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The goal of this thesis was to evaluate the effects of different environmental cues on 

Schwann cell (SC) differentiation and phenotype maintenance to design better SC 
transplantation therapies for peripheral nerve repair.  First, a set of markers, specific for 
motor or sensory-derived SCs were identified from the literature and gene chips.  After 30 
days, gene expression patterns of SCs, after expansion in culture, were dysregulated.  Cues 
that have been hypothesized to re-differentiate the SCs in vitro are extracellular matrix (ECM) 
molecules, growth factors (GFs), and acetylcholine (Ach).  To test the effects of ECM, SCs 
were transplanted into acellular nerve grafts (ANGs), which have an intact ECM, and were 
used to repair a 14 mm rat sciatic nerve injury.  After 2 weeks, the RNA was analyzed for 
expression levels of GFs (nerve growth factor (NGF), brain derived neurotrophic factor 
(BDNF), and glial cell derived neurotrophic factor (GDNF)) and also phenotypic markers.  
The phenotype-specific SCs expressed higher levels of NGF, BDNF, and GDNF compared 
to levels in the injuries repaired with an isograft.  The expression patterns of the phenotypic 
markers were still disrupted at 2 weeks post transplant suggesting that other cues (GFs or 
Ach) are necessary to promote native marker expression.  The addition of GFs NGF and 
GDNF to SCs in culture promoted increased mature marker expression (S100) over a period 
of 7 days. Evaluation of expression patterns showed sensory-derived SCs treated with NGF 
had increased expression of sensory markers and motor-derived SCs had no detectable 
expression of sensory markers. GDNF promoted the correct phenotypic marker expression 
in both sets of SCs treated.  Finally, Ach was added to motor-derived SC cultures to 
determine if it had an effect on the phenotypic maintenance of motor-derived SCs. In 
addition, Ach receptors were blocked with gallamine to test the specificity of the Ach effect.  
Gene expression analysis showed that Ach promoted increased expression of motor markers 
in motor-derived SCs, and that gallamine blocked the effects of Ach. Overall, this work has 
shown that environmental cues, such as ECM, GFs, and Ach affect SC phenotype and 
differentiation. 
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Chapter 1 

Introduction 

1.1 Overview 

This work seeks to understand how a Schwann cell’s (SC’s) environmental cues 

(extracellular matrix (ECM), growth factors (GFs) and neurotransmitters) influence 

differentiation into mature SCs to guide and remyelinate regenerating axons after peripheral 

nerve injury.  SCs are the support cells of the peripheral nervous system (PNS).  In addition 

to myelinating and providing trophic support for axons, SCs are also involved in aiding the 

regeneration of axons post-injury.  SCs secrete ECM molecules, as well as GFs, to guide 

regenerating axons to their target end-organs.  In an uninjured nerve, Hoke et al. have shown 

that SCs derived from motor or sensory nerve sources exhibit different phenotypes, which 

may influence the pathway a regenerating motor or sensory axon chooses.  Therefore, 

transplanting SCs derived from different sources may provide the trophic support necessary 

to influence the pathway a regenerating motor or sensory axon chooses.  However, prior to 

transplantation of SCs at the injury site, SCs must be expanded in vitro to obtain a sufficient 

number of cells.  To study SC gene expression patterns during expansion, SCs derived from 

the motor and sensory branches of the rat femoral nerve were cultured in vitro and 

expression pattern changes were compared to fresh tissue.  Additionally, SC gene expression 

patterns were studied in the presence of a variety of environmental cues including ECM 

(basal lamina microstructure and laminin), GFs shown to promote nerve regeneration, and 

acetylcholine (Ach), a small molecule neurotransmitter that may be present in the SC 

environment.  

The first study was done to establish a baseline gene expression pattern for SCs 
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derived from different nerve sources.  SCs were harvested and expanded in vitro on poly-L-

lysine plates from both the motor and sensory branches of the rat femoral nerve.  To 

determine markers that are differentially upregulated in either motor-derived SCs or sensory-

derived SCs, fresh RNA was extracted from nerve tissue and analyzed using Affymetrix gene 

chips and qRT-PCR.  From this data, 4 markers for each phenotype (2 from literature, 2 

from gene chip analysis) were selected for monitoring the gene expression patterns of SCs.  

RNA was extracted from SCs in culture at days 1, 3, 7, 14 and 30 and gene expression was 

compared to expression on day 0 (fresh nerve tissue).  In this study it was shown that SCs 

derived from motor and sensory nerve were phenotypically different and that gene 

expression patterns were dysregulated as SCs were expanded in vitro. This loss of phenotypic 

identity may limit the influence of SC phenotypes on regeneration. Investigation into which 

aspects of the SCs environment may affect redifferentiation of SCs into their original 

phenotype, which is important to improve SC transplantation therapies.  

 Using the gene expression results, the effects of ECM on SC differentiation was 

studied by transplanting SCs into ANGs.  To evaluate these effects, SCs were expanded in 

culture and transplanted into acellular nerve grafts (ANGs), which were used to treat a 14 

mm rat sciatic nerve injury.  Transplanting SCs into ANGs to treat a nerve injury will help in 

understanding of whether the ECM in a SC’s environment may promote differentiation of 

SCs back into their original phenotype. The ANGs were donor rat sciatic nerves that were 

harvested and processed in University of Wisconsin (UW) solution for 7 weeks, which 

greatly reduces the immunological response to cellular components of the graft (Southard 

and Belzer 1995).  Additionally, the resulting cold-preserved ANG (CP-ANG) was stripped 

of cells but has an intact endoneurial microstructure of ECM.  SCs were injected under the 

epineurium of the CP-ANG and then the CP-ANGs were used to treat the nerve injury.  
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Two weeks post-transplantation the nerves were explanted and RNA was extracted and 

analyzed for phenotypic marker and growth factor gene expression.  The addition of SCs 

promoted increased expression of NGF, BDNF, and GDNF (shown to aid in peripheral 

nerve regeneration), but failed to promote the original phenotypic marker expression in 

ANGs with motor or sensory-derived SCs.  It can be seen from this study that the intact 

ECM of a CP-ANG does not promote differentiation of SCs into their native phenotype, 

which suggests that additional cues are necessary to promote differentiation of SCs.  

 The final study was done to evaluate the effects of GFs and small molecules that 

may affect the differentiation of SCs.  In the SC environment, GFs, such as NGF or GDNF 

are present to support and promote neuronal survival.  During injury, SCs de-differentiate to 

proliferate and increase secretion of GFs, including NGF and GDNF, into the environment.  

This stage promotes and guides axonal regeneration from the proximal to the distal nerve 

stump.  As axons regenerate, autocrine signaling (possibly due to GFs) in SCs allow the SCs 

to redifferentiate into their native phenotypes.  Because SCs express both the p75NTR (NGF) 

and GFRα-1 receptors (GDNF), it is possible that NGF and GDNF may promote the 

signaling necessary for differentiation of SCs back into their native phenotype.  In addition, 

small molecules, such as acetylcholine (Ach), are also present in the environment of motor-

derived SCs near the neuromuscular junction (NMJ).  Although Ach may not promote the 

differentiation of SCs, it may help reinforce the phenotype of motor-derived SCs and 

promote increased expression of phenotype-specific markers in motor-derived SCs.   Dosage 

studies were performed to determine optimal doses of NGF, GDNF, and Ach that may 

promote differentiation of SCs derived from mature motor or sensory nerves. The addition 

of NGF and GDNF to the media promoted the differentiation of both sensory and motor-
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derived SCs back into their original phenotypes.  Ach addition to motor-derived SCs 

promoted differentiation and increased motor-specific marker expression.  

 This introduction will take a deeper look at the characteristics and mechanisms 

behind peripheral nerve injury, as well as the importance of SCs and environmental cues to 

promote peripheral nerve regeneration.  Specifically, understanding certain cues that 

influence SC differentiation may help in designing better SC transplantation therapies for 

peripheral nerve injury.  Additionally, current and past treatments for peripheral nerve injury 

including biological grafts, nerve guidance conduits, and SC transplantation will be discussed 

to establish the state of the field.  

 

1.2 Peripheral Nerve Injury and Regeneration 

The nervous system consists of two branches: central nervous system (CNS) and 

peripheral nervous system (PNS).  The CNS is the largest part of the nervous system that 

includes the brain and spinal cord. In conjunction with the PNS, it serves as the primary 

controller of behavior and is protected by bone.  The PNS extends outside of the CNS and 

serves to control the movement of limbs.  Unlike the CNS, the PNS is not protected by 

bone and is more prone to exposure to toxins and mechanical injuries (Bunge 1993; 

Reynolds and Woolf 1993).  PNS injuries are commonly due to accidents that cause 

stretching, laceration, or compression of the nerves and represent a large portion of nerve 

repair procedures performed annually (Beazley, Milek et al. 1984; Dellon and Mackinnon 

1988; Kouyoumdjian 2006).  Damage to the PNS can result in impaired motor and/or 

sensory nerve function at denervated end-organs.  The PNS is capable of limited 

regeneration; however, treating axonal injury still remains a clinical challenge (Burnett and 
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Zager 2004).  This section serves to describe peripheral nerve injury and as the issues that 

surround nerve regeneration.  

1.2.1 Characteristics of Injury and Regeneration 

Peripheral nerves mainly control movements and sensory perception.  They consist 

of nerve fascicles that are a mixture of motor and sensory axons, some of which are 

myelinated by SCs.  Each nerve fascicle consists of different layers: the inner endoneurium, 

the perineurium that surrounds each fascicle, and the epineurium that bundles the nerve 

fascicles and forms a nerve.  Injuries to the PNS can involve damage to one or more of these 

layers, with more serious damage resulting in a crush or complete transection of the nerve 

(Burnett and Zager 2004).  

Following injury, a phenomenon called Wallerian degeneration occurs at the injury 

site due to the separation of the axon from the cell body (Waller 1850).  However, the 

neurons can survive injury and cell death by upregulating the growth factors responsible for 

axonal growth and survival.  In addition, the distal stump also undergoes many significant 

changes to prepare for regenerating axons from the proximal stump.  During the first week 

after injury, glial cells (i.e. SCs) and macrophages infiltrate the distal stump to phagocytose 

the myelin and axonal debris in the area that may be inhibitory to axonal regeneration 

(Waller 1850; Bruck 1997).  After clearance of the debris, SCs start proliferating in response 

to signaling from the axonal membrane, the myelin debris, and possibly from the 

macrophages at the injury site (Williams and Hall 1971; Baichwal, Bigbee et al. 1988).  These 

proliferating SCs align themselves in the remaining basal lamina and endoneurial tubes in the 

distal stump to form bands of Bungner, which are tubes that act as a natural support for the 

regenerating axons and guide them back to the correct target end-organ (Burnett and Zager 

2004). Following nerve transection, axons begin sprouting from the proximal nerve and 
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grow towards the distal stump by following the aligned SCs in the endoneurial tubes (Haftek 

and Thomas 1968). These axon sprouts are guided by cell adhesion and ECM molecules 

produced by SCs.  SCs primarily produce replacement basal lamina consisting of laminin, 

type IV collagen, and fibronectin (Rogers, Letourneau et al. 1983; Fawcett and Keynes 

1990).  Additional trophic support for the regenerating axons is provided by the 

neurotrophic factors secreted by SCs and possibly by the target end-organ (e.g. muscle or 

skin).  This additional support promotes neurite survival, migration, and synapse formation 

at the end-organ (Reichardt and Tomaselli 1991).  After migrating through the endoneurial 

tubes, the axons are myelinated by SCs, and reestablish connections with target end-organs.  

Correct reinnervation of the end-organ signals that the axons are fully matured. 

 

1.2.2 Challenges in Peripheral Nerve Regeneration 

Although the PNS has the capacity for regeneration, axonal regeneration often does 

not occur successfully in larger nerve defects.  The clinical treatment used in these cases does 

not necessarily restore complete nerve function.  The degree of regeneration, motor or 

sensory, depends greatly on the treatment used (Rogers, Letourneau et al. 1983; Fawcett and 

Keynes 1990).  Also, multiple sprouts that extend from the proximal to the distal stump may 

encounter a number of difficulties. The regenerating axons may not reinnervate the correct 

end-organ target (Wigston and Donahue 1988; Kingham and Terenghi 2006).  When 

improper connections are established these branches are eliminated (Aitken 1949).  Even 

when the axons successfully reinnervate an end-organ, such as muscle, they tend to form 

new connections that were not previously established.  Any muscle endplate can be 

reinnervated by any motor nerve fiber, which can result in improper innervations and thus 

loss of coordination or complex improper functioning of other associated muscles due to 
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insufficient muscle contraction (Kingham and Terenghi 2006).  Additionally, the slow and 

fast twitch muscle fibers are not preserved in their original form.  Even with appropriate 

muscle reinnervation, full functional recovery is difficult due improper sensory reinnervation 

of the muscle (Burnett and Zager 2004).  

Many hypotheses on motor versus sensory nerve regeneration and axonal guidance 

exist. One hypothesis is that the target end-organ provides diffusible cues or necessary 

trophic support to guide axons to reinnervate the correct end-organ (Madison, Robinson et 

al. 2007). Regenerating axons follow a chemotropism in which they grow towards the distal 

nerve stump rather than other tissue (Fawcett and Keynes 1990).  Madison and colleagues 

have extended this idea of chemotropism to guide the axons down the correct end-organ 

pathways by demonstrating that motor axons rely on trophic support from the end-organ to 

properly find and reinnervate their targets.  These findings were based on a series of 

experiments in the rat femoral nerve by modulating the distance axons travel to their end-

organ targets after injury (Madison, Robinson et al. 2007; Uschold, Robinson et al. 2007). 

This theory is also supported by the observation that both motor and sensory axons contain 

different cell surface receptors for guidance cues (Boyd and Gordon 2003). Alternatively, it 

has been suggested that SCs present in the endoneurial tubes provide axonal guidance cues 

to promote the reinnervation of the correct end-organ (Politis 1985; Brushart 1988; Wigston 

and Donahue 1988).  Alternatively, in nerve crush injuries the endoneurial tubes are 

preserved and axons are able to regenerate in their parent endoneurial tubes and reestablish 

optimal levels of functional recovery after injury (Haftek and Thomas 1968).  From these 

results, it may be inferred that the disruption of endoneurial tubes leads to inappropriate 

reinnervation of the end-organ.  Also, additional research in preferential motor reinnervation 

(PMR) in the rat femoral nerve model led to the hypothesis that endoneurial tubes or SCs 
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within the tubes may guide axons down the correct pathways (Brushart 1988).  Overall, 

axonal guidance to the target end-organ depends on a variety of factors: endoneurial tubes, 

SCs, diffusible cues, and the end-organ.  Therefore, to design adequate therapies to promote 

correct axonal regeneration all of these factors need to be considered.  

 

1.3 Current Treatment Options 

As previously mentioned, a complete nerve transection in the peripheral nerve 

leading to a disconnection between the proximal and distal nerve stumps may result in 

complete loss of motor or sensory function due to loss of nerve connection to the end-

organ.  In humans, the average rate of axonal regeneration is 1 mm/day, which makes this a 

slow process for injuries that are far from the injury site (Evans 2001; Burnett and Zager 

2004).  However, when the gap between the two nerve ends is large, axonal growth is limited 

and surgical intervention is often required (Lundborg 2000).  To promote nerve 

regeneration, many nerve repair strategies have been used to bridge the gap and allow the 

migration of glial cells and surviving axons to grow from the proximal stump to the distal 

stump.  The PNS is capable of regeneration when the two nerve ends can be joined back 

together by direct anastomosis.  This allows the distal stump to provide the necessary 

support via SCs and neurotrophic factors to guide regenerating axons (Burnett and Zager 

2004).  However, in larger defects, the suture would introduce unnecessary tension that may 

prevent normal regeneration (de Medinaceli, Wyatt et al. 1983).  Therefore, a bridge or 

scaffold must be used to reconnect the proximal and distal stumps.  This section describes 

materials and strategies that are used to bridge the nerve injury gap.  
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1.3.1 Nerve Guidance Conduits (NGCs) 

For many years, NGCs have been extensively studied as a potential “off the shelf” 

alternative to nerve grafts for the treatment of nerve injury.  NGCs typically consist of a 

hollow conduit that can be filled with an ECM scaffold containing trophic factors and other 

cues for regenerative support for axons.  A great deal of research has been conducted on the 

construction of biodegradable conduits, but they may present biocompatibility issues.  One 

main advantage of using conduits is that they isolate the environments where the 

regeneration is occurring and allow for the controlled release of cues to examine their effects 

on the regenerating axons.  

 The first use of conduits to bridge a nerve defect was done by Lundborg.  However, 

his initial motivation was to study peripheral nerve regeneration and not to bridge a nerve 

gap defect.  Initially, they used a pseudosynovial neural sheath to repair a sciatic nerve injury 

but later switched to silicone conduits to repair the nerve defect (Lundborg and Hansson 

1979; Lundborg and Hansson 1980).  They discovered that both materials led to a 

convenient method to contain trophic factors that have been implicated in supporting nerve 

regeneration and to study the mechanisms of nerve regeneration through the conduits.  

These experiments also showed that a cellular scaffold of natural proteins and glial cell 

migration followed axonal sprouting into an empty tube, suggesting that even in the absence 

of any regenerative cues, the peripheral nerves are capable of some regeneration (Lundborg 

and Hansson 1979; Lundborg and Hansson 1980; Lundborg, Dahlin et al. 1982; Lundborg, 

Dahlin et al. 1982).  

 Silicone conduits have been used to treat small nerve defects in humans (Lundborg, 

Dahlin et al. 1991; Lundborg, Rosen et al. 1997; Lundborg, Rosen et al. 2004).  Although 

silicone is a biocompatible material and is mechanistically stable, there have been reports of 
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associated morbidities.  Silicone conduits have been reported to cause nerve compression 

and irritation at the implantation site, requiring immediate removal (Dellon and Mackinnon 

1988; Merle, Dellon et al. 1989; Dellon 1994; Dahlin and Lundborg 1999).  The long terms 

effects of silicone present in the surrounding nerve may have caused the condition and thus 

other materials have been researched as replacements.  

 Numerous groups have constructed and studied the properties of various conduit 

materials, such as poly-L-glycolic acid (Mackinnon and Dellon 1990; Hadlock, Elisseeff et al. 

1998), poly (lactic-co-glycolic acid) copolymer (Hadlock, Elisseeff et al. 1998), poly(L-lactide-

co-6-caprolactone) (Nicoli Aldini, Perego et al. 1996), and vinylidenefluoride-

trifluoroethylene copolymer (Fine, Valentini et al. 1991).  These materials were selected 

mainly because of their range of degradation, mechanical stability, and piezoelectric 

properties (vinylidenefluoride-trifluoroethylene copolymer only) that may benefit nerve 

regeneration.  Alternatively, naturally derived materials can also be used as biodegradable 

conduits. Advantages of these materials may include increased permeability of oxygen and 

nutrients to the injury site and increased biocompatibility over synthetic materials.  The 

repair of peripheral nerves with a crosslinked collagen conduit has shown promise in terms 

of its ability to promote nerve regeneration and still provide structural support for the 

regenerative axons.  In both rodent and primate short nerve defect models, these collagen 

conduits showed increased regeneration in terms of functional recovery compared to direct 

suturing techniques or autologous graft repair (Archibald, Krarup et al. 1991).  Alternatively, 

other ECM molecules, fibronectin and fibrin, have been oriented in mats to produce 

conduits to promote nerve regeneration (Whitworth, Brown et al. 1995; Kalbermatten, 

Pettersson et al. 2009). More recently, engineered bi-layer nanofiber conduits have been 
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shown to have mechanical stability to promote regenerating and therapeutic effects similar to 

autografts (Zhu, Wang et al. 2011). 

 Overall, NGCs support peripheral nerve regeneration and provide valuable insight 

into the regeneration process.  It has been shown that synthetic and naturally-derived NGC 

materials can promote peripheral nerve regeneration in small nerve defects (<10 mm) and in 

some cases larger nerve defects (>10 cm).  However, NGCs may not provide enough cues to 

guide axons and obtain complete functional recovery.  These conduits can be improved by 

filling the lumen with ECM scaffolds containing neurotrophic factors and the support cells 

native to the injury site, such as SCs.  However, the materials chosen for conduits and 

luminal fillers must be biocompatible, which is a challenge in the field.  In the Sakiyama-

Elbert lab, it has been shown that the inclusion of fibrin-based affinity drug delivery system 

(Sakiyama-Elbert and Hubbell 2000; Sakiyama-Elbert and Hubbell 2000) into the lumen of 

silicone conduits can promote the regeneration of the rat sciatic nerve in a 14 mm nerve gap 

defect (Lee, Yu et al. 2003; Wood, Moore et al. 2009; Wood, Macewan et al. 2010).  But as 

mentioned earlier, silicone conduits can cause chronic nerve compression and irritation at 

the injury site, and require additional surgery to remove the conduits.  Alternative 

approaches to bridge nerve gap defects that have been researched include biological grafts, 

which contain biological material native to the environment.  

 

1.3.2 Biological Grafts 

The first surgeries using biological grafts to bridge critical nerve defects were 

performed in the 1960’s (Millesi 1973).  Despite significant advances in nerve reconstruction 

since that time, the autologous nerve graft remains the clinical gold standard for critical, 

long, peripheral nerve defect repair.  The autograft provides the necessary scaffold and 
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trophic support, basal lamina, endoneurial tubes, and SCs to guide the regenerating axons 

from the proximal stump to the distal stump (Mackinnon 1989; Belkas, Shoichet et al. 

2004)).  Donor nerves are commonly taken from the sural (cutaneous) nerve or other 

sensory nerves (Meek and Coert 2002).  Unfortunately, this method provides many 

limitations, such as donor site morbidity, lack of sufficient donor tissue, or size mismatches 

at the injury site (Schmidt and Leach 2003; Burnett and Zager 2004).  Additionally, 

functional recovery with nerve autografts is not ideal.  Less than 25% of the patients that 

received treatment regained full motor function and only 1-3% of the patients recovered 

normal sensation after 5 years (Dellon and Mackinnon 1988).  Even with appropriate 

matching of fascicles during surgery, axonal guidance to the correct fascicles and 

reinnervation of the correct end-organ is not guaranteed (Gordon, Sulaiman et al. 2003).  

Although autografts need improvement, the suboptimal results of autografts may be due to 

the source of the graft.  It has been shown that motor nerve repairs performed with a motor 

graft was superior to a sensory graft in terms of increased nerve density, percent nerve and 

total fiber number (Brenner, Hess et al. 2006).  Similarly, a mixed nerve defect (i.e. 

containing both motor and sensory axons) when repaired with a mixed or motor graft 

resulted in better regeneration than when the defect was repaired with a sensory graft 

(Nichols, Brenner et al. 2004).  Although better regeneration is seen with a motor graft, 

obtaining donor motor nerves are impossible due to their essential function. Therefore, 

alternative grafts have been considered that may promote increased nerve regeneration.   

Nerve allografts have been considered as alternatives to nerve autografts.  Allografts 

are taken from a member of the same species, but require immunosuppression to avoid 

rejection by the patient.  Many studies have been conducted by the Mackinnon lab to studies 

the use of allografts as alternatives to autografts.  They have tested antibodies to induce 
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antigen-specific tolerance, which allows the allograft to perform as well as isografts in nerve 

histomorphometry measures in mice and rats (Nakao, MacKinnon et al. 1995; Nakao, 

Mackinnon et al. 1995).  Antibody studies using anti-CD40 to block the CD40/CD40 ligand 

interaction in mouse and primate models showed similar nerve regeneration results to the 

autografts (Brenner, Jensen et al. 2004; Jensen, Tung et al. 2004). However, when the 

treatments were stopped, the allografts were rejected by the body (Brenner, Jensen et al. 

2004; Jensen, Tung et al. 2004).  To avoid chronic immune suppression, commercially 

available acellular allografts (from Axogen, Inc) or processed allografts can be used to bridge 

nerve defects. Different processing techniques (freeze thaw cycles and cold-preservation 

(Gulati and Cole 1994), detergents (Hudson, Liu et al. 2004; Hudson, Zawko et al. 2004))  

strip the graft of cells thus reducing the immunological response to cellular components. 

Compared with nerve conduits, processed allografts support superior regeneration, likely due 

to the intact endoneurial microstructure of ECM proteins (Whitlock, Tuffaha et al. 2009; 

Johnson, Newton et al. 2011). The Mackinnon lab has shown that decellularized allografts 

do not perform as well as the isografts as assessed by histology and electrophysiology in 

bridging  a gap larger than 14 mm (Whitlock, Tuffaha et al. 2009).  The presence of SCs in 

the isograft is hypothesized to increase nerve regeneration compared to the decellularized 

graft, which lacks SCs.  Other researchers have also concluded that the lack of cellular 

support in acellular grafts results in the inferior nerve regeneration to autografts (Gulati 

1988).   

In addition to autografts and allografts, other biological tissues with matching 

dimensions and increased availability have been assessed as grafts.  Vein or artery tissue has 

been used as an alternative to nerve autografts due to its tubular structure similar to conduits 

(Foidart-Dessalle, Dubuisson et al. 1997).  However, vein and artery tissue may provide 
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obstacles for regeneration because of the mechanical properties. The thin walls of the tissue 

may collapse leading to excess pressure on the regenerating axons.  Tissue mismatching may 

also lead to scarring.  Muscle tissues offer a better alternative due to a basal lamina 

organization that mimics the endoneurial tube structure of peripheral nerves, and it contains 

collagen and laminin, which promote nerve outgrowth (Glasby, Gschmeissner et al. 1986; 

Norris, Glasby et al. 1988; Belkas, Shoichet et al. 2004).  However, mechanical dissimilarities 

to nervous tissue and scarring due to size mismatch has been observed when muscle tissue 

has been used for nerve regeneration (Meek and Coert 2002).  

 It can be seen that using nerve autografts, nerve allografts, processed allografts, or 

other biological tissues may not provide the necessary support for functional recovery due to 

tissue size mismatches, donor site morbidity, lack of donor tissue, or lack of cellular support.  

The possible transplantation of SCs or addition of other trophic support to decellularized 

graft may promote increased nerve regeneration and provide a better alternative for 

peripheral nerve repair strategies.  

 

1.4 Schwann Cells (SCs) 

SCs are derived from the neural crest and differentiate with cues from the 

environment into two types of SCs: myelinating and nonmyelinating (Mirsky and Jessen 

1996).  Myelinating SCs associate with axons in a 1:1 ratio and aid in saltatory conduction.  

Alternatively, nonmyelinating SCs associate with several non-myelinated axons that conduct 

signals with wave-like impulses (Mirsky and Jessen 1996; Jessen and Mirsky 2005).  In 

uninjured nerves, SCs secrete ECM molecules and growth factors (GFs) to promote 

neuronal survival and guide regenerating axons to their distal targets.  In addition to 

supporting neurons and myelinating axons, SCs play an integral role in promoting nerve 
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regeneration after injury. Due to the loss in trophic support from the end-organ, SCs are 

necessary to promote axonal regeneration.  In this section, the main roles of SCs in nerve 

regeneration will be discussed. 

  

1.4.1 Role in Peripheral Nerve Regeneration 

Wallerian degeneration follows axonal injury within 24-36 hours during which the 

axons disintegrate and axonal membranes break apart. The degeneration is followed by 

degradation of the myelin sheath and infiltration by macrophages in the distal stump.  SCs 

and macrophages phagocytose and clear myelin debris (Waller 1850; Stoll, Griffin et al. 1989; 

Stoll, Trapp et al. 1989).  During this phase, SCs along with fibroblasts upregulate their 

secretion of neurotrophic factors to provide a favorable environment for axonal growth and 

regeneration.  Besides secreting growth factors, SCs also provide structural support to guide 

regeneration axons by proliferating and forming bands of Bungner within the basal lamina 

tubes guiding the regenerating axon from the proximal to the distal stump to reinnervate the 

target end-organ (Reynolds and Woolf 1993; Bunge 1994; Nagarajan, Le et al. 2002; Brenner, 

Lowe et al. 2005).  

Studies in the past have also implied that SCs may have possible roles in promoting 

regeneration of axons down either a motor or sensory pathway.  When given equal access to 

motor and sensory pathways, it has been shown that motor axon tends to regenerate down 

the motor pathway (PMR).  In many studies, the Brushart and Madison labs have shown that 

regenerating motor axons preferentially regenerate down the quadriceps pathway even when 

deliberately trying to mismatch motor and sensory paths.  It has been hypothesized that this 

regeneration phenomenon is influenced by trophic support from the end-organ (with muscle 

greatly outweighing skin in PMR) or SCs present within terminal nerve pathways (Brushart 
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1988; Brushart 1993; Madison, Archibald et al. 1996; Madison, Archibald et al. 1999; 

Madison, Robinson et al. 2007; Madison, Sofroniew et al. 2009).  Although most of the 

research on nerve regeneration specificity has focused on PMR, Hoke et al. have shown that 

sensory axons may also regenerate with similar specificity down a sensory pathway.  The 

specificity with which these axons regenerate may be due to phenotypic differences present 

within the regenerating pathway and SCs in the endoneurial tubes that are guiding the 

regenerating axons (Hoke, Redett et al. 2006).   Although SCs de-differentiate, they may 

retain a “phenotypic memory” that allows them to re-differentiate into their original 

phenotype during regeneration, as evidenced by different expression profiles observed by 

motor and sensory SCs even after prolonged contact with axons of the opposite phenotype 

(Hoke, Redett et al. 2006). 

 

1.4.2 Schwann Cell (SC) Transplantation 

The transplantation of SCs into NGCs or biological grafts has been previously 

studied to understand the effects of SCs on peripheral nerve regeneration.  As mentioned 

earlier, SCs provide trophic support and help to drive targeted regeneration and myelination 

of injured axons.  SCs support nerve regeneration in vivo by producing basal lamina and 

neurotrophic factors and cell-cell adhesion molecules (Bunge, Bunge et al. 1986; Bunge 

1994; Burnett and Zager 2004).  After injury and denervation, SCs de-differentiate into a 

more immature state, and both types of SCs produce the same growth factors regardless of 

whether they had been associated with either myelinated or nonmyelinated axons (Mirsky 

and Jessen 1996; Jessen and Mirsky 2005).  Because of this regenerative support from SCs, 

much research has been conducted to study the effects of transplanting SCs to promote 

nerve regeneration.   
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Schwann cells, when cultured in vitro, retain the ability to express myelin and 

neurotrophic factors and thus have been transplanted into the CNS or PNS to promote 

nerve regeneration.  The addition of SCs to laminin-filled NGCs was found to increase the 

fasciculation of the regenerating nerve.  Other researchers have shown that although SC-

seeded NGCs lactic and glycolic acid (PLGA) foam conduits (Hadlock, Sundback et al. 

2000) or poly(L-lactic acid) (Hadlock, Sundback et al. 2000) do not promote nerve 

regeneration as well as autografts, they do promote better regeneration than unseeded 

NGCs. Alternatively, biologically-derived grafts seeded with SCs may be used to promote 

nerve regeneration. Seeding nerve allografts (ANGs and allografts) with SCs has been found 

to improve regeneration compared to unseeded grafts in both rat and swine models. 

Experimental evidence suggests that following transplantation, cultured SCs survive and 

promote regeneration by increasing the synthesis of cell-cell adhesion molecules, such as N-

cadherin and N-CAM/L1, growth factors, such as NGF, GDNF, and BDNF, and also 

provide the myelin sheath for regenerating axons (Gulati 1988; Levi and Bunge 1994; Levi, 

Guenard et al. 1994; Fansa, Keilhoff et al. 1999).  To produce a sufficient number of SCs for 

transplantation, mitogens can be used to expand SCs in vitro (Morrissey, Kleitman et al. 1991; 

Bunge 1993; Levi, Bunge et al. 1995).  However it is important to note that expanded human 

and rat SCs failed to demonstrate tumor formation when transplanted into rodents after 

mitogen addition is removed (Emery, Li et al. 1999; Ogden, Feng et al. 2000).  Therefore, 

transplantation of SCs into NGCs or biological grafts aids in successful peripheral nerve 

regeneration.  But, the regeneration in grafts does not compare to the clinical gold standard, 

autografts, suggesting that the SCs may lack certain environmental cues to further 

differentiate and promote myelination axons to match the regeneration of the autograft.   
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1.5 Environmental Cues 

Typically, after denervation, SCs dedifferentiate into an immature state, where they 

secrete increased amounts of ECM molecules and neurotrophic factors (NGF, BDNF, 

GDNF) to guide regenerating axons from the proximal to the distal stump (Bunge 1993; 

Jessen and Mirsky 2005).  Once the axons start regenerating, cues from the environment 

must promote the redifferentiaton into mature SCs to remyelinate the regenerating axons. 

The increased amount of ECM molecules, such as collagen, laminin, and fibrin, interact with 

the SCs at the injury site. SC interactions with the ECM promotes migration of SCs, SC 

proliferation, and intracellular signaling (Bixby, Lilien et al. 1988).  The delivery of 

neurotrophic factors, such as NGF and GDNF, at the injury site promotes axonal 

regeneration (Lee, Yu et al. 2003; Wood, Moore et al. 2009; Wood, Macewan et al. 2010). 

Therefore it is possible that the interaction between the GFs and SCs at the injury site may 

promote redifferentiation of the SCs and remyelination of the axons (Chan, Cosgaya et al. 

2001; Wong, Henley et al. 2002; Iwase, Jung et al. 2005).  Lastly, small molecules, such as 

neurotransmitters may have effects on reinforcing SC phenotype.  For example, the presence 

of acetylcholine (Ach) at the neuromuscular junction (Anderson and Stevens 1973) may aid 

in the reinforcement of the mature motor phenotype.  These different environmental cues 

will be discussed in more detail in the following sections.  

 

1.5.1 Extracellular Matrix (ECM) 

After injury, the assembly and maintenance of the ECM is necessary to promote 

increased migration and proliferation of SCs.  Interactions with SCs also help with 

remyelination of the axons during regeneration.  In the PNS, the basal lamina (laminin, 

collagen IV) is produced by the axon-associated SCs, and it surrounds the external surface of 



 19 

the SC-axon units.  To understand the importance of the basal lamina, experiments studying 

the effects of the basement membrane on SC myelination and ensheathement of axons have 

been performed in vitro.  SCs myelinate axons when serum and ascorbic acid is added to the 

medium (Eldridge, Bunge et al. 1987).  If basement membrane assembly is prevented by the 

use of a serum-free medium (Moya, Bunge et al. 1980) or myelination is blocked by 

inhibiting collagen hydroxylation with cis-hydroxyproline (Eldridge, Bunge et al. 1988), SCs 

remain in a non-myelinating state.  But with the addition of exogenous basement membrane 

(Elsdale and Bard 1972; Kleinman, McGarvey et al. 1986), SCs myelinate the axons in serum 

free media or enhance myelination in serum and ascorbic acid containing cultures (Eldridge, 

Bunge et al. 1989).  However, in the absence of neurons, the necessary axonal signaling to 

SCs to form basement membrane is lost, and the addition of basement membrane proteins 

to these cultures promotes proliferation rather than differentiation and myelination 

(Cornbrooks, Carey et al. 1983; McGarvey, Baron-Van Evercooren et al. 1984; Baron-Van 

Evercooren, Gansmuller et al. 1986).  From these studies, it can be clearly seen that 

interactions with the basement membrane are necessary to promote differentiation of SCs 

and myelination of axons.  Further research has shown that signals generated by interactions 

between SCs and the basement membrane may contribute to the regulation of glycolipid 

synthesis, which may affect the cell morphology, proliferation, and possibly differentiation of 

SCs (Farrer and Quarles 1996).  

It has been shown that SCs migrate out of the distal stump post injury.  In a previous 

study,   time lapse microscopy showed the migration of two distinct SC populations from 

explanted injured nerves in vitro.  Single SCs emerged from the nerve randomly, but 

eventually arranged themselves in an organized array. In the second group, a more 

coordinated movement was observed where one SC led and another followed behind it. 
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These possible migratory patterns of SCs may contribute to regeneration of nerves due to 

the orderly alignment of the SCs (Crang and Blakemore 1987).  Since SCs exhibit these 

migratory and alignment patterns, researchers have studied how ECM molecules such as 

laminin may affect the alignment of SCs in vitro (Thompson and Buettner 2001).  These 

results demonstrate that the interaction of SCs on micropatterned laminin surfaces aligns 

SCs, and thus promotes neurite outgrowth of axons in the same direction as the SCs 

(Thompson and Buettner 2006).  Alternatively, it has been shown that SCs migrate into 

magnetically aligned type I collagen gels, and align themselves in patterns reminiscent of the 

bands of Bungner in the presence of serum (Dubey, Letourneau et al. 1999) to guide neurite 

extension.  Together, these studies demonstrate that SC interaction with patterned ECM 

molecules initiates SC alignment and formations similar to the bands of Bunger, which are 

necessary to guide regenerating axons to the distal stump.  

These interactions between SCs and ECM molecules may not only promote 

differentiation of SCs and remyelination of axons, but also promote SC alignment to guide 

axonal regeneration.  Using this information and the characteristics of the interactions, better 

SC transplantation therapies can be designed to increase the rate and efficiency of peripheral 

nerve regeneration.  SC alignment in response to collagen or laminin present within the 

injury site or in nerve grafts, may aid in guiding the regenerating axons from the proximal to 

the distal stump.  

 

1.5.2 Growth Factors (GFs) 

GFs are not only necessary to maintain neuronal survival but are upregulated to 

promote neural regeneration post-injury (Costigan, Befort et al. 2002).  These factors 

typically exert their effect by binding to cell-surface receptors, which leads to many 
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downstream effects.  SCs are also affected by GFs, such as NGF and GDNF, in the 

environment.  SCs have surface receptors for both NGF and GDNF, which may affect 

differentiation into the mature myelinating phenotypes (Chan, Cosgaya et al. 2001; Wong, 

Henley et al. 2002; Iwase, Jung et al. 2005).   

NGF, the first discovered neurotrophin, was found in mouse sarcoma and identified 

based on its effects on chick embryo ganglia (Levi-Montalcini and Hamburger 1951). The 

processed and biologically active form of NGF (β-NGF) is a dimer with 3 disulfide bonds to 

stabilize itself (McDonald, Lapatto et al. 1991; Sofroniew, Howe et al. 2001).  NGF was 

reported to protect neurons from injury-induced death in sciatic nerves due to complete 

nerve transection (Otto, Unsicker et al. 1987).  The addition of NGF to saline-filled 

conditions has shown to increase myelinated axons in the regenerating nerve (Rich, 

Alexander et al. 1989).  The increase in myelinated axons suggests that the presence of NGF 

in the silicone conduits promoted the differentiation of the SCs to increase myelination.  A 

known surface receptor of immature SCs is the p75NTR, which is also an NGF receptor 

(Tomita, Kubo et al. 2007).  The activation of the p75NTR promotes cell survival, apoptosis, 

and differentiation through a variety of signaling pathways (Hirata, Hibasami et al. 2001; 

Segal 2003; Nicol and Vasko 2007).  In previous studies, it has been shown that the 

differentiation of SCs may also be due to the elevation of intracellular cyclic adenosine 

monophosphate (cAMP) (Salzer, Williams et al. 1980; Morgan, Jessen et al. 1991; Monje, 

Soto et al. 2010).   It has been hypothesized that the stimulation of p75NTR  may increase the 

intracellular levels of cAMP, which may further contribute to the redifferentiation of the SCs 

(Monje, Soto et al. 2010)and the myelination of regenerating axons.   

Similarly, SCs also express receptors for GDNF, which was the first discovered of 

the GDNF family of ligands (Lin, Doherty et al. 1993; Baloh, Enomoto et al. 2000).  GDNF 
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has primarily been identified for the survival of dopaminerginic and motor neurons (Lin, 

Doherty et al. 1993; Henderson, Phillips et al. 1994; Hoke, Cheng et al. 2000).  SCs express 

glycosylphosphatidylinositol (GPI)-anchored family receptor (GFR)α1, which is a receptor 

for GDNF (Naveilhan, ElShamy et al. 1997) and neural cell adhesion molecule (NCAM), 

which acts as a co-receptor that facilitates GDNF-mediated signaling in SCs (Iwase, Jung et 

al. 2005).  Exogenous GDNF has been shown to promote SC proliferation and myelination 

of normally unmyelinated small axons (Hoke, Ho et al. 2003). Mechanistically, GDNF has 

been shown to activate pathways in SCs implicated in cell migration, proliferation, 

differentiation and GF production (Morgan, Jessen et al. 1991; Lang, Gesbert et al. 1996; 

Kim, DeClue et al. 1997; Klemke, Cai et al. 1997; Grimm, Holinski-Feder et al. 1998; Verity, 

Wyatt et al. 1998; Meintanis, Thomaidou et al. 2001; Ellerbroek, Wennerberg et al. 2003; 

Kinameri and Matsuoka 2003; Iwase, Jung et al. 2005).  In addition, it has been hypothesized 

that activation of the GDNF signaling pathway may also increase the intracellular levels of 

cAMP, which may lead to differentiation of SCs (Monje, Soto et al. 2010).  In vivo, the initial 

presence of GDNF at the injury site can guide axons from the proximal to the distal stump.  

As the axons regenerate, GDNF may signal to the SCs to differentiate and remyelinate the 

axons.  

 

1.5.3 Acetylcholine (Ach) 

As mentioned earlier, SCs have different phenotypes based on their nerve source.  

Previous studies have shown that the SCs derived from the cutaneous branch of the rat 

femoral nerve and SCs derived from ventral root differentially express certain growth factors 

(Hoke, Redett et al. 2006).  These specific phenotypes may influence the regenerating 

pathways of axons after injury.  Much research has been conducted to regenerate motor 
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axons and reinnervate muscle to enhance functional recovery.  Ach, a neurotransmitter 

found at the NMJ, may promote differentiation of SCs into a motor phenotype, which may 

in turn influence the pathway a regenerating motor axon chooses.   

Ach is present in both the CNS and the PNS and behaves as an excitatory 

neurotransmitter (Anderson and Stevens 1973).  In the PNS, Ach binds to Ach receptors on 

skeletal muscle fibers and activates muscle contraction.  It opens ligand-gated sodium 

channels in the cell membranes and initiates a sequence of steps that help contract the 

muscles (Macintosh 1941).  Because Ach is released at the NMJ, possible interaction with the 

SCs may promote the expression of motor-specific markers.  Additionally, Ach present at 

growth cones of regenerating axons may also contribute to the differentiation of SCs.   SCs 

express muscarinic receptors M1 though M4 for acetylcholine with M2 expressed at the 

highest level (Loreti, Vilaro et al. 2006).  Early work done with Ach and SCs showed that 

Ach does not have an effect on the viability of the SCs at some concentrations (Salzer and 

Bunge 1980). However, interaction with the receptors may promote the differentiation and 

expression of motor markers in SCs.  In a recent in vivo study, it was shown that blocking of 

the Ach receptors during motor nerve regeneration prevented the regeneration of motor 

axons into the distal nerve stump suggesting that interaction of Ach with SC receptors is 

necessary for motor nerve regeneration (Vrbova, Mehra et al. 2009).  The M1 and M3 

receptors have been shown to promote the increase in intracellular cAMP and M2 and M4 

receptors prevent the increase of cAMP (Felder 1995).  Thus the interaction of Ach with 

these receptors may increase intracellular levels of cAMP and promote the differentiation of 

the SCs and the expression of motor specific markers in SCs, which may influence the 

specific regeneration of motor axons. Further studies need to be done to evaluate the effects 

of Ach on the differentiation and motor marker expression in motor SCs.  
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1.6 Concluding Remarks 

Previously it has been shown that SCs derived from the cutaneous (sensory) branch 

of the rat femoral nerve and the ventral root exhibit phenotypic differences (Hoke, Redett et 

al. 2006). This study identified specific genes that are differentially expressed in sensory and 

motor SCs.  In this study, it was also shown that SCs respond differently to denervation and 

reinnervation by sensory or motor axons. These differences among gene expression patterns 

persisted despite prolonged contact with axons of the opposite phenotype. Thus, these 

findings support the hypothesis that the differences in phenotype of SCs may influence the 

pathway regenerating axon chooses, either motor or sensory.  However, for phenotype-

specific SCs to be transplanted at the injury site, SCs need to be expanded in culture.  To 

ensure that the phenotype of SCs is preserved in culture, SC gene expression patterns need 

to be monitored over the expansion period. Therefore, this thesis work first derived SCs 

from motor and sensory nerves and specific genes that are differentially upregulated in each 

branch were identified.  

The rat femoral nerve was chosen as the source of the SCs due to its bifurcation into 

the quadriceps (motor) branch and the cutaneous (sensory) branch. Although these nerve 

lengths are small, they provide a pure population of motor and sensory SCs for evaluation 

(Brushart 1993).  For this thesis work, the gene expression patterns of SCs derived from 

these nerves were evaluated under different conditions.  The first study focused on 

identifying genes that are differentially expressed in each branch. Using these genes, the 

expression patterns were monitored as the SCs were expanded in culture. The second and 

third studies were conducted to understand the effects of environmental cues on the 

differentiation into mature motor and sensory SCs.  In the second study, the SCs were 
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transplanted in cold preserved acellular nerve grafts (CP-ANGs) to understand the effects 

that ECM would have on SC phenotype and GF expression.  The nerve grafts with SCs were 

then used to treat a 14 mm rat sciatic nerve gap injury.  In the third study, SCs were treated 

with media supplemented with GFs, NGF and GDNF, and the neurotransmitter Ach 

(motor SCs only) to understand the effects that these cues have on the expression of 

differentiation and phenotype-specific markers.  Overall, this thesis work serves to evaluate 

possible environmental cues that affect the behavior of SCs in vitro, and thus may aid in the 

designing of cell transplantation therapies to promote motor or sensory nerve specific 

regeneration in vivo. 
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Chapter 2 

Differential Gene Expression in Motor and Sensory Schwann Cells in the 
Rat Femoral Nerve* 
 

2. 1  Abstract 

Phenotypic differences in Schwann cells (SCs) may help guide axonal regeneration 

down motor or sensory specific pathways following peripheral nerve injury.  The goal of this 

study was to identify phenotypic markers for SCs harvested from the cutaneous (sensory) 

and quadriceps (motor) branches of the rat femoral nerve and to study the effects of 

expansion culture on the expression patterns of these motor or sensory phenotypic  markers.  

RNA was extracted from SCs harvested from the motor and sensory branches of the rat 

femoral nerve and analyzed using Affymetrix Gene Chips© (Rat Genome 230 v 2.0 Array 

A).  Genes that were upregulated in motor SCs compared to the sensory SCs or vice versa 

were identified, and the results were verified for a subset of genes using quantitative real time 

polymerase chain reaction (qRT-PCR).  The expression levels of the “phenotype-specific” 

genes were then evaluated in SC expansion cultures at various timepoints over 30 days by 

qRT-PCR to determine the effect of expansion on SC phenotype.  Expression levels of the 

phenotype-specific genes were significantly altered after expansion culture for both the 

motor and sensory markers compared to fresh nerve tissue.  These results indicate that both 

motor and sensory SC gene expression patterns are disrupted during expansion in vitro and 

may affect the ability of SCs to express phenotype specific genes after transplantation.   

 

 

 
*Contents of this chapter were published in J Neurosci Research 2012 January: 90 (1): 96-104 and were 

reprinted with permission of the publisher 
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2.2 Introduction 

Peripheral nerve injury (PNI) due to a complete nerve transection results in a loss of 

function.  Ideally, the two severed ends of the nerves can be rejoined using a direct end to 

end coaptation.  However, in larger nerve gap injuries, a direct coaptation can introduce 

unnecessary tension that may impede regeneration.  To prevent tension and to bridge the 

nerve defect, an autograft can be used to provide extracellular matrix (ECM) molecules and 

growth factors (GFs) to promote regeneration of axons across the nerve gap.  Although the 

nerve autograft remains the gold standard of care, this method has limitations including 

donor site morbidity, lack of sufficient donor tissue, and size mismatches at the injury site 

(Schmidt and Leach 2003; Burnett and Zager 2004).  Currently, investigators are searching 

for alternative therapies to bridge nerve gaps following injury, such as acellular nerve grafts 

(ANGs). 

ANGs have been used to support the growth of regenerating axons from the 

proximal nerve into the distal stump (Hare, Evans et al. 1993; Levi, Evans et al. 1994; Hare, 

Evans et al. 1995).  Compared to nerve conduits, ANGs support superior nerve regeneration 

because they contain an intact microstructure consisting of endoneurial tubes and ECM that 

supports regenerating axons (Johnson, Duhamel et al. 1982; Sondell, Lundborg et al. 1998; 

Whitlock, Tuffaha et al. 2009).  However, the regenerative capacity of ANGs is still inferior 

to autografts because they lack SCs (Whitlock, Tuffaha et al. 2009).  SCs provide GFs and 

ECM to promote neuronal survival and axonal regeneration (Bunge 1993; Reynolds and 

Woolf 1993; Frostick, Yin et al. 1998; Nagarajan, Le et al. 2002; Brenner, Lowe et al. 2005).  

Addition of SCs to ANGs has been proposed as a method to enhance their regenerative 

capacity.  



 28 

When given equal access to motor and sensory pathways, the motor axon tends to 

regenerate down the motor pathway.  This phenomenon, preferential motor reinnervation 

(PMR), may be influenced by trophic support from the end organs (with muscle greatly 

outweighing skin in PMR) or the SCs present within terminal nerve pathways (Brushart 

1988; Brushart 1993; Madison, Archibald et al. 1996; Madison, Archibald et al. 1999; 

Madison, Robinson et al. 2007; Madison, Sofroniew et al. 2009).  Previous studies have 

shown that sensory axons may also regenerate preferentially down sensory pathways (Hoke, 

Redett et al. 2006).  In addition to guiding the regeneration of axons,  SCs derived from the 

cutaneous branch of the rat femoral nerve and the SCs derived from ventral root of the 

sciatic nerve exhibit phenotypic differences that may influence the regenerating pathway 

(Hoke, Redett et al. 2006).  After denervation, SCs de-differentiate into an immature state 

(Mirsky and Jessen 1996) and secrete GFs and ECM to enhance regeneration (Bunge, Bunge 

et al. 1986; Bunge 1993; Bunge 1994).  Although SCs de-differentiate, they may retain a 

“phenotypic memory” that allows them to re-differentiate into their original phenotype 

during regeneration, as evidenced by different expression profiles observed by motor and 

sensory SCs even after prolonged contact with axons of the opposite phenotype  (Hoke, 

Redett et al. 2006) .   

Understanding how SC gene expression changes during de-differentiation and 

following transplantation could enable motor or sensory specific nerve regeneration using 

ANGs seeded with phenotype specific SCs.  In this study, a set of phenotypic markers were 

identified for the motor and sensory SCs, harvested from the motor and sensory branches of 

the rat femoral nerve, using Affymetrix Gene Chips© and quantitative real time polymerase 

chain reaction (qRT-PCR) and to study the effects of expansion culture conditions on the 
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SC gene expression profiles.  The results indicate that both motor and sensory SCs have 

unique phenotypes that are disrupted when expanded in vitro.   

 

2.2  Materials and Methods 

 

2.3.1 RNA preparation 

Male Lewis rats (400-500 grams) were anesthetized to undergo bilateral harvest of 

the sensory and motor branches of the femoral nerve and were then euthanized.  The nerves 

were stored at -80oC in RNAlater® solution (Ambion, Austin, TX).  Total RNA was 

extracted from homogenized nerves using an acid phenol extraction (TRIzol Reagent, 

Invitrogen, Carlsboro, CA).  The aqueous layer was collected, and the samples were purified 

using an RNeasy Mini Kit (Qiagen, Valencia, CA).  The presence of the RNA was assessed 

by electrophoresis using 2% agarose gels after running reverse transcriptase PCR with a β-

actin primer.  To verify that the mRNA extracted from the nerves met the quality standards 

for further experiments, the mRNA concentration (0.2 – 0.6 µg/µL) was determined by 

measuring the absorbance at 260 nm and the quality was verified using an absorbance ratio 

of A260/A280.  The ratio threshold was held at 1.8, which signifies a high purity of RNA in 

the sample (Wilfinger, Mackey et al. 1997).  The extracted RNA was used for further 

experiments.  Since the majority of the nerves are composed of SCs (~90%) (Oda, Okada et 

al. 1989), the harvested RNA was assumed to be representative of the SC RNA present in 

fresh nerve tissue. 
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2.3.2 Gene Chips 

The RNA (10 nerves pooled from different male Lewis rats per sample) required for 

gene chip analysis was prepared according to the standard protocol provided by the Siteman 

Cancer Center GeneChip Facility at Washington University and run in triplicate.  Purified 

total RNA (10 µg) was spiked with a set of four synthetic, polyadenylated, and bacterial 

transcripts (Lys, Phe, Thr, and Trp) diluted to defined copy numbers.  Oligonucleotide 

probes for these transcripts were present on all Affymetrix GeneChips, thus monitoring the 

expression level of these internal standards provided an indication of the total technical 

variability associated with the experiment.  Spiked RNA was converted to cDNA, purified, 

and then used as a template for in vitro transcription of biotin-labeled antisense RNA.  All 

protocols were performed as recommended by the manufacturer (Affymetrix, Santa Clara, 

CA).  Each biotinylated antisense RNA preparation (20 µg) was fragmented, assessed by gel 

electrophoresis, and placed in hybridization cocktail containing four biotinylated 

hybridization controls (BioB, BioC, BioD, and Cre).  Samples were hybridized to Affymetrix 

Rat GeneChip® Rat Genome 230 2.0 Array A for 16 h (n = 3 chips for each condition).  

GeneChips were washed and stained using the instrument’s standard Eukaryotic GE Wash 2 

protocol, using antibody mediated signal amplification.  The images from the scanned chips 

were processed using Affymetrix Microarray Analysis Suite 4.0.  Genes that did not hybridize 

to the probe for any sample were excluded from the analysis.   

The results obtained from the gene chips were analyzed using the exclusion criterion 

(Costigan, Befort et al. 2002) in combination with Spotfire DecisionSite 9.0 and Microsoft 

Excel.   If the gene was not present in at least two of the chips in each group, then it was 

excluded from the gene set.  The detection signal was then z-score normalized and statistical 

analysis (ANOVA) paired with a t-test was performed to compare the detection signals of 
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the sensory nerves and the motor nerves, and the gene was excluded if the p-value was 

greater than 0.05, which is the threshold of significance.  The remaining data was imported 

to Microsoft Excel.  Genes that had a mean value varying by less than two-fold between 

sensory and motor or with a standard deviation between replicates in the same group that 

was greater than 35% of the mean were excluded from the analysis.   

 

2.3.3  Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)  

cDNA was synthesized from the isolated RNA using the QuantiTect® Reverse 

Trascription Kit (Qiagen).  Using the QuantiTect® SYBR® Green PCR mastermix (Qiagen) 

in combination with gene specific QuantiTect® primer assays, qRT-PCR was performed 

using an Applied Biosystems 7000 Real-Time PCR thermocycler.  The genes studied 

included vascular endothelial cell growth factor (VEGF), nerve growth factor (NGF), brain 

derived neurotrophic factor (BDNF), pleiotrophin (PTN), glial-derived neurotrophic factor 

(GDNF), myelin basic protein (MBP), protein kinase C iota (PRKCi), neuroligin 1 

(NLGN1), and neurofilament (NEFL).  The primers for those mentioned proteins were 

added to the cDNA for each sample present for the motor and sensory nerves.  The qRT-

PCR was conducted using the following conditions: (1) 50oC for 2 min (2) 95oC for 15 min, 

and  (3) forty cycles of 95oC for 15 seconds, 55oC for 30 seconds, and 72oC for 30 seconds 

(Gaumond, Tyropolis et al. 2006).  Target genes were normalized to an internal control (β-

actin) to account for the variation in cDNA concentration between samples, and appropriate 

negative control samples were present (no template control).  The QuantiTect® primer 

assays are validated to have a PCR efficiency of 100%.  To estimate the mRNA 

concentrations, the differences in gene expression levels between two different samples were 
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calculated using the comparative delta crossover threshold (Ct) method (Livak and 

Schmittgen 2001; Pfaffl 2001; Schmittgen and Livak 2008).   

 

2.3.4  SC Culture Preparation for Time Study 

SC cultures were prepared as previously described (Raff, Abney et al. 1978; Pruss 

1982).  Briefly, the sensory and motor branches of the rat femoral nerve were harvested and 

placed in Leibovitz’s L-15 medium (Invitrogen, Carlsbad, CA).  Collagenase I (1%) (Fisher, 

Pittsburgh, PA) and trypsin (2.5%) (Invitrogen) were added to the fascicles and incubated 

for 30 min at 37oC.  After centrifugation at 130 x g for 5 min, the pellet was washed with 

Dulbecco’s modified Eagle medium (DMEM, Invitrogen) supplemented with 10% heat-

activated fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO) and 1% antibiotic 

antimycotic (ABAM, Invitrogen).  The cells were then seeded on 24 well plates coated with 

poly-L-lysine (pLL) (Sigma-Aldrich). Tissue culture plates were prepared by coating with 1 

mL 0.01% pLL in sterile water and washing twice with sterile water.  On day 2 of culture, 10 

µM Cytosine-beta-arabino furanoside hydrochloride (Ara-C) (Sigma-Aldrich), was added to 

cultures along with the media containing DMEM, FBS and ABAM.  On day 6, the 

fibroblasts were complement-killed using an anti-Thy 1.1 antibody (1:40 dilution in media, 

Serotec, Raleigh, NC) and guinea pig complement (1:4 dilution in media, Sigma-Aldrich).  

On subsequent days the culture media was supplemented with 2 µM forskolin (Sigma-

Aldrich), and 20 μg/mL pituitary extract (PE) (Biomedical Tech, Inc., Stoughton, MA).  

RNA was extracted from Days 1, 3, 7, 14 and 30 using an acid-phenol extraction and was 

purified using an RNeasy Mini Kit (Qiagen).  qRT-PCR was performed for each gene at each 

time point and compared to the gene expression of each gene in freshly harvested femoral 

motor and sensory nerves.  
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2.3.5  Statistical Analysis 

Statistical analyses were performed using SigmaStat 3.0 (Systat Software, San Jose, 

CA), and all data were evaluated with one-way analysis of variance (ANOVA), followed by a 

Scheffe’s F test for comparisons between groups when significance (p<0.05) was present.  

All results are reported as mean ± standard deviation.   

 

2.4 Results 

 

2.4.1 Gene Chips 

The differences in gene expression between SCs in the motor and sensory branches 

of the rat femoral nerve were evaluated using Affymetrix gene chips and qRT-PCR.  Similar 

to findings in literature, we assumed that the majority of the RNA harvested from these 

nerves (~90%) was from SCs (Oda, Okada et al. 1989).  RNA was extracted from the motor 

and sensory branches of fresh rat femoral nerves, and analyzed using gene chips to obtain a 

set of genes that were differentially upregulated in the motor SCs or sensory SCs when 

compared to each other.  Using a stringent criteria, which has been shown to generate the 

lowest number of false positives (Costigan, Befort et al. 2002), ~100 genes were identified to 

be differentially upregulated in either the sensory (76) or motor (23) branches of the femoral 

nerve (data not shown).   

In motor SCs, a subset of the upregulated genes was identified to be involved in 

different functions related to motor nerve myelination and signaling (Table 2.1).  For 

example, NEFL has been shown to be an important factor in the myelination of the motor  
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axons (Roxanne et. al 2003, Roberson et. al 1992), which suggests that NEFL may be a good 

marker for motor SCs.  In SCs, PRKCi may act through the p75NTR activation pathway to 

promote survival or apoptosis (Mamidipudi et. al 2002).  PRKCi has also been shown to 

interact with Rab2 to promote vesicle budding for exosome formation to facilitate 

intercellular signaling between SCs and axons (Tisdale 2000; van Niel, Porto-Carreiro et al. 

2006).  The increased expression of PRKCi in the motor SCs may be attributed to having 

more signaling between the motor SCs and axons than the sensory SCs due to the higher 

number of motor neurons (and thus motor axons and motor SCs) present in the peripheral 

nervous system (PNS).      

A subset of the genes identified to be differentially upregulated in the sensory SCs 

has been shown to be involved in promoting sensory nerve myelination and maturation 

(Table 2.2).  Neuroligin 1 (NLGN1) is a component of the myelin sheath made by SCs 

(Song, Ichtchenko et al. 1999; Jahn, Tenzer et al. 2009).  Because the expression of NLGN1 

in SCs is increased during sensory nerve depolarization and signal conduction in the SC-

associated axons, NLGN1 makes a good candidate as a sensory SC marker (Biswas et al. 

2010).  Although MBP is present in both motor and sensory SCs and promotes myelination 

(Eylar, Brostoff et al. 1971) of axons, increased intracellular progesterone in SCs, 

(Guennoun, Benmessahel et al. 2001; Robert, Guennoun et al. 2001), increases the 

expression of MBP in sensory SCs, thus making MBP a good marker for sensory SCs.   
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Table 2.1:  Genes that are upregulated in the motor branch of the femoral nerve 
versus sensory branch. M – average signal intensity in motor nerve group, S – 
average signal intensity in sensory nerve group (n = 3) 
 

Gene name 
Gene 

Common 
name 

Accession 
Number  

Fold 
Difference 

M/S 

std 
dev/average 

Peripheral myelin 
protein 2 

Pmp2 AW533483 5.62 0.19 

Four and a half LIM 
domains 1 

Fhl1 BI298356 4.83 0.22 

Gap junction 
membrane channel 

protein beta 2 
Gjb2 AI179953 3.48 0.21 

Neurofilament, light 
polypeptide a 

Nefl NM_031783 3.46 0.02 

Prostaglandin D2 
synthase 

Ptgds J04488 2.33 0.1 

Ubiquitin carboxy-
terminal hydrolase L1 

Uchl1 NM_017237 2.28 0.03 

Calsequestrin 2 Casq2 NM_017131 2.07 0.31 

Amphiphysin 1 Amph1 NM_022217 2.05 0.28 

Fucosidase, alpha-L- 
2, plasma 

Fuca2 BM389993 2.04 0.11 

Tubulin, beta 2b Tubb2 X03369 2.01 0.07 

Protein kinase C, iota a Prkci AB020615 2.00 0.11 

a indicates genes used for further studies 
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Table 2.2:  Genes that are upregulated in the sensory branch of the femoral nerve 
versus motor branch. M – average signal intensity in motor nerve group, S – average 
signal intensity in sensory nerve group (n = 3) 
 

Gene name 
Gene 

common 
name 

Accession 
Numbers 

Fold 
Difference 

S/M 

std 
dev/average 

Neuroligin 1a Nlgn1 BF400127 3.36 0.34 

Ankyrin 3, epithelial Ank3 AJ428573 2.52 0.03 

S100 calcium binding 
protein A9 (calgranulin B) 

S100a9 NM_053587 2.23 0.14 

microtubule-associated 
protein tau 

Mapt BE107978 2.22 0.33 

scavenger receptor class B, 
member 1 

Scarb1 NM_031541 2.21 0.07 

L1 cell adhesion molecule L1cam NM_017345 2.19 0.09 

Neurotrophic tyrosine 
kinase, receptor, type 2 

Ntrk2 BE102996 2.17 0.24 

Myelin basic proteina Mbp BE109730 2.14 0.12 

Platelet derived growth 
factor receptor, beta 

polypeptide 
Pdgfb AI071374 2.13 0.06 

Neural cell adhesion 
molecule 1 

Ncam1 AI576209 2.05 0.06 

nuclear receptor subfamily 
4, group A, member 2 

Nr4a2 U72345 2.04 0.23 

 a indicates genes used for further studies 
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2.4.2 Verification of genes using qRT-PCR 

For further analysis, a set of genes was selected from the gene chip analyses that have 

been shown in previous studies to be involved in either sensory or motor function. 

development and growth: neuroligin 1 (NLGN1, sensory), myelin basic protein (MBP, 

sensory), protein kinase C iota (PRKCi, motor), and neurofilament (NEFL, motor) 

(Roberson, Toews et al. 1992; Tisdale 2000; Robert, Guennoun et al. 2001; Biswas, Reinhard 

et al. 2010).  Along with these markers, genes that were previously shown to be differentially 

expressed in motor and sensory SCs were also used for analysis: VEGF (motor), PTN 

(motor), GDNF (sensory), BDNF (sensory), and NGF (similar expression in motor and 

sensory) (Hoke, Redett et al. 2006).  The expression levels in fresh nerve tissue were 

evaluated for the selected genes using qRT-PCR to verify that the chosen genes agreed with 

the trends found in the gene chip analysis and in literature.  PRKCi and NEFL were 

upregulated in motor SCs compared to sensory SCs (Figure 2.1), which agreed with the 

trends observed with the gene chip analysis.  Previously identified markers from literature 

were also analyzed by qRT-PCR (Figure 2.2), and those results showed similar trends to 

those found in the literature.  The genes VEGF and PTN were upregulated in the motor SCs 

compared to the sensory SCs, BDNF was downregulated in motor SCs compared to the 

sensory SCs, and NGF was expressed in similar levels in both types of SCs.  These results 

suggest that we can use these gene markers to identify the phenotype of the SCs because 

they correlated well with results from the gene chips and literature.   
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Figure 2.1.  Verification of gene chip trend with qRT-PCR.  The 
expression level of genes that were identified to be differentially expressed 
in the motor and sensory branches of the rat femoral nerve was 
determined by qRT-PCR.  The values were normalized to β-actin, and the 
fold difference versus sensory nerve was calculated.  PRKCi and NEFL 
are upregulated in the motor branch similar to the gene chip results.  Error 
bars represent the standard deviation (n=3). The dotted line at 2 is the threshold 
value for up regulation, and the dotted line at 0.5 is the threshold for down regulation.  
* denotes p-values are the significance levels between the ΔCt (motor – β-actin) and Δ Ct (sensory – 

β-actin)  
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Figure 2.2.  Expression of genes previously identified as markers for 
sensory and motor SCs.  The expression level of genes that were 
reported in the literature to be differentially regulated in the motor and 
sensory SCs (Hoke, Redett et al. 2006)  was determined by qRT-PCR.  
The values were normalized to β-actin, and the fold difference versus 
sensory nerve was calculated.  BDNF is upregulated in the sensory 
branch, NGF is similarly expressed in both branches, and VEGF and 
PTN are upregulated the motor branch.  Error bars represent the 
standard deviation (n=3).  The dotted line at 2 is the threshold value for up 
regulation, and the dotted line at 0.5 is the threshold for down regulation. * denotes p-
values are the significance levels between the ΔCt (motor – β-actin) and Δ Ct (sensory – β-actin)  
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2.4.3 Gene expression in SCs in vitro 

To evaluate the effect of expansion culture on differential gene expression, SCs from 

the motor and sensory branches of the femoral nerve were harvested and cultured for 30 

days.  Fibroblasts were eliminated from the culture using Ara-C to inhibit the proliferation of 

the cells (Ogbomo, Michaelis et al. 2008) and the cells were allowed to recover for 4 days 

before the remaining fibroblasts were killed using complement.  SC RNA was collected at 

days 0, 1, 3, 7, 14, and 30 (Table 2.3), and the expression levels of the genes (Table 2.4) were 

analyzed using qRT-PCR compared to expression in fresh nerve tissue (day 0).  In these 

studies, a value of two or greater was selected as the minimum criteria for a significant 

difference in expression levels between groups (Hoke, Redett et al. 2006).   

 
 
Table 2.3:  The different conditions at which the RNA was extracted for qRT-PCR 
 
 

Day RNA Condition 

0 From freshly harvested nerve tissue 

1 From cells plated for 24 hours on pLL coated plates 

3 From cells recovering from the Ara-C treatment 

7 From cells recovering from complement killing of fibroblasts 

14 From cells at ~30% confluence 

30 From cells at ~80% confluence 
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Table 2.4: The genes chosen from the gene chip analysis and literature for further 
analysis 
 

Gene 
Gene 

Common 
Name 

Differentially 
upregulated or 

similarly expressed 
in motor or 
sensory SCs  

Function in the Nervous system 

NEFL 
Neurofilament 
Light Peptide 

Motor (Gene Chips) 
Helps with the axonal growth and 
myelination (Roberson et al. 1992) 

PRKCi  
Protein Kinase 

C iota 
Motor (Gene Chips) 

Regulates intercellular signaling 
between SCs and axons (Tisdale 

2000; van Niel et al. 2006) 

NLGN1 Neuroligin 1 
Sensory  

(Gene Chips) 

Associated with the localization in 
the postsynaptic compartment of 
excitatory synapses (Biswas et al. 

2010; Scheiffele et al. 2000) 

MBP 
Myelin Basic 

Protein 
Sensory  

(Gene Chips) 

Responsible for the myelination of 
nerves in the nervous system 

(Eylar et al. 1971)  

VEGF 

Vascular 
Endothelial 

Growth 
Factor 

Motor (Literature) 
Creates new blood vessels during 

adult nervous system development 
(Rosenstein et al. 2008) 

PTN Pleiotrophin Motor (Literature) 
Neurite outgrowth promoting 

factor (Jin et al. 2009)  

NGF 
Nerve Growth 

Factor 
Similar (Literature) 

Important for the growth, 
maintenance and survival of 

certain target neurons (Chan et al. 
2001) 

GDNF 
Glial Derived 
Neurotrophic 

factor 
Sensory (Literature) 

Promotes the survival and 
differentiation of dopaminergic 

neurons (Iwase et al. 2005) 

BDNF 
Brain-derived 
Neurotrophic 

factor 
Sensory (Literature) 

Helps with the support, survival, 
growth, differentiation of new 

neurons and synapses (Chan et al. 
2001) 



 42 

Those genes that showed significant changes in gene expression over 30 days were 

MBP, NEFL, PTN and PRKCi (Figure 2.3).  MBP is differentially upregulated in the sensory 

branch of the femoral nerve in fresh nerve tissue.  The expression in the sensory SCs 

increases over the course of the study as does the expression in the motor SCs.  On Day 1, 

there is a difference in the expression of the MBP, which is greater in motor SCs versus 

sensory SCs.  Eventually the gene is expressed at similar levels until day 30 when the 

expression in the sensory SCs increases and expression in motor SCs drops (Figure 2.3A).  

Of the other genes that were evaluated, NEFL, PTN and PRKCi (all motor markers) 

showed changes in the expression over 30 days.  NEFL (Figure 2.3B) expression decreased 

in the motor SCs but in the sensory SCs there was a 40 fold increase over the fresh tissue 

after 30 days.  PTN expression levels were upregulated in the sensory SCs and increased to a 

maximum expression at day 14 with a 35 fold increase when compared to the expression in 

the fresh tissue (Figure 2.3C).  In the motor SCs, the PTN gene was downregulated over 30 

days of expansion culture.  PRKCi showed similar expression levels when compared to the 

fresh tissue of the motor nerve, but the expression levels in the sensory SCs increased 

approximately 8 fold when compared to the fresh sensory nerve tissue (Figure 2.3D).  The 

gene expression for the remaining five genes, GDNF, BDNF, NGF, VEGF, and NLGN1 

showed no significant increases in expression because all the mRNA fold difference values 

were below the value of two (data not shown).  From these results, we can see that the 

phenotypic expression of these genes in motor or sensory SCs is significantly affected when 

SCs are expanded in vitro.  
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Figure 2.3. Gene expression in motor and sensory SCs over 30 days of in 
vitro culture by qRT-PCR.  A) MBP B) NEFL C) PTN and D) PRKCi. The 
gene expression for each time point was normalized to β-actin, and then the fold 
difference versus fresh tissue (Day 0) was calculated. The error bars represent the 
standard deviation (n =3). * denotes p < 0.05 when compared to the gene 
expression in sensory SCs to motor SCs at that time point.  The dotted line at 2 is the 
threshold value for up regulation. 
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 2.5 Discussion 

A number of studies have shown that the transplantation of SCs at the injury site 

improves the regeneration of peripheral nerves (Brenner, Lowe et al. 2005; Fox, Schwetye et 

al. 2005).  However, SCs need to be expanded in culture to transplant a sufficient number of 

cells at the injury site.  During expansion, it is necessary to understand the effects of 

expansion culture on SC phenotype.  In this study, we used a rat femoral nerve model to 

identify a set of phenotypic markers (from literature and gene chips) to monitor the 

expression profiles while the SCs were expanded in vitro. 

There are two types of SCs, myelinating and nonmyelinating, present in healthy 

nerves (Mirsky and Jessen 1996).  Myelinating SCs associate with axons in a 1:1 ratio and aid 

in saltatory conduction.  Alternatively, the nonmyelinating SCs associate with several non-

myelinated axons that conduct signals with wave-like impulses.  From previous studies, it has 

been shown that the cutaneous nerve and ventral root have ~20% and ~33% myelinated 

axons (MAx) respectively and ~80% and ~66% nonmyelinated axons (NMAx) respectively 

(Schmalbruch 1986; Castro, Negredo et al. 2008).  These different ratios in the number of 

MAx versus NMAx suggests that there are different proportions of the myelinating and 

nonmyelinating SCs present in the nerves, which may have an effect on the differences in 

the expression profiles on a healthy nerve.  However, in the denervated nerve, both 

myelinating and nonmyelinating SCs regress into a more immature phenotype (Mirsky and 

Jessen 1996; Jessen and Mirsky 2005).  Similarly, when the SCs are harvested from the fresh 

tissue and expanded in vitro the SCs may be reverting to a similar immature phenotype due to 

the lack of cues from the environment (e.g. interaction with axons).  Previous studies have 

shown that cutaneous nerve and ventral root SCs exhibit phenotypic differences, but also 

differentiate into their original phenotype during regeneration even after prolonged contact 
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with axons of the opposite phenotype (Hoke, Redett et al. 2006).  The implication that SCs 

having different expression profiles, which may influence preferential motor regeneration 

(PMR), suggests that transplanting phenotype specific-SCs may be potentially  a promising 

therapeutic strategy for PMR.    

To monitor the expression level changes in the SCs harvested from the motor and 

sensory branches of the rat femoral nerve, phenotypic markers were chosen from the gene 

chip analysis and from previously identified markers in literature.  Although the gene chip 

analysis revealed ~100 genes that were differentially regulated in the motor or sensory SCs, 

the phenotypic markers chosen for this study were chosen because of the implication in SC 

function in the PNS.  Additionally, a few genes (VEGF, GDNF, NGF, BDNF, and PTN) 

were selected from previously published literature (Hoke, Redett et al. 2006).  These five 

genes may not have been identified from the gene chip analysis due to the stringent criteria 

(Costigan, Befort et al. 2002) used to identify the phenotypic markers.  However, the 

markers chosen from the gene chips and literature were validated using qRT-PCR to show 

that they express similar trends to literature and the gene chips (Figures 2.1 &2. 2).   

As mentioned earlier, the genes we chose as sensory markers (MBP, NLGN1, 

BDNF and GDNF) were chosen based on the role each gene plays in sensory SC function 

(Song, Ichtchenko et al. 1999; Guennoun, Benmessahel et al. 2001; Robert, Guennoun et al. 

2001; Jahn, Tenzer et al. 2009; Biswas, Reinhard et al. 2010).  BDNF and GDNF were 

chosen from literature as markers of sensory SC expression because these growth factors are 

predominantly expressed in the cutaneous nerve derived from the rat femoral branch (Hoke 

et al. 2006).  The motor markers chosen were PRKCi, NEFL, VEGF and PTN.  PRKCi and 

NEFL have been implicated in aiding with motor SC signaling and myelination (Roberson, 

Toews et al. 1992; Tisdale 2000; Mamidipudi and Wooten 2002; Lariviere and Julien 2004).  
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The remaining two genes, VEGF and PTN, were chosen from literature because they are 

predominantly expressed in the ventral root after denervation (Hoke, Redett et al. 2006).  

Due to the involvement of these genes in SC function, these markers can be used to monitor 

the changes in phenotypic gene expression profiles as SCs are expanded in vitro. 

The expression profiles for the cells harvested from the motor and sensory branches 

of the rat femoral nerve were monitored by evaluating the relative mRNA levels of each 

gene (Table 2.4) compared to the expression levels in fresh tissue. As hypothesized, the 

expression patterns of these genes were altered as the SCs were expanded in vitro.  Of the 

nine genes evaluated, the genes that were dysregulated in culture were MBP, NEFL, PRKCi, 

and PTN.   

A GeneGo network pathway analysis on the results obtained through the gene chip 

experiment revealed pathways that may contribute to the changes in gene expression 

observed during SC expansion.  A subset of genes from the Sox family has previously been 

shown to contribute to the neuronal development.  One particular gene, Sox6, controls the 

transcription of the MBP (Stolt, Schlierf et al. 2006).  Because MBP, a sensory marker, was 

upregulated in the motor SCs during culture, Sox6 alone with other transcription factors, 

such as SP1, Oct6, and Krox20, may be either be over- or under-expressed in the cell, thus 

altering the expression of MBP (Kao, Wu et al. 2009).  Additionally, interaction with the 

sensory neurons promotes the synthesis of intracellular progesterone in SCs and thus may 

control the expression of Krox20, which regulates the expression of MBP (Guennoun, 

Benmessahel et al. 2001; Robert, Guennoun et al. 2001).  The absence of neurons in culture 

may affect the expression levels of MBP in the SCs.  

NEFL interacts with the family of microtubule-associated proteins (MAP) (Frappier, 

Stetzkowski-Marden et al. 1991), which bind to tubulin subunits to support the assembly of 
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microtubules in neurons.  SCs also express NEFL in the healthy nerve to support the axon 

as well as aid in efficient signal conduction (Roberson, Toews et al. 1992).  The dysregulation 

of NEFL may be due to the fact that the SCs are no longer supporting axons in cell culture 

and thus altering the expression patterns in the sensory SCs when grown in vitro in the 

absence of neurons.  PRKCi plays a role in axonal transport, microtubule dynamics as well 

as SC survival and intercellular signaling (Tisdale 2000; Mamidipudi and Wooten 2002; van 

Niel, Porto-Carreiro et al. 2006).  In SCs, these interactions are necessary to regulate SC 

apoptosis as well as assisting with vesicle budding and exosome formation for extracellular 

signaling to other SCs and axons.  After expansion in culture, the expression of PRKCi may 

be dysregulated because the SCs are not in contact with axons.  The PTN gene is important 

during neural development and promotes neurite outgrowth, cell proliferation, and cell 

migration.  In recent studies, PTN has been shown to aid in the guidance of axonal 

regeneration and muscle reinnervation after injury (Deuel, Zhang et al. 2002; Jin, Jianghai et 

al. 2009).  The changes in the gene expression levels, especially at day 14, may be due to the 

fact that the SCs are missing the necessary cues from axons to keep the PTN expression 

levels similar to expression in fresh tissue.  

Additionally, at different time points during the SC expansion culture, the SCs are 

treated with different chemicals and mitogens (Table 2.3) to eliminate fibroblasts and to 

promote the proliferation of the cells using mitogenic supplements.  Previously, it is have 

been shown that de-differentiation of SCs may be linked to proliferation (Guertin, Zhang et 

al. 2005).  However, recent studies have revealed that SC de-differentiation is independent of 

mitogenic signaling and also uncoupled to proliferation (Monje, Soto et al. 2010).  De-

differentiated SCs do not proliferate unless treated with mitogenic supplements, whereas 

differentiated post-mitotic SCs do not respond to mitogenic additions to the culture media.    
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Since differentiation of the SCs is dependent on high levels of intracellular cyclic adenosine 

monophosphate (cAMP), SCs in the present study may have de-differentiated in culture due 

to the decrease in intracellular cAMP levels and  loss of signaling from the environment in 

vivo and thus proliferate in response to mitogenic additions to the media.   

The de-differentiated SCs in vitro may be mimicking the de-differentiated state the 

SCs revert to after injury and may be awaiting cues from the environment to induce 

differentiation into its native phenotype.  In vivo, this immature state promotes SC 

proliferation and secretion GFs to aid axonal regeneration (Jessen and Mirsky 2005).  As the 

axons grow, cues in the environment, such as GFs (Chan, Cosgaya et al. 2001; Iwase, Jung et 

al. 2005), neurotransmitters (Vrbova, Mehra et al. 2009), or supporting cells such as 

fibroblasts (Parrinello, Napoli et al. 2010), may guide the SCs differentiation back into their 

native phenotype to support the regenerating axons.  To understand the differentiation and 

maintenance of SC phenotypes, further studies need to be conducted to evaluate the effects 

of culturing SCs with different environmental cues.   

In conclusion, phenotype specific genes are differentially expressed in the motor 

branch and sensory branches of the femoral nerve.  Additionally, we observed that these 

gene expression patterns were disrupted when motor and sensory SCs were expanded in 

culture.  These results suggest that although motor and sensory SCs have different 

phenotype, future studies need to be performed to identify the environmental cues that 

influence and maintain the SC phenotype in a healthy nerve.  GFs as well as 

neurotransmitters and supporting cells may help maintain the SC phenotype in vivo as well as 

in vitro.  Understanding the cues that guide differentiation or maintenance of SC phenotype 

may improve SC transplantation therapies for the improvement of motor or sensory specific 

regeneration across nerve gaps using ANGs after injury.   (Scheiffele, Fan et al. 2000; Rosenstein, Krum et al. 2008) 
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Chapter 3 

 

Schwann Cells Seeded in Acellular Nerve Grafts Promotes Increased 

Growth Factor Expression When  

 

3.1 Abstract 

Peripheral nerve regeneration is dependent on trophic support after injury.  Schwann 

cells (SCs) secrete growth factors that promote neuronal survival and guide axons during 

regeneration.  However, to obtain a sufficient number of SCs for transplant, SCs must be 

expanded in culture, which causes dedifferentiation into immature SCs.  The purpose of this 

study was to determine if injection of SCs into acellular nerve grafts (ANGs) enhances 

growth factor expression and promotes the differentiation of the SCs back into their native 

phenotype.  Donor sciatic nerves were harvested and placed in University of Wisconsin 

solution to generate cold preserved (CP)-ANGs.  SCs from sciatic nerve and both the motor 

and sensory branches of rat femoral nerve were expanded in vitro and injected into CP-

ANGs to repair 14 mm sciatic nerve defects.  At 14 days, motor or sensory-derived SCs 

increased expression of growth factors (glial-derived neurotrophic factor (GDNF), nerve 

growth factor (NGF) and brain derived neurotrophic factor (BDNF)) in CP-ANGs versus 

isografts.  However, the SCs in the ANGs failed to express markers associated with their 

native (donor) phenotype (motor or sensory) 2 weeks after injection into CP-ANGs. The 

results suggest that inclusion of SCs from the rat femoral nerve in CP-ANGs promotes 

increased growth factor expression compared to the isograft, but the CP-ANGs do not 

provide sufficient cues to re-differentiate the SCs into their native phenotypes. 
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3.2 Introduction 
 

Direct end-to-end anastomosis of a severed peripheral nerve provides the optimal 

clinical outcome following injury.  In most clinical cases, primary nerve repair is not possible 

and a bridging component that allows for tension-free reconstruction must be used to 

achieve functional recovery(Siemionow and Brzezicki 2009).  Nerve autografts, the standard 

for peripheral nerve reconstruction, are limited by lack of sufficient donor tissue and size 

mismatches with the injury site(Schmidt and Leach 2003; Burnett and Zager 2004).  Fresh 

cadaveric allografts can function as well as nerve autografts(Bain, Mackinnon et al. 1989; 

Midha, Mackinnon et al. 1993; Nakao, Mackinnon et al. 1995; Strasberg, Hertl et al. 1996; 

Strasberg, Mackinnon et al. 1996), but require host immuno-suppression with its attendant 

morbidity.  To circumvent these problems, investigators have sought alternatives in synthetic 

conduits and acellular nerve allografts, both of which are currently commercially available for 

clinical use in the United States.  

Acellular nerve grafts (ANGs) are prepared using freeze thaw cycles(Zalewski and 

Gulati 1982; Gulati and Cole 1994), cold-preservation(Gulati and Cole 1994), or 

detergent(Hudson, Liu et al. 2004; Hudson, Zawko et al. 2004) treatment.  These processing 

methods remove the antigenic cellular components, thus reducing the immunological 

response to ANGs.  Compared with nerve conduits, ANGs support superior nerve 

regeneration, likely due to the intact endoneurial microstructure of extracellular matrix 

(ECM) proteins that guide regenerating axons(Whitlock, Tuffaha et al. 2009; Johnson, 

Newton et al. 2011; Moore, MacEwan et al. 2011).  Surgical reconstruction of nerves using 

conduits has generally been limited to short gaps and sensory nerve defects due to their 

inferior regeneration potential compared to autografts(Mackinnon and Dellon 1990; 

Mackinnon and Dellon 1990; Meek and Coert 2002).  Preclinical and early clinical studies on 
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commercially-available ANGs have shown regeneration across gap lengths up to 28 

mm(Whitlock, Tuffaha et al. 2009),(Karabekmez, Duymaz et al. 2009).  However, the lack of SCs, which are critical to 

peripheral nerve regeneration, limits regeneration in ANGs and makes them inferior to 

autografts(Whitlock, Tuffaha et al. 2009; Moore, MacEwan et al. 2011),20-26.   

In uninjured nerves, SCs myelinate axons and secrete both ECM molecules and 

growth factors to promote neuronal survival(Reynolds and Woolf 1993; Bunge 1994; 

Nagarajan, Le et al. 2002; Brenner, Lowe et al. 2005).  After nerve injury, the SCs present at 

the injury are essential to regeneration.  The SCs proliferate and align themselves in the 

remaining basal lamina to guide regenerating axons to their distal targets(Waller 1850; 

Burnett and Zager 2004).  ECM molecules and soluble growth factors, such as nerve growth 

factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic 

factor (BDNF), are secreted by SCs to stimulate and guide axons from the proximal stump 

toward their target end-organ(Frostick, Yin et al. 1998; Chan, Cosgaya et al. 2001; Iwase, 

Jung et al. 2005).  ANGs injected with SCs have been shown to support regeneration at 

levels similar to autografts(Guenard, Kleitman et al. 1992; Kim, Connolly et al. 1994; Levi, 

Guenard et al. 1994; Hu, Zhu et al. 2007; Aszmann, Korak et al. 2008).   

To obtain a sufficient number of cells to transplant, SCs typically need to be 

expanded in culture.  Previous research suggests that SCs exhibit a specific phenotype (i.e. 

motor or sensory) that may influence the regeneration of axons towards their correct target 

end-organ (muscle or sensory) (Brushart 1988; Brushart 1993; Madison, Archibald et al. 

1996; Madison, Archibald et al. 1999; Hoke, Redett et al. 2006; Madison, Robinson et al. 

2007; Madison, Sofroniew et al. 2009).  Previously, we quantified phenotype-specific gene 

expression to confirm that the motor and sensory branches of the femoral nerve are a source 

of phenotype-specific SCs(Jesuraj, Nguyen et al. 2012).  Based  on these studies, we 
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hypothesized that the source of SCs (i.e., motor or sensory nerve) could enhance growth 

factor expression  after transplantation into CP-ANGs.  Rat SCs derived from the sciatic 

nerve and the motor and sensory branches of the femoral nerve were expanded in vitro and 

then transplanted (Figure 3.1) into CP-ANGs to determine if SC phenotype plays a role in 

upregulating growth factor expression at 2 weeks post-injury.   

   

 

Figure 3.1.  Experimental design for the transplantation study.  The goal of the 
project was to transplant SCs into CP-ANGs to repair a 14 mm rat sciatic nerve gap 
defect to study the effects of CP-ANG ECM on growth factor and phenotypic marker 
expression patterns (A).  Experimental groups included the isograft (positive control), the 
acellular CP-ANG (CP, negative control) and three SC-injected CP-ANG groups. SCs 
were derived from three different nerve sources: (i) rat femoral sensory branch (Sensory), 
(ii) rat femoral motor branch (Motor) and (iii) rat sciatic (mixed) nerve (Sciatic) (B). 
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3.3  Materials and Methods 

 

3.3.1 Animals 

Adult (225-250 g) male Lewis rats (Harlan Sprague-Dawley, Indianapolis, IN) were 

maintained in a central housing facility.  All animal procedures were approved and done in 

strict accordance with the guidelines set forth by the Animal Studies Committee of 

Washington University.   

 

3.3.2  Experimental Design 

Animals were randomized into five groups corresponding to the type of graft that 

was used to repair a 14 mm sciatic nerve gap.  Additional animals were used as donors for 

nerve grafts or SCs.  The first group (isograft) served as the positive control and received a 

14 mm reversed isograft repair obtained from another Lewis donor.  Three more groups 

received 14 mm CP-ANGs injected with 106 cells SCs derived and expanded from the sciatic 

nerve, femoral motor, and femoral sensory nerve branches respectively.  The last group 

served as the negative control, receiving a 14 mm CP-ANG with no SCs (Figure 3.1 B).   

 

3.3.3 Processing of Donor Nerve Grafts   

Sciatic nerve segments from donor Lewis rats were immediately transferred into 

sterile six-well plates with 10 mL of a solution containing University of Wisconsin solution 

(Southard and Belzer 1995) (15 ml; NPBI International BV, Emmer Compascuum, The 

Netherlands), penicillin G (200,000 U/L), regular insulin (40 U/L), and dexamethasone (16 
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mg/L).  The solution was changed weekly in a sterile hood for 7 weeks and stored at 4°C as 

described previously(Fox, Jaramillo et al. 2005). 

 

3.3.4 Isolation and expansion of SCs  

SC cultures were prepared as previously described (Raff, Abney et al. 1978; Brockes 

and Raff 1979; Pruss 1982).  Briefly, the rat sciatic nerve and the sensory and motor 

branches of rat femoral nerve were harvested and placed in Leibovitz’s L-15 medium 

(Invitrogen, Carlsbad, CA).  Collagenase I (1%) (Fisher, Pittsburgh, PA) and trypsin (2.5%) 

(Invitrogen) were added to the fascicles and incubated for 30 min at 37oC.  After 

centrifugation at 130 x g for 5 min, the pellet was washed with Dulbecco’s modified Eagle 

medium (DMEM, Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS, Sigma-Aldrich, St. Louis, MO) and 1% antibiotic antimycotic (ABAM, Invitrogen).  

The cells were then seeded on 10 cm tissue culture dishes coated with poly-L-lysine (pLL) 

(Sigma-Aldrich). Tissue culture dishes were prepared by coating with 10 mL 0.01% pLL in 

sterile water and washing twice with sterile water.  On day 2 of culture, 10 µM cytosine-beta-

arabino furanoside hydrochloride (Sigma-Aldrich) was added to cultures along with the 

media containing DMEM, FBS, and ABAM.  On day 6, the fibroblasts were complement-

killed using an anti-Thy 1.1 antibody (1:40 dilution in media, Serotec, Raleigh, NC) and 

guinea pig complement (1:4 dilution in media, Sigma-Aldrich).  On subsequent days the 

culture media was supplemented with 2 µM forskolin (Sigma-Aldrich), and 20 μg/mL 

pituitary extract (Biomedical Tech, Inc., Stoughton, MA). 
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3.3.5 Preparation of SCs for Injection   

SCs were prepared for injection under the epineurium as previously 

described(Jesuraj, Santosa et al. 2011).  Briefly, SCs were washed twice with Hanks’ Balanced 

saline solution (Invitrogen) and incubated with 0.25% trypsin for 3 min at 37oC.  After 

centrifugation for 5 min at 130 x g, the supernatant was removed, and the cells were 

resuspended at 106 cells/ 5µL in culture media containing DMEM supplemented with 10% 

FBS and 1% ABAM.  A 10 nM Qtracker® (Invitrogen) solution was prepared for labeling, 

as recommended by the manufacturer.  After mixing 200 µL of fresh media in 1.5 mL of 

prepared Qtracker® solution, 1x106 SCs were added and incubated at 37oC for 60 min to 

label the cells prior to transplantation.  The resulting labeled cells were washed with media 

twice and concentrated as needed in culture media. 

 

3.3.6 Donor Graft Harvest   

Animals were anesthetized with a subcutaneous injection of ketamine (75 mg/kg, 

Ketaset®, Fort Dodge Animal Health, Fort Dodge, IA) and medetomidine (0.5 mg/kg, 

Dormitor®, Orion Corporation, Espoo, Finland).  Under aseptic conditions, both hind 

limbs were prepared for incision.  A 3 cm skin incision was made from the top of the femur 

towards the kneecap, and then the gluteal muscles were separated to expose the sciatic nerve.  

A 30-35 mm sciatic nerve segment was excised bilaterally and used for immediate isograft 

repair or cold-preservation treatment.  The animals were subsequently euthanized with 

intracardiac injection of Euthasol® (150 mg/kg, Delmarva Laboratories, Des Moines, IA).  

All animal care was performed according to NIH guidelines and IUCAC approval.   
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3.3.7 Graft Implantation   

With the experimental animals anesthetized, the right hind limb sciatic nerve was 

exposed, neurolysed, and sharply transected with micro-scissors 5 mm proximal to the 

trifurcation.  The reversed 14 mm nerve graft was sutured to the proximal and distal stumps 

with one 10-0 nylon suture at each end and secured with fibrin sealant (TisseelTM, Baxter 

International Inc., Deerfield, IL).  For groups that received SC treatments, injections were 

done after the CP-ANG was fastened to the proximal stump.  With a 27-gauge Hamilton™ 

syringe (Hamilton Company, Reno, NV), a solution with 1 × 106 SCs/5 µL was injected 

longitudinally underneath the epineurium of the graft as previously described(Jesuraj, 

Santosa et al. 2011).  To confirm adequate injection of the SCs, the labeled SCs were 

visualized in the CP-ANG with a fluorescence Olympus MVX10 dissecting microscope 

(Olympus Corporation, Japan) fitted with a cooled CCD digital camera (Hamamatsu ORCA-

ER; Hamamatsu City, Japan) and analyzed with MetaMorph version 7.0 (Universal Imaging 

Corporation, PA). After wound irrigation, the muscles and skin were reapproximated with 

interrupted 6-0 Vicryl (Ethicon, Somerville, NJ) and 4-0 nylon sutures, respectively.  Animals 

were recovered with a subcutaneous injection of atipamezole HCl (1mg/kg, Antisedan®, 

Orion Corporation) and placed on a warming pad post-operatively.  Following surgery and 

post-operative care, animals were returned to a central housing facility and closely monitored 

for infection, distress, and other morbidities.   
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3.3.8 Graft Harvest 

Animals used for qRT-PCR analysis were re-anesthetized 2 weeks after surgery.  

After the graft was identified and neurolysed, it was dissected at both suture sites to prevent 

any host nerve contamination(Aguayo, Charron et al. 1976; Aguayo, Epps et al. 1976), and 

the grafts were stored in RNAlater™ (Ambion®, Austin, TX) for PCR analysis.  Animals 

were euthanized with intracardiac injection of Euthasol® (150 mg/kg, Delmarva 

Laboratories, Des Moines, IA) immediately following harvest. 

 

3.3.9 RNA Isolation   

Total RNA was extracted from the explanted CP-ANGs 2 weeks after nerve repair using an 

acid phenol extraction (TRIzol Reagent, Invitrogen).  The aqueous layer was collected, and 

the samples were purified using an RNeasy Mini Kit (Qiagen).  The presence of RNA was 

assessed by electrophoresis using 2% agarose gels after running reverse transcriptase PCR 

with a β-actin primer.  To verify that the mRNA extracted from the nerves met the quality 

standards for further experiments, mRNA concentration was determined using an 

absorbance ratio of A260/A280.  The ratio threshold was at 1.8, which denotes a high purity 

of RNA in the sample(Wilfinger, Mackey et al. 1997).  Since the majority of the cells in the 

nerve are SCs (~70%) (Salonen, Aho et al. 1988), the harvested RNA was assumed to be 

representative of SC RNA present in the explanted CP-ANGs after two weeks. 

 

3.3.10  Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)   

cDNA was synthesized from the isolated RNA using the Quantitect Reverse 

Transcription Kit (Qiagen).  Using the Quantitect SYBR Green PCR Mastermix (Qiagen) in 
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combination with gene specific QuantiTect primer assays, qRT-PCR was performed using an 

Applied Biosystems 7000 Real-Time PCR thermocycler for genes chosen from literature and 

identified from previous experiments: vascular endothelial cell growth factor (VEGF), NGF, 

BDNF, pleiotrophin (PTN), GDNF, myelin basic protein (MBP), protein kinase C iota 

(PRKCi), neural cell adhesion molecule 1 (NCAM1), and neurofilament (NEFL)(Hoke, 

Redett et al. 2006; Jesuraj, Nguyen et al. 2012).  The qRT-PCR was conducted using the 

following conditions: (1) 50oC for 2 min to eliminate any PCR products containing dUTP 

from carryover contamination; (2) 95oC for 15 min, to activate the polymerase; (3) 40 cycles 

of 95oC for 15 seconds to anneal, 55oC for 30 seconds to extend, and 72oC for 30 seconds to 

amplify with the fluorescent signal detected at 72oC(Gaumond, Tyropolis et al. 2006).  

Target genes were normalized to an internal control (β-actin) to account for variation in 

cDNA concentration between samples.  No template was used as a negative control.  The 

Quantitect primer assays are validated to have a PCR efficiency of 100%.  The differences in 

gene expression levels between two different samples were calculated using the comparative 

delta crossover threshold (Ct) method(Livak and Schmittgen 2001)   

 

3.3.11  Statistical Analysis 

Statistical analyses were run using SigmaStat 3.0 (Systat Software, San Jose, CA).   If 

ANOVA returned a statistically significant p value, a post-hoc Student-Newman-Keuls test 

was used to isolate significant differences between groups with correction for multiple 

comparisons.  Significance was set at p<0.05 and all results are reported as mean ± standard 

deviation. 
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3.4 Results 

qRT-PCR was used to study the effect of SC transplantation on growth factor 

expression in the acute phase after injury (Henderson, Camu et al. 1993; Li, Wu et al. 1995) 

with isografts and acellular CP-ANGs used as controls.  NGF, GDNF and BDNF were 

chosen as representative growth factors because they promote neuronal survival and axon 

regeneration after peripheral nerve injury(Henderson, Camu et al. 1993; Li, Wu et al. 1995; 

Yan, Matheson et al. 1995; Xu, Yu et al. 2002; Lee, Yu et al. 2003; Wood, Moore et al. 2009).  

Two weeks after transplantation, gene expression in the nerve grafts was evaluated and 

compared to the expression levels in the negative control, acellular CP-ANGs.  All growth 

factor expression levels (NGF, GDNF, and BDNF) were upregulated in the sensory and 

motor-derived SC groups compared to the acellular CP-ANG group (Figure 3.2).  When 

compared to the isograft group, CP-ANGs injected with sensory and motor-derived SCs 

also showed increased expression of NGF (sensory ~4-fold increase, motor ~3-fold 

increase), GDNF (sensory ~10-fold, motor ~4-fold) and BDNF (sensory ~4-fold, motor ~ 

3-fold) (Figure 3.2).  The growth factor expression levels of the sciatic-derived SC group 

were similar to that of the isograft (Figure 2).  The increased level of growth factor 

expression in the sensory and motor-derived SC groups compared to both the acellular CP-

ANG and isograft groups demonstrates that transplantation of phenotype-specific SCs into 

CP-ANGs increases growth factor expression in this injury model after 2 weeks.  
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Figure 3.2.  Sensory and motor-derived Schwann cells increase growth factor 
expression at 2 weeks.  qRT-PCR was used to determine the gene expression level 
of each marker with the values normalized to β-actin. The groups injected with 
phenotype specific SCs (sensory and motor nerve-derived) showed greater 
expression of all growth factors examined compared to the isograft and acellular 
CP-ANG groups.  The mRNA fold difference was calculated versus the acellular 
CP-ANG.  ** the dotted line at 2 is the threshold value for upregulation versus the 
CP group.  Error bars represent the standard deviation (n = 3).  * denotes p< 0.05 
when compared to isograft, ^ denotes p< 0.05 when compared to sciatic, # denotes p< 0.05 when 
compared to motor, $ denotes p< 0.05 when compared to acellular CP-ANG.    
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Prior to transplantation, SCs were harvested and expanded in culture, which has 

been shown to affect the gene expression patterns of SCs(Jesuraj, Nguyen et al. 2012).  To 

determine whether transplantation of SCs into CP-ANGs would promote differentiation of 

the SCs back into their native phenotypes, expression levels of phenotypic markers for 

sensory or motor-derived SCs (Table 3.1) (Jesuraj, Nguyen et al. 2012) were quantified.  Of 

the phenotypic markers evaluated, only MBP and PRKCi showed significant changes in 

expression patterns compared to the other experimental groups.  MBP is a previously 

identified marker of sensory-derived SCs(Jesuraj, Nguyen et al. 2012).  However, in this 

study, MBP was upregulated 4-fold in the motor-derived SC group versus the sensory-

derived SC group (Figure 3.3).  Previously, PRKCi was reported to be a motor-derived SC 

marker(Jesuraj, Nguyen et al. 2012).  Expression of PRKCi was 6-fold higher in the sensory 

SC group compared to motor SC group (Figure 3.3).  In a previous study in our lab, we 

demonstrated that the expression of MBP and PRKCi were dysregulated in sensory and 

motor-derived SCs after 30 day expansion culture in vitro, compared to expression levels in 

fresh nerve tissue (Jesuraj, Nguyen et al. 2012).  These results suggest that the phenotypic 

marker expression patterns of MBP and PRKCi remain dysregulated in the CP-ANGs 2 

weeks post transplantation in this sciatic nerve injury model. 
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Table 3. 1: List of Genes used for qRT-PCR analysis 2 weeks post-transplantation 
 

   
Gene 

Gene Common 
Name 

Upregulated in Motor, 
Sensory, or Similar 

Vascular Endothelial 
Growth Factor 

VEGF Motor 

Pleiotrophin PTN Motor 

Protein Kinase C iota PRKCi Motor 

Neurofilament NEFL Motor 

Brain Derived 
Neurotrophic Factor 

BDNF Sensory 

Glial Derived 
Neurotrophic Factor 

GDNF Sensory 

Myelin Basic Protein MBP Sensory 

Neural Cell Adhesion 
Molecule 

NCAM1 Sensory 

Nerve Growth Factor NGF Similar expression in both 
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Figure 3.3. SC gene expression patterns remain dysregulated 2 weeks after 
transplantation in CP-ANGs. qRT-PCR was used to determine the gene 
expression of each marker with the values normalized to β-actin.  MBP, a sensory 
marker, showed increased expression in the motor group when compared to all 
other groups.  PRKCi, a motor marker, showed increased expression in the sensory 
group.  The mRNA fold difference was calculated versus the acellular CP-ANG.  ** 
the dotted line at 2 is the threshold value for upregulation versus the CP group.  
Error bars represent the standard deviation (n = 3).  * denotes p< 0.05 when compared 
to isograft, & denotes p< 0 05 when compared to sensory, ^ denotes p< 0.05 when compared to 
sciatic, # denotes p< 0.05 when compared to motor, $ denotes p< 0.05 when compared to 
acellular CP-ANG.    
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3.5 Discussion 

Our study was designed to determine whether transplantation of  SCs into CP-ANGs 

would increase growth factor expression and differentiation the SCs into their native 

phenoytpe in a 14 mm sciatic nerve injury model (a mixed nerve) and whether the source of  

SCs has an effect.  CP-ANGs were injected with rat SCs derived from three different 

sources, the sensory and motor branches of  the femoral and the sciatic nerve, and nerve 

regeneration was evaluated using three metrics.  The effect of  the SCs on growth factor and 

phenotypic marker expression was evaluated at 2 weeks using qRT-PCR. 

We hypothesized that transplantation of motor-derived SCs into CP-ANGs would 

increase functional motor recovery through ANGs.  Pure motor SCs can be obtained from 

the ventral root(Hoke, Redett et al. 2006), but in a clinical setting the ventral root is difficult 

to access.  A more clinically relevant source of motor-derived SCs would be the long 

subscapular nerve, which innervates the latissimus dorsi muscle(Brown, Wickham et al. 

2007).  In this study, motor-derived SCs were harvested from the motor branch of the 

femoral nerve, which we have previously shown to exhibit similar expression patterns of 

phenotypic markers as SCs derived from the ventral root(Hoke, Redett et al. 2006; Jesuraj, 

Nguyen et al. 2012).  To determine whether a population of mixed (motor and sensory) SCs 

would promote similar regeneration to motor and sensory SCs, SCs derived from the rat 

sciatic nerve were also used in this study.  

Gene expression analysis showed that transplantation of  sensory or motor-derived 

SCs into CP-ANGs increased expression levels of  the growth factors NGF, BDNF, and 

GDNF in the grafts 2 weeks post transplantation compared to the acellular CP-ANG and 

isograft groups.  The increase in growth factor expression levels may be due to the 

expansion of  SCs in vitro prior to transplantation.  Typically, SCs de-differentiate into an 
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immature state after injury, which promotes the upregulation of  NGF, GDNF, and BDNF 

to guide the regenerating axons to their distal targets(Mirsky and Jessen 1996; Chan, Cosgaya 

et al. 2001; Iwase, Jung et al. 2005; Jessen and Mirsky 2005).  Similarly, when the SCs are 

harvested from the fresh tissue and expanded in vitro, the SCs may revert to an immature 

phenotype and thus upregulate growth factor expression levels.  Therefore, we hypothesized 

that inclusion of  SCs into CP-ANGs would increase growth factor expression levels 

compared to CP-ANGs without SCs.  Our results showed that expression levels of  NGF, 

BDNF, and GDNF were higher in grafts with sensory-derived and motor-derived SCs 

compared to both the isograft and acellular CP-ANG groups.  The differences in the growth 

factor expression levels compared to the isograft, which is sciatic-derived, may be due to the 

differential upregulation of  the growth factors in different populations of  SCs(Hoke, Redett 

et al. 2006; Jesuraj, Nguyen et al. 2012).  Thus, the transplantation of  sensory or motor-

derived SCs into CP-ANGs increases levels of  growth factor expression compared to both 

isografts and acellular CP-ANGs, which may help guide regenerating axons through CP-

ANGs.  

SCs derived from the sensory and motor branches of  the rat femoral nerve have 

been shown to exhibit differential gene expression patterns(Jesuraj, Nguyen et al. 2012).  

However, as the SCs are expanded in vitro, the expression patterns of  phenotypic markers, 

such as MBP (sensory marker) and PRKCi (motor marker), are dysregulated, possibly due to 

the lack of  environmental cues in vitro (Jesuraj, Nguyen et al. 2012).  Prior to transplantation, 

SCs need to be expanded in culture for approximately 30 days to obtain sufficient numbers 

of  cells for transplantation, which means that the SCs used in this study are de-differentiated 

cells with dysregulated phenotypic expression patterns(Jesuraj, Nguyen et al. 2012).  

Therefore, we hypothesized that transplantation of  these de-differentiated motor or sensory-
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derived SCs into CP-ANGs would promote differentiation of  the SCs and expression of  

their native phenotypic markers.  Yet similar to in vitro findings (Jesuraj, Nguyen et al. 2012), 

the expression of  MBP and PRKCi by SCs in the CP-ANGs remained dysregulated.  These 

results suggest that the environment within a sciatic nerve-derived CP-ANG may not 

provide sufficient cues to re-differentiate SCs into their native phenotype within the two 

week period evaluated in this study.  Other cues, such as phenotype specific axons 

regenerating through the CP-ANG or a later time point, may be required to observe 

differentiation of  the SCs into their native phenotypes.  Alternatively, if  the CP-ANG was 

derived from primarily sensory or motor nerves, the graft might provide stronger cues to 

promote the expression of  native phenotype-specific markers.  

This study demonstrates the injection of  SCs, regardless of  source, into CP-ANGs 

promoted increased growth factor expression at 2 weeks compared to the isograft.  

Currently, SCs can be obtained from the transected nerve by removing a piece of nerve from 

the injured nerve stump.  If  the peripheral nerve source that the SCs are derived from does 

not have an effect on the growth factor expression, then SCs can be derived from the 

autologous nerve source that provides the least donor site morbidity.  However, further work 

needs to be completed to understand which additional cues may be necessary to promote the 

differentiation of  the SCs into their native phenotypes in vivo.  Further studies should also 

assess the types of  axons (motor or sensory) that are regenerating in response to 

transplantation of  phenotype specific SCs.  Understanding which factors may affect gene 

expression levels in SCs will allow for designing better cell transplantation therapies to 

promote peripheral nerve regeneration.  
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Chapter 4 

Effects of Nerve Growth Factor, Glial-derived 
Neurotrophic Factor, and Acetylcholine on Schwann 
Cell Differentiation 
 

4.1 Abstract 

Schwann cells (SCs) secrete growth factors (GFs) and extracellular matrix (ECM) molecules 

that promote neuronal survival and help guide axons during regeneration.  The addition of 

SCs to acellular nerve grafts is a promising strategy for enhancing peripheral nerve 

regeneration.  To obtain a sufficient number of cells for transplant, SCs must generally be 

expanded in vitro.  However, we and others have shown that after long-term in vitro 

expansion, SCs tend to revert to a de-differentiated state similar to the phenotype of SCs 

after injury.  Because SCs express both the p75NTR (nerve growth factor (NGF)) and GFRα-1 

receptors (glial-derived neurotrophic factor (GDNF)), it is possible that NGF and GDNF 

present in the extracellular milieu may promote the differentiation of the SCs into a mature 

myelinating phenotype.  In addition, small molecules, such as acetylcholine (Ach), are 

present in the extracellular milieu of motor nerves near the neuromuscular junction (NMJ) 

and may reinforce a motor SC phenotype.  SCs express the muscarinic Ach receptors 1 

through 4, and thus Ach may signal through these receptors. In this study, SCs harvested 

from the sensory and motor branches of rat femoral nerves were expanded in vitro and then 

cultured with different doses of NGF, GDNF, and Ach (motor-derived SCs only).  The 

addition of NGF and GDNF to the media promoted the differentiation of both sensory and 

motor SCs back into their native phenotypes, as demonstrated by increases in S100 and 

phenotype-specific marker expression.  Addition of Ach to the media of motor–derived SCs 
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also increased expression of S100, as well as motor SC markers.  Because these GFs and Ach 

promote SC differentiation and phenotypic marker expression, these molecules can be 

incorporated into transplantation therapies to promote differentiation of transplanted 

immature cultured SCs for quicker myelination of the regenerating axons to improve 

functional recovery.  
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4.2 Introduction 

 
Peripheral nerve injury due to a complete nerve transection results in a loss of 

sensory or motor nerve function.  Ideally, the two severed ends of the nerves can be rejoined 

using a direct end-to-end coaptation.  However, in larger nerve gap injuries, a direct 

coaptation can introduce unnecessary tension that may impede regeneration.  To prevent 

tension while bridging a nerve defect, an autograft can provide SCs, ECM molecules and 

GFs to promote regeneration of axons across the nerve defect.  Although the nerve 

autograft remains the clinical standard of care, this method has limitations including donor 

site morbidity, lack of sufficient donor tissue, and size mismatches at the injury site (Schmidt 

and Leach 2003; Burnett and Zager 2004).  Currently, investigators are searching for 

alternative therapies to bridge nerve gaps following injury, such as acellular nerve grafts 

(ANGs). 

ANGs have been used to support the growth of regenerating axons from the 

proximal nerve into the distal stump (Hare, Evans et al. 1993; Levi, Evans et al. 1994; Hare, 

Evans et al. 1995).  However, the regenerative capacity of ANGs is still inferior to autografts 

because they lack SCs (Whitlock, Tuffaha et al. 2009).  SCs secrete GFs and ECM that can 

promote neuronal survival and axonal regeneration after injury (Bunge 1993; Reynolds and 

Woolf 1993; Frostick, Yin et al. 1998; Nagarajan, Le et al. 2002; Brenner, Lowe et al. 2005).  

The addition of SCs to ANGs is a promising strategy for enhancing their regenerative 

capacity (Jesuraj et. al, unpublished data). 

In addition to transplanting SCs into ANGs to promote regeneration, the 

transplantation of specific SC phenotypes (motor or sensory SCs) at the injury site to 

promote the regeneration of specific types of axons is an area of interest.  When given equal 
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access to motor and sensory pathways, motor axons tend to regenerate down the motor 

pathway.  This phenomenon, preferential motor reinnervation, may be influenced by trophic 

support from the end organs (with muscle greatly outweighing skin) or the SCs present 

within terminal nerve pathways (Brushart 1988; Brushart 1993; Madison, Archibald et al. 

1996; Madison, Archibald et al. 1999; Madison, Robinson et al. 2007; Madison, Sofroniew et 

al. 2009).  Previous studies have shown that sensory axons may also regenerate preferentially 

down sensory pathways (Hoke, Redett et al. 2006).  After denervation, SCs de-differentiate 

into an immature state (Mirsky and Jessen 1996) and secrete GFs and ECM to enhance 

regeneration (Bunge, Bunge et al. 1986; Bunge 1993; Bunge 1994).  Although SCs de-

differentiate, they may retain a “phenotypic memory” that allows them to re-differentiate 

into their original phenotype during regeneration, as demonstrated by different expression 

profiles observed by motor and sensory SCs even after prolonged contact with axons of the 

opposite phenotype (Hoke, Redett et al. 2006).   

To obtain a sufficient number of phenotype specific SCs for transplant, SCs need to 

be expanded from phenotype specific nerve sources.  However, in a previous study, SCs 

derived from the motor (quadriceps) branch and the sensory (cutaneous) branch of the rat 

femoral nerve showed dysregulated phenotypic marker expression after long term in vitro 

expansion, possibly due to the lack of environmental cues(Jesuraj, Nguyen et al. 2012).  In 

vivo, after nerve injury, the SCs present at the injury site de-differentiate into an immature 

phenotype to aid in the phagocytosis of the cellular debris and to promote the regeneration 

of axons (Waller 1850; Burnett and Zager 2004).  As the axons sprout from the proximal 

end toward the distal end, the SCs secrete soluble growth factors, such as nerve NGF and 

GDNF (Frostick, Yin et al. 1998; Chan, Cosgaya et al. 2001; Iwase, Jung et al. 2005) to guide 

the axons to the correct target end-organ.  As axons grow and reestablish contact with the 
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SCs, it has been hypothesized that interactions between the SCs and environmental cues (e.g. 

GFs and neurotransmitters) may be responsible in promoting the re-differentiation of the 

SCs into a mature phenotype to myelinate and support axon function (Mirsky and Jessen 

1996; Jessen and Mirsky 2005).   

In the regenerating nerve environment, the SCs are exposed to GFs, such as NGF 

and GDNF (Fu and Gordon 1997; Costigan, Befort et al. 2002).  NGF and GDNF are GFs 

that have been shown to guide the regenerating axons across nerve defects (Otto, Unsicker 

et al. 1987; Nguyen, Parsadanian et al. 1998; Santos, Rodrigo et al. 1998; Barras, Pasche et al. 

2002; Wang, Yang et al. 2002; Lee, Yu et al. 2003; Wood, Moore et al. 2009).  Additionally, 

these GFs have also been shown to affect SC behavior, such as proliferation, migration, or 

differentiation.  The binding of GFs to their respective surface receptors on the SCs (p75NTR 

for NGF and glycosylphosphatidylinositol (GPI)-anchored family receptor (GFR)α-1 for 

GDNF) may trigger downstream signaling to promote differentiation of the SCs into a 

mature phenotype (motor or sensory) (Chan, Cosgaya et al. 2001; Iwase, Jung et al. 2005).   

Alternatively, the exposure to neurotransmitters may help to maintain and/or 

promote the differentiation SCs during remyelination of axons.  Specifically, motor-derived 

SCs are exposed to Ach (Anderson and Stevens 1973) during regeneration of motor axons 

towards their target end-organ, muscle.  The exposure of SCs to Ach may promote the 

expression of motor-specific SC markers(Jesuraj, Nguyen et al. 2012), which may further aid 

in the correct function of the regenerating axon.   

However, to ensure that the transplanted cells will re-differentiate in their native 

phenotype as the axons regenerate, additional cues may need to be included into the 

transplantation therapies to treat nerve defects.  To develop new SC transplantation 

therapies, it is important to understand which cues from the environment (e.g. NGF, 
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GDNF, and Ach) may promote differentiation into mature SCs.  Therefore in this study, 

effects of NGF, GDNF, and Ach on SCs were evaluated the effect of NGF, GDNF and 

Ach concentration on SC maturation over 7 days.  The extent of differentiation was 

evaluated using proliferation assays and quantitative real time polymerase chain reaction 

(qRT-PCR) to measure phenotypic marker expression. 

 

4.3 Materials and Methods 

 

4.3.1 SC Culture 

SC cultures were prepared as previously described (Raff, Abney et al. 1978; Pruss 

1982).  Briefly, sensory and motor branches of the rat femoral nerve were harvested and 

placed in Leibovitz’s L-15 medium (Invitrogen, Carlsbad, CA).  Collagenase I (1%) (Fisher, 

Pittsburgh, PA) and trypsin (2.5%) (Invitrogen) were added to the fascicles and incubated 

for 30 min at 37oC.  After centrifugation at 130 x g for 5 min, the pellet was washed with 

Dulbecco’s modified Eagle medium (DMEM, Invitrogen) supplemented with 10% fetal 

bovine serum (FBS, Sigma-Aldrich, St. Louis, MO) and 1% antibiotic antimycotic (ABAM, 

Invitrogen).  The cells were then seeded on 10 cm dishes coated with poly-L-lysine (pLL) 

(Sigma-Aldrich).  Tissue culture plates were prepared by coating with 10 mL 0.01% pLL in 

sterile water and washing twice with sterile water.  On day 2 of culture, 10 µM cytosine-beta-

arabino furanoside hydrochloride (Sigma-Aldrich) was added to cultures along with the 

media containing DMEM, FBS, and ABAM.  On day 6, fibroblasts were complement-killed 

using an anti-Thy 1.1 antibody (1:40 dilution in media, Serotec, Raleigh, NC) and rabbit 

complement (1:4 dilution in media, Sigma-Aldrich).  On subsequent days the culture media 

was supplemented with 2 µM forskolin (Sigma-Aldrich) and 20 μg/mL pituitary extract (PE) 
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(Biomedical Tech, Inc., Stoughton, MA).  Complement killing of fibroblasts was done as 

necessary, and the purity of the culture was assessed visually.  After two passages, SCs were 

used for experiments. 

 

4.3.2 Experimental design for dosage studies with NGF, GDNF, and 

Acetylcholine 

Motor and sensory-derived SCs were seeded separately onto 48-well plates at 3000 

cells/cm2.  Cells were cultured with unsupplemented media and supplemented media (0, 50, 

& 100 ng/mL NGF or GDNF for 7 days with media containing DMEM, ABAM, FBS and 

growth factor)  changed every 2 days.  SC pellets were then collected on days 3 & 7 for 

proliferation assay analysis or the RNA was collected from the SCs on days 3 and 7, and the 

RNA was extracted and purified using the RNeasy Mini Kit (Qiagen).  Samples were then 

stored at -80oC condition for further analysis. 

For the Ach dosage study, motor-derived SCs, seeded onto 48-well plates at 3000 

cells/cm2, received 0, 0.01, or 0.1 mg/mL Ach in media (Sigma) for 7 days with media 

containing DMEM, ABAM, FBS and Ach changed every 2 days.  SC pellets were then 

collected on days 3 & 7 for proliferation assay analysis or the RNA was collected from the 

SCs on days 3 and 7, and the RNA was extracted and purified using the RNeasy Mini Kit 

(Qiagen).  Samples were then stored at -80oC condition for further analysis. 

To verify the effects of Ach on the SCs, gallamine, a blocker of both muscarinic and 

nicotinic Ach receptors,  was used to block Ach receptors on the SC surface.  Additional 

motor-derived SCs were seeded onto 48-well plates at 3000 cells/cm2, and received 0 mM or 

10 mM gallamine (Sigma) treatment for 2 hours, after which samples were dosed with 0, 

0.01, 0.1, or 1 mg/mL Ach in media.  RNA was collected from the SCs on day 7, and the 
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RNA was extracted and purified using the RNeasy Mini Kit (Qiagen).  Samples were then 

stored at -80oC condition for further analysis. 

 

4.3.3 Proliferation Assay 

A CyQUANT ® cell proliferation assay was used to assess the number of cells 

present in culture after the different treatments, according to the manufacturer's protocol.  

Cells were lysed, and the number of cells was quantified using fluorescence using 

CyQUANT® GR dye, which strongly binds to nucleic acids. 

 

4.3.4 Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)  

RNA was isolated from the stored samples using the RNeasy mini kit (Qiagen).  

cDNA was synthesized from the isolated RNA using the QuantiTect® Reverse 

Transcription Kit (Qiagen).  Using the QuantiTect® SYBR® Green PCR Mastermix 

(Qiagen) in combination with gene specific QuantiTect® primer assays, qRT-PCR was 

performed using an Applied Biosystems 7000 Real-Time PCR thermocycler.  The genes 

studied included S100 (differentiated marker), nestin (undifferentiated marker), motor 

markers vascular endothelial cell growth factor (VEGF) and protein kinase C iota (PRKCi), 

and sensory markers brain derived neurotrophic factor (BDNF) and myelin basic protein 

(MBP).  The primers for those mentioned genes were added to the cDNA for each sample 

present for the motor and sensory nerves.  The qRT-PCR was conducted using the 

following conditions: (1) 50oC for 2 min (2) 95oC for 15 min, and  (3) forty cycles of 95oC for 

15 seconds, 55oC for 30 seconds, and 72oC for 30 seconds (Gaumond, Tyropolis et al. 2006).  

Target genes were normalized to an internal control (β-actin) to account for the variation in 

cDNA concentration between samples, and appropriate negative control samples were 
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present (no template control).  The QuantiTect® primer assays are validated to have a PCR 

efficiency of 100%.  To estimate the mRNA concentrations, the differences in gene 

expression levels between two different samples were calculated using the comparative delta 

crossover threshold (Ct) method (Livak and Schmittgen 2001; Pfaffl 2001; Schmittgen and 

Livak 2008).   

 

4.3.5 Statistical Analysis 

Statistical analyses were performed using SigmaStat 3.0 (Systat Software, San Jose, 

CA), and all data were evaluated with one-way analysis of variance (ANOVA), followed by a 

Scheffe’s F test for comparisons between groups when significance (p<0.05) was present.  

All results are reported as mean ± standard deviation.   

 

4.4 Results 

 

4.4.1 Proliferation of SCs in Response to NGF and GDNF 

Previous studies have shown that SCs expanded in culture revert to a proliferative, 

de-differentiated state in response to mitogenic media (Salzer, Williams et al. 1980; Morgan, 

Jessen et al. 1991; Monje, Soto et al. 2010).  However, when SCs differentiate into mature 

cells, they transition into a post-mitotic state  (Mirsky and Jessen 1996).  To determine 

whether exogenous NGF or GDNF would slow the proliferation of sensory and motor-

derived SCs, the number of cells present in culture was determined after 3 and 7 days of 

NGF or GDNF exposure.   
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The number of cells present after addition of NGF and GDNF to the media was 

determined at 3 and 7 days using a proliferation assay.  Supplementation of both sensory and 

motor-derived SCs with 50 or 100 ng/mL of NGF or GDNF resulted in a lower number of 

cells than the unsupplemented control at both 3 and 7 days (Figure 1).  The number of cells 

present after GDNF supplementation was similar to NGF for both types of SCs at each 

time point.  The decrease in SC proliferation compared to unsupplemented media suggests 

that both NGF and GDNF may be driving the SCs into a post-mitotic state.  

  

Figure 4.1. Addition of GFs to the SC media promotes decreased proliferation 
of SCs.  The proliferation of sensory or motor-derived SCs was monitored over 7 
days.  The SCs were supplemented with NGF or GDNF at 0, 50 or 100 ng/mL.  
Error bars represent standard deviation (n=6).  Dotted line represents initial seeding 
density.  * denotes p < 0.05 compared to the same time point in the GF treated 
groups. 
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4.4.2  Differentiation of SCs in response to NGF and GDNF 

To verify that SCs with GFs in the media were differentiating, qRT-PCR was 

performed on the cell lysates collected at 3 and 7 days for SCs with and without NGF or 

GDNF in the culture media.  The differentiation of the SCs was evaluated using S100, which 

is a marker of SC maturity (Brockes, Fields et al. 1979; Raff, Brockes et al. 1979).  Increased 

expression of S100 in SCs cultured with NGF or GDNF suggested differentiation towards a 

more mature phenotype.  Nestin, which is a marker of undifferentiated SCs (Brockes, Fields 

et al. 1979; Raff, Brockes et al. 1979), was used to determine the presence of de-

differentiated SCs after treatment with GFs.  For both sensory and motor-derived SCs, the 

addition of NGF (Figure 4.2) or GDNF (Figure 4.3) to the media increased the expression 

of S100 and decreased the expression of nestin at 3 and 7 days in a dose dependent manner 

(Figures 4.2 & 4.3).  This expression pattern suggests that the GFs may trigger downstream 

signaling within the cell to differentiate the SCs into a more mature phenotype (Hirata, 

Hibasami et al. 2001; Nicol and Vasko 2007).   

The increased expression of S100 suggested that GFs may also promote native 

phenotypic marker expression patterns in sensory and motor-derived SCs.  In previous 

studies, markers for both sensory and motor-derived markers were identified, and it was also 

shown that these phenotype-specific markers are dysregulated when SCs are expanded in 

culture (Hoke, Redett et al. 2006; Jesuraj, Nguyen et al. 2012). The addition of NGF to 

sensory or motor-derived cultures promoted the increased expression of BDNF and MBP 

(sensory SC markers) in sensory but not motor-derived SCs in a dose-dependent manner 

(Figure 4.4A). Expression of motor SC markers (VEGF and PRKCi) was not stimulated by 

NGF in either type of SC (Figure 4.4B).  Culturing SCs with GDNF promoted the increased 

expression of sensory markers (BDNF and MBP) in sensory-derived SCs (Figure 4.5A), and 
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motor markers (VEGF and PRKCi) in motor-derived SCs (Figure 4.5B).  The increased 

expression of sensory and motor SC marker with GF treatment suggests that NGF and 

GDNF promote the re-differentiation of the SCs into their native phenotypes in vitro.   

Figure 4.2. Addition of NGF to the media promotes increased expression of 
S100 and decreased expression of nestin.  The expression of S100 and nestin was 
monitored over 7 days.  qRT-PCR was used to determine the gene expression of 
each marker and the values were normalized to β-actin.  The fold difference in gene 
expression for sensory and motor-derived SCs grown with and without NGF was 
compared to day 0.  Error bars represent the standard deviation (n=3).  ** the dotted 
line at 2 is the threshold value for upregulation.  The dotted line at 1 represents 
similar expression to day 0.  * denotes p < 0.05 vs.  50 ng/mL at the same time 
point, # denotes  p < 0.05 vs.  0 ng/mL at the same time point. 
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Figure 4.3. Addition of GDNF to the media promotes increased expression of 
S100 and decreased expression of nestin.  The expression of S100 and nestin was 
monitored over 7 days.  qRT-PCR was used to determine the gene expression of 
each marker and the values were normalized to β-actin.  The fold difference in gene 
expression for sensory and motor-derived SCs grown with and without GDNF was 
compared to day 0.  Error bars represent the standard deviation (n=3).  ** the dotted 
line at 2 is the threshold value for upregulation.  The dotted line at 1 represents 
similar expression to day 0.  * denotes p < 0.05 vs.  50 ng/mL at the same time 
point, # denotes  p < 0.05 vs.  0 ng/mL at the same time point. 
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Figure 4.4. NGF in the SC media promotes increased expression of sensory 
markers in sensory-derived SCs.  The expression patterns of BDNF and MBP 
(sensory markers) (A) and VEGF and PRKCi (motor markers) (B) was monitored 
over 7 days after addition of NGF to the cell culture.  The fold difference of gene 
expression for SCs grown with and without NGF was compared to day 0 (passaged 
SCs).  qRT-PCR was used to determine the gene expression of each marker and the  
values were normalized to β-actin.  The mRNA fold difference was compared to the 
day 0.  Error bars represent the standard deviation (n=3).  The dotted line at 2 is the 
threshold value for upregulation.  The dotted line at 1 represents similar expression 
to day 0.  * denotes p < 0.05 vs.  50 ng/mL of GF at the same time point.  # 
denotes  p < 0.05 vs.  0 ng/mL of GF at the same time point. 
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Figure 4.5. GDNF increased the expression of sensory markers in sensory-
derived SCs and motor markers in motor-derived SCs.  The expression patterns 
of BDNF and MBP (sensory markers) (A) and VEGF and PRKCi (motor markers) 
(B) was monitored over 7 days after addition of GDNF to the cell culture.  The fold 
difference of gene expression for SCs grown with and without GDNF was 
compared to day 0 (passaged SCs).  qRT-PCR was used to determine the gene 
expression of each marker and the  values were normalized to β-actin.  The mRNA 
fold difference was compared to the day 0.  Error bars represent the standard 
deviation (n=3).  The dotted line at 2 is the threshold value for upregulation.  The 
dotted line at 1 represents similar expression to day 0.  * denotes p < 0.05 vs.  50 
ng/mL of GF at the same time point.  # denotes  p < 0.05 vs.  0 ng/mL of GF at 
the same time point. 
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4.4.3 Proliferation of SCs in Response to Ach 

Ach may also have an effect on SC differentiation, particularly for motor-derived 

SCs. Ach was added to SC culture media for 7 days and then a proliferation assay was 

performed to determine the effect on SC proliferation.  The number of cells present after 7 

days in the group treated with 0.1 mg/mL of Ach was lower than the groups treated with no 

Ach or with 0.01 mg/mL Ach.  The number of SCs present in the 0 mg/mL  and the 0.01 

mg/mL groups after 7 days was approximately 3 to 3.5 times greater than the number of 

cells seeded at Day 0. The group treated with 0.1 mg/mL Ach only had about 2 times more 

cells (Figure 4.6).  Because the SCs in the 0.1 mg/mL Ach group exhibited less proliferation 

than the 0 mg/mL and 0.01 mg/mL suggests that the Ach may be either affecting the 

proliferation of the SCs or promoting differentiation of the SCs.  

Figure 4.6. Addition of Ach to motor-derived SCs affects the proliferation of 
the SCs over 7 days.  The proliferation of motor-derived SCs was monitored over 7 
days.  The SCs were supplemented with 0.01, 0.1, and 1 mg/mL of Ach.  Error bars 
represent standard deviation (n=6).  Dotted line represents initial cell number of 
20,000 cells on day 0.  * denotes p < 0.05 compared to the 0 mg/mL group, # 
denoted p < 0.05 compared to the 0.01 mg/mL group.  
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4.4.4 Differentiation of SCs in response to Ach 

 The trend present in the proliferation assay results suggested that the addition of Ach 

to the cultures at certain concentrations may promote SC differentiation, which may result in 

increased motor SC marker expression.  The expression levels of S100 and nestin were 

evaluated using qRT-PCR at 3 and 7 days.  The addition of Ach to motor-derived SCs 

promoted a biphasic response in the expression of S100 and nestin.  The high (1.0 mg/mL) 

and low (0.01 mg/mL) doses of Ach resulted in lower expression of S100 compared to the 

0.1 mg/mL dose (Figure 4.7).  This biphasic response was also observed in the expression 

levels of motor markers.  The addition of 0.1 mg/mL of Ach to motor-derived SCs 

promoted increased expression of motor SC markers (VEGF and PRKCi) compared to the 

other 2 doses of Ach at days 3 and 7 (Figure 4.8B). The expression patterns of sensory SC 

markers (BDNF and MBP) were similar to the expression level of SCs at day 0 (Figure 

4.8A), suggesting that Ach did not promote expression of sensory markers in motor-derived 

SCs.  The increased expression of differentiation and motor SC markers suggests that Ach 

may be playing a role in reinforcing and promoting the mature motor SC phenotype in vitro.  

To ensure that the observed effects were indeed due to the interaction of Ach with its 

receptors on the SCs, the Ach receptors were blocked with gallamine, a nicotinic and 

muscarinic receptor blocker, and the expression levels of motor SC markers were 

determined.  Inhibition of Ach receptors with gallamine blocked the expression of motor SC 

markers in motor-derived SCs exposed to Ach even at 7 days (Figure 4.9).  The combination 

of these results suggests that addition of Ach to motor-derived SCs promotes differentiation 

of SCs into a mature phenotype expressing motor SC markers.     



 84 

0

1

2

3

4

5

6

Day 3 Day 7 Day 3 Day 7

m
R

N
A

 fo
ld

 d
if

fe
re

n
c
e
 c

o
m

p
a
re

d
 t
o

 S
C

s 
  
  
  

  
  
  

p
a
ss

a
g

e
d

 a
t 

D
a
y
 0

0.01 mg/mL 0.1 mg/mL 1.0 mg/mL

S100 Nestin

*, #
*, #

Figure 4.7. Addition of Ach to the media promotes increased expression of 
S100 and decreased expression of nestin.  The expression of S100 and nestin 
was monitored over 7 days.  qRT-PCR was used to determine the gene expression 
of each marker and the  values were normalized to β-actin.  The fold difference in 
gene expression for the motor -derived SCs grown with and without at different 
doses of Ach was compared to day 0.  Error bars represent the standard deviation 
(n=3).  ** the dotted line at 2 is the threshold value for upregulation.  The dotted 
line at 1 represents similar expression to day 0.  * denotes p < 0.05 vs.  0.01 
mg/mL at the same time point, # denotes  p < 0.05 vs.  1.0 mg/mL at the same 
time point. 
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Figure 4.8. Ach in media promotes increased expression of motor markers in 
motor-derived SCs.  The expression patterns of BDNF and MBP (sensory 
markers) (A) and VEGF and PRKCi (motor markers) (B) was monitored over 7 
days.  The fold difference of gene expression for SCs grown with and without Ach 
was compared to day 0.  qRT-PCR was used to determine the gene expression of 
each marker and the  values were normalized to β-actin.  The mRNA fold 
difference was compared to the day 0.  Error bars represent the standard deviation 
(n=3).  The dotted line at 2 is the threshold value for upregulation.  The dotted line 
at 1 represents similar expression to day 0.  * denotes p < 0.05 vs.  0.01 mg/mL at 
the same time point, # denotes p < 0.05 vs.  1.0 mg/mL at the same time point. 
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4.5 Discussion 

 Understanding the environmental cues that affect the differentiation of immature 

SCs that have been expanded in culture into mature SCs is important in the designing SC-

based therapies for peripheral nerve injury.  Cues that may decrease SCs proliferation and 

promote differentiation include GFs or neurotransmitters.  GFs, such as NGF and GDNF, 

are known to promote the regeneration of the axons, as well promote the migration and 

differentiation of SCs in vivo.  Additionally, motor-derived SCs in an uninjured motor nerve 

are exposed to neurotransmitters, such as Ach, at the NMJ, which may help reinforce the 

Figure 4.9. Blocking of Ach receptors on SC surface prevents expression of motor 
markers in motor-derived SCs.  The Ach receptors were blocked with 10 mM 
gallamine, different doses of Ach were added to the cell culture media, and the 
expression pattern of VEGF and PRKCi was evaluated over 7 days.  The fold difference 
of gene expression for SCs grown with and without Ach was compared to day 0.  qRT-
PCR was used to determine the gene expression of each marker and the  values were 
normalized to β-actin.  The mRNA fold difference was compared to the day 0.  Error 
bars represent the standard deviation (n=3).  The dotted line at 2 is the threshold value 
for upregulation.  The dotted line at 1 represents similar expression to day 0.   
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motor SC phenotype especially during nerve regeneration.  Therefore, this study was 

designed to evaluate the effects of NGF, GDNF, and Ach on the proliferation of SCs and 

the expression patterns of the differentiation markers (S100 – mature, nestin – 

undifferentiated) and phenotypic markers (sensory SC – BDNF & MBP and motor SC – 

VEGF & PRKCi).   

 To transplant a sufficient number of SCs, the SCs must first be expanded in vitro.  

However, the long term expansion of SCs in culture promotes their de-differentiation and 

dysregulation of phenotypic marker expression patterns(Jesuraj, Nguyen et al. 2012).  

Although it has been shown that transplanting immature cultured SCs at the injury site is 

beneficial and promotes regeneration similar to the isograft (Jesuraj, unpublished data), this 

approach needs to be supplemented with additional cues to obtain better regeneration and 

functional recovery.  More importantly, SCs may provide the trophic support necessary to 

guide regenerating motor or sensory axons to their correct target end organs.  Without 

signaling from the environment, the SCs de-differentiate into an immature state in vitro, 

similar to the state after nerve injury. Thus it is very important to assess different 

environmental cues that signal the immature cultured motor or sensory-derived SCs to 

differentiate into their appropriate native phenotype.   

Previously, it has been shown that there is a link between the de-differentiation and 

proliferation of SCs (Guertin, Zhang et al. 2005).  However, recent studies have revealed that 

SC de-differentiation is independent of mitogenic signaling and also uncoupled to 

proliferation (Monje, Soto et al. 2010).  De-differentiated SCs do not proliferate unless 

treated with mitogenic supplements, whereas differentiated post-mitotic SCs do not respond 

to mitogenic supplements (Salzer, Williams et al. 1980; Morgan, Jessen et al. 1991; Monje, 

Soto et al. 2010).  Therefore, it has been hypothesized that the addition of NGF, GDNF, 
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and Ach to the media will not promote SC proliferation, but rather will promote the 

differentiation of SCs towards a mature phenotype that expresses sensory or motor markers.  

When sensory and motor-derived SCs were treated with different doses of NGF and 

GDNF, cell proliferation was decreased over 7 days, which indicates that the SCs may be 

differentiating into a mature phenotype.  The addition of Ach to motor-derived SCs did not 

reduce the proliferation, but did show a trend of lower number of cells compared to the no 

supplement group after 7 days.  This trend suggests that the Ach may have an effect on 

motor-derived SC differentiation.  Evaluating the gene expression levels of differentiation 

and phenotypic markers further validated the effects of GFs and Ach on SC proliferation.  

The different downstream signaling pathways of NGF, GDNF and Ach may provide an 

explanation as to why these factors have different effects on the SCs.   

Similar to sensory axons, SCs also express the p75NTR NGF receptor (Hirata, 

Hibasami et al. 2001; Tomita, Kubo et al. 2007), which when stimulated regulates migration, 

apoptosis and SC differentiation through multiple signaling pathways (Bentley and Lee 2000; 

Segal 2003; Nicol and Vasko 2007).  In this study, the addition of NGF to the media slowed 

the proliferation of SCs, suggesting that the NGF either activated apoptotic pathways 

allowing only some cells to proliferate, or it promoted differentiation.  Gene expression 

analysis showed that NGF addition to the media promoted differentiation into mature SCs, 

as demonstrated by the increase in S100 expression in both sensory and motor-derived SCs.  

Interestingly, NGF only promoted increased sensory marker expression in sensory-derived 

SCs, which reinforces the concept that NGF is primarily a sensory nerve supporting GF and 

therefore only affects phenotypic marker expression in sensory-derived SCs.    

Similarly, addition of GDNF to the culture media promoted the differentiation of 

both sensory and motor-derived SCs, as seen by increased expression of S100 and decreased 
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expression of nestin.  GDNF also increased the expression of phenotype-specific marker in 

both types of SCs: GDNF stimulated increased expression of sensory markers in sensory-

derived SCs and motor markers in motor-derived SCs.  Exogenous GDNF has been shown 

to promote SC proliferation and myelination of normally unmyelinated small axons (Hoke, 

Ho et al. 2003).  Mechanistically, GDNF has been shown to activate pathways in SCs, 

through the GFRα-1 surface receptor (Naveilhan, ElShamy et al. 1997), implicated in cell 

migration, proliferation, differentiation and GF production (Morgan, Jessen et al. 1991; 

Lang, Gesbert et al. 1996; Kim, DeClue et al. 1997; Klemke, Cai et al. 1997; Grimm, 

Holinski-Feder et al. 1998; Verity, Wyatt et al. 1998; Meintanis, Thomaidou et al. 2001; 

Ellerbroek, Wennerberg et al. 2003; Kinameri and Matsuoka 2003; Iwase, Jung et al. 2005).  

In this study, the addition of GDNF to the media slowed the proliferation of the SCs and 

promoted the expression of differentiation markers.  The decrease in the proliferation of 

SCs suggests that exposure to GDNF promoted differentiation and a post-mitotic state 

(Mirsky and Jessen 1996).  The combined results of stimulation of stimulating the p75NTR 

with NGF and GFRα-1 with GDNF demonstrate that with correct cues SC memory of 

phenotype can be restored in vitro. 

SCs have also been shown to express cell surface receptors for Ach, which is present 

in the extracellular milieu of motor nerves.  SCs express muscarinic receptors M1 through 

M4 for Ach, with M2 expressed at the highest level (Loreti, Vilaro et al. 2006).  Previous 

work has established that Ach does not affect the viability of SCs (Salzer and Bunge 1980).  

In a recent in vivo study, it was shown that blocking of Ach receptors on SCs prevented the 

regeneration of motor axons into the distal nerve stump, suggesting that interaction of Ach 

with its receptor is necessary for motor nerve regeneration (Vrbova, Mehra et al. 2009).  

Therefore, in the present study, it was hypothesized that stimulation of Ach receptors would 
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promote the expression of motor markers in motor-derived SCs.  Addition of Ach at 

different doses increased the expression levels of the differentiation marker S100 and motor 

SC markers in a biphasic manner.  This biphasic response may be explained by the different 

types of muscarinic receptors on the SC surface and their role in modulating intracellular 

signaling and due to elevation in cyclic adenosine monophosphate levels, which may lead to 

SC differentiation (Felder 1995; Meintanis, Thomaidou et al. 2001; Monje, Soto et al. 2010).  

Furthermore, blocking Ach receptors on motor-derived SCs with gallamine did not promote 

the expression of the motor markers in the SCs, which once again reinforces the idea that 

interaction of Ach with SC muscarinic receptors is necessary for motor marker expression.   

 Although NGF, GDNF, and Ach have been shown to have positive effects on SCs 

in this study, further work needs to be done to incorporate SCs and these cues into 

therapeutic devices or grafts.  Using a combinatorial strategy, NGF and GDNF can be 

incorporated into a delivery system within a scaffold such as fibrin (Sakiyama-Elbert and 

Hubbell 2000; Sakiyama-Elbert and Hubbell 2000), in which SCs could be transplanted at 

the injury site as well as be exposed to GFs to promote differentiation into specific SC 

phenotypes.  Prior to transplanting SCs with GFs, additional studies need to be done to 

verify that the SCs still differentiate into a sensory or motor phenotype while exposed to 

NGF or GDNF within a scaffold.   

Although Ach does stimulate the differentiation and the expression of motor SC 

markers in motor-derived SCs, using Ach to treat peripheral nerve injuries is not a clinically 

viable option.  Ach is a neurotransmitter that is known to not only excite neurons, but it can 

also act as an inhibitory molecule and slow the heart rate.  If Ach were released into the 

bloodstream during regeneration, it may be detrimental to cardiac function (DiFrancesco, 
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Ducouret et al. 1989).  Therefore an alternative method to stimulate the Ach receptors could 

be explored.  

Understanding how SC gene expression changes during de-differentiation and 

following transplantation could enable motor or sensory specific nerve regeneration using 

acellular nerve grafts seeded with phenotype specific SCs.  In this study, we showed that 

NGF, GDNF, and Ach can be used to stimulate receptors on sensory and motor-derived 

SCs to promote differentiation into sensory or motor marker expressing SCs in vitro.  Using 

this data along with previously established delivery systems, these cues can be incorporated 

into designing combinatorial therapies with SCs. Therefore, designing therapies and 

molecules to activate the myelination program in response to surface receptor stimulation in 

SCs will contribute to faster myelination of the regenerating axons, and thus promote faster 

and more robust regeneration of the peripheral nerves.  
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Chapter 5 

 

Summary and Future Directions 
 

 

5.1 Summary of Findings 

 This thesis work demonstrated that GFs and Ach present in the SC environment 

may contribute to the differentiation and phenotype-specific marker expression of SC.  

Demonstrated through three studies, the main goals of the studies were (1) to identify 

phenotypic markers of sensory-derived and motor-derived SCs from the rat femoral nerve 

and to monitor their gene expression patterns as SCs were expanded in vitro, (2) to transplant 

the SCs from different nerve sources (rat sciatic nerve, and the motor and sensory nerve 

branches of the rat femoral nerve) into ANGs to determine their effects on expression of 

GFs and phenotypic markers, and (3) to study the effects of GFs and Ach on the expression 

of differentiation and phenotypic markers in vitro.  

 The main goal of the first study was to identify a set of phenotypic markers that can 

be used to study gene expression patterns of sensory-derived and motor-derived SCs as they 

are expanded in culture. RNA was extracted from the sensory and motor branches of the rat 

femoral nerve. Using qRT-PCR and gene chips, phenotypic markers for both sensory and 

motor phenotypes were identified (from gene chip analysis and the literature) and used as 

markers to monitor gene expression patterns of SCs in culture. RNA for SCs was extracted 

at different timepoints, and it was found that gene expression patterns for both sensory and 

motor-derived SCs were dysregulated.  
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Based on the first study, it was hypothesized that due to loss of signaling from the 

environment, SCs de-differentiated and were unable to maintain their original phenotype. 

Therefore, if SCs were placed in the presence of the appropriate environmental cues they 

may differentiate back into their native phenotype. The cues that were evaluated in this 

thesis were ECM, GFs and the neurotransmitter Ach.  In the second study, sensory, motor, 

and sciatic nerve-derived SCs were transplanted into sciatic nerve-derived ANGs, which 

have intact ECM, and then used to treat a 14 mm sciatic nerve defect. After 2 weeks, the 

expression levels of GFs (NGF, GDNF and BDNF) and sensory and motor phenotypic 

markers were evaluated compared to an acellular graft. The groups with sensory or motor-

derived SCs had higher levels of GFs, which are necessary to attract and guide regenerating 

axons across the defect. However, ECM in a mixed nerve ANG did not promote native 

phenotypic marker expression of SCs, which suggests that additional cues may need to be 

included into the graft for further differentiation of SCs into the sensory or motor 

phenotype.   

In the third study, the effects of GFs and Ach on SC differentiation were evaluated. 

Sensory or motor-derived SCs were cultured with different doses of GFs (sensory and 

motor) and Ach (motor only).  Using a proliferation assay, the number of cells present after 

a week culture with GFs was determined. The SCs treated with both NGF and GDNF had 

lower cell numbers after 7 days compared to SCs grown without supplementation, which 

implies that SCs may have been differentiating toward a more mature phenotype and 

reached a post-mitotic state.  qRT-PCR was used to determine the levels of S100 

(differentiated marker) and nestin (undifferentiated marker) after treating SCs with NGF and 

GDNF. Both GFs promoted increased expression of S100 and decreased nestin in a dose-

dependent manner. Further studies also revealed that NGF also further differentiated the 



 94 

sensory-derived SCs by promoting an increase in sensory marker (MBP & BDNF) 

expression.  GDNF promoted the increased expression of sensory markers in sensory-

derived SCs and motor markers (PRKCi & VEGF) in motor-derived SCs.  This part of the 

study suggested that NGF and GDNF may be necessary in the SC environment to promote 

SC differentiation and phenotypic marker expression to myelinate and support the 

regenerating axons.  

The next part of the study studied the effects of Ach on motor-derived SCs. A 

proliferation assay was used to determine the number of cells present after 7 days of 

treatment with Ach. The number of cells present after 7 days in the group treated with 0.1 

mg/mL of Ach was lower than the groups treated with no Ach or with 0.01 mg/mL Ach. 

Using qRT-PCR analysis, it was shown that the Ach promoted increased S100 expression as 

well as increased motor-specific marker expression. The effect of Ach on SCs was further 

validated by blocking Ach receptors on the SC surface with gallamine, which inhibited the 

expression of motor markers in SCs treated with Ach. These results suggest that the Ach 

may be necessary in the SC environment to promote the differentiation of the motor-derived 

SCs into mature motor marker expressing SCs. Overall this study focused on evaluating 

different aspects of the SC environment in vivo that may contribute to the SC differentiation 

and phenotypic maintenance. The results from this thesis stress the importance of 

considering other molecules and factors that are important in designing transplantation 

therapies.  

 

5.2 Recommendation for Future Directions 

 This thesis work focused on evaluating environmental cues (ECM, GFs and Ach) 

that affect the differentiation of SCs.  However, the factors contributing to SC 
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differentiation are not limited to the molecules evaluated in this thesis. In the second study, 

it was shown that the inclusion of phenotype-specific SCs into ANGs promoted GF 

expression, but did not promote differentiation of the cells into their native phenotypes.  

This result implies that other factors and cues need to be included along with the SCs in 

ANGs. Therefore further studies need to be done to build a microenvironment for SCs to 

design efficient therapies to treat peripheral nerve injury.  Furthermore, to prevent the 

sacrifice of a donor nerve for SC transplantation therapies, alternative sources of SCs need 

to be explored.  In addition, the source of the donor ANGs may also affect the 

differentiation and expression patterns of phenotypic markers of the SCs as the axons 

regenerate.  

 

5.2.1 Building a Microenvironment for SC Transplantation Strategies 
 
 To transplant a sufficient number of cells at the injury site, the SCs must first be 

expanded in vitro.  As SCs are expanded in vitro, they undergo various treatments to rid the 

culture of fibroblasts, which prevent the growth of SCs by overtaking the culture dish. 

Throughout expansion, the culture is constantly purified to obtain a homogeneous culture of 

SCs. However, the loss of signaling from axons and the environment de-differentiates SCs 

into an immature proliferative state.  Thus it is important to understand what other cues 

from the environment besides proteins and small molecule studied in this thesis affect the 

behavior and differentiation of SCs. Other cues that must be explored include other cells 

present in the regenerating environment, such as fibroblasts, present with SCs in uninjured 

nerve as well as expansion cultures in two-dimensions (2-D) versus three-dimensions (3-D).  

 Recent studies have shown that fibroblasts play a key role in promoting axonal 

regrowth after peripheral nerve injury. The ephrin-B/EphB2 signaling between fibroblasts 
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and SCs may direct the migration of SCs from the distal nerve stump to form bands of 

Bungner to guide axonal regeneration.  In addition to promoting the clustering of SCs at the 

injury site, fibroblasts may have an effect on the differentiation of SCs as axons regenerate 

(Parrinello, Napoli et al. 2010). Further studies should be done to understand the signaling 

between the two cells types (SCs and fibroblasts) to determine if fibroblasts have positive 

effects on SC differentiation into a mature phenotype. If SCs differentiate in response to 

signaling from fibroblasts, fibroblasts may be a positive addition to cell transplantation 

therapies for nerve regeneration.  

Alternatively, SCs cultured in a 3-D scaffold may have an effect on the 

differentiation of SCs. The SCs used in this thesis were cultured on poly-L-Lysine (pLL) 

coated petri dishes, which is a 2-D surface. The expansion of SCs on pLL dishes does not 

mimic actual cell-cell signaling between SCs in vivo, which is a 3-D environment. After 

expansion in culture, differentiation of SCs in a 3-D environment could be studied by 

culturing cells in scaffolds, such as collagen (Chamberlain, Yannas et al. 1998; Labrador, Buti 

et al. 1998) or fibrin (Lee, Yu et al. 2003; Galla, Vedecnik et al. 2004; Marcol, Kotulska et al. 

2005).  Additionally, these scaffolds can be modified to attach cues (GFs and small 

molecules) (Sakiyama-Elbert and Hubbell 2000; Sakiyama-Elbert and Hubbell 2000) to 

further mimic the in vivo environment. Therefore, a modified scaffold with GFs, small 

molecules, and SCs could serve as a platform to deliver necessary cues and cells to promote 

better nerve regeneration.  

 

5.2.2 Alternative Sources of SCs for Transplantation 
 
 The transplantation of SCs at the injury site has been shown to promote nerve 

regeneration. However, the source of SCs for transplantation needs to be explored further. 
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Current methods require the sacrifice of a healthy nerve for either autologous SC 

transplantation or immune-suppression for allogenic (cadaveric typically) SC transplantation.  

Although transplantation of autologous SCs promoted healthy nerve regeneration, the 

sacrifice of a healthy nerve from the patient leaves the donor site in a morbid condition. 

Therefore less invasive methods to obtain cells for transplantation need to be identified.  

Recent work in the area has shown the transplantation of postnatal skin-derived 

precursor SCs (SKP SCs) promotes peripheral nerve regeneration in a rat tibial nerve model 

(Walsh, Gordon et al. 2010).  SKPs are cells derived from the dorsal torso skin and exhibit 

properties similar to neural crest stem cells (NCSCs). NCSCs arise from the ectoderm during 

development and differentiate into multiple lineages including peripheral neurons and glia.  

SKPs are thought to arise during embryogenesis and persist in the dermis layer of the skin 

through adulthood.  SKPs can be harvested from the patient without invasive surgery, and 

be expanded in culture as proliferating self-renewing spheres (Toma 2001).  The cells can be 

further differentiated into cells expressing SC phenotypic markers (S100, GFAP, and p75) 

(Toma 2001; Biernaskie, McKenzie et al. 2006) and be used in for transplantation therapies 

to promote nerve regeneration (McKenzie, Biernaskie et al. 2006).  Although it has been 

shown that SKP SCs can promote regeneration, these transplanted SKP SCs were derived 

from postnatal rats and transplanted into adult rats (Walsh, Biernaskie et al. 2009). To be 

clinically relevant, further studies need to be conducted to demonstrate the therapeutic 

capability of SKP SCs derived from adult sources.  In addition, studies showing the types of 

axons that regenerate, as well as a more detailed assessment of the differentiation of SKP 

SCs will help in designing less invasive cell transplantation therapies.  
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5.2.3 Alternative Sources of ANGs 
 
 Currently, ANGs derived from any available source are used to treat nerve defects in 

peripheral nerve injuries.  However, the nerve source may play a role in the differentiation 

and expression patterns of the SCs.  In the second study, ANGs derived from the rat sciatic 

nerve were used as the donor nerves to repair a 14 mm sciatic nerve injury.  These ANGs 

were then transplanted with SCs derived from both motor and sensory nerves, as well as the 

sciatic nerve.  The ANGs supplemented with sciatic-derived SCs tended to have similar 

expression patterns to the isograft, which is also sciatic-nerve derived.  This result suggests 

that the intact ECM present within the ANG was sufficient for similar expression patterns 

to the SCs present within the isograft.  But the sciatic-nerve derived ANGs failed to provide 

the necessary cues to differentiate the motor or sensory-derived SCs within the ANGs into 

their native phenotype.  These results combined imply that the intact ECM present within 

nerve sources may affect the differentiation and phenotypic marker expression of the 

transplanted SCs.   Therefore, it would be beneficial to study the effects of ANG nerve 

source on the phenotypic marker expression on immature cultured motor or sensory-derived 

SCs.  

 

5.3 Concluding Remarks 
 
 The overall intention of this thesis was to study different environmental cues that 

affect the differentiation and phenotype of SCs.  Because SCs are necessary for successful 

peripheral nerve regeneration, understanding which cues affect SC gene expression patterns 

and behaviors will aide in designing better and more efficient transplantation therapies. This 

may not only promote axon regeneration, but also promote motor or sensory specific axonal 

regrowth as well.  
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Appendix 

Table A.2.1: Genes that are upregulated in the motor branch of the femoral  
nerve versus sensory branch.  M – average signal intensity in motor nerve group, S –  
average signal intensity in sensory nerve group (n = 3)  
 

Gene Name 
Gene common 

name 
Accession 
Number 

M/S 
std 

dev/average 

amphiphysin 1 Amph1 NM_022217 2.05 0.277 

ankyrin repeat domain 6 Ankrd6 BF391635 3.62 0.108 

asporin Aspn AI639412 2.38 0.023 

calsequestrin 2 Casq2 NM_017131 2.19 0.101 

cellular retinoic acid 
binding protein 2 

Crabp2 U23407 4.19 0.174 

cystathionase (cystathionine 
gamma-lyase) 

Cth NM_017074 2.22 0.294 

endothelial cell-specific 
molecule 1 

Esm1 NM_022604 2.81 0.013 

family with sequence 
similarity 82, member A 

Fam82a AW528443 2.16 0.050 

four and a half LIM 
domains 1 

Fhl1 BI298356 2.52 0.227 

four and a half LIM 
domains 2 

Fhl2 NM_031677 2.10 0.124 

forkhead-like 18 
(Drosophila) 

Fkhl18 AI008883 2.31 0.052 

fucosidase, alpha-L- 2, 
plasma 

Fuca2 BM389993 2.04 0.108 

glutathione peroxidase 2 Gpx2 AA800587 3.84 0.015 

hypothetical protein 
LOC307347 

LOC307347 AA817959 2.37 0.089 

hypothetical protein 
LOC691750 

LOC691750 AI711537 2.08 0.224 

Meis1, myeloid ecotropic 
viral integration site 1 
homolog 2 (predicted) 

Meis2_predicted BF405277 2.27 0.308 

neurofilament, light 
polypeptide 

Nefl NM_031783 3.46 0.018 
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NADPH oxidase 4 Nox4 NM_053524 2.23 0.101 

odd Oz/ten-m homolog 2 
(Drosophila) 

Odz2 BF418058 2.06 0.189 

pre-B-cell leukemia 
transcription factor 1 

(predicted) 
Pbx1_predicted BF419639 2.31 0.042 

pterin 4 alpha 
carbinolamine 

dehydratase/dimerization 
cofactor of hepatocyte 
nuclear factor 1 alpha 

Pcbd1 BF281220 2.36 0.099 

procollagen lysine, 2-
oxoglutarate 5-dioxygenase 

2 
Plod2 BI279641 2.09 0.082 

peripheral myelin protein 2 Pmp2 AW533483 5.62 0.185 

prostaglandin D2 synthase Ptgds J04488 2.33 0.099 

parathyroid hormone-like 
peptide 

Pthlh NM_012636 2.08 0.111 

similar to 3632451O06Rik 
protein (predicted) 

RGD1310110_p
redicted 

AI501165 2.11 0.096 

similar to Gpc6 protein 
(predicted) 

RGD1563063_p
redicted 

BF409344 2.18 0.189 

similar to hedgehog-
interacting protein 

(predicted) 

RGD1564108_p
redicted 

AI709766 2.08 0.258 

similar to Synaptopodin-2 
(Myopodin) (predicted) 

RGD1564779_p
redicted 

AI547837 2.17 0.094 

similar to RIKEN cDNA 
D330045A20 (predicted) 

RGD1566282_p
redicted 

BE112948 2.28 0.196 

similar to RIKEN cDNA 
D330045A20 (predicted) 

RGD1566282_p
redicted 

AW142796 2.82 0.116 

ring finger protein 139 
(predicted) 

Rnf139_predicte
d 

BE121079 2.01 0.046 

sulfotransferase family 1D, 
member 1 

Sult1d1 NM_021769 2.15 0.047 

tissue factor pathway 
inhibitor 2 

Tfpi2 AI179507 2.63 0.241 

transmembrane protein 
132E 

Tmem132e AW527684 2.19 0.057 

troponin T2, cardiac Tnnt2 NM_012676 2.88 0.072 

tubulin, beta 2b Tubb2b X03369 2.03 0.170 
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ubiquitin carboxy-terminal 
hydrolase L1 

Uchl1 NM_017237 2.26 0.016 
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Table A.2.2: Genes that are upregulated in the sensory branch of the femoral  
nerve versus motor branch.  M – average signal intensity in motor nerve group, S –  
average signal intensity in sensory nerve group (n = 3)  
 

Gene Name 
Gene common 

name 
Accession 
Number 

S/M 
std 

dev/average 

adiponectin, C1Q and 
collagen domain 

containing 
Adipoq BM386227 26.19 0.262 

adrenomedullin 
receptor 

Admr BF551274 12.08 0.121 

aldolase C Aldoc NM_012497 25.63 0.256 

ankyrin 3 Ank3 AJ428573 1.70 0.017 

ankyrin 3 Ank3 BF398752 24.24 0.242 

ankyrin 3 Ank3 BF392810 7.90 0.079 

ankyrin 3 Ank3 BF393943 16.83 0.168 

axin2 Axin2 NM_024355 12.36 0.124 

complement 
component 4 binding 

protein, alpha 
C4bpa NM_012516 20.64 0.206 

carbonic anhydrase 3 Ca3 AB030829 2.01 0.020 

carbonic anhydrase 3 Ca3 NM_019292 22.43 0.224 

carbonic anhydrase 3 Ca3 AW144120 22.19 0.222 

coiled-coil domain 
containing 37 

(predicted) 
Ccdc37_predicted BE121191 27.23 0.272 

cadherin 2 Cdh2 NM_031333 4.83 0.048 

cysteine dioxygenase 
1, cytosolic 

Cdo1 NM_052809 27.61 0.276 

complement factor D 
(adipsin) 

Cfd AI237358 32.18 0.322 

chromodomain 
helicase DNA binding 
protein 7 (predicted) 

Chd7_predicted AI599104 18.06 0.181 

chondrolectin 
(predicted) 

Chodl_predicted AI029745 16.51 0.165 
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procollagen, type XI, 
alpha 1 

Col11a1 AI136248 0.38 0.004 

chemokine (C-X-C 
motif) ligand 14 

Cxcl14 BG380414 20.92 0.209 

deoxyguanosine kinase 
(predicted) 

Dguok_predicted AI599463 1.77 0.018 

endothelin converting 
enzyme 1 

Ece1 BE107816 7.47 0.075 

endonuclease G Endog AW253957 3.57 0.036 

coagulation factor II 
(thrombin) receptor-

like 2 
F2rl2 BG671473 12.77 0.128 

coagulation factor V F5 AI717113 4.57 0.046 

fidgetin (predicted) Fign_predicted BE098265 5.83 0.058 

FXYD domain-
containing ion 

transport regulator 7 
Fxyd7 NM_022008 5.05 0.051 

G0/G1 switch gene 2 G0s2 AI406939 0.33 0.003 

glycerol-3-phosphate 
dehydrogenase 1 

(soluble) 
Gpd1 BF399697 12.56 0.126 

glycerol-3-phosphate 
dehydrogenase 1 

(soluble) 
Gpd1 BI277042 31.56 0.316 

glycoprotein m6b Gpm6b BE096035 22.80 0.228 

G protein-coupled 
receptor 37-like 1 

Gpr37l1 AF087947 10.80 0.108 

G protein-coupled 
receptor 56 

Gpr56 AI412938 13.48 0.135 

glutamate receptor, 
ionotropic, kainate 2 

Grik2 NM_019309 7.86 0.079 

immunoglobulin 
superfamily, member 

11 
Igsf11 BI298836 11.29 0.113 

immunoglobulin 
superfamily, member 

4A 
 

Igsf4a BE117767 32.35 0.323 

potassium voltage gated 
channel, Shal-related 

family, member 3 
Kcnd3 NM_031739 33.99 0.340 
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L1 cell adhesion 
molecule 

L1cam NM_017345 8.22 0.082 

leucine-rich repeat 
LGI family, member 4 

Lgi4 AI058424 16.90 0.169 

lipase, hormone 
sensitive 

Lipe NM_012859 5.24 0.052 

common salivary 
protein 1 

LOC171161 NM_133622 11.09 0.111 

 
LOC360570 BF281984 21.97 0.220 

adenosine 
monophosphate 

deaminase 2 (isoform 
L) 

LOC362015 BE100752 22.02 0.220 

zinc finger protein 467 LOC500110 BF417765 6.54 0.065 

cell death-inducing 
DFFA-like effector c 

LOC500292 AA818135 11.31 0.113 

leucine rich repeat 
containing 4B 

(predicted) 
Lrrc4b_predicted BF546934 12.23 0.122 

microtubule-associated 
protein tau 

Mapt BE107978 33.45 0.334 

myelin basic protein Mbp BE109730 15.88 0.159 

neural cell adhesion 
molecule 1 

Ncam1 AW529710 28.28 0.283 

neural cell adhesion 
molecule 1 

Ncam1 AI409738 17.29 0.173 

neuroligin 1 Nlgn1 BF400127 33.74 0.337 

neuroligin 3 Nlgn3 NM_134336 30.03 0.300 

nuclear receptor 
subfamily 4, group A, 

member 2 
Nr4a2 U72345 22.56 0.226 

neurotrophic tyrosine 
kinase, receptor, type 2 

Ntrk2 BE102996 29.16 0.292 

neurotrophic tyrosine 
kinase, receptor, type 2 

Ntrk2 BG669126 25.83 0.258 

nucleotide binding 
protein 2 

Nubp2 BF397271 3.72 0.037 

purinergic receptor 
P2X, ligand-gated ion 

channel, 7 
P2rx7 AI385229 10.28 0.103 
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protocadherin 17 
(predicted) 

Pcdh17_predicted BF558981 11.60 0.116 

platelet derived growth 
factor receptor, beta 

polypeptide 
Pdgfrb AI071374 28.58 0.286 

platelet derived growth 
factor receptor, beta 

polypeptide 
Pdgfrb AI071374 3.51 0.035 

perilipin Plin NM_013094 27.99 0.280 

plasmalemma vesicle 
associated protein 

Plvap NM_020086 5.31 0.053 

protein kinase, cAMP 
dependent regulatory, 

type II beta 
Prkar2b M12492 15.04 0.150 

protein tyrosine 
phosphatase, non-

receptor type 3 
Ptpn3 BF403190 24.41 0.244 

sterol regulatory 
element binding factor 

1 
Rai1_predicted AF286470 13.15 0.131 

RAS, dexamethasone-
induced 1 

Rasd1 AF239157 3.45 0.035 

Ras association 
(RalGDS/AF-6) 
domain family 4 

Rassf4 AI227769 25.84 0.258 

similar to hypothetical 
protein FLJ31846 

(predicted) 
RGD1306118_predicted AI231461 32.63 0.326 

similar to Protein 
C22orf5 

RGD1306591 AI577870 8.80 0.088 

similar to AT motif-
binding factor 

(predicted) 
RGD1560268_predicted BF396082 0.96 0.010 

similar to homeotic 
protein Hox 2.2 - 
mouse (predicted) 

RGD1562142_predicted BF396436 11.80 0.118 

similar to RIKEN 
cDNA 6330512M04 

gene (predicted) 
RGD1563319_predicted BI303199 8.75 0.088 

similar to C-type 
lectin-like receptor 2 

(predicted) 
 

RGD1563517_predicted AI029991 11.25 0.113 

similar to Serologically 
defined colon cancer 
antigen 13 (predicted) 

RGD1564816_ 
predicted 

BF416289 15.95 0.159 
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ryanodine receptor 3 Ryr3 AI072862 14.81 0.148 

S100 calcium binding 
protein A9 

(calgranulin B) 
S100a9 NM_053587 13.67 0.137 

secretory carrier 
membrane protein 1 

Scamp1 AI013502 9.66 0.097 

secretory carrier 
membrane protein 1 

Scamp1 AW524864 14.76 0.148 

scavenger receptor 
class B, member 1 

Scarb1 NM_031541 7.08 0.071 

septin 5 Sep5 NM_053931 32.47 0.325 

sterol regulatory 
element binding factor 

1 
Srebf1 BF398848 4.76 0.048 

sperm specific antigen 
2 (predicted) 

Ssfa2_predicted BF400722 32.57 0.326 

stefin A2 (predicted) Stfa2_predicted BF415134 25.09 0.251 

thyroid hormone 
responsive protein 

Thrsp NM_012703 3.70 0.037 

thyroid hormone 
responsive protein 

Thrsp AI169092 6.19 0.062 

thyroid hormone 
responsive protein 

Thrsp NM_012703 16.67 0.167 

tweety homolog 1 
(Drosophila) 
(predicted) 

Ttyh1_predicted BM387179 23.67 0.237 

tumor suppressor 
candidate 5 

Tusc5 BM386662 30.28 0.303 
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