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ABSTRACT OF THE THESIS

Information Theoretic Methods for Biometrics, Clustering, and Stemmatology

by

Po-Hsiang Lai

Doctor of Science in Information Theory

Washington University in St. Louis, 2012

Research Advisor: Professor O’Sullivan

This thesis consists of four parts, three of which study issues related to theories and applications of

biometric systems, and one which focuses on clustering.

We establish an information theoretic framework and the fundamental trade-off between utility of

biometric systems and security of biometric systems. The utility includes person identification and

secret binding, while template protection, privacy, and secrecy leakage are security issues addressed.

A general model of biometric systems is proposed, in which secret binding and the use of passwords

are incorporated. The system model captures major biometric system designs including biometric

cryptosystems, cancelable biometrics, secret binding and secret generating systems, and salt biomet-

ric systems. In addition to attacks at the database, information leakage from communication links

between sensor modules and databases is considered. A general information theoretic rate outer

bound is derived for characterizing and comparing the fundamental capacity, and security risks and

benefits of different system designs.

We establish connections between linear codes to biometric systems, so that one can directly use

a vast literature of coding theories of various noise and source random processes to achieve good

performance in biometric systems.

We develop two biometrics based on laser Doppler vibrometry (LDV) signals and electrocardiogram

(ECG) signals. For both cases, changes in statistics of biometric traits of the same individual is the

major challenge which obstructs many methods from producing satisfactory results. We propose a

ii



robust feature selection method that specifically accounts for changes in statistics. The method yields

the best results both in LDV and ECG biometrics in terms of equal error rates in authentication

scenarios.

Finally, we address a different kind of learning problem from data called clustering. Instead of having

a set of training data with true labels known as in identification problems, we study the problem of

grouping data points without labels given, and its application to computational stemmatology. Since

the problem itself has no “true” answer, the problem is in general ill-posed unless some regularization

or norm is set to define the quality of a partition. We propose the use of minimum description length

(MDL) principle for graphical based clustering. In the MDL framework, each data partitioning is

viewed as a description of the data points, and the description that minimizes the total amount of

bits to describe the data points and the model itself is considered the best model. We show that

in synthesized data the MDL clustering works well and fits natural intuition of how data should be

clustered. Furthermore, we developed a computational stemmatology method based on MDL, which

achieves the best performance level in a large dataset.
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Chapter 1

Introduction

This dissertation consists of two themes. One theme concerns the theories and designs of identifica-

tion systems and security issues around such systems, with a major application focus on biometrics.

Template security and robustness against changes in data statistics are two unique challenges in

biometric identification systems. The other theme is on the problem of automatically partition-

ing objects or data points, and the application is on reconstructing relations among ancient text

documents, known as computational stemmatology. Two key challenges in computational stemma-

tology are missing text documents which are not discovered by historians, and damages in available

documents such as missing or broken pages.

In this introduction, I outline the key concepts and problems involved in each theme, as well as

the contributions in each chapter. On the other hand, there are a number of interesting real life

situations that are in fact closely related to the problems studied in this dissertation. By presenting

a small selection of them here, one may find it more inspiring or motivating to appreciate the results,

even though one has other topics of interest.

1.1 Identification in Real Life and Biometrics

One important goal of biometrics is to recognize humans based on physical and behavioral charac-

teristics. Classical biometrics includes fingerprint, face, voice, and iris. In most cases, the problem
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of interest is either “who is this person?” or “Is this person genuine or an impostor?”. Both cases

are under the category of supervised learning problems.

Supervised learning is a major form of inference and a major research area across many fields from

engineering, statistics, to neuroscience. Identification, recognition, classification, and hypothesis

testing are examples of supervised learning. The abstract problem goes like the following. A su-

pervised learning problem consists of two stages, the training phase and the testing phase. In the

training phase, a learner, a machine or a living organism, is given a set of training data points, i.e.

examples, (xi, yi), where xi denotes the observation of the ith data point, and yi is the true class

label taking values from a discrete set, i.e. the names of different classes, provided by a supervisor

or reliable past experiences. The index i goes from 1 to n where n is the number of training data.

In the testing phase, the learner obtains new testing data points xt associated with an unobserved

label yt where the relation, characterized by the joint distribution p(x, y) is assumed to be the same

as the examples. The task of the learner is to make a prediction ŷt about the unobserved label.

The learner makes an error if ŷt 6= yt. A special case of identification problem is when the labels

take only two values, such as “yes” and “no”, or “accept” and “reject”. This is called verification

in biometrics or binary hypothesis testing in statistics.

There are abundant identification problems in life. In biometrics, the xi may be a fingerprint image,

a face image, a voice recording, or a heartbeat signal, and yi is the identity or name of the person, or

an indicator for whether this person is genuine or an impostor. Also, in the problem of recognizing

words written in a document, the xi here is the image perceived in one’s eyes and yi is the actual

word. In identifying a speaker’s voice, xi is sound waves received by the ears, and yi is the name

of the speaker. In spam email filtering, xi is the content, the timing, the sender, and the receivers

of the email and yi is “spam” and “not spam.” In suggesting products to consumers, xi may be the

shopping behavior, living style and so on, and yi is the product that the person may purchase.

In most machine learning systems or the brain, the xi is processed and transformed into another

domain. The transformed data in this domain is denoted as fi, where the decision is taken place. The

goals are to extract and select relevant and reliable information and to remove redundancy such that

decisions can be made with higher accuracy or efficiency. Then a decision mechanism operates on

fi to predict yi. In fingerprint recognition, the features may be the ending or bifurcation locations
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of ridges. For visual object recognition, there are neurons called simple cells in the early visual

cortex that react to specific simple patterns such as ring patterns with red inside and green outside

at specific locations of the visual field. The information is then forwarded to higher level neurons

which react to highly complex patterns such as faces. Such biologically motivated features can be

used in face recognition systems. In real life identification problem such as choosing a relationship,

the features may be a list of personal characteristics, behaviors, locations and so on. The performance

of an identification system depends on both good feature extraction and selection, and the decision

mechanism based on the features.

1.1.1 Evaluating Quality of Data and Learners

There is a value, or cost, associated with each correct inference and error made by the learner. Some

error leads to much higher loss than others. For example, misrecognizing a puma as a cat may

be disastrous, while misrecognizing a cat as a puma leads to less harm. In biometrics, letting an

impostor get into an important facility usually bears a higher cost relative to rejecting and further

questioning a genuine user. On the other hand, there is also a probability associated with each

event the learner should also consider. Certain facilities are less targeted by attackers than others

and so overly complicated screening procedures in fact are not necessarily justifiable. The goal of

a learner is to maximize the total expected value, or minimize the expected cost. The expectation

is taken over the underlying distribution of events weighted by the associated value and cost, while

this distribution is in general not available. The evaluation of a learner is usually done by testing

the learner on an unseen dataset with the same or similar properties as the training dataset.

In verification or binary hypothesis testing cases, if the learner rejects a data point that it should

accept, it is called a false reject error, false non-match, false positive, or type I error. On the other

hand, if the learner accepts a data point that it should reject, it is called a false accept error, false

match, false negative, or type II error. The trade-off between these two types of error is critical to

system design.

It is critical to understand the fundamental properties of the identification problem, from the data

to the operational requirements and constraints before evaluation of a learner. In many problems,
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the performance of a learner is said to be good in a relative sense, comparing to fundamental

performance limits posed by the problem and the data. However, in problems such as biometrics,

a specified level of performance must be met. Thus the data itself must allow the possibility of a

good learner achieving the desired performance. It is often impossible to have any learner perform

properly for a given set of data. For example, height measured at the accuracy of a centimeter may

not be applicable to distinguish several thousands of individuals. Hence height alone is not a good

biometric. In the following, I list four critical properties that an identification problem should have

for a learner achieving a specified performance level to exist. In addition to these four properties, a

biometric trait also needs to be universal in that every individual should have it.

1 Uniqueness of each label class given the measurements A good biometric trait must

lead to data that distinguishes one individual from another with high probability. There are

some problems in which the data is fundamentally impossible for any learner to achieve a

desired performance because some classes are indistinguishable with high probability.

2 Stability or manageable changes In order for a learner to perform well, the statistical

properties of data from one measurement occasion to another must stay the same, or change

in a manageable manner. For example, the face of an individual changes across ages, while the

changes are small in a short time frame and updates of new images are not required frequently.

On the other hand, some changes are more rapid and harder to update constantly. The later

case is discussed more in the next section and Chapter 3.

3 Measurability and acceptability The data must be measurable within the available re-

sources and external constraints of the learner. For example, a DNA sequence is very unique

and stable, but it is not measurable in a short enough period of time for access control of an

entrance point or an ATM machine. In daily applications, the use of DNA for identification

is also not acceptable to most individuals, because it has aspects of invasion and leakage of

privacy.

4 Circumvention The data properties of different labels have to be hard to fake or mimic for

an impostor. Artificial fingerprints or mimicking someone else’s voice are attacks that threaten

the security and usability of some biometrics.
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It is worth noting that except measurability and acceptability, the other three properties are essential

for selected features also. However, one should not confuse the requirements of a set of selected

features as the requirements of a single feature. For example, height alone may not be enough to

identify the gender of an individual, while combining height with other body measurements, which

separately are also insufficient, can lead to high accuracy of gender identification.

In addition, there are three other aspects that are important to biometric systems.

• Template security The data stored in a biometric system must be protected. Unlike the

classical encryption of a password, the biometric trait of an individual is hard to replace. Thus

the data security, or more specifically template security, in biometrics focuses on the condition

that if the database is compromised, there must be only a limited amount of information leaked.

The information leakage may due to a database being compromised, or a communication link

between the sensor and database being compromised.

• Passwords Passwords are another popular way for access control and identifying individual.

It may be considered as a sequence of symbols to remember, or a physical object such as an

identification card. Passwords can easily be chosen to be unique, easy to measure, and generally

acceptable, while they are easier to steal or copy. One important question is what additional

benefits a biometrics-password joint system provides over password systems or biometrics

systems alone.

• Secret embedding In some systems, there are secrets embedded in biometric signals such

that only the genuine user should be able to retrieve them. The biometric signals can be used as

an enveloped signal to protect information about the secrets being leaked, as in watermarking

systems. On the other hand, the secret signal can also be used to protect information about the

biometric traits being leaked. Two important questions regarding secrets in biometric systems

are how many different secrets can be embedded in a biometric trait and what benefits such

as information leakage protection the secrets can provide to a biometric system.
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1.2 Learning the Genuine Hearts: Biometrics Based on Car-

diac Signals

In the past 10 years, the idea of establishing biometrics based on signals related to heartbeats has

been studied. The signals are obtained using a laser Doppler vibrometor (LDV) remotely measuring

skin vibrations at the neck due to arterial movements associated with each pulse, or obtained by

attaching electrodes onto the skin measuring electrical changes of the skin due to heart muscle

depolarization, known as electrocardiography (ECG). One benefit of such measurements based on

heartbeats is that it is difficult to mimic, preventing impostors from breaking into the system.

In earlier studies, it has been shown that both LDV and ECG signals are unique when training data

and testing data are obtained consecutively on the same day. However, when the testing data is

obtained on another day, from weeks to months after collecting the training data, huge degradation in

performance of learning algorithms is observed. A closer examination of the LDV cases suggests that

the statistical properties of the impostors are the same, while statistical properties of the genuine

cases change from session to session. The performance degradation is thus driven by an increase in

the false reject rate.

The underlying mechanism is that for the same genuine individual, the cardiovascular outputs change

from day to day, due to physical, psychological, and other factors. The changes are rapid and drastic

as compared to face changes due to aging processes. The major challenge is then to overcome the

changes in statistical properties of the genuine cases, under constraints on the cost of data collection.

1.3 Outlines and Contributions in the Identification Theme

In chapter 2, a general information theoretic framework of biometric systems is proposed. The

framework covers major categories of biometric system designs in the literature, including the use of

passwords along with biometric traits, and secrets embedded in biometric signals. An information

theoretic outer bound is provided to characterize fundamental trade-offs between system utilities

such as identification performance and secret capacity, and system constraints on the amount of
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information allowed to be stored and communicated. This is the first work taking into account both

database and communication leakage in biometric systems with both secrets and passwords involved.

Existing literature concerns mostly only the database leakage, or in cases where communication

leakage is also considered, secrets and passwords are not considered.

The contribution of chapter 3 is to provide links between biometric system designs to error correcting

code designs and source coding. The theoretical performances of biometric system designs for two

scenarios using linear codes are evaluated. One scenario consists of constraints on the number of

bits allowed in the database and through the communication channel. The second scenario concerns

constraints on information leakage about the biometric template and secrets from the database. In

the second scenario, the proposed system design is proved to approach theoretical performance limits

in many general statistical models of biometrics.

In chapter 4, robust feature selection concepts and methods are introduced for LDV and ECG

biometrics to cope with changes in statistics of a biometric trait of the same individual across

sessions. The methods use data from only two training sessions to largely reduce the equal error

rates, leading to the best performance in the literature as of 2012 for for both LDV and ECG based

biometrics.

1.4 Clustering and Computational Stemmatology

In the second theme, the problem of partitioning unlabeled data points is considered. Clustering

is a type of unsupervised learning problem, where there are no true underlying labels available.

The goal of the learner is to partition the data into a set of groups, or a hierarchy which “makes

sense”. It is not a well defined problem unless a measure of “makes sense” of a clustering is defined.

However the goodness of such measures still has to match human intuitions, or the true labels on

some supervised learning problems. In many clustering approaches, the measure of goodness of a

clustering is defined only if the number of resulting clusters is specified. The critical question is how

to compare results across different number of clusters, or results of a different data hierarchies.
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Stemmatology is the study of reconstructing the relationship and transmission of different text

variants of an original document. Throughout the copying process from one variant to the other,

differences among parent documents, the ones being copied, and their children documents are intro-

duced by copying error or deliberate changes. The true copying process is not available in most cases

as it spans hundreds of years without reliable records. In many cases, the underlying unobservable

true copying process is nearly a tree, meaning that if one connects every pair of parent and child

variants, the resulting graph will be connected without cycles. A cycle exists when contamination

occurs where a copier refers to two or more parent variants to generate the new variant. Thus, the

problem of stemmatology is closely related to finding a hierarchical structure among data points,

with two additional challenges:

• Some text variants are never recovered.

• In available text variants, there are missing parts in the variants due to physical damage.

The first challenge occurs also in phylogenetics. Phylogenetics is the study of reconstructing the

evolution tree among species, where some species are not discovered due to extinction or rarity.

Attempts to use methods in phylogenetics yield good performances in smaller datasets of stemma-

tology problems in which there are fewer missing parts in variants. However in a large dataset with

a large number of missing parts in variants, the performances of most methods are degraded.

The minimum description length (MDL) principle is an information theoretic method for selecting

models for available data in absence of the “true” model. The idea of the MDL principle is to choose

the model which describes the data and the model itself using the least number of bits. In other

words, the model should capture the regularity of the data, hence a short data description length,

and yet still be simple enough, hence a short description length of the model itself. Albert Einstein

had articulated a similar concept:

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible

basic elements as simple and as few as possible without having to surrender the adequate

representation of a single datum of experience.”

8



In Chapter 5, we apply the MDL principle to clustering and computational stemmatology. The

idea is to view the problem of finding a cluster or a hierarchy of data points as finding efficient

descriptions of data points. The resulting algorithm performs the best on a large stemmatology

dataset as of 2011.
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Chapter 2

An Information Theoretic Rate

Outer Bound for Identification,

Secrets, and Passwords in

Biometric Systems

2.1 Introduction

In recent years, advanced results have led to an increasing use of biometric systems for personal

identification, authentication and other security applications such as secret binding. There are three

research areas emerging from this trend: biometric template security and privacy, secret binding and

secret generating using biometrics, and joint systems biometrics with passwords. Template security

and privacy are unique challenges resulting from the use of biometric systems that biometric traits are

hard to be replaced or canceled once information about biometric traits is stolen or compromised by

attacks [39], different from classical information security in communication systems where keys and

passwords can be replaced. The key goal of template security and privacy protection in biometric

systems is to prevent attackers from obtaining information about the biometrics from databases

or communication links between the sensors and databases for unauthorized activities. In secret

binding biometric systems, one is also concerned about information leakage of the secret [62].
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There are two major categories of biometric system designs addressing different template and secret

security approaches versus system performance: biometric cryptosystems and cancelable biometrics

[39, 62]. Biometric cryptosystems can be further divided into secret binding and secret generating

systems, and cancelable biometrics can be divided into noninvertable systems and salting [39, 62]. In

all cases, instead of storing the original biometric templates, helper data is stored in the system. The

idea is that the helper data should contain a limited amount of information or be computationally

intense to invert so that inferring the original templates are impossible or hard.

In secret binding biometric cryptosystems, the secret is generated independently of the biometrics.

Both the secrets and the biometrics are used to generate the helper data. In secret generating cases,

the secret is generated directly from the biometrics. For both cases, regeneration of the secret based

on the query data and helper data is a major goal of such systems. The regenerated secret can be

used as a way of secret based identification where the secret matching is done in an encrypted domain,

and a list of encrypted keys has to be stored in the database also. Template protection is realized

through not storing full template information but enough for secret regeneration in helper data

[40, 39, 62]. In other cases, biometric cryptosystems offer an alternative way of steganography [25].

On the other hand, the ideas of cancelable biometrics specifically focus on template protection so

that biometric templates are intentionally stored with distortion in the database such that inversion

is not possible. Thus, the matching must be performed on the distorted domain.

Intuitively, to protect template and privacy, the amount of biometric related information stored and

transmitted in the system should be small. However on the other hand, biometric system possessing

more reliable identification of large number of users and larger secret capability shall require more

biometric relation information. It is then a fundamental question to ask, what the tradeoffs between

the security of the biometric system itself versus the security and utility provided by the biometric

system are.

Recently, fundamental properties of biometric cryptosystems have been studied by Ignatenko and

Willems [35] using information theoretic approaches. In their framework, biometric templates are

used for secret binding or secret generating. A fundamental information theoretic relation among

secret capacity, and information leakage about the biometric templates and secrets from the database

are studied, while the use of passwords is also studied [35]. Furthermore in [36], a fundamental trade
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off between identification capacity, secret capacity versus information leakage from the database

is characterized. Meanwhile, fundamental information theoretic results on the trade off between

recognition capacity and the amount of information allowed to be stored in and communicated

across a recognition system has been studied extensively [86, 72, 81]. A biometric system is a

specialized recognition system so these results can be interpreted as fundamental results on the

trade off between biometric identification capacity and the amount of information about a biometric

template that must be stored, which is also the template and privacy information that could be

leaked if the system was compromised. Others have considered the cases where side information is

available to the attacker in biometric cryptosystems [47]. Table 2.1 summarizes existing information

theoretic results on biometric systems under different assumptions on locations of attack, utility,

and additional information.

On the other hand, encryption is used in biometric cryptosystems, but not all cancellable biometric

systems. Thus, by specifying information theoretic secured components of a system, one can then

ask what is achievable under information theoretic security only, and what additional capacity and

utility can be obtained by allowing additional components that are only cryptographically secure.

An important fundamental question is what are the benefits or drawbacks provided by biometric

cryptosystems in which identification is based on a key-matching process. In other words, the

question one can ask is, under a given set of information theoretic security constraints, how many

users can be registered to infer identity directly versus how many keys can be inferred for matching

in an encrypt domain. If one can infer more keys than direct inference of user identities, this implies

that the use of a hybrid system of information theoretic security and cryptographic security leads

to system with larger biometric capacity.

This chapter is organized as follows. In section 2.2 we introduce major biometric system architectures

and security issues in the literature that are considered in this paper, and information theoretic

security for biometrics. Next, a formal problem definition and a general model is given in section

2.3. The main results is presented in section 2.4 and related to existing literatures. Conceptual

interpretation of the results and the implication on practical methods and novel system designs are

also discussed. Finally, the chapter is concluded in 2.5, and the proof is given in the Section 2.6.
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Figure 2.1: Basic biometric systems

2.2 Security and Utility of Biometric Systems

In this section, we introduce major architectures of biometric systems, and information theoretic

concepts for measuring security of a biometric system. Consider the basic diagram shown in figure

2.1. For each individual registered in a biometric system, the biometric trait is obtained and pro-

cessed to store in the database. Here the term process is general, covering processes such as filtering,

feature selection, encryption ect.; and the stored data of an individual may be multiple data files

while here we first group all together and call it as the data associated with an individual. More

detailed models will be discussed later. The sensor is then evoked again to obtain a query data

for one of the two identity control modes: authentication or identification. In the authentication

mode, the sensor also obtained an input of claimed identity, and the goal is to decide if the sensed

data is indeed coming from the claimed individual, e.g. is the data obtained from Alice? In the

identification mode, the goal is to decide to whom the data belongs. Upon deciding the identity

is genuine, the user or the operator is then allowed to proceed with legitimate activities, such as

entering a place, accessing and operating a system, and so on.

Besides serving as an identity control front end, there are also designs of biometric systems that

a secret is associated with each user. Such biometric systems are called biometric cryptosystems.

The data stored in the database may be a function of both the biometric template and the secret

in chosen secret, also known as chosen key, cases. In secret binding, the stored data is a function

only of the biometric template. In both settings, the stored data is related to identity control and

secret retrieval. When a query data comes in, the goal is either to perform identity control and key

retrieval simultaneously, or key retrieval only where identification is based on key matching [62].

There are multiple parts and operational processes in a biometric system that are subjected to

attack; for a comprehensive review see Jain, Nandakumar, and Nagar [39]. In particular, leakage
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Figure 2.2: Key-Binding System: Information Hiding

of information about the template and secrecy are of primary concern in this work. Template

leakage may occur when an attacker successfully enters the database, or an attacker eavesdrops

the communication link between different modules, such as between the sensor and the database,

[41, 42, 80, 1, 39]. There are two major categories of approaches for template and secret protection,

namely biometric cryptosystems and cancelable biometrics.

2.2.1 Template and Secret Protection in Biometric Systems

In biometric cryptosystems, a helper data is stored in the database instead of the original template.

There are two subcategories, secret binding systems and secret generating systems. In secret binding

system, a key S is chosen for each individual, independently from biometric templates. The helper

data H is then a function of the template X and the secret, denoted as H = f(X,S). When a query

data Y comes in, the system regenerates the secret S, or the individual identity, or both. Generally

we can denote the identity control and secret regeneration process as a function (Ŝ, Ĵ) = φ(H,Y )

shown in Figure 2.2. There are two applications of using secret in secret binding systems. One way

is to use the secrets as a way for information hiding with access control through direct inference of

identity using helper data and the query, as shown in 2.2. The other way is secret based identity

control, as shown in Figure 2.3. In secret based identity control, secrets are encrypted and stored as

a lookup list in the database, and the identity control is done by matching the lookup list encryption

value of recovered secret from helper data and the query. Encryption and thus cryptographic security

and computational hardness of inverting keys from the database is involved.

In generating secret systems, each helper data is a function of the corresponding biometric templates

of an individual, that the secret and helper data are both functions of the template (H,S) = f(X).

As in secret binding system, regeneration of secrets and identity control can be done jointly as in
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Figure 2.3: Key-Binding System: Key Based Identity Control

Figure 2.4: Key-Generating System

Figure 2.4 or use the regenerated secret for matching 2.5 with encrypted version of keys stored in

the database. One application beyond identity control of secret generating biometric system is in

cryptography, where generating identical secret based on the same biometric owner can be use as a

way for key distribution.

Cancelable biometric systems can also be divided into two subcategories, noninvertable systems and

salting. In noninvertable systems, shown in Figure 2.6, templates are transformed by a noninvertable

function, regardless computing power, and the results are stored in the database that identification

is done using the query and stored data, usually in the same transformed domain. Such systems are

required to prevent template recovery by attackers even if the database and transform parameters

are compromised.

Biometric salting, on the other hand, refers to systems using transform functions that are invertible

information theoretically, but computationally hard. Template security is approached by choosing

different transform parameters K for each template to generate helper data H = f(X,K). Such

parameters may be referred to as passwords, secret tokens, or private keys. The parameters have

to be presented in the query alone with sensed biometrics that the inference is denoted as J =

φ(H,Y,K).
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Figure 2.5: Key-Generating System

Figure 2.6: Cancelable biometric

2.2.2 Cryptographic Security and Information Theoretic Security

As in secret key based identity control and cancelable biometric, part of security requires a notion

of computational hardness, i.e. Cryptographic security, of inverting or computing certain functions.

Cryptographic security focuses on infeasibility for the attacker to compute variables of interest. In

contrast to cryptographic security, information theoretic security does not assume the computation

system or computing limits of the attacker. Information theoretic security depends on the intrinsic

randomness existing in the system.

In information theoretic security, mutual information is a common way to measure leakage in bio-

metric systems [36, 47] and communication [53, 22]. For two random variables X and Y , the

information leakage about X from Y and vise versa is captured by the mutual information between

them as I(X;Y ) = H(X)−H(X|Y ). The term H(X|Y ) itself can be used as leakage too and called

information equivocation in that context [53].

2.2.3 Biometrics and Information Theoretic Security

In the above mentioned four major categories of biometric systems, the major security concern

is information leakage of biometric template information or secret. The leakage may result from
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compromised database or communication link. This implies that the mutual information between

the stored data, or processed query data, and the templates must be bound by a tolerated leakage

level.

However, note that in a key based identification system, storing an encrypted version of each key is

necessary, while encryption is not information theoretically secure. In fact, encrypted keys contain

full information about the keys as long as the encryption function is reversible with unconstrained

computational resource.

In this paper, we focus on information theoretic security, but not cryptographic modules in the sys-

tems. Note that above mentioned system architectures with encryption of secrets are not excluded.

Secret recovery of such systems is prior to secret matching in encryption domain, in which the accu-

racy of the systems is bound by recovery accuracy, which can be studied by considering information

theoretically secured modules along, assuming encryption function with low collision probability.

Table 2.1 summarizes fundamental results on capacity of biometric systems have been studied in the

literature, as well as the contribution of this paper. Six key considerations are listed in the table:

leakage of information from database, leakage of information from communication link, identity

control, secret recovery, use of password, and side information. In most of the existing literature, up

to four elements are considered. For example, in the work of [35], leakage from database, password,

secret, and secret recovery are considered. In this paper, all six elements will be considered while

deriving fundamental capacity of biometric systems.

2.3 Formal Problem Definition

In this section, we describe a general model which encompass identification, secret key binding, and

private key in biometric systems, and the information theoretic framework for studying biometric

system security and utility. A biometric system and its operational environment consists of ten

parts: the set of subject indices, the distribution of indices, a biometric source, the source alphabet,

a secret source, a secret set, a password source, a password set, a observation channel, and the

observation alphabet.
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Figure 2.7: The information theoretic privacy protection framework for biometric systems

• The subject index, denoted as j takes value from the set J = {1, · · · ,MJ}. The distribution

of indices is pj , j ∈ J , and in this paper, it is assumed to be uniform.

• The biometric source is modeled as a random process of a collection of distributions pxn over a

source alphabet xi ∈ X for all i. For each individual j to be enrolled, the corresponding biomet-

ric template is modeled as a length n realization vector xn(j) of the biometric source random

process. The templates of individuals are assumed to be independent, and are independent of

the subject index j, and password k(j).

• The secret source is modeled as an uniform probability mass function P (S) over the set of

secrets S. For each individual j, the corresponding secret s(j) is independent of the index j,

the template xn(j), and the private key k(j).

• The password source is modeled as an uniform probability mass function P (K) over the set of

private keys K. For each individual j, the corresponding password k(j) is independent of the

index j, the template xn(j), and the secret s(j).

• The query observation yn is modeled as passing the templates xn through a noisy channel

with a sequence of conditional distributions pn
y |xn, whose output takes value in an observation

alphabet Y, independent of the index j, the secret S(j), and the private key K(j).
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2.3.1 System Operation Overview

The biometric system is to identify Mc individuals. During enrollment, Mc templates are drawn i.i.d.

from the biometric source px and presented to the biometric system. For each individual, a secret

key S(j) and a private key K(j) are drawn from the probability mass functions P (S) and P (K),

independent of everything else. The system encoder takes each template with the secret key and the

private key and outputs an encoded data, a.k.a. the helper data, and stores only the helper data but

not the templates, secret keys, nor the private keys. During identification, an index j is drawn from

pj , and a noisy observation y of the corresponding template x(j) is drawn based on the observation

channel py|x and presented to the system with the corresponding private key k(j). The biometric

system encodes the observed y along with k(j). The identification algorithm, i.e. the decoder, uses

the encoded sensor data, along with all the helper data and all private keys for identification and

outputs an estimated identity ĵ and an estimated secret ˆS(j). Note that the private keys K are

assumed to be secure and available to both the enrollment encoder and the sensory encoder, as well

as the identification algorithm.

2.3.2 Encoding and Decoding

For enrollment, the helper data of an individual j is generated based on template x(j), secret key

s(j), and private key k(j). The helper data is denoted as t1(j) taking values from a set T1. t(j) is

the output of a template encoder f :

f(x(j), s(j), k(j); px,y, pj , P (S), P (K)) :

Xn × S ×K → T1. (2.1)

The notation means that the encoder may use all the distributions to encode a template, but not

the realizations of other templates, secrets, private keys, nor the observation y. This assumption

is made in most information theoretic studies of biometric systems [86, 81, 35, 47]. The set of all

encoded data is denoted as T1 = {t(1), · · · , t(Mc)}.

20



Similarly, for observation encoding, the encoded data is denoted as t2 taking values from a set T2.

It is the output of an observation encoder g:

g(y, k(j); px,y, pj , P (S), P (K)) :

Yn ×K → T2. (2.2)

The observation encoder uses the observed y and k(j) and all distributions, but not the realizations

of x.

The identification algorithm is a function φ:

φ(t2,T1,K; px,y, pj , P (S), P (K)) :

T2 × T Mc

1 ×KMc → (J ,S). (2.3)

The identification algorithm uses the realizations of all helper data, the password observed at the

sensor, and the distributions, but not the realizations of the templates nor the observation. It

outputs the estimate of the identity ĵ and the associates secret ˆs(ĵ).

2.3.3 Definition of Achievability

A rate tuple (RM , L1, L2, RS , RK) is said to be achievable if there exists a sequence of encoder and

decoder triples (fn, gn, φn) such that for any δ > 0 and n large enough:

Pr
(

(ĵ, ˆS(j)) 6= (j, S(j))
)

≤ δ

n−1I(S(j);T1(j)) ≤ δ ∀j

n−1I(S(j);T2(j)) ≤ δ ∀j

n−1I(X(j);T1(j)) ≤ L1 ∀j

n−1I(Y (j);T2(j)) ≤ L2 ∀j

n−1 log |J | ≥ RM

n−1 log |S| ≥ RS

n−1 log |K| ≤ RK .
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The set of all achievable rate tuples is defined as the achievable rate region, denoted as R.

2.4 Main Results and Discussion

The main result is summarized in the following converse theorem.

R ⊆ Rout =
{

RS + RM −RK ≤ I(X ;U ) + I(Y ;V )− I(X ,Y , ;U ,V )

L1 + RK −RM ≥ −I(Y ;V ) + I(X ,Y ;U ,V )

L2 + RK −RM ≥ −I(X ;U ) + I(X ,Y ;U ,V )
}

where U and V are auxiliary random variables:

Un = (Xn−1, T1, S,K)

V n = (Y n−1, T2,K),

satisfying the Markov conditions Un −Xn − Y n and Xn − Y n − V n,

I(X ;Y ) = H(X ) + H(Y )−H(X ,Y ), (2.4)

and H(X ) denotes the entropy rate of the random process X.

2.4.1 Special Cases

The outer bound presented in this paper is tight in the sense that the outer bounds or exact achievable

rate region in many special cases published in the literature can be directly derived from it.

22



Zero Privacy leakage and passwords

The theorem states that

L1 + RK −RM ≥ −I(Y ;V ) + I(X ,Y ;U ,V ), (2.5)

where the right hand side is nonnegative. Thus it is impossible to avoid potential privacy leakage in

direct identification biometric systems using a biometric trait alone. Even in secret based identifica-

tion systems, one has to assume that the lookup list of encrypted secrets will not be compromised,

which is theoretically and practically difficult to validate. However, with the use of a password along

with a biometric, one can develop zero privacy leakage and zero secrecy leakage systems.

Recognition with constraints

There are a number of results on information theoretic biometrics or recognition, where the focus

is solely on direct identification, or recognition, without secrets or passwords. The constraints are

focused on the amount of information allowed to be leaked, or allowed to be stored. Note that these

two constraints are closely related but different. The former is measured by mutual information,

the latter is measured by bits per stored helper data. Early studies yield fundamental insights on

systems whose database is constrained, while the sensory capacity and communication link are not

[71]. More comprehensive results on recognition with both database and sensing, or communication,

constrains were obtained by Westover and O’Sullivan [86]. The constraints are

log T1 ≤ R1 (2.6)

log T2 ≤ R2. (2.7)

The achievable rate region Rwot is defined as the set of all achievable rate tuples (R1, R2, RM ) such

that for any ǫ > 0 and n sufficiently large, there exist (f, g, φ) such that

Pr(ŵ 6= w) ≤ ǫ

n−1 log |T1| ≤ R1
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n−1 log |T2| ≤ R2

n−1 log |Mc| ≥ Rc.

The outer bound Rrec
out [86, 81], rewritten with some algebra, is

Rrec
out =

{

RM ≤ I(X ;U ) + I(Y ;V )− I(X ,Y , ;U ,V )

R1 −RM ≥ −I(Y ;V ) + I(X ,Y ;U ,V )

R2 −RM ≥ −I(X ;U ) + I(X ,Y ;U ,V )
}

.

Notably, any achievable rate 3-tuple (R1, R2, Rc) for these conditions, also satisfies the achievable

conditions described in section 2.3 since

R1 >
1

n
log |T1(j)| ∀j

≥ 1

n
H(T1(j)) ∀j

=
1

n
(H(T1(j))−H(T1(j)|X)) ∀j

=
1

n
I(X;T1(j)). ∀j

Thus, Rrec
out is a subset of Rout. In fact the proposed outer bound Rout is exactly Rrec

out when

RS = RK = 0. Thus the outer bound is tight in this case, and constraints on storage capacity in

terms of bits and constraints on leakage in terms of mutual information are closely related.

Special Cases in the Literature

A comprehensive study of biometric privacy and secrecy was conducted by Ignatenko and Williams

[35]. Even though direct identification and sensor communication leakage are not considered, fun-

damental information theoretic results on secret capacities with and without passwords in biometric

systems were thoroughly studied, including both chosen secret cases and generated secret cases. The

outer bound derived in this paper matches the special cases presented in their work as four theorems:

theorem 1 on generated secret cases, theorem 3 on chosen secret cases, theorem 5 on zero leakage

generated secret with password cases, and theorem 7 on zero leakage chosen secret with password
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cases. Each can be derived from our results by removing the modules or constraints that are not

considered. These results were also obtained by Lai, Ho, and Poor [47], while in [47] attackers with

side information are also considered. Note that in [35], the achievable rate regions are exact that

both achievability and converse yields the same bound. This also indicates that our outer bound is

tight in the sense that in many special cases it matches the achievable regions.

Identification and secrets in biometrics were considered simultaneously later also by Williams and

Ignatenko [89], while passwords and sensor communication leakage were not included. The exact

achievable rate region found in Ignatenko [89] is a special case of the outer bound in this paper, thus

our bound is tight in this case.

2.4.2 Direct Identity Control versus Key Based Identity Control

In key based identity control, as we mentioned, the system has a risk of leaking key information if

the list of encrypted keys are compromised. The question is then the following: is there any benefit

offered by key based identity control that may justify this risk? In other words, what is the benefit

of combining information theoretic secured modules in conjunction with computationally secured

modules in biometric systems?

To see this, consider direct identity control systems with identification rate Rd
M without secret

hiding. The corresponding key based identity control system will need to have Rk
S = Rd

M to serve

the same number of users, as each user will be identified by each individual encrypted key. Note

that the direct identification rate Rk
M = 0 in key based identification system. Thus we have Rd

out,

converse of achievable rate region of direct identity control systems, as

Rd
out =

{

Rd
M −RK ≤ I(X ;U ) + I(Y ;V )

− I(X ,Y , ;U ,V )

L1 + RK −Rd
M ≥ − I(Y ;V ) + I(X ,Y ;U ,V )

L2 + RK −Rd
M ≥ − I(X ;U ) + I(X ,Y ;U ,V )

}

,
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while Rsk
out, the converse of the achievable rate region for secret key based identity control systems,

is

Rsk
out =

{

Rsk
S −RK ≤ I(X ;U ) + I(Y ;V )

− I(X ,Y , ;U ,V )

L1 + RK ≥ − I(Y ;V ) + I(X ,Y ;U ,V )

L2 + RK ≥ − I(X ;U ) + I(X ,Y ;U ,V )
}

.

Thus when both systems serve the same number of users, Rsk
S = Rd

M , the secret key base system

requires less leakage of template information. This means if one has confidence in, or is willing

to risk, security of the encryption list, there is a gain in protection of information leakage of the

biometric templates.

2.4.3 Insights for System Designs

A classical idea of biometric template protection system called fuzzy commitment scheme by Jeols

and Wattenberg. The framework considers identification through secret recovery, while no leakage

constraint was considered. The idea is to store the helper data f(x) = x−w and encryption f2(w),

where w is a codeword of some error correcting code. Note the w then can be think of as the secret

in our framework. When a query data comes in, the difference w′ = y − x − w is computed. If x

and y are from the same individual and hence close, w′ is then close to w. If w and w′ are close

enough to be within the error correcting capacity of the code, w and f2(w) can then be recovered

and used as identification. Note that since x− w is stored in the data base, recover w is equivalent

to recovering x. Later similar ideas are proposed by O’Sullivan and Lai [60] and Martinian et al.

[55], known as template protection by syndrome or distributed source coding, that f(x) and f2(x)

are stored, and then the query y is used with helper data f(x) to recover x and hence f2(x). Here

the function f is usually the low density generator matrix of a low density parity check code.

Note that, however, recovering x requires min(L1, L2) ≥ RM + H(X|Y ) [60, 48, 55]. However, from

the discussion in 2.4.1, we know that recognition is possible even when L1 and L2 are smaller than
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H(X|Y ). Thus a new design which beyond identification through direct or indirect reconstruction

of the template is need. In fact, simple codes are proposed and proven to work very close to the

presented theoretical outer bound for simple theoretical examples [48].

2.5 Conclusion and Remarks

In this chapter, we develop a general information theoretic framework for biometric secrecy systems.

This framework captures the fundamental property of major biometric system designs, including

key-binding, key-generating, biometric cryptosystems, and cancelable biometrics. In addition to

considering information leakage due to the database being compromised, we also consider cases

where the communication link between the database and sensor is compromised. An outer bound

on system capacity is presented; the bound is tight that it coincides with results in the literatures

in many special cases.

The results also lead to a theoretical comparison of direct identification systems versus key based

identification systems. When one builds a key based identification system, there is an additional

risk of encrypted key database being compromised. However, assuming the encryption is intact, one

gains more protection of the biometric privacy, in the event of attacks on helper data in the database

or communication link between sensor and database.

The obtained bound also provides insights on system designs. An interesting consequence of the

presented outer bound and its tightness is that identification is possible while reconstruction of the

original signal is not possible. This is different from the idea of identification through reconstruction

such as the use of Slepain-Wolf coding. However it does not rule out the possibility of modifying

and extending the way which Slepain-Wolf coding could be used, such as partial reconstruction or

rate distortion.

An important category of security concern whose fundamental result is not obtained in this work

is conditional leakage. In conditional leakage cases, one assumes that the secret may be stolen and

may be used along with the helper data to gain more information about the biometrics. Conditional
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leakage in some biometric systems is studied by Ignatenko and Willems [35], while only the database

is assumed to be vulnerable, and only secret reconstruction is considered.

2.6 Proof of the Converse Outer Bound

2.6.1 Identification and Secrecy Rates

n(RS + RM )

≤ log |S(J )|+ log |J |

= H(S(J), J)

= I(S(J), J ;T1, T2(J),K(J)) + H(S(J), J |T1, T2(J),K(J))

≤ I(S(J), J ; T1, T2(J),K(J)) + F ,

= I(S(J), J ;T1) + I(S(J), J ;K(J)|T1) + I(S(J), J ;T2(J)|T1,K(J)) + F

≤ I(S(J), J ;T1) + nRK + I(S(J), J ;T2|T1,K(J)) + F

= I(J ;T1) + I(S(J);T1|J) + I(S(J), J ;T2(J)|T1,K) + nRK + F

≤ 0 + nδ + I(S(J), J ;T2(J)|T1,K) + nRK + F

= I(S(J), J ;K,T2(J)|T1,K) + nRK + F + nδ

= I(S(J), J,T1;T2(J)|K(J))− I(T1;T2(J)|K(J)) + nRK + F + nδ

≤ I(S(J), J,T1;T2(J)|K(J)) + nRK + F + nδ

(a)
= I(S(J), T1(J);T2(J)|K) + nRK + F + nδ

(b)
= I(Xn(J);T1, S(J)|K(J)) + I(Y n(J);T2|K(J))

−I(Xn(J), Y n(J);T1(J), S(J), T2(J)|K(J)) + nRK + F + nδ

(c)
= I(Xn(J);T1(J), S(J),K(J)) + I(Y n(J);T2(J),K(J))

−I(Xn(J), Y n(J);T1(J), S(J), T2(J),K(J)) + nRK + F + nδ

(d)

≤ I(Xn(J);Un) + I(Y n(J), V n)− I(Xn(J), Y n(J), ;Un, V n) + nRK + F + nδ,
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where

Un = (Xn−1, T1, S,K) (2.8)

V (n = (Y n−1, T2,K).

Divide both sides by n, move nRK to the left hand side, and take the limit as n gets large, we have

Rs + Rm −Rk ≤ I(X ;U ) + I(Y ;V )− I(X ,Y , ;U ,V ), (2.9)

where

I(X ;U ) , H(X ) + H(U )−H(X ,U ), (2.10)

and H(X ) is the entropy rate of the random process Xn. In particular, for X and Y being i.i.d.,

we have the last being

I(Xn;T1, S,K) + I(Y n, T2,K)− I(Xn, Y n;T1, S,K, T2) + nRK + F + δ

(e)
= nI(X;U) + nI(Y ;V )− nI(X,Y ;U, V ) + nRK + F + δ.

By dividing n on both sides and taking limit as n gets large, we have

Rs + Rm −Rk ≤ I(X;U) + I(Y ;V )− I(X,Y ;U, V ). (2.11)

It is clear from definitions that Un −Xn − Y n and Xn − Y n − V n. This completes the proof.

For (a), define T∗
1 = T1 \ T1(J), we have

I(S(J), J,T1;T2(J)|K(J))

= I(S(J), J,T∗
1, T1(J);T2|K(J))

= I(S(J), T1(J);T2(J)|K(J)) + I(J,T∗
1;T2(J)|S(J),K(J), T1(J))

= I(S(J), T1(J);T2(J)|K(J)) + I(J ;T2(J)|S(J),K(J), T1(J)) + I(T∗
1;T2(J)|S(J),K(J), T1(J))

= I(S(J), T1(J);T2(J)|K(J)) + 0 + 0.
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Equality (b) utilizes lemma 6 of Westover and O’Sullivan [86], which states that

I(α;β|C) ≥ I(A;α|C) + I(B;β|C)− I(A,B;α, β|C), (2.12)

with equality if and only if I(A,α;B, β|C) = I(A,B|C). Equality (b) follows from substituting

(A,B,C, α, β) with (Xn, Y n,K, (S, T1), (T2)) and then showing that equality condition holds. We

have

I(Xn, S, T1;Y
n, T2|K)

= I(Xn, S, T1;Y
n,K) + I(Xn, S, T1;T2|Y n,K)

(ba)
= I(Xn, k, S, T1;Y

n|K) + 0

= I(Xn;Y n|K) + I(S;Y n|K,Xn)

(bb)
= I(Xn;Y n),

where (ba) results from T2 is a function of (Y n,K), and (bb) follows that K and S are independent

of Xn and Y n, and K and S are independent of each other.

The inequality (d) is based on the fellowing Lemma 1. Lemma 1 Let An be a random processes

such that its entropy rate exists and B be a random variable and Ci = (Ai−1, B), we have

I(An;B) ≤ I(An;Cn) (2.13)

By substitute (A,B,C) three times to (X, (T1, S,K, ), U), (Y, (T2,K), V ), and ((X,Y ), (T1, T2, S,K), (U, V )),

we get the inequality (c).

proof

I(An;Cn)

= I(An;An−1, B, · · · , B)

≥ I(An;B)
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For cases where X and Y are i.i.d., (c) can be derived from writing the mutual information terms

in the form of I(Xn;T1, S,K) into telescoping sum

I(Xn;T1, S,K) =

n
∑

i=1

I(Xi;T1, S,K|Xi−1)

≤
n

∑

i=1

I(Xi;T1, S,K,Xi−1)

=

n
∑

i=1

I(Xi;Ui).

Then using standard argument through defining a time sharing parameter T and variable U =

(UT , T ), we get the last inequality.

2.6.2 Privacy and Secrecy leakage

nL1

≥ 1

Mc

Mc
∑

j=1

I(Xn(j);T1(j))

= I(Xn(J);T1(J)|J)

(a)
= I(J,Xn(J);T1(J))

≥ H(Xn(J), J)−H(Xn(J), J |T1(J))−H(S(J)|Xn(J), J, T1(J),K(J))

= H(Xn(J), J)− I(Xn(J), J ;K(J)|T1(J))−H(Xn(J), J |T1(J),K(J))

−H(S(J)|Xn(J), J, T1(J),K(J))

≥ H(Xn(J), J)−H(K)−H(Xn(J), J, S(J)|T1(J),K(J))

= H(Xn(J), J)−H(K)−H(J, S(J)|T1(J),K(J))−H(Xn(J)|J, S(J), T1(J),K(J))

= H(Xn(J), J)−H(K)−H(J, S(J)|T1(J),K(J), T2)− I(T2;J, S(J)|T1(J),K(J))

−H(Xn(J)|J, S(J), T1(J),K(J))

(b)

≥ H(J)−H(K) + H(Xn)−H(Xn(J)|J, S(J), T1(J),K(J))− I(T2;J, S(J)|T1(J),K(J))−F

≥ H(J)−H(K) + I(Xn(J);J, S(J), T1(J),K(J))− I(T2;J, S(J), T1(J)|K(J))−F

= nRM − nRK + I(Xn(J);J, S(J), T1(J),K(J))− I(T2;J, S(J), T1(J)|K(J))−F
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(c)

≥ nRM − nRK + I(Xn(J);S(J), T1(J)|K(J))− I(T2;J, S(J), T1(J)|K(J))−F
(d)

≥ nRM − nRK − I(Y n(J);T2,K(J)) + I(Xn(J), Y n(J);T1, S(J), T2,K(J))−F
(e)
= nRM − nRK − I(Y n;V n) + I(Xn, Y n;Un, V n)−F

where (a) comes from J being independent of T1(J); (b) follows from Fano’s inequality of the term

H(J, S(J)|T1(J),K(J)) ≤ H(Ĵ , ˆS(J)), and XN (J) and J are independent; (c) follows from Xn(J)

being independent of J and K(J), and also J and K(J) being independent of each other; (d) and

(e) both follow the same arguments as in the identification and secrecy rate proof. Dividing both

sides by n, we have

L1 + RK ≥ RM − I(Y ;V ) + I(X ,Y ;U ,V ). (2.14)

Similar, for L2, we have

nL2

≥ 1

Mc

Mc
∑

j=1

I(Y n(j);T2(j))

= I(Y n(J);T2(J)|J)

(a)
= I(J, Y n(J);T2(J))

≥ H(Y n(J), J)−H(Y n(J), J |T2(J))−H(S(J)|Y n(J), J, T2(J),K(J))

≥ H(Y n(J), J)−H(K)−H(Y n(J), J, S(J)|T2(J),K(J))

= H(Y n(J), J)−H(K)−H(J, S(J)|T2(J),K(J))−H(Y n(J)|J, S(J), T2(J),K(J))

= H(Y n(J), J)−H(K)−H(J, S(J)|T2(J),K(J), T1)− I(T1;J, S(J)|T2(J),K(J))

−H(Y n(J)|J, S(J), T2(J),K(J))

(b)

≥ H(J)−H(K) + H(Y n)−H(Y n(J)|J, S(J), T2(J),K(J))− I(T1;J, S(J)|T2(J),K(J))−F

≥ H(J)−H(K) + I(Y n(J);T2(J),K(J))− I(T2;J, S(J), T1(J)|K(J))−F
(c)
= H(J)−H(K) + I(Y n(J);T2(J),K(J))− I(T2;T1(J)|K(J), J, S(J))−F

≤ nRM − nRK + I(Y n(J);T2(J)|K(J))− I(T2;J, S(J), T1(J)|K(J))−F

= nRM − nRK − I(Xn;Un) + I(Xn, Y n;Un, V n)−F .
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Dividing both sides by n, and let n go large, we have

L2 + RK −RM ≤ −I(Xn;Un) + I(Xn, Y n;Un, V n). (2.15)

Inequality (c) is from the following lemma: I(A; f(B,C)|B) = 0 if B⊥A,B⊥C, and C⊥(A,B), or

equivalently, H(A|B) = H(A|B, f(B,C)) We have

H(A|B, f(B,C)) ≥ H(A|B,C)

= H(A,B,C)−H(B,C)

= H(A,B) + H(C)−H(B)−H(C)

= H(A|B).

On the other hand, H(A|B, f(B,C)) ≤ H(A|B). Thus H(A|B)−H(A|B, f(B,C)) = I(A; f(B,C)|B) =

0 given the conditions holds. Notice that

I(T2;J, S(J), T1(J)|K(J)) = I(T2;J, S(J)|K(J))− I(T2;T1(J)|K(J), J, S(J)), (2.16)

and substitute (A,B,C, f(A,B) with ((J, S(J)),K(J),Xn(J), T1(J)), we have equality (c).
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Chapter 3

Secured Biometric System Designs

Using Linear Codes

In the previous chapter, an information theoretic framework is presented along with an outer rate

bound which characterizes the fundamental trade off between biometric system utility and security.

In this chapter, we look at the system design and coding theoretic aspects of the problem. In coding

theory for communication problems, one focuses on the actual design and algorithm of codes that can

be implemented, and attempts to approach the limits established from information theoretic results.

Here we bring a similar concept of coding for practical system designs into biometric systems.

Instead of developing new kinds of error correcting codes or source codes, we focus on the concept

of translating biometric system design problems into coding problems. The results in this chapter

have the following flavor: if one has an error correcting code, or a source code, for a noise or source

random process, then one also has a good biometric system with the identical random process as

noise model or biometric source model. Also, if one has an decoding algorithm for the code, it can

be used as the corresponding identification or verification problem. Thus, this chapter introduces

several ways to turn biometric system design problems into code design problems that the vast

amount of coding theory literature can then be used as powerful tools in biometrics.

In this chapter, we translate two biometric problems into coding problems by proposing the actually

system design using linear codes, and then establishing the theoretical performances of the resulting

biometric systems. In both problems, we focus on discrete cases. The first problem is to design an
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identification system with constraints on the number of bits of the helper data per individual, and

the number of bits communicating from sensor to database. Despite the theoretical performance of

the proposed system design is suboptimal in this case, it still shows the potential of linear codes in

identification problems. Also in a simple theoretical case, we illustrate that near optimal identifica-

tion performance can be achieved while signal reconstruction is not possible, and it is robust against

uncertainty in the noise model.

In the second case, we study the problem of secret binding in biometric system. In this problem,

the information leakage of template and secret from the database is considered, but not from the

communication channel. We propose a simple system design that can achieve optimal identification

and secret capacity trade off shown in the last chapter and in other literature. In addition, we

also propose an alternative system which is suboptimal but reduces the potential computational

complexity of the problem.

3.1 Identification System with Finite Storage and

Communication Constraints

Three aspects defining the first identification problem are the environment under which identification

takes place, the identification system itself, and measures of performance. These follow the problem

setting in [88], which is a slight modification of the general model described in the previous chapter.

Environment

The environment consists of six elements, denoted as

E = (Px,X , Py|x,Y,Mc, Pj). (3.1)

Mc = 2nRc is the total number of individuals to be registered in the system, and Rc is defined as the

identification rate. Each pattern template is a length n sequence with each element taking values

over a discrete set X . Each pattern is drawn independently from a distribution Px, denoted as
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x(j), i ∈ {1, 2, · · · ,Mc}. The set of all Mc patterns to be recognized is denoted as C. In the training

phase, we assume that the biometric system observes all template patterns x(j).

In the testing phase, an individual index j is drawn from {1, 2, · · · ,Mc} based on an index distribution

Pj which we assume to be uniform here. The corresponding object sequence xj is then presented to

the identification system through a noisy channel whose transition probability is Py|x, where each

element of y takes values over the set Y.

In this section, the noisy channel is assumed to be additive that the input and our are both integers

X = Y which are finite subset of Z. The noise is denoted as z which is a length n sequence drawn

from a distribution Pz, independent of x(j),∀j, and any part of identification systems. Hence

Py|x(y|x) = Pz(y − x), (3.2)

and the identification system observes data

y = x + z. (3.3)

The Biometric Identification System

An identification system consists three parts: a database compression function f , a sensor compres-

sion function g, and an identification algorithm φ.

The database compression f maps each object sequence xj to a compressed sensor data t1(j) ∈ T1,

where L1 is the database compression rate. Notice that the definition of L1 is different from the

leakage definition presented in the previous chapter measured by mutual information between X

and T1.

Similarly, the sensor compression function g maps an observed y to a compressed sensor data t2 ∈ T2,

where L2 = log |T2| is defined to be the sensor compression rate.

In cases of system design using linear codes, the sensor compression and database compression are

carried out by using two matrices H of size nT1 by n for the database and G of size nT2 by n for
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Figure 3.1: Identification system design using linear codes

the sensor, such that

t1(j) = Hx(j) (3.4)

is the compressed database data of the template with index j, and

t2 = Gy (3.5)

is the compressed sensor data. The set of all database data t1(j), j ∈ {1, 2, · · · ,Mc} is denoted as

T1. In designing database compression H and sensor compression G, we assume that the probability

mass functions Px and Pz are given.

We are interested in designing good identification systems given (Rc, L1, L2, Px, Pz). The identifi-

cation algorithm φ takes T1 and t2 as inputs and computes an estimate ĵ of the true object index,

assuming the probabilities px and pz are given. It consists of a noise estimation algorithm and an
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index estimation algorithm. The noise estimation algorithm is denoted as

d(t1(i), t2) : T1 × T2 → Xn ∪ {e}, (3.6)

that for each individual index i, it computes an estimated noise under the hypothesis that the query

in the testing phase belongs to the ith individual. The estimated noise of the ith object is denoted

as

ẑ(i) = d(t1(i), t2). (3.7)

If the algorithm fails for the ith index, subject to some criteria of failure depending on the system

design, d(·, ·) outputs an error e. After the identification system completes noise estimation for

all individual indexes, it proceeds to index estimation. Since an index j is chosen uniformly in

the testing phase, for index estimation, the index estimation algorithm simply selects the index

estimate ĵ to be the index associated with the largest Pz(ẑ(i)). We define Pz(e) = 0, so that the

identification system always rejects indexes with noise estimation error. From now on in this paper,

j always denotes the true object index selected in the test phase, and i ∈ {1, · · · ,Mc} \ {j}.

Note that Pz(ẑ(i)) is used to select the estimated index, instead of the joint probability mess of Px,z.

This is because x is not directly stored in the database, estimating x may be difficult or impossible

when the database compression rate is small.

Performance Measure

An identification system makes an error if ĵ 6= j. The average probability of error of an ensemble of

identification system design is defined to be

Pn
e =

∑

f,g,C,z

P (ĵ 6= j|C, z, f, g)PC(C)Pz(z)Pf,g(f, g), (3.8)

which is averaging over all realizations of C, z, and the identification system. Note that Pf,g(f, g) is

necessary to consider when parts of the system are randomly generated, such as system designs in

which random codes are employed, that the density is specified when the ensemble of identification
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system designs is defined. Due to the i.i.d. assumption of templates, we have

PC(C) =
∏

x∈C

Px(x). (3.9)

Probability of error depends on the pattern length n, while we focus on the limiting cases where n

is large.

Definition 3.1 A three rate tuple (Rc, L1, L2) is said to be achievable in an environment E if there

exists a sequence of identification systems (fn, gn, φn) such that Pn
e goes to zero as n goes to infinity.

Definition 3.2 The set of all achievable rate tuple of a system is defined as the achievable rate region

of this system.

We are interested in system designs that yields large achievable rate region. An inner and an outer

achievable rate region bounds of this framework was obtained by Westover and O’Sullivan [86] and

the previous chapter.

3.1.1 Truncation Encoding

In this section, we describe a simple encoding strategy called truncation encoding to illustrate four

ideas:

1 The concept of “noise estimation” and how it can be used for identification.

2 A performance level that is very close to theoretical limit can be achieved in a simple method

that per individual computation complexity is very low.

3 Good identification performance is possible even when reconstruction of the original template

given both helper data and the query is impossible.

4 Robust identification against modeling error of the noise is possible.

In this sub-section, it is assumed that each element of a pattern sequence is independent and identi-

cally distributed (i.i.d.) drawn from a distribution Qx on GF (r), where GF (r) denotes a Golid Field
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of r elements. Similarly, each element of the noise vector is i.i.d. drawn from Qz on the same GF (r).

Let H = [InT1
0] and G = [InT2

0], where InT1
and InT2

are identity matrices of size nT1 and nT2 re-

spectively. Thus t1(j) is the first nT1 elements of x(j), and t2 is the first nT2 elements of y = xj +z.

Let nmin = min(nT1, nT2). For any length n sequence a, anmin
denotes the sequence of the first nmin

elements of a, and anc
min

denotes the rest of a. By definition, we know that T1,nmin(i) = xnmin
(i)

and t2,nmin
= ynmin

.

The noise estimation algorithm works as follows. For each pair of (t1(i), t2), the algorithm checks if

(tnmin
(i), t2,nmin

) is in the jointly typical set T xy,ǫ
nmin

, where the jointly typical set T xy
nmin

is defined as

T xy,ǫ
nmin

= {(x,y) ∈ Xnmin ×Xnmin :
∣

∣

∣

∣

− 1

nmin
log P (x)−H(Qx)

∣

∣

∣

∣

< ǫ

∣

∣

∣

∣

− 1

nmin
log P (y)−H(Qx ∗Qz)

∣

∣

∣

∣

< ǫ

∣

∣

∣

∣

− 1

nmin
log P (x,y)−H(Qx)−H(Qz)

∣

∣

∣

∣

< ǫ},

(3.10)

where Qx ∗ Qz denotes the output distribution of a noisy channel with input distribution Qx and

additive noise distribution Qz. It proceeds if (t1,nmin(i), t2,nmin
) ∈ T xy,ǫ

nmin
, otherwise it outputs an e

indicating an error. The algorithm computes

ẑi,nmin
= t2,nmin

− t1,nmin
(i) = xi,nmin

− xj,nmin
+ znmin

, (3.11)

and then concatenates it with n − nmin zeros to get the estimated noise ẑ(j). Finally, the system

selects the index

ĵ = arg max
k∈{1,2,···,Mc}

Pz(ẑk) = arg max
k∈{1,2,···,Mc}

Pz(ẑk,nmin
) (3.12)

as its estimated index.

To see how truncation encoding works for identification, consider the following example. Let template

pattern A and template Pattern B be realization of a binary Bernoulli 1/2 source as shown in Figure

3.1.1. The additive noise elements are assumed to be drawn i.i.d. from Bernoulli 1/10. Let L1 = L2

thus the truncation encoding cuts off the right side of each pattern and stores the result in the
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database. Then it subtract each pattern from the truncated sensor input and obtain the results. As

we can see, even though half of the images are not available, one can still infer that the query data

is from individual A, as the estimated noise is a more “typical” pattern of Bernoulli 1/10, and on

the other hand if the query is from individual B, it is a very unusual or “atypical” situation. The

following theorem provides the quantitative side of this intuition.

Theorem 3.1 The probability of ĵ 6= j goes to zero as n goes to infinity if

Rc < min(T1, T2)(H(Qx ∗Qz)−H(Qz)− 3ǫ). (3.13)

Proof

There are two situations under which the truncation encoding identification system makes an error:

• The first situation is when (t1,nmin
(j), t2,nmin

) is not in T xy,ǫ
nmin

.

• The second situation is when (t1,nmin
(j), t2,nmin

) ∈ T xy,ǫ
nmin

but there exists at least one other

object index i such that (t1,nmin
j), t2,nmin

) ∈ T xy,ǫ
nmin

and P (ẑ(j)) ≥ P (ẑj).

The probability of the first situation goes to ǫ as n goes large, and ǫ can be chosen to be arbitrarily

small because of the standard properties of jointly typical set and the law of large number. The

probability of the second situation can be upper bounded by the probability that there exists at

least one other individual index i with (t1,nmin(i), t2,nmin
) ∈ T xy,ǫ

nmin
, regardless if the resulting noise

estimate is more likily than the true index or not. Hence the probability of the second condition is

bounded by

∑

j∈1,2,···,Mc

P (j)
∑

z∈{0,1}n

P (z)

P
(

∃i : (xnmin(i),ynmin
) ∈ T xy,ǫ

nmin
|z, i

)

(3.14)

(a)
=

∑

z∈{0,1}n

P (z)P (∃i : (xnmin
(i),y2,nmin

) ∈ T xy,ǫ
nmin
|z)

=
∑

z∈{0,1}n

P (zc
nmin

)P (znmin
)P (∃i : (t1,nmin

(i), t2,nmin
) ∈ T xy,ǫ

nmin
|znmin

)

=
∑

zc
nmin

∈{0,1}n−nmin

P (zc
nmin

)
∑

znmin
∈{0,1}nmin

P (znmin
)
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Figure 3.2: Two Bernoulli 1/2 template patterns at the top, left as A and right as B and their
truncated versions at the second row. Both stored helper data add with the truncated query pattern
resulting in two noise estimates. The last step is to check if resulting noise estimates are typical to
the known noise distribution.
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P (∃i : (t1,nmin
(i), t2,nmin

) ∈ T xy,ǫ
nmin
|znmin

) (3.15)

=
∑

zc
nmin

∈{0,1}n−nmin

P (zc
nmin

)P (∃i : (t1,nmin
(i), t2,nmin

) ∈ T xy,ǫ
nmin

)

(b)
<

∑

zc
nmin

∈{0,1}n−nmin

P (zc
nmin

)





∑

i={2,3,···,Mc}

P
(

(xnmin
(i),ynmin

) ∈ T xy,ǫ
nmin

)





(c)
= (Mc − 1) P

(

(xnmin
(i),ynmin

) ∈ T xy,ǫ
nmin

)

(3.16)

(d)
< (1 + ǫ)2nRc2−nmin(I(X;Y )−3ǫ) (3.17)

(e)
= (1 + ǫ)2−n(min(T1,T2)(H(Qx∗Qz)−H(Qz))−Rc−3ǫ), (3.18)

where

(a) follows from that j is uniformly distributed and all x(j) is independently drawn from the same

distribution;

(b) follows from taking the union bound;

(c) follows from that the terms inside the parenthesis of (3.16) is independent of zc
nmin

;

(d) follows from the property of jointly typical set under the condition that if xnmin
(i) and ynmin

(j)

are independent with the same marginals as P (xnmin
(j),ynmin

(j)), then the probability that

(xnmin
(i),ynmin

) ∈ T xy,ǫ
nmin

≤ 2−(I(Xnmin ;Y nmin )−3ǫ) [20], and elements of xnmin
(j) and znmin

are

i.i.d. hence so are elements of ynmin
;

(e) follows from

I(X;Y ) = H(X + Z)−H(X + Z|X) (3.19)

= H(Qx ∗Qz)−H(Qz). (3.20)

Thus if

Rc < min(T1, T2)(H(Qx ∗Qz)−H(Qz))− 3ǫ, (3.21)

The probability of identification error goes to zero as n goes to infinity.

Corollary In particular, if elements of x(j) are drawn from i.i.d. Bernoulli 1
2 , and noise is from i.i.d.
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Bernoulli q, we have the lower bound of possible Rc to be

Rc < min(T1, T2)(1−H(q))− 3ǫ, (3.22)

where 0 ≤ min(T1, T2) ≤ 1 and H(q) ≤ 1.

Notice that for T1 = T2 = R, the bound (3.22) of Rc is very close to the theoretical inner and outer

bounds computed by Westover [87] and Westover and O’Sullivan [88], where they have shown an

outer bound which is a concave function of R and is slightly above but very close to the straight line

R(1−H(q)).

Robustness of Truncation Encoding

Here we discuss another interesting example where the noise distribution Qz is partially known. We

assume that each element of x(j) is i.i.d. drawn from the uniform distribution over GF (r). We

assume that each element of z is i.i.d. drawn from a distribution Qz, but only Qz(0) = 1 − q is

known that each element of z takes value 0 with probability 1− q but the probability mess of other

values are unknown. We want to find the least upper bound on Rc among all such distributions

given R = min(T1, T2) using truncation encoding. This is a constrained optimization problem

max
Qz

H(Qz) subject to
∑

k∈GF (r)

qk = q, qk ≥ 0 ∀k (3.23)

where qk = Qz(k). The maximum can easily be shown to be achieved for qk = q
r−1 ∀k 6= 0. The

least upper bound of Rc is then

R

(

log r + (1− q) log(1− q) + q log

(

q

r − 1

))

, (3.24)

where all logarithms are taken base 2.
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Identification versus Reconstruction

Note that there are noticeable differences between identification and lossless source coding with side

information. The bits useful in identification systems are different from bits useful for lossless source

coding. Also even if a joint lossless source code is available, it might not be good for identification.

Given two correlated sequences x and y, the achievable rate region of lossless source codes with side

information obtained by Ahlswede and Körner [5] is

Rx ≥ H(X|V ), (3.25)

Ry ≥ I(Y ;V ), (3.26)

where V is an auxiliary random variable and X−Y −V is a Markov chain. For x being Bernoulli 1
2 ,

and y = x+z where z is Bernoulli q, Ry = 1 and Rx = H(q) is an achievable rate pair to reconstruct

x and hence reconstruct z. However, Theorem 1 shows that it is not always necessary to reconstruct

entire x or z for identification. Also theorem 1, [87], and [88] all show that even if lossless coding is

possible for a given identification system with T1 = Rx, T2 = Ry, it is not good for identification if

the compression rates are below the required bounds. A large sensor compression rate T2 = Ry = 1

alone does not yield good performance because even if it is sufficient to reconstruct the true noise

z, it is not sufficient to suppress the probability that there exists another pattern which is jointly

typical with a sequence matching the compressed database and sensor data. From a linear coding

point of view with G for encoding x, the above argument means that the cardinality of each coset

of G is too large to prevent that for all the 2Rc − 1 false objects, the coset G(x(j) + y) does not

contain a sequence which is jointly typical with x(j).

3.1.2 Identification System Designs Using Linear Codes for General

Additive Noise Models

Although the truncation encoding works well for i.i.d. Bernoulli patterns under i.i.d. Bernoulli noise

conditions, we shall see that identification systems using linear codes or ensemble of linear codes, can

be proven to work reasonably well in general noise models. To see this, let us assume that elements

of patterns are i.i.d. drawn from the uniform distribution over GF (r), denoted as Q̄x. The additive
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noise sequence is drawn from a distribution whose mean entropy is nRz for some 0 < Rz < 1. Under

this loose constraint which allows nonstationary noise distributions, it might not be sufficient to have

good statistical properties for identification by simply computing the first nmin elements of the noise

sequence. Notice that when an low density parity check (LDPC) matrix is used for compression,

the codes used are viewed as low density generator matrix (LDGM) codes, which are also known to

have good performance for source coding and channel coding [32] [95]. Under the pattern and noise

assumptions stated above, one can use LDPC codes to design good identification systems as stated

in the following Theorem 2.

By good ensemble for generating LDPC matrices, we mean that the ensemble and noise average

block decoding error goes to zero as n goes to infinity. By good identification system design we mean

that the ensemble and noise average identification error goes to zero as n gets large.

Theorem 3.2: If there exists a good ensemble for generating LDPC matrices of rate R = min(T1, T2),

alone with a syndrome decoding algorithm under a noise distribution with entropy nRz, then there

exists a good identification system design using the same LDPC matrix ensemble and syndrome

decoding algorithm for all Rc < min(T1, T2)−Rz.

The proof is omitted since it follows directly from the following Theorem 3, as LDPC codes being a

special case of linear codes.

Theorem 3.3 If there exists a good ensemble of linear codes of rate R = min(T1, T2) and a decoding

algorithm for a noise distribution with entropy nRz. Then for all Rc < min(T1, T2)−Rz, there exists

a good pattern identification system design using the generator matrix of the linear block code, and

the decoding algorithm as noise estimation algorithm under the same noise distribution.

Proof To prove theorem 3, we start by constructing a system design that utilizes a good linear code

and the corresponding decoder, and then we show that the system achieves the stated performance.

Without loss of generality, let us assume that T1 ≤ T2. Database compression is done by using H,

denoting a parity check matrix generated by the “good” linear code ensemble, such that t1(j) =

Hx(j). sensor compression is done by a matrix G = [HT 0]T , where 0 is simply the zero matrix.

Let d(·, ·) denotes the syndrome decoding algorithm associated with the linear code ensemble. For
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Figure 3.3: Identification using a linear code and its decoder

each individual index i, the identification computes ẑ(i) = d(t1(i), t2), and selects i that maximizes

P (ẑ(i)). The system makes an error if for the true index j, there exist some i such that P (ẑ(i)) ≤

P (ẑ(j)).

Similar to the proof of Theorem 1, we bound the probability of error of this system from above by

the probability that there exists an index i, the resulting noise estimate ẑ(i) is typical, or for the

true index j, ẑ(i) is not typical. The typical set T z,ǫ
n is defined as

T z,ǫ
n = {z :

∣

∣

∣

∣

1

n
log P (z)−Rz

∣

∣

∣

∣

< ǫ} (3.27)

Because the probability of z(j) /∈ T
z(j),ǫ
n is ǫ which can be chosen to be arbitrarily small as n gets

large, and the decoding algorithm for inferring ẑj is good that ẑj = z(j) almost surely, we focus on

the probability of index estimation error that there exist some ẑ(i) ∈ T z,ǫ
n . The probability of index
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estimation error is less than

Mc
∑

j=1

P (j)
∑

z∈T
z,ǫ
n

P (z)P (∃i : ẑ(j) ∈ T z,ǫ
n |z, i) (3.28)

=
∑

z∈T
z,ǫ
n

P (z)P (∃i : ẑ(j) ∈ T z,ǫ
n |z) (3.29)

=
∑

z∈T
z,ǫ
n

P (z)P (∃i : d(t1(j), t2)) ∈ T z,ǫ
n |z) (3.30)

(a)
=

∑

z∈T
z,ǫ
n

P (z)P (∃i : d(0,H(x(j)− x(1) + z)) ∈ T z,ǫ
n |z)

(b)
=

∑

z∈T
z,ǫ
n

P (z)P (∃i : d(0,H(x̃)) ∈ T z,ǫ
n ) (3.31)

(c)

≤ 2nRc

∑

z∈T
z,ǫ
n

P (z)P (d(0,H(x̃)) ∈ T z,ǫ
n ) (3.32)

(d)

≤ 2nRcP (d(0,H(x̃)) ∈ T z,ǫ
n ) (3.33)

≤ 2nRc

∑

z̃∈T
z,ǫ
n

P (Hx̃ = H z̃|z̃) (3.34)

= 2nRc

∑

z̃∈T
z,ǫ
n

2−nT1 (3.35)

(e)

≤ 2−n(T1−Rz−Rc−ǫ), (3.36)

where

(a) follows from the construction of G based on H.

(b) is because elements of x(j) and x(1) both are i.i.d. from the uniform distribution over GF (r),

and x(j) and x(1) are independent of each other and independent of z, so that elements of

x(j)− x(1) + z are also i.i.d. and uniformly distributed, denoted as x̃;

(c) follows from union bound and there are totally 2nRc − 1 terms in the sum;

(d) follows from that x̃ is independent of z, see (b);

(e) The cardinality of T z,ǫ
n has upper bound 2n(Rz+ǫ). Hence the probability of index estimation

error goes to zero as n goes to infinity if

Rc < min(T1, T2)−Rz − ǫ. (3.37)
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Note that clearly if the complexity of the decoding algorithm is O(f(n)), the complexity of the

identification system per object is also O(f(n)). Hence Theorem 3 not only connects good linear

code design to good identification system design, it also connects low complexity algorithms for

decoding linear code to noise estimation in identification systems.

LDPC codes can be used for non-i.i.d. noise. For example, Eckford, Kschischang, and Pasupathy

[24] analyzed LDPC codes for Gilbert-Elliot Channels, which are binary symmetric channels with

crossover probability depending on Markov processes, and Nicola, Alajaji, and Linder [58] developed

decoding algorithms for LDPC codes with a queue-based channel. Based on Theorem 3 and [60],

LDPC codes with the algorithms by [24, 58] can be used for good identification system design for

those noise models in identification systems.

3.2 Optimal Trade-off Between Identification and

Secrecy-Key Binding Using Linear Codes

We now consider the trade-off between biometric identification capacity and secret binding capacity.

As discussed in the previous chapter, this is an important template protection design under the

catagory of biometric cryptosystems. We focus on designing systems that can be proved to achieve

good performance utilizing good linear codes. In this problem, for each individual enrolled, a

template of a biometric trait is measured and a secret is selected, independent of the identity and

measured template. Both the template and the secret are used to generate the helper data which is

stored in the database. Note that the template and secret are themselves not stored in the database.

During identification, the biometric system receives a query signal. The goals of the system are to

infer the identity to which this query belongs, and recover the secret of this individual. The system

requirements are that the helper data contains a negligible amount of information about the secret,

and the identification error should be small. The questions of interest are how many individuals

can be enrolled in the systems, how many secrets can be generated, and what the trade-off between

them are. The overall system is illustrated in Fig. 3.4. Note that only attacks at the database

are considered in this section, which is a degenerated case of the model discussed in the previous

chapter.
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Figure 3.4: The identification and secret binding system

In the following sections, capital case denotes the random variables, lower case denotes realizations

of random variables, and bold case denotes sequences and vectors. The biometric template of each

individual is denoted as a length n sequence xj = (xj1, · · · , xjn) ∈ Xn where j ∈ {1, · · · ,MJ} is

the index of the individual and MJ is the total number of individual enrolled in the system. Each

template xj is modeled as a realization drawn independent and identically from a biometric source

random process governed by a sequence of distributions pn
X, whose entropy rate is assumed to exist.

Note that X is independent of the index j. The query signal y ∈ Yn is modeled as a noisy version

of a biometric template drawn from a sequence of distributions pn
Y|X, that the query signal y can

be thought of as the output of a template x passing through a noisy channel. When the noise is

additive and independent of the source, we denote the additive noise as z drawn from a sequence

of distribution pn
Z such that y = x + z. Throughout this paper, we focus on discrete cases, and X

and Y are fields. In practice, they may be integers as a result of quantization. Each individual is

assumed to be equally likely to present the query input that p(i) = 1
Ms

.
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For each individual j, one template is measured and a secret is uniformly drawn from a set S

independent of one another, the individual indexes j, and the templates X(j). The cardinality of

S is denoted as Ms. A large Ms suggests that it is harder to guess the secret of an individual and

hence the system is safer. The measured template and selected secret are used to generate the helper

data which will be enrolled and stored in the database with the index. This process is modeled as

the encoding part of the system: an encoder function f takes an input x(j) and a secret s(j) ∈ S to

produce the helper data

t(j) = f(s(j),x(j)). (3.38)

The identification process is modeled as a decoder mapping g which takes the query y along with S

to produce an estimate of subject index î and an estimate of the secret ˆs(j)

(ĵ, ŝj) = φ (y, t(1), · · · , t(n)) . (3.39)

Note that the decoder does not have any knowledge about what are the realizations of the secrets,

but only the set S from which they are drawn. The system requirements of small information leak-

age about the secret from helper data, small identification error, and design for a large number of

individuals and secret choices can then be cast as an information theoretic problem.

Definition 1 Achievability : A pair of identification rate and secrecy key rate (RJ , T2) is achievable in

the biometric identification and secret binding setting if for all δ > 0 and for n large enough, there

exists an encoder f(·) and a decoder φ(·) such that:

Pr
(

(ĵ, ˆs(j)) 6= (j, s(j))
)

≤ δ (3.40)

1

n
log MJ ≥ RJ − δ (3.41)

1

n
log MS ≥ T2 − δ (3.42)

1

n
I(S(j);T(j)) ≤ δ ∀j. (3.43)

The achievable rate region is the set of all achievable rate pairs and is denoted as R. In the work of

Ignatenko and Willems [36, 89], the achievable rate region of i.i.d. sources with independent i.i.d.
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additive noise is proved to be:

R = {(RJ , T2) : 0 ≤ RJ + T2 ≤ I(X;Y )} . (3.44)

Note that the X and Y are not in bold case, as the source and noise are assumed to be i.i.d. in their

derivation. In particular, they also show that for i.i.d. Bernoulli 1
2 source with i.i.d. Bernoulli noise

q independent of the source, a simple linear code is able to achieve the optimal rate region [89].

3.2.1 Summary of Results

We summarize the results and contribution of this section as three main theorems. The entropy

rates of distributions pn
X, pn

Y, pn
Z, pn

X,Y, and the conditionals pn
X|Y, pn

Y|X are assumed to exist. Before

we present the key theorems, we introduce the following three definitions.

Definition 3.3 A sequence of source codes is said to be good for a sequence of source pn
X if it

asymptotically achieves the optimal lossless source coding rate H(X ).

Definition 3.4 A sequence of decoders is said to be good for a good sequence of source codes of pn
X if

it can reconstruct the typical sequences of the sequence of pn
X with probability 1− ǫ(n), where ǫ(n)

approaches zero as n gets large.

Definition 3.5 A good sequence of universal source codes for two sources pn
X and pn

Z asymptotically

achieves optimal lossless source coding rates for both sources.

The main results are as follows.

Theorem 3.4 For arbitrary pn
X,Y with all entropy rates assumed to exist, the achievable rate region

of identification and secret binding trade-off is

Ra =

{

(RJ , T2) : RI + T2 ≤
1

n
I(X;Y)

}

. (3.45)

Comment: The converse proof is a direct generalization of Ignatenko and Willems [35, 89], and a

special case of the result in the previous chapter.
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Theorem 3.5 If there exists a good code for a source pn
X with a good decoder, a system can be

designed to achieve optimal identification and secret binding trade-off as in eq. (3.45) for arbitrary

pn
Y|X if the entropy rates exist.

Comment: Theorem 5 requires a good decoder for source X, whose entropy rate may be high. In

practice, there may not be a low complexity decoder available. Thus one may choose a suboptimal

system design that only requires a simpler decoder, which motivates the next result.

Theorem 3.6 Assume the query noise is additive and independent of the template source. If there

exists a good universal code for sources pn
X and pn

Z with good decoder only for pn
Z, then a system

can be designed to achieve the rate region

R2 = {(RJ , T2) : RJ + T2 ≤ H(X )−H(Z)} , (3.46)

where H(X ) and H(Z) denote the entropy rates of pn
X and pn

Z.

Comment: This Theorem requires only a decoder which is good for Z, whose entropy rate is usually

smaller than that of X in practice. It is easier to build a low complexity practical decoder for a

smaller entropy rate distribution. However there is a small loss in the performance. Several results

on universal linear codes are available, such as the seminal paper by Csiszár [21]. As shown by

Theorem 1, we know that R2 ⊆ Ra. For example, for binary symmetric Bernoulli source p and

binary symmetric noise q, it is easy to show that R2 is strictly contained in Ra.

3.2.2 Converse for Theorem 4

The converse proof presented here is a generalization of the converse proof for i.i.d. source and noise

models proved derived by Willems and Ignatenko [89]. We observe that their proof can be readily

applied to arbitrary source and noise distributions as long as their entropy rates exist. Despite the
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result is a special case of the general result in Chapter 2, we here present a specific proof for the

converse of Theorem 4, while is easier to understand.

We are interested in the error probability Pe = P
(

(ĵ, ˆs(j)) 6= (j, s(j))
)

, where (ĵ, ˆs(j)) = φ (y, t(1), · · · , t(n)).

From Fano’s inequality we know

H(j, s(j)|Ĵ , ŝJ ) ≤ 1 + Pe log |MJ ||MS |

= 1 + Pen(RJ + T2)

≤ 1 + δn(RJ + T2), (3.47)

where the last inequality follows from the error constraint of system. The converse proof is derived

as follows:

H(J,S(j))
(a)
= I(J,S(j);T(1), · · · ,T(MJ ),Y) + H(J,S(j)|T(1), · · · ,T(MJ ),Y, Ĵ , ŜJ )

(b)

≤ I(J,S(j);T(1), · · · ,T(MJ ),Y) + H(J,S(j)|Ĵ , ŜJ )

The second term H(J,SJ |Ĵ , ˆS(J)) can be bounded using Fano’s inequality. We then focus on the

first term:

I(J,S(j);T(1), · · · ,T(MJ ),Y)

= I(J,S(j);T(1), · · · ,T(MJ )) + I(J,S(j);Y|T(1), · · · ,T(MJ ))

(c)

≤ I(J,S(j);T(1), · · · ,T(MJ )) + H(Y)−H(Y|X, J,S(j),T1, · · · ,T(MJ ))

(d)
= I(J,S(j);T(1), · · · ,T(M(j))) + I(X;Y)

(e)
=

1

MJ

M(j)
∑

j=1

I(S(j);T(j)) + I(X;Y)

(f)

≤ nδ + I(X;Y), (3.48)

where

(a) By the definition of mutual information, which is assumed to exist. Note that Ĵ , ˆS(j) is the

decoder output which is determined by H1, · · · ,HMJ
,Y.
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(b) Conditioning reduces entropy.

(c) Rewriting mutual information into entropy, and adding an X term where the inequality follows

because conditioning reduces entropy. Assuming all terms exist.

(d) Given X, Y is independent of the remaining terms.

(e) Only T(j) may contain information about S(j).

(f) From the system requirement that I(S(j);T(j)) ≤ δ.

Because H(j,S(j)) = log MJMS = n(RJ + T2), along with equations (3.47) and (3.48), we have

RJ + T2 ≤
1

1− δ
(
1

n
I(X;Y) + δ +

1

n
). (3.49)

When n gets large and δ gets to zero, we have

RJ + T2 ≤
1

n
I(X;Y). (3.50)

3.2.3 Concepts of Linear Code Designs for Identification and

Secret Binding

We describe two linear coding approaches. The two approaches utilize the same encoding strategy;

the difference lies in the decoding capacity requirements. The approach which achieves the optimal

trade-off bound between identification and secret capacity would require a decoding method with

higher computational complexity. The other approach requires less decoding capacity so that more

practical decoders may be used for this system design, but it leads to a suboptimal trade-off.

To design a system preventing information about the secret from leaking through the helper data,

the idea is to use the biometric template signal as a surrogate noise in a additive channel between the

secret and the helper data, while the channel capacity should be zero. The idea is shown in Figure

3.5. Consider the secret and the helper data as two sequences of the same length. The secret is the

channel input and the helper data is the channel output while the channel is the encoding function f

whose noise is characterized by the biometric template. The best channel in this security context has
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Figure 3.5: Biometric templates are used as worst case noise of an additive channel to eliminate
mutual information between the secrets and the helper data.

the mutual information between the input and output is zero. One such channel is a channel of i.i.d.

uniform additive noise. Thus to achieve small leakage, one should map the biometric templates

to i.i.d. uniform sequences with a function f ′, and add the result to the input secret sequences.

Mapping a typical sequence of a random process is analogous to optimal lossless source coding [94].

To identify individuals and estimate the secret, the system utilizes the correlation between the

correct template and the query, and the performance can be proved through standard joint-typicality

arguments and union bounds.

3.2.4 Encoding and Decoding

Based on the design concept described above, the encoding consists of two steps:
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• Map each secret s(j) onto sequences taking values over mathcalX. Since this does not change

the properties of the problem, the notation s(j) is kept to represent the resulting secret se-

quences.

• For each x(j), the helper data is computed as t(j) = Gx(j) + s(j), where G is a nH(X)
log |X | by n

generator matrix with certain requirements described later and H(X) is the entropy rate of

pn
x.

There are two decoding approaches proposed in this section.

• Optimal trade-off achieving approach: the decoder checks if there exists a helper data t(ĵ) and

a sequence ˆs(j) ∈ S such that from t(ĵ)− ˆs(j), the reconstructed template x̂ is jointly typical

with the input query y . The decoder then outputs the satisfying t(ĵ) and ˆs(j). If there are

multiple candidates, the decoder picks one randomly.

• Suboptinal trade-off with lower decoder computational complexity : the decoder takes the query

y and checks if there exists a helper data tĵ , a sequence ˆs(j) and sequence ẑ that is a typical

sequence of Pn
Z and satisfies Gẑ = Gy − tĵ − ˆs(j). The decoder outputs the corresponding ĵ

and ˆs(j). If there are multiple candidates, the decoder picks one randomly.

We assume that the source has higher entropy rate than the noise that H(X) ≥ H(Z). The conditions

for the matrix G, or an ensemble of generating G, to achieve the optimal trade-off or near optimal

trade-off with lower decoder complexity are

(1) it achieves near optimal lossless source coding of source X, and

(2.a) most typical sequences x can be recovered from Gx.

(2.b) most typical sequences z can be recovered from Gz.

The first condition is needed to ensure that there is only a negligible amount of information leaked

from t about s, i.e. I(T;S) approaches zero as n gets large. The first condition is required by both

approaches. Condition (2.a) is only required by the optimal trade-off approach where the decoded

ˆx(j) has to be computed and checked for joint typicality with the query y. Condition (2.b) is only

57



needed for the near optimal trade-off with lower computational demand, where computing the noise

vector z is needed.

3.2.5 Secrecy Leakage Analysis

We have to check that T leaks negligible information about S, and conditions when the probability

of identification and secret estimation error approaches zero. For both approaches, the secrecy

leakage analysis is the same. We show the achievable region and error analyses of both approaches

separately.

By condition (1) of the previous subsection, each sequence of the set

GX =
{

w : w = Gx,∀x ∈ T n
P (X)

}

. (3.51)

is nearly drawn from the i.i.d. uniform distribution over X . This is because each typical sequence is

almost equally likely and there are around 2nH(X) typical sequences, which is the number of possible

outcomes of G. Thus we have

H(S|T) = H(S|GX + S)

(a)
= H(S) + H(GX)−H(S + GX)

(b)

≥ H(S)− nδ

where (a) is because S and GX are independent, and (b) is because GX is almost i.i.d. uniform

over X . Hence we have 1
n
I(S;T) ≤ δ. This means that the helper data leaks a negligible amount of

information about the secret.

3.2.6 Achievable Region of the Optimal Trade-off Approach

The system error comes from the following two conditions:
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• For the correct individual j with all possible choices of ˆs(j), there does not exist a reconstructed

sequence x̂(j) which is jointly typical with the query y.

• There is another combination of individual l and secret s ∈ S such that the reconstructed x̂(l)

is jointly typical with the input query y.

The first type of error is bounded by the probability of the following events:

P
(

(x(j),y) /∈ T n
p(X,Y)

)

+ P
(

Gx /∈ D| (x(j),y) ∈ T n
p(X,Y)

)

, (3.52)

where D ⊆ GX is the set of decodable sequences by the decoding algorithm. The first term ap-

proaches zero as n gets large. The second is negligible because the decoder is good, so condition

(2.a) described in subsection 3.2.4 is satisfied.

The second type error e2 is that there exists another t
l̂
with a secret s ∈ S so that x̂ = φ(t̂(j), sk)

is jointly typical with the query y, where φ(·, ·) is the decoding algorithm. We have:

P (e2)
(a)

≤
∑

(l,s) 6=(j,s(j))

P
(

(φ(t̂(l), s),y) ∈ T n
p(X,Y)

)

(b)
=

∑

(l,s) 6=(j,s(j))

P
(

(x′,y) ∈ T n
p(X,Y)

)

(c)
=

∑

(l,s) 6=(j,s(j))

2−I(X;Y)+nδ

= 2−n( 1
n

I(X;Y)−RJ−T2)−δ,

where x′ is a sequence with distribution p(X) but independent of y, and

(a) the union bound is applied;

(b) follows from condition (1) in subsecition 3.2.4 and each typical sequence is almost equally

likely;

(c) is due to the fact that if x′ has the same distribution as the marginal of x but independent of

y, the probability that x′ and y is jointly typical is 2−I(X;Y).
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Thus the second type of error goes to zero as long as RJ + T2 < 1
n
I(X,Y) and we obtain Theorem

2 which matches the converse result.

3.2.7 Achievable Region of the Suboptimal Approach with Lower De-

coder Complexity

The probability of error comes from

• For the correct individual j, the decoder can not find a ẑ which is a typical sequence of Pn
Z

and satisfies Gẑ = Gy − t(ĵ)− ˆs(j).

• There is another combination of individual and secret such that there exists a ẑ which is a

typical sequence of Pn
Z and satisfies Gẑ = Gy − t(l̂)− ŝ.

The first type of error happens when the noise z is not typical or Gz is not decodable when z is

typical, and both cases have negligible probability as the decoder is assumed to be good for pn
Z. The

second condition happens if there exists a false pair of identity and secret so that Gy−t(l)−s is the

syndrome of a typical sequence of pn
Z. There are nH(Z) out of nH(X) syndromes of G that contain

one and only one typical sequence of pn
Z when the source code is good for pn

Z. Since h(j) and sk

are i.i.d. uniform over X , the probability of each pair of (l, s) resulting in a syndrome of a typical

sequence of pn
Z has probability 2n(H(Z)−H(X)). The union bound of the second type of error e2 is

P (e2) ≤
∑

(l,s) 6=(j,s(j))

2−n(H(X)−H(Z))

(a)
= (MSMJ − 1)2−n(H(X)−H(Z))

≤ 2−n((H(X)−H(Z)−RJ−T2),

which goes to zero when RJ + T2 < H(X)−H(Z|X). This proves Theorem 3.
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3.2.8 Conclusions

We proposed two system designs using linear codes for identification and secret binding trade-off.

One of the designs is proved to achieve the optimal trade-off for general source and noise distributions.

This design may require higher decoder complexity, while some practical applications may require

low computational complexity. Thus we also proposed a second system design which uses decoders

with lower complexity and prove its performance for general sources with additive noise. Also we

generalize previous achievable rate region results to general source and noise distributions. A future

direction is to design systems which consider information about the templates leaked from helper

data, and its trade-off with identification and secret capacity.
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Chapter 4

Robust Informative Feature

Selection for LDV and ECG

Biometrics

Laser Doppler Vibrometry (LDV) measures vibrations on the surface using the Doppler shift. LDV

signals are recorded in a non-contact fashion and the unobtrusiveness is a major benefit of this

technique as a biometric. LDV is targeted at the skin above the carotid artery due to arterial wall

movements associated with heartbeat. In contrast to the electrocardiogram (ECG), which measures

electrical activity of the heart through electrodes directly attached to the skin, the LDV signal is

derived from mechanical movements. Both signals have been proposed for biometric applications

[12, 13, 14, 9, 37, 46].

The LDV and ECG pulse signals provide information of the coarse aspects of the cardiac signal,

including heart rate and heart rate variability, as well as more fine-grained and advanced features

reflecting extremely detailed aspects of cardiovascular system. The LDV and ECG signals are nearly

impossible to mimic. In addition, liveness and stress information provided by both signals are also

useful against forgery.

Both the LDV and ECG signals of the same individual change from one occasion to the next, affected

by factors such as physical exercise, mental stress, and perhaps other unobservable states. Indeed,

several identification protocols based on the LDV signal produce a low equal error rate (EER) in
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the range of 0.5% to 3% if training and testing data are recorded consecutively on the same day,

but performance degrades to 19% or worse if testing data is collected one week to six months after

the training session [13]. One reason for this performance degradation is that the physiological

properties of the individual change gradually, and that these changes become more appreciable as

time between the training and testing sessions become large. Similar performance degradation has

also been observed in ECG biometrics, as discussed later in section 4.6. One way to overcome

this issue is to use training data collected from multiple sessions such that gradual change can be

modeled; however, this approach may not always be practical in actual use as the cost for repeated

controlled measures is high and is intrusive to the users’ activities. Methods that require only a few

sessions to achieve proper performance are needed.

We propose a new robust feature selection method that takes into account effects of changes in

statistics from training data to testing data for LDV and ECG biometrics. The idea is to jointly

consider how well a feature distinguishes an individual from others and how stable this feature

is. The idea of robust feature selection has evolved from an information-theoretic approach for

dimensionality reduction [71] and its applications [13], as well as literatures on feature selection

and sample size effects on recognition system performance [63, 31]. Extended from classical works,

the proposed approach attempts to encompass scenarios where probability densities of some features

vary from session to session gradually. When two training sessions are available, this method reduces

EER to single digits with testing data collected in a period as short as 4 s. When 12 s are available

for collecting testing data, EER can be further reduced to 7.4%. The EER is reduced by at most

21% relative to no selection, and 57% relative to the best approach based on two training sessions

described in [12]. Further optimization on the feature extraction and selection methods leads to a

cross session performance level of 6.5% for LDV and ECG biometrics, which are the leading results

as of January 2012.

The rest of this chapter is organized as follows. Section 4.1 introduces basic procedures for LDV

signal and ECG signal acquisition and preprocessing, training and testing data set, and experimental

conditions. Section 4.2 provides an example of using a single training session. Section 4.3 describes

the concepts of robust feature selection, and the implementation of a robust feature selection algo-

rithm for the LDV based biometric system. Section 4.4 summarizes simulation results of the LDV
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signal. The robust feature selection method for LDV biometric is concluded with discussion in 4.5.

Section 4.6 presents a comparative study of methods in ECG biometrics.

4.1 Laser Doppler Vibrometry Signal Acquisition and

Preprocessing

LDV data were obtained from 191 individuals who were asked to sit quietly for 5 min on three sepa-

rate occasions. A Polytec PSV400 Laser Doppler Vibrometer, positioned at a distance of 91 cm from

the recording location, was targeted at a site overlying the carotid artery, at a level approximately

1 to 2 cm below the right carotid sinus. Photographic records were obtained to ensure cross-session

targeting constancy. For this study, target locations were marked with a small patch of retroreflec-

tive tape, and we have since confirmed that comparable data can be obtained from untreated skin.

In the later comparison study, ECG data was obtained from 285 individuals, including the previous

191 individuals.

Recorded signals are sampled at 10 kHz and digitized with a Biopac MP 150 recording system. Sig-

nals are processed to suppress speckle dropout artifacts, and segments of signals related to individual

heartbeats are extracted and downsampled to 1 kHz. Extracted carotid pulse signals are set to 700

ms in duration with the major velocity peak of each carotid pulse signal aligned at 200 ms. Figure 1

shows LDV pulse signal signals from two different individuals from two sessions. LDV pulse signals

from the same individual have the same color, with solid line and dash line indicating different

sessions. Wave form differences between individuals can be seen as well as differences between pulse

signals from the same individual but different sessions. The pulse signals are normalized so that

each has zero mean and unit energy.

The training data set consists of LDV signals from 191 individuals from two recording sessions,

separated by at least one week up to a month. In each session, there are 150 LDV pulse signals, each

corresponding to a single heartbeat, for each individual. A length 1102 feature vector is obtained

from each LDV pulse signal by a prolate spheroidal based time-frequency decomposition method

described later in this section. Hence, for each of the 191 individuals, the training data set consists

64



0 100 200 300 400 500 600 700
−1000

−500

0

500

1000

1500

Time (ms)

V
ib

ra
ti
o

n
 V

e
lo

c
it
y

Figure 4.1: LDV carotid pulse signals from two individuals from two sessions.

of 150 length 1102 vectors corresponding to 150 LDV pulse signals from each of the two sessions.

The testing data set consists of LDV signals from the same 191 individuals from a third recording

session, separated by one week to six months from either of the two training sessions. We use up

to 150 LDV pulse signals for each individual. Feature vectors are by the same method used in the

training data.

Each LDV pulse signal abbreviated to 688 ms is parsed into 38 short time fragments, 96 ms each

with 80 ms of overlap between consecutive short time fragments. We downsampled the LDV signals

to 1000 Hz so that each small time fragment is a length 96 vector. The short time fragments are then

projected onto a 29 dimensional space whose bases are discrete time prolate spheroidal functions

with complex coefficients. In our simulations, discrete time prolate spheroidal basis functions are

singular vectors associated with the largest 29 singular values of a matrix W whose (u, v) element is

Wu,v = e−jπ
(u−1)(v−1)

L , u ∈ 1, · · · , U ; v ∈ 1, · · · , V , (4.1)
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where U = 96 is the length of each small time fragment, V = 29 is total number of prolate spheroidal

basis functions, and L selected to be 2U . The log of magnitudes of coefficients are taken such that

each LDV pulse signal is represented as a length 1102 real number feature vector.

In practice, there may be constraints on data acquisition such that only a few heartbeats are avail-

able from a given individual as training data, or from an actual identity verification opportunity.

Biometric performance under time constraints are studied by using subsets of the training and test-

ing data sets. We simulated training data constraints of 6, 12, 37, and 150 consecutive heartbeats,

and testing data constraints of 1, 4, 16, and 150 consecutive heartbeats. Overlapping sequences of

heartbeats are used for both training and testing. Assuming an average heart rate of 75 beats per

minute, this corresponds to 5, 10, 30, and 120 s for training and 1, 4, 12, and 120 s for testing.

Actual acquisition times depended on each individual’s heart rate.

4.2 LDV Biometrics Based on Single Training Session

We here illustrate the challenge of cross-session authentication in LDV and ECG biometrics and

the key observations. A scenario of training on one session and testing on another is presented for

the LDV biometrics. Authentication performance of a normal model is used [14]. This method

yields the best performance up to December 2007, prior to the robust feature selection method

was developed [12]. In this model, each feature (bin) of a individual is assumed to have the same

variance as a nominal model. The empirical mean for each feature is obtained using maximum

likelihood estimation. For the ith individual, the mean of the kth feature is calculated as mk,i =

1
150

∑150
n=1 xn,k,i, where xn,k,i denotes the k-th feature of the n-th training LDV pulse of the i-

th individual. The nominal, population, mean and variance are calculated for the kth feature as

mk,0 = 1
191

∑191
i=1 mk,i, σ

2
k,0 = 1

191

∑191
i=1(mk,i −mk,0)

2. The decision-making is based on the plug-in

hypothesis test and the null-hypothesis is chosen to be the nominal mean feature vector. During

testing, the testing pulse signal is decomposed into a feature vector x̄ with the same method as

training. The log-likelihood ratio becomes normalized mean square error, which is calculated as

Si =

1102
∑

k=1

[

− (x̄k −mk,i)
2 + (x̄k −mk,0)

2

]

. (4.2)
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Figure 4.2: FMR and FNMR of training on session 1 and testing on sessions 1, 2 with normal model
using a single heartbeat.

The thresholding dimensionality reduction method can increase recognition performance by selecting

features which have distances to the nominal model greater than a threshold κ > 0 [71]. The distance

is calculated with a thresholding function d(·, ·). The nominal model is used as the null hypothesis,

which represents the population distribution. The selection criterion is to keep a feature for a

particular individual only if the relative entropy, i.e. the Kullback-Leibler (KL) divergence, between

the individual model and the nominal model is greater than a threshold. For Gaussian distributions

with equal variances, the thresholding function becomes d(p0, pi) = D(p0||pi) = (mk,0−mk,i)
2/σ2

k,0,

for the kth feature. Using the selected features, a distinct model for each individual is created. The

modified log-likelihood ratio is calculated as

Si =

1102
∑

k=1

[

− (x̄k −mk,i)
2 + (x̄k −mk,0)

2

]

Id(p0
k
,pi

k
)>κ. (4.3)

Figure 4.2 shows the performance of the log-normal model using a single testing heartbeat training

on single session. The EER is 2.6% for the within session test, 14.4% for inter-session testing with

all bins selected. Results indicate that for a threshold that leads to the selection of 71% of the bins
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on average, the EER for inter-session testing is reduced to 14.1%, and 12.5% using 4 heartbeats.

This represents a marginal improvement over the case when all the bins are used. Note that the

false non-match rate (FNMR) is very consistant across experimental settings, and what drives the

overall performance down is the drastic increase in false reject rate (FRR). This indicates that the

instability, or varibility, of the statistics of the LDV features of the same individual across different

sessions is the primary source of error and a key challenge in developing the LDV biometrics. Similar

perfromance degredation is also observed in ECG biometrics in cross session studies.

4.3 Robust Feature Selection against State Uncertainty

The results in Figure 4.2 can be improved if an approach is developed to account better for the

instability of the statistics of the features within an individual across sessions. In this section, we

present the concept of robustness in feature selection for LDV signal. A computational method

for quantifying robustness and realizing this robust feature selection concept for LDV and ECG as

biometrics is described. We evaluate this approach under several training and testing time constraints

in terms of number of heartbeats available on LDV biometrics.

4.3.1 Motivation and Concepts

Assuming that we have data from two sessions with a given individual, the goal of robust feature

selection is to choose features that provide more information to distinguish an individual from others

against the uncertainty caused by variation of the features. Note that this does not mean that the

features selected need to have both high distinguishability and stability. Consider six hypothetical

examples of a two dimensional feature of data collected from two individuals in two sessions shown

in Figure 4.3 to illustrate varying degrees of distinguishability and stability. The data points in the

same color are from the same individual.

(a) In this best case scenario, the feature provides both high distinguishability and stability. The

data points from two sources separated apart and form a single cluster for each source. Features

of this type are very rare in LDV and ECG biometrics.
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Figure 4.3: Illustration of features with different degrees of distinguishability and stability.

(b) This feature provides high distinguishability, but has lower stability. The data points from

different sources are still separated widely, but for a given individual, the data from different

sessions appear to form two clusters. However, by considering the empirical centers of two data

sources, marked as yellow and purple dots in the figure, and drawing two circles at the centers

that enclose the two means of data of different sessions, if the mean of each source in a testing

session lies within the circle, two sources can still be distinguished by using this feature. This

is a situation in which distinguishability is “stronger than” instability. By adjusting the radii

of the circles, one can have a more restricted or loosened selection criterion.

(c) This feature is stable, but provides slightly less distinguishability. A quantitative selection rule

can be developed by choosing a distinguishability measure and adjusting a threshold.

(d) The data points form four clusters, each corresponding to a source at a session, in a feature

with high empirical distinguishability but notably low stability. This is an important example

since if possible variations of states that govern data statistics are ignored, an overtrained

classifier can be found by finding a decision boundary that separates data from different sources.

However, physiological states are usually continuous and observed data from different states of
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a single source should look connected. In this case, consider the purple and yellow lines that

join two means of data from the same source but different sessions. Data from the two sources

in a third session may have means anywhere alone these lines, resulting in highly overlapped

data clusters. As argued in (b), the distinguishability of this feature is diminished by its acute

instability.

(e) The distinguishability is already weak in this case, so that when taking its low stability into

account, the usefulness of this feature is diminished.

(f) This is a clear case of a useless feature that while stable, exhibits no distinguishability.

In summary, when selecting features with slowly varying states that remain nearly constant within

a session but change across sessions, neither distinguishability nor stability alone can be used to

determine the biometric utility of a feature, as illustrated in cases (e) and (f) respectively. However,

as illustrated in cases (b) and (c), distinguishability and stability must be considered jointly.

4.3.2 Computational Aspects of Robust Feature Selection

The algorithm consists of three steps: (1) learning how data are distributed across sessions and

individuals, (2) quantifying distinguishability and instability of each feature for each individual, and

then (3) selecting robust features. For identity verification, the binary hypothesis testing problem

is to decide if the incoming LDV pulse signal is from the claimed identity j, or from others, i.e.

the general population. Thus the goal of robust feature selection is to select features that can

consistently provide information to distinguish a given individual from the population.

Given an individual, the steps can be computationally realized as shown in Figure 4.4 and the

following.

(1) For the i-th feature, probability densities for each session denoted as f1,i and f2,i are learnt.

Also each feature at each session has a nominal model representing the population density,

denoted as f1,p and f2,p. Moreover, the densities of fusing data from two sessions is denoted

as f12,i and f12,p as the two centers in Figure 4.3.2. The fusion densities can be learnt from

averaging the resulting density, or direct estimation from two session data. The probability
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Figure 4.4: Accessing distinguishability and instablility for robustness. The green line represents the
distinguishability of the feature between the individual model f12,i and the population model f12,p.
The red balls represents the instability of the features, whose radii are proportional to the difference
between densities of two sessions f1,i and f2,i. The red overlap region is inversely propotional to the
robustness of the feature.

densities can be assumed from a parametric family of distributions and can be learnt from

parameter estimation. Also nonparametric density estimates can also be used that are more

robust to model assumptions [76].

(2) The distinguishability of a feature can be measured by how different the fusion densities f12,i

and f12,p are. The difference measure d(·, ·) can be a metric such as the L1 norm, or a distortion

measure where symmetry is not required, such as the relative entropy, i.e. Kullback-Leibler

(KL) divergence. The instablility, on the other hand, can be measured by the difference of two

densities between the same individual across sessions [23]. We denote distinguishability and

instablility as D(i) and I(i) respectively.

(3) Distinguishability and instablility can then be used to determine the robustness of a feature.

For example, if both are quantified by the same difference measure, a simple rule as D(i)−cI(i)

can be used, where c is a constant. This is shown in Figure 4.3.2 that the blue radii represent

the instability of the feature weighted by constant c, the green line is the distinguishability,

and the red circles are the uncertainty balls whose overlap region is inversely proportional to

the robustness of this feature.
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4.3.3 A Robust Feature Selection Algorithm

The features we obtained represent 1102 coefficients resulting from the prolate spheroidal based time-

frequency decomposition. The data distribution is estimated through nonparametric kernel density

estimation. N denotes the number of the LDV pulse signals available in each training session under

various time constraints. Also, xs,n,k,i denotes the value of the kth time frequency component of

the nth LDV pulse signal from individual i from session s. For each feature of each individual, we

obtain an empirical probability density estimate for each of the two sessions by using Gaussian kernel

density estimation[76] with N training values. The densities are denoted as f1,k,i(x) for session 1,

and f2,k,i(x) for session 2, where k is the index of the time frequency components ranging from 1 to

1102, and i is the index of the individual ranging from 1 to 191, such that

fs,k,i(x) = N−1
N

∑

n=1

e
−

(x−xs,n,k,i)
2

σ2
s,k,i

√
2πσs,k,i

, s ∈ {1, 2} (4.4)

σs,k,i = 0.9σ̂s,k,iN
− 1

5 , (4.5)

where σ̂ is the standard deviation of training data xs,n,k,i, n ∈ {i, · · · , N}. The mixture density,

fm,k,i, is computed as

fm,k,i(x) = (2N)−1
∑

s=1,2

N
∑

n=1

e
−

(x−xs,n,k,i)
2

σ2
m,k,i

√
2πσm,k,i

, (4.6)

σm,k,i = 0.9σ̂m,k,i(2N)−
1
5 , (4.7)

where σ̂ is the standard deviation of training data xs,n,k,i, s = 1, 2;n ∈ {i, · · · , N}, and m indicates

that it is a mixture density of the two sessions. Also, for each feature, we use 191k LDV pulse signals

to obtain a population density of the feature for each session. The densities are denoted as f1,k,p

for session 1, and f2,k,p for session 2, where p indicates population densities. Also, overall mixture

densities, fm,k,p, are computed as

fs,k,p(x) = (191N)−1
191
∑

i=1

N
∑

n=1

e
−

(x−xs,n,k,i)
2

σ2
s,k,p

√
2πσs,k,p

, s ∈ {1, 2} (4.8)

72



fm,k,p(x) = (382N)−1
∑

s=1,2

191
∑

i=1

N
∑

n=1

e
−

(x−xs,n,k,i)
2

σ2
m,k,p

√
2πσm,k,p

, (4.9)

σs,k,p = 0.9σ̂s,k,p(191N)−
1
5 , (4.10)

σm,k,p = 0.9σ̂m,k,p(382N)−
1
5 , (4.11)

where σ̂s,k,p is the standard deviation of kth value of all LDV pulse signals from all individuals from

the s session, and σ̂m,k,p is the standard deviation of the kth time frequency component of all LDV

pulse signals from all individuals from both sessions. Hence, each individual has a total of 3306

densities for 1102 features from two sessions and one mixture, and so does the population.

The stability and distinguishability of a feature of an individual can be quantified by comparing the

densities of the individual and densities of the population across different sessions. As discussed in

part 4.3.1, the instability of a feature reflects differences in the data from the same individual or

the population across multiple sessions. Hence, the instability can be quantified by the L1 distance

between f1,k,i and f2,k,i

I(k, i) =
∑

s=1,2

∫ ∞

−∞

|fm,k,i(x)− fs,k,i(x)| dx, (4.12)

and the L1 distance between f1,k,p and f2,k,p

I(k, p) =
∑

s=1,2

∫ ∞

−∞

|fm,k,p(x)− fs,k,p(x)| dx. (4.13)

Here, I(k, i) denotes the instability of feature k of individual i, and I(k, p) denotes the instability of

the densities of feature k of the population. Similarly, the distinguishability can be quantified as

d(k, i) =

∫ ∞

−∞

|fm,k,i(x)− fm,k,p(x)| dx, (4.14)

which measures the distance between the densities of the kth time frequency component of two

sources, the individual i and the population.
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For each individual i and each feature k, we compute objective scores

o(k, i, t) = d(k, i)− t(I(k, i) + I(k, p)), (4.15)

where t is an adjustable parameter from 0 to 2. Then o(k, i, s) is compared with zero and if

o(k, i, s) > 0, feature k is selected for individual i. Thus, higher values of parameter t require greater

levels of distinguishability versus instability for a given feature to be included into the biometric

discrimination model. The set of selected feature indices for individual i is denoted as Fi.

4.3.4 Identity Verification

In the testing phase, extracted LDV pulse signals are decomposed though the same prolate spheroidal

time frequency decomposition used in the training phase, denoted as x̄. For the claimed identity

ī ∈ {1, · · · , 191}, we extract the feature indexes selected for individual ī and their associated mixture

densities, and also the population mixture densities of those features. For each testing LDV pulse

signal at each selected feature, optimal binary hypothesis testing is performed using trained mixture

densities; the score of a selected feature is 0 if the feature rejects claimed identity, and 1 if the feature

accepts the claimed identity:

score(x̄, ī, k) = µ
(

fm,k,̄i(x̄k)− fm,k,p(x̄k)
)

, k ∈ Fī, (4.16)

where µ is the unit step function. The score of a testing LDV pulse signal is computed through

normalized voting so that it is between 0 and 1:

score(x̄, ī) = |Fī|−1
∑

k∈Fī

score(x̄, ī, k). (4.17)

Then the score is compared to a threshold for the final decision if it is tested based on a single

heartbeat, i.e. under 1 s testing data acquisition time constraint. For 4 and 16 heartbeats based

verification, the simple sum rule is used to fuse consecutive individual LDV pulse signal scores, and

then compare to a threshold for decision.
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Figure 4.5: ROC curves for training on 37 heartbeats and testing on 1, 4, 16, and 150 heartbeats with
feature selection. Dots mark the EER: 11%, 8.3%, 7.6%, and 7.0% for 1, 4, 16 and 150 heartbeats.

4.4 LDV Biometrics Results

Identity verification performance in terms of equal error rate (EER) is summarized in Table 1, under

16 training and testing constraints with or without the robust feature selection described in Section

4.3. The relative EER reduction by feature selection is shown in the last four columns of Table

1. The top row indicates training time allowed for collecting LDV signals, with units in s (and

the associated number of heartbeats available). The first column indicates the testing time allowed

and associated number of heartbeats available. Figure 3 shows the receiver operating characteristic

(ROC) curves based on training on 37 heartbeats and testing on 1, 4, 16, and 150 heartbeats.

The “with feature selection” columns of Table 1 show the 16 EERs that are the best results of

different feature selection thresholds t, simulated as described in (4.15). The “without feature

selection” columns are EERs obtained without feature selection. It is clear that with the robust

feature selection, as long as 4 or more heartbeats are available, the EER is under 10% (even for a

training condition which allows for only 5 s to extract 6 heartbeats for each individual). The last

four columns indicate the EER reduction gained by feature selection relative to systems without
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feature selection under different training and testing conditions. For example, when training with

30 s and testing with 12 s of LDV data, EER is reduced from 8.8% (without feature selection) to

7.6% (with feature selection), such that a 8.6−7.6
8.8 = 11% relative reduction of EER is obtained.

The relative reduction from training on two sessions with robust feature selection over training on

a single session described in section 4.2 is 37%.

4.5 Conclusion of LDV Biometrics

We are able to obtain EER performance of less than 10% under various time constrained scenarios

using a robust LDV method which emphasizes the analysis of variations of feature statistics among

training and testing sessions. Robustness is achieved through jointly considering distinguishability

and stability of features across sessions. The results support the utility of LDV measurements as

a novel source of biometric information. Further optimization on the feature generation, i.e. the

decomposition, methods and quantitative measures of robustness lead to a cross session performance

level of 6.5% by Ikenna Odinaka.

Theoretical foundations for the proposed robust feature selection coupled with proposed feature

fusion need to be further studied, as do other distance measures and feature fusion methods. The

chosen L1 distance measure between probability distributions is closely related to the Bayes risk

of binary hypothesis test and the Kolmogorov variational distance [23]. For any two probability

densities h(x) and g(x) over support X , we have

∫

x∈X

|g(x)− h(x)|dx

=

∫

x∈X ,g>h

g(x)− h(x)dx +

∫

x∈X ,h>g

h(x)− g(x)dx

= 2

(

1−
∫

x∈X

min (g(x), h(x)) dx

)

, (4.18)

where the integral of last equality of (4.18) is equal to the probability of error. Thus, voting through

features selected by using the L1 distance to measure distinguishability with a threshold q means

that with k test data sets, the distributions of vote counts of data drawn from h(x) and g(x) should

be distinguished at least as well as distinguishing a binomial with parameter q from a binomial
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with parameter 1− q, under the assumption of features being independent. Besides the congruence

with the L1 distance measure, another possible benefit of using voting for feature fusion lies in its

robustness against outliers among selected features, such as few dominant likelihood ratios from

some features toward the wrong decision. When relative entropy is used as a distortion measure

between densities with the sum of loglikelihood ratios of features as the score, the EER performance

degraded to above 10%.

4.6 Comparative Study of Methods in ECG Biometrics

As the robust feature method yield good results in LDV biometrics, two questions need to be

addressed:

• How well is the performance of the robust feature selection method compare to other methods?

• How do the robust feature methods perform on related biometrics where instability due to

state changes also plays an important role?

Both questions are studied by applying the proposed robust methods to electrocardiogram (ECG)

based biometrics. The use of ECG as a biometric is an emerging field started from the studies

by Biel et al. in 1999 [9], and Irvine et al. [37] and Kyoso and Uchiyama in 2001 [46]. Until

May 2012, there have been over 100 publications on methods for ECG biometrics. This provides a

great opportunity to compare the performance of different methods. Special thanks to our colleague

Ikenna Odinaka who implemented a large number of methods in the literature, optimized the robust

feature method specific for ECG, and carried out a comprehensive study. Note that methods based

on fiducial features were not implemented and not included in the comparison due to following four

reasons [38]:

• No consensus on standards for detection of characteristic points.

• Location of some characteristic points are disproportionately affected by the presence of noise,

even using a fixed fiducial detector.
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• Difficulty in defining the boundaries and peaks of atypical heartbeats usually leads to an

increased failure to enroll.

• Problems with generalizability to larger databases, when the number of features are limited.

4.6.1 A Robust Feature Selection Method for ECG Biometrics

From each ECG pulse signal, we compute a spectrogram which is the logarithm of the square of the

magnitude of the short-time Fourier transform of a normalized ECG heart pulse. In computing the

short-time Fourier transform (STFT), we use a Hamming window of size 64ms, with a step size, which

is defined as the distance between the beginnings of two consecutive windows of 10ms. Thus, there

is an overlap of size 54ms between consecutive time frames. This window size was chosen empirically

so that it yields robust and good single-heartbeat authentication performance in terms of equal error

rate (EER). After computing the STFT, the frequency content was truncated at 250Hz to reduce

boundary effects. The spectrogram is then computed as the logarithm of the squared-magnitude of

the truncated STFT. We refer to the index of each point of the spectrogram as a time-frequency bin.

Thus each ECG heart pulse can be represented by L = 2048 time-frequency components denoted as

Y (l). To build a generative classifier, we use independent normal distributions to model the time-

frequency bins of each subject. During training, only the means and variances have to be estimated.

For each bin l of subject i, we use the maximum likelihood (ML) estimates which are the sample

means and variances denoted as θ̂i(l) = (µil, σ
2
il).

We use a robust informative feature selection method to select informative time-frequency bins

for verification and recognition for ECG. This method is very similar to the one used for LDV

biometrics. The two key elements considered in our feature selection method are distinguishability

and stability. The feature should help distinguish the subject from a reasonably large subset of other

subjects, and it should be stable across sessions. The l-th feature of the i-th subject is selected if the

symmetric relative entropy, i.e. the symmetric Kullback-Leibler divergence, between N (µil, σ
2
il) and

the nominal distribution N (µ0l, σ
2
0l) is larger than a threshold κ > 0. The relative entropy between

two densities p and q is defined by

D(p‖q) =

∫

p log
p

q
(4.19)
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where the integral is taken over the support set of p. The symmetric relative entropy between the

two densities is defined as

d(p, q) = D(p‖q) + D(q‖p) (4.20)

For the Gaussian distributions used in our model, the symmetric relative entropy between N (µil, σ
2
il)

and N (µ0l, σ
2
0l) is

d(θ̂i(l), θ̂0(l)) =
σ2

il + (µil − µ0l)
2

2σ2
0l

+
σ2

0l + (µil − µ0l)
2

2σ2
il

− 1 (4.21)

where the nominal model is obtained by using the spectrograms of all the subjects in the database.

Using the symmetric relative entropy for feature selection ensures that only those bins whose distri-

butions are far from the nominal are selected for each subject, thereby ensuring distinguishability.

Moreover, stability of features is enforced by the variance of the subject’s bin σ2
il. It follows from

the construction of the nominal model that for the most part, σ2
il < σ2

0l, so that the second term in

equation (4.21), with σ2
il in the denominator, increases as σ2

il decreases; for subject bins with small

variances, the symmetric relative entropy tends to be large.

The score of a test heartbeat using the i-th subject’s model is given by the log-likelihood ratio (LLR):

Λi =
L

∑

l=1

log

[

pi(Y (l)|θ̂i(l))

p0(Y (l)|θ̂0(l))

]

I
d(θ̂i(l),θ̂0(l))>κ

(4.22)

where I{·} is the truth function indicating which time-frequency bins are selected; l is the index of

the bins. For verification, the LLR given in equation (4.22) is compared with a threshold τ , so that

if Λi > τ , the heartbeat with the claimed identity is accepted, otherwise the heartbeat is rejected.

For recognition, the LLR is computed for every subject model, and the subject whose model gives

the largest score is declared. For rank-k recognition, subjects with models yielding the top k scores

are declared. For across session verification, the score function was modified so as to disregard the

role of the variances of the time-frequency bins. That is, we set θ̂i(l) and θ̂0(l) to a constant θ.

In recognition, to ensure that a variable number of time-frequency bins can be selected for each

subject’s model, the score obtained from comparing a test heartbeat to a subject’s model is normal-

ized by a score obtained from comparing the heartbeat to the nominal model. This normalization
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ensures that there is no direct relationship between the number of bins used in a subject’s model,

and the value of the computed score [71]; more selected bins does not mean higher scores.

4.6.2 Comparative Results

The within-session analysis results are given in Table 4.2, which shows each algorithm, the authenti-

cation performance reported in the cited paper, if available, and its performance using our database.

In the table, FS and NFS stand for “feature selection” and “no feature selection” respectively [59];

FS and NFS correspond to the cases where relative entropy based feature selection is or is not used,

respectively. Moreover, “train 8, test 8” represents using 8 heartbeats, or 8 s, for the cases of Agrafi-

oti et al. and Wang et al.. for training and the same number for testing. From the table, we can

see that most algorithms do a decent job in modelling the ties within an individual and discrimi-

nating between individuals. However, for some algorithms there are noticeable differences between

the authentication performance reported in the literature and what we obtained using our database.

The original algorithm proposed by Molina et al. [57] uses a morphological baseline wander removal

technique during preprocessing, which introduces distortions in the ECG recording; When band-

pass filtering was used for preprocessing instead, the authentication performance improved. Also,

the polynomial-based algorithm proposed by Sufi et al. [79, 78] suffers from performance deficiencies

compared to what was reported in the literature. This is likely due to the large sample size we used

for this study; only 15 individuals were used in the original study performed by the authors. When

the first 15 individuals from our database were used for the biometric study, an equal error rate of

0.95% was obtained. The same phenomenon holds true for the algorithm proposed by Coutinho et

al. [19, 18]. The original study performed by the authors used ECG data obtained from 26 individ-

uals. When the first 26 individuals from our database were used for the biometric study, an equal

error rate of 0% was obtained, in comparison to the much higher rates, in the range of 35% observed

when applied to our full database of 265 individuals. The algorithm proposed by Yao and Wan [92]

doesn’t perform as well as some of the other methodologies. One possible reason for this is that only

a single principal component was used for classification. The principal component approach may

not be adequate to completely separate overlapping classes in the feature space. In general, when

training and testing data come from the same session, most algorithms are good at accepting a true

identity and rejecting a false one, as evidenced by their within-session authentication performance.
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However, when training and testing are on different days, all the algorithms suffer a deterioration

in performance, as is reflected in Table 4.3. In the table, “train 32, test 16” represents using 32

heartbeats (or 32 s) from session 1 for training and using 16 heartbeats (or 16 s) from session 3 for

testing.

The results for across-session testing, when the training data are obtained from two different days

is given in Table 4.4. In the table, “train (8+8), test 16” represents using 8 heartbeats (or 8 s) each

from sessions 1 and 2 for training and using 16 heartbeats (or 16 s) from session 3 for testing. Cross-

session training is vital to the improvement of biometric performance as it accomodates variability

across different measurement times in the model.

Based on the across-session performance when fusion is used, we can see that a few of the method-

ologies provide the framework to capture the variability across time and provide for an improvement

in authentication performance. By comparing the last columns in Table 4.3 and Table 4.4, where a

total of 32 heartbeats (or 32 s) are used for training, and 16 heartbeats (or 16 s) are used for testing,

we can see the effect of fusing data from more than one session during training, on the authentication

performance; With the exception of the algorithm by Fang and Chan [26], all the algorithms show

a varied degree of improvement in performance, which can be attributed to data fusion. The most

remarkable improvement in performance can be seen in the algorithm by Odinaka et al. [59] and

Wan and Yao [84], where data fusion accounts for about a 50% and 65% drop in EER, respectively.

Figures 4.6 and 4.7 show the detection error tradeoff curves for the top three (based on EERs)

methodologies in the within-session and across-session (with fusion) analysis, respectively. In the

figures, the red, blue, and green lines represent the detection error tradeoff curves for the first,

second, and third methods (in terms of EER), respectively.
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Figure 4.6: Detection error tradeoff (DET) curve for the top three methodologies in the within-
session analysis

Figure 4.7: Detection error tradeoff (DET) curve for the top three methodologies in the across-session
(with fusion) analysis
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Chapter 5

The Minimum Description Length

Principle for Clustering and

Computational Stemmatology

5.1 Introduction

Clustering is one of the fundamental problems in learning, and is important in many fields from

artificial intelligence to bioinformatics. A fundamental problem in clustering is the existence of free

parameters affecting the outcome. Many clustering algorithms require users to determine either

explicitly the number of clusters to output, such as the Gaussian Mixture Model (GMM), K-means,

and nonlinear manifold learning [77], or implicitly, such as hierarchical clustering methods [91],

graph clustering by graphical cuts [82] and affinity propagation (AP) [29]. Despite allowing those

algorithms to be flexible, it imposes difficulties in comparing and interpreting results. Can the

number of clusters and other parameters be determined in a principled way? Can a clustering

algorithm balance the number of parameters used and the modeling error? These are classic model

selection questions addressed in information theory and other communities for a long time [66, 6,

74, 83]. Model selection theories have been applied to cluster multinomial data based on MDL

arguments [45], GMM clustering [10] based on the universal prior of integers developed by Rissanen
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[64], and K-means clustering [61] based on the Bayesian information criterion (BIC) developed by

Schwarz [74].

In real life, one often encounters a very closely related situation where one needs to infer a structural

relationship among data points based on an incomplete dataset. Stemmatology is a class of such

problems. The goal of stemmatology is to reconstruct a family tree of different variants of a text

resulting from imperfect copying, which is a crucial part of textual criticism. In reality, histori-

ans often have incomplete data because some variants are not yet discovered and there are missing

portions in available variants due to physical damage. Stemmatology is similar to molecular phylo-

genetics where biologists aim to reconstruct the evolutionary history of species based on genetic or

protein sequences. Adoption of phylogenetics methods has lead to encouraging results in automatic

stemmatology.

In this chapter, we propose an information-theoretic framework of similarity-based clustering based

on the idea of two, or multi, part codes and MDL, and its application to stemmatology. We utilize

MDL concepts to the structural inference problem, particularly focusing on stemmatology where in

addition to missing data points, the available data points have missing values. We offer new insights

on how to handle these issues. Description length is measured information theoretically with the bit

as the fundamental unit that the number of clusters can be determined automatically and balanced

with the algorithm performance. We argue that similarity-based clustering problems can be turned

into problems of combinatorial optimization on graphs and there is an information theoretic rationale

of graph-based clustering methods. We develop a general algorithm based on MDL insights that is

simple to implement and can be used along with other existing algorithms, and propose a generic

MDL encoder with minimal assumptions made about the data, returning a hierarchical clustering

of data. We discuss and demonstrate the potential application of the proposed MDL clustering

concepts to stemmatology. Our method is applied to realistic datasets and outperforms major

existing methods as of June 2010.
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5.2 MDL Clustering Code Intuition

In this section, we introduce two intuitive MDL settings for clustering. The first is to partition the

data into clusters only. The second is to determine clusters and for each cluster, to determine an

exemplar. For both cases, the following notation is used. The number of data points is denoted as

N . The data points are denoted as xi ∈ X ⊂ Rd, where i = 1, · · · , N . Let x denote (x1, · · · , xN ) and

x ∈ X = XN . The number of clusters inferred is denoted as K. For the case in which exemplars

need to be identified, the exemplars are denoted as xk, k ∈ K,where K ⊂ {1, · · · , N} is the index

set of exemplars with cardinality K. For the case in which only clusters need to be determined,

k = 1, · · · ,K denotes a generic index of clusters.

When only clusters need to be determined, a code which describes a particular choice of clusters

consists of three parts:

1. To specify K requires log N bits;

2. To specify a cluster k requires log K bits for each data point;

3. To describe Xl given that it is in cluster k requires log 1
P (xl|k) bits.

The total description length is then

log N + N log K +
∑

k=1,···,K





∑

l∈L(k)

log
1

P (xl|k)



 , (5.1)

where L(k) is the index set of data points in cluster k.

For the case where clusters and their exemplars need to be determined, a code which describes a

particular choice of clusters and exemplars consists of four parts:

1. To specify K requires log N bits;

2. To specify indexes of exemplars requires log CN
K bits;

3. To specify an exemplar xk, k ∈ K requires log 1
P (xk) bits;
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4. To specify the exemplars for all other data points requires less then (N −K) log K bits;

5. To describe xl given that its exemplar is xk requires log 1
P (xl|xk) bits.

The total description length is then

log N + log CN
K + (N −K)logK

+
∑

k∈K



log
1

P (xk)
+

∑

l∈L(k)

log
1

P (xl|xk)



 , (5.2)

where L(k) is the index set of data points with exemplar xk.

5.3 MDL for Similarity Based Clustering

It is readily seen that MDL provides a basis for clustering from choosing the number of clusters to

assign cluster membership to each data points. In addition, MDL-based model selection allows one

to easily incorporate prior information or constraints into models by translating them into densities

or encoding strategies of model parameters. We consider the MDL setting for similarity-based

clustering in this section. We assume that xi are independent for all i. An other major category of

clusterings is density based clustering whose brief overview is given in section 5.10.

For similarity-based clustering, one has to estimate the description length through similarities for

selecting clustering models. There are three ways to encode a data point, either to encode it directly,

to jointly encode it with some other data, or to encode it provided other encoded data. It is clear

that there are different perspectives of how similarity-based clustering can be done under different

restrictions of encoding operations, resulting in different two part codes and interpretation. For

example, if one allows all joint encoding among any number of data points in the same cluster, it is

well known that encoding all data jointly leads to the shortest code length. Hence in this framework,

the shortest encoding is the grouping of all data in the same cluster and to jointly encode them,

leading to no clustering. Thus one should restrict the encoding parameters so that a clustering

interpretation exists. One obvious restriction is to allow joint encoding among at most ν < N data

points. Since most similarity measures used in practice are defined on pairs of data, we shall consider
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the case of encoding a data point using at most one other data point, along with model parameters.

This leads to following two clustering frameworks, both of which can be turned into optimization

on graphs.

1st order similarity-based clustering with weak exemplars: The goal is to minimize the code length

of describing data x with model parameter vector t whose ith element is an integer from {1, · · · , N},

the helper data index of the ith data point. The code length is

L(x|t) + L(t) =
∑

xi:i6=ti

L(xi|xsi
) +

∑

xi:i=ti

L(xi) + L(t). (5.3)

If no prior is assumed for t, the second term is at most N log N . When ti = i, xi has to be encoded by

itself and the code length is L(xi). When ti 6= i, the code length is L(xi|xti
). Letting tqi = tq−1

ti
and

t1i = ti, we see that for all data points to be encodable, tNi = tN+1
i must hold. This means that if we

take data points as N vertexes s on a graph and connect an edge between vertexes (i, ti),∀i 6= ti, we

have a forest. By adding an additional base vertex and connecting it to all vertexes with i = ti, we

then have a tree clustering. Thus finding the shortest code length for similarity-based clustering can

be turned into a problem of finding an minimum path length arborescence tree (MAT) in a complete

directed graph. The weights of directed edges are L(xi|xti
), and vertexes are data points and the

base node. The resulting directed tree has the base vertex as its root, and the number of children

of the root is the number of clusters. Data points with a common ancestors up to the children of

the root are clustered to be in the same cluster. The resulting tree can be viewed as a hierarchical

clustering with exemplars at each branch. If the corresponding similarity measure used is symmetric,

it is then the well known problem of finding the minimum spanning tree (MST). Tarjan’s algorithm

is proved to find the MAT in a directed graph with no negative cycle with complexity O(N2) [73].

1st order similarity-based clustering with strong exemplars: In this framework, ti is allowed only if

t2i = ti except for the exemplar data which has i = ti, the other data can only be coded with an

exemplar data as helper data. As discussed earlier, this is then a problem of finding a two level

arborescence tree in a complete directed graph.
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5.4 Simulations on Syntheses Data

We present simulations using MDL-based MST clustering. The code lengths L(xi) and L(xi|xj)

are measured as the sum of the lengths of Rissanen’s universal code for integers [64] of data vector

elements, or differences of data elements, are quantized to a desired precision. Case 1 consists of

four 2-dimensional Gaussian clusters with means forming a square with edge length equal to 30.

The covariance matrices are all equal to the identity matrix. In Case 4, two Gaussian clusters with

means 45 units apart are simulated. The covariance matrices are I and 5I. In Case 3, data vectors

are drawn uniformly from four rings of outer radius 1.1 and inner radius 0.9 with centers forming a

square with edge length of 10. In Case 4, data vectors are drawn from two interlocking rings in 3

dimensional space shown in Figure 3. Both circles have radius 2, centered at the origin and (2, 0, 0),

and lie on the x− y plane and the y − z plane respectively. For all cases, each cluster has 100 data

points.

The results are shown in Figures 1 to 4. The MDL-MST returns the correct number of clusters for

these three cases. Case 3 shows that MDL-MST clustering can resolve clusters of a complicated data

structure, while affinity propagation (AP) returns a larger number of clusters. Affinity propagation

often returns more clusters than the actual number, even when parameters are set to the suggested

values of [29].

5.5 Introduction to Computational Stemmatology

Before printing technology was widespread, text documents had to be copied by hand, mostly with

errors. Thus, despite many documents originating from a common original text, they differ from one

another. For those variants that survived and were discovered, historians are interested in knowing

the relations among them, in particular, the family tree of the copying history. The research of

finding such a family tree based on surviving variants is called stemmatology, and a proposed tree

is called a stemma. A stemma is ideally a rooted tree where a child node is copied from its ancestor

node in the tree. An accurate stemma with geographical, and temporal if available, information of
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Figure 5.1: Results of Case 1 using MDL-MST returning 4 clusters (left) and AP returning 12
clusters (right).
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Figure 5.2: Results of Case 2 using MDL-MST returning 2 clusters (left) and AP returning 11
clusters (right).
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Figure 5.3: Results of Case 3 using MDL-MST returning 4 clusters (left) and AP returning 29
clusters (right).
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Figure 5.4: Results of Case 4 using MDL-MST returning 2 clusters (left) and AP returning 23
clusters (right)
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variants, may provide important historical evidence related to the spread and interaction of variants

with local cultures.

There are a number of mechanisms which lead to differences in variants. During the Middle Ages,

Latin was no longer an actively spoken or written language. However, many texts were still copied

in Latin; the copyists might understand a part of the text. This results in a large amount of

unintentional copying error as well as intentional changes. Also for an original text being copied for

centuries, the errors accumulate from one copy to another. These have resulted in large differences

among surviving variants. Also, to construct a stemma, a number of variants must be considered

simultaneously. The number of possible stemmata grows enormously with the number of variants:

for example, there are 1.4 × 109 stemmata for 30 variants [28]. Hence, beyond traditional manual

approaches, computer aided stemmatology methods are needed.

One can quickly notice that the problem of stemmatology is closely related to phylogenetics. The

copying process with error is similar to genetic mutations during the evolution process. Also in both

cases, there are missing variants. In biology, there may be no genetic data from extinct species. For

both cases, variants whose word orders or genetic sequences are similar to each other are considered to

be close in the resulting tree. Many automatic stemmatology methods are inspired by phylogenetic

methods, and have been improved since the work of Robinson and O’Hara [68]. These methods

have produced encouraging results as they have been applied and evaluated on small datasets where

historians have strong confidence in historical relation among variants. For these datasets, there is

a consensus stemma based on many forms of evidence.

Despite those successful automatic stemmatology results, several challenges remain. In particular,

early test datasets are relatively small and ideal in that there are few missing variants, and most

available variants have few missing portions. However as mentioned before, it is known that historical

variants have missing portions due to physical damage. This poses additional challenges compared

to phylogenetics, where in most cases, full gene or protein sequences are available. On the other

hand, it is reasonable for phylogenetics to construct a bifurcation tree with all variants as leaves since

there rarely is an occasion where more than two species mutated and evolved from an ancestor at

exactly the same time, and the surviving species should indeed be the result of the latest mutations.

This is not the case in stemmatology, where several copyists can copy from an identical source and
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surviving variants need not be the latest copies. Other issues such as contamination where a variant

is copied based on two or more sources are also unique in stemmatology. In the review by Roos and

Heikkilä [70], 13 major algorithms are evaluated on three artificially generated datasets with known

true stemmata. The datasets are generated by subjects copying texts but not real historical data.

Notably one of them, the Heinrichi dataset, is a much more realistic dataset where nearly half of

the variants are missing, and available variants have large missing portions. Even though the best

performing method on the Heinrichi dataset obtains good accuracy slightly lower than results from

simpler datasets, surprising failures of several promising methods, such as CompLearn [17], indicate

that more should be done to address the issue of incomplete data [56].

5.6 Computational Challenges and Datasets

Inferring structure among data points in the presence of missing data is tied closely to a set of

graphical optimization problems collectively called the Steiner Tree problem. In the Steiner tree

problem, a graph G = (V,E) and a subset S of V are given. The goal is to find a tree G′ that connects

all nodes in S and minimizes the total edge weights in G′. In stemmatology and phylogenetics, S is

then the set of variants or genetic sequences of interests, and V is then the set of all possible variants

or genetic sequences that are relevant to the problem at hand. The edge weight is a distance or

similarity measure we pick. In general, the Steiner tree problem is NP hard, and it is even NP to

have a close approximation. Under the case with missing portions in available variants, in the worst

cases, even the optimal imputation and structural inference among only the available variants is a

Steiner Tree problem.

Rather than adopting to our problem a general algorithm for the Steiner tree problem, we develop a

novel approach based on the specific properties of the datasets in stemmatology. Our goal is to learn

what concepts should yield algorithms that perform well. The current best performing algorithm

RHM developed by Roos, et at., is in fact closely related to a Steiner tree algorithm. We give an

MDL interpretation of why RHM succeeds.

The Heinrichi dataset and the Parzival dataset are used to evaluate algorithm performances in the

Computer-Assisted Stemmatology Challenge [70]. The Heinrichi dataset consists of an original text,
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a 17th century late medieval Finnish folktale Piispa Henrikin Surmavirsi, written in old Finnish.

17 copyists participated to produce 67 text variants with contamination. The copyists are mostly

Finnish but can only understand some ancient words, which resembles the situation in real stemma-

tology problems. In simulation, large portions of available variants are deleted on purpose, and only

37 variants are available. Thus it is similar to real world stemmatology with the physical damage

and variants uncovered. Each variant has around 1200 words with an average of 300 missing words.

Heinrichi is currently the most realistic data set with a large amount of incomplete data.

On the other hand, the Parzival [70] dataset is smaller consisting of 21 variants of the German poem

Parzival by Matthew Spencer and Heather F. Windram. Only 5 out of the 21 variant are missing

to the algorithm and no missing portions except those generated by copying error. This dataset is

mostly for validation that any algorithm should produce reasonable performance on it, and it is easy

to analyze results on this dataset.

5.7 Notations

A variant of a text is denoted as xj = (xj
1, · · · , xj

n), where j is the variant index, n is the supposed

number of words in a variant, and xj
i , i = 1, · · · , n is a word or ‘?’ if the word is missing at a location.

The set of all variants of interest is denoted S. The number of variants of interest is denoted N .

Here it is assumed that the variants are aligned. For this purpose, multiple aligmment techniques

exist similar to the well known Needleman-Wunsh algorithm. While alignment is indeed a relevant

issue, it is not the focus of this paper, and aligned data are used in simulations. A stemmatology

structure, called the stemma, of a set of variants is a connected graph of nodes V and edges E such

that xj ∈ V for all j. Note that V may contain auxiliary nodes depending on what algorithms are

being used, and the graph need not be a tree as one person may produce a variant by referring

to multiple sources, known as contamination in the stemmatology literature. The set of all words

appearing in the set of variants is denoted X , and the total number of elements in X is m.

In order to compare structural differences between two stemmatology graphs, the average sign simi-

larity is introduced [70]. For a given undirected graph G, the simple path length between two nodes

A and B is defined as the number of edges along the shortest path between A and B defined on
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G. The simple path distance between two nodes on the true graph is denoted as d(A,B), and the

distance between them on the inferred graph is denoted as d′(A,B). For any three nodes A,B, and

C, the sign agreement index is defined as

u(B,C|A) = 1− 1

2
|sign(d(A,B)− d(A,C))

−sign(d′(A,B)− d′(A,C))|, (5.4)

where | · | is the absolute value. This index measures if the proposed graph has the same ordering

of B and C, given a reference node A, as the true graph. It is equal to 1 if the order is the same in

the truth and the proposed graph, 1/2 if one and only one of them is zero, i.e. B and C have the

same distance from A, and 0 if the ordering is mismatched. The average sign similarity between

two stemmatology graphs G and H given a set of variants xj is defined as

D(G,H) =
∑

xi 6=xj 6=xk

u(xj , xk|xi)/6. (5.5)

Note that the division by 6 is to discount equivalents due to permutation. Given a true structure

T , the score of an inferred structure G is defined as D(G,T )/D(T, T ).

5.8 MDL Concepts for Stemmatology

The stemmatology problem can be approached using MDL and information theoretic ideas as in

[70, 51, 17]. We start with assuming no missing data and no missing word in any variant to illustrate

the key idea. The MDL concept to be presented has to be generalized for datasets with missing

words and missing variants, which will be discussed in the following two subsections. In general,

given an encoding function (Z), which may be a general purpose compression algorithm or model,

we denote Z(xi) as the number of bits to encode xi by itself, and Z(xi|xj) as the number of bits to

encode xj given xi. As mentioned in [51], finding a efficient encoding of all variants is equivalent to

finding the minimum spanning tree of a fully connected undirected graph with variants as its nodes

and pairwise code length as the length of its edges. Besides using a compression algorithm, one can

also use a generic code with the indexed bag of words X . To describe a variant, without any other
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information, it takes n log m bits where m = |X |. Furthermore, it takes

log N + log n + log







n

k






+ k log m (5.6)

bits to describe the variant xi based on the variant xj if they differ in k words. The first log N

bits are used to describe the index j, log n bits are used to describe the number of differences, and

log







n

k






bits are used to describe the locations of differences. In this encoding scheme, all variants

have the same code length when coding by itself, and the code length from xi to xj is the same as

xj to xi.

5.8.1 MDL Concepts for Missing Words

When there are words missing in some or even all variants, there are problems in determining the

code length between two variants. Two rough approaches are to either encode locations with words

missing, denoted as ’?’, as an additional symbol added to X , or simply consider available words only

and using some model or compression algorithm such as gzip for encoding. Both approaches have

the same major drawback in cases where two variants have large number of locations with words

missing. Suppose two variants xi and xj both have n 1
4 words missing but at different locations,

while the overlapping part of available words are identical. This high word missing rate is common

in stemmatology datasets. On the other hand, direct encoding also exaggerates the difference that

encoding the words of a child in locations where words are missing in the parent requires a large

number of bits as if those words are directly encoded by themselves. This also suggests a reason

why the normalized compression distance (NCD) based CompLearn does not work well in one of the

testing datasets, the Heinrichi dataset, with high word missing rate [70]. The NCD is defined by

eZ(A,B) =
Z(A,B)−min{Z(A), Z(B)}

max{Z(A), Z(B)} , (5.7)

where Z measures the number of bits required using a compression algorithm. For the example

case under discussion, the NCD between those two variants will roughly be 1
3 . In general, when

two variants have a large number of non-overlapping locations with words missing, the NCD would
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be overly large. It is because Z(A,B) takes roughly the number of bits to encode overlapping

available words plus non-overlapping words, and Z(A) takes roughly the number of bits to code

overlapping available words plus words in A but missing in B. Assume without loss of generality

that Z(A) > Z(B), Z(A,B)−Z(B) is then roughly the code length for words in A at locations that

words are missing in B which is approximately the number of such locations times the entropy of

words. After divided by Z(A), the resulting NCD is largely biased by missing parts mismatch, which

is mainly a result of physical degradation of text variants not the copying process. The negative

effects of missing words and needs of specific approaches to deal with missing words for NCD are

also discussed in detail in [56].

Under the MDL concept, the key is to encode data efficiently. Thus for locations with words missing,

one should either not encode the words or encode them in a way that leads to efficient encoding of

other variants. In fact, if missing words in xi are available in xj , one can have xi filled in under a

low bit cost. To do so, one first copies xi as xi and encodes only the difference between xi and xj

whenever the words are available in xj . Clearly due to this encoding strategy, the actual number of

bits to encode xi given xj further depends on the parent of xj . For example shown in 5.5, encoding

xj given A or B requires the same number of bits. However, choosing B as the parent of xj leads

to a shorter total description length using the described encoding method. Likewise, if one fixes

the parent variant, what to fill in depends on its children. Thus searching the shortest code length

becomes a problem of simultaneously finding the optimal tree structure as well as optimal words to

fill in locations with words missing for all variants that are not leaves of the resulting tree. This

problem is related to the well-known Steiner tree problem, which is know to be NP-hard.

Figure 5.5: The total code length depends on what are filled in locations with words missing, which
in turn depends on the tree structure.

As the difficulty of the Steiner tree problem lies in estimating the miss parts of the variants, one

can instead attempt to directly estimate the code length between two variants based only on the
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available parts. We can view that there exists a channel from one variant to the other with channel

capacity denoted as Ci|j . The code length from xj to xi is then n(1 − Ci|j) when n is large. Thus

in analogy, given a compression algorithm Z, we can estimate the Z(xi|xj) as n
ni,j

Z(x̂i|x̂j), where

·̂ denotes the overlapping available part, and ni,j is the length of the overlapping available part.

This assumes that the statistical property of the differences of available words are asymptotically

the same as the channel. This is a reasonable model for typos but not for insertion and deletion.

Since we are considering the parts available in both variants and the variants are aligned, the effects

of insertion or deflection may be suppressed. We can also use (5.6) by substituting n with ni,j and

k with k̂ which is the number of differences in the overlapping part.

5.8.2 MDL Concepts for Missing Variants

In real stemmatology or phylogenies problems, it is known that not all variants are available in the

dataset. As mentioned earlier, there is a strong emphasis on learning the correct structural relation

among variants in stemmatology problems. Hence it is reasonable to ask, if it would lead to a more

efficient code when one adds auxiliary variants in the inferred tree. It may be a surprise that the

answer is indeed yes, and also adding auxiliary variants help infer the stemma better. For any three

nodes A,B,C where A is the parent, if there exists a D ∈ Xn that

Z(D|A) + Z(B|D) + Z(C|D) < Z(B|A) + Z(C|A), (5.8)

then adding D as an auxiliary node leads to a more efficient encoding. Likewise if D is an auxiliary

node, (5.8) can be used to decide if D should be removed. For example, using the encoding given

by (5.6) for A,B, and C, it is easy to show that when there is a large portion of locations where B

and C are the same but different from A, adding an auxiliary node D helps encoding. Such a node

D is constructed to coincide with B on those locations otherwise the same as A leads to a more

efficient encoding. Practically speaking, (5.8) can only be evaluated once the encoder Z and nodes

to be considered are known, but the main concept here is that conditions satisfying (5.8) exist, and

(5.8) can be used to add or delete auxiliary nodes in a principled way.
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Thus, when there are no missing words in any variant, finding the most efficient encoding of variants

of interest given Z while allowing adding auxiliary nodes is a case of Steiner tree problems. In a

Steiner tree problem, a graph G = (V,E) and a strict subset of nodes S ⊂ V are given. The goal is

to find a subgraph G′ of G with minimum total edge length such that G′ is connected and contains

all nodes in S. S can be viewed as the variants of interests. V can be viewed as the set of all the

length n sequence of words from X . The edges E are the code lengths defined by Z. A Steiner tree

problem is in general NP-complete. There exist a number of heuristic search and approximation

algorithms (see [34] for a classical review). The RHM algorithm described in [69] utilizes a similar

concept while forcing the stemma to be a bifurcating tree.

5.9 MDL for Computational Stemmatology Simulation Re-

sults and Conclusions

For a given encoding method Z and a set of variants of interest S, run the following algorithm:

for i 6= j do

L = {l : xi
l, x

j
l 6=?}, ni,j = |L|

x̂i ← concatenation of xi
l, l ∈ L

x̂j ← concatenation of xj
l , l ∈ L

Ei,j = n
ni,j

Z(x̂i, x̂j)

end for

return G = MST(S,E)

This is closely related to the well-known Chou-Liu algorithm [16]. When Z is chosen to the generic

MDL encoding whose code length is described as in (5.6), one can note that log







ni,j

ki,j






is approx-

imately ni,jH(
ki,j

ni,j
) when ni,j is large, remembering ki,j is the number of differences between x̂i and

x̂j . Also if ki,j is small relative to ni,j , H(
ki,j

ni,j
) can be approximate by a straight line c

ki,j

ni,j
where c

is a constant. This reduces the numerical problem for computing large combinatorial terms. Thus
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Table 5.1: Performance of 14 algorithms on the Heinrichi dataset and the Parzival dataset
Method Heinrichi (%) Parzival (%)
MDL 79.0 78.5
RHM 76.0 79.9

Parsimony 74.4 77.8
Parsimony BS 73.6 85.4

Neighbor Joining 64.4 81.5
Neighbot Joining BS 62.9 87.1

Least squares 64.2 81.5
Least squares BS 62.6 79.8
n-Gram clustering 64.4 79.3

NeighborNet 59.1 77.8
SplitDecomp. 53.1 74.5

ParsimonySplits 56.8 83.7
CompLearn 52.7 81.5

Hierarchical clustering 51.4 72.6

(5.6) becomes

log N + log ni,j + ki,j(c + log m). (5.9)

By keeping the leading term associated with ki,j of (5.9) and plugging into the computation of edge

length E we have

Ei,j =
ki,j

ni,j

n(c + log m). (5.10)

Note that the minimum spanning tree is invariant to uniform scaling in the input edge lengths,

hence only the ratio between ki,j and ni,j is needed in this case. This results in a simple normalized

Hamming distance approximating the code length between pairs of variants.

Using the result in (5.9), we construct a stemmatology structure for both the Heinrichi and Parzival

dataset used in [70]. The resulting average sign similarity described in 5.5 for the Heinrichi dataset

is 79.0%, which is better then all 13 algorithms reviewed in [70]; only three of them achieve above

65%. The resulting tree is shown in Figure 3. For the Parzival dataset, the result is 78% which

is around the middle of the 13 algorithms with 6 of them above 80%. The results of the Parzival

dataset is shown in Figure 5.9, with the ground truth presented in Figure 5.8. Table 5.9 summerizes

our performance along with the 13 algorithms reviewed in [70].
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5.10 A Note on Density Based Clustering and MDL

In this section, we briefly review of MDL principle and the density based clustering. We start from

the stochastic complexity as the foundation of MDL, and then describe how to use MDL principle

in density based clustering. Stochastic complexity as described in [7] and [66] starts from classes of

models, or probability distributions

Mγ = {P (x|θ, γ) : θ ∈ Θγ} , (5.11)

and the union of model classes M =
⋃

γ∈ΓMγ . If γ is known, a näıve guess for the shortest

description length is log P (x|θ̂, γ)−1, where θ̂(x) is the maximum likelihood (ML) estimate of θ

given x. While the shortest length itself is computable, codes based on log P (x|θ̂, γ)−1 are not

decodable, since information about the ML estimate is not yet coded. One reasonable objective is

to have a code which minimizes the worst case redundancy over the optimal code if the ML estimate

was given. The length of such a minimum redundancy achieving code is defined as the stochastic

complexity of x relative to the model class Mγ .

This can be formulated as a problem of selecting a distribution Q(x) which is computable given x

and the model class Mγ , such that Q(x) minimizes the worse case code length redundancy over

shortest description length, which is

max
x

log
P (x|θ̂(x), γ)

Q(x)
. (5.12)

The optimal distribution found in [75] is

Q∗ =
P (x|θ̂(x), γ)

∑

x∈X P (x|θ̂(x), γ)
, (5.13)

which is called the normalized maximum likelihood (NML) distribution. The code length using

Q∗(x) is

log
1

P (x|θ̂(x), γ)
+ log

∑

x∈X

P (x|θ̂(x), γ). (5.14)

The second part is due to the unknown parameters and is defined as the parametric complexity [7].

Note that it can be shown that two-part codes achieve the same code length asymptotically [66]. In
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two part codes, the code length is

log
1

P (x|θ̂(x), γ)
+ L

(

θ̂(x)
)

, (5.15)

where L is the code length of its input variable. Under the conditions of [66], the Fisher information

matrix I(θ) of P (x|θ̂) given x exists and the parametric complexity asymptotically achieves

dθ

2
log

n

2π
+ log

∫

|I(θ)| 12 dθ + o(1) (5.16)

as n gets large, where dθ is the dimension of θ.

Comments Computation of the stochastic complexity of some model class Mγ can be approached

from either the NML coding (5.14) or two part codes by checking the conditions of Rissanen [66].

The NML coding imposes less constraints, while two part codes are more intuitive and results derived

by Rissanen [66] largely reduce the computation cost. One should note that stochastic complexity

is a property of a model class. Only discrete data can possibly be encoded in finite length. If

x is continuous, one can discretized x to some precision δ to approximate the coding length. The

summation in the denominator of (5.13) is changed to an integral. If the integral exists, the stochastic

complexity is then (5.14) or (5.15) with an additional precision cost log δ.

The goal of density based clustering is to take x as input and output a cluster index vector cK whose

ith element is an integer in {1, · · · ,K} as the cluster index for xi. We can rewrite θ in two parts

θ = (cK , θK,η), where θk,η denotes the parameters of the density of the kth cluster.

Theorem 1 : For density based clustering, if conditions in Section II of [66] are satisfied, the stochastic

complexity of x to a model class γ = (K, η) is upper bounded by

∑

i=1,···,N

log
1

P (xi|ĉi, θ̂ci,η(x))

+ log
∑

j=0,···,K−1

(−1)j

(

K

K − j

)

(K − j)N

+
dθ

2
log

n

2π
+ log

∫

|I(θ)| 12 dθ + o(1) + L(K, η),

105



where ĉi and θ̂ci,η are ML estimates given x, and L(K, η) is the code length of the model class index,

which is log 1
PK,η(K,η) if a prior is assumed, or log N |Γ| otherwise.

Proof: For two part codes, the code length is

log
1

P (x|ĉK , θ̂K,η(x))
+ L(ĉK , θ̂K,η(x)) + L(K, η), (5.17)

From the independence assumption, the first part is then

∑

i=1,···,N

log
1

P (xi|ĉK , θ̂K,η(x))

=
∑

i=1,···,N

log
1

P (xi|ĉi, θ̂ci,η(x))
, (5.18)

where the last equality is to evaluate the code length of each xi using its cluster density. The second

part can be upper bounded by the length of encoding cK and θK,η independently. The code length

of cK is loosely upper bound by N log K. A tighter bound can be obtained by counting the number

of sequences the elements can take, and must include all integer values from 1 to K, which is

∑

j=0,···,K−1

(−1)j

(

K

K − j

)

(K − j)N . (5.19)

The worst case code length is the log of (5.19) if each sequence is assumed to be equally likely.

Given an assumed family of densities, the code length of θK,η can be computed using the Fisher

information matrix as shown in [66], which is equal to the parametric complexity expressed in (5.16).

L(K, η) is trivial. This complete the proof of theorem 1.

106



S Ae

T

W

I DaJ

Ba

O P V

Ca Be

Bd Bb

F

N

E

CdC HX

Z Ad

Cb

GCc

Ac

RAb Ce

K L

A

B

M

Cf

Figure 5.6: The true stemma of the Heinrichi dataset. Filled dots represent missing variants. Nodes
with two parents are due to contamination.
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Figure 5.7: The resulting stemma generated from the minimum spanning tree based on the generic
MDL code. Note its similarity with the true stemma can be further noticed by focusing on the
neighborhood relation among available nodes (labeled with alphabets) which may be connected
through unavailable nodes. For example, in the true graph node B is in fact closely connected to A,
Cf, M, L, and K while equally far away from the group of Be, Bd, Bb and the group of C, Cd, E, as
the inferred stemma suggests.
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Figure 5.8: The true stemma of the Parzival dataset. The nodes labeled with pure numbers are
missing variants that are not available to the algorithm
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Figure 5.9: The inferred stemma of the Parzival dataset is the minimum spanning tree of a graph
with edge weight being the normalized Hamming distance. Note that in the true stemma, there
are five variants unavailable to the algorithm. This results in several errors in the sign similarity
measure. For example variant 8 is directly connect to variant 5 and variant 6 in the inferred stemma,
while there are actually two missing variants between variant 8 and 5. On the other hand, in the
true stemma if we view two variants connected though unavailable variants as directly connected,
the inferred structure is actually close to the true structure.

109



References

[1] A. Adler. Vulnerabilities in biometric encryption systems. In Proceedings of the 5th International
Conference on Audio and Video Based Biometric Person Authentication. Hilton Rye Town, NY,
USA, 2005.

[2] Foteini Agrafioti and Dimitrios Hatzinakos. ECG based recognition using second order statistics.
In Proceedings of the Communication Networks and Services Research Conference 2008, Nova
Scotia, Canada, 2008.

[3] R. F. Ahlswede and I Csiszàr. Common randomness in information theory and cryptography.
I. secret sharing. IEEE Transaction on Information Theory, 39(4):1121–1132, 1993.
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[54] André Lourenço, Hugo Silva, and Ana Fred. Unveiling the biometric potential of finger-based
ecg signals. Computational Intelligence and Neuroscience, 2011(720971), 2011.

[55] Emin Martinian, Sergey Yekhanin, and Jonathan Yedidia. Secure biometrics via syndromes. In
Proceedings of the 2005 Allerton Conference. 2005.

[56] Toni Merivuori and Teemu Roos. Some observations on the applicability of normalized com-
pression distance to stemmatology. In Proceedings of 2nd Workshop on Information Theoretic
Methods in Science and Engineering, 2009.

[57] Gary Garcia Molina, Fons Bruekers, Cristian Presura, Marijn Damstra, and Michiel van der
Veen. Morphological synthesis of ECG signals for person authentication. In European Signal
Processing Conference, Poznan, Poland, 2007.

[58] C. Nicola, F. Alajaji, and T. Linder. Decoding ldpc codes over binary channels with additive
markov noise. Proceedings of the 2005 Canadian Workshop on Information Theory, Montreal,
Canada, 2005.

[59] Ikenna Odinaka, Po-Hsiang Lai, Alan D. Kaplan, Joseph A. O’Sullivan, Eric J. Sirevaag, Sean D.
Kristjansson, and John W. Rohrbaugh. Ecg biometrics: A robust short-time frequency analysis.
In 2010 IEEE International Workshop on Information Forensics and Security (WIFS).

[60] Joseph A. O’Sullivan and Po-Hsiang Lai. Pattern recognition system design based on ldpc
matrices. In Proceedings of the 2005 IEEE International Symposium on Information Theory,
pages 33–36. Adelaide, Australia, 2005.

[61] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number of
clusters. In Proceesings of the 17th international conference of machine learning, San Francisco,
USA, pages 727–734, 2000.

[62] Christain Rathgeb and Andreas Uhl. A survey on biometric cryptosystems and cancelable
biometrics. EURASIP journal on information security, 3, 2011.

[63] Saruans J. Raudys and Anil K. Jains. Small sample size effects in statistical pattern recogni-
tion: Recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine
Learning, 13(3):252–264, 1991.

[64] J. Rissanen. A universal prior for integers and estimation by minimum description length.
Annals of Statistics, 11:417–431, 1983.

[65] J. Rissanen. Universal coding, information, prediction and estimation. IEEE Trans. Info.
Theory, 30:629–636, 1984.

113



[66] J. Rissanen. Fisher information and stochastic complexity. IEEE Trans. Info. Theory, 42:40–47,
1996.

[67] J. Rissanen. Information and Complexity in Statistical Modeling. Springer, 2007.

[68] Peter Robinson and Robert J. O’Hara. Report on the textual criticism challenge 1991. Bryn
Mawr Classical Review, 3(4):331–337, 1992.
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