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A New Transform for Time-Frequency Analysis

Arun Kumar Daniel R. Fuhrmann Michael Frazier Bjorn Jawerth

1. Introduction

The field of time-frequency analysis is currently enjoying a great deal of activity in the signal
processing community. Time—frequency analysis has many applications in signal processing and

data compression [1}-[5].

From a mathematical viewpoint, two approaches to time-frequency analysis have been proposed
in the literature. The first is the class of linear transforms, which attempt to directly decompose
a signal into components which are simultaneously localized in time and frequency. The second
approach involves nonlinear operations that attempt to produce an energy distribution in the time—

frequency domain.

Linear transforms for time-frequency analysis were first proposed by Gabor [1] in 1946. Gabor
suggested that a time—frequency description of a signal could be obtained by performing Fourier
analysis on the signal as it appears when seen through a set of identical windows that are translated
with respect to each other in time. Gabor suggested the use of Gaussian windows, because they
are simultaneously well-localized in the time and the frequency domains. Alternatively, we can
think of the Gabor method as involving the computation of the projections of a signal upon a
set of analyzing functions; where these analyzing functions are complex exponentials with Gaussian
envelopes. Gabor’s method has been extended to a set of methods known collectively as Short~Time
Fourier Analysis (see e.g. {6]). Different methods in this body of work employ differently shaped

windows.

Both the Gabor transform and the Short-time Fourier Transform have the property that the

bandwidth of the analyzing functions is a constant independent of center frequency; likewise the time-
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duration of the analyzing functions is constant. In some applications it is feli that the analyzing
functions should have a constant bandwidth-to-center-frequency ratio. The Wavelet Transform,
first introduced i 1986 by Lemarié and Meyer (7], and receiving considerable attention in the
mathematical and engineering communities [2]-[4],[8]-[15] does indeed have this property. The
analyzing, or the basis, functions for the Wavelet Transform are generated from a single “mother
function” by the process of translation and dilation. The almost magical quality of the wavelet basis
functions is that they can be made orthogonal, and yield an orthonormal decomposition for L? and

other function spaces. Wavelets play a key role in the multiresolution analysis of Mallat [3],[4].

The distributional approach to time-frequency analysis is discussed at length in the review article
by Cohen [5]. At the center of this methodology is the Wigner—Ville distribution, first proposed by
Wigner [16] in 1933 for the characterization of phase—-space uncertainty in quantum mechanics. Since
phase-space uncertainty and time-frequency uncertainty are analogous phenomena [17], Wigner’s
technique was adopted by Ville [18] for time-frequency analysis. The Wigner-Ville distribution can
be thought of as a time-varying power spectral density computed as the Fourier transform of a time-
varying, instantaneous estimate of an auntocorrelation function. This distribution exhibits a number
of artifacts, including non-positivity and beat frequencies [5]. Much of the literature surrounding the
Wigner-Ville distribution is concerned with ways of dealing with these artifacts. Direct comparisons

of the characteristics of linear transforms and time-frequency distributions are rare.

The purpose of this paper is to introduce to the engineering community a linear transform for
time-frequency analysis which we call the Phi-transform. This transform was developed by Trazier
and Jawerth in 1985 for the characterization of function and distribution spaces [19]-{21]. The
Phi-transform was developed independently of the Wavelet transform, but the two have much in
common. The Phi-transform, like the Wavelet Transform, relies upon a set of translated~and-
dilated versions of two generating functions. It differs in that this set is not orthogonal, and that the
analyzing functions (which generate the transform coeflicients) are not necessarily the same as the
synthesizing functions (used in signal reconstruction). Because there is no orthogonality restriction,
the derivation of the Phi-transform requires an entirely different and conceptually simpler approach.

Although orthogonality may be desirable in some circumstances, it is not essential in many others
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[22]. Like the Wavelet Transform, the Phi-transform is not a single linear operator but rather an
entire methodology for linear time-frequency analysis. We intend to show that examples of the Phi-
transform are easy to construct, and believe that this flexibility in their construction makes possible

the selection of analyzing/synthesizing functions with high resolution in the time-frequency plane,
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2. Notation

Throughout, by the constant n we mean the dimension of the Euclidean vector space R™. Z, R, C,
and C°°, denote the set of all integers (positive, negative, and zero), the set of real numbers, the set
of complex numbers, and the set of infinitely—differentiable functions, respectively. Rt denctes the
set of positive real numbers. L? and I* denote the Hilbert spaces of absolutely square-integrable

functions, and of absolutely square~summable sequences, respectively.

If a,b € R"™ are vectors, then by a-b we mean their scalar (or dot) product. The Euclidean norm
of a vector ¢ = (a1,as, .. .,a,) will be written |[a]| = (5., |a;[*)*/?. For¢,d € R, [¢,d] is the closed

interval from ¢ to d, and [c, d]* 2 [T ;le d]. Also,

d a
f(a:)da:éf.../f(w;,...,wn)dazl...dmn. (1)

[e,d]™

By the support of a function f: R® — C we will mean the topological closure of the set of those
points z € R™ for which f(z) # 0. We will write supp f for this set. The set supp f is compact
if, for some r > 0, supp fC {2 € R" : |[z|| < r}. A bar drawn above a complex constant, or a
complex—valued function, will denote the complex—conjugate of the constant, or the function. The
function F () is defined to be f(—2). If f and ¢ are functions from R” to C, then {f, g) denotes the

inner—-product of f and g:

(ho) & [ )&= ). @

By “ we denote the forward, by “¥” the inverse, Fourier transform: f(w) = (f(¢),e/?); f(t) =

(27)~™{f(w), e=7“'*). The convolution of the functions f(¢) and g(z) will be written (f * g)(£).

In what follows we will be working with sets of functions that are all obtained from a single
parent function through a process of dilation and translation. We now establish a notation for such
functions. Define ¢, (w) 2 $(27"w), v € R, w € R, as a dilation of ¢ in the frequency-domain.
Define ¢, (1) ] 2" ¢(2"%), v € R, t€ R", as a dilation of ¢ in the time-domain. Then (¢,)" = by,
and ($,)V = ¢,. Also define ¢,1(%) £ gnvf 24(2"t — k) as a dilation-and—translation of ¢ in the time
domain. Please note: ¢,0(2) # ¢.,(¢). We will call v the dilation parameier, and k the translation

parameler. This subscript notation for ¢ will also be used for the functions ®,%, ¥, and 4.
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The transform and decomposition discussed here apply to signals that belong to &', the space of
“tempered distributions” (seee.g. [23]). &’ is the dual space of &, the Schwartz space of “smooth and
rapidly—decreasing functions”. A function f is rapidly—decreasing if f and all its partial derivatives

decay at infinity at a rate faster than any polynomial.

&’ is a very large space that properly includes L?, and distributions such as the Dirac~delta
and its derivatives. Here, in the interest of simplicity, we will state the results only for f € L2.
We will not consider issues relating to convergence; except to say that when using equations with

infinite sums, we will implicitly mean the equality in the special sense of L2-convergence. That is,

if far 2 E;‘A;a i, then by f = 32 ¢; we mean

limp oo | = Firlfe = limy oo fm If = ful? dt=o0. (3)

For a detailed study of convergence in &’ and other spaces, of the decomposition discussed in

this paper, see [19]-{21].
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3. The Psi~decomposition of a Function

LetS & {¥mis Yur ok ;3 myv € Z; mfixed; ¥ > m; k € Z™; be called a set of synihesizing functions.
The functions ¥,z in S are the translates (in R™) of the single function ¥,,5; and the ,; are all
translated—and-dilated versions of a single function 1. Similarly, let A 2 {Pmps Sok }oi be called a
set of analyzing functions. All functions in S U A are defined from R” to C. We will show that if
S and A are appropriately chosen, then any given signal or function, f : R® — C, f € L?, can be
written as follows:
o
FW= 30 (H%m) Vo) + D D0 {F dur) brt). (4)
keZ" vEm+l peZ”
We will call (4) a Psi-decomposition of the function f. The symbol % in (4) denotes a vector
(k1,...,kq) € Z". Likewise, the arguments of the functions f, ®,x, Tme, dur, and 4z, are vectors
in R™.
The expression (4) is not unlike the Fourier series or the Fourier transform decomposition of f.
Since f(w) = (f, el t), we can write:
. edwt
$o) = [ (e S ®)
In (5) we have the function f written as a weighted sum of certain “elementary” functions —- the
complex exponentials. The complex exponentials are perlectly localized in the frequency domain,
while they range everywhere in the time domain. The weights (f(z),e?“?) in (5) are the Fourier
coefficients of f, and are related to the projections of the signal f onto the complex exponentials

gfwet,

In the Psi~decomposition (4} of f, f is written as a weighted sum of the synthesizing functions in
S. The weights in (4) constitute a countable sequence Tf = ({f, Bms), {f, dvr)} of complex constants
or coeflicients. We will call the sequence Tf the Phi-iransform of f The numbers in the sequence
Tf are related to the projections of f upon vectors in the set A of analyzing functions. The complex
numbers {f, gy} = (27)""{F, é, r) depend upon the behaviour of f only in those regions of the time

and frequency domains where the functions ¢, and qu i are appreciably non-zero. If the functions
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in A are chosen such that they are simultaneously localized in both the time and the frequency

domains, then Tf will yield a time-frequency representation of f [24],[25].

The importance of the Psi-decomposition in (4) to applications in signal processing is this: The
Psi-decomposition defines a linear, continuous, and invertible transformation that maps a signal f
into its Phi~transform Tf. The Phi-transform provides a time—frequency representation of a signal.
A note about the two terms in (4): we will see that the first term results from a lowpass filter

operation, while the second term results from a series of bandpass filter operations.

The theorem at the close of this section establishes the Psi-decomposition of a function, and is
proved with the help of two lemmas. The theorem states our main result that if the sets S and A

are chosen as prescribed in Lemma 1, then (4) is true for all functions f € L2,

Lemma 1. Given an m € Z; given ¢(w) such that the properties P1{4), P2($), and P3($), below
are true; given (w) such that PL(®), P4(®), and P5(3), are true; Ih(w) satisfying P1(4) and

P2(); and U (w) satisfying P1(T) and P4(E); such that Yw € R™,

I(@) Im(w)+ D Gulw)do(w)=1. (6)

p=m+1

where, for some constant ¢ € LT,
P1(¢): & € €.
P2($): supp ¢(w) € {w i 7/4 < [lol| < 7).
P3(8): |d(w)| > ¢, forw € {w: (37/8) — € < |jw|| < (37/4) + €}; some ¢ € RF.
P4(®): supp d(w) C {w : ||| < 7.
P5(3): |B(w)| > ¢, forw e {w: ||| < (37/4) +€}; some € € RY.
Moreover, the functions ¥ and ¥ are rapidly-decreasing.
Before we prove Lemma 1, we would like to explain its statement, informally, as follows: this

lemma affirms the existence of functions ¥ and ¥ satisfying (6), when given é and & that cover

the frequency—domain as in Figure 1. The property P2(cg§) is designed to ensure a compact support
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for ¢(w); P4($) to do the same for H(w). P3(4) is designed to ensure that the frequency space is
nicely covered—-that there is no “bald patch” between ¢, and qg,,_,_l, for any v. P5(<f>) ensures that
&, propetly caps the space left uncovered by all the ¢, v € {m+1,m+2,...}. The functions
é and & are not required to be radially-symmetric. Figure 1 should be seen as a representative
radial slice across the frequency space. Because ¢ and & are C® and have compact support, ¢ and
& are C* and rapidly-decreasing [23]. This rapidly-decreasing character of ¢ and &, together with
the compact support of ¢ and &, provides us with the means for determining the time-frequency

behavior of a signal.

Proof of Lemma 1. Let é(w) be a C*° function from R” to R satisfying P3(d); and satisfying

supp B(w) C {w: |$w)]> ¢/2} Nw: | &(w)| > ¢/2}. Because 6(w) satisfies P3(8), and because its

values lie in R¥, we have E;.’f____oo f;(w) > ¢ > 0, Yuw # 0. Define
) 2 { B/ (@) T2eo 5D, w € supp $w) o
] , otherwise.

Because supp §(w) C {w: |$(w)|> ¢/2}, the ratio in (7) is well-defined. Because § is compactly
supported, and because ¢ and & are C*°, P is € with compact support. Tlence «J; is the Fourier

transform of some  which is € and rapidly-decreasing. The function ¥(w) satisfies P2(4) since,

A
|y A A A
| § [0 1] Iq’m+2! 19 3]
I | | | | > [|o]|
0 :n:Zm'l oM n2m+1 n2m+2 1t2m"”3
1 log scale .

Figure 1: We want the Fourier transforms of the analyzing functions in A to cover the frequency
space thus.
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by the definition in (7), supp $(w) C supp §(w) . Define

“ (S 00(0) [ Fn@) £ 65() w0 # 0,00 w € supp b1

Tn(w)= ¢ 0 yw# 0,and w & supp Oy (8)
1/8(0) , w=0,

b

Because supp 6(w) C {w: |®(w)| > c/2}, the first ratio in (8) is well-defined. Moreover, W(w)
satisfies P4(¥), since supp U m(w) C supp $m(w) by the definition in (8). Like %, ¥ is C*° and
rapidly-decreasing. From {7), we have Vw # 0,
[o5] o0 A o0 A
= N 6, (w) Dy +100(w)
> W) = ( = ): ot ©)
ve=m-fl ! g vr§+l ;"..;--oo 9j+V(w) Z;c—i--—oo 9.1 (w)

From (8), we have Yw # 0,

& (w)¥m(w) = —z:—z;hL?’%—)l
j=—0co ¥} i

For w = 0 the left-hand sides in the equations (9) and (10) are 0 and 1, respectively. Summing these

(10)

two equations we find that (6) is true for all w. o

This proof is constructive. Having decided upon a suitable set of analyzing functions, we can
build a set of synthesizing functions by following the recipe in the proof. Alternatively, we may find
it convenient to choose the analyzing and synthesizing functions directly so as to satisfy (6), without
going through the explicit construction suggested in the proof. We will give an example of such a

direct choice later in Section 5.

Lemma 2 below establishes a result used in the proof of the main theorem. It uses a technique

similar to that used by Shannon [26] in his proof of the sampling theorem.

Lemma 2. Let supp j, supp 2 C {w: llw|] € 72}, v € Z; § € L?; h € C°. Then for s, € R™,

(g * h)(t) =/Rn glsyh(t—s)ds = S 27 g(k27) h(t — k27"). (11)

kg™

Proof of Lemina 2. By the statement of the lemma, supp § C [~#2%,72*}*. Let §° be a periodic

continuation of §, so that

Fw = > §lw—k2a2"). (12)

reZ™
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Then §°(w + Q) = §°(w) for @ = a2 W; any W € Z". We can now expand §°(w) in a Fourier

series:
n .
a L 4 g s
gc(w) — Z ar He J2wkiwifr2 — Z aye Jurk? ,
reZ" =1 reZ®
where
ap = ) 3% (w) eI iy,

E—w?",'rrE”}"

(13)

(14)

Since §(w) = §°(w) within the interval of integration in (14), we can replace §° by § in (14) above.

Further, since supp j(w) C [—w2¥, #2"]", we can write (14) as:
a = w7 fR" Fw) e F dw = 27 (k2.
Substituting (18) into (13),

W = Y 2 glka)e iR
reZ"

Since supp h{w) C {w: ||lw|] < 72°},
(g% m)() = (5R)*(2) = (5°R)“(2)-

From (16) and (17) we get the desired result:

(gxR)t) = (Z 2_"”g(k2"”)e“j“'k2—vfz(w)) (1)

keZ®
= 3 2ghe ) (et ™) @
redi®
= D 27™g(k2")A(t — k277).
ked™

(18)

(16)

(17)

Tlhe assumption h € €* in the statement of Lemma 2 guarantees, for example, that the convo-

lution g=* h is well-defined. If stronger assumptions are made on §, the same result can be obtained

under assumptions on & that are weaker than A € €. Some technicalities of the proof have been

omitted. These involve approximating § by a C* function to obtain the convergence of (16), and

passing to the limit. For details see [19].
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Theorem 1 (see [19], p. 780). Given $, &, ¥, and W, satisfying all conditions in the statement of
Lemma 1; and given a function f € L2, f: R® — C; we can write:

F= D fm) e + > D {fibur)Pur. (21)

keZ™ vEmtl L ZR

Proof of Theorem 1. From Lemma 1, E‘i’m -+ E?:m +1 qﬁ_,,zi»,, = 1. Taking the inverse Fourier

transform,

o0
S * Ut D &, %%, =6, (22)

v=m-+1l

where § (£) = g(—1). Convolving both sides with f

F= a8t Umt S Frd, xt,. (23)

v=m-+1

Since supp (f * ®m)" C supp $m; supp &m, supp ¥ C {w: [|0]| € 72™}; (f % Bm)" € L7 and

¥,n € C*°; we have (using Lernma 2):

(FBm) *Um = > 27 (F 4 D) (R2™) Wit — £2™™). (24)
red™

Simplifying the convolution within the summaition above,

(Fr@3n)k2™) = (Fxdn)O)|_ (25)
- /R," FE) B @ =RV dt = 27 (f, Do) (26)

Substituting (26) into (24),

FrBmaTm= 3 27" (F,Bp) Ut — k27™) = S {f Pk} Ui (27)
LeZ™ red™
Similarly,
Fdottu= S {F, 1) n- (28)
red™

Substituting {27) and (28) into (23) we get the desired result. o
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The equality in the Psi-decomposition of (21) is meant in the sense of (3) for f € L?, where
a N
INE Y Pmt)Ume + 9, D (Frdu)tun (29)
reZ? v=m+l pcZn
In fact, as in the case of the Fourier transform [23], if it is assumed that fR» | f(z)] dz < co and
JRr | f(w)| dw < oo, then the representation of  in (21) holds pointwise: f(z) = limy—co fn(z),
for every @ € R". If f is not continuous, the convergence of fy to f cannot be uniform. In this case

the representation (29} will exhibit Gibbs phenomenon.
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4. Some Properties of the Psi~decomposition

In this section we discuss a few interesting properties of the Psi-decomposition. These properties con-
cern the non-orthogonality of the Psi-decomposition, a Parseval-like theorem for the Phi~transform

representation, and the possible real-valuedness of the Phi-transform coefficients.

4.1. Non—orthogonality

Theorem 2 . Ifthe set A of analyzing funclions and-the sel S of synihesizing functions are defined

according to the conditions in Lemma 1, then neither A nor S is orthogonal

Proof of Theorem 2. Assume A is orthogonal. We will derive a contradiction. Define

« 8 9
= Tl (30)
¥ 2 el v (31)

Let the set A* be obtained from A by replacing the functions ¢, with ¢*,; v € (m+1),...;k €
Z™. Similarly, let $* be obtained from S by replacing the functions ,; with wp. The sets A*
and $* also obey the conditions in Lemma 1. Moreover, A* is orthogonal. By Theorem 1, for any
f e I¥®n),

o0
F= D FSm)¥m + O > {frbur)tur. (32)
reZ” e S VAL

Substituting f = $uer,, Yo € {{m+1),...}, ko € Z, in (32); and by the orthogonality of A; we have
bugko = ”961'011‘0112 Puoko = ||¢|iz Puoko- (33)

From (30), {31), and (33) it follows that
¢* = o*, and (34)
el = 1 (35)

Applying equation (6) in Lemma 1 to the sets A* and $* we have, Vuw,

Ep(@) Fm(w)+ > WP =1 (36)

rv=m+1l
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Substituting f = ®,,0 in (32), B0 = H@Hz‘i’muo by the orthogonality of A. Hence the first term

in (36) is greater than or equal to zero for all w; which implies that for all v and w,
@l <. (37)
By condition P2(¢3*) of Lemma 1,
supp$ C{w:w/4< ||| < 7. (38)

The volume of an n-dimensional sphere of radius » is (see e.g. [27], p. 620)

i
NCYPESE (39)
where T is the gamma function. From (37), (38), and (39), it follows that
~% o n " n s ﬂ.Snfz (1 _ 4-—n)
S rp— — (7 .
o G 2l BE S 1 (P pust LA S (40)

The inequality (40) contradicts equation (35), hence A cannot be orthogonal.

Assume now that S is orthogonal. Again, we will derive a contradiction. From (32), by the

orthogonality of S,

(f’¢V1k1) = (f’qsﬂlh)”'tpﬂzk:“z = (f’¢l’1k1)”¢”2; and (41)
(f:"/’vzka) = (f!¢yzkz)il¢iiz‘ (42)

Substituting f = 4,1, in (41), and f = ¢y, in (42):

(?ﬁVﬂkQJprlkl) - '|¢E|2<¢V2k2: ¢V1k1)3 and (43)
(¢V1k1#¢l’2k:) = |I'§[’”2(¢mk1:¢u;k;)- (44)
From (43) and (44), for (v, k1) # (va, k2),
(5‘6”1171 ) ¢V2ke) = H‘/’”_g (Qslhkl’ w”aka) = ”'llb”-—g (1/)”2"'21 é"l’h) (45)
= II¢II_4 (":[)Uakzﬂ ¢V3k1) - IE¢1|—4 <¢V1k1s¢yak2> =0 (46)

It follows that the orfhogonality of S requires the orthogonality of A which has been shown to be

impossible. m|
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Theorem 1 says that the set S = { Wk, ¥ur }u r is complete in L2, ie. any function in L? can be
written as a sum of elements in S. However, S is not a basis for L2, and every function can be written
as a sum of the elements of S in an infinity of different ways. Yet Theorem 1 defines a single-valued

function from L? to I?, where the image of f is determined uniquely by the inner—products in (21).

4.2. Possible Equality of Analyzing and Synthesizing Functions

While neither of the sets A or S can be orthogonal as constructed in Lemma 1, these sets could be
designed to satisfy the condition A = S. To do this, let é(w) satisfy the following properties (see

Fig. 2):
Ql: §(w) ER, for w € R™.
Q2: supp B(w) C {w: |[w]] € w1}; some wy € RY.
Q3: B(w) =1, for w € {w: ||w|| < wa}; w1 > wy € RF.

Q4 lw'll < flw"ll = (w") < $(w).

A A

(@)

— lloll
0 Wa @1

Figure 2: A &(w) that satisfies properties Q1-Q4.

Define ¢ (w) @ (27'w) — éz(w), for w € ™. By the monotonicity property Q4, we know that

#(w) is real. Then,

N
Z|¢ @)= me = > [6° ) - &% (2] (47)
r=0

= &2~ WDy — &%), (48)
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Define Kn(w) 2 &)2(w) + 5N o 1, (W) 2. Then by (48), Kn(w) = &’2(2‘(‘\"*’1)@»). By property
Q3, Kn(w) = @2(2“(‘”’*'1%) =1, for w € {w: [|w|| € 2V*1w,}. Therefore,
<
Keo(w) =|0(w) 2+ |4,w)|* = 1, forw & R™. (49)

v=0

Equation (49) is just like equation (8) with & = ¥, and ¢ = 4.

4.3. Conservation of Energy
We now consider an energy—conservation property of the Phi-transform.

Theorem 3 (Parseval-like) . If A and S are consirucled as in the stalement of Lemma 1; if,
Jurther, & = W and ¢ = o; and if Tf denotes the transform sequence ((f, ®mp), (f, dur)) of e

Junction f; then ||Tfllz = ||fllz2-

Proof of Theorem 3. From (21),

i3 = (hF) = < (Z Fr i)W + D <f,¢.,k)¢,,k),f> (50)
LeZ" v=mtlpeZ”
= Y AP B+ D D (Fdu)dur f) (51)
kEZ™ v=milyeZn
= > A P+ D DD [fidu) P (52)
LeZd™ p=mtl pe 7
= (TAHT e = [ TAE. (53)
[}

In general (i.e. for @ # ¥, ¢ # 1) it can be shown that the Phi-transform of a signal is norm—

equivalent to the signal; i.e. ||Tf|l;z & || f||z=. By this it is meant that there exist constants C; and

Cs in R, such that for all f € L2,

[[fllzz £ C1|[ TS|z, and [[Tf[l2 < Co(f]lz2. (54)

4.4. Real-valued Phi—{transforms

Lastly we note that if the function f is real-valued, and if the set A consists of real-valued functions,

then the Phi-transform sequence Tf of f consists of real numbers.
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5. Examples of the Phi—-transform

Lemma 1 permits considerable flexibility in the choice of the sets A and S of analyzing and syn-
thesizing functions. This means that the Phi-transform is actually an entire family of transforms.
In this section we give specific examples of the sets A and S, and of the transformation and re-
construction of one~dimensional continuous-time signals. Through these examples, we intend to
demonstrate the simplicity of the Phi-transform. This is in contrast to the Wavelet transform where
the orthogonality conditions place severe restrictions upon on the allowable synthesizing functions,

and make them difficult to construct.

In our first example we choose the sets A and S to satisfy () a priori; instead of constructing
them according to the prescription in Lemma 1. If we choose the “window—function” #(w) such that

it is a raised cosine pulse whose argument is the logarithm of the frequency variable,

& [ 1721 cos(nlogyllwll) , w/4< [l <7
w) = { 0 , otherwise (55)

then the sum of all the dilations of f is 1, for all w # 0. Bach of the functions ¢ and 1) can now be
chosen to be the square—root of §; and ¢ = 4. The DC cap functions & and ¥ can be designed to
satisfy (6), and again we choose & = ¥. We should point out that the functions ¢, &, ¢, and ¥ in
this first example do not belong to C* as would functions chosen according to the prior conditions
in the statement of Lemma 1, and those constructed by the prescription in its proof. Indeed, ¢, ®,
1/3, and ¥ as designed here have discontinuous first derivatives. However, for well-behaved functions

f, the C*° conditions on analyzing and synthesizing functions can be weakened.

The sets S=A in this first example are constructed first by choosing an integer m; then by
computing the translates {®nz : k € Z}; then by computing the translates and dilates {¢,1 : v =
m-1,m+2,...;and k € Z}. This completes the construction of a set of analyzing and synthesizing
functions. In Figures 3 and 4 we plot the functions ®,,,, $ms1, bmrz, ..., 91, for the choice m = -5

in the frequency and time domains respectively.

In our second example we look at the problem of deriving a set of analyzing and synthesizing

functions which are optimal in some sense. We have noted that the Phi-transform is important in
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that it can provide a time—frequency description of a signal. Better simultaneous localization of ¢
and ® in the frequency and the time domains would yield a better time—frequency description. As
is well-known, a function cannot be compactly supported in both domains. However, it is possible
to pose an optimization problem in which the function is compactly supported in one domain and
is “concentrated” in the other. Examples of this kind of function are the prolate spheroidal wave
function [28], [29], which are strictly bandlimited on the frequency interval [~ B, B], and have the

maximum fraction of their energy in the time interval [-77/2,T/2].

In this example, we have constructed analyzing functions which are solutions to the eigenvalue

problem [24]:
PgPpé=2A¢. (56)

Here Pp is a projection operator onto the space of bandpass bandlimited functions, and Pr is a
projection operator onto the space of time-limited functions. It can be seen that such a function
solves the following problem: find a bandlimited {function with given spectral support with the
maximum fraction of energy in a given time interval. An earlier and more detailed account of the
construction and the properties of such concentrated functions and of equations like (56) can be

found in [30].

If Pp and Pr describe projections onio vectors that are characteristic Tunctions of an annulus
and a disk, respectively, then the functions ¢ and & generated as solutions to (56) are not continuous
in the frequency domain, and hence not well-localized in the time domain. We can smooth ¢ and

& by convolving them with a compactly supported pulse in the class €°°, of the form

O s
_J ece e , —k<w<
9lw) = { 0 , otherwise (57)

where ¢,k € R¥ are some constants. This smoothing operation yields new functions 43 and ® which
are C%, yet closely approximate the original, optimally—concentrated, functions. The functions
Bos, P4,-.., 91 derived from smoothed solutions to (56) are plotted in the frequency and the time
domains in Figures 5 and 6. The set S of synthesizing functions for this second example can be
derived from the set A defined by ¢ and & by following the procedure outlined in the proof of

Lemma 1.
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In both the above constructions the analyzing functions are real and symrmetric in both frequency
and time domains. The localization of the analyzing functions in the time domain is comparable
in both of the examples above. In Figures 7-10 we show the analysis and synthesis of two signals,
carried out with the cosine—of-log analyzing and synthesizing funetions., The time axis & points to
the right, while the frequency axis v points down. In Figures 7 and 9, the number of Phi-transform
coeflicients at frequency-level v is half that at level (v + 1). The Phi~transform coefficients are all
real since f and the elements of A are real. In the reconstruction pictures in Figures 8 and 10 we

plot the partial sums (29) for m = —5, and N = —5(top) to N = 1(bottom).

In Figure 10, notice that the high-frequency information required to pass from the N = —2
reconstruction to the N = —1 reconstruction is contained in a small number of numerically significant
coefficients. This is in contrast to the usual Fourier reconstruction methods, where in general twice
as many sample values are required to double the frequency range. This indicates that for signals
with localized high—frequency components, it is reasonable to expect the Phi-transform to yield data

compression.

Lastly, in Figure 11, we plot the difference between the Phi—transform coefficients of the two
signals at the top. The signals differ at a very few points, and their Phi-transform differs at a few
points too. This behavior of the Phi-transform is in sharp contrast to Fourier analysis, where change
at a single point in a signal reverberates across the entire spectrum. By linearity, the Phi-transform

of the difference of two signals equals the difference of the Phi-transforms of the two signals.

Because we are discussing the continuous Psi-decomposition in the space L2(R™) in this paper,
we have done all computations with Reimann sum approximations to integral equations. This is
not a practical method of computation. For discrete—time signal processing, a formalism akin to
the continuous Phi-transform discussed here is required that works for signals in {*(Z™) and C".

Preliminary work in this area is described in [25]. A full treatment is the subject of forthcoming

work.
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Figure 3: The analyzing/synthesizing functions generated as the cosines-of-logs are plotted here in

the frequency domain.
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Figure 4: Cosine—of-log analyzing/synthesizing functions in the time domain.
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Figure 5: The smoothed-eigenfunction analyzing functions in the frequency domain.
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Figure 6: The smoothed-eigenfunction analyzing functions in the time domain.



26 KuMar, FUHRMANN, FRAZIER, AND JAWERTH

~1000 ~500 0 500 1000
g“ér’%‘g“) IS
) T
~1000 500 0 500 1000
5— < "Fv Cé-ilk>
0 1] .Il If !! l 11ty
P LA ] I LI I A
l i ‘ ! !
~1000 ~500 0 00 1000
5_ 4 "y
5 ’<‘Fa<¢3~3k> PR TRETEARTIN
0 T TTRTTII0
E T ' ! '
~1000 500 0 300 1000
s <F, 210
-5 I T T | i
~1000 500 0 500 1000
(S)_ < ri Cé_‘k >
-5 i I | | T
~1000 —500 0 500 1000
8_ <Fa 4’ok>
-5 ] I T T ]
~1000 —500 0 500 1000
{5)_ <‘r: ¢ik >
-5 I I i i |

~1600 —500 0 500 1000

Figure 7: The Phi-transform coeflicients of a chirp are computed as the inner-products of the chirp
with the analyzing functions.
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at the top is the original signal. Partial reconstructions are plotted below the original signal.




28

KUMAR, FUHRMANN, FRAZIER, AND JAWERTH

0 I 1 i I T
200 ~100 0 100 200
45 <'r) %——gk > , l ' I
0
] I I E E
—200 ~100 0 100 200
gg FEued
i I i T I
—200 ~100 0 100 200
4
= <, P_zx >
T T z T I
~200 ~100 0 100 200
4
= Fobs>
I ] T T I
~200 ~100 0 100 200
4
0‘_:_ <'F: Ci?—-i k >
I : I T I
200 ~100 0 100 200
gg < Lo
z 1 I I I
-200 ~100 0 100 200
‘3 <F i
| I E T I
—200 ~100 0 100 200

Figure 9: The Phi~transform coefficients of a ramp.
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6. Conclusions

We have established the Psi-decomposition (4) for functions in L2(R?). We have noted that the Psi-
decomposition defines the Phi-transform, and that the Phi-transform of a function gives us a time—
frequency representation if the analyzing functions are well-localized in the time and the frequency
domains. The Phi-transform is linear, continuous, and invertible. If the analyzing functions are
chosen to be real in the time domain, and if the signal being analyzed is real as well, then the

Phi-transform consists of real numbers.

There are more general decompositions [21], similar to the Psi-decomposition, that are not
treated here. Methods completely different from those used in Lemma 1 could be used to generate
the sets A and S of analyzing and synthesizing functions [21]. We need not identify the supports of
the functions in A and S. We might require that the elements of A, or S, or botly, be compactly—
supported in the time-domain and not in the frequency-domain. Or we may forego compact support
in both the time and the frequency domains, requiring only that our functions be small and rapidly

decaying outside appropriate compact intervals.

We have given examples of the construction of the sets $ and A of synthesizing and analyzing
functions, and of Phi~transform plots. From these examples we see that the Phi-transform does

indeed give us a time~frequency representation.
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