Fluorescent Protein (GFP) tag, and a 

human dihydrofolate reductase (hDHFR) drug selection cassette.  A point mutation was 

introduced to change Ser59 to Ala59 in PfeIF2α using the QuikChange XL mutagenesis 

kit (Stratagene) and the primers 5’-GGAAGGTATGATTTTAATGTCCGAACTAGCC 
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AAAAGAAGATTCAGAAG-3’ and 5’-CTTCTGAATCTTCTTTTGCGTAGTT 

CGGACATTAAAATCATACCTTCC-3’.  All cloning steps were confirmed by 

sequencing.   

Ring-stage 3D7 parasites were transfected by electroporation [38] with 100µg of 

purified vector DNA.  Parasites carrying the plasmid were selected by adding 10nM 

WR99210 to the culture medium.  60% of transfected parasites were green by 

fluorescence microscopy, a typical plasmid maintenance result for this organism. 

 

Flow cytometry 

Parasite samples were fixed in 4% paraformaldehyde/ 0.015% glutaraldehyde in 

phosphate buffered saline (PBS) and stored at 4°C.  For analysis, the cells were 

permeabilized with 0.1% Triton X-100 in PBS for 10 minutes at room temperature.  One-

half of the sample was treated with 100 µg/ml RNase A (Qiagen) in PBS for 20 minutes 

at 37°C.  All samples were stained with 0.5 µg/ml acridine orange (Molecular Probes) in 

PBS and 3x104 – 1x105 cells were counted on a BD Biosciences FACS Canto flow 

cytometer.  Total cell number was measured on the forward and side scattering channels 

(FSC and SSC).  Fluorescence was detected on both the FITC-H and the PerCP-Cy5-H 

channels and parasitemia gates were defined by intensity of fluorescence, with highly 

fluorescent infected RBCs distinctly separated from low fluorescence uninfected RBCs.    

Alternatively, live cells were directly stained with 0.5 µg/ml acridine orange and 

immediately counted on the FACS Canto using the parasitemia gating parameters 

described above.  Data were analyzed using Flowjo software (Treestar Inc.).   
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Growth recovery assay 

 P. falciparum 3D7 parasites and clonal knockout lines were sorbitol synchronized 

[39] to the late ring stage, cultured in complete RPMI at 2% hematocrit, and sub-cultured 

to approximately 1% parasitemia.  The cultures were washed twice in PBS, partitioned 

and washed in either complete RPMI or isoleucine-free RPMI, after which, the parasites 

were re-plated in triplicate in their respective medium and incubated at 37°C with 5% 

CO2.  Control fed and isoleucine-starved parasites were grown for 72 hours and prepared 

for flow cytometry to assess parasitemia.  Remaining isoleucine starved cultures were 

supplemented with isoleucine (382 µM), after starving for various periods of time, and 

allowed to recover for an additional 72 hours.  During starvation, isoleucine-free culture 

medium was refreshed every other day.  Parasites were prepared for flow cytometry 

following recovery.   

 In the experiments where drug was added, either 10 µM trans-epoxysuccinyl-L-

leucylamino (4-guanidine)-butane (E-64d) (Sigma), 5 µM pepstatin A (Sigma), or 50 nM 

artemisinin (Sigma) was added to fed or starved cultures for a 24 hour period at various 

times during the incubation.  After the 24 hour exposure, cultures were washed twice in 

PBS, and re-plated in either complete medium for recovery or isoleucine-free medium for 

extended starvation, followed by isoleucine supplementation for recovery.  Following the 

72 hour recovery, parasites were prepared for flow cytometry.           

   

Microarray analysis 

 A large-scale sorbitol synchronized [39] P. falciparum 3D7 culture at 8 – 10% 

parasitemia was washed twice in PBS, equally partitioned and washed in either complete 
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or isoleucine-free RPMI, after which, the parasites were re-plated in their respective 

medium and incubated at 37°C with 5% CO2.    Samples were harvested initially, and at 3 

or 6 hour intervals over a 48 hour period.  Culture medium was changed every 12 hours, 

and parasites incubated in complete medium were sub-cultured just prior to schizont 

rupture to maintain post-reinvasion parasitemia between 8 – 10%.  The infected RBC 

pellet was washed with PBS and resuspended in Trizol ® Reagent (Invitrogen).  

Chloroform was added, followed by centrifugation at 9000 rpm for 1 hour at 4°C.  

Isopropanol was added to the aqueous phase to precipitate the RNA.  Following 

centrifugation, the isolated RNA pellet was washed with 70% ethanol, dried, and 

dissolved in diethylpyrocarbonate (DEPC)-treated water.        

cDNA synthesized from isolated RNA was fluorescently labeled with Cy5 and 

hybridized against a Cy3-labeled reference pool as described previously [24].  The 

(Cy5/Cy3) ratio, representing relative expression levels, was calculated for each sample 

and log2 transformed for statistical analysis.  Arrays were generated, clustered, and 

visualized with Java Treeview [40].  R-squared correlation values were calculated in 

Excel (Microsoft) by comparing the transformed relative expression data for each 

respective sample.  Pearson coefficients were calculated in Excel (Microsoft) by 

comparing the transformed relative expression data from this dataset with that from 

corresponding values generated for the high resolution IDC transcriptome reported in ref 

24.  Data were assembled and graphed in Excel (Microsoft) and Prism 5 (Graphpad).   

 

Starvation assay  
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P. falciparum 3D7 parasites and clonal lines of pfeik1- parasites [14] were 

prepared and assayed as described previously [14].  Briefly, parasites were sorbitol 

synchronized [39] to the late ring stage, cultured in complete RPMI at 2% hematocrit, 

and grown to approximately 8 – 10% parasitemia.  The parasites were washed twice in 

PBS, equally partitioned and washed in complete, isoleucine-free, or amino acid-free 

RPMI, after which, the parasites were re-plated in their respective medium.  Cultures 

were incubated at 37°C with 5% CO2 for various increments of time.  Following 

incubation, parasites were either harvested immediately or supplemented with complete 

RPMI or with single amino acids (isoleucine, methionine, leucine) (Sigma) at 

concentrations found in complete RPMI and re-incubated at 37°C for up to 45 minutes.  

After harvesting, infected RBCs were lysed with 100 hemolytic units (HU) of tetanolysin 

(List Biological), washed with PBS buffer containing CompleteTM protease inhibitor 

cocktail (Roche), 2 mM NaF and 2 mM Na3VO4.   Samples were resuspended in SDS-

Laemmli buffer.  Parasite proteins were resolved by SDS-PAGE and transferred to 

nitrocellulose for immunoblotting [41].   

 

Antibodies and immunoblotting 

Rabbit anti-phosphorylated eIF2α (Ser51) and mouse anti-eIF2α were purchased 

from Cell Signaling Technology.  Rabbit and rat anti-BiP were acquired from the Malaria 

Research and Reference Reagent Resource Center (ATCC).  Secondary antibodies 

conjugated with horseradish peroxidase (HRP) were from GE Healthcare Life Sciences.  

For immunoblotting, nitrocellulose membranes were blocked with 5% BSA in TBS-0.1% 

Tween 20 (TBST) for 1 hour at room temperature.  Rabbit anti-phosphorylated eIF2α 
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(Ser51) was diluted 1:1000 in TBST.  Mouse anti-eIF2α was diluted 1:1000 in TBST.  

Rabbit or rat anti-BiP was diluted 1:10,000 in TBST.  Respective secondary antibodies 

were diluted 1:20,000.  Bound antibodies were detected with Western LightningTM 

Chemiluminescence reagent (Perkin Elmer, Boston, MA).   

 

Metabolic labeling and TCA precipitation 

 P. falciparum 3D7 parasites and clonal lines of pfeik1- parasites were sorbitol 

synchronized [39] to the late ring stage, cultured in complete RPMI at 2% hematocrit, 

and grown to approximately 8 – 10% parasitemia.  The parasites were washed twice in 

PBS, equally partitioned and washed in either complete or isoleucine-free labeling RPMI, 

which did not contain methionine or cysteine. The parasites were then re-plated in their 

respective medium in the presence or absence of 10 µg/ml cycloheximide (CHX), and 

incubated at 37°C with 5% CO2 for 6 hours.  During the last hour of the incubation, 0.1 

mCi [35S] Express protein labeling mix (Perkin Elmer, 1175 Ci/mmol) was added to each 

culture.  After harvesting, labeled cultures were washed with PBS buffer containing 

CompleteTM protease inhibitor cocktail (Roche) and lysed with 100 HU of tetanolysin 

(List Biological). A portion of the samples were resuspended in SDS-Laemmli buffer, 

followed by SDS-PAGE, Coomassie staining, and autoradiography.  Remaining samples 

were TCA precipitated by adding 1/4 volume of 100% (w/v) trichloroacetic acid (TCA) 

to the parasite pellet, resuspended in 200 µl PBS.  Samples were incubated on ice for 10 

minutes and centrifuged.  The precipitated protein pellet was washed with ice cold 

acetone, dried, resuspended in water, and pipetted onto FilterMat (Skatron Instruments, 
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VA).  After the filters dried, they were placed in vials with Ultima Gold scintillation fluid 

(Perkin Elmer) and counted on a Beckman LS6000 scintillation counter.      
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Figure Legends 

 

Figure 1:  P. falciparum growth during and recovery from isoleucine starvation. 

 A) Representative images of Geimsa-stained thin blood smears prepared from parasites 

at 0, 24, 48, and 72 hours of incubation in either CM or Ile-free RPMI medium. Arrows 

in images from isoleucine-starved cultures indicate hemozoin pigmentation. B) Flow 

cytometry assessment of DNA content. Synchronous 3D7 parasites were grown in either 

complete (CM) or Ile-free (-Ile) RPMI medium and samples were harvested at 0 (red), 24 

(green), 48 (blue), and 72 (brown) hours.  Offset overlayed histograms of FITC-H 

channel fluorescence for the indicated time points and medium conditions are shown.  

Samples were treated with RNase, allowing haploid ring and trophozoite populations 

(left-most peak) to be better distinguished from polyploid schizonts (right-most peaks). 

The gated uninfected RBC population was removed for clarity.  C) Growth recovery 

following isoleucine re-supplementation of parasites starved for indicated times.  A 

control set of parasites were either fed (CM) or isoleucine-starved (no Ile) for 72 hours. 

Synchronized 3D7 parasites were starved for up 9 days, followed by supplementation 

with isoleucine.  Parasitemia of all cultures was measured by flow cytometry after 72 

hours of recovery.  Data shown represent the mean parasitemia ± SEM, n=3.  (n.d.*, none 

detected)  D) Protein synthesis in starved parasites.  Parasites were fed or starved for 6 

hours, and labeled with [35S] met/ cys for the last hour while incubated in complete (CM) 

or isoleucine-free (no Ile) labeling RPMI medium in the presence or absence of the 

protein synthesis inhibitor cycloheximide (CHX).  Parasite proteins were resolved by 

SDS-PAGE for autoradiography (top panel) or TCA precipitated to determine 

incorporated radioactivity through scintillation counting (bottom panel).  The SDS-PAGE 
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gel was stained with Coomassie Brilliant Blue (CB) to ensure even protein loading.  Data 

shown represent the mean disintegrations per minute (dpm) of incorporated radioactivity 

± SEM, n= 6.   

 

Figure 2:  Protease activity is required to maintain viability during isoleucine 

starvation. 

 A) Synchronous 3D7 parasites were either fed (black bars) or starved for isoleucine 

(gray bars) for the indicated times in the presence of 10 µM E-64d (upper panel) or 5 µM 

pepstatin A (Pep A, lower panel) for the last 24 hours of the incubation.  Following drug 

removal, each culture was re-plated in CM for recovery. Parasitemia of all cultures was 

measured by flow cytometry after 72 hours of recovery. A control set of parasites, shown 

on the far left of each graph, were grown in the absence of drug for 72 hours. Data shown 

represent the mean parasitemia ± SEM, n=3.  B) Synchronous 3D7 parasites were starved 

for isoleucine for the indicated times in the presence of 10 µM E-64d (upper panel) or 5 

µM pepstatin A (Pep A, lower panel) for the first 24 hours of the incubation.  Following 

drug removal (and extended starvation for the 48h and 72h samples), parasites were re-

plated in CM for recovery.  Parasitemia of all cultures was measured by flow cytometry 

after 72 hours of recovery.  A control set of parasites were either fed (CM) or isoleucine-

starved (no Ile) in the absence of drug for 72 hours.  Data shown represent the mean 

parasitemia ± SEM, n=3.  C) Growth recovery following isoleucine re-supplementation 

of synchronous 3D7 (WT, black bars) and fp2 knockout (FP2KO, white bars) parasites 

incubated in Ile-free RPMI for the indicated times.  Control parasites were either fed 

(CM) or starved for isoleucine without re-feeding (no Ile) for 72 hours.  Parasitemia of all 
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cultures was measured by flow cytometry after 72 hours of recovery.  Data shown 

represent the mean parasitemia ± SEM, n=3.  Each experiment was repeated at least three 

times. Representative experiments are shown. 

 

Figure 3:  Developmental progression of hibernating parasites 

RNA was isolated from synchronous 3D7 parasites that were either fed (CM) or starved 

for isoleucine (-Ile), with samples harvested at 3 or 6 hour intervals over the course of 48 

hours.  A) 3-D graph showing R-squared correlation values corresponding to the 

comparison of the global transcriptional data generated from parasites maintained in both 

medium conditions at the indicated time points.  Bars represent the correlation of each 

starved sample with fed parasites at 3 (blue), 6 (light purple), 12 (yellow), 18 (light blue), 

24 (dark purple), or 30 (pink) hours of incubation.  Fed time points >30 hours omitted for 

clarity.  The height of each bar indicates the strength of the correlation, with taller bars 

denoting a strong relationship and shorter bars denoting a weak relationship between the 

compared samples. B) Pearson coefficient values were calculated by comparing the 

global transcriptional data generated from parasites maintained in both medium 

conditions at the indicated time points against corresponding data from each time point 

generated in the high resolution intraerythrocytic developmental cycle (IDC) analysis 

from ref 24.  Y-axis: Pearson coefficient; X-axis: hours post invasion (h.p.i.) in the IDC 

data set. The apex of the peak in each graph corresponds to the approximate point in the 

IDC to which the fed (CM, open symbols) or starved (-Ile, filled symbols) parasites best 

correlate at the indicated incubation time. Plots are shown with a loess fit of the data:  0 

hr, red; 12 hr, purple; 24 hr, green; 36 hr, orange.  C) Summary plot of progress through 
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the IDC (based on Pearson coefficient (see 2B figure legend)) of parasites that were fed 

(CM, black circles) or starved (no Ile, gray squares, dashed line) for the indicated 

incubation times.  The red and blue dashed lines indicate the slope (m) of the best-fit 

curve for the CM and no Ile points up to 24 hours of incubation, respectively.   

       

Figure 4:  Expression of metabolic, organellar, and functional pathway genes in 

starved parasites  

Cy5-labeled cDNA from synchronous 3D7 parasites, that were either fed (CM) or starved 

for isoleucine (-Ile) over a 48-hour period, was hybridized against a Cy3-labeled parasite 

cDNA reference pool. The expression profiles of representative genes involved in the 

indicated biological pathways are shown.  The labels at the top denote the parasite stage 

of each sample at the indicated time point:  R, ring; T, trophozoite; S, schizont.  The 

panels on the right consist of plots of the log2(Cy5/Cy3) expression values over time for 

representative genes from each of the indicated pathways. CM, black circles; no Ile, red 

squares.  PFI1105w, phosphogylcerate kinase; PF14_0207, DNA-directed RNA 

polymerase III subunit; PF13_0014, 40S ribosomal protein S7; PF13_0327, cytochrome c 

oxidase subunit 2; PF14_0421, apicoplast acyltransferase.     

 
 

Figure 5:  Parasite eIF2α phosphorylation status depends on the isoleucine 

environment. 

A) Re-supplementation of starved parasites. Synchronous parasites cultured for 6 hours in 

RPMI lacking all amino acids were re-supplemented with complete medium (CM) or the 

indicated single amino acids (at the concentration found in complete RPMI) for 45 
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minutes.  Parasite lysates were prepared for SDS-PAGE followed by immunoblotting 

with antibodies against phosphorylated eIF2α (eIF2α-P), total eIF2α, and the 

endoplasmic reticulum marker BiP as a loading control.  B) Time course of re-

supplementation. Synchronous parasites were starved for 6 hours, then re-supplemented 

with Ile for the indicated times.  Samples were processed for analysis as in A.  C) Time 

course of starvation.  Synchronous parasites were washed in –Ile medium, centrifuged 

briefly and re-plated in –Ile medium.  Samples were taken at the indicated times and 

processed for analysis as in A.  D) Synchronous parasites were maintained in isoleucine-

free RPMI medium for 24 hours and then re-supplemented with Ile for 45 minutes.  

Samples were processed for analysis as in A.   

   
 

Figure 6:  PfeIK1 activity is not required for maintenance of viability during 

hibernation. 

A) Viability of pfeIk1 knockout parasites after isoleucine (Ile) starvation. Synchronous 

3D7 parasites were incubated for 24 hours in –Ile medium.  Ile was added back and 

parasites were allowed to recover in CM for 72 hours.  Parental strain, black bars; pfeik1 

knockout clones, light (E6) and dark (C1) gray bars. Control parasites were either fed 

(CM) or starved for isoleucine without re-feeding (no Ile) for 72 hours.  Parasitemia of all 

other cultures was measured by flow cytometry after 72 hours of recovery.  Data shown 

represent the mean parasitemia ± SEM, n=3. B) Response of wild type (WT) PfeIF2α and 

PfeIF2α S59A phosphorylation mutant to starvation. Synchronous parasites expressing an 

episomal Green Fluorescent Protein (GFP)-tagged copy of either wild type (epi WT) or 

mutant (epi S59A mut) PfeIF2α, and a parental line of 3D7 were incubated in complete 
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(CM) or isoleucine-free RPMI (-Ile) for 5 hours.  Parasite lysates were prepared for SDS-

PAGE followed by immunoblotting with antibodies against phosphorylated eIF2α 

(eIF2α-P) and total eIF2α.  C) Viability of PfeIF2α S59A phosphorylation mutant after 

Ile starvation.  Parasites expressing an episomal GFP-tagged wild type copy of PfeIF2α 

(epi WT PfeIF2α), black bars; Parasites expressing an episomal GFP-tagged mutant copy 

of PfeIF2α (epi S59A mut eIF2α), gray bars.  Growth recovery assay was performed as in 

A.  Data shown represent the mean parasitemia ± SEM, n=3.   

 

 

Supplemental Figures 

Figure S1:  Parasite recovery does not depend on pre-existing isoleucine stores. 

Synchronous 3D7 parasites, previously maintained in RPMI medium containing various 

concentrations of isoleucine, were starved for isoleucine for 24 hours, then re-

supplemented.  Parasitemia of all cultures was measured by flow cytometry after 72 

hours of recovery.  Data shown represent the mean parasitemia ± SEM, n=3.     

  

Figure S2:  Hibernating parasites remain susceptible to artemisinin. 

Synchronous 3D7 parasites were either fed (black bars) or starved for isoleucine (gray 

bars) for 72 hours with 50 nM artemisinin present for the last 24 hours of the incubation. 

Following drug removal, each culture was re-plated in CM for recovery.  A control 

culture was incubated in the absence of drug for 72 hours in CM or isoleucine free RPMI 

(no Ile) for 72 hours, followed by isoleucine supplementation and recovery.  Parasitemia 
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was measured by flow cytometry after 72 hours of recovery.  Data shown represent the 

mean parasitemia ± SEM, n=3.   

 

Figure S3:  Protein translation is reduced in PfeIK1 mutants during isoleucine 

starvation. 

Protein synthesis in starved parasites.  Synchronous clonal pfeik1- parasites were fed or 

starved for isoleucine for 6 hours and labeled with [35S] met/ cys for the last hour while 

incubated in complete (CM) or isoleucine-free (no Ile) labeling RPMI medium in the 

presence or absence of the protein synthesis inhibitor cycloheximide (CHX).  Parasite 

proteins were TCA precipitated and amount of incorporated radioactivity was determined 

in a scintillation counter.  Data shown represent the mean disintegrations per minute 

(dpm) of incorporated radioactivity ± SEM, n= 6. 

 

Figure S4:  PfeIF2α remains unphosphorylated in PfeIK1 KO parasites during 

prolonged starvation. 

Synchronous clonal pfeik1- parasites were maintained in isoleucine-free RPMI medium 

for 18 hours, followed by re-supplementation with isoleucine for 45 minutes.  Parasite 

lysates were prepared for SDS-PAGE followed by immunoblotting with antibodies 

against phosphorylated eIF2α (eIF2α-P) and BiP as a loading control.  
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Table S1.  R-squared correlation of gene expression between fed and isoleucine-starved parasites 
             

 
 
Yellow:  Best correlation between fed control samples   
 
Green:  Worst correlation between fed control samples             
       
Turquoise:  Best correlation between fed and starved samples            
        
Pink:  Worst correlation between fed and starved samples             
       
Orange:  Best correlation between starved samples             
       
Light purple:  Worst correlation between starved samples             
       
Gray:  Point where gene expression starts to deviate significantly between fed and starved sample 

 0h 3h+ 6h+ 12h+ 18h+ 24h+ 30h+ 36h+ 42h+ 48h+ 3h- 6h- 12h- 18h- 24h- 30h- 36h- 42h- 48h- 

0h                    

3h+ 0.6473                   

6h+ 0.4188 0.8637                  

12h+ 0.0488 0.2812 0.5455                 

18h+ 0.0924 0.0169 0.0088 0.3638                

24h+ 0.0733 0.2273 0.1961 0.0384 0.1831               

30h+ 0.1541 0.0042 0.0145 0.1415 0.0753 0.2540              

36h+ 0.7558 0.5164 0.2568 0.0018 0.1871 0.0336 0.3803             

42h+ 0.6160 0.9464 0.8836 0.3350 0.0091 0.2058 0.0036 0.4972            

48h+ 0.1709 0.4786 0.7582 0.8586 0.1647 0.0963 0.0894 0.0475 0.5584           

3h- 0.6895 0.8805 0.6718 0.1811 0.0467 0.2005 0.0207 0.6154 0.8667 0.3350          

6h- 0.5440 0.8110 0.7292 0.2873 0.0038 0.1673 0.0016 0.4388 0.8395 0.4438 0.8443         

12h- 0.3176 0.6241 0.7088 0.4522 0.0141 0.1212 0.0185 0.2012 0.6817 0.5690 0.6139 0.8490        

18h- 0.2538 0.6068 0.7942 0.6521 0.0725 0.1065 0.0514 0.1148 0.6477 0.7501 0.5142 0.6978 0.8562       

24h- 0.1232 0.3407 0.5139 0.6394 0.1496 0.0358 0.0600 0.0437 0.4021 0.6321 0.3187 0.5495 0.7856 0.8321      

30h- 0.0435 0.2270 0.4345 0.8136 0.3534 0.0152 0.1137 0.0013 0.2704 0.7038 0.1719 0.3244 0.5292 0.7274 0.8165     

36h- 0.0007 0.0680 0.2074 0.6796 0.6035 0.0065 0.1029 0.0198 0.0902 0.4938 0.0419 0.1384 0.2934 0.4563 0.6215 0.8570    

42h- 0.0091 0.0020 0.0390 0.3117 0.5475 0.0964 0.0302 0.0411 0.0062 0.1751 0.0009 0.0643 0.1879 0.2180 0.4651 0.5065 0.7254   

48h- 0.0533 0.0250 0.0001 0.2027 0.6611 0.2275 0.0258 0.1218 0.0138 0.0780 0.0182 0.0005 0.0243 0.0618 0.1902 0.3164 0.5756 0.6750  
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Conclusions 

 
 This thesis work provides the first characterization of the amino acid starvation 

response of the human malaria parasite, Plasmodium falciparum.  Based on previous 

work regarding the apparent growth inhibition of parasites starved for the essential amino 

acid isoleucine [1], we sought to determine the impact of isoleucine starvation on the 

viability of P. falciparum, examine the starvation-induced metabolic changes in its 

growth cycle,  and uncover the underlying mechanisms governing the parasite’s 

starvation-stress response.  The eukaryotic nutrient-starvation response is a well-studied 

process, with TOR signaling and the GCN2/ eIF2α-mediated pathway playing key 

regulatory roles [2, 3].  These pathways have maintained remarkable evolutionary 

conservation from yeast to humans; however parasites from the Plasmodium genus are a 

rare exception.   All elements of the TOR complex and most of its upstream and 

downstream effectors are absent from the parasite’s genome [4].  Moreover, work 

presented in this thesis provides evidence that, although functionally conserved in terms 

of signal-mediated kinase activation, the amino acid starvation-associated eIF2α stress 

response results in a virtual regulatory dead-end in the parasite.  Despite the lack of 

conventional stress-responsive growth control methods, starvation still elicits a dramatic, 

yet reversible, growth phenotype in the parasite, which we liken to hibernation.    

 
Starvation-induced hibernation 

 
In chapter 3 of this thesis, we present data detailing the metabolic response of P. 

falciparum exposed to isoleucine-limiting conditions.  In short, we observed that 1) 

parasite growth slowly progresses to the trophozoite stage, where development stalls, 2) 

starved parasites experience cell cycle arrest and reduced protein translation, but can 



 113 

resume normal growth upon isoleucine supplementation, 3) the rate of gene expression in 

starved parasites decreases significantly, corresponding with the parasite’s delayed 

developmental progression, and 4) protein degradation, localized to the parasite’s food 

vacuole, continues slowly and is required to maintain parasite viability during extended 

starvation.   

The striking morphologic transition of starved parasites, along with the 

requirement for continuous proteolysis, distinguishes this starvation-induced state from 

the putative dormant state described for artemisinin-tolerant parasites [5].  The drug-

induced dormant population stalls its development at the ring stage [6] and presumably, 

delays or limits hemoglobin digestion, given that artemisinin potency depends on 

efficient hemoglobinase activity [7].  Although isoleucine starvation and artemisinin 

treatment both appear to depress parasite growth, the biological mechanisms that induce 

the hypometabolic states associated with each respective stress are most likely distinct, 

since the resultant phenotypic features are incompatible.   

Notably, starvation for other essential nutrients such as glucose, the major energy 

substrate for the parasite [8] did not induce the growth-competent hibernating state 

apparent under isoleucine-limiting conditions.  Glucose starvation resulted in fairly rapid 

parasite death, and thus failed to yield any recoverable parasites.  Given that isoleucine 

starvation readily elicited this remarkable growth phenotype in P. falciparum, we propose 

that this response may represent a metabolic adaptation to cope with the inconsistent 

extracellular isoleucine supply encountered during infection of a human host, thus 

allowing the parasite to survive and persist.    
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In data presented in chapter 3, active proteolysis in P. falciparum during 

starvation is evident by the appearance of hemozoin in the parasite’s food vacuole (FV), 

indicating hemoglobin degradation [9].  However, as noted previously, the parasite 

cannot obtain isoleucine from this source [10].  Considering that P. falciparum continues 

to gradually develop, steadily increasing its mass during prolonged starvation, we 

propose that the parasite also degrades other RBC cytosolic proteins that contain 

isoleucine, thus providing a limited pool of this amino acid to support restricted 

biosynthetic processes that presumably sustain the parasite during starvation.  Such 

starvation-associated proteolysis is reminiscent of the process of autophagy, a mechanism 

induced in eukaryotes to maintain cell viability in nutrient-poor conditions [11].  At least 

9 autophagy-related genes (ATG) are conserved in the Plasmodium genome [4], however 

their role in the starvation-stress response of the parasite is disputable considering that 

their expression was not specifically induced in our starvation assay.  Furthermore, 

unpublished studies in yeast deletion mutants and mammalian cells suggest that 

Plasmodium ATG orthologs may not be functionally conserved [4].  Our data indicate 

that proteolysis during starvation is indeed required to ensure parasite survival, and that 

resident FV hemoglobinases (i.e. plasmepsins and falcipains) serve to fulfill this need.  In 

autophagy, cellular contents are engulfed by autophagosomes, which go on to fuse with 

lysosomal vesicles containing digestive enzymes [12].  Presumably, the proteases housed 

within the acidic FV, which is regarded as the lysosomal organelle of the parasite [13], 

perform dual roles:  facilitating the ordered catabolism of hemoglobin to provide nutrient 

to and make space for the growing parasite under normal conditions [1], and contributing 

to the amino acid starvation response by degrading cellular proteins, thus providing a 
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source of scarce amino acids, such as isoleucine, to maintain the viability of the parasite 

in its hypometabolic state.                       

 The metabolic retardation of critical cellular processes such as DNA replication, 

gene transcription, and protein synthesis in starved parasites signifies the entry into 

starvation-induced hibernation.  Starved parasites slowly progress through the ring and 

trophozoite stages, which can be regarded as the G0/G1 cell cycle points of the parasite 

[9, 14], however our data indicate that S-phase, where DNA replication takes place, is not 

initiated.  This finding suggests that replication checkpoints are in place to prevent 

parasite proliferation in conditions that cannot adequately support growth.  Furthermore, 

the aforementioned gradual developmental progression to the trophozoite stage may 

prime the parasite for immediate reactivation, in anticipation that conditions may 

improve.  Our data support this notion in that parasite recovery from starvation post-

supplementation yields near control growth levels when given the same outgrowth time 

frame.  Of note, extended starvation does impact parasite viability, revealed by the 

decrease in recovered parasitemia in cultures supplemented after 4 or more days of 

starvation.  Nonetheless, a subpopulation of viable persister parasites remains in these 

cultures, and can recover appreciable growth when outgrowth time is extended, 

suggesting that starvation-induced hibernation can indeed establish a long-lived dormant 

state.   

Hibernating parasites exhibited decreases in the rate of transcription and 

translation, a feature common to the starvation responses of most organisms  [15, 16].  

However, Plasmodium is unique in that starvation did not appear to induce a specific 

adaptive transcriptional program, a general hallmark of starvation response [17].  
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Presumably, this is due to the paucity of regulatory transcription factors encoded in the 

parasite’s genome [18, 19].  Therefore, it is thought that epigenetic and post-translational 

modifications, which can mediate rapid biochemical and physiological changes, play the 

predominate role in regulating the growth and development of the parasite [20, 21].   

 
Growth control in Plasmodium 

In an effort to uncover the biological mechanism responsible for mediating the 

remarkable starvation phenotype of P. falciparum, we took a reverse approach and 

simply investigated a short list of “usual suspects” known to function in the eukaryotic 

amino acid starvation response.  Previous kinome profiling revealed that the parasite 

genome encodes nearly 100 kinases, 65 of which can be classified as belonging to known 

eukaryotic kinase families [22, 23].  However, the metabolic sensor TOR, which is the 

most well-characterized effector of the eukaryotic starvation response, is notably absent 

from the parasite’s kinase repertoire [4].  The absence of TOR in a eukaryotic organism is 

quite unusual, given its widespread conservation [24]; however this occurrence has been 

described in other obligate intracellular eukaryotic pathogens such as in members of the 

phylum microspora [25].  Such losses have been regarded as evolutionary adaptations to 

host parasitism, considering that the host environment generally provides a stable supply 

of nutrients to sustain the parasite, thus minimizing the need for nutrient-associated stress 

responses [26].  Interestingly, however, the Plasmodium genome retains a putative kinase 

ortholog that is specifically involved in the eukaryotic starvation response, namely the 

eIF2α kinase GCN2 [27].  This kinase phosphorylates the translation effector eIF2α upon 

sensing the depletion of amino acids, which gives rise to a global decrease in protein 

synthesis, thus coupling nutrient availability with translational control and cellular 
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growth [3].  In chapter 2 of this work, we discovered that P. falciparum does indeed 

phosphorylate parasite eIF2α (PfeIF2α) when exposed to amino acid-free medium.  Using 

the single cross-over recombination strategy, parasite lines containing a disruption in the 

genetic locus of the putative GCN2 ortholog, termed PfeIK1, were generated, and found 

to be defective in eIF2α phosphorylation during amino acid withdrawal, thus confirming 

the identity of the amino acid-starvation responsive eIF2α kinase.  In chapter 3, we found 

that the phosphorylation status of PfeIF2α is specifically linked with isoleucine 

availability, in further support of the data that defined isoleucine as the sole exogenous 

amino acid required for in vitro parasite growth [1].   

On the surface, these collective observations suggest that PfeIK1 mediates a 

conventional amino acid starvation response in P. falciparum by phosphorylating eIF2α 

upon sensing isoleucine-depleted conditions, which consequently lead to the growth 

inhibited hibernating state.  However, upon further investigation, we discovered that the 

genetic disruption of PfeIK1 did not impact the ability of the parasite to slow its growth 

during prolonged isoleucine starvation, nor did it prevent the resumption of parasite 

growth upon isoleucine repletion.  Furthermore, PfeIF2α remained unmodified in starved 

mutants, thus excluding any compensatory activity from a redundant kinase.  To further 

assess whether PfeIF2α signaling plays a role in parasite growth regulation, we 

introduced an episomally-expressed non-phosphorylatable copy of PfeIF2α into P. 

falciparum, PfeIF2α-S59A.  This mutation typically elicits a dominant-negative effect in 

other organisms, particularly under stress conditions [28, 29].  However, in P. falciparum 

these mutants were phenotypically similar to control parasites in terms of growth, 

starvation-associated hibernation, and recovery of growth post-starvation.  These findings 
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indicate that the starvation-induced hibernatory state of P. falciparum is not governed by 

canonical GCN2/ eIF2α-associated signaling, which is counterintuitive, especially 

considering that PfeIF2α appears to be rapidly modified in response to isoleucine 

modulation.  The established dogma of eukaryotic stress response asserts that amino acid 

starvation leads to eIF2α phosphorylation, which downregulates global translation and 

ultimately inhibits cellular growth.   However, this model is challenged in P. falciparum, 

as growth inhibition and reduced protein synthesis occurred during starvation regardless 

of eIF2α-mediated regulation.  

In contrast to P. falciparum, a recent study demonstrated that disruption of the 

GCN2 ortholog in T. gondii, TgIF2K-D, does indeed elicit an extracellular tachyzoite 

fitness defect, resulting in decreased host cell reinvasion after extended incubation in 

medium alone [30].  Furthermore, in another study, it was shown that T. gondii parasites 

expressing a phosphorylation-insensitive eIF2α, TgIF2α-S71A, introduced via allelic 

replacement, were similarly impaired [31].  Determining whether such a defect exists in 

our mutant strains would be problematic due to the already short half-life of newly 

egressed P. falciparum  merozoites, which only remain viable outside of a host cell for 

roughly 10 minutes [32].   Interestingly, however, both of the T. gondii mutant parasite 

lines also exhibited a decrease in protein synthesis that was independent of TgIF2α, 

which remained unmodified in these mutants when deprived of their host cell 

environments [30].  Unlike Plasmodium, however, TOR is conserved in T. gondii [33], 

and could potentially compensate to some degree for the loss of GCN2/eIF2α-mediated 

translational control during starvation [34].   
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The GCN2/eIF2α starvation response modulates cellular growth not only by 

downregulating global protein synthesis, but also by activating an adaptive transcriptional 

program mediated by GCN4 (ATF4 in mammals), a basic leucine zipper transcription 

factor [17].  GCN4 is specifically induced during starvation and, once expressed, goes on 

to promote the expression of proteins that function to maintain cell viability and restore 

homeostatic conditions, such as those involved in amino acid transport and biosynthesis, 

energy metabolism, and autophagy [35].  Although homology searches indicate that 

GCN4 is not conserved in Toxoplasma [36] or Plasmodium, ApiAP2 proteins, which 

comprise the only transcription factor family identified in apicomplexan parasites [37], 

have been implicated in the developmental regulation of these organisms.  However, the 

transcriptional program of Plasmodium is perceived as being inflexible, and thus non-

responsive to changing environmental conditions.  For instance, previous studies have 

reported that treatment with certain antimalarial drugs, which dramatically impact vital 

pathways in the parasite, elicited few remarkable changes in the parasite’s gene 

expression profile [38, 39].  In line with these data, the isoleucine starvation conditions in 

this study also failed to induce an alternative transcriptional program in P. falciparum.  

Furthermore, none of the genes coding for ApiAP2 proteins were specifically induced 

during starvation.  Of note, the gene expression profile of starved parasites coincided 

stage-wise with the delayed development of the parasite, indicating a marked decrease in 

metabolic rate, which corresponded with the slowing of other biological processes.  

Despite the lack of transcriptional alterations indicative of a conventional starvation 

response, Plasmodium manages to coordinate an extraordinary metabolic shift that 
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suppresses its growth and preserves its cellular integrity, which presumably allows the 

parasite to maintain viability when amino acids, namely isoleucine, become limiting.   

Unfortunately, this study could not attribute this phenomenon to a defined 

pathway, therefore the possibility remains that there exists an as yet uncharacterized 

mechanism of nutrient-sensitive growth control in protozoan parasites.  Or perhaps even 

more simply, it is possible that processes such as transcription and translation are merely 

governed by enzymatic rate-limits and substrate availability, thus reducing these 

processes to primordial defaults that presumably do not require the complex regulation 

found in divergent free-living organisms.   

 
Conservation of the GC22 ortholog PfeIK1  

 
Despite the apparent dispensable function of PfeIK1 to the induction of the 

parasite’s hibernatory state during starvation, the importance of other eIF2α kinases to the 

life cycle of Plasmodium has been well-documented [40-42].  However, this raises the 

question of why the parasite expends energy and resources to express PfeIK1 if its 

conserved functional purpose is unnecessary.  In this work, we showed that the isoleucine 

environment specifically and rapidly modulated the phosphorylation status of PfeIF2α, 

which indicated that PfeIK1 and an unidentified phosphatase function efficiently in a 

putative signal/response-type relay.  However, we also provided evidence suggesting that 

this response is not coupled with translational control, growth regulation, or viability 

maintenance as in other organisms.  Therefore, what is the role of PfeIK1, if not to 

mediate the starvation-stress response of the parasite? 

The domain structure and function of GCN2 has been well-characterized and may 

provide an indication into the presumed divergent purpose of Plasmodium orthologs.  It 
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has been shown that GCN2 is activated by the binding of uncharged tRNA, which 

accumulates when amino acids are depleted [43].  The tRNA-binding domain of GCN2 is 

C-terminal to its active site and has sequence homology with the histidine-tRNA charging 

enzyme, histidyl-tRNA synthetase (HisRS) [44].  This putative region in PfeIK1 is 

weakly conserved, but retains limited similarity to an aminoacyl-tRNA synthetase-like 

domain, suggesting that tRNA binding may also serve as the activating signal for PfeIK1 

that leads to PfeIF2α phosphorylation.  However, the overall sequence homology of 

Plasmodium GCN2 orthologs is only minimally conserved with those from yeast and 

human, lacking identifiable domains homologous to the N-terminal region, which 

contains the RWD (ring-finger and WD repeat) domain that binds to GCN1, a positive 

regulator of GCN2 activity [45, 46].  Interestingly, bioinformatic analysis of GCN2’s N-

terminal region revealed that the genome of P. falciparum encodes another GCN2-like 

kinase containing sequence similarity with this domain (PF14_0264) [30].  Notably, T. 

gondii also reportedly maintains two GCN2-like kinases, TgIF2K-C and –D [31].  The 

eIF2α kinase activity of TgIF2K-D has been validated [30], however TgIF2K-C has not 

been characterized.  The N-terminus of TgIF2K-D contains the putative regulatory RWD 

domain and shares similarity with the second GCN2-like kinase from P. falciparum, 

however, TgIF2K-D is more closely related to PfeIK1 [30], suggesting that the second 

GCN2-like kinase in Plasmodium may serve an auxiliary function.   

In terms of starvation-associated eIF2α phosphorylation, functional redundancy 

between PfeIK1 and the second GCN2-like kinase is unlikely, since PfeIF2α remained 

unphosphorylated in starved PfeIK1 mutant parasites.  However, it is possible that these 

kinases could share redundancy in the phosphorylation of other targets, which in the 
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absence of PfeIK1, could still potentially be regulated by this putative proxy kinase.  

Presumably, the function of PfeIK1 involves some aspect of nutrient detection, given its 

rapid response to isoleucine depletion.  The identification of additional PfeIK1 targets 

would further add to the novelty of Plasmodium’s starvation response, given that GCN2 

is not known to target other protein substrates for phosphorylation besides eIF2α in other 

model organisms.   However, considering the sequence divergence of PfeIK1, and its 

apparent functional inconsistencies, it is conceivable that the amino acid starvation 

response of Plasmodium involves components unique to the parasite.       

   
 
 

Future Directions 

 
Identification of starvation response effectors 

 In this study, the “usual suspects” of eukaryotic starvation response were 

investigated; however, no viable candidates were apparent.  The process of elimination 

was accelerated by the lack of conserved stress response effectors in the P. falciparum 

genome, which encodes a vast number of hypothetical proteins with no known function 

[19].  Therefore, the mechanism controlling the parasite’s starvation response may be 

divergent from the canonical pathways found in most eukaryotes, and thus remains 

elusive.     

 In model organisms such as yeast or bacteria, the identification of gene products 

involved in stress response pathways has been accomplished through high-throughput 

mutagenesis screens [47, 48].  Although the sequencing of P. falciparum’s genome [19] 

has provided a valuable source to gain insight into the complex biology of the parasite,  

the investigative tools available to study its functions are not as advanced as those for 
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other microbes.  However, a transposase-mediated mutagenesis system known as 

piggyBac, that has been adapted for P. falciparum [49], provides a powerful genetic tool 

to generate large numbers of random mutants that could be tested for defects involved in 

the establishment and maintenance of the hibernatory state.  In this approach, a plasmid 

containing the transposase is co-transfected with a selection plasmid containing the 

piggyBac transposable element, which randomly inserts into TTAA DNA sites [50], 

which are most prevalent in P. falciparum [19].  The drug-selected mutant pool could 

then be cloned by limiting dilution to obtain pure single-mutant populations.  This 

strategy could potentially generate an extensive library of parasite mutants.  Therefore, 

the major caveat of this method would be encountered during the labor-intensive 

screening process, as growth assessments under both normal and recovery conditions will 

have to be made.  To be considered a true hit, the mutant must exhibit wild-type growth 

in rich-medium conditions, but fail to recover growth after extended isoleucine 

starvation.  It is possible that a targeted gene may have a primary homeostatic function in 

the parasite as well as contribute to stress response, and thus exhibit defects in both 

conditions.  Conversely, it is possible that a targeted gene may have a redundant function 

that provides a masked contribution in normal growth conditions, but cooperatively 

contributes to parasite stress response with its analogous counterparts (e.g. proteases), 

thus yielding a false positive, which would be filtered upon gene identification.  Though 

these targets would also provide valuable information, the mentioned criteria are 

expected to reduce the pool of candidates to those with specific roles in the starvation 

response.  Disrupted genes in mutants that meet these criteria can then be identified by 

PCR amplification of the P. falciparum genomic regions flanking the transposable 
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element [49].  Subsequently, gene complementation can serve to validate true 

components of the parasite’s starvation-stress response upon restoration of the wild-type 

phenotype.  Identification of these effectors could potentially shed light on the parasite’s 

mechanism of persistence.   

 
 
Biosynthesis of proteins during starvation 

 
 In this work, we show that continuous proteolysis is required to maintain parasite 

viability during extended starvation.  Hemoglobin degradation is evident by the 

appearance of hemozoin in the parasite’s food vacuole (FV), however, acquisition of 

isoleucine must come from an alternative source since this amino acid is not present in 

human hemoglobin [10].  Preliminary metabolomic analysis of starved P. falciparum 

indicates that during extended starvation, basal isoleucine levels increase, suggesting that 

the parasite degrades cytosolic proteins that contain isoleucine (data not shown), perhaps 

to scavenge this amino acid for the parasite’s restricted biosynthetic needs during 

starvation.  Although protein synthesis is globally reduced during starvation, the 

preferential translation of proteins involved in stress-related adaptation has been shown to 

occur in other eukaryotes [11, 17].  Considering that starvation does not elicit a 

characteristic transcriptional shift in P. falciparum, it is possible that the parasite utilizes 

post-transcriptional and post-translational mechanisms of regulation that mediate the 

parasite’s adaptive response.  The mRNA composition of starved parasites over time has 

been examined in this study; however, it is of interest to determine whether certain 

transcripts are translated in excess relative to those in the fed control at the corresponding 

life cycle stage.  Such overrepresentations may indicate that the resultant gene product 
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plays a role in the stress response of the parasite.  To this end, polysome analysis could 

be used to identify mRNAs that are loaded with multiple ribosomes, indicating an 

increased level of translation.  Although polysome isolation in P. falciparum has been 

challenging, recent improvements in the solubilization protocol have made the technique 

an effective tool in the study of parasite translational regulation[51], which is presumed 

to take precedence over conventional transcriptional control in the starvation response of 

P. falciparum.    

 
 
Targeted disruption of the GC22-like kinase 

 PfeIK1 was identified as the amino acid-starvation responsive GCN2 ortholog of 

P. falciparum in chapter 2 of this work; however its genetic disruption did not effect the 

establishment or maintenance of the starvation-induced hibernatory state.  Ablation of 

GCN2 activity in other organisms generally results in reduced fitness when exposed to 

amino acid-starvation conditions [52-54], therefore the lack of a phenotype in starved 

PfeIK1 mutants presented a conundrum. Subsequently, another GCN2-like kinase, 

PF14_0264, was identified in P. falciparum, containing putative regulatory domains not 

found in PfeIK1.  This kinase does not appear to have redundant eIF2α kinase activity; 

however we propose that this second kinase may have an alternative function related to 

the regulation of other targets, perhaps in tandem with PfeIK1.  Targeted disruption of 

PF14_0264 by single crossover recombination in a PfeIK1 mutant background may 

expose a defect in the starvation-stress response of the parasite, provided that the 

presumed redundancy of these kinases for targets outside of PfeIF2α is limited to these 

reputed orthologs.  Alternatively, it is also of interest to determine whether PF14_0264 
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alone makes a substantial contribution to the parasite’s stress response.  Therefore, this 

gene could be targeted for disruption in a wild-type background, and resultant mutants 

could be specifically assessed for defects in starvation-associated hibernation.      
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Preface 

 
In this section, data regarding diverse aspects of the amino acid starvation 

response of Plasmodium falciparum are presented.  These data represent preliminary 

experiments that require further investigation to merit validation, failed to yield a 

measurable effect, or were discontinued due to technical reasons.   

 

In Part I, the P. falciparum ortholog of the phospho-adapter 14-3-3 was 

recombinantly expressed and its interactions with parasite proteins were examined, with 

the intent to determine whether such interactions could be modulated during starvation.   

In Part II, microarray analysis was performed on RNA isolated from P. 

falciparum parasites starved of isoleucine for a brief 2 hour period to determine whether 

parasites exhibit a starvation-specific transcriptional shift.  The gene PFI1710w was 

significantly upregulated in starved parasites and its contribution to the parasite starvation 

response was further examined.   

In Part III, the putative tRNA-binding domain of PfeIK1 was heterologously 

expressed and functional conservation was evaluated.    

Finally, In Part IV, the ultrastructural organization of isoleucine-starved parasites 

was investigated by transmission electron microscopy (TEM), in which several 

morphological abnormalities were uncovered and characterized as potential indicators of 

an autophagic-like response to starvation.     

 

The majority of the data included in this section is for informational purposes 

only, and therefore, not intended for publication.  
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Part I: 

Construction, expression, and binding analysis of Plasmodium falciparum  

14-3-3: a eukaryotic phospho-adapter protein 
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Abstract 

14-3-3 proteins are highly conserved, dimeric phospho-adaptors that are known to 

bind specific phosphorylated serine and threonine residues of various target molecules 

involved in a diverse range of critical signaling pathways, including growth control.  14-

3-3 binding reportedly leads to modulations in the activity, stability, or localization of 

target proteins.  Homologs of 14-3-3 have been identified in most eukaryotic species, 

including P. falciparum.  Interestingly, Plasmodium 14-3-3 reaches peak expression 

levels during the trophozoite stage of development, the stage in which nutrient 

acquisition mechanisms are most active.  Plasmodium 14-3-3 has not been fully 

characterized, therefore little is known about the role(s) this versatile protein may play in 

the parasite’s life cycle.  In this study, a recombinant version of P. falciparum 14-3-3 

(Pf14-3-3) was generated and used to examine its interactions with parasite proteins.   

Considering the regulatory function that 14-3-3 serves in other eukaryotes, coupled with 

its distinct expression pattern in Plasmodium, it is conceivable that Pf14-3-3 may take 

part in modulating the metabolic signaling pathways that are important for parasite 

growth.   
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Introduction 
 

Protein phosphorylation plays a significant role in the signaling processes of the 

cell, ultimately allowing the intracellular environment to communicate with and respond 

to extracellular conditions, which can lead to both transcriptional and translational 

modulations [1, 2].  In the process of signal transduction, multiple factors are often 

involved, and these factors generally act in concert to regulate cellular processes.  

Phosphorylation-associated signaling often requires another layer of regulation in the 

form of regulatory adaptor proteins, which bind to phosphorylated residues contained 

within specific motifs, consequently, influencing the functional properties of the 

phospho-protein, such as activation status, localization, stability, and interaction 

capabilities [3].  14-3-3 proteins, named according to their migration pattern on a DEAE-

cellulose chromatography column and on starch-gel electrophoresis [4], represent a well-

conserved family of small, α-helical proteins that function in this respect, preferentially 

binding to phosphorylated serine and threonine residues of signaling proteins [5].  The 

involvement of 14-3-3 phospho-adapter proteins in signal transduction pathways has been 

firmly established, playing roles in the cell cycle [6], apoptosis [7], growth control [8], 

and stress response [9], signifying the importance of this class of proteins to the cellular 

biology of higher eukaryotic systems.   

The evolutionary conservation of 14-3-3 is even extended to protozoan parasites 

[10-13], including those in the Plasmodium genus [14].  In general, this protein family 

consists of multiple isoforms, the number of which varies among species [15-17], and are 

known to function as homo- or heterodimers [18-20].  Experimental evidence in yeast 

suggests that 14-3-3 proteins are essential, considering that the concomitant ablation of 
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its two isoforms resulted in lethality [15].  Interestingly, Plasmodium maintains only a 

single copy of 14-3-3 [14], which may be indicative of both its essentiality and its 

functional specificity in the parasite.  In the primate malarial species, P. knowlesi, 14-3-3 

has been shown to exhibit peak expression during the highly metabolically active 

trophozoite stage [14].  Therefore, we hypothesized that 14-3-3 may interact with 

signaling proteins that regulate parasite growth.  We sought to address this hypothesis in 

the human malaria parasite, P. falciparum.   

In this work, we confirmed that protein expression of the P. falciparum 14-3-3 

ortholog (Pf14-3-3) coincided with the trophozoite developmental stage.  Furthermore, 

Pf14-3-3 was recombinantly expressed and used to assess protein-protein interactions 

from a radio-labeled parasite lysate.  Additionally, we used western blot analysis to 

specifically detect whether phosphorylated proteins from a parasite lysate interacted with 

recombinant Pf14-3-3.  Ultimately, these data serve to establish a foundation on which to 

further the characterization of 14-3-3 proteins in Plasmodium, particularly in determining 

their role in the growth regulation of the parasite.       
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Methods 

 
Recombinant expression and affinity purification of Pf14-3-3 

 
The full length* coding sequence of MAL8P1.69 (Pf14-3-3) was RT-PCR amplified from 

isolated 3D7 parasite RNA using the SuperScript III One Step RT-PCR kit (Invitrogen) 

and primers 5’- AATTGGATCCATGGCAACATCTGAAGAATTAAA-3’ (BamHI site  

underlined) and 5’- AATTCTCGAGTCATTTCTTACCTTCGGTCTGAT-3’ (XhoI site 

underlined), digested with BamHI and XhoI, and ligated into the same sites of the 

pGEX6P-1 (GE Life Sciences) bacterial expression plasmid, containing an N-terminal 

Glutathione-S-Transferase (GST) tag.  All cloning steps were confirmed by sequencing.  

The resulting Pf14-3-3-pGEX6P-1 DNA plasmid was transformed into BL21 Codon Plus 

E. coli (Stratagene).  A single colony of Pf14-3-3-pGEX6P-1 transformed BL21 was 

inoculated in 5 mL LB containing 100 µg/mL ampicillin and incubated overnight at 

37°C.  The overnight culture was used to seed 500 mL of fresh LB containing 100 µg/mL 

Ampicillin, which was then grown to OD600 0.6, and induced with 1 mM IPTG for 3 

hours at 30°C.   Cells were harvested, resuspended in cold lysis buffer (50 mM Tris-HCl, 

pH 7.5, 150 mM NaCl, 0.5% Igepal, 10% glycerol) containing Complete protease 

inhibitor cocktail mix (Roche), sonicated in an ice water bath, and centrifuged at 12000 

rpm for 30 minutes.  1 mL of the protein lysate was incubated with 50 µL of washed 

glutathione sepharose beads (Sigma) for 1 hour with tumbling at 4°C.  Following the pull 

down, the GST-Pf14-3-3 beads were washed 3 times in the lysis buffer.  2x SDS-

Laemmli buffer [21] was added to a portion of the beads, followed by SDS-PAGE and 

Coomassie Blue staining.  
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*A recently updated annotation of this gene reveals that the 3’ end contains an 

intron, and the actual coding region now includes an additional 18 nucleotides.  

Thus the rPf14-3-3 generated for this study represents a C-terminally truncated 

protein.        

 
Parasite culturing, metabolic labeling, and GST-Pf14-3-3 pull down 

 
Plasmodium  falciparum strain 3D7 were cultured [22] in human O+ erythrocytes at 2% 

hematocrit in complete RPMI 1640 (Gibco) supplemented with 27 mM NaHCO3, 22 mM 

glucose, 0.37 mM hypoxanthine, 10 µg/ml gentamicin, and 5 g/L Albumax (Invitrogen) 

and incubated at 37°C with 5% CO2.  Parasites were sorbitol-synchronized [23], grown to 

the trophozoite stage, washed twice in PBS, and re-plated in RPMI-labeling medium 

lacking methionine and cysteine (Sigma) in the presence of 0.18 mCi [35S] Express 

Protein Labeling Mix (Perkin Elmer, 1175 Ci/mmol) for up to 6 hours.  After labeling, 

infected RBCs (iRBCs) were lysed with 100 hemolytic units (HU)/ mL of tetanolysin 

(List Biologicals) in cold PBS.  Parasite pellets were resuspended in cold lysis buffer (50 

mM Tris-HCl pH7.5, 150 mM NaCl, 0.5% Igepal) containing Complete protease 

inhibitor cocktail mix (Roche) and underwent two freeze/ thaw cycles to facilitate lysis.  

Parasite lysates were collected following centrifugation at 16000 rpm for 10 minutes at 

4°C.  Parasite lysates were mixed with lysis buffer at a 1:4 ratio, added to 20 µL GST-

Pf14-3-3 beads, and incubated at 4°C overnight with tumbling.  The GST-Pf14-3-3 beads 

were washed twice with lysis buffer and resuspended in 2x SDS-laemmli.   Proteins were 

resolved by SDS-PAGE, followed by Coomassie Blue staining, and autoradiography.   

 
Pf14-3-3 and phospho-protein immunodetection 
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Parasites were synchronized to the late ring stage, incubated in RPMI 1640 medium at 

37°C with 5% CO2 and harvested at various time points up to 8 hours.  Samples were 

lysed with 100 HU/ mL tetanolysin (List Biologicals) in PBS and centrifuged at 16000 

rpm for 10 minutes at 4°C.  Parasite pellets were washed 2 times in PBS containing 

Complete protease inhibitor cocktail mix and resuspended in 2x SDS-Laemmli buffer, 

followed by SDS-PAGE.  Resolved proteins were transferred to nitrocellulose followed 

by immunoblotting [24] with polyclonal anti-14-3-3 antibodies purchased from Abcam.  

 

Alternatively, parasite pellets were resuspended in cold lysis buffer (50 mM Tris-HCl 

pH7.5, 150 mM NaCl, 0.5% Igepal) containing Complete protease inhibitor cocktail mix 

(Roche) and underwent two freeze/ thaw cycles to facilitate lysis.  Parasite lysates were 

collected following centrifugation at 16000 rpm for 10 minutes at 4°C and mixed with 

lysis buffer at a 1:4 ratio, added to 20 µL GST-Pf14-3-3 beads, and incubated at 4°C 

overnight with tumbling.  The GST-Pf14-3-3 beads were washed twice with lysis buffer 

and resuspended in 2x SDS-laemmli.  Proteins were resolved by SDS-PAGE and 

transferred to nitrocellulose, followed by immunoblotting [24] with monoclonal anti-

phospho-serine/threonine/tyrosine antibodies purchased from Abcam.    

 

Results and Discussion 

The expression profile of 14-3-3 in P. knowlesi, a divergent primate malaria 

species [25], has been previously described [14]. Therefore, we initiated the 

characterization of the P. falciparum 3D7 strain14-3-3 homolog (Pf14-3-3).  BLAST 

analysis of the human epsilon isoform of 14-3-3 against the Plasmodium gene database 
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identified MAL8P1.69 as the P. falciparum 14-3-3 ortholog, consisting of 771 base pairs 

in its genomic sequence, with 2 introns located at the 5’ end.  Plasmodium 14-3-3 

maintains at least 55% sequence identity with other eukaryotic orthologs [14], thus 

commercially available antibodies raised against human isoforms of 14-3-3 (anti-14-3-3) 

were used to detect the P. falciparum protein.  3D7 parasites were cultured under normal 

conditions, sampled at various times during development, and the expression of parasite 

14-3-3 was examined by western blot analysis.  The polyclonal 14-3-3 antibody 

recognized a doublet pattern with bands migrating slightly above and below the 30kDa 

marker.  The expected size of Pf14-3-3 is approximately 28 kDa, corresponding with the 

lower molecular weight band.  The higher species may be representative of 

phosphorylated Pf14-3-3, a regulatory modification that has been described in 

mammalian cells [26].   Pf14-3-3 was primarily expressed during the mid to late 

trophozoite stage, while virtually no expression was apparent in earlier stages (Figure 1A 

and B), indicating that Pf14-3-3 exhibits stage-dependent expression, validating the 

previous study in P. knowlesi [14].   

14-3-3 is known to bind to specific phospho-serine/ threonine containing proteins 

[27]; therefore we examined Pf14-3-3 interactions with parasite proteins.  A recombinant 

version of Pf14-3-3 was constructed in order to conduct in vitro interaction studies.  The 

full length sequence of MAL8P1.69 *(see methods) was cloned into the pGEX6P-1 GST-

fusion bacterial expression vector.  After induction of protein synthesis, an N-terminal 

Glutathione-S-Transferase (GST)-tagged version of Pf14-3-3 could be isolated from 

bacterial lysates through affinity purification with glutathione beads, yielding a tagged 

protein of expected size at approximately 53 kDa (Figure 2A).  Synchronous 3D7 
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parasites were metabolically radio-labeled with [35S] methionine and cysteine for 

different time intervals in order to examine changes in the rPf14-3-3 interaction profile 

over the course of development as the parasite synthesized new proteins.  Immobilized 

GST-Pf14-3-3 was added to the labeled parasite extracts in a pull-down assay, and bound 

proteins were visualized by autoradiography.  Although no differential pattern was 

observed, several proteins appeared to bind to rPf14-3-3 (Figure 2B, asterisk-labeled 

bands), while background binding to the equally loaded GST control remained relatively 

low.  Furthermore, by western blot analysis using antibodies against phosphorylated 

serine, threonine, and tyrosine residues, we determined that proteins interacting with 

rPf14-3-3 were indeed phosphorylated (Figure 3).   

This pilot study provides the first indication that Pf14-3-3 may have specific 

binding partners that undergo phosphorylation.  Assessment of the in vivo Pf14-3-3 

interactions via immunoprecipitation (IP) from parasite extracts provides a logical next 

step, which could lead to the identification of these putative signaling proteins.  

Furthermore, considering the role that 14-3-3 plays in the growth control mechanisms of 

other organisms, it is of interest to determine whether conditions that perturb parasite 

growth, such as isoleucine limitation, results in differential Pf14-3-3 binding, which may 

be indicative of the stress-responsive phosphorylation changes that occur in the parasite, 

thus resulting in the creation or loss of 14-3-3 binding sites.    
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Figure Legends 
 

 

Figure 1:  Expression of 14-3-3 in P. falciparum 

Synchronized 3D7 parasites were grown at 37°C in complete RPMI and harvested at the 

indicated time points. A) Western blot of parasite lysates showing the temporal 

expression of Pf14-3-3.  B) Representative images of Geimsa stained thin blood smears 

of the indicated time points showing developmental progression of the parasites. 

 
 

Figure 2:  Recombinant Pf14-3-3 expression and interaction with Plasmodium 

proteins 

A) Coomassie stained gel of GST-Pf14-3-3 lysate and enriched pull down (PD) onto 

glutathione beads.  B) Autoradiograph of -labeled P. falciparum proteins that interact 

with immobilized GST-Pf14-3-3.  The 3D7 input represents a shorter exposure.  The 

asterisks (*) indicate signals that are above the background in the GST PD control. CB, 

Coomassie Blue  

 
 

Figure 3:  Recombinant Pf14-3-3 interaction with phosphorylated P. falciparum 

proteins 

GST-Pf14-3-3 beads or control GST beads were added to a 3D7 parasite lysate in a pull-

down (PD) assay.  Shown is a western blot of interacting proteins detected by anti-

phospho-Ser/Thr/Tyr (αPS/T/Y), an antibody that recognizes phosphorylated proteins.  

Asterisks (*) indicate signals that are above background binding.     



 145 

 

Figure 1 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 



 146 

Figure 2 
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Figure 3 
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Part II: 

 
Microarray analysis of short term isoleucine-starved P. falciparum 
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Abstract 

 

 Amino acid starvation is known to elicit a dramatic shift in the transcriptional 

program of most eukaryotes, resulting in the expression of genes involved in the adaptive 

response that act to maintain cellular viability during nutrient stress.  Transcriptional 

modulation of in vitro cultured malaria parasites is rarely observed, even when parasites 

are subjected to conditions that perturb growth.  However, field isolates of Plasmodium 

falciparum have been shown to display differential transcriptional profiles, including one 

that resembles a characteristic starvation response.  In this study, gene expression 

analysis was performed on RNA isolated from in vitro cultured parasites briefly starved 

for isoleucine, the only exogenous amino acid required to sustain parasite growth.  We 

report that although no substantial transcriptional shift was observed, the gene PFI1710w, 

which encodes a protein implicated in the induction of gametocytogenesis, experienced 

nearly a 14-fold increase in expression in the isoleucine-starved parasites.  However, the 

genomic disruption of this gene did not affect parasite recovery post extended isoleucine 

starvation, thus we conclude that this gene does not play a major role in the starvation-

stress response of P. falciparum.   



 150 

Introduction 

  
Gene expression in the human malaria parasite, Plasmodium falciparum, is tightly 

regulated and remarkably coordinated with its developmental cycle [1, 2].  Unlike most 

organisms, however, the gene expression profile of P. falciparum does not appear to 

respond to environmental stimuli, such as treatment with certain antimalarial drugs [3, 4], 

suggesting that gene transcription in the parasite lacks the regulatory elements that allow 

for adaptive modulation.  However, a recent study reported that P. falciparum, in the 

context of a natural infection, exhibits distinct transcriptional profiles representing three 

different physiological states [5], thus challenging the widely held notion regarding the 

parasite’s transcriptional inflexibility.  These three states were characteristic of an active 

growth profile, a starvation response, or a general environmental stress response.  The 

active growth state was most similar to that reported for in vitro cultured parasites [1], 

however the latter two had not been observed before, suggesting that the induction of 

such states may be relevant to the variable microenvironments encountered by the 

parasite in the human host.   

In most eukaryotes, starvation for amino acids results in a rapid metabolic shift 

mediated by responsive alterations in the transcriptional program [6].  It has been shown 

that P. falciparum requires an extracellular supply of isoleucine to support its continuous 

growth, and that starvation for isoleucine results in developmental stalling [7].   

Therefore, in this study, the transcriptional profile of isoleucine-starved P. falciparum 

parasites was examined, with the intent to determine whether the previously reported in 

vivo starvation profile could be reproduced in culture.  We report that parasites briefly 

starved for isoleucine upregulate the expression of a small subset of genes, with one 
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particular outlier experiencing nearly a 14-fold increase in expression:  a 1.8kb gene 

known as PFI1710w recently implicated in the stress-associated process of 

gametocytogenesis [8].  Although this finding suggested that isoleucine starvation may 

promote gametocyte conversion, subsequent studies with parasites containing a genomic 

disruption in this gene phenocopied wild-type behavior in isoleucine starvation and 

recovery conditions, therefore we conclude that this gene most likely does not contribute 

to the parasite’s starvation stress-response. 
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Methods    

Parasite culturing 

Plasmodium  falciparum strain 3D7 and derived strains were cultured [9] in human O+ 

erythrocytes in complete RPMI 1640, containing all 20 amino acids, supplemented with 

27 mM NaHCO3, 22 mM glucose, 0.37 mM hypoxanthine, 10 µg/ml gentamicin, and 5 

g/L Albumax (Invitrogen).  Homemade complete and isoleucine-free RPMI were 

prepared according to the RPMI 1640 recipe provided by Invitrogen, and supplemented 

with RPMI 1640 Vitamins (Sigma), the appropriate respective amino acids (Sigma) at the 

concentrations found in RPMI 1640, and the additional supplements mentioned above.   

 

Parasite strains 

A lab strain of P. falciparum 3D7 parasites was used to generate samples for microarray 

analysis.  Additionally, a parental line of 3D7, a gametocyte-deficient line containing an 

18.9kb deletion on chromosome 9 (10-2), and a 10-2 strain complemented with an 

episomal expression plasmid containing PFI1710w (#17) were obtained from the lab of 

Kim Williamson (KW) (NIH) for use in the growth recovery assay.  The methods 

describing the generation of the deletion and complemented lines are currently 

unpublished and thus will be reported elsewhere.  

 

Microarray sample preparation and analysis 

A large-scale sorbitol synchronized [10] P. falciparum 3D7 culture at 8 – 10% 

parasitemia was washed twice in PBS, equally partitioned and washed in either complete 

or isoleucine-free RPMI, after which, the parasites were re-plated in their respective 
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medium and incubated at 37°C with 5% CO2.  Samples were harvested initially and after 

2 hours of incubation.  Infected RBCs were washed with PBS and lysed with 0.05% 

saponin (Sigma) in PBS.  Parasite pellets were washed with PBS and resuspended in 

Trizol ® Reagent (Invitrogen).  Following chloroform extraction, samples underwent 

centrifugation at 16000 rpm for 30 minutes at 4°C.  Isopropanol was added to the 

aqueous phase to precipitate the RNA.  Following centrifugation, the isolated RNA pellet 

was washed with 70% ethanol, dried, and dissolved in diethylpyrocarbonate (DEPC)-

treated water.  Samples were hybridized to Affymetrix chips and steady-state transcript 

levels of the fed control and the isoleucine-starved parasite samples were measured and 

subsequently compared for 4150 genes, generating a Pearson coefficient.  To determine 

the life cycle stage to which the samples best correlated, the absolute expression values 

from the control and the isoleucine-starved samples were divided by the median-averaged 

asexual life-cycle expression values generated for the reference pool in the Llinàs et al. 

study.  The resulting ratios were then log2-transformed and Spearman coefficients were 

calculated by comparing these values against the log2 ratios reported in reference 2, 

which detailed the expression pattern of P. falciparum over 53 hours of its 

intraerythrocytic developmental cycle (IDC).  To determine the in vivo cluster to which 

the samples best correlated, Spearman coefficients were calculated by comparing the 

absolute expression values for the control and the isoleucine-starved samples to the 

values reported for the 43 individual clinical isolates in the Daily et al. study.     

    

Growth recovery assay 
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 P. falciparum 3D7 parental parasites (KW), a strain containing an 18.9kb deletion 

on chromosome 9 (10-2) and a 10-2 strain complemented with PFI1710w (#17) were 

sorbitol synchronized [10] to the late ring stage, cultured in complete RPMI at 2% 

hematocrit, and sub-cultured to approximately 0.5 % parasitemia.  The complemented 

strain (#17) was cultured in the presence of 5 µM blasticidin (Sigma) to maintain positive 

selection on parasites carrying the plasmid containing the PFI1710w gene.  The cultures 

were washed twice in PBS, partitioned and washed in either complete RPMI or 

isoleucine-free RPMI, after which, the parasites were re-plated in triplicate in their 

respective medium and incubated at 37°C with 5% CO2.  Control fed and isoleucine-

starved parasites were grown for 96 hours and prepared for flow cytometry to assess 

parasitemia.  Remaining isoleucine starved cultures were supplemented with isoleucine 

(382 µM), after starving for various periods of time, and allowed to recover for an 

additional 96 hours.  Parasites were prepared for flow cytometry following recovery.   

 

Flow cytometry 

Samples were stained with 0.5 µg/mL acridine orange (Molecular Probes) in PBS 

and 3x104 cells were counted on a BD Biosciences FACS Canto flow cytometer.  Total 

cell number was measured on the forward and side scattering channels (FSC and SSC).  

Fluorescence was detected on both the FITC-H and the PerCP-Cy5-H channels and 

parasitemia gates were defined by intensity of fluorescence, with highly fluorescent 

infected RBCs distinctly separated from low fluorescence uninfected RBCs.  Data were 

analyzed using Flowjo software (Treestar Inc.).   
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Results and Discussion 

In the Daily et al. study, clinical isolates that displayed a transcriptional profile 

characteristic of a starvation response exhibited an upregulation in genes involved in 

oxidative phosphorylation, fatty-acid metabolism, and glycerol degradation, indicating 

that parasites in these samples experienced a metabolic shift, no longer relying on 

glycolytic metabolism to derive energy substrates, but instead obtaining such molecules 

from alternative sources.  To determine whether isoleucine starvation activates an 

alternative metabolic program, we isolated RNA from synchronized P. falciparum 3D7 

parasites that had been incubated in either isoleucine-free or complete RPMI for 2 hours.  

The RNA was then hybridized to Affymetrix gene chips and the expression level of 4,150 

genes was measured.  Upon comparing the expression values for the isoleucine-starved 

sample against those for the complete control, a Pearson correlation coefficient of 0.96 

was calculated (Dataset 1), indicating that no major transcriptional shift occurred 

between these samples.  Furthermore, in comparison to the 43 in vivo samples reported in 

the Daily et al. study, both the control and the isoleucine-starved samples best correlated 

with the transcriptional profile representing normal glycolytic growth (Figure 1), 

indicating that short-term isoleucine starvation does not interfere with standard 

carbohydrate metabolism, in contrast to the reported in vivo starvation profile.  The 

parasites used to generate the data for the in vivo profiles were described as early rings, 

while the parasites from the present study correlated best with mid to late ring stage 

forms (Figure 2), therefore it remains possible that transcriptional reorganization is 

dependent on life cycle staging and timing of stress induction.  
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Although major transcriptional changes were not apparent, about 25 genes from 

the isoleucine-starved parasites experienced more than a 4-fold increase in expression 

relative to the complete control (Table 1).  This subset of genes consisted of those 

involved in cytoadhesion, antigenic variation, and cytoskeletal organization.  Also genes 

encoding hypothetical proteins with no known function were prevalent in this subset.  

However, the largest fold-change in expression was exhibited by the gene PFI1710w.  

This 1.8kb gene was induced nearly 14-fold, and is annotated in the Plasmodium genome 

database (PlasmoDB) as a cytoadherence-linked protein.  Interestingly, however, recent 

reports have identified PFI1710w as an inducer of gametocytogenesis [11]. 

Such a substantial increase in this gene’s expression suggested that isoleucine 

starvation may initiate gametocyte conversion, which presents a reasonable hypothesis 

since induction of gametocytogenesis is considered a general stress response of the 

parasite [12].   However, considering that sexual stage commitment occurs during 

schizogony of the previous cycle [12], we hypothesized that the induction of this gene 

during extended isoleucine starvation may also protect the viability of parasites already 

committed to the asexual program, perhaps in a stress response mechanism that promotes 

the hypometabolic features of gametocytes without the accompanying differentiation into 

the sexual forms.  Therefore, to test this hypothesis, we obtained gametocyte-deficient 

parasites containing an 18.9 kb deletion in chromosome 9, which spanned the region 

including PFI1710w, as well as a PFI1710w-complemented strain, and starved them of 

isoleucine for up to 72 hours.  Following starvation, isoleucine was supplemented to each 

culture, and parasites were allowed to recover for approximately 2 life cycles (96 hours).  

Interestingly, both the deletion strain, designated as 10-2, and the complemented strain, 
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designated as #17, behaved similarly to the wild-type (WT) parent in terms of asexual 

growth recovery (Figure 3).  In fact, control growth and growth recovery of the deletion 

strain, 10-2, were more comparable to that of WT, indicating that PFI1710w likely plays 

no major role in the starvation-stress response of P. falciparum.  Although PFI1710w 

expression is associated with gametocytogenesis, we report that isoleucine starvation did 

not trigger a remarkable increase in gametocytemia for either the WT or complemented 

strain (data not shown).  Furthermore, a subsequent gene expression study of isoleucine-

starved parasites presented in chapter 3 of this thesis failed to show any induction of 

PFI1710w or any of the other genes found in the differentially expressed subset reported 

here.  Therefore we conclude that the observed induction of PFI1710w during isoleucine 

starvation most likely represents an experimental artifact.     
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Figure Legends 

 

 

Figure 1:  Transcriptional profile comparison between isoleucine-starved and 

control parasites with in vivo isolates 

Heatmap illustration of Spearman correlation between the gene expression values of the 

physiologically distinct in vivo clusters reported in the Daily et al. study and the 

isoleucine-starved (ILE-) or control (CTRL) parasites.  The transcriptional profiles for 

both the isoleucine-starved and control parasites best correlated with the 17 in vivo 

isolates (2.1S05.014-2.17S05.188) from cluster 2, representing profiles exhibiting a 

normal active growth pattern.      

 

Figure 2:  Transcriptional profile comparison between isoleucine-starved and 

control parasites across the complete intraerythrocytic developmental cycle (IDC) of 

P. falciparum  

Heatmap illustration of Spearman correlation between gene expression values measured 

at each time point (TP) of the 53-hour IDC time series reported in the Llinàs et al. study 

and the isoleucine-starved (ILE-) or control (CTRL) parasites.  The transcriptional 

profiles for both the isoleucine-starved and control parasites best correlated with TP13 to 

TP19, representing parasite development at 13 to 19 hours post-invasion, thus 

corresponding to mid to late ring-stage parasites.    

 

 

Figure 3:  Growth recovery of PFI1710w deletion and complemented 3D7 parasites 

post isoleucine starvation 
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A PFI1710w deletion strain (10-2, light gray bars) and a PFI1710w complemented strain 

(#17, dark gray bars) along with wild-type parental parasites (WT 3D7 parent, black bars) 

were starved of isoleucine for the indicated times.  Ile was added back and parasites were 

allowed to recover in CM for 96 hours.  Control parasites were either fed (CM) or starved 

for isoleucine without re-feeding (no Ile) for 96 hours.  Parasitemia of all cultures was 

measured by flow cytometry after 96 hours of incubation (96 h ctrl) or recovery.  Data 

shown represent the mean parasitemia ± SEM, n=3.  
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Table 1. Genes upregulated in isoleucine-starved P. falciparum 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Values reported for the isoleucine starved (No Ile) and control parasites represent mRNA 

expression levels in arbitrary units (AU) 

Gene Name PlasmoDB annotation No Ile Control 
Fold Change 
Expression 

PFI1710w cytoadherence-linked protein 326.84 23.76 13.76 

PFD1235w PfEMP1 (chr4) 62.21 6.57 9.47 

MAL13P1.353 hypothetical protein 106.81 12.60 8.47 

PFD0110w normocyte-binding protein 1 61.78 8.28 7.46 

PF11_0180 hypothetical protein 131.40 19.41 6.77 

PF11_0400 hypothetical protein 73.22 10.87 6.73 

PFL0925w Formin 2 116.37 17.54 6.63 

PFB0795w 
ATP synthase F1, alpha 

subunit 
84.60 14.15 5.98 

PF10_0041 
U5 small nuclear ribonuclear 

protein 
187.89 33.96 5.53 

PF10_0014 pHISTa, exported protein 85.09 15.50 5.49 

PFB0275w 
metabolite/ drug transporter; 

MFS 
143.79 26.51 5.42 

PFL0840c hypothetical protein 54.55 10.69 5.10 

PFE1360c methionine aminopeptidase 47.76 9.94 4.80 

PFC0130c RNA-binding protein 46.24 9.67 4.78 

PFL2440w DNA repair protein rhp16 59.82 13.20 4.53 

PFF0770c 
hypothetical protein with 

PP2C domain 
73.54 16.70 4.40 

PFA0020w rifin 185.15 42.33 4.37 

PF11_0507 antigen 322 44.02 10.14 4.34 

PF11_0213 hypothetical protein 58.82 13.64 4.31 

PF14_0393 
structure-specific recognition 

protein 
68.18 15.81 4.31 

PF13_0161 hypothetical protein 91.96 21.57 4.26 

PFE1160w hypothetical protein 65.78 15.48 4.25 

PFL1010c hypothetical protein 72.86 17.59 4.14 

PF14_0725 tubulin 37.35 9.03 4.14 

PFL2525c exported protein 49.65 12.15 4.09 
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Figure 2 
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Figure 3 
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Part III: 

 
Evaluating the tR2A-binding properties of the putative 

 amino acyl-tR2A synthetase-like domain (PfaaRS)  

of PfeIK1 

 



 166 

Abstract 

 
 Activation of the eIF2α kinase GCN2 is mediated by the binding of uncharged 

tRNAs, which accumulate during amino acid starvation.  In yeast and most eukaryotes, 

the tRNA-binding domain of GCN2 orthologs is homologous to histidyl-tRNA synthetase 

(HisRS) and is located directly adjacent to the kinase domain.  In the GCN2 ortholog of 

Plasmodium falciparum, PfeIK1, the putative tRNA-binding domain is poorly conserved 

with those of other eukaryotes.  However, the catalytic activity of PfeIK1 is responsive to 

amino acid starvation; therefore it is presumed that the mechanism of kinase activation is 

also maintained.  In this study, we attempt to examine the functional role of the putative 

tRNA-binding domain of PfeIK1, designated as PfaaRS.          
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Introduction 

 

In yeast, starvation for amino acids leads to the activation of the eIF2α kinase 

GCN2.  Kinase activation is stimulated by the binding of uncharged tRNA, which 

accumulates when amino acids are limiting [1, 2].  The tRNA-binding properties of 

GCN2 are mediated by a C-terminal domain that has sequence homology to histidyl-

tRNA synthetase (HisRS) [3].  The GCN2 ortholog of Plasmodium falciparum, PfeIK1, 

also phosphorylates eIF2α when parasites are subjected to amino acid withdrawal 

(Chapter 2), presumably through a conserved activation mechanism.  Although the 

putative tRNA-binding domain of PfeIK1 is weakly conserved with that of GCN2, this 

region maintains similarity with an aminoacyl tRNA synthetase (Chapter 2), and is thus 

predicted to bind tRNA.  In this study, using a heterologous yeast expression system, we 

replaced the tRNA-binding domain of GCN2 with the putative binding domain of 

PfeIK1, termed PfaaRS, to determine whether this region could complement GCN2 

activation when cells were exposed to various amino acid dropout conditions.  In these 

yeast chimeras, we assessed phosphorylation of eIF2α as well as rescue of growth in 

arginine-depleted medium, which does not support the growth of yeast lacking a 

functional GCN2 [4].  We also recombinantly expressed PfaaRS to directly examine its 

tRNA binding abilities.  We report that the functional complementation of PfaaRS in 

yeast presented numerous technical ambiguities that preclude definitive conclusions.  

Furthermore, although PfaaRS expression was successful, we failed to detect tRNA 

binding in our experimental assay; therefore, additional optimization is needed to verify 

the putative activation mechanism of PfeIK1.  
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Methods 

 
GC22 and PfaaRS/GC22 hybrid cloning and yeast transformation 

Full length GCN2 (YDR283C) plus 0.5kb upstream of GCN2 (representing the promoter 

region) was PCR amplified from plasmid YCp50 [3] using primers 5’-CCACCGCGG 

TGGCGGCCGAGAATAAAAAAGAATATATACTCC-3’ (Eag1 site underlined)  

and 5’-CCCCCCCTCGAGGTCGACCTACCTCTGTAAATCGATAACAG-3’ (SalI  

site underlined) and In-Fusion® (Clontech) cloned into the Eag1/SalI restriction sites of 

yeast expression plasmid pRS316 (digested with EagI/SalI), containing a URA3 selection 

marker.  All cloning was confirmed by sequencing.  The resulting plasmid, 

GCN2/pRS316 was then transformed into a ∆gcn2 [his-, leu-, trp-, ura-, ade-] yeast strain 

and transformants were selected on SD-Ura plates, yielding the GCN2c strain.  Empty 

pRS316 was also transformed into ∆gcn2 [his-, leu-, trp- ura-, ade-] yielding a ∆gcn2 

URA+ strain, designated as ∆gcn2Ura, as a control.   

 

To design the PfaaRS/GCN2 hybrid, the tRNA binding domain of GCN2 (bp 2917 – 

4425) [5] was replaced with a codon optimized version of the putative tRNA-binding 

domain (PfaaRS) of PfeIK1 (PF14_0423) (bp 2707 - 4215).  Briefly, a 2.109kb restriction 

fragment containing the codon optimized PfaaRS flanked by GCN2 sequence cloned into 

pUC57 was purchased from GenScript.  The PfaaRS/GCN2/pUC57 plasmid was 

sequentially digested with PasI and PsrI and the PfaaRS/GCN2 fragment was ligated into 

PasI/PsrI digested GCN2/pRS316 yielding the full length PfaaRS/GCN2 chimera in 

pRS316.  The final cloning step was confirmed by sequencing.  The 

PfaaRS/GCN2/pRS316 plasmid was then transformed into a ∆gcn2 [his-, leu-, ura-, ade-] 
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yeast strain and transformants were selected on SD-Ura plates, yielding the 

PfaaRS/GCN2c yeast strain.         

 

PfaaRS cloning and recombinant expression 

Codon optimized PfaaRS was PCR amplified from the GCN2/PfaaRS/pUC57 plasmid 

using primers 5’-ACCGGTACTAGTGGATCCATGATAAACAAGAAGAAAGAA 

AAC-3 (BamHI site underlined) and 5’-ACGCGTTGTACACTCGAGTTACTTGT 

CATCGTCATCCTTGTAATCGTGTATTGAAATCTT-3’ (XhoI site underlined and 

FLAG tag sequence in italics), digested with BamHI and XhoI, and ligated into the same 

sites of the His-tag bacterial expression vector pET28a (Novagen).  All cloning steps 

were confirmed by sequencing.  The resulting PfaaRSFLAG/pET28a plasmid was 

transformed into BL21 Codon Plus E. coli (Stratagene).  A single colony of 

PfaaRSFLAGpET28a transformed BL21 was inoculated in 5mL LB containing 100 µg/mL 

kanamycin and incubated overnight at 37°C.  The overnight culture was used to seed 500 

mL of fresh LB containing 100 µg/mL kanamycin, which was then grown to OD600 0.6, 

and induced with 0.5 mM IPTG for 5 hours at 30°C.   Cells were harvested, resuspended 

in cold lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% Igepal, 10% glycerol) 

containing Complete protease inhibitor cocktail mix (Roche), sonicated in an ice water 

bath, and centrifuged at 12000 rpm for 30 minutes.  1 mL of the protein lysate was 

incubated with 50 µL of washed charged HisPur™ Ni-NTA resin (Thermo Scientific) for 

1 hour with tumbling at 4°C.  Following the pull down, the HisPfaaRSFLAG beads were 

washed 3 times in the lysis buffer and eluted with 250 µM imidazole.  2x SDS-Laemmli 
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buffer [6] was added to a portion of the elution, followed by SDS-PAGE and Coomassie 

Blue staining.   

 

Control bacterial plasmids p274 (His-tagged wild-type gcn2 HisRS-related domain) and 

p297 (His-tagged gcn2 HisRS-related domain with mutant m2 allele) [1] were obtained 

from Ronald Wek’s lab and recombinant protein expression was induced as above.   

 
 
Starvation assay and immunoblotting 

Yeast strains ∆gcn2Ura, GCN2c, PfaaRS/GCN2c, and the parental S10757: W303a URA+ 

(designated as WT) were grown overnight in SD-Ura medium at 30°C.  Cells were 

harvested and washed with dH2O, equally partitioned, inoculated into SD-Ura, SD-Leu, 

or SD-Ile, and incubated at 30°C for 45 minutes.  Following centrifugation at 4°C, 200 

µL of lysis buffer (25mM Tris-HCl pH 7.5, 50mM KCl, 10mM MgCl2, 1mM EDTA, 

10% glycerol) containing 50x Complete protease inhibitor cocktail (Roche), 5 µg/ mL 

aprotinin, and 10 mM PMSF was added to each cell pellet along with 200 µl glass beads 

(size 425-600 µm) (Sigma).  Samples were vortexed at 4°C, centrifuged briefly to pellet 

beads and cell debris, and yeast lysates were collected.  Protein concentration was 

determined by the BCA protein assay (Pierce) and 80-100 µg of protein was prepared for 

electrophoresis.  2x sample buffer was added, proteins were resolved by SDS-PAGE, and 

transferred to nitrocellulose for immunoblotting [7] with anti-phospho-eIF2α antibodies 

(Cell Signaling Technology) and anti-PGK antibodies (provided by True lab).      

Alternatively, to determine GCN2 expression levels only, yeast strains ∆gcn2Ura, GCN2c, 

PfaaRS/GCN2c, and the parental S10757: W303a URA+ (designated as WT) were grown 
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overnight in SD-Ura medium at 30°C, diluted to OD600 0.25 in 20 mL SD-Ura medium 

and grown to OD600 1.5 - 2.  Cells were harvested, washed, lysed, and quantitated as 

indicated above.  Following the addition of 2x sample buffer, proteins were resolved by 

SDS-PAGE, and transferred to nitrocellulose for immunoblotting with anti-GCN2 

antibodies (provided by Hinnebusch lab).   

 
 
Yeast growth assays 

Yeast strains ∆gcn2Ura, GCN2c, PfaaRS/GCN2c, and the parental S10757: W303a URA+ 

(designated as WT) were grown overnight in SD-Ura medium at 30°C, harvested by 

centrifugation, and washed with dH2O.  Cells were diluted to OD600 0.05 or 0.005 in 

dH2O, inoculated into SD-Ura, SD-Leu, SD-Ile, or SD-Arg medium, and incubated at 

30°C for up to 3 days.  Assessment of yeast growth was determined by culture medium 

turbidity.   

Alternatively, following overnight growth at 30°C and washing, the above yeast strains 

were diluted to OD600 0.4 or 0.8 in dH2O, spotted on SD-Ura, SD-Ura-Leu, SD-Ura-Ile, 

or SD-Ura-Arg plates in 2-fold serial dilutions, and incubated at 30°C for up to 4 days.  

Assessment of yeast growth was determined by the appearance of colonies.        

 
 
 
tR2A binding assay 

 

Recombinant HisPfaaRSFLAG, WT GCN2 HisRS, and the GCN2 HisRS m2 mutant were 

resolved by SDS-PAGE and transferred to nitrocellulose membrane.  The membrane was 

incubated in binding buffer (50 mM HEPES pH7.5, 50 mM KCl, 0.05% Triton X-100, 

0.04% Ficoll, 0.04% polyvinylpyrrolidone, 0.08% BSA, 2.5 mM EDTA) containing 20 



 172 

µg degraded herring sperm DNA (Sigma) per mL at 25°C overnight.  Total yeast tRNA 

(Sigma) was dephosphorylated at the 5’ end with calf alkaline phosphatase (Roche) 

followed by radiolabeling with 25 pmol [γ-32P]ATP [6000 Ci/mmol, 142 mCi/mL] and 

polynucleotide kinase.  The membrane was incubated with binding buffer containing the 

end-labeled tRNAs and 20 µg of herring sperm DNA per mL for 1 hour at 25°C.  

Membranes were washed in binding buffer, dried, and exposed for autoradiography.   

 

Results and Discussion 

 
To determine whether the putative tRNA-binding domain of PfeIK1, termed 

PfaaRS from here on, could functionally mimic the HisRS-like domain in yeast GCN2, 

we performed a domain swap and replaced GCN2-HisRS with a codon optimized version 

of PfaaRS.  Using a heterologous yeast expression system, we transformed a ∆gcn2 yeast 

strain [auxotrophic for uracil (Ura), leucine (Leu), tryptophan (Trp), histidine (His), and 

adenine (Ade)] with a Ura+ plasmid carrying wild-type GCN2 or the PfaaRS/GCN2 

chimera, both under the control of the native GCN2 promoter.  When the GCN2 

complemented (GCN2c) yeast were incubated in SD-Leu for 45 minutes, phosphorylation 

of eIF2α was readily apparent (Figure 1A).  Also, eIF2α was phosphorylated in the 

GCN2c yeast when isoleucine was absent.  This signal was not as robust presumably 

because these yeast were prototrophic for isoleucine, thus the activated general control 

mechanism would upregulate the biosynthesis of this amino acid, reducing the starvation 

signal.  No eIF2α phosphorylation was detected in either SD-Leu or SD-Ile for the 

∆gcn2Ura control (Figure 1A), indicating that these mutants were unable to respond to 

amino acid limitation.  Similarly, no signal was detected for the PfaaRS/GCN2c yeast 



 173 

(data not shown).  It is possible that this construct simply failed to express since no 

protein of the expected size (~190kDa) was apparent in these yeast (Figure 1B, Pf
c
), in 

contrast to the GCN2c strain, which exhibited a low level of GCN2 expression (Figure 

1B, G
c
).   

Interestingly, PfaaRS/GCN2c yeast exhibited a differential growth pattern in 

comparison to the ∆gcn2 mutant when inoculated at 0.005 OD600 in SD-Ile (Table 1-1), 

suggesting that PfaaRS/GCN2 could indeed mediate a starvation response.  However, this 

differential growth was no longer observed when these strains were inoculated at a 10-

fold higher OD (Table 1-2).  Given this discrepancy, we examined the growth of these 

strains in arginine-dropout medium conditions, which reportedly does not support the 

growth of ∆gcn2 mutants [4].  However, even in these purportedly selective conditions, 

growth for all strains was observed (Figure 2 and Table 1-1 and 1-2), which gives rise 

to the possibilities of contamination or a suppressor mutation being present in the ∆gcn2 

strain.   

We also sought to determine directly whether PfaaRS binds tRNA by expressing a 

recombinant version, tagged at the N-terminus with His and at the C-terminus with 

FLAG.  A protein of expected size (63kDa) was expressed and isolated by Ni-NTA 

affinity from the soluble fraction (Figure 3), however, this protein was not the most 

dominant species that eluted from the Ni-NTA resin.  Several lower and higher molecular 

weight proteins were abundant in the eluted fraction, possibly representing degradation 

products or non-reduced, PfaaRS-interacting protein complexes, respectively.  

Nonetheless, this protein mix was used to assay tRNA-binding, along with two control 

protein domains previously used to establish the tRNA-binding properties of yeast GCN2 
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[1].  HisPfaaRSFLAG and the two controls were resolved by SDS-PAGE, transferred to 

nitrocellulose and exposed to radiolabeled tRNA in a northwestern blotting assay.  

However, tRNA binding was not detected for any of the protein domains (data not 

shown).  Differential tRNA binding has already been demonstrated for the controls in a 

previous report using this assay [1], therefore further optimization is needed to 

troubleshoot this method in order to define the tRNA-binding properties of PfaaRS.         
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Figure Legends 

 
 

Figure 1:  GC�2 complemented mutant phosphorylates eIF2α in amino acid 

depleted conditions 

A) ∆gcn2 and GCN2c yeast strains were incubated in SD-Ura, SD-Leu, or SD-Ile for 45 

minutes.  Yeast extracts were prepared and proteins were resolved by SDS-PAGE 

followed by immunoblotting with antibodies against phosphorylated-eIF2α (anti-eIF2αP) 

and PGK (anti-PGK) as a loading control.  B) WT, ∆gcn2 (∆), GCN2c (Gc), and 

PfaaRS/GCN2c (Pfc) yeast strains were grown in SD-Ura to OD600 1.5 – 2, yeast extracts 

were prepared and proteins were resolved by SDS-PAGE followed by immunoblotting 

with antibodies against GCN2 (anti-GCN2).  Arrow indicates expected size of GCN2. 

 

Figure 2:  Growth assessment of yeast strains on selective medium  

The indicated yeast strains were spotted in serial dilutions onto selective plates lacking 

the indicated supplements.  The above images were collected 4 days post-incubation at 

30°C.  Growth on the selection medium indicates that the yeast strain is competent to 

synthesize the component(s) missing from the medium.  Lack of growth indicates that the 

yeast strain is unable to synthesize the missing component(s).     

 

Figure 3:  Expression of 
His

PfaaRS
FLAG 

 

Recombinant HisPfaaRSFLAG, HisWTGCN2-HisRS, and Hism2mutGCN2-HisRS were 

expressed, Ni-NTA affinity purified, and resolved by SDS-PAGE.  Proteins of the 

expected size (63kDa) were observed for all constructs (indicated by arrow). Other 

proteins were also enriched in the HisPfaaRSFLAG pull down (indicated by red asterisks).  
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Figure 2 
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Figure 3 
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Table 1-1 Yeast growth assay (by turbidity) starting OD600 0.005 

 

Growth assessed at 18 hours post-incubation unless otherwise indicated 

+, confluent growth; -, no growth 

 
 

Table 1-2 Yeast growth assay (by turbidity) starting OD600 0.05  

 

Growth assessed at 18 hours post-incubation unless otherwise indicated 

+, confluent growth; -, no growth 

Yeast Strain -URA -LEU -ARG -ILE 
-ILE (3 

days) 

WT + - + + + 

∆gcn2
Ura + - + - - 

GC�2
c + - + - + 

PfaaRS/ 

GC�2
c 

+ - + - + 

Yeast 

Strain 
-URA -LEU -ARG -ILE 

-ILE (2 

days) 

WT + - + + + 

∆gcn2
Ura + - + - + 

GC�2
c + - + - + 

PfaaRS/ 

GC�2
c 

+ - + - + 
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Part IV: 

 

Electron microscopy of isoleucine-starved P. falciparum 
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Abstract 

 During isoleucine starvation, the human malaria parasite, Plasmodium 

falciparum, slows its growth and experiences developmental arrest at the trophozoite 

stage.  By light microscopy, the morphology of starved parasites appears essentially 

normal.  However the limited resolution of this technique prevents a comprehensive 

evaluation of cellular organization, which, in other organisms, generally undergoes 

dramatic effects during nutrient starvation.  In this study, transmission electron 

microscopy (TEM) of isoleucine-starved parasites revealed prominent abnormalities in 

nuclear and food vacuole architecture that were most apparent after 24 hours of 

starvation.  We hypothesize that such cellular irregularities may be representative of an 

autophagic-like stress response.    
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Introduction 

 

 The growth of Plasmodium falciparum depends on an exogenous supply of 

isoleucine [1].  Upon isoleucine withdrawal, parasite growth slows dramatically and 

developmental arrest occurs at the trophozoite stage, prior to initiation of DNA 

replication.  Although parasite proliferation is inhibited in isoleucine-limiting conditions, 

parasites remain viable given that growth is restored upon isoleucine supplementation 

(Chapter 3).  On Giemsa stained thin blood smears visualized by light microscopy, the 

morphology of isoleucine-starved P. falciparum is largely unremarkable and virtually 

indistinguishable from that of control parasites from a comparable life cycle stage.  In 

contrast, when P. falciparum is starved for glucose, which is rapidly consumed by the 

parasite for energy [2], parasites stain dark purple with Giemsa stain, and they appear as 

shrunken, rounded bodies with pyknotic nuclei, features that are characteristic of cell 

death [3].  The maintenance of parasite viability during isoleucine starvation suggests that 

P. falciparum is better equipped to cope with amino acid fluctuations, which is 

suggestive of an adaptive response.   

In other eukaryotic organisms, nutrient starvation induces the process of 

autophagy, in which cytoplasmic contents are indiscriminately degraded to salvage 

released lipids and amino acids that can be used as substrates for the synthesis of ATP 

and other molecules required to maintain cell viability [4].  The distinguishing features of 

this process, in the context of nutrient starvation, have been extensively characterized in 

terms of specialized protein markers (i.e. autophagy-related proteins, ATG proteins) and 

modulation of cellular architecture.  In the latter case, electron micrographs of nutrient-

deprived cells revealed the appearance of multiple vacuolar structures, termed 
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autophagosomes, which house cellular contents destined for degradation [5, 6], and 

ribbon-like membrane structures, termed phagophores, which initiate the sequestration of 

cytoplasmic components [7, 8].  Therefore, the presence of these structures provide a 

visual landmark to identify autophagic cells.     

Autophagy is not well-characterized in Plasmodium, and to date, only a drug-

induced autophagic-like cell death has been described to occur in the parasite [9].  

Interestingly, however, during isoleucine starvation, food vacuole proteases remain 

active, and this proteolytic activity is required to maintain parasite viability (Chapter 3), 

suggesting that an autophagic-like process may also contribute to the starvation-stress 

response of P. falciparum.  Therefore, in this study, we used transmission electron 

microscopy (TEM) to examine the ultrastructural architecture of isoleucine-starved 

parasites to ascertain whether such conditions induce changes to the parasite’s cellular 

organization that are indiscernible by light microscopy.  We report that parasites exhibit 

abnormal morphology with extended starvation.  Furthermore, we describe the 

appearance of unusual structures within the food vacuole and cytoplasm of starved 

parasites, which may be associated with an autophagic-like stress response.     
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Methods 
 
Parasite culturing  

 

Plasmodium  falciparum strain 3D7 was cultured [10] in human O+ erythrocytes in 

complete RPMI 1640, containing all 20 amino acids, supplemented with 27 mM 

NaHCO3, 22 mM glucose, 0.37 mM hypoxanthine, 10 µg/ml gentamicin, and 5 g/L 

Albumax (Invitrogen). Homemade complete and isoleucine-free RPMI were prepared 

according to the RPMI 1640 recipe provided by Invitrogen, and supplemented with 

RPMI 1640 Vitamins (Sigma), the appropriate respective amino acids (Sigma) at the 

concentrations found in RPMI 1640, and the additional supplements mentioned above.   

 

Isoleucine starvation assay  

A large-scale sorbitol synchronized [11] P. falciparum 3D7 culture at 8 – 10% 

parasitemia was washed twice in PBS, equally partitioned and washed in either complete 

or isoleucine-free RPMI, after which, the parasites were re-plated in their respective 

medium and incubated at 37°C with 5% CO2.  0.5 mL samples were harvested initially, 

and at 3 or 6 hour intervals over a 48 hour period.  Culture medium was changed every 

12 hours, and parasites incubated in complete medium were sub-cultured just prior to 

schizont rupture to maintain post-reinvasion parasitemia between 8 – 10%.  Following 

harvesting, samples were prepared for transmission electron microscopy.  

 

Transmission electron microscopy 

For ultrastructural analysis, infected RBCs were fixed in 2% paraformaldehyde/2.5% 

glutaraldehyde (Polysciences Inc.) in PBS for 1 hour at room temperature. Samples were 
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washed in PBS and postfixed in 1% osmium tetroxide (Polysciences Inc.) for 1 hour. 

Samples were then rinsed extensively in dH20 prior to en bloc staining with 1% aqueous 

uranyl acetate (Ted Pella Inc.) for 1 hour. Following several rinses in dH20, samples were 

dehydrated in a graded series of ethanol and embedded in Eponate 12 resin (Ted Pella 

Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica 

Microsystems Inc.), stained with uranyl acetate and lead citrate, and viewed on a JEOL 

1200 EX transmission electron microscope (JEOL USA Inc.). 

 
 

Results and Discussion 

 To examine the ultrastructural detail of isoleucine-starved parasites, we conducted 

a time course in which synchronized 3D7 parasites were incubated in isoleucine-free 

RPMI over a period of 48 hours, with samples prepared for TEM at 3 or 6 hour intervals.  

In parallel, a control set of parasites were incubated in complete RPMI over the same 

time frame and similarly prepared.  Representative images of select incubation times are 

shown in Figure 1.  Parasites grown in complete RPMI exhibited normal morphology 

(Figure 1A-E), in that cellular organelles were readily identifiable throughout the course 

of parasite development.  Isoleucine-starved parasites appeared somewhat 

developmentally delayed, but relatively comparable to the control at the 12h time point 

(Figure 1F).  After 12 hours, however, the morphology of isoleucine-starved parasites 

became increasingly irregular with the appearance of unidentifiable cytoplasmic 

structures and food vacuole abnormalities (Figure 1G-I).  For instance, the food vacuoles 

of the starved parasites appeared to contain membrane bound vesicles with electron-

lucent contents (Figure 1G-I, black arrows), and the cytoplasmic structures appeared as 
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membranous, ribbon-like cisternae (Figure 1G-H, red arrows).  At 48 hours of 

starvation, nuclear morphology appeared elongated and distended (Figure 1I, asterisks), 

however, only a single nucleus was observed per parasite.  This nuclear enlargement may 

be due to transcriptional activity rather than replication since data presented in chapter 3 

of this thesis indicates that DNA synthesis arrests during starvation.   

The appearance of the membrane-bound vesicles within the food vacuole and the 

cytoplasmic structures in the isoleucine-starved parasites is rather unusual and was not 

observed in control parasites.  Presumably, these structures may represent features of a 

starvation-associated, autophagic-like response.  P. falciparum encodes at least 9 ATG 

genes [12], however, their roles in parasite biology are undefined.  Therefore, to further 

characterize these novel structures that appear during starvation, it is of interest to 

determine the localization of the P. falciparum ATG orthologs, which in other 

eukaryotes, conventionally serve as markers for autophagic compartments.       
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Figure Legend 

 
 

Figure 1:  Transmission electron micrographs of control and isoleucine-starved P. 

falciparum 

A) Ring-stage parasites at the 0h initial time point; B-E) Representative images of control 

parasites from complete medium conditions harvested after B) 12 hours (trophozoite 

stage), C) 24 hours (schizont stage), D) 36 hours (rings from 2nd cycle reinvasion), and 

E) 48 hours (trophozoites of 2nd cycle) of incubation; F-I) Representative images of 

isoleucine-starved parasites harvested after F) 12 hours, G) 24 hours, H) 36 hours, and I) 

48 hours of incubation. Black arrows indicate membrane-bound vesicles.  Red arrows 

indicate cytoplasmic, ribbon-like structures.  Asterisks (*) indicate abnormal nuclei.  N, 

nucleus; FV, food vacuole; Scale bar 0.5 µm   
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Figure 1 
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