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Several current DNA mapping projects are based on detection of overlaps be-
tween cloned DNA molecules. This thesis places the problem of overlap detection
in a probabilistic framework by deriving, for each of the relevant overlap types,
expressions for the probability that a postulated overlap is correct. In addition,
computationally feasible approximations for the probability expressions are devel-
oped. These expressions have been implemented and, using the implementations,
the validity of both the original and the approximated probability expressions is
verified. :
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CHAPTER 1

Introduction

1.1 Thesis Topic

Several current DNA mapping projects are based on detecting overlaps between
cloned DNA molecules. This thesis derives expressions for the probability that a
postulated overlap is correct, and addresses issues of computational feasibility and

verification of the validity of these probability expressions.

1.2 Genetics Concepts and Terminology

1.2.1 Genetics Background

DNA is the genetic material which supplies the blueprint for an organism’s develop-
ment. A DNA molecule is composed of nucleotides, each nucleotide consisting of a
sugar. a phosphate, and a “base.” There are four types of bases, called A (Adenine),
T (Thymine), C (Cytosine), and G (Guanine). Nucleotides are distinguished by the
base they contain. Sugar-phosphate bonds can bind the nucleotides into strands.
The bases on one strand can pair with bases on another strand by hydrogen bond-
ing, however, the only base pairings allowed are A-T and G-C. Thus, A and T are
complementary bases, as are G and C. A DNA molecule is made of two complemen-
tary nucleotide strands bound together by base pairing. The base sequence of one
DNA strand determines the base sequence of the other because of the A-T, C-G
complementation restrictions. For example, Figure 1 shows a schematic of a DNA

molecule ten base pairs long, in which the sugar-phosphate bonds are represented
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ATTGACCTAA

..........
..........
..........

TAACTGGATT

Figure 1: A Double-Stranded DNA Molecule. A schematic of a double-stranded
DNA molecule ten base pairs in length is shown. The horizontal lines represent the
sugar-phosphate backbones of the molecule, the letters A, T, G, and C represent
the bases for each of the constituent nucleotides, and the hydrogen bonds between
the complementary base pairs are represented by the dotted lines.

as the solid horizontal lines and the hydrogen bonds as the vertically aligned dots.
A DNA molecule can be abstracted as a sequence of base pairs, with its size given
by the number of base pairs.

DNA molecules can be cut into fragments using restriction enzymes. A re-
striction enzyme recognizes only one or a few specific short base pair sequences
(usually between 4 and 6 base pairs long) called the recognition sequence(s)
of the enzyme. The length of the recognition sequence will be referred to as the
sitesize. For the class of restriction enzymes generally used in the laboratory,
there is one position within each recognition sequence at which the enzyme will cut.
This position is called the cutsite. A complete digest of a DNA molecule consists
of exposing the DNA to a restriction enzyme for enough time to allow cleavage of
all of the enzyme’s cutsites which occur in the molecule. A partial digest exposes
the DNA for a shorter period of time so that only a randomly chosen fraction of the
cutsites are actually cleaved.

The DNA fragments resulting from.a, digestion can be separated and sized us-
ing agarose gel electrophoresis [20]. DNA is negatively charged at normal pH;

when placed in an agarose gel across which an electric current is maintained, a

1“Sitesize” is not a term in general use.
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DNA molecule will migrate toward the anode. Gels usually contain several lanes;
each lane generally contains a single DNA sample. A DNA molecule’s speed of mi-
gration, called its mobility, is a linear function of the logarithm of the length of
the molecule, such that the smaller molecules migrate more quickly than the larger
molecules. Therefore, during a set time period of exposure to the electric current,
the smaller molecules will move farther through the gel than the larger molecules,
while molecules of identical lengths will co-migrate. If enough identical copies of a
DNA molecule are present in a sample, then the co-migrating DNA can be seen as
a band on the gel by using appropriate staining techniques. If a sample of DNA
contains fragments of different sizes then several bands can be seen in the lane,
each band corresponding to fragments of a particular length. For example, Figure
2 is a photograph of a digitized image of an agarose gel containing fourteen lanes.
Counting from the top of the gel, the arrow in the figure is pointing to the 37¢ band
in the 6® lane. (The very first mark in each lane is the well in which the DNA
sample was placed. Counting of bands begins at the top band, below the well.)
The bands containing the largest DNA fragments are at the top of the gel, with
bands containing progressively smaller DNA fragments located progressively nearer
the bottom of the gel.

In general, a few of the gel lanes are used as standards and contain DNA frag-
ments of known lengths. To measure the length of the fragments in a band, the
band position is compared to band positions in the standard lanes. Inaccuracy in
the measured length can result from variability in either the speed of migration of

the fragments or in the measurement and comparison of the band positions.



Figure 2: Photograph of a Digitized Iimage of Agarose Gel Electrophoresis. The

fonrteen lanes in the gel correspend to fourteen DNA samples.
Note that electrophoresis will generally not separate DNA molecules which differ
i base pawr sequence but not in length. Onlv DNA molecules of different lengths

can be separated using agarose gel electrophoresis.

1.2.2  Map Building

A map is a representation of the DN A in terms of the distances between occurrences
of particular “inarkers” along the molecule. In a physical map. the distance is in
terms of the number of base pairs between the markers. The markers are usually de-
fined in terms of the underlving hase sequence of the DNA. For example. restriction
cnzvine cutsites are conunonly used as markers. and the resultant physical mayp is
callnd a restriction map. In contrast. genetic linkage maps are constructed hy

stivhies of heritance patterns using lamily pedigrees: the distance hetween markers
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is in terms of the recombination distance, measured in units based on the fre-
quency with which crossovers occur between the markers during meiosis. In general,
recombination distances only grossly approximate the number of base pairs between
the markers [15].

Genome mapping refers to mapping all of an organism’s DNA. One powerful
approach to physical genome mapping is to create an ordered set of overlapping
random clones. Genomic DNA is partially digested, and the resultant DNA seg-
ments are cloned.? Different clones which originated from the same genome location
are said to overlap. (This definition of overlap implies that the overlapping sections
of clones have the same base pair sequence.® However, the converse is not implied.
If sections of DNA molecules have the same ba.s:e pair sequence, it is not necessarily
true that these sections actually overlap.) The clones are considered random he-
cause it is assumed that the cutsites which are cleaved during the partial digestion
are randomly chosen. The clones can be ordered in terms of the genome locations
from which they originated.

Figure 3 is a schematic of genomic DNA with an ordered set of overlapping

clones beneath it. In the figure, the clones are drawn directly below the genome

locations from which they originated, vertically aligning the overlapping sections

%A clone is defined as “a large number of cells or molecules all identical to some ancestral cell
or molecule” [15]. To clone a DNA molecule, it is first inserted into a vector. The vector is a
DNA molecule which possesses characteristics which allow it to be maintained as part of a host
organism, for example as part of a bacterium or a virus. After the DNA is inserted into the vector,
the “vector + new DNA” is inserted into the host organism. Many identical copies of the original
DNA molecule (the clone of the DNA) are obtained by allowing the host to multiply. The clone
can be separated from the host and vector DNA using standard laboratory procedures. Cloning
is necessary to obtain enough copies of a piece of DNA for laboratory procedures such as gel
electrophoresis.

3This assumes no mutations occured during the cloning process.
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Figure 3: Genomic DNA and a Set of Overlapping Random Clones. Genomic DNA
1s represented by the top horizontal line, with each smaller horizontal line beneath
representing one clone. Cutsites are marked by vertical lines. Overlapping sections
of clones are vertically aligned.

of the clones. The depth of overlap for a section of the genome is the number of
clones which overlap that section. Clearly, the depth can vary in different genome
locations. For example, in Figure 3 there are overlap depths of zero, one, two, and
three. A genome is considered to be x% covered by a given set of clones when z%
of the genome is overlapped by at least one of the clones. For example, in Figure 3
the genome is approximately 90% covered.

The clone order is lost during the digestion/cloning process, but can be recovered
by detection of clone overlaps. The clones are fingerprinted, and overlaps are
inferred when there are significant similarities in the fingerprints. Fingerprinting
refers to a laboratory procedure which can produce characteristic data for each
clone. The measured lengths of the fragments resulting from restriction enzyme
digestion [5, 13, 18], the base pair sequence of the ends of the fragments resulting
from restriction enzyme digestion [2], and probe hybridization patterns® [9, 16] are

examples of different types of fingerprints. When the fingerprint consists of the

*A probe is a short single-stranded piece of DNA. In probe hybridization fingerprinting, the
clone is separated into single strands and mixed with the probe. The probe will bind (hybridize) to
the clone when it is complementary to a subsequence of the clone DNA. The probe hybridization
sites are the markers along the DNA.
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measured lengths of the fragments which result from a complete digest of a clone,
the fingerprints are considered similar when they possess fragments of the same
measured lengths, within experimental error.

Physical genome mapping using overlapping random clones has been carried
out or is in progress for several different organisms including the bacterium E. coli
[13, 23], the yeast S. cerevesiae (18], the nematode C. elegans [5, 24], and man
[4. 3,9, 21]. A major goal of these physical genome mapping projects is to integrate
the physical maps with known genetic linkage maps. This integration will result
in a more accurate representation of the relative locations of genes and the overall
organization of the genome than is currently available in genetic linkage maps alone.
In addition, it will allow ready access to the DNA of a new gene and its flanking
sequences”® if a closely linked gene can be identiﬁ;ad. One method which has been used
to align genetic and physical maps involves comparing the base pair sequences of
the genes in the genetic linkage map® with the recognition sequences in the physical

map [19].

1.3 Statement of the Problem

1.3.1 Single Enzyme Digest Fingerprinting

This thesis addresses the fingerprint methodology used by Olson et al. in map-

ping the genome of S. cerevesiae [18]. The fingerprint consists of the sizes of the

Flanking sequences are important for studies on gene regulation and genome organization.
®Many genes in the linkage maps have been either partially or completely sequenced.
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fragments” resulting from a complete single enzyme digestion of a clone®, as mea-
sured by agarose gel electrophoresis. A postulated overlap between two clones con-
sists of fragment pairings, where fragments that are paired are postulated to
overlap and fragments that are not paired are postulated not to overlap. Because
fragments which actually do overlap must have the same true length, the oniy frag-
ment pairings which should be postulated are those between fragments for which.
within experimental error, the measured lengths are the same. It is possible for
two fragments which do not actually overlap to have the same true length and/or
the same measured length, within experimental error. Therefore, a postulated over-
lap between two clones should only be inferred to be correct if it includes several
fragment pairings. ‘

Each inferred overlap imposes a partial order on the fragments of the clones
involved. For the purposes of this thesis, a partial order will be viewed as a sequence
of sets. The fragments within each set are unordered, but the sets themselves are
ordered. Let { } denote a set and [ ] denote a sequence. As an example, let clone;

contain fragments with measured lengths of 300, 800, 1200, 4300, 6200 and clone,

contain fragments with measured lengths of 303, 650, 1206, 4290. The fragment

“Although the term “fragment” is generally applicable to any DNA molecule resulting from
cleavage of a larger molecule, this thesis will constrain its use specifically to those DNA molecules
resulting from a complete digestion.

8In practice, more than one enzyme may actually be used to digest the clone in order to increase
the likelihood of a cutsite occurrence. However, the fragments resulting from the digestion are not
distinguished with respect to the enzyme used, and so the cutsites of the different enzymes are also
not distinguished. Essentially, the multiple enzymes are treated as a single unit in terms of data
analysis. For ease of notation, subsequent discussions will refer to this type of fingerprinting as
a “single enzyme digest” because the fragments from the multiple enzymes are not distinguished
with respect to the enzyme. The term “multiple enzyme digest” will be reserved for situations
when the fragments resulting from the different enzymes are distinguished with respect to the
enzyme.
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pairings of 300-303, 1200-1206, and 4300-4290 will impose one of the two following

partial orders on the fragments:

1. [{800, 6200}, {300-303, 1200-1206, 4300-4290}, {650}],
2. [{650}, {300-303, 1200-1206, 4300-4290}, {800, 6200}].

These partial orders are based on the fact that all of the fragments from one clone
must be contiguous in the genome — there can be no “gaps” between the fragments
of a clone. The only partial orders which are consistent with this requirement place
the overlapping fragments in the middle set, with the unpaired fragments from one
clone in the first set and the unpaired fragments from the other clone in the last set.

A map (formally defined in Section 2.1.3) is built by repetitively inferring clone
overlaps using the fragment length fingerprints of each clone. This process is illus-
trated in Figure 4.° The measured fragment Ie;lgths for each of the four clones are
shown in Figure 4(a). Inferred overlap,, between clone; and cloney, results in map,
as shown in Figure 4(b). Inferred overlap,, between map; and clone,, results in
map, as shown in Figure 4(c). Inferred overlaps, between map, and clone;, results
in maps of Figure 4(d).

As shown in the figure, a map may contain multiple fragments which overlap
each other. For example, in mapj there are four fragments with measured lengths of
900 which have been inferred to overlap each other, and there are three fragments
of length 8000 which have also been inferred to overlap each other. In addition,

inferred overlaps may extend a map and/or partition sets already in the map into

®For simplicity, the inferred overlaps in the figure are based on very few fragment pairings, with
the fragment pairings consisting of fragments with identical measured lengths. In practice, the
measured fragment lengths would not be identical and more fragment pairings would be required
before an overlap inference was made.
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(a) Restriction Fragment Lengths for Four Clones:

cloney: {300, 600, 900, 1260, 2900, 4200, 8000}
clonez: {700, 900, 1400, 2240, 2900}

clones: {300, 900, 8000}

cloney: {700, 900, 2900, 8000}

{b) Inferred overlap;, between clone; and cloney. Results in map,:
({300}, {900-900, 8000-8000}, {700, 2500}].

[ 900 . 8000 | 700, 2900 |

map1<i300| 900 . 8000 |

(¢) Inferred overlaps, between map; and clone;. Results in mapsz:
({300}, {8000-8000}, {900-900-900}, {700-700, 2900-2900}, {1400, 2240}).

1300] 8000 {1 900 |
ma,p2< L8000 [ 900 1700, 2900 |

900 1700, 2900 1400, 2240 |

(d) Inferred overlaps, between map, and clone;. Results in maps:
[{600, 1260, 4200}, {300-300}, {8000-8000-8000}, {900-900-900-900},
{2900-2900-2900}, {700-700}, {1400, 2240}].

13001 3000 | 900 |
[ 2040 Lapp 192900 700l

£ 800 | 2000 {700 (1400, 2240 |
[600.1260, 4200 _ (300 3000 [ 900 | 2900 }

mnaps

Figure 4: Example of Map Building Based on Inferring Overlaps. Each horizontal
line represents a clone, with fragments separated by vertical lines. Fach fragment’s
measured length is written above the fragment. The ordered sequence of sets is
denoted by the tall vertical lines, and the unordered fragments within each set are
denoted by the short vertical lines. For notational convenience, the unordered frag-
ments within each set are written in ascending order with respect to their measured
lengths. The paired fragments within each set are vertically aligned.
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ordered subsets. For example, overlaps partitions the set in map, which contains
the fragments of lengths 700 and 2900 into two ordered subsets, the first containing
the fragment of length 2900 and the second containing the fragment of length 700.
Also, for any map there are two possible left-right orientations of the map with
respect to the genome, because the partial order present in the map distinguishes
between the “left” and “right” ends of the map. Figure 4 only shows one of the two
possible orientations for each map. For example, the alternate orientation for map,
would be [{1400, 2240}, {700-700, 2900-2900}, {900-900-900}, {8000-8000}, {300}].
Finally, note that there are many other overlap inferences which could have been
made between the clones shown in Figure 4. If other overlaps had been inferred,
then a different map would have resulted.

To place the map-building process in perspective with respect to genome map-
ping projects, the genomic DNA of the yeast S. cerevesiae is approximately 1.5 x 107
base pairs long. In the mapping project conducted by Olson et al., a random clone
library of approximately 5000 clones was used for which the average clone size was
13,700 base pairs. The average number of fragments per clone was 8.4. {18]. Thus,
the library covered the genome to a depth of 4.5. The human genome mapping
project is even more complex, in large part due to the 100-fold increase in the

genome size; the human genome is approximately 3.0 x 10° base pairs long.

1.3.2 The Problem: Probabilistic Assessment of Postulated Overlaps

In order to use fingerprint comparisons to infer overlaps, rules must be established

for quantifying fingerprint similarity and judging its significance. These rules must
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be stringent enough to minimize the possibility of a false positive overlap inference
(incorrectly inferring that an overlap exists when it actually does not). However,
a more stringent rule will, in general, require a bigger overlapping region before
an overlap can be inferred. Many postulated overlaps, although actually correct,
may not contain a large enough overlap region to be inferred as correct by the
more stringent rules. This results in false negative overlap inferences (inferring
that a postulated overlap is wrong when it actually is correct). Both false positive
and false negative errors cause problems in map building. False positives result in
maps that are incorrect, while false negatives result in maps that are incomplete.
In addition, high false negative rates have been shown to substantially slow the
progress of mapping projects [14].

Therefore, it is important that the rules use;i for assessing fingerprint similarity
limit the number of both false positive and false negative inferences. The rules
should also provide an accurate assessment of the risk that a false positive overlap
inference may occur, because this will allow evaluation of the resultant map’s quality
in terms of the amount of error it is likely to contain.

The rules used by Olson et al. are based on statistics involving the size of the
postulated overlap region (in terms of the number of paired fragments) and the
differences in the measured lengths of the paired fragments [18]. These metrics are
not as sensitive as desired, and there is no way to accurately predict the expected
frequency of false positive inferences when using them. In addition, setting the
statistical thresholds for inferring overlaps can be based only on empiric grounds.

This thesis proposes that basing the rules for inferring overlaps on a precise
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probabilistic model of the sources of error in the laboratory methodology should
result in a more sensitive metric than the statistics used by Olson et al. In addition,
the thresholds for overlap inference could be based directly on a known, acceptable
risk of false positives.!® In this way, finer control of the false positive and false
negative rates could be established; by choosing the largest acceptable false positive
rate, the resultant false negative rate would be as small as possible within the limits
of the laboratory methodology.

Accordingly, the problem that this thesis addresses is to derive expressions for
the probability that a postulated overlap is correct, to ensure that the expressions

are computationally feasible, and to verify that the expressions are valid.

1.4 Thesis Content and Organization

This thesis is organized into five chapters. This introduction is Chapter One. Chap-
ter Two contains the problem analysis. The types of overlaps are categorized, proba-
bilistic models are developed for the sources of error in the laboratory methodology,
and the basic probabilistic approach is described.

Chapter Three contains the derivations for the probability expressions for each
type of overlap. Probability expressions are first derived for a simplified model of
the sources of error in the laboratory methodology, and then extended to a general
model. Computationally feasible approximations to the probability expressions are

also developed in this chapter.

10For example, if a false positive rate of two errors per one hundred overlap inferences is ac-
ceptable, then a threshold could be used in which a postulated overlap must have at least a 98%
probability of being correct.
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Chapter Four contains the verification of the probability expressions. Using
simulated data, the accuracy of the approximations is demonstrated, the expected
changes in probabilities paralleling changes in various biologic parameters are docu-
mented, and it is verified that the probabilities do accurately predict the percentage
of postulated overlaps which are actually correct.

Chapter Five is the conclusion. It contains a summary of the work done in
this thesis. In addition, a discussion is given of the expressions’ validity in various
environments, their usefulness for the particular fingerprinting methodology of Olson
et al., and their importance to genome mapping research in general. The conclusion

ends with the future directions in which this work could be pursued.



CHAPTER 2

Problem Analysis

There are three components to the problem of deriving expressions for the probabil-
ity that a postulated overlap is correct given the measured fragment lengths. First,
the relevant types of overlaps must be defined, because it will be necessary to de-
rive probability expressions for each overlap type. Second, because the probability
expressions should be based on the sources of error in the laboratory methodology,
these sources of error must be modelled probabilistically. Third, the basic approach
to be used in deriving the probability expressions must be determined. These three

components are addressed in this chapter.

2.1 Hierarchy of Overlap Types

There are four relevant types of overlaps. They can be categorized into the follow-
ing hierarchy: fragment-fragment overlap, clone-clone overlap, clone-map
overlap, and map-map overlap. These overlap types will be defined in the follow-
ing sections, with examples based on Figure 5. The figure shows overlap relations
which are correct, based on the genomic DNA shown in (a). In the following dis-
cussion, a postulated overlap is considered incorrect when it is inconsistent with
the biological reality shown in Figure 5. The measured lengths of the fragments in

Figure 5 have been abstracted to letters.
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(a) Cutsites Along a Genome:

Genome |___| I | ! [ ]

{(b) Fragment-Fragment Qverlap:

LEIC T . M WA NLD 1 C 1l G JINJ
{ I WEWH LB 1P |

i K 0 18 individual fragments
LR ILO |
(¢) Clone-Clone Overlap:
LM 1A+ D C clone
LELH 1 B | G jclone;
cloneg  LEL J 1 I 1L 1K |
L R1 01 Q@ | P |Njclones

(d) Clone-Map Overlap:

my-8q my-82 msi-83 mi-s4 1q-83
m;-fcyp my-feg, mi-fCaa my-fosg
1 ml'ifcla J ml;fCSb 1 m; - Cu
LM 1A, D | C f
mapsy LF . H I B | G |
LE. J . I Lo K
LR . O . Q . P N|>clone
+ 4
cly-fey, t cly- fcw T cly-feyq

cly-feqp cly-fe

(e) Map-Map Overlap:

mj-Sy my-Sz my-53
ml-fclc ml-fclb ml-f(:ga ml—fc;:,c
1 Hll-tfcm l ml-*fczb 1 m1-*fC3a 1 m1-*f<13b
tE. J 1 LK
mpl< IR, 019 P .Nj
L M 1A D C |
iF,H.BlG|>ma’p2
4 4 4
ma-feyq T my-fege T mo-fca,
mgo-feg, ma-1Cgp
\/
msa-81 ma-59 my-383

Figure 5: The Four Overlap Types. Discussion of the figure is given in the text.
“fc”=fragment column, “s”=set, “m”=map, “cl”=clone.
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Table 1: Fragment Data Available to the Researcher for the Fragment-Fragment
Overlap Type. Fragment data shown in the table correspond to Figure 5(b).

0 Fragment-Fragment Overlap Type Tl

Eighteen Randomly Chosen Fragments
A BCDETFGHTIJKTILMNOTPQ R

2.1.1 Fragment-Fragment Overlap

Assume the genomic DNA shown in Figure 5(a) is completely digested. Out of
the resultant pool of fragments, let Figure 5(b) represent eighteen randomly chosen
fragments. In Figure 5(b), the correct fragment ordering is shown by the vertical
alignment of each fragment under the portion of the genome from which it originated.
However, this ordering information is not available to the researcher because it is
lost during the digestion. Table 1 shows the fragment data as the researcher would
see it, as a list of the measured fragment lengths with no ordering information.!!

For any two of the fragments, there are exactly two possibilities which can be
postulated; either the two fragments do overlap or they do not overlap. For example,
using Table 1 it can be postulated that fragments F and G overlap, that D and K
overlap, or that M and I do not overlap. According to Figure 5(b}, of these three
different proposals only the second is actually correct.

The term f-f overlap will be used as an abbreviation for fragment-fragment

overlap.

1For notational convenience, the fragments in the table are listed in alphabetical order.
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Table 2: Fragment Data Available to the Researcher for the Clone-Clone Overlap
Type. Fragment data shown in the table correspond to Figure 5(c).

” Clone-Clone Overlap Type ﬂ
Four Randomly Chosen Clones
Clone; Clone, Clones Cloney
A CDMIBYPFGH|{ETJI KTUL|NOZPQQR

2.1.2 Clone-Clone Overlap

Assume the genomic DNA shown in Figure 5(a) is partially digested and cloned.
Out of the resultant set of random clones, let Figure 5(c) represent four fingerprinted
clones with the vertical lines delimiting the fragments within the clones. The correct
ordering of both the clones and the fragments within the clones, as shown in Figure
5(c), is not available to the researcher because it is lost during the digestion and
cloning process. Table 2 shows the fragment data as the researcher would see it, as
a list of clones and, for each clone, a list of fragments.!?

A postulated clone-clone overlap consists of three sets: a set of constituent f-
[ overlaps and, for each clone, a set of fragments which do not overlap the other
clone.’® Many different overlaps can be postulated between any two clones. For
example, using the information in Table 2, two different overlaps which could be

postulated between clone; and clones are:
overlap;: {A-K, C-I}, {D, M}, {E, J, L},
overlaps: {A-L, D-K, M-I}, {C}, {E, J}.

Overlap, is a different overlap than overlap; — the two sets of constituent f-f overlaps

are not the same. According to Figure 5(c), overlap; is actually correct.

12For notational convenience, the clones are shown in numerical order and the fragments within
the clones are shown in alphabetical order.

13Any, but not all, of these sets may be empty.
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Let overlap, be a postulated clone-clone overlap. A suboverlap of overlap, is
defined as a clone-clone overlap for which the set of constituent f-f overlaps is a
subset of overlap,’s set of constituent f-f overlaps. For example, if overlaps between
clone; and clones is defined as {A-L, D-K}, {C, M}, {E, I, J}, then overlap; is a
suboverlap of overlap,. According to Figure 5(c), overlaps is incorrect but overlap,
is correct. For the clone-clone overlap type, the null overlap is the overlap for
which the set of constituent f-f overlaps is empty.

The clone-clone overlap type reduces to the fragment-fragment type when each

clone consists of only one fragment.

2.1.3 Clone-Map Overlap

Assume the genomic DNA shown in Figure 5(a) .is partially digested and cloned, and
let Figure 5(c) represent four randomly chosen clones. In addition, assume overlaps
have been inferred between clone;, clone,, and clones, resulting in map; of Figure
5(d). Map; and clone, of Figure 5(d) will be used to illustrate the clone-map overlap
type.

Before discussing clone-map overlaps, a formal definition of a map is needed.
For this thesis, a map is defined as a partial order of fragment columns (fc). A
fragment column is defined as a set of fragments, each of which is inferred to overlap
all of the other fragments in the set. In the schematics of maps which have been given
(see Figures 4 and 5(d)), a fragment column is a set of vertically aligned fragments.
The cardinality of a fragment column is defined as the number of fragments in the

column. For example, in Figure 5(d), map; contains seven fragment columns, each
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of which has a cardinality of either one, two, or three. The partial order of fragment
columns in a map can be represented as a sequence of sets of fragment columns.
The cardinality of a set in a map is defined as the number of fragment columns it
contains (not as the number of fragments it contains). In Figure 5(d), the j* set
of the 7** map is denoted by “m;-s;,” and column k of set j in map ¢ is denoted by
“my-fc;r.” Because a map implies no ordering information of the fragments within
each set, k£ denotes a letter, not a number. Using this notation, map, contains a
sequence of five sets, set m;-s3, which contains columns m;-fcg, and my-fea,, has a
cardinality of two, and column my-fcg, has a cardinality of three. In Figure 5(d)
the unordered fragment columns are delimited by the short vertical lines, and the
ordered sets are delimited by the tall vertical Iifies.

A clone can be viewed as a map which consists of only one set, with all fragment
columns having cardinality one. Figure 5(d) shows clone, from this viewpoint.

The correct ordering of the fragment columns within. each set and of the clone
with respect to the map, and the correct orientation of the map, as shown in Figure
5(d), are not available to the researcher. Only the inferred order of the sets and the
fragments within each column would be known. Table 3 shows the fragment data
and the ordering information as the researcher would see it.1* Note that because the
orientation of the map with respect to the genome is not known to the researcher,
the sets of map, in the table could also have been listed in the alternate orientation,

as [m1—85, M1=844 « 4 oy 1’1’11—81].

For notational convenience, both the fragment columns within each set and the fragments
within each column are listed in alphabetical order.
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Table 3: Fragment Data Available to the Researcher for the Clone-Map Overlap
Type. Fragment data shown in the table correspond to Figure 5(d). “fc”=fragment
column, “cl”=clone, “s”=set, “m”=map.

I Clone-Map Overlap Type 1

Map,

mi-$ -89 mi-S3 m1-84 1m1-85

my-fey, | my-fegp | my-fepe | my-fea, my-fca, | myi-feye | my-fes,

J ' E M IT{D H KIA F L|C B G
Cloney
C14'—Sl
cly-fer, | cly-fegy | cly-feye | clg-ferg | cly-feqe
N O P Q R

A postulated clone-map overlap consists of three sets: a set of constituent
fragment-fragment column (f-fc) overlaps, a set of fragments from the clone
which do not overlap the map, and a set of columns from the map which do not
overlap the clone. All overlaps which can be pestulated between a clone and a map
must be consistent with the partial order already present in the map. For example,
let there be a postulated clone-map overlap for which at least one fragment in the
clone does not overlap the map, and let a column in the i** fragment set of the map
be postulated to overlap the clone. Then, all of the fragment columns in either sets
l...t —1lori+1l...n, where n is the number of sets in the map, must also be

postulated to overlap the clone. Using the data in Table 3, the overlap of

{O—ml-fC3b, Q—mlwfc“, P—ml-fC5a}, {N, R},
{mrfclm my-feyp, my-fega, Hll'fcaa}

can be postulated. However, the overlap of

{0-m-fegy, Q-my-feq }, {N, P, R},

{ml'fcla: my-fegp, my-fegs, my-feg,, ml"fCSa}

cannot be postulated because either m;-fes, or all three of the columns m;-feqp, my-

fc1o and my-feo, must also be postulated to overlap the clone. Otherwise, either the
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contiguity of the fragments within cloney or the partial ordering in map,; would be
violated.

Let overlap, be a postulated clone-map overlap. A suboverlap of overlap, is
defined as an overlap for which the set of constituent f-fc overlaps is a subset of
overlap,’s set of {-fc overlaps. For the clone-map overlap type, the null overlap is
defined as the overlap for which the set of constituent f-fc overlaps is empty.

The clone-map overlap type reduces to the clone-clone type when the map con-

tains only one clone.

2.1.4 Map-Map Overlap

Assume clone,, cloney, clones, and clone, are obtained by random selection of clones
created from partial digestion of the genomic DNA of Figure 5(a). Assume the
overlaps shown in Figure 5(e), between clone; and cloney resulting in map,, and
between clone; and clone; resulting in map,, have been inferred. Figure 5(e) shows
the correct ordering of the maps and the columns within each set of each map, and
the correct orientation of both maps. Table 4 shows the fragment data and ordering
information which is actually available to the researcher.!® Again, no orientation
information for either map would be available; for either of the maps in the table,
the sets could also have been listed in the alternate orientation, [my-s3, my-s2, my-54]

and [my-s3, my-sg, my-81] for map; and map,, respectively.

**For notational convenience, both the fragment columns within each set and the fragments
within each column are listed in alphabetical order.
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Table 4: Fragment Data Available to the Researcher for the Map-Map Overlap
Type. Fragment data correspond to Figure 5(e). “fc”=fragment column, “s”=set,
“m”=map.

| Map-Map Overlap Type |

Map, |
M-Sy T3-S9 Imnq-83
my-fey, | mu-fegy | my-fege | my-feos | my-fegy | my-4fcs, | my-feay | my-fea.
J 1 E K O|L R Q N P

I\{apz

Me-84 IM2-S2 M2-Sz

mofcy, | mo-feg, | mo-fegy | mo-fege | mo-fez,

M A F{C B|D H G

A postulated map-map overlap consists of three sets: a set of fragment column-
fragment column (fc-fc) overlaps and, for each map, a set of fragment columns
which do not overlap the other map. All overlaps postulated between two maps must
be consistent with the partial order already present in each map. For example, the

map-map overlap of

{ml-fCu—mz-fCia, mrfczb“mz-fcza, m;-feg,—ms-fey,, m;-fea—~mo-fegy,
mrfcza'”mz-fcscl}, {ml'me, my-fcys, mrfcab}, {}

can be postulated. However, the overlap of

{m]_—fC;;b—mg-fC]_a, m-feg—my-feg,, my-fege—m,-fey, my-feac~ma-fegy,
ml“fCSa_m2'fc3a}s {mrfcza, mrfCu:, ml”fclc}a {}

cannot be postulated because if mo-fc;, were to overlap m;-fcay in addition to the
other fc-fc overlaps specified, the partial order of one of the maps would have to be
violated. In addition, particular orientations of the two maps relative to each other
are usually imposed when a map-map overlap is inferred. |

The definition for a map-map suboverlap is the same as that for a clone-map
suboverlap except that constituent fc-fc overlaps are of concern, rather than the

f-fc overlaps of the clone-map case. Also, for the map-map overlap type, the null
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overlap is defined as that overlap for which the set of constituent fc-fc overlaps is
null.

The map-map overlap type reduces to the clone-map type when one of the maps

contains only one clone,

Comments on overlap notation Insubsequent sections, clone-clone, clone-map.

and map-map overlaps will be defined by explicitly stating only the set containing
all of the constituent {-f, {-fc, and fc-fc overlaps, respectively. Because the two re-
maining sets of non-overlapping fragments and columns are uniquely determined by

the explicitly stated set, they may be left implicit.

2.2 Sources of Error to Model Probabilistically

There are three main sources of error in evaluating fingerprint similarities based on
the single enzyme digest laboratory methodology: random size measurement er-
ror, correlated size measurement error, and fragment length multiplicity.
Probabilistic models of these sources of error will be needed to derive the probability
expressions. Accordingly, this section discusses the probabilistic models which will

be used.

2.2.1 Random Size Measurement Error

Agarose gels have limited resolution, thus there is error associated with determining
the precise position of a band on a gel. This results in error in the measured

fragment lengths, because measured length is based on the band position. These
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errors are termed random because the error associated with a band is assumed to be
independent of the error associated with any other band. In practice, the resultant
error in the measured length of large fragments tends to be larger than that of smaller
fragments. This occurs because fragment mobility on a gel is a linear function of
the logarithm of the fragment length.!®* Accordingly, this thesis models random
measurement error by assuming it is proportional to the true fragment length.
Define the percent random error as the proportionality constant which de-
termines the range in which the majority of random measurement errors will fall.
Specifically, if there is a k% random error and there is no other type of measurement
error, then the majority of measured lengths of a fragment of true length X should
fall within X + % Subsequent derivations assume that the same percent random
error is applied to all fragments.!” For example, if the random error was 1%, there
was no other form of measurement error, and the true lengths of a clone’s fragments
were 400, 980, 2300, 3600, then the majority of measurements of these fragments

should result in lengths within 400 =+ 4, 980 & 10, 2300 % 23, 3600 + 36.

18The log-linear relationship results in less distance on the gel between large fragments than
between small fragments. For example, fragments with true lengths between 6500 and 6768 may
occupy 1 millimeter on a gel, but fragments with true lengths between 400 and 415 may also occupy
1 millimeter on a gel {8]. (In [8], measurements are in terms of pixels. A conversion of 4.88 pixels
per mm [7] was used to convert the pixels into millimeters.) If the band position of a fragment of
length 6500 is mismeasured by .5 millimeters, then the resultant measured length of the fragment
would be off by 134 base pairs. If a band position of a fragment of length 400 is mismeasured by .5
millimeters, then the resultant measured length of the fragment would be off by only 7 base pairs.
The measured length of the larger fragment (6500) is associated with a greater measurement error
than that of the smaller fragment (400), even the both band positions were mismeasured by the
same amount.

'"In practice, the percent random error associated with small fragments is larger than that
associated with other fragments. However, because the percent random error is a constant in the
subsequent probability expression derivations, use of a different value for smaller fragments will
not invalidate the derivations. Therefore, this assumption can be made without loss of generality,
but with increased notational convenience.
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A smaller percent random error implies increased accuracy in the measured
lengths of the fragments. The percent random error will vary between laborato-
ries.
In this work, the random error is modelled using a probability function g, where
g(Y | X) is the probability that the measured length (ml) is Y given that the true
length (tl) is X,

Pml=Y |tl=X)¥ ¢(v | X).

Further, g is assumed to be a discretized normal distribution with mean X (u,)
and standard deviation proportional to X (o). A discrete function is used because
fragment lengths are integers. A normal distribution is used because a unimodal,
two-parameter distribution is needed (to parameterize both the fragment true length
and the percent random error), and, in addition, the normal distribution possesses
certain mathematical properties which will allow subsequent approximations to be
made (see Sections 3.4.2 and 3.4.3). One recent publication does claim to have
experimentally verified that random measurement error is normally distributed [1].

The normal distribution is discretized by integration between ¥ — .5 and Y + .5.

Therefore,

Y+.5

+.5 -1 2
= (y—X)
Y_SN(y | e = X,05)dy = [ L2270 gy

y=¥Y _.5 2wor

ovix)E [

=

For this thesis, o, is defined such that p, +20, = X + %, where k is the percent

defl rx

random error. In other words, o, = sxio5- For example, if there is a 1% random

error and a fragment’s true length is 5000, then o, is 25. By defining o, in this way,
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95% of all of the random measurement errors will fall within the range defined by
the percent random error.

With this model, the probability of obtaining a measured length of ¥ increases

as Y approaches the true length X.

2.2.2 Correlated Size Measurement Error

An additional source of measurement error is the correlated size measurement er-
ror. Conditions leading to correlated measurement error include unintentional non-
uniformity in electrophoretic conditions, such as varying gel temperature, or in
sample conditions, such as varying DNA or salt concentration. In these situations,
all of the fragment mobilities in a lane may be simultaneously affected, resulting in
atypical band positions. This error is considere:d correlated because the amount of
error associated with one band position in a lane is related to the error associated
with the other band positions in the same lane.

The fragment mobilities may either all increase, in which case all of the bands
in the lane move faster than usual, or they may all decrease, in which case all of the
bands in the lane move slower than usual. In either case, all of the band positions
in the lane will appear “shifted” in the same direction. It is also possible for the
large fragments to move faster and the small fragments slower, in which case the
lane appears “compressed,” or for the large fragments to move slower and the small
fragments faster, in which case the lane appears “stretched.” Figure 6 shows these
four types of correlated errors individually. It is also possible for a lane to appear

both shifted and compressed, or shifted and stretched.
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Figure 6: Examples of Correlated Measurement Error. Assume that the same DNA
sample was used for each of the five lanes. All of the bands in lane; have moved
at the typical speed, all of the bands in lane; have moved slower (shifting the lane
up), all of the bands in lane; have moved faster (shifting the lane down), in lane,
the small bands have moved slower and the large bands faster (compressing the
lane), and in lanes the small bands have moved faster and the large bands slower

(stretching the lane).
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In practice, each lane in a gel contains DNA from one clone. Therefore, the
correlated error in a gel lane will affect the measured lengths of the fragments in
only one clone, but it will affect all of the measured fragment lengths in that clone.

Olson et al. have modelled the correlated error with a two-parameter model, in
which ¥; = a(X;)? for 1 < j < r, where r is the number of fragments in a clone,
X is the true length of fragment j in that clone, and Y; is its measured length. The
parameter o models the shifting component, while # models the stretch/compression
component {18]. All of the fragments from one clone are assumed to be associated
with the same a and £, but « and 3 for different clones can be different.

In this work, a method was not found for applying the two-parameter model to
the probability expressions in a manner which would allow certain mathematical
approximations necessary to achieve computaf;ional feasibility (see Section 3.4.3).
Therefore, a simplification of the two-parameter model to a one-parameter model for
which ¥; = aXj for 1 £ j < r was used. Recall that the mobility of a fragment is a
linear function of its length. Because log(aY") = log a+logY’, this simplified version
does model the additive constant for the band position of a fragment, which is the
shifting component of the correlated error, but it does not model the multiplicative
constant, which is the stretch and compression component of the correlated error.
Therefore, this one-parameter model assumes that a lane may be shifted up or down,
but that it will not be stretched or compressed. In this model all of the fragments
from one clone are assumed to be associated with the same value of «, but different
clones may have different a values.

To verify that this one-parameter model is reasonable, it has been compared
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to the two-parameter model using real data consisting of 81 overlapping clones
comprising a map of five columns, where each column had a depth of 81. (The
clones overlapped exactly. For each clone, every fragment overlapped a fragment
from each of the remaining 80 clones.) The comparisions were done as follows. For
each column, the true length of the fragments within the column was estimated by
the mean of the 81 measured lengths. Then, for each of the 81 clones, the effect
of the correlated error on the five measured lengths was minimized using the two-
parameter model by determining the a and 8 values that would optimize the least
squares fit between the measured lengths in the clone and the paired estimated true
lengths.’® The clone’s measured length data were then adjusted using these o and S.
For each of the 81 clones, the effect of the correlated error was also minimized using
the one-parameter model by determining the o which would optimize the probability
of obtaining the clone’s measured length data given the pairing between the clone’s
measured lengths and the estimated true fragment 1engths (Section 3.2 describes
this probé,bility, which is called Py, and Section 3.4.3 describes the methoa of
determining the o which optimizes Py..). The clone’s measured length data were
then adjusted using this c.

The models were assessed in two ways. First, for each of the two models the vari-
ability in the adjusted measured lengths for each of the five columns was determined.
The models were compared on the basis of the reduction in this variability. Table
5 shows the results. In the table, the mean of the unadjusted measured lengths for

each of the five columns is shown, and for each of the models the variability in the

18This was the methodology described in [18].
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Table 5: Comparison of the Variability Reduction from the One-Parameter Model
to that from the Two Parameter Model for the Correlated Measurement Error.
“sd”=standard deviation, “fc”=fragment column.

Variability in the Adjusted Measured Lengths
for the One-Parameter and the Two-Parameter
Correlated Error Models
fC]_ ng fC3 fC4 sz
Mean Measured Length || 2912.6 | 2267.5 | 1762.4 | 670.0 | 297.3
Sd of Unadjusted Data || 21.8 22.4 4.1 6.0 4.8
S5d of Adjusted Data
Using 2-Param Model 14.2 11.8 8.2 3.3 2.5
S5d of Adjusted Data
Using 1-Param Model 14.4 15.7 8.8 4.6 3.4

Table 6: Comparison of the Reduction in Measured Length Differences from the One-
Parameter Model to that from the Two Parameter Model for the Correlated Mea-
surement Error. “ml diff” =average difference in measured lengths, “fc”=fragment

column.

Average Difference in Measured Lengths Between
the True Length and the Adjusted Length for the
One-Parameter and the Two-Parameter
Correlated Error Models

fCl fC2 fC3 fC4 fC5
Mean Measured Length 2912.6 | 2267.5 | 1762.4 | 670.0 | 297.3
M1 Diff of Unadjusted Data | 16.7 16.3 11.2 4.5 3.9
Ml Diff of Adjusted Data
Using 2-Param Model 10.3 8.0 6.8 2.7 2.0
MI Diff of Adjusted Data
Using 1-Param Model 11.5 10.7 7.3 3.6 2.7

columns’ adjusted measured lengths is shown. For comparison, the variability in

the unadjusted (original} measured lengths for each column is also shown.

Second, for each fragment in each column the difference between the adjusted

measured length and the estimated true length was calculated, and for each column

the mean of these differences was determined. The models were compared on the

basis of the magnitude of the reduction in these means. Table 6 shows the results.
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Table 5 demonstrates that, for each of the columns, the one-parameter model
substantially reduced the variability in the adjusted measured lengths, relative to
the unadjusted measured lengths. Table 6 demonstrates that, for each column, the
one-parameter model also substantially reduced the mean difference between the
adjusted measured lengths and the true length, relative to the mean difference for
the unadjusted measured lengths. As expected, both tables show that the two-
parameter model can further reduce both the variability and the mean difference in
the measured lengths, fairly substantially in particular instances (fc; in Table 5 and
fcz in Table 6). However, the reduction by the one-parameter model is substantial
enough to indicate that it is a reasonable method with which to model correlated
error, in view of the mathematical difficulties “.rhich have precluded the use of the
two-parameter model.

The one parameter model will be used as follows. Let r be the number of
fragments in a clone, and X; and ¥; be the true and measured length, respectively,
of fragment j in the clone. Using the one parameter model, the correlated error
associated with a lane can be corrected by multiplying each measured length from
the clone by the same shifting coefficient ¢, so that X; = ¢ x Yifor 1 <35 <r.
Shifting a clone’s measured fragment lengths will be defined as multiplication of
every fragment length of the clone by the same value of the shifting coefficient, c.
Although all fragments from one clone are associated with the same value of ¢, the
value of ¢ may be different for different clones. If ¢ = 1, then no correlated error
occurred. If ¢ < 1, then the clone’s fragments had moved slowly relative to other

lanes resulting in measured lengths that were larger than the true length. If ¢ > I,
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then the clone’s fragments had moved quickly relative to other lanes resalting in
measured lengths that were smaller than the true length.

Define the percent correlated error as the proportionality constant which
determines the range in which the majority of the values for the shifting coefficient
c will fall. Specifically, if there is a £% correlated error, then the majority of the
values for ¢ should fall within 1 £ 1—’53 This thesis assumes that the same percent
correlated error applies to all of the lanes in all of the gels used for analysis. In
other words, different lanes may have different values for the shifting coefficient, ¢,
but the range in which the majority of values for ¢ are expected to fall is constant.!®
For example, let a clone have fragments of true length 500, 1200, 3400, 7200, and
let the percent correlated error be 2.5%, impl;_(ing that ¢ should fall in the range
1 £ .025. Let the clone be fingerprinted twice, running in lane; and lane,, and let
the measured lengths for lane; be 505, 1212, 3434, 7272, and for lane, be 490, 1176,
3332, 7056. Assume there is no random measurement error. If ¢ is .99 for lane; and
1.0204 for lane, then the measured lengths from both lanes would be shifted back
to the true lengths.

A smaller percent correlated error implies increased accuracy in the measured
fragment lengths. The percent correlated error will vary between laboratories.

In this work, the correlated error is modelled using a probability density k, where

1%The percent correlated error is a constant with respect to the subsequent probability expres-
sion derivations. Therefore, using a different value for particular gels or lanes will not invalidate
subsequent derivations. Therefore, this assumption can be made without loss of generality, but
with increased notational convenience.
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the probability that the value of the shifting coefficient is between C; and C, s,

C2
P(Ci<c< ()% / " h(e)de.
e=(y

Further, % is assumed to be a normal distribution with mean 1 (x.) and standard
deviation (o),

~1 ¢ 12
RCYE N(C | pe =1,00) = e

A normal distribution is used because a unimodal probability density is needed,
and the normal distribution has certain mathematical properties which will allow
subsequent approximations to be made (see Section 3.4.3). Defining the mean of A
to be 1.0 is based on the assumption that it is most likely for the fragments in a gel
lane to migrate at the typical speed.

For this thesis, o. is defined such that 1 + 20, = 1 + Ig'd for a k% correlated
error. In other words, o, def 5;-’%03 By defining o, in this way, 95% of all values of ¢
will fall within the range defined by the percent correlated error.

In this model different lanes may be associated with different values of the shifting
coefficient, ¢. It will be assumed that the value of ¢ for a lane is independent of
the value of ¢ for any other lane. In other words, this model will not account for
correlated error which affects the gel as a whole,?® but only for correlated error

which affects lanes in a gel individually. Recent work on spatial normalization of

digitized gel images [8] will greatly diminish the correlated error which affects the

*0Correlated error which affects the gel as a whole includes the smile and frown effects often
seen in gels,
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gel as a whole. Therefore, it is reasonable to exclude this source of error from the

model.

2.2.3 Fragment Length Multiplicity

Iragments which do not actually overlap may nevertheless have the same true length.
Because agarose gel electrophoresis can only differentiate between fragments of dif-
ferent lengths, this fingerprinting methodology will not be capable of distinguish-
- ing between overlapping fragments (which, by definition, must have the same true
length) and non-overlapping fragments which simply happen to have the same true
length. Therefore, even if there were no measurement error, inferences that two
fragments with the same true length overlap may still be erroneous. This type of
error is termed the error due to fragment 1engthh multiplicity.

The probability of erroneously inferring that fragments with the same true length
overlap will depend on both the fragment length and on the frequency with which
that fragment length occurs. If cutsites occur frequently along the genome, then
there will be many small fragments and few large fragments. Thus, the probability of
an erroneous overlap inference will be higher for two small fragments of the same true
length than for two large fragments of the same true length. Conversely, if cutsites
occur infrequently along the genome, then there will be many large fragments and
few small fragments. Thus, the probability of an erroneous overlap inference will be
higher for two large fragments of the same true length than for two small fragments
of the same true length.

In this work, error due to multiplicity of fragment lengths is modelled using
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a probability function f, where f(X) is the probability that the true length of a

fragment is X,

P(il=X) ¥ f(X).

Further, f is assumed to be a geometric distribution with p the probability of a

cutsite occurrence,

FIX) € p(1 — p)¥-1.,

A geometric distribution is used because the probability that a fragment has a
true length X is the probability that X —1 sequential positions along the genome are
not cutsites, and that the X** position is a cutsitfe. Recall that cutsites are contained
within recognition sequences. This use of a geometric distribution does assume that
the recognition sequences containing the cutsites which define the two ends of a
fragment do not overlap. Therefore, this reasoning is not valid for fragment lengths
less than twice the sitesize. In practice, measured fragment lengths are greater than
four hundred base pairs [18] while sitesizes are between four and six base pairs long.
Thus, this boundary condition is not of practical concern. Additionally, the use of
a geometric distribution assumes that the cutsites are randomly distributed along
the genome.

To calculate p, the base content of the genome and the recognition sequence
of the enzyme are needed. Let v4, vr, vg, vc be the frequency with which the
bases occur in the genome, and let #4, #7, #¢, #c be the number of times the

bases occur in the recognition sequence. Assuming that the bases are randomly
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distributed along the genome and that there is no strand bias, p = v¥ 4,27 %< viEe
[22].2! For example, if the genome has an A-T content of 60%, a G-C content of
40%,%? and the recognition sequence of the enzyme is AATGC, then p = .32.31.21.21.

In this model, the probability of obtaining a fragment of a particular true length

X, monotonically decreases as X increases.

2.3 Basic Probabilistic Approach

Using the previously defined probability models for the sources of error in the lab-
oratory methodology, probability expressions can be derived for each of the four
overlap types described in Section 2.1.

The probability of interest is the conditional probability P(Overiap | Data),
which is the probability that a postulated overla:p is correct given that the measured
fragment length data have been obtained. Recall that a postulated overlap consists
of a set of constituent £f, f-fc, or fc-fc overlaps. Therefore, P(Overlap | Data) is
the joint probability that the postulated constituent {-f (f-fc, or fc-fc) overlaps are
correct given the measured length data. Unfortunately, the probabilities for each
individual f-f (f-fc, fc-fc) overlap are not independent. For example, if a postulated
overlap consists of two constituent {-f overlaps, {-f; and f-f;, then the probability

that f-f; is correct should be much higher if it is known that f-f; is correct than if it

2'This definition can be extended to the case of multiple enzymes which are treated as a
single unit, as discussed in Section 1.3.1. Let n be the number of enzymes used, and p; =
yf""y# T"yg ""vgc" where #4i, #71.i, #6.i, #c,i are defined as the number of times the bases
occur in the recognition sequence of enzyme i. Then, p= ¥ 1| pi.

22The frequency of A equals the frequency of T, and the frequency of G equals the frequency
of C because of the base pairing complementation restrictions. Therefore, vy = vy = .3, and

vg =ve = .2.



38
is not known that {-f; is correct. Because of this dependence, the joint probability
P(Overlap | Data) cannot be expressed as a product of the probabilities for the
simpler £-f (f-fc, or fe-fc) cases. As such, it has proven very difficult to develop
expressions directly for P(Overlqp | Data).

However, this is not the situation for the “reverse” conditional probability P(Data |
Overlap), which is the probability of obtaining the measured fragment length data
given that the postulated overlap is correct. It can be shown that for any con-
stituent postulated f-f (f-fc, fc-fc) overlap, the probability of obtaining the measured
length data given that the fragments do overlap is independent of the probabili-
ties for the remaining constituent f-f (f-fc, fc-fc) overlaps (see Section 3.1). Thus,
P(Data | Overlap) can be expressed as a produf:t of probabilities for the simpler f-f
(f-fc, fe-fc) cases. As such, it proven fairly straightforward to derive expressions for
P(Data | Overlap).

In addition, it has been possible to derive expressions for the probability P(Querlap),
which is the prior probability that a postulated overlap is correct with no knowledge
of any measured length data.

To obtain the conditional probability of interest, P(Qverlap | Data), from the
probability expressions for P(Data | Overlap) and P(Overlap), Bayes’ formula [6]
can be used. Let n be the number of overlaps that can be postulated and overlap,

be the particular overlap of concern. Using Bayes’ formula,

P(data | overlap,) P(overlap,)
imy P(data | overlap;) P(overlap;)

1=

P(overlap, | data) =
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Theoretically, the denominator sum includes every possible overlap between the
two clones (or the clone and the map, or the two maps) which does not violate any
partial order restrictions. This includes overlaps for which paired fragments have
very different measured lengths and, for any postulated overlap, every suboverlap
down to, and including, the null overlap. However, i+ nractice all of these overlaps
do not have to be included in the sum. Those overlaps for which the probability
P(Data | Overlap) x P(Overlap) is very small can be excluded without significantly
affecting the resultant probability P(Overlap | Data). Specifically, overlaps which
include any constituent f-f, f-fc, or fe-fc overlaps in which fragments are paired which
do not have the same measured lengths, within experimental error, can be excluded.

The definition of “the same measured length, within experimental error,” de-
pends on both the percent random and perce.nt correlated errors. Let Y; be the
measured length of fragment j, and &, and k. be the percent random and correlated
errors, respectively. For the implementations done in this work, ¥; and ¥, were con-
sidered the “same” if |¥; — Y3| < s ke xYi+ k. x Yo+ kb x Yy + k, x ¥3). The
term postulatable overlap will refer to overlaps for which (a) there are no vio-
lations on pre-existing partial orderings, and (b) each constituent f-f, f-fc, or fo-fc
overlap contains only fragments of the “same” measured lengths, as defined above.

For notational convenience, subsequent discussions will refer to the probability
P(Overlap | Data) as P,4, the probability P(Data | Overlap) as Py,, and the
probability P(Overlap) as P,. However, when expressions are based on particular

overlaps and particular measured length data, they will be written as P(“Overlap
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A” | Data for “Fragments B”)®, P(Data for “Fragments B” | “Overlap A”)*, and
P(“Overlap A”)%.

To reiterate, the probability expression for P,y is based on postulated overlaps.
The approach is to enumerate every postulatable overlap between the two clones
(or the clone and the map, or the two maps), and for each overlap to determine
the probability £y, and the probability F,. Using Bayes’ formula, the probability
P4 for any of the postulatable overlaps can then be calculated. All subsequent
discussions of reverse conditional and prior probabilities of overlaps are related solely

to postulated overlaps unless otherwise stated.

*3This is the probability that the postulated “overlap A” is correct given the measured length
data for “fragments B.”

24This is the probability that measured length data for “fragments B” will be obtained given
that the postulated “overlap A” is correct.

*This is the prior probability that the postulated “overlap A” is correct.
p
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CHAPTER 3

Probability Expression Derivations

In this chapter, the probability expressions are first derived using a simplified model
in which correlated error is assumed not to occur. The expressions derived from
this model are then extended to a more general model, in which correlated error is
assumed to occur. Two different formats for the probability expressions are then
discussed — the absolute probability that a postulated overlap is correct, and the
relative odds for which of two particular postulated overlaps is correct. Finally, sev-
eral approximations are derived which greatly improve the computational feasibility

of the probability expressions.

3.1 Simplified Model: No Correlated Error

The simplified model probability expressions are derived using only the probability
models for the random measurement error and the error due to the multiplicity of
fragment lengths, because this model assumes that correlated error does not occur.
The expressions are first derived for the simplest type of overlap, the fragment-
fragment overlap, and then are progressively extended to the clone-clone, clone-map,
and map-map overlaps. Derivations will be given for the probabilities Py and P,
Subsequent application of Bayes’ formula to calculate P,y will be left implicit.
The probability Py, will be derived for each overlap type using the functions g
and f. The probability P, will be derived for each overlap type using four component

probabilities: alignment probability F,, grouping probability P,, ordering



probability P, and orientation probability P,, such that

P,=F, xP,x P xP,.

Define a fragment position? on a DNA molecule as the interval between two
consecutive cutsites, and a genome position as a fragment position on a genome.?”
The genome position for a clone (or a map) is defined by the genome position
of its leftmost fragment {or fragment column). The alignment probability, 7,, is
the probability that the clones (or maps) originated from genome positions which
are consistent with the postulated overlap. The grouping probability, P,, is the
probability that particular subsets of fragments (or fragment columns) within the
clone {or map) are located in contiguous positions. The subsets of fragments (or
columns) which should occupy contiguous positions are determined by the partial
order that the postulated overlap would impose if it were inferred to be correct.
The ordering probability, P, is the probability that the sequential arrangement of
the fragments (or fragment columns) within these subsets are consistent with the
postulated overlap. The orientation probability, P,, is the probability of occurrence
for the particular left-right orientation of the clone(s) and/or map(s) with respect

to the genome.

#%In subsequent sections when the meaning is clear, this may be referred to as the position.

7If ¢ is the number of genome positions and the genome is linear, then = n+ 1. If the genome
is circular, then ¢t = n.
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Fragment-Fragment Overlap

For the fragment-fragment overlap type, the probabilities are derived for two frag-

ments randomly chosen out of a pool of fragments resulting from complete digestion

of the genomic DNA. The concepts developed for this overlap type will be used in

the derivations for the subsequent overlap types.

Probability Py, The probability that a fragment has a measured length ¥ is

Pml=Y) = TS, P(ml=Y |tl=X)P(l = X)
= Lx=9(Y [ X)f(X). (2)

The product of g and f in Expression 2 yields the joint probability P(ml =Y, =

X). Summing this joint probability over all possible true lengths X gives the prob-

ability that the measured length is Y.

Using Expression 2 for P(ml =Y’), the probability Py, that two fragments have

measured lengths ¥ and Z if the fragments do not overlap®® is the product of the

probabilities P(ml; = Y) and P(ml, = Z), because both the random measure-

ment errors are independent and the true lengths of non-overlapping fragments are

independent. Therefore,

Pdlo

= P(mhi=Y,mly = Z| frag, does not overlap frags)

= P(mly =Y)x Plml, = Z)

= TR Pmli =Y |th = X)P(th = X) x =%, Plmly = Z | tl, = X)P(tl, = X)
= ZRa9(Y [ X)f(X) x ZRer 9(Z | X)F(X). (3)

The probability Py, that two fragments have measured lengths ¥ and Z if the

?8This is the probability Py, for the fragment-fragment null overlap.
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fragments do overlap is essentially the probability that two separate measurements
of one DNA fragment yield Y and Z, because overlapping fragments represent the
same piece of original genomic DNA. Therefore,

FPyo = P(mli=Y,mly= 2| frag, does overlap frags)

S¥ P(mly =Y |t = X)P(mly = Z | t] = X)P(tl = X)
Yx=19(Y | X)g(Z | X)F(X). (4)

I}

Il

There is one f factor in Expression 4 because there is essentially one DNA fragment,

and there are two ¢ factors because there are two measurements.?®

Probability F, Let ¢ be the number of genome positions. The prior probability

P, that two fragments do or do not overlap is % orl— -1—, respectively.

By definition, fragments which overlap ha,v;a originated from the same position
on the genome. Given the genome position of one fragment, the probability P, that
the other fragment originated from the same genome position is 2. There are no
grouping, ordering, or orientation considerations, thus P,, P, and P, are each 1.0
for this case.

By definition, fragments which do not overlap have originated from different
positions on the genome. Given the genome position of one fragment, the probability

F, that the other fragment originated from a different genome position is 1 — 2.

Again, P, P, and P, are each 1.0 for this case.

**The probability that the first measured length is Y is conditionally independent of the prob-
ability that the second measured length is Z, given the true length X. This conditional indepen-
dence occurs because this model assumes there is » - correlated error. Because of the conditional
independence, the product of g, g, and f yields the Joint probability P(ml, = Y, mly = Z,tl = X).



3.1.2 Clone-Clone Overlap

Let clone; have r fragments, clone, have s fragments, and let there be m constituent

f-f overlaps in the postulated overlap between clone;, and clone,.

Probability Py, Without loss of generality, number the fragments so that 1...m

are the overlapping fragments from each clone. Let Y¥; and Z; be the measured
lengths of fragment j from clone; and clone,, respectively. Then, the probability
Pyjo for a clone-clone overlap is

P x Py x P,

where

[T %=1 9% | X)g(Z; | X)F(X) if k=1,
B = [Tiem1 %=1 9(Y; | X)f(X) if k=2. (5)

Miemi1 2%=19(Z; | X)F(X) if k=3.

Py is the probability Py, for the m constituent f-f ovérla,ps. Expression 4 is the
probability Py, for one f-f overlap. Because this model assumes there is no correlated
error, the probability for the m f-f overlaps is the product of the m individual f-f
overlap probabilities.

P, is the probability Py, for the r — m fragments of clone; which do not overlap
clone;, and Pj; is the probability Py, for the s —m fragments of clone, which do not
overlap clone;. Expression 3 is the probability Fajo for two fragments which do not
overlap. Because this model assumes there is no correlated error, this expression
can be extended to the r — m and s — m fragments, as the product of P(ml; =Y;)

and P(ml; = Z;)form +1 < j <rand m+1<j < s, respectively.
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The null overlap for the clone-clone case occurs when m = 0. Therefore, Py, for

the null overlap is P, x Ps.

Probability P, Let t be the number of genome positions. The clone-clone prior

probability P, is
(0 ft<r+4+s—m.
-1 fm=0andt>r+s—m.

Fo = 1 2 Hf0<m<min(r,s)and t > r + s —m.

if m=min(r,s)and t > r+ s —m.

There is only one possible left-right orienta}tion of a clone with respect to the
genome, therefore P, is 1.0 for each of the cases.

Form = 0 and t > r4+s—m, it is postulated that the two clones have no fragments
in common. Given the genome positions of the fragments of clone;, the leftmost
fragment of clone; cannot have originated from any of the r positions of clone; or
any of the s — 1 positions preceding clone;. The probability of this occurring, P,, is
1 — 2=l Any fragment grouping and ordering is consistent with the null overlap,
thus both £, and P, are 1.0.

For 0 < m < min(r,s) and t > r + s —m, it is postulated that each clone
contains some fragmments which do not overlap the other clone, and some which do.
Given the genome positions of the fragments of clone;, the leftmost fragment of
clone; must have originated from either position » — m + 1 of clone; or from the

(s — m)*™ position preceding clone;. The probability of this occurring, P,, is g,
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For the positions of the clones’ fragments to be consistent with the partial order
which would be imposed if the overlap were correct, the fragments involved in the
m f-f overlaps must be located in the first m positions of one clone and the last m
positions of the other. There are (r%) (f:‘;) different ways in which fragments could
fill these positions, thus P, is W If the overlap is correct, then the fragments
which are paired must have originated from the same genome positions. Therefore,
the order of the m fragments in clone; must be the same as the order of the m
paired fragments in clone;. There are m! different ways in which the m fragments
from clone, could be ordered, thus P, is %

For m = min(r,s) and £ > r 4+ s — m, the smaller clone is a subclone of the
larger. Given the genome positions of the fragm?nts of the larger clone, the leftmost
fragment of the smaller clone must have originated from one of the first |r — 5| + 1
positions of the larger. Therefore, P, is tlgb—l Let the leftmost fragment of the
smaller clone originate from position j of the larger. To be consistent with the
partial order that would be imposed if the overlap were correct, the m fragments
of the larger clone which are involved in the f-f overlaps must occupy positions
7...(j + m —1). There are (mﬂr")) different ways in which fragments could fill
these positions. The postulated overlap imposes no constraints on the grouping of
the subclone’s fragments within positions j ... (j+m—1). Therefore, P, is '(mTzl(;?]‘)‘
Only one of the m! possible orderings of the smaller clone’s fragments is the same
as the ordering of the m paired fragments of the larger clone, and so P, is ;.

Appendix A.1 proves that these expressions for P, do sum to 1.0 over the prob-

ability space.



3.1.3 Clone-Map Overlap

The probabilities Py, and P, for an overlap between a clone and a map will be
derived by assuming that the map is correct. Specifically, Py, will be P(data |
overlap, map is correct), P, will be P(overlap | map is correct), and P,y will be
P(overlap | data, map is correct)®®. A method for determining the probability that
a map is correct has not been found, and so comparisons of P4 for different clone-
map overlaps can only be done if both overlaps involve the same map. For ease of
notation, the “map is correct” term will be implicit in subsequent discussions. Let r
be the number of fragments in the clone, s be the number of fragments in the map,

and m be the number of constituent f-fc overlaps.

Probability Py, Just as the “data” for the clone-clone overlap includes the mea-

sured lengths of all the fragments of both clones, the “data” for the clone-map
overlap includes the measured lengths of all the fragments in both the clone and the
map.

Let n; be the number of fragments in column j of the map, Y;; be the measured
length of fragment ¢ in column j, and Z; be the measured length of fragment j of
the clone. Without loss of generality, number the fragments and fragment columns
so that 1...m overlap.

The probability Py, that the fragments in column j have measured lengths

3CIf env is the background (unchanging) environment, then

P(B | Ay, env) x P(4, | env)

P(Ap | B,env) = E:’ P(B] A, env) x P(4; | env)’
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Y1;... Yy, ; is essentially the probability that n; independent measurements of one
piece of DNA yield Y7 ;...Y;, ;. Extending Expression 4, which is the probability
Fyjo for two fragments postulated to overlap, the probability Py, for obtaining the
measured lengths of the n; fragments in column j of the map is
Pyo = Plmbhi=Yj....mly, =Y, ;| fragy ;... frag,, ; overlap)
= ERo ST 9(Yig | X). (6)
Similarly, the probability Py, of obtaining the measured length data in an f-fc
overlap betwen fragment j of the clone and column j of the map is
Pao = Plmlaone; = Z;,mly =Yy ,... ymln; = Yo, i | frageone,; overlaps column;)
= TRa f(X)9(Z; | X) 112y 9(Yis | X)), (7)
where mlcione,; is the measured length of fragment j of the cIdne, frageione,;-
Using Expressions 6 and 7, the probability Py, for the clone-map overlap is

PIXPQXP3,

where , ]
jm1 Lxm F(X)9(Z;5 | X)TT2, 9(Yij | X) i k=1,

B = § Miama £¥=19(Z; | X)F(X) if k=2, (8)

F=ma1 2oxen J(X) T2, 9(Ye | X) if k=3.

Py is the probability Py, for the m constituent f-fc overlaps. Because this model
assumes there is no correlated error, this probability is the product of the m indi-
vidual f-fc overlap probabilities, as defined in Expression 7.

P, is the probability Py, for the r — m fragments of the clone which do not

overlap the map. It is the same as P, and P of Expression 5.
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P3 is the probability Fy, for the s — m fragment columns of the map which do

not overlap the clone. Because this model assumes there is no correlated error, P;

is the product of the s — m individual fragment column probabilities, as defined in
Expression 6.

The clone-map null overlap occurs when m = 0, and so Py, for the null overlap

is Pg X P3.

Probability B, Let t be the number of genome positions, a and b be two sets of

fragment columns in the map, and |a| and [b] be the number of fragment columns
in sets a and b, respectively. Define the clone end as either the first or the last
fragment in the clone. Note that if a set in the map overlaps a clone end, then some
of the columns in the set may be involved in t:—fc overlaps but some may not. If
a (or b) is postulated to overlap a clone end, then let a; (or &) be the subsets of
the columns in a (or b} which are involved in f-fc overlaps. Figure 7 lustrates this
terminology. In the figure, an overlap between a clone and a map is shown in which
set a of the map overlaps the left clone end and set & of the map overlaps the right

clone end.
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Figure 7: Clone Ends Overlapping Sets in a Map. A postulated overlap between a
clone and a map is shown, in which the left clone end overlaps set a of the map,
and the right clone end overlaps set b of the map. The subsets of sets a and b
which contain the columns involved in the f-fc overlaps are marked a; and &,. The
paired fragments and columns involved in {-fc overlaps are vertically aligned. For
notational convenience, except when otherwise required by the vertical alignment
of paired fragments and columns, the unordered fragments and columns (which are
delimited by short vertical lines) are written in order of ascending length.

The clone-map prior probability P, is

(0 ft<r+s—m.
1 — cketd fm=0andt>r+s—m.

if 0 < m < min(r, s), set

1 a overlaps clone end, and t > r + 5 — m.

VAT
t(m) (|a.1] m!
r—s41 : — > .
p = @ fm=sand t>r+s—m.

if m = », clone ends

T 1 Tl overlap sets @ and b, and £t > r 4+ 5 — m.

t] |ai) A ES!

if m = r, clone
al-r41

fal
t ]u;f r!

overlaps only set a, and t > r + 5 — m.

Although for a clone there is only one possible orientation with respect to the
genome, there are two possible orientations for a map (when the map contains

more than one set). Therefore, for each of the five cases described below, P, is
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1x % = %— In addition, the probability P, for each case is the sum of P, for each
of the two map orientations. P,, P,, and P, are derived below only for the map
orientation shown in Figure 8. However, the expressions derived below can also
be derived for the alternate map orientation. Therefore, for each of the five cases,
P, =2x P, x Py x P, x} =P, x P, x P, where P,, P,, and P, are as derived
below.

Figure 8(a) shows, for one particular map orientation, a clone-map overlap when
m =0 and ¢ 2 r +s — m. In this case, it is postulated that the clone and the map
have no fragments in common. For similar reasoning as used in the clone-clone case,
P, is 1 — ¥2=1, Both P, and P; are 1.0.

Figure 8(b) shows, for one particular map orientation, a clone-map overlap when
0 < m < min(r,s)and ¢t > r + s — m. Here it is postulated that the clone contains
some fragments which overlap the map and some which do not, and that the map
contains some columns which overlap the clone and some which do not. Let set a
in the map overlap the clone end. (Only one clone end is overlapped by the map.)
Although an overlap containing m constituent f-fc overlaps is consistent with the
leftmost fragment of the clone originating from either position s —m + 1 in the map
or the (r —m)™ position preceding the map, these two overlaps are different because
of the partial order already established in the map.3! Only one of these overlaps

can be consistent with the f-fc pairing in the postulated overlap. Therefore, P, is

- Without loss of generality, let the leftmost fragment of the clone originate from

31Figure 8(b) shows the case where the leftmost fragment of the clone originated from position
s —m+ 1 in the map.
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Figure 8: Examples of Overlaps for Each of the Cases used in Deriving the Clone-
Map Prior Probability F,. The fragments within the map columns are not shown.
The paired clone fragments and map columns involved in f-fc overlaps are vertically
aligned. For notational convenience, except when otherwise required by the vertical
alignment of paired fragments and columns, the unordered fragments and columns
(delimited by short vertical lines) are written in order of ascending length. Only
one of the two possible orientations for the map is shown.
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position s — m + 1 in the map. To maintain consistency with the partial order
which would be imposed by the overlap, the m fragments of the clone which are
postulated to overlap the map must be located in the first n positions of the clone,
and the |a;| fragment columns of the map which are postulated to overlap the clone
end must be located in the last positions of set a. There are no new constraints on
the positions of the other columns in the map. Because the map is assumed to be
correct, the partial ordering which was already present in the map does not need to

be accounted for in P,. Therefore, P, is J=r+- The order of the m fragments

BIE)
in the clone which overlap the map must be the same as the order of the m paired
map columns, thus P, is %

Figure 8(c) shows, for a particular map orientation, a clone-map overlap for
which m = s and £ > r + s — m. The map is contained entirely within the clone.
Given the genome positions of the clone’s fragments, the leftmost column of the map
may have originated from any of the first r — s + 1 positions of the clone, thus £, is
r=24l For similar reasoning as in the clone-clone case when m = man(r,s), P, is

ﬁ, and for similar reasoning as in the clone-map case when 0 < m < min(r,s),
&

B is %

Form =r, the clone is contained entirely within the map. There are two possible
situations. Either the clone overlaps only one set of the map, or it overlaps two or
more sets of the map.

Figure 8(d) shows, for a particular map orientation, a clone-map overlap for
whichm = r,t > r+s~—m, and the clone overlaps two or more of the map’s sets. Let

sets a and b overlap the clone ends, and let a precede 4. Given the genome positions of
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the fragment columns of the map, the leftmost fragment of the clone could have only
originated from the (la| — |a1]| + 1)** position in set a, and so P, is 2. The fragment
columns in @ must be located in the last positions of ¢, and the fragment columns in
by must be located in the first positions of & to maintain consistency with the partial
order which would be imposed by the overlap. There are (|!za,ll) (|£I[) different ways
in which fragment columns could fill these positions. Therefore, P, is FRarar

la:] Ibli)

Because no grouping constraints were placed on the clone, the ordering of the clone’s
fragments, as a whole, can be considered to determine P,. The probability that the
clone’s fragments will be in the same order as the paired columns in the map, P, is
1

Figure 8(e) shows, for a particular map orientation, a clone-map overlap for
which m = r, ¢t > 7 + s — m, and the clone is contained entirely within one set of
the map. Let set a of the map contain the clone. The probability for this case is
essentially the same as the probability for the clone-clone case where m = min(r.s),
in which set a of the map replaces the larger clone of the clone-clone case. Given
the genome positions of the fragment columns in set a, the leftmost fragment of the
clone could have originated at any of the first |aj—m+1 positions in set a. Therefore,
F, is J&l—t_mtl For similar reasoning as in the clone-clone case when m = min(r, s),

F, is (ﬁj (la1] = m.) For similar reasoning as in the previous clone-map m = r
ay|

case, P, is 1.
Appendix A.l. proves that these expressions for P, sum to 1.0 over the proba-

bility space.



3.1.4 Map-Map Overlap

As for the clone-map overlap, the probability expressions for the map-map overlap
are derived assuming that both maps are correct. Let r be the number of columns
in mapi, s be the number of columns in map,, and m be the number of constituent

fc-fc overlaps.

Probability Py, The “data” for a map-map overlap consists of all of the measured

fragment lengths in both maps. Let nj; and n;; be the number of fragments in
column j of map; and map,, respectively, and Y;; and Z;; be the measured lengths
of fragment 7 in column j of map; and map,, respectively. Without loss of generality,
number the fragment columns of the maps so that 1...m overlap.

Using Expression 6 for the probability of obtaining the measured lengths of the
fragments in one column, the probability Py, for the map-map overlap is

P, x P, x P,
where
For DRt SO 925 | X) T2 9(Yig | X)) if k=1,
Pi =9 Miamt T SO 12 9(Zi5 | X) if k=2. (9)

Micmt 2% S(X) T2 9(Ya; | X) if k=3.

P is the probability Py, for the r constituent fc-fc overlaps. It is an extension of
Py in Py, for the clone-map overlap (Expression 8) in which the probability Py, for
each column in mapy is substituted for the probability Py, for each single fragment

in the clone.



(]
~1

P, is the probability £y, for the r — m non-overlapping columns of map,, and Ps
is the probability Py, for the s — m non-overlapping columns of map;. Therefore,
these expressions are the same as for Py in Py, for the clone-map overlap (Expression
8).

The probability Py, for the null overlap, where m = 0, is P, x Ps.

Probability F, Lett be the number of fragment positions in the genome, «; be set

7 of mapy, b; be set j of map,, d; be the total number of sets of map; which overlap
mapsz, and d; be the total number of sets of map; which overlap map;. Without loss
of generality, number the sets in the maps so that a;...aq4, and ;... by, are the sets
involved in fc-fc overlaps. Let k; be the number of sets of map, which overlap set
a;j of mapy, and let ay ;... a;, ; be subsets of a; éuch that each subset contains all of
the columns which overlap one set of maps and the intersection of any two subsets
is null. Let {; be the number of sets of map, which overlap set b; of map,, and let
b1,; ... by, ; be subsets of b; such that each subset contains all of the columns which
overlap one set of map; and the intersection of any two subsets is null. Figure 9
illustrates this terminology. The figure contains a postulated overlap between map;
and map, for which each ¢;, bj, a; ;, and b;; are shown, and the values of d;, d,, k;,
and [; are given.

Define a map end as the leftmost or rightmost column of a map. Note that if
set a; of map, overlaps an end of maps, then Zf;I la; ;| may not equal a; because
there may be columns in @ which do not overlap map;. For example, for set a; of

map; in Figure 9, 7, |a:2| # laz]. Similar comments can be made for a set b; of
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Figure 9: A Postulated Map-Map Overlap. The notation for a;, a;;, b, b ; is as
described in the text. The values of d;, %;, and [;, as defined in the text, are:
d =2, dg =4,k =2,k =3=1104L=213=1,10 = 1. The fragments
within the columns of the maps are not shown. The paired columns involved in fc-fe
overlaps are vertically aligned. For notational convenience, except when otherwise
required by the vertical alignment of paired columns, the unordered columns (which
are delimited by short vertical lines) are written in order of ascending length. The
ordered sets are delimited by tall vertical lines.

mapy which overlaps an end of map;. This situation will need to be accounted for

in the derivations for P,.



The probability P, is®?

i ft<r+s—m.

if m =0 and
] — szl t>r+4+s—m.

if 0 < m < min(r, s)
L andt > r+s— m.

by
fnjil !a1.;|.---,|akj,.f| Hfil Ibz.jiw-vlbz_,,j| H:ilnfixiai,jll

™
X

if m = min(r,s), small
map overlaps > 2 sets of
large map, and

) 1 1 I>r+s—m.
Fo=4> ™ 5] =

t].—.[jil ial._alu-"!lakj 1JI Hfil ’bl.Jlr---alb!J 'JI Hjil H:‘iilahJIE

if m = s, both ends of
mapg overlap set a; of

—st1
dagl-et1 mapy, and > r+ 5 — m.

if m = r, both ends of
map; overlap set b; of

by~rt1
dbglrtl mapy,and t > 7+ 5 — m.

H |?l r!
“

Each map has two possible orientations with respect to the genome, thus there

are four possible combinations of the maps’ orientations. The probability of occur-

rence for a particular combination of orientations of the two maps, P,,is 3 x 1 =1L

Jaj laj]
#2For the third and fourth cases, laa il |ax; .| | replaces [ [ay;l,...fae,,j] | in the expression,

where ao ; is defined as the subset of a; which contains the colummns which do not overlap mapa.

1651 o,
Similarly for 8;, (|bo,j|,..iib|j,j[) replaces ([bl,_,[,..iib,j,j|) in the expression.
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