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Abstract
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1. Introduction

During the past decade visualization has become an indispensable scientific tool. In medicine,
physics, meteorology, engineering, and elsewhere researchers use images to cope with large and dynamic
data volumes gathered through observations or generated by simulations. A single image is able to convey
vast amounts of information directly tied to the physical phenomenon under consideration. Seeing a
simulated tornado move across the screen, a specialist is more likely to discover a simulation error than by
hovering for long hours over columns of numbers. Similarly, images can assist non-specialists to develop
a certain degree of understanding of scientific undertakings. The power of abstraction inherent in visual
representation and the innate human ability to rapidly process very large volumes of visual information are
the key to the success of scientific visualization. [6,7]

The same arguments can be made on the behalf of program visualization which, within the scope
of this paper, is defined as the graphical presentation, monitoring, and exploration of concurrent
computations. These activities, intrinsic to the software engineering process, also involve large volumes of
information of a highly dynamic nature. Moreover, both the amount or information that must be examined
and the rate of change associated with this information increase with the degree of concurrency exhibited by
the system under consideration. With the advent of highly parallel multicomputers and growing interest in
concurrent programming, program visualization is expected to make significant inroads in the near future.

It is our contention, however, that program visualization is faced with intellectual challenges that
are much greater than those encountered in scientific visualization, In the scientific domain, one visualizes
data which is associated directly with some physical phenomenon which, in turn, dictates a particular visual
representation. In concurrency, the phenomenon to be explored by visual methods is the computation
itself. Most often, there is no output data and the operational or structural details are too low level and
localized to be useful in reasoning about the computation. Since understanding a sequential algorithm
requires something more than the ability to read each line of code it executes, it should come of no surprise
that understanding a concurrent computation requires something more than just seeing what each component
does. Moreover, since the screen real estate and the human focus of attention are limited the choice of
visual abstraction is very important,

Our research is concerned with the development of a methodology, rooted in a strong formal
foundation, for selecting proper visualizations of concurrent computations. The particular approach we are
currently exploring could be characterized in general terms as a proof-based visualization. We Jjustify our
selection of this approach by observing that in the concurrent domain operational thinking is often rendered
ineffective by the very large number of possible interleavings of events. By contrast, assertional reasoning
[2] has emerged as an effective tool for acquiring valuable insight about the workings of such programs—
today, a concurrent program without a proof is hardly given any serious consideration. Since program
understanding is also the primary objective of visualization, the connection between proofs and
visualization seems to be a natural one, at least in principle.

We showed previously [9] that there is also a way to exploit this relation at a practical level.
Safety and liveness properties, typically used in reasoning about concurrent computations, have appropriate
visual counterparts. A safety property can be rendered as a stable visual pattern, while liveness may be
captured by an evolving one. Moreover, we have some preliminary evidence that the form of the logical
predicate capturing the program property (e.g., existential versus universal quantification) also can provide
valuable hints on the type of visual representation one ought to consider.

One important step supporting the development of the visualization methodology involves
building an exploratory environment which allows us to specify a broad range of concurrent computations
and visualizations. Concurrent computations are specified using Swarm [10]. Swarm is a computational
model which extends UNITY and its proof logic to include content-based accessing to data, dynamic
statements, and dynamic partial-synchrony. Swarm was selected because of its expressive power, its
assertional-style proof logic, and the uniform tuple-like representation of computational states. Abstract
representations of the computation are generated by mappings computational states to a three dimensional
world of geometric objects. Changes in the state of the geometric world, i.¢., primitive visual events, are
later mapped into animation sequences which are finally mapped to images. The mapping approach, called



declarative visualization, makes it possible to alter dynamically the definition of a particular visualization
without impacting the specification of the computation. This high degree of flexibility, while desirable in
general, is critical to the success of an exploratory environment.

This paper is concerned with the method we use to specify visualizations and with the motivation
for the choices we have made so far. Section 2 introduces a sample concurrency problem, some Swarm
notation required to capture the program state, and several important formal properties of the algorithm.
The sample problem, diffusing computations, is used as an example throughout the paper. Section 3
overviews the specification method and basic notational conventions. Section 4 describes the process of
specifying a complete visualization for diffusing computations. Section 5 provides a status report on the
development of the exploratory visualization environment. Conclusions appear in Section 6.

2. Specifying Concurrent Computations

In this section we introduce the diffusing computation problem and explain how it is expressed in
Swarm [10]). Since the focus of this paper is the specification of visualizations, not computations, we
explain Swarm and its notation only to the extent necessary to support the remainder of the presentation.
The reference list, however, includes several published articles that discuss Swarm and its proof logic [3].

Underlying the Swarm language is a state-transition model similar to that of UNITY [2]. In
Swarm, the state of a computation is represented by the contents of the dataspace, a set of content-
addressable entities. The model partitions the dataspace into three subsets: the tuple space, a finite set of
data tuples; the transaction space, a finite set of transactions; and the synchrony relation. Every element of
the dataspace has tuple-like representation, i.c., it is a pairing of a type name with a sequence of values. In
addition, a transaction has an associated behavior specification. The execution of a transaction is modeled as
a transition between dataspaces. An executing transaction examines the dataspace, then deletes itself from
the transaction space and, depending upon the results of the dataspace examination, modifies the dataspace
by inserting and deleting tuples and synchrony relation entries and by inserting (bat not deleting) other
transactions. A Swarm program begins executing from a valid initial dataspace and continues until the
transaction space is empty. On each execution siep a transaction is chosen nondeterministically from the
transaction space along with all other transactions belonging to the same synchronic group. The entire
synchronic group is executed. The transaction selection is fair in the sense that each transaction in the
transaction space will eventually be chosen. The notation for tuples and simple transactions are the only
portions of the Swarm model required to handle the diffusing computation problem.

Problem. In the Diffusing Computations Problem one is given a collection of N interconnected
processes which communicate by sending messages over channels and an external environment which can
send messages to some of the processes. Each process is either active or inactive; only active processes can
send messages. An aclive process may become inactive at any time; an inactive process becomes active
only on receipt of a message. Computation begins when the environment sends messages to one or more
processes and ends when all processes are inactive and the environment is not sending any more messages.
The environment must detect the termination of the computation, i.e., when all processes are inactive and
no further messages can be received by any process.

Solution outline. The solution we present here is based on that proposed by Dijkstra [4].
Each process acknowledges every message it receives. A process that is inactive records the identity of the
process (henceforth called parent process) whose message caused a transition from the inactive to the active
state, but delays the acknowledgement of that message until its state changes back to inactive. An active
process immediately acknowledges all the messages it receives. Termination is detected by the environment
when it has received acknowledgements for every message sent. The correctness of this solution relies on
the following two invariants:

(1) The set of all active processes forms a tree whose root is the environment.

(2) For each process, either the process is active or the number of pending acknowledgements is
zero,



Furthermore, under the assumption that the underlying computation terminates, the following progress
condition holds:

(1) A configuration in which only the environment is active eventually leads to a configuration in
which neither the environment nor the processes are active.

It is this particular solution and the properties above that we will be using to illustrate the mechanics of
specifying visualizations.

Data representation. In our approach visualizations are specified as mappings from the state
space of the computation to images on the screen. The computation state in Dijkstra's solution is defined
by the local state of the environment and of each process and communication channel. If we ignore the
message contents and the computation carried out by the individual processes, the computation state can be
captured in the following manner. The environment state consists of a single data tuple, of type environ,
which stores the number of messages the environment will be initiating in the future and the number of
unacknowledged past messages. The process state consists of a single tuple, of type process, which stores
the process identity, its status (active or inactive), the number of messages sent but not yet acknowledged,
and the identity of the initiation source (the process whose message caused the most recent transition from
inactive (o active status, i.e., the parent in the tree). The process identifiers range over 1 through N. The
special identifier 0 is used to refer to the environment. The channels are bidirectional; messages flow in one
direction and acknowledgements in the opposite one. The state of each channel consists of two tuples, one
of type msg and the other of type ack. Each tuple stores the source and destination for the message
(acknowledgement) and the number of messages (acknowledgements) in transit. In Swarm, the four wple
types introduced so far are declared as follows:

environ(messages_to_send : natural; pending_acks : natural);

process(id : processid; status : active_or_inactive; pending_acks : natural; parent : processid);
msg(source : processid; destination : processid; in_transit : natural);

ack(source : processid; destination : processid; in_transit : natural)

where processid is a natural in the range 0 to N and active or_inactive is the enumeration {active, inactive}.

Computation/communication. In Swarm, both computation and communication are reduced
to atomic transformations of the dataspace called transaction executions. Transactions appear in the
dataspace and have a tuple-like representation consisting of a transaction type name and a sequence of fully
instantiated parameters, A transaction execution involves a query evaluation over the dataspace which
results in the binding of some local variables and is followed, if successful, by deletions and insertions into
the dataspace, in this order. Since multiple sets of dataspace entities may satisfy the same query,
nondeterminism is manifest in the query evaluation. Nevertheless, once the variables are bound, the
dataspace changes are fully specified and deterministic.

The environment behavior, for instance, can be captured by a single transaction of type Env{)
defined as follows;

Env() =
ik,c.q : environ(k,c)t, k > 0, msg(0,i,q)t
— environ(k-1,c+1), msg(0,i,q+1)
I c,iq: environ(0,0)f, ¢ > 0, ack(i,0,9)1, q > 0
— environ(0,c-1), ack(i,0,g-1)
I —environ(0,0)
= Env()

Env is a transaction class consisting of a single transaction instance Env() which, in turn, consists of three
synchronously executed subtransactions separated by the Il. The synchronous execution forces the three
subtransactions to synchronize after the evaluation of the query, after the performance of all dataspace
deletions (marked by daggers), and finally after the completion of all dataspace insertions.



Each subtransaction consists of a query followed by an action shown after the arrow. The query
part of the first subtransaction above, for instance, checks if there are still messages that the environment
must send out by looking for a tuple environ(k,c) with k greater than zero and selects some process with
which the environment can communicate directly by looking for any tuple of the form msg(0.i,g), i.e., a
channel from O (the environment's identifier) to { with ¢ messages in transit. Having bound the variables i,
k, ¢, and g, the action part is performed in two phases. The deletion of the tuples environ(k.c} and
msg(0.i,q) takes place first, followed by the insertion of two new tuples containing the updated environment
and channel states. Insertions are specified by listing a data tuple or transaction after the arrow. Deletions
are specified either by listing a data tuple marked by a dagger in the action part or, for reasons of
convenience, by placing a dagger on a tuple in the query part.

Using similar mechanics, the second subtransaction checks if all environment messages have been
dispatched and, if this is the case, seeks out arriving acknowledgments. If any acknowledgement is found, it
is removed from the respective channel and from the environment state by decrementing the counters in
environ(0,c) and ack(i,0,q). Finally, the last subtransaction recreates the transaction Env() as long as there
are messages that need to be delivered and acknowledgements that have not arrived. This is necessary
because a transaction is automatically deleted as part of its execution.

Process representation. In Swarm there is no concept of process and there are no sequential
programming constructs. Transaction types and transaction instances are available instead, Since Swarm
lacks any sequential constructs, sequencing is accomplished by defining continuations in the form of new
transactions to be inserted into the dataspace. Similarly, non-deterministic selection among multiple
behavior choices is modeled by placing in the dataspace a transaction for each alternative. For this reason,
each process J participating in the diffusing computation is represented by three transactions: SendMsg(!)
which processes the dispatching of messages whenever the process is active; GetMsg(I) which processes the
arrival of messages and the transition from inactive to active status; and PassAck(I) which processes the
arrival of acknowledgements and the transition from active to inactive status. The definition of the
corresponding transaction classes (parameterized by [ in the range 1 to N) is given below:

SendMsg(I) =
i,q.c,p : process(l,active,c.p)t, msg(liq)t
— process(lactive,c+1,p), msg(Li,q+1)
I true
—  SendMsg(T)

GetMsg(I) =
i,q,¢ : process(l,inactive,0,1)t, msg(i,Lg)t, g> 0
— process(l active,0,i), msg(i,l,q-1)
0 iq.c.pk: process(Lactive,c,p), msg(iLq)t, q > 0, ack(l,ik)t
— msg(,lg-1), ack(lik+1)
I true
- GetMsg(D)

PassAck(l) =
i,c,pk : process(Lactive,c,p)t, ¢ > 0, ack(i,Lk)f, k>0
— process(Lactive.c-1,p), ack(i,Lk-1)
I icpk: process(lactive,0,p)t, ack(Lp.k)t
— process(l,inactive,0,L), ack(Lpk+1)
I true
— PassAck()

The symbol L stands for an undefined process identifier.



Initialization, The initial configuration of the dataspace is defined by

[LI:1<I<N,0<J<N,Jcansendto1::
environ(K,0);
process(l,active,0,1); msg(J,1,0); ack(1,J,0);
Env();
SendMsg(T); GetMsg(I); PassAck(l)

1

where X is some natral number representing the number of messages the environment will send. All
transaction instances are persistent (i.e., re-create themselves and hence remain in the dataspace) except
Env(). The data tuples change to reflect changes in the state of the environment and of the processes.

Termination detection. Termination is defined as a state where all processes are inactive, no
messages or signals are in transit, and the environment has no more messages to send. From the above
transaction specifications, it is possible to show that

—Env(} = termination
i.e., that the absence of any Env() tuple in the dataspace indicates that the computation has terminated,
3. Declarative Visualization

In general, program visualization methods are either imperative or declarative. The distinction is
based on the way in which computations are related to graphical representations.

Imperative methods treat visualization as a side effect of the computation. They require annotation
of the underlying program with directives issued to the display device. In Balsa [1), for instance, the
animator ideatifies sections of sequential code that represent “significant events” and augments them with
calls to operations on predefined graphical objects. The animator needs in-depth knowledge of the code and
maust program all display changes associated with each significant event. The approach is somewhat tedious
and inflexible. Also, it is not clear how one can extend the approach to concurrent programming where the
“significant event” may be a global state change caused by particular combination of local state changes,
i.e., when there may not be a unique piece of code that is always associated with the occurrence of the
particular event.

Declarative methods, on the other hand, see visualization as a mapping either from program states
to graphical objects or from program events (i.e., state transitions) to object transformations. Because of
difficulties in specifying events (particularly in a concurrent environment), most declarative visualization
systems opted for simple mappings from variables to object attributes. In PROVIDE [8] and PVS [5], for
instance, icon parameters depend on process variables; changes to the variables are automatically transmitted
to the display mechanism. The principal shortcoming of these systems is the low level of abstraction. The
graphical objects are necessarily closely related to the program variables, and no mechanism for higher
levels of abstraction is available (for example, it is not easy to detect and display concepts such as “all
variables have values greater than 10”).

We believe that, at present, an inhibiting factor in the use of declarative visualization is the
difficulty of specifying states and events in modern programming languages. The tple-like representation
of the Swarm program state clearly helps alleviate this problem and makes it possible to attempt the
application of this method to complex concurrent programs. With regard to the choice between event
versus state mapping, we favor the latter, The proof logic on which we base our visualization methodology
relies on reasoning about program states. Abstract objects can be easily conceived as abstractions of the
program state. The approach is equally applicable to process-based computations (e.g., shared variables and
message passing) where the notion of control state plays an important role; to rule-based systems where
control state is practically absent; and to database systems where portions of the data may never be touched
by any executing transactions.



In an earlier paper [9] we suggested treating declarative visualization as a two-step mapping (Figure
1): the program state is first mapped to a world of 3D geometric objects which, in turn, is mapped to
images on the screen under direct user control. The two mappings are called visual abstraction and image
rendering, respectively. Visual abstraction is supported by a set of heuristics rooted in methods for formal
verification of concurrent programs and based on the notion that both safety (stable, invariant,
constant) and progress (ensures, leads-to) properties have direct visual counterparts. Rendering
exploits the capabilities made available by today's high-power graphics workstations which offer an
exceptionally rich visual vocabulary including not only rapidly rendered complex three-dimensional objects
but also color, movement, real-time transformations, hidden-surface elimination, lighting, etc. In the
remainder of this section we propose a refinement of this model and appropriate notational changes.

Computation Geometric Image
model
i %
Visual Image
Abstraction Rendering T
User
interactions

Figure 1: A declarative visualization model

3.1. Rule-based specification

The refinement of the visualization model resulted in the decomposition of the abstraction and
rendering mappings into four other mappings whose name and purpose will be discussed in the following
two subsections. The range and the domain of all these mappings are sets of tuples, generically called
spaces. The mappings are specified by collections of visualization rules which are similar in style to
Swarm subtransactions or to expert system rules. Operationally, a rule examines the input space of the
mapping and produces tuples for the output space of the mapping. All mappings are re-evaluated after each
atomic transformation of the state space.

Each visualization rule consists of an optional list of variables, a query part, and a production part,
The notation for the rules is similar to the Swarm subtransaction notation, except that the symbol = is
used in the rule instead of the Swarm — to separate the query part from the production part:

v:Q=P

This notational choice was made both to syniactically distinguish visualization rules from subtransactions
and to emphasize the important semantic difference between the two. A simple transaction, i.e., one
consisting of a single subtransaction, specifies an atomic transition from one dataspace configuration to the
next. A visualization rule, however, defines a logical relation between the input space and the output space.
Any change in the input space is instantaneously reflected in the contents of the output space.

The query part of a visualization rule is an arbitrary predicate which includes tests for the presence
of tuples in the input space. The production part is a list of tuples, which again may contain variables.



These tuples are associated with the output space of the mapping to which the rule belongs. We say that a
variable i$ instantiated by the query if it occurs free in at least one component of the query; all variables
which appear in the production part must be instantiated by the query. This convention is common in most
rule-based languages.

The interpretation of a visualization rule is as follows: For every instantiation of the variables
such that the query predicate is true, the corresponding tuples of the production will be present in the output
space. Given a mapping (a collection of rules), the output space produced by the mapping is simply the
union of all tuples produced by the rules.

More formally, assume we have a rule R which maps input space / to output space O. R has the
form

v:Q=P

where v is a collection of variables, @ a query over /, and P a list of tuples in O possibly containing
variables from v. Let i represent an arbitrary instantiation of the variables v (that is, i is a vector of values
having the same length as v). Then the output of R for input space(s) / is the set of tuples

outiR,N = { i:Q; is trueforI:P:}

The notation { variables : domain : term } represents the set of all terms such that the domain is true, and
Q: represents the result obtained by substituting for each occurrence of a variable of v in Q the

corresponding value from i. We use the phrase “p is true for I”” 1o mean that the query defined by p is true
for the space I. Given a mapping M which consists of a set of rules, we define the output space of M given
input space I as

out(M.,l) = (UR : R € M : out(R,))

For reasons that will become apparent soon, the single-space domain of some of the mappings,
called the primary input space, has been extended so as to include the previous instance of the input and
output spaces. Under the assumption that there are no naming conflicts between the various spaces, the
notation has been augmented as follows. Given ¢, a tuple in which the components may contain variables,
on the left hand side of some rule: o refers to testing for the pattern o« in the previous instance of the
output space or current instance of the primary input space; and old.a refers to testing for the pattern o in
the previous instance of the input space,

3.2. Decomposition of the abstraction mapping

Methodological considerations prompted the decomposition of the abstraction mapping into two
parts. The proof-based visualization methodology we have been applying requires one to first develop a
UNITY"like proof (or a proof outline) of a concurrent program in terms of program-wide properties. Next,
visual counterparts of these properties are chosen in order to determine the structure and attributes of the
geometric model. A stable property, for instance; once it becomes true it remains true forever—the
definition applies equally well to a predicate over the program state or to a visual property of some image.

Since only those aspects of the program state which relate to the property of interest contribute to
the selection of the geometric model, it makes sense to map first the state space of the computation (see
Figure 2) to some more abstract and less complex representation. We call this newly introduced space and
mapping the proof space and proof mapping, respectively. Because it is often the case that proofs rely on
the use of auxiliary variables which maintain historical information, the proof rules need to access the old
values of the auxiliary variables—in other words, the previous proof space—in order to compute the new
ones.
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Figure 2: Revised visualization model
The input space of mappings marked by a star is extended so as to include
the previous instance of the output space.

The proof space is mapped into a 3-D geometric model calied the object space by employing an
object mapping. The object mapping rules embody our judgments with regard to the best correspondence
between formal program properties and their visual counterparts. Take, for instance, the property P leads-
to O, meaning “if the computation reaches a state in which P is true it will eventually reach a state in
which Q is true.” If, on one hand, proving a leads-to property involves proving the existence of k simpler
transitions, one can expect to see k corresponding visnal transitions, henceforth called visual events, If, on
the other hand, the proof is by induction, one can expect to observe a sequence of visual representations
which become gradually closer to some target representation, under some measure of similarity or distance.
The object mapping rules are also permitted to access the previous instance of the output (object) space.
The primary purpose of this accomodation is to permit certain forms of viewer interaction. For example,
geometric information (such as position) can be stored in the object space; the user can modify this
information by a “click-and-drag” interface with the image, thus re-positioning the object involved.

3.3. Decomposition of the rendering mapping

An animator may find our model as described very limiting because of the inability to
accommaodate smooth transitions between the images representing successive states. Full animation
capability is simply not possible unless one is able to recognize events. This does not mean, however, that
one needs to detect computational events! Our model does not preclude the use of animation techniques, but
moves the concern with special effects into the visual realm: we treat these special effects as
decompositions of primitive visual events. An exchange of the positions of two objects on the screen
might be the direct result of a change in the state of the underlying computation. The animator can take
this event and decompose it in a sequence of simpler visual events involving highlighting and synchronized
movement along some prescribed trajectories. In this manner we are able to preserve the formality of state-
based mapping without sacrificing aesthetics,

In order to support this visual event decomposition we have introduced the animation mapping,
which takes as input the two most recent instances of the object space and generates tuples representing
objects in 4-D (3-D plus time) space called the animation space. These animation tuples are interpreted by
the frame generation mapping and converted into sequences of images called frames. The frame generation
mapping is performed by an interpreter which makes direct use of the rendering capabilities available on
some graphics workstation, the Personal Iris in our case. The interpreter also takes into account user
interactions affecting the viewpoint, scaling, light sources, etc.

Each tuple of the animation space represents one graphical object in the sequence of frames. The
tuple type corresponds to the object type (line, sphere, eic.). The tuple components correspond to the
various attributes of the object; for example, a line object has the attributes lifetime, from, to, and color.
For notational convenience, we permit the tuples of the animation space 10 take the form

type( attribute = value, attribute = value, ...)



where each attribute is the name of an object attribute and each value is a value of the appropriate type. It
is not necessary to specify values for all the attributes of the object; defaults are used for any value not

specified. For example, the tuple
line( from = [0,0,0, o = [5,0,0])

would represent a line object from coordinate (0,0,0) to coordinate (5,0,0). The line would be colored white
(the default for that attribute).

Animation necessarily involves certain concepts related to time; we measure time in terms of
frames, with the first frame produced in each transition being numbered 0, the next 1, and so on.
Animation is accomplished by assigning time-dependent values to the attributes of the objects. A
collection of functions are provided to generate these time-dependent values. For example, the function
ramp{10, v0, t1, vl) generates a linear interpolation between times 10 and ¢1, with the value of the
interpolation being v0 at time 10 and v1 at time ¢J. Mechanisms for composing the effects of the various
functions are also provided.

Given an animation space, the image mapping first determines how many frames will be generated
for the transition. This is done be examining the time arguments of all the functions and the lifetime
attributes of all the objects (the lifetime attribute is a pair of values [tmin, tmax] which indicates that the
object is to be produced only between frames tmin and tmax). The maximum value of any time involved is
used as the number of frames to be generated. Once this is determined, the sequence of frames is produced
and displayed. In each frame, each animation tuple is used 1o determine the attributes of the object and the
necessary graphics commands are executed to produce the object.

4. Visualization of the Diffusing Computations Problem

In this section we specify a visualization for the diffusing computations program presented earlier.
We first construct a complete simple visualization by giving the rules that define the proof, object, and
animation mappings (the frame generation mapping is fixed by the behavior of the interpreter). We then
show several ways in which this visualization could be modified to emphasize different aspects of the
computation behavior.

4.1, First Visualization

We use as a starting point for our visualization the key invariants required in the correctness proof
of the diffusing computation program:

»  The parent information in those process tuples whose status is active forms a directed tree
rooted at the environment.

*  For each process, either the process is active or the number of pending acknowledgements is
Ze10,

The first of these invariants establishes a tree structure which is used to detect termination. The second
ensures that no process will become inactive until it has received an acknowledgment for every message it
has sent.

The first invariant is easily captured—we generate a tree consisting of all active processes and the
environment. The second invariant is also captured by the tree representation: the second invariant ensures
that no process becomes inactive while it has active children, so violation of this invariant {the removal
from the tree of a node whose children are stili present) leads to the creation of an easily observed forest.

Proof mapping. The diffusing computations program makes use of four data tple types and
four transaction types. Not all of them are essential to capturing the invariants above. In the proof
mapping, we isolate those aspects of the computation which are of interest. In this case, we wish to collect
the information needed to generate the tree. This information will be represented in the proof space by
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treenode tples containing for each node of the tree the node’s id, the id of the node’s parent, and the distance
of the node from the root (the environment). To generate the distance information, we make use of a
known property of the underlying computation: a process can become active in a single atomic action only
if its parent was already active. (Note that this property holds even if a single atomic action is the
simultaneous and synchronous execution of multiple transactions.) Therefore, a node can be added to the
tree only if its parent was present in the tree in the previous step; we can compute the node distance by
querying the previous proof space to determine the distance of its parent.

Two rules accomplish the proof mapping. The first puts a node representing the environment into
the tree, but only if termination has not been detected already. By examining the properties of the
algorithm, we know that termination is detected if and only if no Env() transaction is present in the
dataspace. This gives the rule:

Env()
= treenode(0,L.0)

The second rule puts the nodes for the active processes into the tree. The query part of the rule examines
the previous proof space to determine the distance of the node's parent from the root:

id, ack, p, pp, dist :
process(id, active, ack, p), treenode(p, pp, dist)
= treenode(id, p, dist + 1)

For this particular probiem, the proof mapping is quite simple; indeed, the mapping from the Env
and active process tuples of the state space to the treenode tuples of the proof space is bijective. For more
complex visualizations this would not be the case—for example, several tuples of the state space might
contribute to a single tuple of the proof space. The ability to formulate arbitrarily complex queries in such
cases is one of our model's chief strengths.

Object mapping. The object mapping transforms the abstracted information of the proof space
into tuples which represent 3-D geometric objects (although these tuples are not necessarily in one-to-one
correspondence with the final graphical objects). This mapping also completes the abstraction process by
changing the state-oriented information of the proof space into geometric information.

In our example, we will construct the tree in three dimensions. The distance of each node from the
root (environment) will be mapped to the Z-coordinate (but “reversed”, so that the root has the most
positive Z coordinate); the X and Y coordinates will be used to lay out the nodes representing the processes,

In order to lay out the tree, we need a function which, when given a process identifier, returns the
X and Y coordinates at which that process is 1o be placed. Formally, we can express this as

mappos : Processlds — (Reals x Reals)

Functions are quite simple to represent as collections of tuples (obviously, because formally a
function is nothing more than a collection of pairs). In this case, the function definition will consist of
mappos tuples having three components, corresponding to the process identifier and its mapping to X and Y
coordinates. The function is “applied” by formulating a query to instantiate variables for the process id and
the X and Y coordinates. The function will be stored in the object space and “copied forward” by the rule:

id,x,y:
mappos(id,x,y)
= mappos(id,x.y)

This approach has several advantages. For example, it permits the function to be modified, either
by the visualization process or by a user, and the modifications will be retained thereafter. This can be used
for viewer interaction with the image: the viewer could change the position of a node (perhaps by a “click
and drag™ interface), and the change would alter the mappos wple in the object space, resulting in the new
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position applying to all objects generated thereafter, A similar approach could also be used to store such
constants as the size and color of the various objects, the relative scaling in each dimension, and so on.

We construct the tree using spheres to represent the nodes and lines connecting the sphere centers
10 show the parent-child relations. Three-dimensional coordinates will be represented by triples enclosed in
brackets. The following rules transform the tuples of the proof space into object tuples representing the
tree;

X,y
treenode(0,L,0), mappos(0,x,y)
= tree_sphere([x,y,0])

id, pid, dist, xi, yi, xp, yp: id # 0 2
treenode(id,pid, dist), mappos(id,xi,yi), mappos(pid,xp,yp)
= tree_sphere([xi,yi,—dist]), tree_line([xi,yi,~dist],[xp,yp.~(dist—1)1)

The first rule generates the root node. The second generates a sphere for each non-root node and the line
connecting it to the parent's sphere.

Animation mapping. The animation mapping transforms the object space into the animation
space, The tuples of the animation space are in one-to-one correspondence with primitive graphical objects
of the final image and are slightly different in style from the tuples of the other spaces. Specifically, the
type of each tuple is the name of a class of primitive graphical objects that are part of the visual vocabulary
of an animation space interpreter. Also, the tuple components assign time-dependent values to the object
attributes,

The simplest mapping involves no animation—the spheres and lines representing the tree simply
appear and disappear. Two rules which accomplish this are:

p:
tree_sphere(p) )
= sphere(center = p, radius = 0.2)

ppPP:
tree_line(p,pp)
= line(from = p, to = pp)

We can improve the appearance of the visualization by animating the addition and removal of the
spheres and lines. These occurrences are visual events that must be detected by examining two consecutive
instances of the object space. Up to this point we have been able to postpone dealing with events.
Although we need 10 recognize events and map them to sequences of images, our approach is distinct from
others in several important ways. First, we deal with visual and not with computational events. Second,
events are used to support exclusively the animation process. Third, the mapping of individual events into
sequences of events requires no reference to the program code. Finally, the declarative style and the rule-
based notation is preserved by extending the input space of the animation rules to include the previous
instance of the object space, thus allowing to check for differences between the two, and by treating the
animation space as a 4-D space where the fourth dimension is time.

The proposed animation is accomplished by recognizing three separate cases: the addition of an
object, the persistence of an object, and the removal of an object. We need rules for each of these cases.
Consider first the addition of a node to the tree, resulting in the addition of a sphere and (probably) a line to
the image. Assume we want o animate this as follows: the line will grow out from the parent sphere
until it reaches the position of the new sphere; the new sphere will then expand outward from a point to its
full radius. This is accomplished by the following rules:
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P.pp:
tree_line(p,pp), —old.tree_line(p,pp)
= line(lifetime = [1,10], from = pp, to = ramp(1,pp,5,p))

p:
tree_sphere(p), —old.tree_sphere(p)
= sphere(lifetime = [5,10], center = p, radius = ramp(5,0.0,10,0.2))

The first rule detects when a line is added and generates a line which will be present from frame 1
to frame 10 (the lifetime attribute). One endpoint of the line will be at the center of the parent (location
pp); the other endpoint will move from the center of the parent to the center of the child between frames 1
and 5, and will remain at the center of the child thereafter. The second rule generates a sphere which is
present from frame 5 to frame 10; the sphere’'s radius changes from 0.0 at frame 5 t0 0.2 at frame 10.
Together, the two rules achieve the effect of a line growing from the parent to the location of the child, then
the sphere growing outward from that point. (The frame numbers were chosen to produce a pleasing effect
in the final animation. Our ability to rapidly change the visualization by changing the rules is quite helpful
in such development.)

The rules which detect the case where a line or sphere is present in both the previous and current
spaces are:

p:
tree_sphere(p), old.tree_sphere(p)
= sphere(center = p, radius = 0.2)

p.PP:
tree_line(p,pp), old.tree_line(p,pp)
= line(from = p, to = pp)

We omit the rules which accomplish the removal of a line and sphere, as they are quite similar to
those for the addition.

4.2. Changing the Visualization

The visualization rules can be easily augmented and modified at any time during the visualization
process, either for the sake of refining the visual presentation or out of the desire to explore visually
additional properties of the computation. Rules that rely on the use of historical information which is not
available at the time the rule is first introduced may require the restart of the execution. All other rules take
effect as soon as a new atomic transformation of the dataspace is accomplished. To illustrate the ease with
which new rules may be formulated and added to the visualization we consider next several enhancements to
the visualization already introduced so far.

Assume that we want to show the state (active or inactive) of all the processes and message
channels. This might be prompted by a desire to see that all the active processes and none of the inactive
processes are present in the tree. We will represent processes by spheres and channels by lines linking the
spheres into a graph. To visually link this process state information with the tree, we use the same
mapping of process identifiers to X and Y coordinates in both the graph and the tree. We will place the
graph “above” the tree, at a Z coordinate of 2 (chosen somewhat arbitrarily). States will be represented
using colors, red for inactive and green for active.,

Proof rules:
Env() = active_proc(0)
—Env() = inactive_proc(0)

id, ack, p : process(id, active, ack, p) = active_proc(id)
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id, ack, p : process(id, inactive, ack, p) = inactive_proc(id)
i, j, cl,¢2 : i < j, msg(ij,cl), msg(G.ic2), c1>0vc2>0)= active_channel(i,j)
i, j - i < j, msg(i,j,0), msg(j,i,0) = inactive_channel(i,j)

The first two rules detect when the environment is active or inactive (i.e., termination detected or not) and
generate an active_proc or inactive_proc tuple as appropriate. The next two rules do the same for the other
processes. Finally, the last two rules determine if a channel is active or not; activity on a channel is defined
as the presence of a message in either direction. The predicate i < j ensures that exactly one tple appears
for each channel.

Object rules:

i,x,y:
active_proc(i), mappos(i,x,y)
= process_sphere([x.y,2],[0,255,0])

i, x,¥:
inactive_proc(i), mappos(i.x,y)
= process_sphere([x,y,2],[255,0,0])

i, j, xt, yi, xj, yj :
active_channel(i,j), mappos(i,xi,yi), mappos(j,xj,yj)
= channel_line([xi,yi,2],[x].yj,2],[0,255,0])

g, 5, vi X, i o .
inactive_channel(i,j), mappos(i,xi,yi}, mappos(j,xj.yj)
= channel_line([xi,yi,2],(xj,yj,21,[255,0,0])

These rules generate object space tuples representing the processes and channels. Colors are expressed as
triples representing the red, green, and blue components of the color on a scale of 0 to 255; thus, [255,0,0]
isred and [0,255,0] is green.

Animation rules:

p.c:
process_sphere(p,c), old.process_sphere(p,c)
= sphere(center = p, radius = 0.2, color = ¢)

p.cl,c2:
process_sphere(p,c1), old.process_sphere(p,c2), c1#c2
=> sphere(center = p, radius = 0.2, color = step([255,255,255),1,¢1))

pl,p2,¢c:
channel_line(p1,p2.c), old.channel_line(p1,p2,c)
= line(from = p1, to = p2, color = ¢)

plL,p2,¢cl,c2:
channel_line(p1,p2,c1), old.channel_line(p1,p2,c2), cl=c2
= line(from = pl, to = p2, color = step([255,255,255],1,c1))

These rules simply transform the object tuples into the primitive graphical objects which make up the final
image. Asa way of attracting the viewer's attention, the channels that change status are made to shine
bright and then change to the new color (the three parameters of the step function begin the initial value,
the time at which the value changes, and the final value).
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Figure 3: Sample visualization

One frame of the visualization resulting from this final collection of rules angmented by rules that
tag the environment is depicted in Figure 3. This particular frame is being viewed from a point slightly
above the X-Y plane; the Z-axis is directed vertically upward through the center of the figure. The graph in
the upper part of the figure is the computation graph; eight nodes can be seen to be active (green), including
the environment node (circled in green). The lower part of the graph is the termination-detection tree; again,
the environment is circled. Because of the chosen angle of view, tree height generally corresponds to
vertical position on the page. This particular frame was selected from the middle of a transition in which a
node was being added; the new sphere is visible toward the bottom right of the wree and is slightly smaller
than the others.
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Naturally, the limitations of the print media prevent capturing the full effect of the visnalization,
In particular, we cannot effectively capture such animation effects as the growth of the sphere and the
flashing of the elements of the computation graph. A video tape showing a complete animation is
available.

5. Implementation

The specification techniques described in this paper are being used in the implementation of a
versatile exploratory visualization environment called Pavane. Its goal is to enable experimentation with
various visualization methodologies and to investigate strategies for integrating concurrent programming,
visualization, and video production,

Our exploratory visualization environment consists of two main components. The first of these,
SwarmExec, is a Prolog-based Swarm simulation which runs on a Macintosh. SwarmExec simulates the
operation of a Swarm program and superimposed visualization. The various tuple spaces involved in the
simulation, including the Swarm dataspace and the spaces of the visualization model, are represented as
collections of Prolog facts. The window-based visual editors facilitate the specification of both Swarm
programs and visualization rules and their translation into Prolog goals. The editors may be invoked by the
user any time during the visualization.

The second component of our visnalization environment is SwarmView, a graphics program and
interpreter which runs on a Personal Iris. The Macintosh and Iris are connected through the Ethernet; the
Macintosh sends a description of the animation space produced by SwarmExec 1o SwarmView across this
link, SwarmView reads the successive animation spaces (transitions) produced by SwarmExec and generates
the sequence of frames described by each transition. SwarmView also provides facilities whereby the user
can change the image viewpoint, pause the animation, and take “snapshots™ of the images.

6. Conclusions

In this paper we presented a new model for visualizing concurrent computations, The key features
of the model are its declarative nature, its rule-based notation, its ties to program verification, and the
emphasis on three-dimensional visualizations. At the start of this research we were faced with two principal
questions: Is it possible for a strict declarative approach based on mapping states to images to handle
elegandly (1) auxiliary variables commonly used in proofs and (2) special effects essential in most visual
presentations? Having answered yes to both questions, we plan to turn our attention to several new issues:
a formalization of our proof-based visualization methodology, a study of the adequacy of our current visual
vocabulary, and the addition of non-textnal methods for constructing animation rules,
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