Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-24

1990-06-20

Introduction to Communicating Sequential Processes

Luming Lai

In the last two decades, mathematical theories have been helping computer scientists see, in a
fresh light, problems in the area of programming methodology and solve these problems more

efficiently and reliably than before. In this series of seminars we demonstrate the application of
mathematics in parallel languages and programming.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Lai, Luming, "Introduction to Communicating Sequential Processes" Report Number: WUCS-90-24 (1990).
All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/699

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/699?utm_source=openscholarship.wustl.edu%2Fcse_research%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

INTRODUCTION TO COMMUNICATING
SEQUENTIAL PROCESSES

Luming Lai

WUCS-90-24

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Introduction to Communicating Sequential Processes (CSP)*

Luming Lai
Computer Science Department
Washington University
Campus Box 1045
St. Louis, MO 63130

June 20, 1990

1 Introduction

In the last two decades, mathematical theories have been helping computer scientists see, in
a fresh light, problems in the area of programming methodology and solve these problems
more efficiently and reliably than before. In this series of seminars we demonstrate the
application of mathematics in parallel languages and programming.

e Purposes
The main purpose of this seminar is to demonstrate the importance of mathematics in
computer science: 1) how to apply some mathematical theories, like algebra, predicate
calculus, set theory, etc., into the concurrency world, that is, how to use these theories
to study the specification, design and implementation of concurrent systems, partic
ularly parallel programs with communications; 2) how to find and solve both current
and future problems in the area of programming methodology by using mathematics.

To achieve these goals, we use C.A.R. Hoare’s CSP as a paradigm.

¢ What is CSP

CSP, a theory of Communicating Sequential Processes, is a mathematical notation
for expressing and reasoning about systems of concurrent processes. By ezpressing
we mean the specification and implementation of the concurrent system. Without a
formal notation it is difficult to describe a process precisely erough to modify it or
to contrast it with contending designs. By reasoning about we mean the modification
of the design, the development of a concurrent system from its specification, and the
verification of such an implementation as correct with respect to the original design.
CSP supports a body of fairly simple algebraic laws and a semantic theory which
enable us to do so in a mathematical framework.

e Applications of CSP
Applications of CSP: CSP uses the following operators to construct processes: parallel

*A research seminar notes, Spring, 1990

composition, external choice, internal choice, communication, abstraction and sequen-
tial composition. The resulting notation is expressive enough to describe the problems
in the following areas: multiprocessing systems, operating systems, distributed sys-
tems, systems using remote procedure calls, and systolic arrays of processors.

e Background

1. high-school algebra;
2. concepts of set theory;
3. notations of the predicate calculus.

s Summary
Seminar 1 demonstrates that CSP provides a notation which is rich enough for express-
ing and reasoning about systems of concurrent processes. Somes examples are given
to introduce CSP notations and to show how CSP can be used to model (or describe)
some potentially complex systems by building the specifications in small steps. Laws
governing the behaviour of CSP operators are given. They give an algebraic semantics
to CSP notation.

Seminar 2 gives a mathemadtical treatment to CSP, mainly its mathematical semantics.
A trace model is developed for CSP notations and some interesting properties of CSP
are proven in the model. A denotational semantics is given to CSP notations and
laws about CSP operators are proved. A specification method is developed which
handles only safety properties of communicating processes. Proof rules for each CSP
operator are given which enable us to prove a CSP process correct with respect to its
specification.

Seminars 3 develops a more sophisticated model, the failures model for CSP, in which
determinism and nondeterminism can be distinguished. Doing so the resulting spec-
ification method can handle both safety and liveness properties. Proof rules in this
model are developed.

2 Seminar One : A Description Of A PingPong Game

During a CSP course it is easy to lose sight of the wood for the trees; after spending several
hours immersed in the formal properties of an operator, one is apt to forget why the operator
was deemed to have been important in the first place. It has thus been found convenient to
begin a CSP course with a seminar whose purpose is to provide an overview and informal
introduction to the features of CSP.

In this seminar we attempt to give such an introduction. Particular features are:

(a) the use of a small example to introduce the notation, and demonstration of how CSP
can be used to model a potentially complex system by building the specification in
small steps;

(b) early emphasis on the combination for the internal and external choice;

(c) contrast between CSP and the notation of finite automata and regular expressions;
and

(d) introduction of algebraic laws governing the behaviour of CSP constructs.

Some basic concepts:

® The word process is used to stand for the behaviour of an object. There are two
ways to describe a process:

1. by CSP syntax.
Result: progams.

2. by its semantics,
Result: specifications

This seminar describes-a PingPong game by using CSP syntax.

e The alphabet of a process is the set of names of events which are considered relevant
for a particular description of an object. The alphabet is a permanently predefined
property of an object. That is, it is logically impossible for an object to engage in an
object outside its alphabet.

2.1 A PingPong Game

Task: describe a PingPong game formally in CSP.

18 RB

A
—g €, 0 Bell

v,

1P R& LG

PingPong Game

2.2 Informal Description

PingPong is a game for two players who sit at the ends of a small table. Set into the table is
a horizontal video monitor which displays a ball bouncing around inside a four-wall court.
The wall nearest the right-hand player, RP, is the goal, LG, of the left-hand player, LP,
and vice visa. To defend his opponent’s goal, the RP controls a bat, RB, which can be
moved along LG by pressing “moving right” button or ”"moving left” button (judged from

3

the viewpoint of RG), or neither. The ball starts at the middle of the court at a random
angle (not parallel to the goals) and collides elastically with the bats and walls. But, if it
reaches a player’s goal, that player wins and the session ends.

The first difficulty is to decide at what level to model the game. We can describe the
game in one of the following ways:

1. the starting time, the ending time and the winner; or
2. second by second, the intensity of the screen and the movement of the players.

We choose the second way to describe the PingPong game which contains more information
than the first which is called more high-level or more abstract.

The next difficulty is to decide the relevant events, i.e. its alphabet. We are not
interested in

o the time nor how fast the ball moves, nor
» the player’s physical attributes,
but
o how players control their bats (by pressing the buttons)
e how the bats deflect the ball.
Thus we shall focus on an intermediate description which ignores time and most physical

attributes of the players of the games.

2.3 A Top-down Description

We conceive of the game as proceeding as the two players control their bats by button and
the bats deflect the ball which rebounds around the court. Our first step is to isclate the

five interacting processes:
LP the left-hand player
RP the right-hand player
LB the left-hand bat
RB the right-hand bat
Ball the ball

It is our intention to describe the game as proceeding with evolution in parallel of these

processes
PingPong = LP || LB || Ball | RB || RP (1)

A process is defined by describing the whole range of its potential behaviour, for example,
the right-hand bat. Frequently, there will be a choice between several actions, like the
movement of the bat to the right or left. On each occasion, the choice of which event will
actually occur can be controlled by the environment (in this case the right-hand player

4

and the ball) within which the process evolves. For example, it is the player who controls
which direction the bat moves. Fortunately, the environment of a process itself may be
described as a process (the right-hand player). This permits investigation of the behaviour
of a complete system composed from the process together with its environment, acting and
interacting with each other as they evolve concurrently. The complete system should also
be regarded as a process, whose range of behaviour is definable in terms of the behaviour
of its component processes, like RP || RB; and the system may in turn be placed within a
yet wider environment, like RP || RB in PingPong.

The informal meaning of || is: when two processes are running in parallel like RP || RB,
the components must synchronized on their common actions or events (the left-bat responds
to the left-hand player’s wishes) although an event which can be performed by only one
of them, occurs whenever that process permits it to (the bat is insensitive to its player’s
victory).

Laws governing || are given bellow, whenever a new CSP construct is introduced.

L1 Pll@ = QIP

L2 P(QIR) = (P QIR
But let us first discuss the players, LP and RP.

2.4 Specifications of Players

Think of a process as a black box. Its internal constitution is concealed from us but we can
nevertheless describe it by its interactions with its environment.

Player
The relevant events in which the left-hand player can engage are

right push the right-hand button
left push the left-hand button

stay push neither

[y]

We say these events constitute the alphabet of LP,
a(LP) = {left, right, stay}.

The left-hand player can push buttons as frequently as he likes and in any order. The choice
of what he does is determined by factors not revealed at this level of abstraction. So in our
model LP can, at any stage, engage in any of the events in its alphabet.

To contrast between CSP and the notation of finite automata and regular expressions,
we give

(a) A diagram of a finite automaton

lett

(b) A regular grammar
LP = left LP | right LP | stay LP |¢

where € denotes the empty string and its language consists of all the finite sequences
of left, right and stay, denoted

{ left, right, stay }*

The way in which we describe LP using CSP makes apparent that the choice between the
different events in its alphabet is made internally by LP and cannot be influenced by its

environment.
The CSP description of LP:

LP = (left = LP) N (right — LP) N (stay — LP) (2)
This recursive definition can also be written as
LP = pX.(left > X) N (right = X) N (stay - X) (3)

Some care is necessary to ensure that such a definition makes sense. For instance LP is not
defined by either
LP = LP or LP = LPN LP

because everything is a solution to these two equations.

6

Definition 2.1 (Guarded Process)
A process is guarded if it begins with a prefiz.

We introduce some CSP operators.

e stop, is process with alphabet A which never engages in anty events in A. This
describes the behaviour of a broken process: although it is equipped with the physical
capabilities to engage in the events of A, it never exercises those capabilities. Note

stop, #stopp if A # B.

L3 P| stop,p = stop,p
L4 stop # (d — P)

e Prefix
a— P

It describes a process which first engages in the event ¢ and then behaves exactly the

same as P.
a(ea - P) = aP provided that a € aP

Laws governing the prefix operator are: let ¢ € (aP — aQ), b € (¢Q — aP) and
{c,d} € (aPNaQ)

L4 (¢c— P) # (d = Q) ifc#d

L5 (¢c=>P)=(c—~ Q)= P=gQ

Le (c=P)f[(c= Q) = c—(P| Q)

L7 (c—= P)||(d—= Q) = stop ifc#d

L8 (a—=P)||(c> Q) = e—=(P|(c—Q))

L9 (e=P)[(60— Q) = b~ ((c=P)| Q)

e Internal choice or nondeterministic choice
PngQ

is a process which behaves either like P or like @, where the selection between them
is made arbitrarily, without the knowledge or control of the external environment.

ao(PNQ) = aP = a@

An example of the internal choice is a change machine: a one-dollar bill is inserted and
different combinations of coins may be returned, but the choice cannot be controlled
by the customer.

The algebra laws governing nondeterministic choice are as follows:

L10 PAP = P
L11 PriQ = QAP
L12 PN(QNR) = (PNQ)NR

L13 a—>(Pl'lQ) = (a—>P)|'|(a_>Q)
Li4 P[[(@NR) = (P|| Q)N (P || B
L15 (PNQ)|IR = (P R)N(Q | R)

¢ recursion
If F(X) is a guarded expression containing the process name X, and A is the alphabet
of X, then we claim that the equation

X = F(X)

has a unique solution with alphabet A. It is sometime convenient to denote this
solution by the expression
pX: A F(X).

Therefore, LP can also be written as
LP = pX :aLP.(left - X)N (right - X) N (stay — X).
Laws about recursion are:
L16 If F(X) is a guarded expression,
(Y = F(Y)) = (Y = uX.F(X))
L17 p X.F(X)= F(p X.F(X))
The recursion operator is not distributive through nondeterminism.

P = #X.((a—hX)rl(b—*X))
Q = (uX.(a— X)N(eX.(b— X))

are different processes.

We introduce traces of a process.

Definition 2.2 (traces)
a trace of a process is a finite sequence of events in which the process has engaged up to
some moment in time.

The set of all finite traces of a process P is denoted
traces(P).
For example, the traces of LP are
traces(LP) = {left, right, stay}*.
¢ Operations on traces:

— <> denotes the empty trace. < z,y > consists of two events, z followed by y.
< z > is a trace containing only one event z.

8

— trtry is the catenation of two traces ¢r and try.

— ir | A denotes the trace when restricted to symbols in the set A; it is formed from
tr simply by omitting all the symbols outside A. For example, < a,b,c,d >|
{a,d} =< a,d>.

— irg is the first event of trace ¢r and ¢r' is the trace obtained by removing the first
symbol of ¢r.

— #tr is the length of tr.
— ity <trp = Jirs. trirs = tr,.

Laws about traces:

L18 traces(stop) = {<>}

L19 traces(c — P) = {<>}U{< ¢ >" tr| tr € traces(P) }
L20 traces(p X : A.F(X)) = U,y traces(F"(stop,)).
L21 traces(PN Q) = traces{P) U traces(Q)

L22 traces(P | Q) = {tr]tr | aP € traces(P) A tr | aQ € traces(Q)
Atr € (aPUaQ)*}

Finally, as a trace is a sequence of symbols recording the events in which a process P has
engaged up to the moment in time. From this it follows that <> is a trace of every process
up to the moment in which it engages in its very first event. Furthermore, if (#r*irl) is
a trace of process up to some moment, then ¢r must have been a trace of that process up
to some earlier moment. Finally, every event that occurs must be in the alphabet of the
process. Thus we have the following three laws:

L23 <>¢ traces(P)
L24 tr’trl € traces(P) = tr € traces(P)
L25 traces(P) C (aP)"
We define an after operator as follows:
Pltr

is a process which behaves the same as P does from the time after P has engaged in all the
events in the trace tr. If {r is not a trace of P, P/i{r is not defined. For example,

(1) P/<>= P
(2) (c> P)/<ec>= P.
Laws about after are:
L26 traces(P/tr) = {trl] tr*trl € traces(P)}, provided that tr € traces(P).
L27 (P @)/tr = (P/(tr 1 aP)) || (Q/(tr | 2@Q))
9

L28 (PN Q)/tr = @[tr, if tr € (traces(Q) — traces(P))
= P/ir, if tr € (traces(P) — traces(Q))
= (Pftr)n(Q/tr), if tr € (traces(P) N traces(Q))

Let us return to our PingPong game. So far, we have only described the behaviour of
LP when he is playing. At the end of the game the left-hand player behaves like either

(lwin — stop) or (rwin — stop).

The choice between them is not made by the player himself (would he ever choose th latter
choice?), so N is an appropriate combinator. The choice is made by LP’s environment
because it depends on the: position of the ball. We must introduce a new, environment-
controlled, choice combinator: it is written O and called external or determinisite, choice.
So at the end of the game LP behaves like

(lwin — stop) O (rwin — stop)

and the choice between such behaviour and nontermination (as described in our previous
version of LP) is again made by LP’s environment — it depends on whether the ball is at
a goal. Thus finally

a(LP)
LP

{left, right, stay, lwin, rwin}

((left — LP)N (right — LP) N (stay — LP))
O

((lwin — stop) O (rwin — stop))

1

The Deterministic choice (PLQ) offers the choice between P and @ to its environment,
provided that this choice is made at the very first action. If this action is not a possible
first action of P, then Q will be selected; but if Q cannot engage initially in the action, P
will be selected. If however, the first action is possible for both P and Q then the choice
between them is nondeterministic. We stipulate

a(POQ) = aP = a@Q

In the case that no initial event of P is also possible for Q, the external choice can be
written as, for example

(c=POd— Q) = (¢~»P|d— Q) provided that ¢ # d
or in a more general notation
(¢c—=P|d—-> Q) = (z:B— R(x))

where B = {¢, d} and R(z) = if z = a then P else Q.
Laws of O are given as follows:

L29 POP = P
L30 POQ = QOP
10

L31 PO(QOR) = (POQ)OR

L32 POstop = P

L33 PO(QNR) = (POQ)N(PTR)
L34 PN(QOR) = (PN Q)O(PNR)
L35

(z:4— P(z))0(y : B - Q(y))
= (2:(AUB)— (if z € (A— B) then P(2)
else if 2 € (B — A) then Q(z)
else if z € (BN A) then (P(2)N Q(2))))

L36 iraces(POQ) = traces(P)U traces(Q)

L37 (POQ)/tr = Q/tr, if tr € (traces(Q) — traces(P))
= P/tr, if tr € (traces(P) — traces(Q))
= (Pltr)N(Q/tr), if tr € (traces(P) N traces(Q))

L38 (a = P)[| (6= Q) = (a=(P| (0> A4) | b ((a—P)| Q)
provided that ¢ € (aP — aQ) and b € (aQ — aP).

L39 Let P=(z: A — P(z)) and @ = (y: B — Q(y)), then
(PllQ) = (2: C = P'|| Q),

where C=(ANB)U(A-aQ)U(B-aP)and P’ =if z € A then P(z) else P, and

’=,if z € B then Q(z) else Q.

These laws permit a process defined by concurrency to be redefined without concurrency,

as shown in the following example

Example 2.1
LetaP ={a,c}, aQ@ ={b, ¢}, P=(a— c— P)and Q = (¢ — b — Q). Then,
PllQ = (a=b—=>P)|(c=b—-Q) by defs
= a—=((c~> P)|[(c—>b—Q)) L8
= a—=c—(P|(b—- Q) Le
Pll(6b—@) =
= (a=(c~P)[(b— Q)
|6 — (P Q) L38
= (@a=b—=((c— P} (Q)
|6 —(P|l Q) L8

= (a=b—oc—(Pl(5— Q)

11

|bsa—co (P(b—Q)) byLs, 7,8
= pX(aoboc-X
|6 —a—-c— X this is guarded

We have
Pll@)=(a—c—pX.(a=boc—X)|(b—> a—c— X))

After having completed the specification of LP, we next observe the similarity between
LP and RP.
Exercise Define RP in CSP.

There is a systematic way to exploit such a isomorphism, called relabelling. Let us
introduce three new events left!, right’ and stay’ (why new?), and define a function

[:a(P) — {left!, right’, stay’, twin, rwin}
by setting

f(left) = right’
f(right) = left!
f(stay) = stay’
f(lwin) = lhoin
f(rwin) = rwini

We define a process named f(LP) as follows: its alphabet is f(aLP) and it engages in
eventf(e) iff LP engages in event e. This ”lifts” the function f from events to processes,

and enable us to define
RP = f(LP)

This finished our specification of the players in CSP.

2.5 The Specifications of Bats

The left-hand bat, LB, starts in the centre of RP’s goal and when it moves, it does so
in small uniform jumps left or right (directed from the point of view of LP) as far as the
extremes of the court. We deems LB to be capable of at most n moves in either direction
from its original position, for some n € N at least 1. In the implementation n will be
quite large, its actual value being determined by matters of graphical and computational
efficiency. But let us abstract from these and treat n as a constant of the specification.

e A finite automaton description.

12

YA,

é““

o A grammar description.

LB
LB,
LB_,
LB,

VA dhudi stez n
ria’lvt' \ Aeft ‘

-~

L

ﬁt&(fof tejt

L ma shole |
bt stwtr 0

Staty
y

\/
sf‘a;ll. state —n

LBy

left LBy, | right LBy_, | stay LBy | €
left LB_p41 | right LB_, | stay LB_,
left LBy | right LB,_, | stay LB,

The language of this grammar is, of course, identical to that for LP. At this level of
abstraction we have made no use of the “position marker” n and were we not to make
use of it later in the specification, our description would be unnecessarily complicated

(not fully abstract).

For convenience, we choose, as we did with LP, to specify LB in two steps. Again the second
version supersedes the first and so we use the same name, LB, in both. We express LB in

CSP

a(LB) = {left, right, stay}
LB = LBy
LB; = (left — LByy1) | (right - LBy_1)| (stay — LB)
provided |t| < n—1
LB_, = (left = LB_,41)] (right — LB_,) | (stay — LB_,)
LB, = (left — LB;)|(right - LBn_1)|(stay — LB,).

Note that the choice between events left, right and stey is not made by the bat, but its
environment, that is, LP. This distinction does not appear in the finite automaton for LB.

13

o A simplification of LB,
LB, is permitted to engage in the event left without changing its state (i.e. its
position). Can we bar it from performing a left by defining instead

LB, = (right — LBa_,
| stay — LB,).

This yields a mismatch between LP and LB which can lead to a deadlock. Let us

consider
LP| LB.

It is the process which.results from LP and LB interacting in parallel. Its alphabet is
a(LP || LB) = {left, right, stay, lwin, rwin}

and an event common to both LP and LB is performed by LP || LB when and only
when it is performed by both LP and LB. So, from the start, LP chooses internally
between left, right and stay, and LB allows it to make this choice and so engages in the
same event. It is, after all, the player who controls the next position of the bat, and
not the bat which determines the next action of the player. The processes proceed
in step, synchronising on their common events. Have we made the modification to
LB as above, LP | LB would proceed in the same way until LB reached an extreme
state — say LB,. Now if LP insisted on engaging in the event left, then since LB also
contains left in its alphabet but is not prepared to engage in it at this stage, deadlock
would occur.

We leave the definition of the right-hand bat to the reader.
Exercise: Define RB.
Anwser:
Define f' = f | {left, right, stay}, where f was defined in section 2.2.3 (here f | E
denotes the restriction of function f to set E}, then

RB = f(LB).

This time it is important that LB and RB be mirror images of each other in order for RB
to present the correct choice of events to its environment in its extreme states.

Since we are defining the five processes LP, RP, LB, RB and Ball to be self-contained,
some synchronisation is necessary between them. When the ball reaches the left-hand goal,
for example, it must find out the position of the defending bat so that it can determine
whether the game ends or whether the ball should rebound. This implies, from the meaning
of ||, that LB must always be prepared to offer its position (containing the ball) to its
environment: an offer which will be accepted by the ball whenever it reaches the left-hand
goal. For || < n we must thus incorporate in the alphabet of LB the events (to be common
with those of Ball)

lpositiony.

For reasons which will become apparent later on, we rewrite these events
Iposition!t.

14

The modification to LB is thus to augment its alphabet by the 2n+1 new events

{lposition!t : |t| < n},

and to permit its environment to read them.

a(LB)
LB
LB,

LB_,

LB,

What happens when the ball reaches the goal and the bat, only one step away, is frantically
directed by its player to cover the ball’s progress? Does the bat respond to its player’s wish
or does it reply to the ball’s request for its position? The answer is simple: it performs
whichever event reaches it first by virtue of preceding its opponent in the trace of events

from LB’s environment.
Exercise: Define RB.

{left, right, stay} U {lpositionlt : |t| < n}

LB,

(left = LB

| right — LBy,

| stay — LB,

| Iposition!t — LBy)
provided [{| < n -1

(left = LB_, 11

| right = LB_,

| stay — LB_,

| iposition!t — LB_,)

(left — LB,

| right — LB,_y

| stay — LB,

| Iposition!t — LB,).

2.6 The Specification of Ball

It is now convenient to settle upon some notations for the court. The set of possible positions

for the ball is

Court 2 {(z,y)ER*|0<z<2A0<y<2} = [0, 2]x][o0, 2]

{.O,I) (I,’) 62]1)

" wall . LG

{0,0) (1.0) (2,0)

The segments of the boundary of the court which interest us are:

Wall = {(z,y)€R’|0<z<2A0<y<?2}

RG = {(z,y)eR’|z=0A0<y<1}

LG 2 {(z,y)eR*|z=2A0<y<1}
Court® = Court — (WallU LG U RG)

In this notation, LB starts at (0, 1/2) and is at (0, 1) when it is at its left-most state.

The ball is to start at (1, 1/2) in a random direction and bounces elastically (so that
the angle of incidence equals the angle of reflection) from the walls and bats. Just as the
bats move in small steps, so does the ball. Its subsequent position depends on its present
one, its direction, and (sometimes) on the position of the bats. Thus the state of the ball
is taken to be a pair

(p, d) where p is the present position of the ball, pe€ Court, and d is the direction of the
ball, de R?, |d| = 1.

For convenience we write p = (p,, py) and d = (dz, d,). We are assuming that the speed
of the ball is constant, that there is no friction, that there is no spin imparted to the ball
by the bats, and so on.

Since the ball starts in a random nonvertical direction,

Ball; = I'Idx#oBal[((l, 1/2)
where N is a prefix form of internal choice.

e The Ball’s Movement
Away from the edges of the court the ball moves in the same direction, from the state
(p, d) to state (p+d, d). It penetrates a goal unless deflected by a bat in which case
the ball changes from state (p, d) to ((p. — dz, py + dy), (—dz, dy)). Similarly, at the

16

wall the ball changes from state (p, d) to state ((p, + dz, py — dy), (dz, d;)): this
occurs whenever the ball lies in Court® but its subsequent position does not.

Thus, to define the ball’s movement, we suppose that it is in state Ball(p, d), with
p € Court®, and consider the cases:
— if p+ d € Court®, then the ball moves to state (p + d, d);

— if p + d lies on or over the wall, then the ball moves to state
((p= + ds, Py — dy)’ (dzs —dy));

— if p+ d lies on or over a bat, then the ball moves to state
((Pz - dg, Py + dy): (—dx, dy));

— if p+ d lies on or past the left-hand goal not covered by the bat, then lwin occurs
and the ball returns to the middle of the court;

— if p + d lies on or past the right-hand goal not covered by the bat, then rwin
occurs and the ball returns to the middle of the court.

We introduce a conditional construct
PaBeoQ

which is interpreted
if B then P else Q.

Thus
if B1 then P1 if B2 then P2 else P3

becomes
Pl « Bl » (P2 4« B2 v P3).

or, in two-dimensional form
Pl
aBle
P2

aB2¢
P3

Note that the ternary combinator is not associative, i.e. the following law is not true
Pl 4« Bl v(P2 «B2 0> P3) # (P1 « Bl v P2) «B2 v P3.
Now we can specify the ball’s changes of state as follows:

Ball(p,d) = (Ball(p+ d, d)
a p+d € Court® >

a p+donfover Wall v

17

Ball((p: — d:, Py + dy),(—dy, dy))
< p+ d on/past a bat S
lwin — Ball
ap + d on/past LG without bat v

rwin — Ball)-

As the description of Ball is self-contained (there is no refree and Ball should be able
to determine who wins), it should communicate with its environment (the bats) which
determine whether p+d is on or past the position of a bat. Since, for example, LB determines
which of the events lpositin!j occurs, Ball must be prepared for any of them. Ball thus offers
an external choice between all events in the set

{Ilposition!j : |j] < n}

and its subsequent behaviour depends on which j is communicated. To express this, we
introduce a complementary half of a communication event (of which Iposition!j is the send,
or output, half) to be the receive (or input) event

{position?z

where z is instantiated to whatever value matches the complementary send event. Here !
stands for output and ? for input. They enable the resulting process to progress with a
net communication from the outputting sub-process to the inputting process.

We modify Ball to read the position of the left-hand bat LB when the ball is in the
right-hand goal RG, and symmetrically. First, we convert the state being output by LB

t€{-n,-n+1,...,-1,0,1, ..., n—1, n}
to the corresponding value
' € (z+ n)/(2n) €[0,1]
required by Ball. Then we have

Ball(p,d) = (Ball(p+ d, d)
q p+d € Court® b
a p+donfover Wall o
Ball((pr — ds, Py + dy),(~ds, d,))
4 p+donfpastabat o

LX
ap + d on/past LG without bat b
RX).

18

where, with z’ defined as above,

LX = lposition?s — Ball((p. — dg, Py + dy),(—d;, d}))
a z'onfpastp, v
lwin — Balll),

RX 2 rpositionlz — Ball((p, — d;, Py + dy),(—d;, dy))
a z'onfpastp, v
rwin — Balh)s

Finally, we must record the alphabet of Ball
a(Ball) = a(Balh) U {Iposition?z : |z| < n} U {rposition?z : |z| < n}.

This completes our description of Ball and of PingPong.

In this seminar an algebraic semantics has been given to a subset of CSP. It is convenient
to use these algebraic laws in CSP program transformation and proofs of process equivalence.
But there are still some questions remained.

e Questions:
How do we know our description captures all the features embraced in the require-
ment? or in other words, How can we ensure users that all the CSP laws given above
are consistent and complete?

¢ solution:
Formalization of the semantics of CSP notations: a mathematical model and seman-
tics.

3 Seminar Two : A Trace Model

In the previous seminar, we have stated a large number of laws which are used in the
proofs and process transformation. These laws have not been justified. So there arises the
questions: are these laws in fact true? are they even consistent? Should there be more of
them? or are they complete in the sense that they permit all true facts about processes to
be proved from them? Could one manage with fewer and simpler laws? These are questions
for which an answer must be sought in a deeper mathematical investigation.

3.1 The Description of Processes

In constructing a mathematical model of a physical system, it is a good strategy to define
the basic concepts in terms of attributes that can be directly or indirectly observed or
measured. For a deterministic process, we are familiar with two such attributes:

e aP is the set of events in which the process is in priciple capable of engaging;

o iraces(P) is the set of all sequences of events in which the process can actually engage
if required.

19

Definition 3.1 (Deterministic Processes)

A deterministic process is a pair
(4, 5)

where A is any set of symbols and S is any subset of A* which satisfies the two conditions
Co <> 8§
Cl Vir, trl. tr™Mrle S =>tre §

Examples

El a(stop,) = 4
traces(stop,) = {<>}

E2 o(LP) = {left, right, stay, lwin, rwin}
traces(LP) = {left, right, stay, lwin, rwin}*

E3 P = (a — b — stop)N (b — ¢ — stop)

aP = {a, b, ¢}

traces(P) = {<>, < a>, <ab>, < b>, < bc>}
3.2 A Denotational Semantics

The various operators on processes can now be formally defined by showing how the alphabet
and traces of the result are derived from the alphabet and traces of the operands.

D1 stopy = (4, {<>})
D2 rung = (4, A%)
D3 ((4,5)0 (4,T)) = (4, SUT)
D4 (A, S)/tr = (A, {tr1|trtrl € S}) provided tr € §
D5 uX: AF(X) = (A, Unyotraces(F*(stop,)))
provided F is a guarded expression
D8 (A,5)[| (B,T) = (AUB, {tr|tre (AUB)*A(trt A)eSA(tr | B)E T})
D7 f(A,S) = (f(4), {f*(tr)| tr € S} provided f is one-one

As the above definitions are processes, we have to prove that they do satisfy the two con-
ditions in the definition of a process. We prove, for instance, (4,S5) || (B, T) is a process.

CO because <>€ S and <>€ T, we have <>€ traces((A,S) || (B, T)) by its definition.

C1 suppose tr'\irl € traces((A4, S) || (B, T)). Then, by the definition, we have (trtr1) |
A € traces(S) and (¢rtrl) | B € traces(T). Since the pairs of sets (4, 5) and (B, T)
satisfy C1, we have, by properties of |, tr | A € traces(S) and ir | B € traces(T).
Then by definition of ||, we have tr € traces((A, S) || (B, T)) as required.

Now we can prove all the laws given in the previous seminar are actually consistent with
the new model.
Exercise: prove all the laws in the previous seminar.

20

3.3 Fixed-point Theory

The purpose of this subsection is to give an outline of a proof of the fundamental theorem
of the recursion, that a recursively defined process is indeed a solution of the corresponding
recursive equation, i.e.,

pX.F(X) = F(pX.F(X))

The treatment follows the fixed-point theory of Scott.
First, we define an ordering relationship C among processes

D1 (A4,S)C(B,T) = (A=BASC T)

Two processes are comparable in this ordering if they have the same alphabet and one of
them can do everything done by the other — and maybe more. This ordering is a partial
order in the sense that

L1 PC P
L2 PCQAQCP=P=Q
L3 PCQAQLR= PCR

Definition 3.2 (Basic concepts)

o A chain in e partial order is an infinite sequence of elements
{Po, P1, P2,...}

such that
P; C Pia for all i

o The limit (least upper bound) of such a chain is defined

|_| P; = (aPy, U traces(P;))

i>0 i>0
o A partial order is said to be complete (c.p.o.) if it has a least element, and all the

chains have a least upper bound.

o A function F from one c.p.o. to another is said to be continuous if it disiributes over
the limits of all chains, i.e.,

F(L|P) = || F(P) if {P; | i >0} is a chain
i>0 i>0

A function G of several arguments is defined as continuous if it is continuous in each
of its arguments separately.

Theorem 3.1 The set of all processes with a given alphabet A form a complete partial
order.

21

Exercise: prove the following three laws.

L4 stop, C P provided aP = A

L5 P Cliyo P

Lé (Vi20.P,C Q)= (Ui P)CEQ

We can reformulate the definition of i in terms of a limit

LT pX : AF(X) = Liso Fi(stopy)

Theorem 3.2 All the operators (except /) defined in D8 to D7 are continuous.

Exercise: prove the following laws

L8 (z: B — (Liyo Pi(2))) = Llizo(z: B — Pi(z))

L9 pX : AF(X,(Uiyo P)) = LiporX: A.F(X,P;) provided F is continuous
L10 ([Jino P Q@ = QI (Uizo P:) = Uino(Pi) || Q)

L11 f(UigoP:') = Uizof(Pi)

Consequently, if F(X) is an expression solely constructed in terms of these operators, it
will be continuous in X.
Now it is possible to prove

Theorem 3.3 pX : A.FP(X) = Lo F'(stop,) is a solution to F(X) = X if F is
continuous, i.e.,
F(uX :AF(X)) = pX: AF(X)

Proof:
F(uX:AF(X)) = F(| Fi(stopy)) def of p
>0

= |_] F(F*(stop,)) continuity of F
i>0

= || Fi(stop,) def of Fi+!
i>1

= [|Fi(stopy) stop, C F(stop,)
>0

= pX:AF(X) def of Fi+1

This completes the proof.

22

3.4 Unique Solution

In this subsection we will prove that an equation defining a process by guarded recursion
has only one solution.

Definition 3.3 If P is a process and n is a natural number, we define (P | n) as a process
which behaves like P for its first n events, and then stops

(A4,8) I n = (A, {tr| tr € SA #tr < n}).
It follows that
Li2 P[0 = stop
L13 PIaCP(n+1)CP
L14 P = l},59P I n
L15 Upyo Pn = Unpo(Pa I n)

Definition 3.4 Let F be a monotonic function from processes to processes. F is said to be
constructive if

FX)I(n+1) = F(X I n)(n+1) for all X
Examples
E4 Prefixing is a constructive function

(c->P)yt(n+1) = (c—>(PIn))l(n+1)

E5 General choice is also constructive

(z:B=P())t(n+1) = (z:B—>(P(z) I n)) I (n+1)

E6 The identity function [is not constructive

Ife—=P)I1 ¢ — stop
stop

Hc—=P)}1O) 1

0

Theorem 3.4 Let F be a constructive function. The equation
X = F(X)

has only one solution for X.

23

Proof:
Let X be an arbitrary solution.
First by induction we prove the lemma that

Xtn = F'stop) | n

Base case. X | 0 = stop = stop | 0 = F(stop) | o.
Induction step.

Xt(n+l) = FX)t(n+1) since X = F(X)
= F(Xtn)l(n+1) F is constructive
= F(F"(stop)l n)l(n+1) hypothesis
= F(F"(stop)) | (n+1) F is constructive
= F**(stop)) t (n+1) def of F
Now we go back to the main theorem.
X = |[|(Xtn) L14
220
= LJ F*(stop) I n just proved
220
= |_| F*(stop) ; L15
2>0
= pX.F(X) L7

Thus all solutions of X = F(X) are equal to 4 X.F(X); or in other words, u X.F(X) is the

only solution of the equation.
The usefulness of this theorem is much increased if we can clearly recognize which

functions are constructive and which are not.
The constructiveness can be defined syntactically by the following conditions for guard-

edness.

DO An expression constructed solely by means of the operators concurrency, symbol change,
and general choice are said to be guard-preserving.

D1 An expression which does not contain X is said to be guarded in X.

D2 A general choice
(¢:B— P(X,z))

is guarded in X if P(X,z) is guard-preserving for all z.
D3 A symbol change f(P(X)) is guarded in X if P(X) is guarded in X.

D4 A concurrent system P(X) || Q(X) is guarded in X if both P(X) and Q(X) are
guarded in X.
Finally, we have
Theorem 3.5 If E is guarded in X, then the equation
X = F(X)

has an unique solution.

24

3.5 Specifications

A specification of a product is a description of the way it is intended to behave. This
description is a predicate containing free variables, each of which stands for some observable
aspect of the behaviour of the product.

In our case, a process P with alphabet aP has only one observable aspect: its traces.
Therefore, the specification for a process is a predicate containing the trace variable #r

P = (A,S) < S4(tr).

Definition 3.5 (Specification)
A specification of a process P with alphabet A, is of the form

Spa(tr) = a(tr)C A A Hr(tr)
where tr occurs in Hr only in the form
tri B withBCA
and a(tr) is the set of events occurred in trace ir.
Examples
E1 The specification of process
P = (a — b— stop)M(b— a — stop)
is defined

Spiapy(tr) = a(tr) C {a, b} A(tr =<> Vir =< ¢ > Vir =< ab >
Vir =< b > Vir =< ba >),

where ir [« is written as tr and sometimes ¢r | {c} is written c.
E2 The above specification can also be written as
S5papy = atr C{a,b} A (tr << ab > Vir << ba >)

or
Spapy = atr C{a,b}A(Fa <1V #b<1).

E3 A one-place buffer can be specified
Buffiin,ouy = a(ir) C {in,out} A (0 < #(tr | {in}) — #(tr | {out}) < 1).

Definition 3.8 (Satisfaction Relation)
A process P = (A,S) is said to satisfy a specification Spg, denoted

P sat Sp

if and only if
A=18B and Vir. ir € traces(P) = Sp(tr)

25

Then we can prove the following proof rules for CSP operators in our mathematical model
(as exercises).

L1686 P sat true
L17 If P sat Sp and P sat Tp, then
P sat (Sp A Tp).

L18 IfVn. (P sat Sp(n) then
P sat Vn. Sp(n).

provided P does not depend on n.
L19 If P sat Spand Sp = Tp, then

P sat Tp.

L20 stop sat (ir =<>)
L21 If P sat Sp then

(¢ = P) sat (ir =<> V(tro = ¢ A Sp(ir').

L22 If P sat Sp and Q sat Tp, then

(¢ — P)|(d— Q) sat tr =<> V(tro = c A Sp(tr')) v (tro = d A Tp(tr")).

L23 If P sat Sp and @ sat Tp, then
(Pl Q) sat Sp(tr | aP)A Tp(ir | aQ).

L24 If P sat Sp(ir) and ir € éraces(P), then
P/tr sat Sp(trtrl)

L25 If X is guarded and stop sat Sp(ir) and (X sat §) = (F(X) sat S), then
#X.F(X) sat Sp

Examples
E1 For any process specification Sp4, we have

stop, sat Spy

E2 (a — stop) sat(a — b — stop)

From E2 we can see that the satisfaction relation is not good enough because we are not
able to specify something which will eventually happen.
We will solve this problem in next seminar.

26

4 Seminar Three : The Failures Model

In the previous section we have already seen the problems with the trace model: it can
not express liveness properties, and neither can it distinguish between interal and external
choice.

Nondeterminism is usefull for maintaining a high level of abstraction in the description of
the behaviour of physical systems and machines. For example, the combination of changes
given by a change machine may depend on the way in which the machine has been loaded;
but we have excluded these events from the alphabet.

4.1 Deterministic Processes
We have already seen the choice operator
z:B — P(z)

which exhibits a range of possible behaviours.

The concurrency operator || permits some other process to make a selection between the
alternatives offered in the set B. For example, a customer is usually able to choose Coke or
Diet Coke on a Coke machine after having inserted enough coins.

Example 4.1
Suppose we have a Coke machine,

CokeM = coin — (coke — CokeMDdiet — CokeM),
and a customer who takes cokes every time

Customer = coin — coke — stop.

Lot I
n a
Loke Dief Cohy o~

Coke Machine
In this case, the customer is the environment of the coke machine. Operating in such
an environment, the resulting system behaves as follows

(Customer || CokeM) = coin — coke — stop.

27

The choice between coke and diet coke can be controlled by the customer. We call such
processes (CokeM) deterministic processes.

Definition 4.1 (Deterministic Processes)
A process is a deterministic process if whenever there is more than one event possible, the
choice between them is determined by the environment of the process.

4.2 Nondeterministic Processes

The informal description of a nondeterministic process is: it has a range of possible be-
haviours, but its environment does not have the ability to influence or even observe the
selection between these alternatives.
Example 4.2
The following change machine CoinM is a nondeterministic process. It gives nondetermin-
istically one of the two coin-combinations of a one-dollar bill.

CoinM =81 - (¢g—q¢q—g—d—d—n— CoinM

Ng—g¢g—d—+d—d—n—n—n—n— CoinM)

I a customer Customer insists on having the first combination of coins, he may or may
never get it from CoinM . It depends on his “luck”.

Customer = §1 - g—-g—-qg—d —d— n— stop

CoinM || Customer = $81-¢—-¢— (¢g—d—d—n — stop
Nstop)

O

4.3 The Difference Between N and O

The difference between nondeterministic choice and deterministic choice is very subtle.
The only way to distinguish between them is to put them in an environment where the
nondeterministic process may lead to a deadlock, but the deterministic does not.
Example 4.3

Let
P=(z~P), Q=(—Qand aP=aQ={zy}
Then
(POQ)||P = (z— P)
= P
(PRQ)|P = (P||P)N(Q|P)
= Pnstop

In environment P, (PN @) may reach deadlock, but (POQ) cannot. Of course, even with
(POQ) we cannot be sure that deadlock will occur; and if it does not occur, we will never
know that it might have. But the mere possibility of an occurrence of deadlock (PN Q) at
its first step in such an environment is enough to distinguish it from (POQ).

O

28

4.4 Refusals

In general, let X be a set of events which are offered initially by the environment of a process
P, which in this context we take to have the same alphabet as P. If it is possible for P to
deadlock on its first step when placed in this environment, we say that X is a refusal of P.
The set of all such refusals of P is denoted

refusals(P)

Note that the refusals of a process constitute a family of sets of symbols.
Example 4.4
Let P = (z — stopNy — stop). We put P in an environment which offers the events in

X.

Then the refusals of P are:

{z, v}
{z}
= {y}

PB4
i [

a
The introduction of the concept of a refusal permits a clear formal distinction to be
made between deterministic and nondeterministic processes.

P is deterministic = Vir : traces(P). (X € refusals(P/tr) = X n P° = {}))

where P® = {z |< z >€ traces(P)}.

In other words a set is a refusal of a deterministic process after ir only if that set contains
no event in which that process can engage after tr.

A nondeterministic process is one that does not enjoy this property, i.e., there is at some
time some event in which it can engage; but also (as a result of some internal nondetermin
istic choice) it may refuse to engage in that event, even though the environment is ready
for it.

The laws about refusals are

L1 refusals(stop,) = all subsets of A (including A itself)
L2 refusals(c — P) = {X | X C (aP - {c})}
L3 refusals(z : B — P(z)) = {X | X C(aP - B)}

29

L4 refusals(PN Q) = refusals(P)U refusals(Q)

L5 refusals(POQ) = refusals(P) N refusals(Q)

L6 refusals(P || Q) = {X U Y | X € refusals(P) A Y € refusals(Q)
L7 refusals(f(P)) = {f(X)| X € refusals(P)}

A process can refuse only events in its own alphabet. A process deadlocks when the envi-
ronment offers no events; and if a process refuses a nonempty set, it can refuse any subset
of it. Finally, any event # which cannot occur initially may be added to any set X already
refused. Therefore, we have

L8 X € refusals(P) =+ X C aP

L9 {} € refusals(P)

L10 (X U Y) € refusals(P) = X € refusals(P)

L11 X € refusals(P) = (X U {z}) € refusals(P)v < = >€ traces(P)

4.5 Failures

We are going to develop a new mathematical model for CSP, which is based on the new
observable aspects of a process, i.e., its alphabet, its traces and refusals.

In addition to refusals at the first step of a process P, it is also necessary to take
into account what P may refuse after having been engaged in an arbitrary trace tr of its
behaviour. Therefore we introduce another concept, failures of a process.

Definition 4.2 (Failures)
The failures of a process is a set of pairs

failures(P) = {(tr,X) | tr € traces(P) A X € refusals(P/tr)}.

If (¢r, X) is a failure of P, it means that P can engage in the sequence of events recorded
in tr, and then refuse to engage in any of the events in X, in spite of the fact that its
environment is prepared to engage in them.

We can define traces and refusals of a process in terms of failures

traces(P) = {tr|3X. (¢tr,X) € failures(P)}
refusals(P) = {X|(<>,X) € failures(P)}

Now we are able to define a process in terms of failures.

Definition 4.3 (Processes)
A process i3 a pair
(4, F)

where A is any set of symbols (finite) and F is a relation between A* and P(A), provided
they satisfy

30

FO (<>,{})eF
F1 (tr*tr,X)€eF = (ir,X)€EF
F2 (tr,Y)EFAXCY = (tr,X)€EF
F3 (ir, X)EFAze A= (tr, XU {z})eFV(trt<z>,{})EF
The refinement ordering C is defined
(A,F))C(B,F) = L CF, A A= B.

P C Q means that @ is-equal to P or better in the sense that it is less likely to fail. Q
is more predictabl and more controllable than P because if Q@ can do something, P can
do it too; if @ can refuse to do something, P can also refuse. The least element of all the
processes with alphabet 4 under C is

chaoy = (4, (4* x P(A))).

In fact, this ordering is a complete partial order, with a limit operation defined in terms of
the intersections of descending chains of failures

I_I(A1Fn) = (As n Fn):

220 u20

provided that Vn > 0. Fpyy C F,.

4.6 A Failures Semantics

Now we give a denotational semantics to CSP in terms of failures.
D1 stop, = (4,{<>} x P(4))

D2 (A, R)N(AF) = (A, FUR)

The definitions of all the other operators can be given similarly; but it seems slightly
elegant to write separate definitions for the alphabets and failures.

D3 If aP(z) = A forall z and B C A, then
alz:B— P(z)=A

D4 ofP || Q) = (aPUQ)
D5 a(f(P)) = f(aP))

D6 o(POQ) = aP = a
D7

failures(z : B — P(x)) = {(<>,X)|X C(aP - B)}
U{(< 2 >"tr,X) | z € BA(tr,X) € failures(P(z))}

31

D8

Jailures(P || Q) = {(ir,XUY) | tr€(aPUaQ)
A(tr | aP,X) € failures(P)
Atr | @@, X) € failures(Q)}
D9 failures(f(P)) = {(f*(tr),f(X))| (tr,X) € failures(P)}
D1o
Jailures(POQ) = {(tr,X) | (tr,X) € (failures(P) N failures(Q))
v(tr #<> A(tr, X) € (failures(P) U failures(Q)))}
D11 pX : A.F(X) = [Ju50 Fu(chaoy)

We claim that all the above operators are well-defined and continuous.

4.7 Specifications and Proof Rules

1. Specifications

In order to be able to capture the liveness properties of a process, we introduced the
concept, failures. Then, in the specification of a process, there are two free variables

(a) the trace variable tr and
(b) the refusal variable ref.
Therefore, the specification of a process can be written
Sp(tr, ref)
This also changes the satisfaction relationship between processes and specifications.

Definition 4.4 (Satisfaction Relation)
A process P is said to satisfy a specification Sp, denoted

P sat Sp(tr,ref)

if
Vir,ref. tr € traces(P) A ref C refusals(P/ftr) = Sp(tr,ref)
or
Yir,ref. (tr, ref) € failures(P) = Sp(tr, ref).
Examples

E1 stop, sat (tr =<> Aref C A)

32

E2 P, = a — stop can be specified by

Sp(re,ref) = atr C {a,b}
(tr =<> Aref C {b}
Vir=<a> Aref C {a,b})

E3 P; = a — b — stop can be specified by

Sp(re,ref) = air C {a,b}
(tr =<> Aref C {b}
Vir=<a> Aref C {a}
Vir=Aref C {a,b})

o The difference between sat in the trace model and sat in the failures model

(a) in trace model, the behaviour of a process is described in terms of traces. Only
safety properties can be captured. Therefore we have

stop, sat Py

and
P; sat P3

(b) in the failures model, the behaviour of a process is described in terms of traces
as well as refusals. Certain liveness properties are captured in this model. The
above two relation no longer holds in failures model.

2. Proof Rules

In the following proof rules, a specification will be written ia any of the forms S, S(ir), S(tr, ref),
according to convenience. In all cases, it should be understood that the specification may
contain ¢r and ref among its free variables.

L1 If P sat Sp and Q sat Tp, then
(PN @) sat (Spv Tp)
Proof: Hypothesis:
Vir,ref. (tr,ref) € failures(P) = Sp(ir, ref)

Vir,ref. (ir,rvef) € failures(Q) = Tp(ir,ref)
We have

Vir,ref. (tr,ref) € (failures(P) U failures(Q)) = (Sp(tr,ref) v Tp(tr, ref))
hold.

33

L2 stop, sat (ir =<> Aref C A)
L3 If P sat Sp(tr), then

(¢ = P) sat (tr =<> Ac & ref) V (trg = ¢ A Sp(tr'))

L4 IfVz € B. P(z) sat Sp(ir,z), then
(z:B - P(z)) sat (tr =<>A(Bnref ={})
V(tro € B A Sp(tr', trg))
L5 If P sat Sp and Q sat Tp, then
(Pl Q) sat 3X,Y.ref = XU YA Sp(tr| aP,X)A Tp(tr | aQ,Y)

L6 If P sat Sp and @ sat Tp, then
(PIQ) sat (SpA Tp)atr =<>v(SpV Tp)

L7 If P sat Sp(tr,ref), then
f(P) sat Sp(f~1(tr),f~(ref)) f is one-one

L8 If (Sp(0) and (X sat Sp(n)) = (F(X) sat Sp(n + 1), then
pX.F(X) sat (Vn. Sp(n)

This completes the proof rules.

5 Extensions

1. Models

In the previous seminars two mathematical models are developed for a subset of CSP.
Based on these models, two specification methods are developed also. As indicated in
Section 4, the failures model and its specification method are more sophisticated than
the trace model and its specification method. They contain more information about the
behaviour of a process and the specification method can handle both safety and liveness
properties. But even in the failures model, we have no way to distinguish between stop
and a process having only the empty trace but which perpetually undergos unobservable
internal events. For this we must use some more sophisticated models, like CSP’s divergence
model. Details of these models can be found in Hoare’s CSP book [1].

2. Development method

In the past decade there has been a great deal of increase in the understanding of the
nature of sequential and parallel languages. This increase is very much due to the study of
the mathematical models underlying these languages.

34

The purpose of the study of semantic models for parallel languages is to achieve hier-
archical and modular development and verification methods. By hierarchical and modular
development and verification, is meant that the specifications and implementation of the
subsystems of a concurrent system can be deduced from its original specification of the
system (at a more abstract level), and that the correctness of the system with respect to
its original specification can be obtained from that of its subsystems.

Let SPy be a specification of the requirements which a software system is expected
to fulfill, expressed in some formal specification language SL. This specification SPp is
obtained from the informal and often vague requirement of the customer. The ultimate
goal is a program P written in some given programming language PL which satisfies the
requirement in SPg.

The usual way to proceed is to construct P by whatever means are available, making
informal references to SPy in the process, and-then verify in some way that P does satisfy
SPo. The only practical verification method available at the present is to test P, checking
that in certain selected cases the behaviour of the system satisfies the constraints imposed
by SPp . But this method has the obvious disadvantage that the correctness of P is never
guaranteed, even if the system has passed all the test cases.

An alternative to testing is a formal proof that the program P is correct with respect to
the specification SPy. However after two decades of work on program verification, it seems
now, more or less widely accepted, that this will probably never be feasible for programs of
real sizes. At the least, the initial hopes for a system capable of automatically producing
proofs of program correctness are now regarded as unrealistic.

Most recent work in this area has focused on methods for developing programs from
specifications in such a way that the resulting program is guaranteed to be correct to the
specification by construction.

Let SPp be the specification. The final program P is expected to be developed from SP,
through a series of small refinement steps, as depicted in the following picture,

SP, C SP, C SP, C ..- C SP, C P.

Each refinement step captures a single design decision. If each refinement step SP; C
SPiy1 can be proved correct, then P itself is guaranteed to be correct with respect to
the initial specification SPp by transitivity of the refinement ordering C. Each of these
refinement steps should be much easier than an overall proof that P is correct with respect
to SPp because these refinement steps can be made very small. In principle, it would be
possible to combine all the proofs of these refinement steps to obtain an overall proof. But,
in practice, this will never be necessary.

When this approach is used to develop large and complex programs, the individual spec-
ification SP; becomes large and unwieldy. As a consequence, the proof of the correctness of
each refinement step becomes difficult. The solution to this problem is to adapt the “divide
and conquer” strategy to allow specifications to be decomposed into smaller units during
the development process. These smaller specifications then may be refined independently
of one another.

A simple development involving two decompositions and six refinement steps would then

give the following diagram

S C SP, C P
&
SPy C SP, C P,
SPl C {®
SP! C Pa.

Here @ and ® are intended to denote arbitary specification-building constructs, and
Py, P; and P; are program modules. The program P; @ (P; @ P3) is guaranteed to be
correct with respect to SPg, provided that each of the individual refinement steps is correct.
This also assumes that @-and ® can be used for combining program modules as well as
specifications.

Evidently formal program development methods do not claim to remove the possibility
of unwise design decisions.

There exist several refinement calculi for sequential languages, inspired by Dijkstra’s
“Weakest-Precondition Calculus” . Among them, is Carroll Morgan’s “Specification State-
ment Calculus”, which is mathematically elegant and, when combined with Z, could be used
to handle program systems of real sizes.

For the development of parallel programs, the idea of stepwise refinement is the same,
that is , we hope to start with some specification SPp and, through small refinement steps,
to obtain the final executable program code P,

SP, C SP, C SP, C --- C 8P, C P.

But the main difference is the specification language in use and the refinement ordering on
the specification space. This means that the underlying mathematical model is completely
different.

First of all, parallel programs can not be modelled only by binary relations. For instance,
nonterminating programs can not be modelled by the empty relation. So the techniques
used in sequential program development and verification do not seem to work for parallel
programs. Therefore we have to look for new mathematical models and new techniques.

The mathematical model for the “purely paralle]” CSP (i.e. communicating processes
without internal machine states) is the failure model. This model can describe the commu-
nication behaviour of a process. It captures the safety properties of a process by means of
its communication traces ¢r and the liveness properties by means of its failures (tr, ref).

To model a CSP-like language with machine states, we need trace-indexed binary rela-
tions to describe the internal state changes. For instance, a ¢r-indexed relation R; means
that, before the communications tr starts, the machine state is in the domain of R and,
after the process has done tr, the final machine state is in the range of R.

Based on this kind of mathematical models, new refinement methods can be developed
which may be able to handle both sequential and parallel program development.

This task remains as future work.

Acknowlegement

I would like to thank Dr. Roman and Dr. Cox for helping organize the seminar.

o References

36

1. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, London.
1985,

2. E.-R. Olderog and C.A.R. Hoare. Specification-Oriented Semantics for Commu-
nicating Processes. Acta Informatica 23, 9-66. 1986.

3. J. Sanders An Introduction to CSP. Technical Monograph PRG-65, Computing
Lab, Oxford University, March 1988.

37

	Introduction to Communicating Sequential Processes
	Recommended Citation

	tmp.1456444019.pdf.__bZp

