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ABSTRACT

This paper describes a novel method of character recognition targeted for extracting complex anno-
tations found in engineering documents. The results of this work will make it possible to capture the
information contained in documents used to support facilities management and manufacturing. The
recognition problem is made difficult in part because characters and text may be expressed in arbitrary
fonts and orientations. Our approach includes a novel incremental strategy based on the multi-scale
representation of wavelet decompositions.

Our approach is motivated by biological mechanisms of the human visual system. Using wavelets
as a set of basis functions, we may decompose an image into a multiresolution hierarchy of localized
information at different spatial frequencies. Wavelet bases are more attractive than traditional hierarchi-
cal bases because they are orthonormal, linear, continuous, and continuously invertible. The multi-scale
representation of wavelet transforms provides a mathematically coherent basis for multi-grid techniques.
In contrast to previous ad-hoc approaches, our method promises a practical solution embedded in a
unified mathematical theory.

A feasibility study is described in which several hundred characters extracted from engineering
drawings were recognized without error by a neural network trained using multi-scale representations
from a class of 36 distinct alphanumeric patterns. We observed a 16-fold reduction in the amount of
information needed to represent each character for recognition. These results suggest that high reliability
is possible at a reduced cost of representation.



1. Introduction

This paper describes a novel method of patfem recognition targeted for recognizing
complex annotations found in paper documents. Our investigation is motivated by the prob-
lem of automating the interpretation of maps and engineering drawings. The results of this
work will make possible the capture of information contained in documents supporting facil-
ities management and manufacturing.

Fundamental to achieving an autonomous production capability is the development of a
reliable method for recognizing the characters and symbols that are contained within a draw-
ing. While recent methods of character recognition [1,2,11] have been successful in reading
printed text from books, extracting annotations within the context of engineering drawings
and maps requires a more general and robust method. In particular, the problems of orienta-
tion (recognizing text placed non-horizontally) and feature extraction (separation of text
from graphics) remain unsolved.

We intend that the recognition capability described in this paper provide input to a sys-
tem capable of "understanding" identified annotations through higher level reasoning. Such
a system would process input annotations in the context of a specific engineering domain and
generate an electronic description for both graphical and textual information contained
within an engineering drawing. Some previous contributions to engineering drawing
interpretation are summarized in a survey paper by Nagendra and Gutar [12]. In addition
recent works by Hishihara and Ikeda [13], Lysak and Kasturi [14], and Whitaker and Huhns
[15] describe efforts towards the development of an autonomous interpretation system for
maps and engineering drawings.

We present a novel method of character recognition that we believe will make such a
technology feasible and attractive (low cost). Our method includes an incremental strategy
for recognizing characters based on the multi-scale representation of wavelet decompositions

[3-6]. Using wavelets as a set of basis functions, we may decompose an image into a mul-



tiresolution hierarchy of localized information at different spatial frequencies. Wavelet
bases are more attractive than traditional hierarchical bases because they are orthonormal,
linear, continuous, and continuously invertible. The multi-scale representation of wavelet
transforms provides a mathematically coherent basis for multi-grid techniques. In contrast to
previous ad-hoc approaches, our method promises a practical solution embedded in a unified
math;amatical theory.

We have developed a novel incremental strategy that utilizes the mathematical con-
tinuity between hierarchical levels of wavelet decompositions. Similar to traditional coarse
to fine matching strategies, we first attempt to recognize coarse features within low fre-
quency levels of the wavelet transform. If higher resolution is required to resolve an ambi-
guity, we add incrementally to the representation, the finer features of a pattern available at
higher frequency levels. Choosing wavelets (or analyzing functions) that are simultaneously
localized in both space and frequency, results in a powerful methodology for image analysis.
The inner-product of a signal x with a wavelet f ( <x,f >=(2r)"1<#,f > ) reflects the
character of x within the time-frequency region where f is localized (f and # are the
Fourier transforms of the analyzing function f and the signal x). If f is spatially localized,
then 2-D features such as shape remain preserved in the transform space! Our approach is
motivated in part by recently discovered biological mechanisms of the human visual system

[9,10]). Both multiorientation and multiresolution are features of the human visual system.

Our strategy is to disregard information within the high frequency levels of the basis,
and achieve recognition using only time-frequency information concentrated within the low
frequency bands. Thus, we represent a pattern at the hierarchical level corresponding to the
lowest frequency band possible, such that the fundamental shape of each character is not lost.
The wavelet decomposition allows us to discard redundant transform coefficients by decima-
tion, between descending levels of the hierarchy. This results in a 4 fold difference (reduc-
tion) in the number of transform coefficients stored within each level of the hierarchical

basis. By accomplishing recognition using information available at the lower levels of the
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hierarchy, we require fewer transform coefficients to represent each character. This is desir-
able from an information theoretic point of view in that the technique converges towards a

minimal form of representation without compromising resolution.

We present experimental results, in which several hundred characters extracted from
real engineering drawings were recognized without error by a neural network trained with
dilated wavelet representations (space-frequency coefﬁcien-ts) from a class of 36 distinct
alphanumeric patterns. Our investigation shows that recognition using dilated representations
of a space-frequency transform, not only yielded high reliability, but resulted in a 16 fold
reduction in the amount of information (number of bits) needed to accomplish our recogni-
tion task.

In the next section we describe the problem and motivate our approach. In Section 3
we present a detailed overview of our recognition strategy. Next, Section 4 presents a
mathematical formulation of a multi-scale hierarchical basis and shows the construction of
the analyzing functions used in our investigation. Finally, Section 5 presents a summary and

discussion of our results.

2. Motivation and Problem Statement

Manufacturing companies such as McDonnell Douglas and utility companies such as
Southwestern Bell Telephone have large quantities of engineering drawings and facilities
maps that exist exclusively as paper documents. Such companies have an urgent need to con-
vert these paper documents into electronic form. For example, McDonnell Douglas will be
required to supply existing and future engineering drawing pertaining to the F-15 fighter in
an electronic form, by the year 1995. Over half of the facilities maps describing the
Southwestern Bell Telephone network remain as paper documents. Southwestern Bell Tele-
phone estimates that converting the remaining maps into electronic form will cost at least 58

million dollars, and require ten years, using manual and existing semi-automated methods.



We propose to develop a production quality image understanding system that will con-
vert such paper-based engineering drawings and facilities maps into an electronic form, that
may be stored, retrived and updated via conventional and geographical databases oriented for
CAD/CAM and facilities transactions respectively. The development of such a technology
would not only benefit manufacturing and utility companies (mentioned above), but may also

be used to check the design of chemical plants and to model circuit diagrams for diagnosis.

Figure 1(a) shows the topology of telephones poles, conduits, and manholes of a urban
neighborhood in Houston. Figure 1(b) contains the codings for the cables and connections
boxes that overlay the network topology shown in Figure 1(a). The extraction of both textual
and graphical features are necessary to "understand” such facility maps. Given the state of
the art, finding a reliable method of character recognition remains fundamental to accom-
plishing an autonomous production capability. We present a novel method of character
recognition that we believe will make such a technology feasible and attractive (low cost).
In the next paragraph we identify four fundamental problems of character recogr{ition that

are addressed by the methodology and techniques described in this paper.

~ Recognizing characters and symbols in the context of drawings and maps, requires that
four sub-problems be solved: (1) Font invariance, (2) Intensity invariance, (3) Scale invari-
ance, and (4) Orientation invariance. Our method of recognition must be invariant to font
style because a drawing may have been updated by several engineers over it’s lifetime. Note
that the facilities map shown in Figure 1(a) is over 30 years old! Invariance to intensity and
size is needed since several writing instruments (eg. typewriters, rapidograph pens, pencils)
may have been used to draw and maintain (update/delete) the original drawing. Invariance
to orientation is needed to handle symbols and text placed at non-horizontal positions: The
engineer/draftsman, may have placed text and symbols in non-horizontal or non-vertical
orientations to keep information localized while making the best use of available "white
space” within a drawing. In the next section, we discuss our approach towards these four

goals.
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Figure 1(a). Network topology for an urban neighborhood.
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3. Strategy and System Overview

This section presents a strategy for character recognition exploiting a multiresolution
hierarchical basis. First, we present a general overview the character recognition system
accomplished to date. A more formal description of the hierarchical basis used in our inves-
tigation is presented in Section 4.

We have obtained a number of facility management maps from Southwestern Bell Tele-
phone Company to use as test cases during our investigation of automatic image understand-
ing of maps and drawings. We utilize both software and hardware to allow the maps to be
scanned into the computer, including image processing routines that may need to be applied
to the image before the "understanding” process begins. We have initiated the development
of a database of characters extracted from these (real) maps and drawings. This database
forms the foundation upon which the accuracy of our character recognition process is
evaluated. We have constructed a neural network that is being trained to recognize charac-
ters using the existing database of extracted characters. The neural network has been trained
to recognize characters using a minimal form of representation obtained by a method of
space-frequency analysis, previously applied to the compression of digital pictures.

In the large, our research is separated into two phases. The first phase is concerned with
low ievel problems of feature extraction. The second phase accomplishes high level reason-
ing by connecting extracted "words” and symbols with meaningful entities that may be
encapsulated within a database. Unfortunately, the efforts and results of the second phase are
beyond the scope of this discussion. In the paragraphs below, we present an overview of our
method for reliable feature extraction and character recognition.

We now describe a method to extract characters from a paper-based engineering draw-
ing and how they are transformed into a "compacted" representation that is used to train a
neural network for general classification. Our approach, summarized in Figure 2., consists of

six steps:



SYSTEM OVERVIEW

INPUT MiCI‘OTek { SUN 4|."1110, SunView, "C"} OUTPUT
Scanner A
Ve A\
o Feature Wavelet Neural (id,pat)
Map LYLEIS Ezxtraction Transform Network (id,pat)
¢ 300 ppi ¢ Segmentation e Scale Inv. e G4, 20, 36
* 8-bit, pivels ¢ Labelling ¢ Decimation ¢ Back-propagation
o Geometry

Figure 2, A Testbed for Character Recognition.

Figure 3. Sample digitization (300 ppi) of characters extracted from a facility map.

-10-



Figure 4. Segmented and labelled components delineated by minimum bounding rectangles,

Scale Invariance for Neural Net Training
of Wavelet Representations

I
| |
| |
[ Y - i :
‘l’ 1 1
| 1
| 1
1 t
v }- S 64
l | :
1 i
1 1
| |
Minimun Minimun Embed ! !
Bounding Bounding MBR into t !
Rectangle Square MBS T T .
(MBR) (MBS) Normalize (bi-linear interpolatoin)

Figure 5. A shape preserving technique for scale invariance.
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(1) Digitize original drawing. First, the map is digitized at 8-bits per pixel (256 grey levels)
at a resolution of 300 pixels per inch, using a Micro-Tek 300Z scanner. Figure 3 shows
some digitized characters sampled from one of our maps.

(2) Segment and label connected components. Next, segmentation is accomplished by
labelling 8-connected components having similar grey-level intensity with a unique
identifier. The user may select a range of grey-level intensity to group similar pixels, for each
segmentation. As a preprocessing step, we may engage traditional image processing tech-
niques to “clean-up" noisy drawings.

(3) Compute geometric properties for each labelled segment. In this siep, we compute for
all segments a set of geometric properties including area, centroid, maximum height and
width. These properties will be used later on to separate segments of characters from graph-
ics, establish baselines and for clustering local groups of characters and symbols into mean-
ingful "chunks" of information. In Figure 4, each segment is shown labelled and enclosed
within a minimum bounding rectangle. Figure A.1 shows the complete set of geometric pro-
perties computed for each segment.

(4) Apply geometric constraints to classify segments. Next, we use a logical combination
of the geometric properties computed from the previous step to classify each segment into
one of three disjoint partitions: characters, noise or graphics. Very small segments are most
likely noise (or punctuation), very large segments are most likely pieces of graphics. Experi-
mentally we have observed that segments having specific height to width ratio and normal-
ized area may be coarsely classified as characters, and marked for further processing.

(5) Transform character segments into a multiscale representation. Each segment marked
as a character is decomposed by a hierarchical basis into a decimated representation. In our
study, we used a multiresolution decomposition that is closely related to the wavelet decom-
position called the the Psi-transform [5]. In contrast to wavelet basis, the basis (or analyzing

functions) used in the Psi-decomposition are non-orthogonal. Both methods of time-
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frequency analysis have been previously used to decompose and quantize digital signals for
compression.

Before transformation, each character segment is normalized in scale to fit a minimum
bounding square of 64 pixels. This is accomplished by first constructing a minimum bound-
ing rectangle (MBR) and identifying the longest edge, parameter v, as shown in Figure 5. A
minimum bounding square (MBS) is then allocated to match the length of the longest edge
of the MBR. Next, the MBR is embedded within the MBS. (Note that in fitting the MBR
into the MBS, at most one degree of freedom will exist due to the geometric constraint set by
the parameter v.) Once embedded, a character may be shrunk or enlarged without distorting
it's original shape by the method of bilinear interpolation, as shown in Figure 5.

The Psi-transform decomposes the information within the bounding square into a
multi-scale space-frequency representation. Our strategy is to disregard information within
the high frequency levels of the basis, and achieve recognition using only time-frequency
information concentrated within the lower frequency bands. We represent each pattern at the
hierarchical level corresponding to the lowest frequency band such that the fundamental
shape of each character is not lost. The Psi-decomposition allows us to discard redundant
transform coefficients by decimation, between descending levels of the hierarchy. This
results in a 4 fold difference (reduction) in the number of transform coefficients stored within
each level of the hierarchical basis. By accomplishing recognition using information avail-
able at the lower levels of the hierarchy, we require fewer transform coefficients to represent
each character. This is desirable from an information theoretic point of view in that the tech-

nique converges towards a minimal form of representation without compromising resolution.
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A SPACE-FREQUENCY TRANSFORM

FOR CHARACTER RECOGNITION

4 | 7

R | —(w)— | E ,

Psi-transform

Low-frequency
Coefhicients

Input Character High-frequency
Coefficients J

A Systolic Network Supporting
Hierarchical Transform Output

Figure 6 An incremental strategy for multi-scale character recognition.
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In our investigation, we were able to reduce the number of transform coefficients
needed to discriminate a class of 32 distinct alphanumeric patterns by a factor of 64! (4096
original vs. 64 decimated). Figure 11 shows a set of transform coefficients for a sample char-
acter, computed from the set of non-orthogonal basis functions shown in Figures 7 and Fig-
ure 8. Note that dilations ¢_;, ¢_», and ¢_3 are subsampled by a factor of 2 in each dimen-
sion.

Another advantage of using a non-orthogonal basis for multi-scale decomposition is
that the shape (geometry) of a signal remains localized in transform space. In contrast to the
Fourier transform, both frequency content and the temporal (spatial) evolution of a (non-
stationary) signal are captured by the Psi-decomposition. The Psi-transform is linear, con-
tinuous, and continuously invertible. Thus, if we find that more information is needed to
discriminate a character or symbol, we may incrementally add higher frequency information
to lower frequency representations until it is resolved. Figure 6 shows how hierarchical
multi-scale representations of such transforms might map onto the topology of a systolic

neural network to support an incremental strategy.

(6) Exploit existing neural network pattern recognition technology. Next, we use the low
frequency components of the Psi-transform to train a neural network to recognize the 36
alphanumeric characters [A-Z,0-9]. We use the method of back-propagation for training.
Since we have reduced the representation needed for each character and symbol, our neural
network needs only 64 input units (one for each transform-coefficient), rather than 4096
input units, that would have been needed to train a network using the original representation.
The rest of the two-layer network consists of 20 hidden units and 36 output units. Figure A.2

shows a sample of the input file format used to train our neural network.

Scaling, translation, and multiple fonts are handled quite well by the procedures
described above. However, there remains one difficulty: How do we handle rotated charac-

ters? When annotations are made, engineers may choose write in whatever empty white
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space is available, no matter what the orientation. The steps described in the previous sec-

tion assume that characters are mostly horizontal in orientation.

Our approach to handling nor-horizontal characters is unique. We first identify clusters
of characters (the "words" used to describe features for a specific engineering domain) by
searching the drawing from left to right starting at the upper leftmost corner. Next, based on
the aggregate direction of each cluster, we rotate each character within a cluster the degrees
necessary to re-orient the character along a horizontal line. This approach has the advantage
in that it is less expensive computationally and more reliable than methods that have
attempted to train neural networks to recognize each character in it’s many possible orienta-
tions. We have employed techniques developed by Kas_turi [7] to help identify graphics

using the precomputed spatial and geometric properties of labelled segments.

To complete the overview of our approach, we briefly describe the strategy for the
second phase of our research. In phase two, we address the higher level task of putting the
characters together to form sets of meaningful annotations for the graphics within the draw-
ing. Baseline identification, word boundaries, character/word ambiguities, and domain voca-
bulary are all considered here. Thus, the second phase of our investigation focuses on pro-
cessing the recognized symbols and characters into meaningful pieces of information for a
given engineering domain. The key objective is the development of automated methods that
identify and resolve any problems of ambiguity that may arise when processing complex
descriptions or notations. To gain insight into this problem, we have consulted with dcﬁnain
experts (engineers and users) from industries committed to CAD/CAM, facilities engineer-
ing, chemical engineering and circuit design engineering. Thus, the second phase will
integrate specific domain knowledge obtained from such experts into a high level reasoning
system. For example, a non-monotonic reasoning system may be used to analyze the infor-
mation gathered from a drawing and provide this information (in symbolic and/or geographi-

cal form) to a database.
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In the next section, we present a mathematical formulation of the hierarchical basis and
analyzing functions used to accomplish the method of mult-scale character recognition

described above.

4. A Hierarchical Basis for Character Recognition

We applied a multiresolution decomposition using non-orthogonal basis called the Psi-

transform. The Psi-transform, proposed by Frazier and Jawerth [5], is a simple yet rigorous

" method for time-frequency analysis of nonstationary signals. Psi-transforms are a family of
transforms strongly related to the family of wavelet transforms. In both transforms we write
a signal as a weighted sum of certain "elementary" functions [6]. However, wavelet decom-
positions require analyzing functions (bases) that are orthonormal,

In applying the Psi-transform, a signal is written as a weighted sum of certain "elemen-
tary" functions. Similar to wavelet and Gabor methods of time-frequency analysis, we look
at a signal through a set of windows. However, the Psi-transform uses an entire scale of win-
dows of different widths. Wider windows are used to capture slowly varying features, while
narrow windows track sharpef details. The set of windows is obtained from a single parent
function (sometimes called the "mother wavelet") through a process of dilation and transla-
tion.

Let Z,R and C denote the sets of integers, reals and complex numbers. For sake of clar-
ity, we restrict our discussion to the case of one-dimensional signals. However, the methods
and formulations generalize to C* function spaces. We define ¢, (®) = $(22w), v eR, weR",
as a dilation of ¢ in the frequency-domain, and ¢, (t) =2"$(2"¢),veR, t eR" , as a dilation of
¢ in the time-domain (where """ -and """ denote the forward and inverse Fourier transforms,
F@)={f ), ei®t), and f (:)=Cm)X f (@), e ®!)). In addition let us define,

Gue () =2""2 (2"t — k), as a dilation-and-translation of ¢ in the time domain. Thus, the sym-

bols v and £ denote dilation and translation parameters respectively.
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A signal f may be expressed as a sum of synthesizing functions from the set
S={Ypu.Wor v x> m,veZ, where m is a fixed but arbitrary integer, v >m, and k eZ*. The
functions ®,, in S are the translates (in R* ) of the single "parent” function ®@,,q, while
are translated-and-dilated versions of a single function y.

The Psi-transform of a signal f is the countably-infinite sequence
Tf =S @), {f b))y & Of inner-products of f with analyzing functions from the set
A = {Dp, §yi ). All functions in S A are defined from R* to C. If § and A are appropriately

chosen, then any signal or function f :R” —-C in L2(R), can be written as follows:

f@)y= kZa’z(f DPoic) ot (2) + vgm kze'z(f Do Mok (2. (1)
The weighted sum of inner-products in (1) is called the Psi-decomposition of the signal f .
The symbol & denotes a vector (ky, - - -, k,)€Z*. Similarly, arguments to the functions
F s @mi » Wonk » Oux » and Wy, are vectors in R”.
The expression in (1) is not unlike the decomposition of the Fourier transform of a sig-

nal f. Since f(®)=(f,ei®), we can write:

fo=] (f(t)e”‘")(z o 4 @

As such, we have formulated the function f as a weighted sum of certain "elementary" func-
tions - the complex exponentials. The complex exponentials are perfectly localized in the
frequency domain, while they range widely in the time domain. The weights (f (z),e/¢*)in
(2) are the Fourier coefficients of f, and are related to the projections of the signal f onto the
complex exponentials e/ ¢,

Similarly, the Psi-decomposition (1) of f, may be formulated as a weighted sum of the
synthesizing functions in S. Where the weights in (1) constitute the countable sequence
Tf =S, Cpu }{ [ - Oui)) Of complex coefficients. The numbers in the sequence Tf are
related to the projections of f upon the vectors in the set A comprising the analyzing func-

tions. The complex numbers {f, ¢, ) = (2m)™"(f, b« ) depend upon the behavior of f only in
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those regions of the time and frequency domains where the functions ¢, and ¢, are appreci-
ably non-zero. If the functions in A are chosen such that they are simultaneously localized in

both time and frequency, then Tf will yield a time-frequency representation of f [4].

This decomposition provides a solid mathematical found on which to embed multireso-
lution techniques. In contrast to traditional hierarchical bases, the Psi-decomposition defines
a linear, continuous, and invertible transformation. In current wavelet research, much time is
spent in "choosing" analyzing functions most appropriate for a particular application. In the
next section, we describe the analyzing functions we constructed as a set of basis for our
hierarchical decomposition. We will see that the first term of (1) results from a lowpass filter

operation, while the second term results from a series of bandpass filter operations.

4.1. Generation of Analyzing Functions

As mentioned above, the analyzing and synthesizing functions (sets A and S) can be
generated by several methods {16] [4]. In our study, we used cosine-of-log functions for
both analyzing and synthesizing functions, because they were relatively simple to design. In
the paragraphs below, we present the mathematical formulation for the construction of the
basis set.

Let us cover the frequency line with functions from the set W = {6, } v {6, } of win-

dows , as shown in Figure 7a, so that:

.+ 3 6,=1, VoeR 3)
v=m+l
By the support of a function f : R — C we mean the topological closure of the set
{x e R | f(x)#0}. No function may have bounded support in both time and frequency
domains, as a consequence of the time-frequency uncertainty principle [17]. However, itis

possible to design an analyzing function (¢) that has bounded support in the frequency

domain, and localized support in the time domain, as shown below.
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In equation (3) we assume that the support © c { | |®| | < &}, and support

b (F<ilel s}, It follows trivially that

f=f6, +v;;,+lf'év, VYoe R. (4)
T 0% %3 «
- E
‘ |® ml <G_DE <CBE ‘?E (Q_‘_EE tCE

\ -
TcEm-l ,;E'm ‘N."IQ_mH ;Em-t»? _;Em+3 —rllujﬂ
ILlog scale >

Figure 7a A set of windows covering the frequency line

In this investigation, we used a simple construction where the "window-function” § was

chosen to be a raised cosine pulse whose argument is the logarithm of the frequency variable,

. 3% (1-cos(nlogs [Jol ) 7 SIl@11s® s
B0 . , otherwise

Thus the sum of all the dilations of § is exactly 1.0, for all ®#0. © was chosen to satisfy (3),
over the frequency interval [ -, = ]. The functions ¢ and were chosen to be the square-root
of 6. The functions © and 6 were factored such that the DC cap functions & =¥ and ¢ = V.

Thus, in our study the analyzing functions and synthesizing functions were the same.

The sets containing the analyzing and synthesizing functions, S=A, are constructed by
first choosing an integer m, and then computing the translates { ®p;:k€Z }. (The integer m
determines the number of hierarchical levels created by dilations of the decomposition.
Experimentally, we fixed m =-3, generating three dilated (subsampled) levels within a five
level hierarchical decomposition, as shown in Figure 11.) Finally, we compute the translates

and dilates { ¢y :v=m+1 ,m+2,.;andk e Z ).
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In figures 7 and 8 we show the functions @, +1.9m+2; . . . » 1 , for m ==3 in the fre-
quency and spatial domains respectively. Since & and § are discontinuous at the boundaries
of their support, the functions ® and ¢ are localized in space, but not perfectly concentrated.
Figure 9 shows two sample characters ("8" and "5") extracted from engineering drawings and
normalized in scale by the method described in Section 3 to 64 pixels on a side. Figures 10
shows the magnitude of the transform coefficients for each individual level of the hierarchi-
cal decomposition. (The coefficient values displayed were biased to a positive scale before
computing the magnitude to avoid folding the signal over at zero-crossings.) Note that the
number of transform coefficients at frequency level v is one-forth that at level v+1. The
transform coefficients are all real, since the input image f is real and the analyzing functions
(A) are real and symmetric in both frequency and spatial domains, as shown in Figures 7b
and 8 respectively. The transform coefficients shown in Figure 11 were computed computed
using the same cosine-of-log analyzing functions, but are shown undecimated for exposition.
Finally, Figures 12 and 13 shows the incremental reconstruction of the original image pat-
terns shown in Figure 9 from the dilated levels of the transform, proceeding from the lowest

space-frequency level d_3, to the highest space-frequency level ;.
In the next section, we discuss the results obtained in our study, and identify areas for

further investigation.

5. Summary of Results and Discussion

We have presented a novel method of character recognition based on a mult-scale
time-frequency transformation, closely related to the multiresolution wavelet transform.
Within each level of the hierarchical decomposition, input patterns were formulated as
weighted sums of certain elementary synthesizing functions. Synthesizing functions were
constructed from dilated and translated versions of two parent functions, which were shown

to be concentrated in both space and frequency domains.
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We have begun to build a database of characters, extracted from real maps and draw-
ings obtained from Southwestern Bell Telephone and McDonald Douglas. We have tested
over 700 sample characters to date. All characters tested were recognized without error by a
neural network trained by backpropagation with low frequency components of the Psi-
transform.

Experimentally, we observed a significant reduction in the amount of information
needed to represent each character for recognition. We determined that a sixteen fold reduc-
tion in the input bandwidth of a neural network, was achieveable by training the network
using dilated space-frequency transforms of each of the 36 alphanumeric patterns [A-Z,0-9].
For most characters sampled, we found that representation at dilation level ®_4 (as shown in
Figure 10) was sufficient for recognition. Quantitatively, we reduced the number bits
required to accomplish recognition from 32,768 bits (original input pattern, 64 x 64 x 8) to
2,048 bits (transform coefficients for dilation @3, 8 x 8 x 32). Thus only 64 input uxits were
needed to configure the network, rather than 4096 which would have been needed to train a
network using the original representation. In addition, this greatly reduced the time required
to train the network. The network configured as a two-layer 64-20-36, converged within 40

minutes executing on a Sun 4/110 with 16 megabytes of memory.

These results suggest high reliability at a reduced cost of representation! While these
results are exciting, they are preliminary, and more sample characters need to be collected to
rigorously test the method. We estimate that between 2,000 and 4,000 samples need to be
collected to rigorously exercise and validate the method. Accordingly, we have developed a
semi-autorated tool, to improve the reliability of collecting such a large set of sample char-
acters, from a variety of engineering drawings and maps.

If orthogonal analyzing functions can be designed such that they are well localized in
both space and frequency, then such a basis (or wavelet) could be applied in a similar

fashion, via the wavelet transform. In the near future we plan to use an orthogonal wavelet
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basis that is well localized in space. Here, we expect even faster convergence times, since
the inputs to the neural network (the transform coefficients) will be orthonormal. In addition
we may be able to resolve many more patterns, since each pattern would be trained on an
orthonormal basis.

The availability of low-cost high-resolution scanner technology has spurred a great
interest in document processing. To realize the potential of this technology, more research
will be required to develop new techniques capable of exploiting such high-quality, low-cost
digitization. In this context, we claim that the pattern recognition capability and analytic
method presented in this paper, can assist not only in the development of a technology for
automatic understanding of engineering drawings and maps, but may also be useful for the

solution of other problems related to the fields of machine vision and pattern recognition.
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