
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

5-24-2012

Improved Designs for Application Virtualization Improved Designs for Application Virtualization

Chung-Ping Hung
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Hung, Chung-Ping, "Improved Designs for Application Virtualization" (2012). All Theses and Dissertations
(ETDs). 698.
https://openscholarship.wustl.edu/etd/698

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/698?utm_source=openscholarship.wustl.edu%2Fetd%2F698&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical and Systems Engineering

Dissertation Examination Committee:
Paul S. Min, Chair
Roger Chamberlain

Arye Nehorai
Joseph O’Sullivan
Ammar Rayes

Jung-Tsung Shen

Improved Designs for Application Virtualization

by

Chung-Ping Hung

A dissertation presented to the
Graduate School of Arts and Sciences of

Washington University in partial fulfillment of the
requirements of the degree of

DOCTOR OF PHILOSOPHY

May 2012
Saint Louis, Missouri

ABSTRACT OF THE DISSERTATION

Improved Designs for Application Virtualization

by

Chung-Ping Hung

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2012

Research Advisor: Professor Paul S. Min

We propose solutions for application virtualization to mitigate the performance

loss in streaming and browser-based applications. For the application streaming, we

propose a solution which keeps operating system components and application software

at the server and streams them to the client side for execution. This architecture

minimizes the components managed at the clients and improves the platform-level

incompatibility.

The runtime performance of application streaming is significantly reduced when

the required code is not properly available on the client side. To mitigate this issue and

boost the runtime performance, we propose prefetching, i.e., speculatively delivering

code blocks to the clients in advance.

The probability model on which our prefetch method is based may be very large.

To manage such a probability model and the associated hardware resources, we per-

form an information gain analysis. We draw two lower bounds of the information

gain brought by an attribute set required to achieve a prefetch hit rate.

We organize the probability model as a look-up table (LUT). Similar to the mem-

ii

ory hierarchy which is widely used in the computing field, we separate the single

LUT into two-level, hierarchical LUTs. To separate the entries without sorting all

entries, we propose an entropy-based fast LUT separation algorithm which utilizes

the entropy as an indicator.

Since the domain of the attribute can be much larger than the addressable space

of a virtual memory system, we need an efficient way to allocate each LUT’s entry

in a limited memory address space. Instead of using expensive CAM, we use a hash

function to convert the attribute values into addresses. We propose an improved

version of the Pearson hashing to reduce the collision rate with little extra complexity.

Long interactive delays due to network delays are a significant drawback for the

browser-based application virtualization. To address this, we propose a distributed

infrastructure arrangement for browser-based application virtualization which reduces

the average communication distance among servers and clients.

We investigate a hand-off protocol to deal with the user mobility in the browser-

based application virtualization. Analyses and simulations for information-based

prefetching and for mobile applications are provided to quantify the benefits of the

proposed solutions.

iii

Acknowledgments

My deepest gratitude goes to my advisor, Prof. Paul S. Min. Prof. Min is always

open-minded and supportive to every idea I come up with. He not only overlooks my

research progress and provides directions but also helps tremendously to initiate my

career. Beyond research works, Professor Min also generously gives me many advices

on working and living in America. I couldn’t imagine how my years at Washington

University and my future could be without his generous help.

I am also grateful for other five dissertation examination committee members:

Prof. Arye Nehorai, Prof. Joseph O’Sullivan, Prof. Jung-Tsung Shen, Prof. Roger

Chamberlain from CSE department, and Dr. Ammar Rayes from Cisco Systems. All

of them have spent significant time and efforts on reviewing my research and gave me

constructive comments, which help me improve my final thesis. I specially thank Dr.

Rayes, who not only helped me in working with Cisco System during the summer of

2011, from where I learned from the industrial perspective, but also flew all the way

from San Jose, CA to St. Louis to serve as my committee member.

Last but not the least, I would like to thank all of my friends, especially Ho-Chou

Tu, William Tu and Chiao-wen Yang, who help me settle down and get through

iv

homesickness when I first came to study at Washington University.

Finally, I would like offer my most sincere thanks to my family, who is always

supportive and encourages me to pursuit the doctoral degree. My father and mother,

Cheng-Hsing Hung and Mei-Fon Hsu, and my sister, Yu-Ning, always share my hap-

piness and sadness and try everything to help me concentrate on my research.

Thank you all.

Chung-Ping Hung

Washington University in Saint Louis

May 2012

v

Glossary

ASCII American Standard Code for Information Interchange

BS BaseStation

CAM Content-Addressable Memory

CPU Central Processing Unit

ETSI European Telecommunications Standards Institute

I/O Input/Output

ISA Instruction Set Architecture

ISP Internet Service Provider

LSA Local Service Area

LSG Local Service Group

LUT Look-Up Table

IT Information Technology

MS Mobile Station

MVP Mobile Virtualization Platform

vi

NATO North Atlantic Treaty Organization

PDA Personal Digital Assistant

PDF Probability Distribution Function

RAM Random-Access Memory

SDK Software Development Kit

UMTS Universal Mobile Telecommunications System

VDI Virtual Desktop Infrastructure

VM Virtual Memory or Virtual Machine

WAN Wide-Area Network

XOR eXclusive OR

vii

Contents

Abstract ii

Acknowledgments iv

Glossary vi

List of Figures xiii

1 Introduction 1

1.1 Background . 1

1.2 Virtualization . 2

1.3 Main Goal of This Thesis . 5

1.4 Organization . 6

2 Optimization of Application Streaming Virtualization 9

2.1 Related Work . 11

2.2 Proposed Architecture . 13

2.3 Prefetch in the Proposed Application Streaming Architecture 16

2.3.1 Observation . 16

viii

2.3.2 Profiling . 17

2.3.3 Algorithm . 17

2.3.4 Probability Model Management 18

2.4 The Lower Bounds of Information Gain for Prefetch Systems 19

2.4.1 Decision Tree Learning and Prefetch 20

2.4.2 Lower Bounds of Information Gain for Prefetch Systems . . . 22

2.4.2.1 Minimum Hit Rate 22

2.4.2.2 Hit Rate Versus Information Gain 23

2.4.2.3 Minimum Information Gain of Attributes to Achieve

an Expected Hit Rate 24

2.4.2.4 Minimum Information Gain of Attributes Eligible to

Guarantee an Expected Hit Rate 29

2.4.3 Learning from Climbing Profiles 32

2.4.4 Attribute set Compression . 34

2.4.5 Feasibility of the Proposed Prefetch Application 34

2.5 Management of the Probability Model 35

2.5.1 Hierarchical LUT . 35

2.5.1.1 LUT Separation Algorithm 37

2.5.1.2 Comparison . 37

2.5.1.3 Analyzing the Probability Distribution 38

2.5.2 Access LUT without CAM - Improved Pearson Hashing for

Collision Reduction . 48

2.5.2.1 Hashing Basics . 50

ix

2.5.2.2 Algorithm of Pearson Hashing 52

2.5.2.3 Collision Elimination or Reduction in Pearson Hashing 53

2.5.2.4 Improved Pearson Hashing to Reduce Collision . . . 53

2.5.2.5 Properties of the Proposed Hash Algorithm 56

2.5.2.6 Technical Details . 56

2.5.2.7 Experimental Results 57

2.5.2.8 Implications . 60

2.6 Summary . 60

3 Optimization of Browser-Based Application Virtualization 63

3.1 Related Work . 66

3.2 Distributed Application Virtualization Service Configuration 66

3.3 Hand-off Protocol . 68

3.4 Performance Evaluation Using Free Particle Mobility Model 70

3.4.1 Continuous Service Area Approach 72

3.4.1.1 Average Transmission Distance 73

3.4.1.2 Probability of Transactions Relevant to Hand-off . . 75

3.4.1.3 Average Response Time Comparison of the Three Con-

figurations . 81

3.4.1.4 The Actual Rate of Leaving Hand-off State 84

3.4.2 Optimal Arranged Base Stations Approach 85

3.4.2.1 Average Transmission Distance 88

3.4.2.2 Probability of Transactions Relevant to Hand-offs . . 89

x

3.4.2.3 Average Response Time Comparison of the Two Con-

figurations . 91

3.4.3 Simulation Result . 92

3.5 Performance Evaluation Using the UMTS Urban Mobility Model . . . 97

3.5.1 UMTS Urban Mobility Model 98

3.5.2 Möbius City . 100

3.5.3 Configuration of Backhaul Network 103

3.5.4 Traverse Delay . 103

3.5.5 Hand-off Duration . 104

3.5.6 Update Time Points and Cost Charging 105

3.5.7 Traverse Time Accounting . 107

3.5.8 Simulation Results . 107

3.5.8.1 Effect of Trl . 108

3.5.8.2 Effect of Trt . 109

3.5.8.3 Effect of Tx . 110

3.5.8.4 Effect of λ . 111

3.6 Performance Evaluation Using the UMTS Rural Mobility Model . . . 112

3.6.1 UMTS Vehicular Mobility Model 113

3.6.2 Möbius County . 115

3.6.3 Configuration of Backhaul Network 118

3.6.4 Performance Metricand Hand-off Duration 118

3.6.5 Update Time Points and Cost Charging 119

3.6.6 Traverse Time Accounting . 119

xi

3.6.7 Simulation Results . 119

3.6.7.1 Effect of Trl . 121

3.6.7.2 Effect of Trt . 122

3.6.7.3 Effect of Tx . 123

3.6.7.4 Effect of λ . 123

3.7 Summary . 124

4 Conclusion and Future Work 127

4.1 Summary . 127

4.2 Future Work . 130

Bibliography 137

xii

List of Figures

1.1 Two common architectures of virtual computing 4

2.1 High-level depiction of the proposed architecture. 14

2.2 On-demand page delivery scheme. 17

2.3 Page delivery scheme with prefetch. 18

2.4 Comparison of the key equation and 2nd-order regression. 27

2.5 The climbing profile visualizes the relation between h and r. 28

2.6 The climbing profile illustrates the relation between h̀ and r eligible to

guarantee an expected hit rate. 31

2.7 Constrains of a climbing profile . 33

2.8 An example distribution of Model A. 39

2.9 An example distribution of Model B. 40

2.10 The first example distribution of Model C. 41

2.11 The second example distribution of Model C 41

2.12 Differences between estimated and real threshold points given the uni-

form test set. 44

xiii

2.13 Differences between estimated and real threshold points given the Gaus-

sian test set. 45

2.14 Coverage rate errors generated by estimated threshold points given the

uniform test set. 46

2.15 Coverage rate errors generated by estimated threshold points given the

Gaussian test set. 47

2.16 Test key set complied from NATO reporting names. 58

2.17 Comparison of collision counts distributions generated by Pearson and

the proposed hashings. 59

3.1 Protocol timeline for a mobile station moving from Server A to Server

B. 70

3.2 Service area of 7-server configuration compares with of single-server one. 73

3.3 Service area of 12-server configuration compares with of single-server

one. 74

3.4 30-60-90 triangle as part of hexagon with edge length L, used to esti-

mate average distance to the lower right vertex. 75

3.5 The Markov chain of a moving MS’s status. 75

3.6 For an MS close to the borderline who can freely choose it direction,

the probability of crossing the borderline in the next time instance is 2θ
2π
. 77

3.7 Users at the singular area (dark area) have higher Pcross; the above

equation can only apply in the normal areas (light areas). 78

3.8 The actual average hand-off duration. 85

xiv

3.9 The value of α given different Tcomplete. 86

3.10 Service area of single-server configuration with m = 3. 87

3.11 Service areas of 7-server configuration, each with m = 1, covering the

same amount of area. 88

3.12 Comparison of average transmission distances of different approaches

covering approximately equal service area. 89

3.13 Comparison of estimations and simulation result with R = 0.25 and

m = 40. 93

3.14 Comparison of estimation errors with R = 0.25 and m = 40. 94

3.15 Comparison of estimations and simulation result with R = 2.0 and

m = 5. 95

3.16 Comparison of estimation errors with R = 2.0 and m = 5. 96

3.17 UMTS outdoor to Indoor and Pedestrian test environment and LSA

arrangement. 99

3.18 Möbius City map with teleporting directions. 101

3.19 Simulation result of different N given Trl = 0.5s Trt = 20ms, and

Tx = 600s, λ = 1.0. 108

3.20 Simulated Ttv given Trl = 0.2s, 0.5s, 0.8s, 1.1s and Trt = 20ms, Tx =

600s, λ = 1.0. 109

3.21 Simulated Ttv given Trt = 20ms, 40ms, 60ms and Trl = 500ms, Tx =

600s, λ = 1.0. 110

3.22 Simulated Ttv given Tx = 300s, 600s, 900s, 1200s and Trt = 20ms,

Trl = 0.5s, λ = 1.0. 111

xv

3.23 Normalized simulation results given λ = 0.33, 0.5, 1.0 and Trt = 20ms,

Trl = 0.5s, Tx = 600s. 112

3.24 The UMTS rural vehicular test environment with LSA arrangement. . 114

3.25 Möbius County map with teleporting directions. 116

3.26 Simulation results of different N of both cell configurations given Trl =

0.5s Trt = 20ms, and Tx = 600s, λ = 1.0. 120

3.27 Simulated Ttv’s of both cell configurations given Trl = 0.2s, 0.5s, 0.8s,

1.1s and Trt = 20ms, Tx = 600s, λ = 1.0. 121

3.28 Simulated Ttv’s of both cell configurations given Trt = 20ms, 40ms,

60ms and Trl = 500ms, Tx = 600s, λ = 1.0. 122

3.29 Simulated Ttv of both cell configurations given Tx = 300s, 600s, 900s,

1, 200s and Trt = 20ms, Trl = 0.5s, λ = 1.0. 123

xvi

Chapter 1

Introduction

1.1 Background

Today, software is an essential aspect of everyone’s life. Any computing device, such

as laptops, PDAs, or even wireless phones, is useless unless it is equipped with proper

software that provides the necessary utilities (e.g., email, web browsing, media player).

While the hardware cost has been steadily declining over the past decade, the cost of

software, which includes the support and maintenance, has not followed such a trend

over the years.

Depending on the environments, software programs are used in very different

manners. For example, companies use software programs as part of information

technology (IT) infrastructure. A company may have an internal IT department or

contracted third parties to provide software installation, training, maintenance, and

upgrade. On the other hand, individuals users are themselves responsible to set up,

learn, maintain, upgrade, and troubleshoot the software programs.

1

Development of software is a sophisticated art, which has evolved over many

years. Advanced software development kits (SDKs) have made it easy to implement

an innovative idea into a software program. The .NET framework from Microsoft

Corporation made the input/output (I/O) from software programs and manipula-

tion of memory a straightforward task. Today, there are abundant skilled software

engineers, who can develop software programs with ease.

We note, however, the success of software products does not rely solely on the

software code itself. Other factors such as friendly licensing terms, 24/7 reliability,

high performance, and convenient user interface are just as important as the potential

utility of the software programs that rises from the underlying ideas. Moreover, use

of software programs is highly personalized (e.g., web browsers with personal history,

readers with personalized filing schemes). The users may access the software pro-

grams anywhere from the Internet while they are traveling. The users may utilize

computing hardware with different operating systems. In order for a software pro-

gram to maximize its potential utility, a new paradigm for developing, using, and

maintaining software programs is sought.

1.2 Virtualization

We believe that virtualization is a key technique that can aid to achieve this goal.

The computing industry has been incorporating the concept of virtualization for many

years. From swapping relays and wires to run stored programs in the past, today’s

computers are based on logic circuits, which virtualize stored programs into an in-

2

struction set architecture (ISA). From directly addressing registers in the past, to-

day’s computers use virtual memory, system calls, and device drivers, which virtualize

physical resources in a computer into logical ones.

There are two main reasons for virtualization. First, virtualization allows “divide-

and-conquer” in computing. Different elements of a computing system, e.g., memory,

CPU, software program, etc. may interact with others based virtual interface (e.g.,

logical memory address instead of physical memory address), thus the overall system

is divided and solved individually. Second, virtualization increases compatibilities.

When the resources in a computing system are virtualized, they become more portable

and reusable, thus increasing the compatibility.

This thesis focuses on a specific type of virtualization, i.e., virtualization of ap-

plication programs. Virtualized software programs can be developed without specific

knowledge for the hardware architecture of computing device.

There are two common approaches to application virtualization, as shown in Fig-

ure 1.1. The concept shown on the left in Figure 1.1 corresponds to the traditional

terminal architecture wherein the client machine’s main job is performing the I/O

functions. Based on the inputs received from the client machine, the server runs

software programs and sends the outputs back to the client machine for display or

other forms of output (e.g., audio). This concept reaps the benefits of traditional

server-client architecture such as the ease of management and cost reduction. The

drawback of this architecture is the large amount of data that needs to be exchanged

between the client machine and the server across the communication link, which may

take long time if the client is geographically far away from the server. This results in

3

Figure 1.1: Two common architectures of virtual computing

potentially slow and unpredictable interactions between the client machine and the

server. Today, most of the browser-based applications in the Internet use the concept

shown in the left in Figure 1.1.

The concept depicted in the right in Figure 1.1 is known as the application stream-

ing. When a user chooses to run an application program in a server, the server delivers

the selected application program as small binary blocks over the communication link

and the application program is run on the client machine using the local processor(s).

This concept improves interaction time for the users since the application software

is run locally. A drawback for this architecture is that a significant portion (40% or

more in current implementations) of the application software must be first uploaded,

which delays the start-up process significantly. Depending on the performance of the

communication link, there may be substantial delay before the application software

is downloaded to the client machine. Another drawback is that since the application

software is run on the client machine, it might be sensitive to the operating system’s

4

configuration and stability of the client machine, which leaves the responsibility of

operating system maintenance to the users.

Application virtualization presents substantial opportunities for high performance

computing and ease of IT management. Currently, however, there is no method of

application virtualization that provides the necessary performance, reliability, and

convenience that are expected from the users. The resulting architecture must have

the look and feel of the computers that today’s users are accustomed to. Without

this, wide spread acceptance of application virtualization may remain elusive.

1.3 Main Goal of This Thesis

The main goal of this dissertation is to mitigate the drawbacks in both application

virtualization approaches as stated previously. For the application streaming concept,

we propose an architecture which encapsulates components of an operating system

and application software as downloadable blocks. Furthermore, a prefetch mechanism

is applied in the architecture which enables downloading binary blocks for future

use based on speculations, rather than merely downloading them on-demand. Since

communication cost is high in wide area network (WAN), we propose lower bounds

of information gains to achieve an expected hit rate with certain confidences.

The prediction model in the proposed architecture is managed by a look-up table

(LUT). We propose an algorithm to divide a monolithic LUT into two-level hierar-

chical LUTs to optimize the performance and with lower implementation cost based

on the characteristics of the probability model itself. To achieve high speed look up

5

within the LUT without using content-addressable memory (CAM), we also propose

a hash algorithm to manage the address space of the LUT.

For the browser-based concept, we propose a distributed service infrastructure

to address the drawback. The proposed configurations should significantly reduce

propagation delay since each server is geographically closer to its user. Considering

that mobile computing devices become widely used, the proposed configuration has

to handle hand-off cases, i.e., mobile computing devices in use moving from one

service area to another. We also propose a hand-off protocol offering seamless user

experience.

The proposed configuration comes with a price, such as inducing longer response

latency during hand-off periods, in addition to higher overall system complexity. We

propose analytical and empirical performance estimations, based on Universal Mobile

Telecommunications System (UMTS) mobility models, to determine the condition at

which the proposed configuration with the hand-off protocol outperforms the conven-

tional one.

1.4 Organization

This dissertation is divided in two parts, which address the above-mentioned two main

approaches of application virtualization. In Part 1, we propose an architecture which

mitigates the compatibility between operating systems and application software. We

propose the concept of prefetching to boost the performance of application streaming.

With the help of decision tree learning, we derive the lower bounds of the information

6

gain to achieve an expected hit rate, which outline the specification and capability of

the prefetch system for this application.

The proposed architecture relies on the probability model. To manage the poten-

tially large memory requirements for the LUT, we propose an algorithm to divide one

large LUT into two-level hierarchical LUTs which can achieve better performance or

lower implementation cost.

Finding an entry in a large LUT requires expensive content addressable mem-

ory (CAM). We propose a hash algorithm to encode the content in each entry into

numerical address with relatively fewer hash collisions.

In Part 2, we propose a distributed infrastructure configuration to address the

drawbacks in the browser-based application virtualization. We propose a hand-off

protocol to provide seamless user experience on mobile computing devices. The ana-

lytical and empirical performance evaluations are presented.

7

8

Chapter 2

Optimization of Application

Streaming Virtualization

Different approaches of application virtualization have respective advantages and dis-

advantages. These advantages and disadvantages depend on the conditions under

which a program is executed and managed. We aim to mitigate the disadvantages,

while preserving the advantages.

The main aim of this chapter is to develop a novel method of desktop virtualization

that improves the performance, reliability, and convenience. At the same time, we

address the challenges stemming from diverse hardware and software. In this chapter,

we focus on the following three objectives for the desktop virtualization method to

be developed..

Objective 1: Software applications and general operating system components should

reside centrally at the server, which enables skilled IT professionals to manage

9

them efficiently.

Objective 2: Since some users would feel more comfortable storing their personal

files locally in their own machines rather than in remote servers controlled by

somebody they don’t know. Some other users would prefer cloud-based storage

for convenience and mobility, personal files can be opted to store in either side.

We support both modes of data storage.

Objective 3: Software applications are run in the client machines, where computa-

tional resources are dedicated for them without incurring long interaction delay.

In this chapter, we propose an architecture based on the application streaming

concept which fulfills the three objectives of application virtualization [1]. We also

suggest allowing servers to deliver pages before they are actually needed by clients to

optimize the propose architecture.

There are many issues needed to be addressed to apply the prefetch algorithm to

the proposed architecture. First of all, accurately selecting the exact page that the

processor needs next, out of the virtual memory (VM) space, is not easy. We derive

two information boundaries which indicate the feasibility of implementing a prefetch

system given arbitrary memory access models. We utilize the concept of decision tree

learning.

Furthermore, the probability model is a key of the proposed algorithm. How to

efficiently manage and access the potentially huge memory that describes the proba-

bility model is a challenge. In this chapter, we use LUT to organize the probability

model and propose an algorithm to separate single large LUT into two-level, hierar-

10

chical LUTs to increase efficiency and reduce implementation cost. We also propose

a simple hash algorithm to implement LUTs without expensive CAM.

2.1 Related Work

The early days of virtual computing was based on mainframe computers [2]. Us-

ing a centralized mainframe computer, a number of remote terminals emulate the

mainframe remotely. In this method, the remote terminals are connected directly to

the mainframe using dedicated cables. The computing resource in the mainframe is

simply shared among the remote terminals by time-division multiplexing.

As the Internet proliferated in 1990s, network-based approaches to virtual com-

puting emerged [3]–[12]. In this method, the remote terminals are not connected

directly to the computing resource. By using the network connection available to the

remote terminals, any computing resources in the Internet can be accessed and used.

For example, using network browsers, users can access computing resources located

anywhere in the Internet. However, as anyone who has surfed the Internet can testify,

the performance of Internet browser can be highly unpredictable [5], [7].

In [3], [11], authors discuss a new problem of security arising from virtual com-

puting. In [4], [9], [13], authors describe issues related to application streaming.

In [13], authors propose a novel virtual web service architecture which integrates

web services without user awareness. The users can access the web services with

the same experience they are used to without manually switching around the service

providers.

11

In [14], authors take the advantages of virtualization and further integrate the

Java Virtual Machine technology into the operating system. We believe it is the

future of virtualization computing.

While virtual computing is touted as the solution to manage extreme complexity

in today’s computing, there is no clear approach reported to date that address the

performance, convenience and cost involved in virtual computing.

When discussing prefetch algorithms, sophisticated ones have been studied in

many papers. For high level computing, Jiang and Kleinrock proposed an adaptive

network prefetch scheme, which is based on conditional probabilities, to improve web

surfing experience in [15]. Palpanas and Mendelzon proposed a prefetching algorithm

based on partial match prediction for the similar purpose [16]. For low level computing

such as instruction and data prefetching systems embedded deep inside processors,

on the other hand, the researchers focused on how to manage record history and

make predictions efficiently. Joseph and Grunwald used Markov chain to manage

record history for the proposed prefetch system [17]. Nesbit and Smith proposed

an architecture to improve the efficiency of Markov-based prefetching [18]. For disk

prefetching, which is closest to our application, Lin et al. [19] proposed a prediction

based prefetch algorithm to work with a SRAM cache which increases the perfor-

mance of NAND flash memory and enables it to replace more expensive NOR flash

memory. Many research works have been done on integrating prefetchers with task

schedulers of embedded systems [20][21][22] and results are very promising. Microsoft

proposed Superfetch [23] to prevent pages frequently used by users from swapped out

by background processes in Windows Vista based on a usage model. However, those

12

approaches are empirical and lack the heuristic perspective of designing a prefect

system.

The proposed feasibility analysis of the prefetch system is based on decision tree

learning. J.R. Quinlan has made many critical contributions on information-based

decision learning [24][25], although these works focused on artificial intelligent ap-

plications. Quinlan proposed that information gain, which is equivalent to mutual

information between attributes and outcome classes, is the most important param-

eter in selecting critical attributes and reducing decision trees’ sizes. Although not

being theoretically proved, putting the test of the attribute generating the highest

information gain first can result a simpler decision tree.

2.2 Proposed Architecture

Based on the above-stated objectives, Figure 2.1 reflects the high-level depiction of

the proposed method. The proposed architecture employs a server wherein software

applications and operating systems reside. The client machines are enabled to store

personal files, and have limited device system functions such as boot loader, file

management, and I/O.

When a process is initialized on any computer (real or virtual), the operating sys-

tem assigns a memory structure with which the processor(s) interacts. This memory

structure is known as the virtual memory (VM). From the VM, the processor fetches

the instructions and data, responses to the inputs, writes intermediate results, invokes

output routines etc. All the tasks done by the processor is based on the VM. For 32-bit

13

Figure 2.1: High-level depiction of the proposed architecture.

Windows XP, the VM is defined over the address range of 0x00000000–0xFFFFFFFF,

of which 0x00000000–0xFFFFFFF is the user space and 0x80000000–0xFFFFFFFF is

the kernel space. There are a total of 4GB VM space defined for each 32-bit Windows

XP process.

The VM is organized in terms of page. For example, for Windows XP, each

page corresponds to 4KB of data. For each application, some pages of the VM

are specific to individual users, some are populated by the operating system, some

are populated during the run time, and some are never accessed. Once an ISA-

compatible machine has the same VM image and limited system level compatibility

(e.g., providing device drivers in case of the application software performing low-

level access), it can execute the same application software and get expected results

regardless of who creates the VM space. In other words, the VM space is an instance

which represents the major information about running a process. Therefore, the

proposed virtualization architecture becomes the matter of how VM space is created,

14

transferred, and accessed.

In the proposed architecture, the VM space should be created by the server since

memory management is handled by the operating system, which should be managed

by IT personnel centrally based on Objective 1. Similar to the VM space in a stan-

dalone computer, some of the pages are mapped to components that belong to the

operating systems and the application software originally stored in the server while

some other pages are mapped to the user’s personal files, which can be physically

stored in the client machine or the server side to satisfy Objective 2.

In order to achieve Objective 3, the context in the VM space, or at least the pages

required immediately to continue execution, should be made available at the client’s

machine. In other words, there might be more pages of data transferred from the

server to the client machine over the Internet compared to conventional application

streaming architectures.

Furthermore, the client’s machine would request the pages from the VM space in

various orders during the runtime. If the server delivers every page found physically

unavailable at the client’s machine, which is similar to the on-demand paging we

apply on current memory management, the performance would be intolerably low

since the transmission latency over the Internet is hundreds of times slower than that

of the local hard drive bus. Therefore, we suggest speculatively delivering pages before

they are actually needed in runtime, i.e., prefetching pages, to reduce the chance of

on-demand transmission and thus improve runtime performance.

15

2.3 Prefetch in the Proposed Application Stream-

ing Architecture

2.3.1 Observation

A typical VM space in 32-bit Windows XP (i.e., 4GB space consisted of 4KB pages)

can hold 1M pages. Theoretically there will be 220! possible page access sequences

within the VM space, which is difficult, if not impossible, to manage.

However, we can significantly reduce the possible page access sequences by re-

ferring to certain information. The information can be either implicit, such as the

dynamic history, or as explicit as manually added vectors attached with the execution

flow.

Referring to the dynamic history, which is the way widely utilized in current

prefetch systems of different applications, is based on the fact that some pages tend

to be followed by or follow particular ones, while others might never or very unlikely

be accessed before or after particular ones.

The page access history is considered the most essential reference information

in the proposed prefetch application. To introduce the dynamic history as part of

the reference information in the proposed prefetch application, we have to profile the

memory usage behavior and establish its probability model of the application software

first.

16

Figure 2.2: On-demand page delivery scheme.

2.3.2 Profiling

Fortunately, Oracle provides truss, which is a powerful tracing facility, integrated in

Solaris family operating systems. We can get page access sequences from a program

starts, with runtime user interactions, till it ends, by tracking and recording the page

fault addresses (since Solaris is a pure on-demand paging operating system.) If we

keep track of enough of these page access sequences, we can characterize and establish

the probabilistic model of memory usage per application software and user.

2.3.3 Algorithm

Figure 2.2 illustrates the traditional on-demand page delivery scheme applied to net-

work based desktop virtualization. As we can see, the server only sends the page

requested by the client each time, which leaves vast idle periods due to the round-trip

delay of the network.

In order to utilize the idle periods, we propose an algorithm illustrated in Figure

2.3. Once the client machine tries to access a page that is currently unavailable locally,

it sends a request for the page to the server. The server does not only reply with the

17

Figure 2.3: Page delivery scheme with prefetch.

page, but also delivers a series of other pages, which are considered the most likely

ones to be accessed thereafter according to the probability model. If the prefetch

hits, the client machine can continue the execution without the delay involved in

requesting the next page. If the prefetch misses, the client machine sends the request

for the next page, just as it does using the conventional on-demand paging, and stores

the incoming pages for potential future use.

Based on the proposed prefetch algorithm described above, the prefetch accuracy

is very important. A low prefetch hit rate not only increases waiting time but also

the cost on unnecessary data transfers. Therefore, we will take the prefetch hit rate

as the key specification in the next section.

2.3.4 Probability Model Management

In the proposed architecture, the probability model is managed by a special look-up

table (LUT). Each entry of the LUT comprises a set of attribute values and indices of

a page series which are the most probable to be requested given the set of attribute

values. Once the server gets a client machine’s request, including the current required

18

page number and other attributes, it looks through the entries, finds the one matches

the client’s request, and then sends the requested page and the following ones in that

entry, i.e., the most probable page series that the client might need at the time.

Managing and searching from the LUT, however, is not going to be easy due to

the huge number of entries, even if the number of potential page access sequences

has been significantly reduced from the worst case. The richer the information we

refer to, the more diverse the probability model is and the larger LUT we need to

accommodate it. Therefore, we need to investigate the required specification of the

reference information, which includes the page access history and maybe explicitly

added vectors in the proposed application, to find the minimum set of it and thus

generate the minimum sized LUT given an expected performance gain.

2.4 The Lower Bounds of Information Gain for

Prefetch Systems

Prefetching is basically accessing a memory space and loading it into a faster storage

device before it is actually needed according to spatial, temporal, or other informa-

tion available at the time. Simple prefetching algorithms, which exploit spatial and

temporal localities, are already widely utilized from processors to web services. The

effectiveness of these prefetching algorithms, however, varies by the data access model.

Prefetching for low level computing, such as instruction and data prefetch down

into the heart of a processor, requires to be implemented with very low complexity

19

to reduce overhead. However, for some high level applications whose data transmis-

sion costs significantly more time than computation does, a more complex prefetch

algorithm which can provide a more accurate result is allowed and expected.

Many research works have been done to improve prefetching accuracy or overhead.

The solutions, however, only address issues in specific domains or even specific data

access models. To our best knowledge, there is no heuristic design guideline, or

even rule-of-thumb, about how complex a prefetch algorithm should be, or what

characteristics the reference information should have, to achieve some expectations if

there is no limitation on its complexity to date.

In this section, we first calculate two lower bounds of information gain to enable

and guarantee to achieve a given hit rate in a prefetch system. To better outline

the quantitative system requirement, we borrow the concept of information-based

decision tree learning. We do not, however, imply either decision tree learning is

preferable to prefetch system designs, or the information bounds are only applicable

to decision tree learning designs.

2.4.1 Decision Tree Learning and Prefetch

A decision tree is a data structure which represents the relationship between attributes

and consequences in a tree-like graph. Each node in a decision tree can either represent

a test of one or more attributes in a given condition, or a consequence of the last test.

Decision tree learning is an implementation of machine learning, which is supported

by a decision tree as a predictive model to decide which consequence class is best

20

associated by given attributes. The decision tree is generated from a training set,

which is a small subset of all attribute-class combinations adequate to exemplify how

the predictor or classifier should work.

At the first glance, we can take the history record or other helpful indicators as the

attributes set and the memory block indices to be accessed next as the classes, which

makes prefetching merely another application of decision tree learning. Decision tree

learning, however, cannot be directly applied on the prefetch system of the proposed

application. In machine learning’s perspective, a tree structure utilized to predict the

next page to read based on the operational experience is not strictly a decision tree,

since:

1. There is no training set which represents a small subset of all possible attribute-

class combinations. The prefetch system should learn to improve prediction

quality on the fly during the operation.

2. The uncertainty in the proposed application is impossible to be eliminated at

the time of a prediction in general. Interrupts and user interventions at the last

moment can affect the outcome beyond any attribute available before, i.e., an

exhausted and perfectly accurate decision tree would never exist.

Furthermore, formal decision tree learning does not discriminate any instance

when generating the decision tree from the training set since the actual occurrence

rate of each instance is unknown at the time. Consequently, the probability of each

class used to estimate the information gain is merely the fraction of the number of

the instances in the class out of the number of all instances in the same set, i.e.,

21

each instance branched by a test is assumed to have equal chance to be selected.

In contrast, the actual occurrence rate of each attribute value is not uniformly dis-

tributed in the proposed prefetch application. Therefore, the probability distribution

of each attribute should be taken into consideration to estimate the hit rate in actual

operation.

Selecting the attributes is a challenge in applying decision tree learning to prefetch-

ing since it is difficult to sort out whether an attribute is likely to matter or not by

intuition. In order to keep the prefetch decision tree from being too large to man-

age, we can only install some well-known indicators as the attributes in the prefetch

decision tree while unintentionally dropping some potential helpful indicators is in-

evitable.

Roughly speaking, the decision tree in proposed prefetch application is a decision

tree which is pruned so far that the uncertainty of the outcomes is very significant. We

will estimate the minimum requirements of the attributes to achieve and guarantee

an expected hit rate in the next subsection.

2.4.2 Lower Bounds of Information Gain for Prefetch Sys-

tems

2.4.2.1 Minimum Hit Rate

Assume Sh and Sm are the speedup ratios when a hit and a miss occur, respectively,

where Sh > 1 and Sm ≤ 1. Assume r is the hit rate of the prefetch system. Then, for

22

a successful prefetch system

r

Sh

+
1− r

Sm

< 1

⇒ r >
Sh(1− Sm)

Sh − Sm

(2.1)

In conclusion, in order to compensate the performance penalty brought by miss

prefetching, the hit rate r must higher than Sh(1−Sm)
Sh−Sm

. Otherwise applying the prefetch

system only brings performance loss. Also, higher Sh and/or lower Sm can lower the

threshold of r.

2.4.2.2 Hit Rate Versus Information Gain

As we can see in the previous subsection, the overall speedup a prefetch system can

provide only directly depends on the hit rate and both performance changes when hit

and miss. Information characteristics, however, are still more helpful tools to analyze

the statistical relationship between the observable variables and predictive outcome

while the hit rate is an empirical variable which is left unknown until the very last

stage of a simulation.

Assume we are trying to implement a prefetch system with decision tree learning,

the first thing we have to decide is which attributes the system has to keep track of

in order to meet the expected hit rate and achieve performance gain. We will outline

in the next section the requirement on the attributes’ properties in terms of the hit

rate.

23

2.4.2.3 Minimum Information Gain of Attributes to Achieve an Expected

Hit Rate

Assume X = {x0, x1, · · · , xn−1} are n possible memory blocks, A = {a0, a1, · · · , ak−1}

are k possible values of an attribute at the time of prediction. Then the hit rate given

A can be derived as

r = E
{
max

x
P (x|a)

}
=
∑
a∈A

{
P (a) ·max

x
P (x|a)

}
(2.2)

If additional information ∆A is available for reference, the new hit rate is updated

as

r̀ =
∑

∆a∈∆A

∑
a∈A

{
max

x
P (x, a,∆a)

}
≥
∑
a∈A

{
max

x
P (x|a)

}
= r (2.3)

Therefore, by referring more attribute, the prefetch system can achieve an equal

or higher hit rate.

The uncertainty of X given A and ∆A is also equal or less than the uncertainty

of X given A only, i.e.,

H(X|A,∆A) ≤ H(X|A) (2.4)

Now assume the priori (i.e., zero-order) probability distribution function (PDF)

P (X) is known, ra is the hit rate given A = a, P (A) is the PDF of A. The overall

hit rate should be

r =
∑
a∈A

P (a) · ra (2.5)

Given ra, the maximum H(X|A = a) occurs when the following two conditions

24

are all satisfied:

1. maxx P (X|A = a) = ra.

2. the other (n− 1) outcomes with equal probabilities:

P (X|A) = 1− ra
n− 1

. . . ∀x ∈ X except argmax
x

P (X|A = a) (2.6)

Therefore,

maxHA(X|A = a)|ra = ra · ln
(
1

ra

)
+ (1− ra) · ln

(
n− 1

1− ra

)
(2.7)

For an arbitrary discrete random variable X̂ which also has n possible outcomes,

the highest occurrence probability of its outcomes, i.e., maxx P
(
X̂|A = a

)
, can never

exceed ra if H
(
X̂|A = a

)
> maxHA(X|A = a)|ra .

Define the mutual information between X and A, which is equivalent to the infor-

mation gain brought by A in decision tree learning’s terminology, as I(X;A). Then,

IA(X;A) = H(X)−
∑
a∈A

{P (a) ·H(X|A = a)} (2.8)

The minimum I(X;A) we can find in the following derivation:

min IA(X;A) = min

{
H(x)−

∑
a∈A

{P (a) ·H(X|A = a)}
}

≥ H(X)−
∑
a∈A

{P (a) ·maxHA(X|A = a)|ra}

= H(X)−
∑
a∈A

{
P (a) ·

{
ra · ln

(
1

ra

)
+ (1− ra) · ln

(
n− 1

1− ra

)}}

25

= H(X)−
∑
a∈A

{
P (a) ·

{
ra · ln

(
1

ra

)
+ (1− ra) · ln

(
1

1− ra

)}}
−

∑
a∈A

{P (a) · (1− ra) · ln(n− 1)}

= H(X)−
∑
a∈A

{
P (a) ·

{
ra · ln

(
1

ra

)
+ (1− ra) · ln

(
1

1− ra

)}}
− (1− r) ln(n− 1)

≥ H(X)− k · h− (1− r) ln (n− 1) (2.9)

where k is the total number of a ∈ A and h is the constant satisfies both


ra · ln

(
1
ra

)
+ (1− ra) · ln

(
1

1−ra

)
= h

P (a)∑
a∈A P (a) · ra = r

(2.10)

for all a ∈ A.

In summary,

k · h = maxHA(X|A)− (1− r) ln(n− 1) (2.11)

There is, however, no solution of finite terms for ra in terms of h and P (A).

To gain facility with this expression, we use 2nd-order regression to approximate the

equation to approximate the key equation h
P (a)

= ra · ln
(

1
ra

)
+ (1− ra) · ln

(
1

1−ra

)
,

which is very close to a parabola for ra ∈ [0 1] as shown in Figure 2.4.

Now we can use h
P (a)

= c1ra
2 + c2ra + c3 to approximate h

P (a)
= ra · ln

(
1
ra

)
+

(1− ra) · ln
(

1
1−ra

)
and solve ra in terms of h and P (a) as below:

ra =
−c2 ±

√
c22 − 4c1

(
c3 − h

P (a)

)
2c1

(2.12)

26

Figure 2.4: Comparison of the key equation and 2nd-order regression.

where c1 ≈ −2.4975, c2 ≈ 2.4975, c3 ≈ 0.0838.

Therefore,

r =
∑
a∈A

{P (a)ra} =
1

2c1

∑
a∈A

{
−c2P (a)±

√
c22P

2(a)− 4c1(c3P 2(a)− hP (a))
}

=
1

2c1

{
−c2 ±

∑
a∈A

√
(c22 − 4c1c3)P 2(a) + 4c1hP (a)

}

= − c2
2c1

± 1

2c1

∑
a∈A

√
(c22 − 4c1c3)P 2(a) + 4c1hP (a)

⇒ 2c1

(
r +

c2
2c1

)
= ±

∑
a∈A

√
(c22 − 4c1c3)P 2(a) + 4c1hP (a)

⇒ 2c1r + c2√
c22 − 4c1c3

= ±
∑
a∈A

√√√√P 2(a) +
4c1hP (a)

c22 − 4c1c3

= ±
∑
a∈A

√√√√(P (a) +
2c1h

c22 − 4c1c3

)2

−
(

2c1h

c22 − 4c1c3

)2

(2.13)

27

Figure 2.5: The climbing profile visualizes the relation between h and r.

Since c1 < 0 and c1 = −c2 as the parabola is symmetric at ra =
1
2
,

|2c1r + c2|√
c22 − 4c1c3

=
∑
a∈A

√√√√(P (a) +
2c1h

c22 − 4c1c3

)2

−
(

−2c1h

c22 − 4c1c3

)2

(2.14)

We can visualize the solution above with Pythagorean Theorem as a climbing

profile to better illustrate the relationship between h and r as shown in Figure 2.5.

As we can see in Figure 2.5, the climbing profile is basically k right triangles cas-

cade together. Each right triangle, which represents a possible value of the attribute,

is −2c1h
c22−4c1c3

in height with P (ai)+
2c1h

c22−4c1c3
as hypotenuse. The hypotenuses of these cas-

caded triangles form a rough mountain ridge which is 1+ 2c1{maxHA(X|A)|r−(1−r) ln (n−1)}
c22−4c1c3

in length while the width of the bottom is |2c1r+c2|√
c22−4c1c3

and the summit is

−2c1{maxHA(X|A)|r−(1−r) ln (n−1)}
c22−4c1c3

high.

28

Once r and P (A) is given, a prefetch system designer can find the approximate

maxHA(X|A)|r and thus the minimum I(X;A), i.e., the information gain, through

the climbing profile. These parameters will help the prefetch system designer to

decide whether an attribute set provides enough information gain, or searching for

some other potential helpful attributes is required, to at least get a chance to achieve

expected hit rate.

2.4.2.4 Minimum Information Gain of Attributes Eligible to Guarantee

an Expected Hit Rate

The lower bound of the information gain derived in the previous section is based on

very loose assumptions. We can only ensure that a prefetch system is impossible to

achieve the expected hit rate if its attribute set provides information gain less than

the lower bound. However, acquiring an attribute set with information gain higher

than the lower bound does not mean the prefetch system can achieve the expected

hit rate. In this section, we are going to derive a more rigorous lower bound on

information gain given an expected hit rate using an approach similar to the one we

used in the previous section.

Again, assume P (X) is the priori PDF of X, ra is the hit rate given A = a, P (A)

is the PDF of A, and
∑

a∈A P (a)ra = r. In this case, we have to assume ra ≥ 1
2
in

order to simplify the problem. To guarantee ra, the maximum H(X|A = a) should

occur when

1. maxx P (X|A = a) = ra,

29

2. only one other possible outcome x̃ ∈ X where P (x̃|A = a) = 1− ra.

Therefore,

maxHG(X|A = a)|ra = ra · ln
(
1

ra

)
+ (1− ra) · ln

(
1

1− ra

)
(2.15)

The intuition here is that for an arbitrary discrete random variable X̂, the high-

est occurrence probability of its outcomes, maxx P
(
X̂|A = a

)
can never be lower

than ra if H
(
X̂|A = a

)
< maxHG(X|A = a)|ra . In other words, the hit rate ra

given A = a is not guaranteed if the entropy of the conditional PDF is higher than

maxHG(X|A = a)|ra .

The derivation of the lower bound of the information gain eligible to guarantee

expected hit rate is very similar to the counterpart in the previous section:

min IG(X;A) = min

{
H(X)−

∑
a∈A

{P (a) ·H(X|A = a)}
}

≥ H(X)−
∑
a∈A

{
P (a) ·max

x
HG(X|A)|ra

}

= H(X)−
∑
a∈A

{
P (a) · ra · ln

(
1

ra

)
+ (1− ra) · ln

(
1

1− ra

)}
≥ H(X)− k · h̀− (1− r) ln (n− 1) (2.16)

where k is the total number of a ∈ A and h̀ is the constant satisfies both


ra · ln

(
1
ra

)
+ (1− ra) · ln

(
1

1−ra

)
= h̀

P (a)∑
a∈A P (a) · ra = r

(2.17)

for all a ∈ A and k · h̀ = maxHG(X|A)|r.

30

Figure 2.6: The climbing profile illustrates the relation between h̀ and r eligible to
guarantee an expected hit rate.

The approximate solution is identical to the one in the previous section given

r ≥ 1
2
as well:

−2c1r − c2√
c22 − 4c1c3

=
∑
a∈A

√√√√(P (a) +
2c1h̀

c22 − 4c1c3

)2

−
(

−2c1h̀

c22 − 4c1c3

)2

(2.18)

Once again, we use Pythagorean Theorem to visualize the relation between h̀ and

r as a climbing profile shown in Figure 2.6.

As we can see in Figure 2.6, the climbing profile comprises k right triangles cascade

together. Each right triangle, which represents a possible value of the attribute, is

−2c1h̀
c22−4c1c3

in height with P (ai) +
2c1h̀

c22−4c1c3
as hypotenuse. The hypotenuses of these

31

cascaded triangles form a rough mountain ridge which is 1+ 2c1maxHG(X|A)|r
c22−4c1c3

in length

while the width of the bottom is −2c1r−c2√
c22−4c1c3

and the summit is −2c1maxHG(X|A)|r
c22−4c1c3

high.

Once r and P (A) is given, a prefetch system designer can find the approximate

maxHG(X|A)|r and thus the minimum IG(X;A), i.e., the information gain eligible

to guarantee an expected hit rate r, through the climbing profile in Figure 2.6. These

parameters will help a prefetch system designer to decide whether an attribute set is

eligible to fulfill a rigorous hit rate requirement. If an attribute set provides infor-

mation gain less than IG(X;A), we can not eliminate the chance that the prefetch

decision tree works below expectation.

2.4.3 Learning from Climbing Profiles

Climbing profiles have three important properties. First of all, its bottom width

is only a function of r. Once expected hit rate is given, the bottom width is fixed.

Secondly, the shape of the ridgeline depends on the uniformity of P (A). A lower P (a)

results a steeper ridgeline segment while a higher P (a) results a moderate one. If

P (A) is a uniform distribution function, the climbing profile becomes a right triangle.

Finally, the total length of the ridgeline and the height Hs is 1.

Consequently, we can imagine a rope with length equal to 1 and both ends attach

to the two ends of a bottom line whose length is |2c1r+c2|√
c22−4c1c3

(≈ 0.9390|2r − 1|). If we

keep the right portion of the rope upright and the left portion monotonically departed

from the bottom in any shape as shown in Figure 7, we can observe that

1. the highest Hs we can form is when the rope is tightly pulled to form a right

32

Figure 2.7: Constrains of a climbing profile

triangle with the bottom. Any change in incline rate along the ridgeline results

a lower Hs,

2. widening the bottom results a lower Hs.

Both climbing profile are identical in shape given the same P (A). However, Hs

represents either −2c1{maxHA(X|A)|r−(1−r) ln (n−1)}
c22−4c1c3

to achieve the expected hit rate r, or

−2c1maxHG(X|A)|r
c22−4c1c3

to be eligible to guarantee the expected hit rate r. According to the

geometric observations above, we can conclude that

1. Given r, if A becomes more uniformly distributed, both lower bounds of the

information gain decrease due to the higher Hs,

2. the higher the expected hit rate r is, the lower the conditional entropy H(X|A)

should be and thus the higher the information gain IA(X;A) and IG(X;A) the

33

attribute set should provide. The lower bound of IA(X;A) rises even higher

since maxHA(X|A)|r = c22−4c1c3
−2c1

·Hs + (1− r) ln(n− 1).

2.4.4 Attribute set Compression

As we can experience in the previous sections, the unknown and unevenly distributed

A brings difficulty and uncertainty in our boundary estimation. What would happen if

we compress the attribute set using entropy coding and design the prefetch decision

tree to test the now approximately evenly distributed values? The answer is very

obvious through the climbing profile illustration.

If we compress A into À with any entropy coding scheme, P
(
À
)
should become

more close to a uniform distribution function. As we can observe in the previous

section, the climbing profile of X and À should become more close to a right triangle

and push Hs higher. Consequently, both lower bounds of the information gain are

decreased as well.

The information gain provided by À, however, is unchanged by the entropy coding

scheme. Therefore, encoding A into À loosens the constraints in information gain and

thus might increases the chance to achieve expected hit rate.

2.4.5 Feasibility of the Proposed Prefetch Application

Both lower bounds of IA(X;A) and IG(X;A) are the starting points in searching

for potential helpful attributes for a prefetch decision tree. If a prefetch system is

only designed to provide some performance boost with minimum cost, we may start

34

from IA(X;A). On the other hand, when designing a prefetch system which is very

sensitive to the hit rate, such as one for application streaming where every activity

over the network is very expensive, we may consider the lower bound of IG(X;A) as

the starting point in searching for attributes and the reference to outline the system

capacity. For example, we can first search within the page access history and decide

how long the history we should keep track of. If the dynamic history cannot efficiently

provide the information gain to achieve the performance specification, we can consider

attaching additional vectors to increase the information gain.

Our research work in this section, however, only outlines a range of information

gain rather than discovers any solid quantitative relation from information gain to

hit rate values. We can expect an algorithm quantitatively searches and discards

attributes to select a minimum set which can provide sufficient information gain from

the proposed starting points.

Furthermore, we also show that applying entropy coding schemes on the attribute

set and testing in terms of the encoded attribute values could help increase the chance

to achieve the expected hit rate of a prefetch decision tree.

2.5 Management of the Probability Model

2.5.1 Hierarchical LUT

After we establish the probability model with minimum number of entries as the result

of carefully select the reference information to be tracked, we may find that preserving

35

all of the information in a single LUT is still not feasible within the given memory

technology. We now consider separating one LUT into multiple LUTs in hierarchy,

i.e., storing the LUT in multiple levels of storage elements which are different in

speed and capacity. In this chapter, we simplify the problem by separating one LUT

into only two levels. One is the fast portion, which may be implemented by fast

and expensive technology (e.g., semiconductor memory), and the other is the slow

portion, which may be implemented in bulk storage devices (e.g., hard drives).

Let Tav be the average transaction time:

Tav = Pfast · Tfast + (1− Pfast) · Tslow (2.19)

where Pfast is the probability of accessing the fast portion and Tfast (Tslow) is the

transaction time for the fast (slow) portion.

Intuitively, the optimal algorithm would be first sorting the entire entries in the

LUT by the occurrence probabilities from high to low. Then, the entries with high

occurrence probabilities are put in the fast portion, and the other entries are put in

the slow portion. We can, therefore, minimize Tav by maximizing Pfast. However,

we have to sort the entire LUT by occurrence probabilities in the beginning, and

again whenever the probabilities change, which is an unsustainable overhead for the

LUT, in this approach. In order to reduce the complexity, we propose an alternative

algorithm to partition the LUT.

36

2.5.1.1 LUT Separation Algorithm

Assume we already map the probability model into a decision tree and attach the

occurrence probability of each leaf node, we can store the full probability model in

fast and slow LUTs accordingly. The proposed algorithm is described below:

1. Assume all states are stored in the fast LUT.

2. Analyze the probability distribution of the outgoing paths from the root node.

3. Remove all the subtrees which are rooted from the outgoing paths with relatively

low probabilities, to the slow LUT.

4. Redo steps 2 and 3 for each next level node, which is remain in the fast LUT,

until reaching the leaf nodes.

2.5.1.2 Comparison

Comparing to the optimal approach, the proposed algorithm has some pros and cons:

Pros: 1. Assume we have total N attributes {A0, A1, A2, · · · , AN−1} are monitored

in our model where attribute Ai has mi possible values. Instead of sorting

∏N−1
i=0 mi entries in the worst case, the proposed approach only needs to

sort mj−1 entries
∏j−1

i=0 mi times at the jth level, which significantly reduce

the computational complexity.

2. Each sorting can be done independently, i.e., we can significantly speed up

the process by utilizing parallel computing technologies.

37

3. We can limit the portion that needs to be updated in case of minor prob-

ability changes instead of processing the whole LUT again.

Cons: 1. The proposed algorithm is not optimal; we cannot guarantee that all

entries in the slow portion have lower probabilities than any entry in the

fast portion.

2. We have to develop a fast analyzing algorithm to keep the computational

complexity low.

3. We cannot know the coverage rate and the entry number of each portion

from any preset coefficient before we run the first pass.

2.5.1.3 Analyzing the Probability Distribution

We introduce three standardized models which can characterize the unknown proba-

bility distributions with some degree of accuracy in the proposed algorithm’s step 2

and help us to determine whether its element has relatively low probability or not.

Model A:

The first model is illustrated in Figure 2.8. As we can see, of the possible n

points, some points have the same nonzero probabilities while the others have

zero probabilities. The probability distribution function is given by:

P1(x) =
1

n̂
for x = 1, 2, . . . n̂ (2.20)

where n̂ is the number of points with nonzero probabilities. In Model A, the

38

Figure 2.8: An example distribution of Model A.

entropy provided by the same n̂ is maximized:

H(P1(x)) = −
n̂∑

x=1

{
1

n̂
· ln

(
1

n̂

)}
= ln(n̂) (2.21)

Model B:

In this model, the probability of each element is exponential decreasing within

a limited range. The distribution function is given by:

P2(x) = arx−1 for x = 1, 2, . . . n (2.22)

where

a =
(
1− r

1− rn

)
0 ≤ r < 1 (2.23)

Parameter r represents the degree of concentration for all Model B’s. Model B

with n = 7 and r = 0.5 is illustrated in Figure 2.9.

39

Figure 2.9: An example distribution of Model B.

The entropy of model B is

H(P2(x)) = −
n∑

x=1

{
arx−1 · ln

(
arx−1

)}
= ln(1− rn)− ln(1− r)

− (n− 1)rn−1 − nrn + r

(1− r)(1− rn)
· ln(r) (2.24)

Model C:

In this model, the probability of each element is linearly decreasing within a

range. The distribution function of Model C is given by

P3(x) =


a− k · (x− 1) for x = {1, 2, . . . , ñ}

0 otherwise

(2.25)

where

a =
1

ñ
+

k · (ñ− 1)

2

40

Figure 2.10: The first example distribution of Model C.

Figure 2.11: The second example distribution of Model C

ñ = min

{⌊
1 +

√
1 + 4 · k−1

2

⌋
, n

}

There are two types of Model C which are illustrated in Figure 2.10 and Figure

2.10, where ñ = n = 7, k = 0.01, and n = 7, ñ = 4, k = 0.1, respectively.

For the probability distribution shown in Figure 2.10, all elements have nonzero

probabilities; in Figure 2.11, the probabilities decrease so sharply that the last

three elements have zero probability.

41

The entropy of Model C is

H(P3(x)) = −
ñ∑

x=1

(a− k · (x− 1)) · ln (a− k · (x− 1)) (2.26)

Unfortunately, there is no way to further simplify the entropy of Model C as in

the previous two cases.

As we can see, the entropy of Model B is the function of parameters r and n, the

entropy of Model C is the function of parameters k and n, while the entropy of

Model A is only the function of n̂. We can model every non-increasing probability

distribution function by the three standardized models with equal entropy based on

this observation. Therefore, we can establish an approximate relationship between

the coverage rate and the number of selected elements.

The threshold point k for an arbitrary non-increasing probability function is de-

fined by the following equation:

k = argmin
i∈N

{
i∑

x=1

P (x) ≥ α

}
(2.27)

where α is the coverage rate between zero and one.

We can solve k2 for Model B by

k2∑
x=1

P2(x) = a
k2∑
x=1

rx−1 =
1− rk2

1− rn
≥ α

⇒k2 = ⌈logr {1− α(1− rn)}⌉ (2.28)

42

We can calculate k1 for Model A as well:

k1∑
x=1

P1(x) =
k1∑
x=1

1

n̂
=

k1
n̂

≥ α ⇒ k1 = ⌈n̂α⌉ (2.29)

The threshold point k3 for Model C is solved by geometry similarity of right

triangle and trapezoid:

k3 =




2
n
+nk−

√
2
n
+nk

2−8α·k
2·k

 for 0 ≤ k < 2
n2

⌈
(1−

√
1− α) ·

√
2
k

⌉
for k ≥ 2

n2

(2.30)

Then we expect for an arbitrary non-increasing probability distribution function

f(x), the threshold point kf(x) would be close to k1, k2, and k3, which come from the

standardized models with the same entropy and total points as of f(x). We verify

it by two test sets; each includes 99 randomly generated non-increasing probability

distributions, whose probabilities are assigned by uniform and Gaussian distributions.

Figure 2.12 and Figure 2.13 show the simulation results of the two test sets. The

differences of the 90% threshold points among the three standardized models and the

real distributions generated by uniform distribution are shown in Figure 2.12. As

we can see, k2’s are closest to the actual threshold points while k1’s are also very

accurate. The simulation result of the Gaussian counterpart is shown in Figure 2.13.

As we can see, k1 and k2 are good references for the actual threshold point.

The errors in coverage rate of the uniform and Gaussian test sets are shown in

Figure 2.14 and Figure 2.15, respectively. As we can see, the coverage rate’s errors

43

Figure 2.12: Differences between estimated and real threshold points given the uni-
form test set.

44

Figure 2.13: Differences between estimated and real threshold points given the Gaus-
sian test set.

45

Figure 2.14: Coverage rate errors generated by estimated threshold points given the
uniform test set.

are acceptable for each standardized model in both test sets, i.e., the idea that using

these standardized models with the same entropy to estimate the threshold point of

an unknown probability distribution, even before they are sorted, is sustainable.

Since the conversion from the entropy to the threshold point based on Model A

has the lowest computational complexity among the three standardized models and

also provides pretty good accuracy, we believe that Model A has higher potential to

be applied to the proposed algorithm.

In the real world, we expect the LUT’s separation to be efficient, i.e., the fast

LUT saves much in capacity without losing too much information. If we found the

estimated threshold point is close to 0.9n, i.e., this probability model is very uniform,

46

Figure 2.15: Coverage rate errors generated by estimated threshold points given the
Gaussian test set.

47

we can conclude that applying separation for this probability model is inefficient thus

we keep all the data in the fast portion.

Since we cannot get exact partitioning until completing the first pass, further ad-

justing is required. Since we assume our probability model to be a tree-like structure,

it naturally provides multiple granularities in probability adjustment. For example,

if we observe that the coverage rate of the fast portion is far less than the expected

value after the first pass, we can relax the criteria for the root levels. On the other

hand, if we observe that the coverage rate of the fast portion exceeds the capacity a

little bit, we can tighten the criteria for the leaf levels. By controlling the criteria for

each level, we can achieve successive adjusting of the coverage rate to full utilize the

fast portion capacity.

2.5.2 Access LUT without CAM - Improved Pearson Hash-

ing for Collision Reduction

Although LUT is a very intuitive abstraction, its underlying implementation is very

complex or time-consuming. If we directly store all the entries of an LUT in traditional

numerically addressed RAM, we have to compare every key field to a key until we

find the match one in order to retrieve the value associate to it. Special hardware

designs, such as Content-Addressable Memory (CAM), are capable of fast retrieving

values by keys by performing comparisons in parallel. However, it is too expensive

to implement large scale LUTs. Therefore, we need to develop an efficient way to

implement LUTs without large scale key comparing.

48

A hash table is a data structure which uses a hash function to translate keys into

numerical indices where their corresponding values to be stored and retrieved in one

mathematical step in most case. This data structure totally fulfills the requirement of

implementing LUTs, which is retrieving values by keys instead of numerical addresses

with a low time complexity.

Although a good hash function can evenly distribute the output values in the hash

table’s index space from natural data set in probability, the birthday paradox virtually

guarantees the occurrences of collision, i.e., multiple different keys are mapped into

single address. If all keys are known before organizing a hash table, we can carefully

develop a perfect hash function to completely eliminate collisions and place every key

and corresponding value in a unique memory address. However, in most case, where

the data has to be dynamically arranged, the perfect hash is unachievable.

In order to handle the collisions, most hash tables have to work with collision

resolution strategies. Consequentially, most hash tables are actually maintained by

hybrid addressing models. When an entry does not collide to others, its index is simply

equal to its key’s hash value. Should collision occur, an auxiliary data structure, in

most case is linked list, is introduced to associate the collide entries with their index.

Intuitively, the more collisions occur, the larger portion of our data is organized

in linked lists, and the fewer entries can be directly located by the hash function.

Therefore, the best way to improve the performance of a hash table is to develop a

hash function which can reduce the chance of collisions in the first place.

In this section, we proposed an improved hashing scheme based on Pearson Hash-

ing [26]. Pearson hashing has extremely low computational complexity (only bit-

49

wise arithmetic is utilized), which makes it an ideal hash function to manage large

LUT. Although Pearson hashing was originally developed to encode and manage text

strings, it is applicable to any data type since we can treat each 8-bit segment in

the binary input data stream as a character. We add another permutation table

to “dodge” incoming collision at the last step rather than using single permutation

table and carefully tweaking it to avoid collisions by some rule-of-thumb. The pro-

posed improvement does not only reduce the collision probability, but also enhance

the priority property of the result data structure.

2.5.2.1 Hashing Basics

Hashing itself is a process mapping any data which can be numerically represented

into a limited and discrete number domain. Any function capable for this purpose

can be defined as a hash function.

Assume we have a data set, which each entry in it has two fields, which are the

key and the value associates to the key. What we need is organizing the data set

into a manageable form, i.e., data structure, to enable adding, deleting, and accessing

arbitrary entries according to their key in limited time.

Since the key domain can be very large or even indefinite, it is difficult to use the

keys themselves as the entries’ indices. Therefore, using hash function to map the

keys into a predetermined index space to fit the entries in a limited memory space

is a reasonable solution. A data structure whose entries are mainly indexed by their

keys’ hash values is called a hash table.

Once we organize our data set as a hash table, we can locate an entry by calculate

50

its key’s hash value as index, without scanning through many entries. Then we can

insert, delete, read, or write the entry in the hash table.

Since hash functions map large or indefinite key space into a smaller and limited

index space, there exists a chance that multiple completely different keys generate

identical hash values, which is defined as collisions. Collisions in hash tables, if not

handled properly, can cause problem since entries may be overwritten by others and

lost forever.

We expect a good hash function can evenly distribute output values among the

index space in probability unless a specially designed key set is given. There are many

hash functions designed to process natural text data do achieve this expectation.

However, the birthday paradox guarantees we cannot eliminate collisions no matter

how well the hash function is.

The schemes used to handle hash collisions are collision resolution strategies.

There are varies collision resolution strategies such as using linked lists to chain

collided entries together, i.e., separate chaining, or just leaping forward along the

index space until finding an empty slot to fit in, i.e., open addressing. Both separate

chaining and open addressing strategies require linearly searching in a subset of the

hash table. A hash table’s performance differs by the collision resolution strategy it

uses and its load factor, which defined by the number of entries divided by the total

number of indices provided by the hash function.

In general, applying separate chaining would have average search time higher than

applying open addressing when load factor is low. However, the average search time

using separate chaining would be less sensitive to load factor increasing. Applying

51

separate chaining would outperform open addressing in high load factor conditions.

If the data set is prioritized, i.e., some keys should have lower search time than

others due to their higher occurrence probabilities, we can reorder the entries and

start with the entry with highest occurrence probability while building the hash ta-

ble. Therefore, an entry with higher priority can have better chance to be directly

addressed by hashing its key rather than searched along the linked list or hash table.

Should a higher priority entry collide, it can still be allocated closer to the head of the

linked list (using separate chaining) or to the original address calculated by hashing

(using open addressing), which also means shorter scanning distance along the linear

structure before reaching the goal.

2.5.2.2 Algorithm of Pearson Hashing

The algorithm of Pearson hash function comprises the following steps:

1. Assume we have an n-character long string as our input data, which is encoded

as A0A1A2 · · ·An−1 in ASCII.

2. Create a permutation table, which consists of 256 8-bit codes in random order.

3. Initialize the hash value h = 0 and character index k = 0.

4. Get the new index i = Ak ⊕ h.

5. Find the ith codeword from the permutation table as the new h, and then

increase k by one.

52

6. Repeat Step 4 and 5 using following input characters till the end of the string,

then the final h is the hash value of the string.

As we can see, Pearson hashing uses simple bitwise arithmetic to calculate hash

values. Although the simplicity of Pearson hashing compromises its security, it is

very efficient for text search and any other purposes wherever security is not an issue.

Original Pearson hashing only generates 8-bit hash values. One can, however,

execute an additional Pearson hashing with the first character numerically added one

and combine these two hash values to expand the output range to 16-bit. The pseudo

random nature of Pearson hashing should generate two uncorrelated hash values in

16-bit calculation.

2.5.2.3 Collision Elimination or Reduction in Pearson Hashing

Since the calculation in Pearson hashing is quite straightforward, the only thing we

can do to avoid collision is manipulating the permutation table. The author provided

some guidelines to create a permutation table enabling perfect hashing. However,

those are only rule-of-thumbs and rely on manual try-and-error, which are impractical

to be implemented on autonomous systems.

2.5.2.4 Improved Pearson Hashing to Reduce Collision

The major difficulty to suppress collision rate in Pearson hashing is due to its single

permutation table design, which makes each tweak in the permutation table could

change almost every key’s hash value. Here we propose an improved hash algorithm

based on Pearson hashing by introducing an additional permutation table. By replac-

53

ing the permutation table used while processing the last character in the string with

another permutation table, i.e., the auxiliary permutation table, which is generated

during creating the hash table, a significant number of collisions can be avoid by our

well defined algorithm.

The proposed algorithm to create the hash table and the corresponding auxiliary

permutation table is described below:

1. Assume we have an n-character long string as our input data, which is encoded

as A0A1A2 · · ·An−1 in ASCII.

2. Create a permutation table, which consists of 256 8-bit codes in random order.

3. Create an empty table, i.e., the auxiliary permutation table, which has 256

slots.

4. Initialize the hash index set H = {0, 1, 2, · · · , 254, 255}.

5. For each key, initialize the hash value h = 0, character index k = 0, hash index

j = 0.

6. Get the new index i = Ak ⊕ h.

7. Find the ith codeword from the primary permutation table as the new h, and

then increase k by one.

8. Repeat step 6 and 7 until k = n− 3.

9. Get the new index i = An−2 ⊕ h.

10. There could be four possible cases:

54

(a) If the ith slot in the auxiliary permutation table is empty, and (An−1 ⊕ j)

does not equal to any codeword in the auxiliary permutation table where

j ∈ H, put (An−1 ⊕ j) in the ith slot of the auxiliary permutation ta-

ble, remove j from H, and update h as the jth codeword in the primary

permutation table.

(b) If the ith slot in the auxiliary permutation table is empty, but either

(An−1 ⊕ j) equal to another codeword in the auxiliary permutation table

or j /∈ H, increase j by one and check again.

(c) If the ith slot in the auxiliary permutation table is occupied by codeword

R, and j = (An−1 ⊕R) ∈ H, remove j from H, and update h as the jth

codeword in the primary permutation table.

(d) If the ith slot in the auxiliary permutation table is occupied by codeword

R, and j = (An−1 ⊕R) /∈ H, update h as the jth codeword on the primary

permutation table; there is nothing we can do to avoid this collision.

11. Repeat Step 5 through 10 until all the keys are processed.

12. Fill the empty slots in the auxiliary permutation table with unused codewords,

which make it a legitimate permutation table.

Once we create both permutation tables, we can calculate any key’s hash value

by using the codeword from the auxiliary permutation table, instead of the primary

permutation table, to XOR with the second last character in the key string.

55

2.5.2.5 Properties of the Proposed Hash Algorithm

In the proposed hash algorithm, j represents the last index to select the final hash

value from the primary permutation table for each key. If a key is assigned to a unique

index, it should not collide with others. If we can assign every key a unique index,

we can achieve perfect hashing. The assignment of indices, however, is restricted by

the existed codeword in the auxiliary permutation table, such as condition (b), (c),

and (d) in Step 10. Therefore, we cannot arbitrarily assign index for each key as our

wish and achieve perfect hashing.

When the first few keys are processed, there are still many indices can be picked up

from the hash index set and many codewords can be filled in the auxiliary permutation

table, which enable them to easily get their unique indices. Consequentially, the first

few keys are very unlikely to collide with each other. While the remaining codewords

and available indices getting fewer, the latter keys would have higher chance colliding

with previous keys. In contrast, in the original Pearson hashing, every two keys

colliding together has equal probability. That is, if the data set is prioritized, the

proposed hash algorithm could enhance the advantage of the higher priority keys

over lower priority ones more significantly than the original Pearson hashing does

while building the hash table.

2.5.2.6 Technical Details

The proposed hash algorithm can be implemented in autonomous systems without

human intervene. We allocate two 256 entries memory blocks, one stores the hash

56

table while the other stores collided entries temporarily. Each entry has five fields,

which are entry type, key, length of key, previous address, and next address. The

entry type field represents the entry’s current state; it can either be empty, the body

of a linked list, the head of a linked list, pure hash addressable, or the tail of a linked

list, which is important for collision resolution. The key and its length fields are used

to match in searching. The previous and next address fields are only useful when the

entry is a part of a linked list.

When a collision occurs, we first put the new entry to the temporary block in

sequence and link them. The entries in the temporary block are inserted back to the

empty spaces left in the hash table (and the links should be maintained of course) after

all entries are processed. The hash table should not use any space in the temporary

block at the end.

There are some auxiliary variables inserted to count linked lists’ lengths and colli-

sion occurrences while building the hash tables. The experiment results are presented

in the next subsection.

2.5.2.7 Experimental Results

We implement both Pearson hashing and the proposed hash algorithm in C, feed them

with identical text data set, execute 1M iterations, and then compare the average

linked list lengths and collision counts of each key.

As shown in Figure 2.16, the text data set is list of 256 NATO reporting names,

which are used to identify Soviet, Russian, and Chinese military equipments including

aircraft, missiles, and submarines. All keys are in upper case. The list is not in

57

Figure 2.16: Test key set complied from NATO reporting names.

alphabetical order though the reporting names for aircraft and missiles with the

same initials are put together. The compilation of this data set is not based on

any meaningful idea; just like how the NATO officials picked up those nouns from a

dictionary.

The average linked list length in the hash table generated by the proposed hash

algorithm is 1.280576, while it is 1.586192 by original Pearson hashing. The proposed

hash algorithm reduces the average linked list length by 19.27%, which also means

lowering the average search time.

The collision counts versus each key’s processing sequence of both hash algorithms

are shown in Figure 2.17.

As we can see, the proposed hash algorithm enhances the advantage of the former

58

Figure 2.17: Comparison of collision counts distributions generated by Pearson and
the proposed hashings.

59

keys over latter ones with lower collision rate in most case. Note the 6 peaks in the

graph of the proposed hash algorithm. They are generated by the keys who share most

of the characters except the last one with previous keys as the keys in bold typeface in

Figure 2.16. However, the proposed hash algorithm outperforms the original Pearson

hashing in general.

2.5.2.8 Implications

We can significantly lower the collision rate and thus the average search time of a hash

table by applying the proposed hash algorithm. Since the proposed hash algorithm

retains the arithmetic simplicity of Pearson hashing in searching, we can achieve even

faster content searching in the much more efficient hash table. The only extra costs

are 256 bytes memory space for the auxiliary permutation table, and more complex

scheme for hash table building. However, we do searching much more frequently than

setup data structures.

2.6 Summary

In this chapter, we propose an architecture to improve the compatibility of virtualiza-

tion based on the application streaming concept. We further propose prefetching VM

pages to reduce the waiting. We also discuss the feasibility of applying prefetch based

on decision tree learning and information theory which also outlines the requirement

of the probability model.

To apply prefetch in the proposed application, we use LUT to mange the proba-

60

bility model. We then propose an algorithm to separate a single LUT into two-level

hierarchical LUTs to improve efficiency.

Since implementing LUTs requires retrieving certain value associate to a key, we

propose using a hash tables to implement instead of expensive CAM. We propose an

improved hashing scheme based on Pearson hashing. The proposed hashing signifi-

cantly reduces the collision rate with a very little extra cost on complexity comparing

to Pearson hashing, which help us to efficiently access the probability model to realize

the proposed prefetch application.

61

62

Chapter 3

Optimization of Browser-Based

Application Virtualization

As computing devices get smaller, lighter, and more portable, computing becomes

more focused on mobile applications. We expect this trend to continue for years to

come.

Deploying application software on mobile computing devices can be a challenge

for several reasons. First of all, various mobile operating systems exist and none is

expected to dominate and set the standards for the mobile computing in ways the

Windows operating systems have done for the desktop computing. Making a software

program to be compatible with different mobile operating systems requires extra cost

and effort – for example, developing multiple SDKs.

Although compatibility across application-platforms also exist on typical desk-

top computers, it is far more difficult for mobile computing devices because of the

additional constraints such as limited compute cycles in the mobile devices. Un-

63

like operating systems for desktop computers, mobile operating systems are highly

customized per product and secured against unauthorized user access. Generally, or-

dinary end-users cannot upgrade or patch their mobile operating systems to address

application-platform compatibility issues, as can be done for the desktop computers.

It is thus hinged upon software developers to provide compatibility across mobile

platforms.

Virtualization can address the compatibility in deploying mobile application soft-

ware on various mobile platforms. Theoretically, we can either use application stream-

ing to deploy application software over the Internet and run the application software

on top of a preinstalled runtime environment, i.e., virtual machine, or run the appli-

cation software on a managed server while each client device deals with user inputs,

such as keystrokes, and outputs, such as display updates from the server [4] [9] [13].

We generally refer to the latter paradigm as the browser-based approach since web

browsers provide an ideal framework for it.

Although technically plausible, deploying a virtual machine running on top of a

mobile operating system requires the distribution of applications violates the “Non-

Compete” policy [27] [28] by marketplace operators1. Consequently, the browser-

based approach becomes the only practical way to provide application virtualization

on mobile computing devices.

1VMware’s Mobile Virtualization Platform (MVP) [29], which implements this paradigm, is not
available in Android Marketplace. To install MVP on an Android phone requires sideloading, and
only Android platform leaves this loophole to install apps outside the marketplace, which is at the
mercy of Google and wireless service providers. In fact, some wireless providers do block sideloading
on some Android phones. Furthermore, among the major mobile device players, only Android is
supported by MVP. Therefore, even VMware starts their own app store for MVP, it does not help
cross-platform software deployment anyway.

64

The conventional solution of web-based application virtualization involves setting

up a server or a group of servers at a co-location center (or data center) provided by

an Internet service provider (ISP). From the co-location center, application virtual-

ization services are provided through the Internet. This configuration typically incurs

long response latency and significantly reduces the user experience since every input

must travel through a series of routers and bridges to the co-location center and the

corresponding response has to traverse backward through a similar route. Each node

along the route introduces processing delay, queuing delay, and transmission delay.

To alleviate this issue, we propose an alternative configuration which partitions a

service area into multiple smaller service areas with own server(s) [30]. The proposed

configurations can significantly reduce delays since each server is closer to its user.

The proposed configuration, however, has to handle hand-off, i.e., mobile stations

moving from one service area to another. We also propose a hand-off protocol offering

seamless user experience in Section 3.3.

The proposed configuration comes with a price, such as introducing longer re-

sponse latency during hand-offs. We use an analytical approach to evaluate the

performance as a result of infrastructure arrangement [30].

We further set up a simulation environment based on the UMTS urban pedestrian

model and vehicular mobility model, and use the empirical approach to establish the

correlations between the performance and the size of local service areas [31][32].

65

3.1 Related Work

There are several papers proposed to optimize service migration though for different

applications. Bienkowski et al. proposed competitive analysis for service migration

in optimizing the server allocation in VNets in [33]. Arora et al. proposed some

strategies for flexible server allocation in [34] following the previous work [33]. Al-

though these works were not specifically for mobile application virtualization, they

provide a precious insight on the performance evaluation for dynamic service alloca-

tion considering both user experience and operational cost. However, the analytical

approach used in these works is topological and does not focus on the user mobility

and interaction models. Furthermore, the authors of [33] and [34] allow services being

temporarily interrupted during migrations, which is not feasible for application vir-

tualization services. In the proposed configuration, application services are available

to users with reduced performance during hand-offs.

3.2 Distributed Application Virtualization Service

Configuration

Running application software on a remote server is conceptually similar to the usage

model of time-sharing mainframe computers in the 1960s [2]. Although the commu-

nication bandwidth between terminals and mainframe servers at that time was low

by the recent standards, it did not affect the user experience thanks to the text-only

display and short traverse distance. However, in recent application virtualization

66

technologies such as Virtual Desktop Infrastructure (VDI) proposed by VMware [35],

much more complex and bloated content must be exchanged over much longer dis-

tances between clients and servers, especially for mobile users.

An infrastructure ready to offer mobile users application virtualization services

includes base stations (BSs) covering the whole service area, a core network connecting

base stations and servers together, and a server hosting the services. A command sent

by a mobile station (MS) has to travel over the wireless channel to the BS, go through

the backhaul network to the server, and then make some changes on the server. Should

any update corresponding to the command be sent to the MS, the information has

to travel all the way backward. In order to reduce the network delay generated by

long transmission distances among the backhaul network, we deploy multiple servers

among a wide area to serve their nearby MSs in the proposed configuration, instead

of setting up a group of servers located at one data center serving all MSs.

In the proposed configuration, each server connects to several nearby BSs which

form a local service group (LSG). The area covered by the BSs of the same LSG is

defined as the local service area (LSA). Every BS belongs to one LSG in order to

provide the service over the wireless network’s coverage area. When a user demands

a virtual application program, the server of the LSG, based on VDI [35] paradigm,

starts a virtual machine (VM) dedicated to the user and launches the application

software on top of it. The MS only handles inputs and outputs that interact with the

VM at the server.

As long as the MS stays in the same LSA, the user can enjoy using application

software with low response latency. If the MS moves from the original LSA to a

67

nearby one, a hand-off at the VM level, which transfers the runtime environment to

the server of the next LSG, is triggered. The detail of the hand-off protocol will be

proposed in the next section.

3.3 Hand-off Protocol

The purpose of the proposed hand-off protocol is to transfer minimum information

required to recreate the runtime environment on a remote server, i.e., the snapshot,

without interrupting the service. No matter how small the snapshot is, it still takes

a period of time before the next server receives the complete snapshot and is ready

to take over the service. In order to provide a seamless user experience during this

period, the next server has to record all inputs from the MS, relay all inputs to the

previous server, and relay all output from the previous server to the MS, until the

runtime environment resumes locally. The proposed hand-off protocol is described as

below:

1. When an MS moves from Server A’s to Server B’s LSA and sends an input

command, Server B notices a newcomer within its LSA.

2. Server B broadcasts the newcomer’s identification to all geographically nearby

servers.

3. Server A, which hosts the MS’s runtime environment, i.e., its VM server, re-

sponds Server B’s inquiry. Now Server B knows the newcomer’s VM server is

Server A.

68

4. Server B records and relays the user’s input commands to Server A, signals

Server A to transfer the runtime environment, and relays display updates from

Server A to the newcomer.

5. Once Server A is signaled to transfer the runtime environment, it takes a snap-

shot.

6. Besides continually responding to the input commands relayed from Server B

as the MS is still in its LSA, Server A also sends the snapshot to Server B in

the background.

7. Once Server B receives the complete snapshot and recreates the runtime envi-

ronment from the snapshot and base data, it internally feeds the input queue,

which was recorded during the transition period, to the runtime environment.

Therefore, the runtime environment state on Server B is synchronous with that

on Server A after the snapshot was transferred.

8. Server A completely stops serving the MS, the MS’s VM server is now Server

B instead.

The timeline of the proposed hand-off protocol is illustrated in Figure 3.1.

If the MS turns around and reenters Server A’s LSA before the hand-off is com-

pleted, Server A can preempt the snapshot transmission and resume serving the MS

as if the hand-off never happened. Since Server B relays all inputs to Server A while

the MS is absent from Server A’s LSA, aborting the hand-off procedure would not

generate any glitch noticed by the user. This hand-off abortion mechanism can pre-

69

Figure 3.1: Protocol timeline for a mobile station moving from Server A to Server B.

vent unnecessary data transmission from moving VM servers back and forth if an MS

were moving around the edge of an LSA. On the other hand, if the MS moves to

Server C’s LSA before the hand-off is completed, Server C initializes another hand-off

procedure with Server B. In addition to the snapshot, Server B has to transfer the in-

put record before Server C joins the hand-off chain. We allow pipelining transmission

to reduce hand-off periods and shorten subsequent hand-off chains in this scenario.

3.4 Performance Evaluation Using Free Particle

Mobility Model

We define the response time as the average time interval between a user sends an input

and gets an expected output update. The proposed server configuration is meant to

70

improve the response time by reducing propagation delay along the communication

route between each base station to the server which is hosting the service. Factors

other than the propagation delay, such as wireless communication technologies and

computational capabilities provided by servers, would affect the user experience and

the quality of our service. Most of them, however, either affect both configurations

equally, or can be overcome with reasonable cost.

The proposed configuration reduces the propagation delay and thus provides more

responsive user experiences when uses are standing still. When a hand-off occurs,

however, the user may experience longer response time waiting for the information

to be exchanged between two servers before the runtime environment is successfully

taken over by the new server. The smaller each local service area is, the higher

occurrence probability of hand-offs the user may experience. Therefore, we have to

quantitatively estimate and compare the propagation delays of the conventional and

the proposed server configurations.

The precise propagation delay analysis depends on a wireless service provider’s

core network topology and its users’ moving pattern record. Instead of acquiring

those field data, we focus on the intrinsic properties of the two configurations. There

are two approaches to estimate the average response time due to propagation delay;

one assumes continuous service areas, the other is based on the optimal arrangement

of base stations. The details are presented in the following subsections.

71

3.4.1 Continuous Service Area Approach

In this approach, we simplify the communication model between mobile stations and

servers. Here are our assumptions:

1. The whole service area can be covered by a single server, or proximately by

multiple servers, each having a regular hexagon shaped service area seamlessly

tiled together as a service array.

2. A mobile station can directly communicate with the server everywhere in its

(local) service area.

3. Users are uniformly distributed geographically in the beginning. Users can

either move a certain distance in any direction, or stay at the same location for

a while.

4. The propagation delay of each link is proportional to its length.

5. Each server’s allocation is geographically optimized, that is, each server is lo-

cated at the center of its (local) service area to reduce the average propagation

delay.

The traverse time in our case is defined by:

Ttraverse = 2 · (1− PHO) · (Tr + Tl) + 2 · PHO · THO (3.1)

where PHO is the probability of transactions which either trigger hand-offs or occur

during each handoff, Tr is the radio propagation delay, Tl is the line propagation

72

Figure 3.2: Service area of 7-server configuration compares with of single-server one.

delay, and THO is the prolonged traverse time during each hand-off according to the

proposed protocol. To simplify the problem, we only compare the following three

configurations covering the same amount of area:

A A single server covering a regular hexagon service area of edge length L.

B 7 servers, each covering a regular hexagon service area of edge length L√
7
, as shown

in Figure 3.2.

C 12 servers, each covering a regular hexagon service area of edge length L√
12
, as

shown in Figure 3.3.

3.4.1.1 Average Transmission Distance

We can calculate the distance from an arbitrary point within each hexagon-shaped

service area to the center of the area, where the optimal server is. Since we assume

73

Figure 3.3: Service area of 12-server configuration compares with of single-server one.

that our users’ locations are uniformly distributed geographically in our service area,

we can estimate the average transmission distance for each user in terms of edge

length of the service area. Due to the symmetry of hexagons, the average distance

from an arbitrary point within a hexagon to its center is equivalent to the average

distance from an arbitrary point within a 30-60-90 triangle to the 30-degree vertex

as shown in Figure 3.4.

By integrating
√
r2 + h2 along h and r, as shown below:

∫ √
3L
2

0

∫ r√
3

0

{√
r2 + h2

}
dhdr

=
∫ √

3L
2

0

{
h

2

√
r2 + h2 +

r2

2
ln
∣∣∣h+

√
r2 + h2

∣∣∣}∣∣∣∣∣
0

r√
3

dr

=
∫ √

3L
2

0
r2dr ·

{
1

3
+

ln(3)

4

}

=

√
3L3

8
·
{
1

3
+

ln(3)

4

}
(3.2)

74

Figure 3.4: 30-60-90 triangle as part of hexagon with edge length L, used to estimate
average distance to the lower right vertex.

Figure 3.5: The Markov chain of a moving MS’s status.

By averaging the result above by the whole triangle area, the average transmission

distance for each user in terms of the edge length of the service area is:

√
3L3

8
·
{
1
3
+ ln(3)

4

}
√
3L2

8

=

{
1

3
+

ln(3)

4

}
· L ≈ 0.60799L (3.3)

3.4.1.2 Probability of Transactions Relevant to Hand-off

The transition between normal and hand-off mode of each moving MS can be repre-

sented by a simple two-state Markov chain as shown in Figure 3.5.

As we can see in Figure 3.5, a moving MS in the normal state gets into the

75

hand-off state when it moves across the border of its current local service area with

probability Pcross. On the other hand, a moving MS in the hand-off state can go back

to the normal state either by completing the hand-off procedure with probability

Pcomplete, or by returning to the previous local service area and preempting the hand-

off procedure with probability Pabort. The summation of Pcomplete and Pabort is Pr,

which represents the total probability for a moving MS in the hand-off state to return

to the normal state.

By steady-state analysis, we can derive the probability of transactions relevant to

hand-offs, i.e., PHO, as below:

[1− PHO PHO]

 1− Pcross Pcross

Pr 1− Pr

 = [1− PHO PHO]

PHO =
Pcross

Pcross + Pr

≤ Pcross

Pcross + Pcomplete

(3.4)

As we can see, the two factors Pcross and Pr affect PHO. Both factors depend on

e users’ mobility and the dimension of the service areas. Assume the average moving

speed of an MS is s
∆t
. To make it possible to trigger a hand-off in the following time

instance ∆t, the MS has to be within s from the current service area’s borderline.

Furthermore, the probability of an MS satisfying this prerequisite actually crossing

the borderline and thus triggers a hand-off depends on how close to the borderline it

is as shown in Figure 3.6.

Therefore, the probability of an MS which is located d from the borderline with

76

Figure 3.6: For an MS close to the borderline who can freely choose it direction, the
probability of crossing the borderline in the next time instance is 2θ

2π
.

speed s
∆t

actually crossing the borderline in the next time instance ∆t is given by:

Pcross(d, s) =


1
π
· cos−1

(
d
s

)
0 ≤ d ≤ s

0 otherwise

(3.5)

However, since the service areas are hexagon-shaped, the borderline within the

moving range is not always a straight line. As shown in Figure 3.7, the above equation

does not apply to the MS located in the singular area, i.e., the area near vertices. It

is so complex to estimate exact Pcross at singular area, such that we only calculate

the range of Pcross instead.

We define P̂cross(d, s) as the probability of an MS in the singular area crossing the

borderline. Intuitively, the upper bound of P̂cross(d, s) is
2
3
, in case of the MS starting

at the corner, while the lower bound is Pcross(d, s). The singular area would not be a

problem in our estimation if L is relatively larger than s.

For each hexagon-shaped service area, the probability for an arbitrary MS crossing

77

Figure 3.7: Users at the singular area (dark area) have higher Pcross; the above
equation can only apply in the normal areas (light areas).

the borderline and triggering a hand-off is:

P̄cross(L, s, n) =
2

3
√
3L2

∫ s

0
{n(L− 2s) · Pcross(d, s)} dd+ ns2

(
2− 1√

3

)
· 2

¯̂
P cross

3
√
3L2

=
2

3π
√
3L2

∫ s

0

{
n(L− 2s) · cos−1

(
d

s

)}
dd+

2ns2(2
√
3− 1) · ¯̂P cross

9L2

=
2ns(L− 2s)

3π
√
3L2

∫ 1

0
cos−1(k)dk +

2ns2(2
√
3− 1) · ¯̂P cross

9L2

=
2ns(L− 2s)

3π
√
3L2

·
{
k cos−1(k)−

√
1− k2

}∣∣∣1
0
+

2ns2(2
√
3− 1) · ¯̂P cross

9L2

=
2ns(L− 2s)

3π
√
3L2

+
2ns2(2

√
3− 1) · ¯̂P cross

9L2
(3.6)

where
¯̂
P cross is the average probability of an MS in the singular area crossing the

borderline, and n is the number of edges which border another service area.

78

Since
¯̂
P cross ≤ 2

3
,

P̄cross(L, s, n) ≤ 2ns(L− 2s)

3π
√
3L2

+
2ns2(2

√
3− 1) · 2

3

9L2

=
2ns{3

√
3L+ 2(2

√
3π − 2π − 3

√
3)s}

27πL2

=
2
√
3n

9π
·
(
s

L

)
+

4(2
√
3π − 2π − 3

√
3)n

27π
·
(
s

L

)2

(3.7)

For s ≪ L,

P̄cross(L, s, n) ≈
2
√
3n

9π
·
(
s

L

)
(3.8)

In the proposed design, the hand-off procedure takes a period of time while the

MS can continue sending requests. The duration of a complete hand-off Tcomplete, as

a result of the total amount of data which are transferred for each hand-off Dsync, the

transmission bandwidth provided by the link between the two adjacent servers BW s,

and the transmission latency of the link Tls, all affect the fraction of transactions

relevant to hand-offs. The equation is given by:

Tcomplete =
Dsync

BW s

+ Tls (3.9)

Once a user triggers a hand-off, the subsequent requests within Tcomplete are cate-

gorized as hand-off related transactions. In other word, there are at least Pcomplete =

1
Tcomplete

of MSs which are performing the hand-off procedure return to the normal

status in average. The actual rate of leaving the hand-off status Pr should be substan-

tially higher since some MSs preempt the hand-off. However, the hand-off abortion

79

rate Pabort is very difficult to be derived with analytical approaches. Consequently,

we take Pcomplete as a reference of Pr first and discuss the relation between them later.

Now we can derive PHO by the following equation:

PHO =
P̄cross

P̄cross +
α

Tcomplete

=
P̄cross

P̄cross +
α

Dsync
BWs

+Tls

=

2
√
3E(n)
9π

·
(

s
L

)
2
√
3E(n)
9π

·
(

s
L

)
+ α

Dsync
BWs

+Tls

=
2
√
3E(n)

(
s
L

)
·
{
Dsync

BW s
+ Tls

}
2
√
3E(n)

(
s
L

)
·
{
Dsync

BW s
+ Tls

}
+ 9πα

(3.10)

where α = Pr

Pcomplete
> 1 is the average hand-off duration, and E(n) is the average num-

ber of edges which border another service area, which is 0, 24
7
, and 4 for Configuration

A, B, and C, respectively.

We can roughly conclude that PHO can be increased by higher MS mobility, a

larger volume of the data required for the synchronization, and a longer transmission

latency between the servers. On the other hand, it will be reduced by a wider service

area, a higher bandwidth between the servers, and a higher rate of hand-off abortion.

However, the transmission latency between the two adjacent servers is proportional

to the service range. We will see how the service range affects the average response

time in the following subsection.

80

3.4.1.3 Average Response Time Comparison of the Three Configurations

In Configuration A, there is only one server thus no hand-off mechanism. The average

traverse time of Configuration A is quite straightforward:

TA
traverse = 2 · (Tr + TA

l) (3.11)

Now we have to consider hand-offs in Configuration B. Its average traverse time

is:

TB
traverse = 2 · (1− PB

HO) · (Tr + TB
l) + 2 · PB

HO · TB
HO

= 2 · (1− PB
HO) · (Tr +

Tl√
7
) + 2 · PB

HO · (Tr + Tlmax + Tls)

= 2

Tr +
Tl√
7
− PB

HOTl√
7

+

{
1
2
+ 3 ln(3)

4
+
√
3
}
PB
HOTl

√
7
(
1
3
+ ln(3)

4

)


= 2

{
Tr +

Tl√
7

{
1 + PB

HO

{
12
√
3 + 2 + 6 ln(3)

4 + 3 ln(3)

}}}
(3.12)

where Tlmax is the propagation delay between the MS and the new server during

hand-offs, which is
{

1
2
√
3
+ 3 ln(3)

8
√
3

}
Tls, since we assume that the MSs are still located

around the borderline at the time.

Therefore, if we expect that Configuration B would outperform Configuration A,

i.e., TB
traverse < TA

traverse, we can estimate the upper bound of PB
HO as below:

1 + PB
HO

{
12
√
3 + 2 + 6 ln(3)

4 + 3 ln(3)

}
<

√
7

81

PB
HO <

(
√
7− 1)(4 + 3 ln(3))

12
√
3 + 2 + 6 ln(3)

≈ 0.4087356087 (3.13)

This constrain is generally considered very slack.

Similarly, the average traverse time for Configuration C is:

TC
traverse = 2

{
Tr +

Tl√
12

{
1 + PB

HO

{
12
√
3 + 2 + 6 ln(3)

4 + 3 ln(3)

}}}
(3.14)

And the upper bound of PC
HO to outperform Configuration A is:

1 + PC
HO

{
12
√
3 + 2 + 6 ln(3)

4 + 3 ln(3)

}
<

√
12

PC
HO <

(
√
12− 1)(4 + 3 ln(3))

12
√
3 + 2 + 6 ln(3)

≈ 0.6119795056 (3.15)

Furthermore, to outperform Configuration B given the same BW s, the criteria

are estimated below:

Tl√
12

{
1 + PC

HO

{
12

√
3+2+6 ln(3)
4+3 ln(3)

}}
< Tl√

7

{
1 + PB

HO

{
12

√
3+2+6 ln(3)
4+3 ln(3)

}}
√
7{1 + PC

HO · k} <
√
12{1 + PB

HO · k}

k{
√
7PC

HO −
√
12PB

HO} <
√
12−

√
7

k

√7 ·
2
√
3EC(n)

(√
12s
L

)
·
{

Dsync
BWs

+TC
ls

}
2
√
3EC(n)

(√
12s
L

)
·
{

Dsync
BWs

+TC
ls

}
+9παC

−
√
12 ·

2
√
3EB(n)

(√
7s
L

)
·
{

Dsync
BWs

+TB
ls

}
2
√
3EB(n)

(√
7s
L

)
·
{

Dsync
BWs

+TB
ls

}
+9παB


<

√
12−

√
7

8
√
21

(√
12s
L

)
·
{

Dsync
BWs

+
√

7
12

TB
ls

}
8
√
3

(√
12s
L

)
·
{

Dsync
BWs

+
√

7
12

TB
ls

}
+9παC

−
96
7

(√
7s
L

)
·
{

Dsync
BWs

+TB
ls

}
16

√
3

7

(√
7s
L

)
·
{

Dsync
BWs

+TB
ls

}
+3παB

< (
√
12−

√
7)(4+3 ln(3))

12
√
3+2+6 ln(3)

(3.16)

82

The inequality above provides an accurate bound of the function of s
L
, Dsync

BW s
, TB

ls ,

αB, and αC . It is, however, too complex to help us to determine which configuration

is better given a set of system parameters. Fortunately, we can discover the benefit

brought by a more distributed infrastructure arrangement by simplify the inequality

above based on sensible approximations. First of all, in most case Tls is negligible

comparing to Dsync

BW s
. Therefore, we can replace all Tcomplete by Dsync

BW s
. Secondly, as

s ≪ L, Pabort’s in both configurations are approximately the same. In consequence,

αB ≈ αC . Therefore, we can further set αPr = βPB
cross where β > 0 to simplify the

inequality.

Since

P̂cross(L, s) ≈
2
√
3E(n)

9π
·
(
s

L

)
(3.17)

Therefore,

PC
cross

PB
cross

=

2
√
3·4

9π
·
(√

12s
L

)
2
√
3· 24

7

9π
·
√
7s
L

⇒ PC
cross =

√
7

3
PB
cross (3.18)

Now we can represent PB
HO and PC

HO only in terms of PB
cross and β:

PB
HO =

PB
cross

PB
cross + αPr

=
PB
cross

PB
cross + βPB

cross

=
1

1 + β

PC
HO =

PC
cross

PC
cross + αPr

=

√
7
3
PC
cross√

7
3
PC
cross + βPB

cross

=

√
7√

7 +
√
3β

(3.19)

83

And then rewrite the inequality in terms of β:

√
7PC

HO −
√
12PB

HO <
(
√
12−

√
7)(4 + 3 ln(3))

12
√
3 + 2 + 6 ln(3)

7√
7 +

√
3β

− 2
√
3

1 + β
<

(
√
12−

√
7)(4 + 3 ln(3))

12
√
3 + 2 + 6 ln(3)

(7− 2
√
21) + β√

7 + (
√
7 +

√
3)β +

√
3β2

<
(
√
12−

√
7)(4 + 3 ln(3))

12
√
3 + 2 + 6 ln(3)

⇒ 0.352β2 − 0.110β + 2.703 > 0 (3.20)

which is true for all β.

Therefore, we can conclude that if s ≪ L, Dsync

BW s
≫ Tls, and αB ≈ αC , Configura-

tion C can always outperform Configuration B in terms of traverse delay.

3.4.1.4 The Actual Rate of Leaving Hand-off State

To better understand Pr and its relation to Tcomplete, we wrote a simple simulation

program to empirically measure the average time an MS stays in the hand-off status.

The program simulates an MS originally located close to a borderline, whose distance

to it is uniformly distributed from 0 to s. Before it cross the borderline and triggers

a hand-off, it randomly choose a direction from −π to π and step forward s, which

ensures it either crosses, or approaches to, the borderline. Once it triggers a hand-off,

it can randomly choose any direction to step forward until the predetermined Tcomplete

runs out or it moves back to the other side of the borderline. The time each MS stays

in the hand-off status is gauged and averaged in the end of the program.

The average time MSs stay in the hand-off status given different Tcomplete is shown

in Figure 3.8.

84

Figure 3.8: The actual average hand-off duration.

The value of α, which varies in a similar curve as in Figure 3.8 is shown in Figure

3.9.

As we can see in Figure 3.8 and Figure 3.9, the actual rate of leaving hand-off state

Pr, which is the inverse of actual average hand-off duration, only fluctuates slightly

in response to Tcomplete. Therefore, we can assure that ignoring Tls and subsequently

assuming that Tcomplete’s are identical for both configurations are sensible.

3.4.2 Optimal Arranged Base Stations Approach

In this approach, the service area is covered by a group of base stations, each con-

nected to a server. Unlike the continuous service area approach which assumes each

service area is a perfect regular hexagon, in this model the service areas are shaped

by overlapping disks, each covered by a base station with omni-directional antenna.

85

Figure 3.9: The value of α given different Tcomplete.

Consequently, each (local) service area is similar to a regular hexagon but with some

“ripples” around the edges, which make it very difficult to estimate the hand-off prob-

ability. We can, however, proximately estimate it in certain conditions. Here are the

assumptions, which are slightly different from those of the other approach:

1. The whole service area is covered by minimum number of base stations with

omni-directional antennae. In other words, base stations are located at unit

points of a two-dimensional Synergetics coordinates [36].

2. We can either connect all base stations to one server, or separate base stations

into several groups and connect them to the server of each group. The optimal

service area of each group is approximately a regular hexagon.

3. Users are uniformly distributed geographically in the beginning. Users can

86

Figure 3.10: Service area of single-server configuration with m = 3.

either move a certain distance in any direction, or stay at the same location for

a while.

4. The propagation delay of each link is proportional to its length.

5. Each server’s allocation is geographically optimized, that is, each server is lo-

cated in the center of its (local) service area to reduce average propagation

delay. The traverse time in our service is defined by (3.1) as well.

Again, we compare the following two configurations covering the same area.

A: (3m2 + 3m + 1) base stations are placed like a regular hexagon, where m is the

number of the base stations’ intervals along one of the hexagon’s edges. Each

interval is
√
3R long, where R is the effective communication range of each base

station. An example is illustrated in Figure 3.10.

B: 7 servers, each connected to (3⌈m
3
⌉2 + 3⌈m

3
⌉ + 1) base stations as a local service

area. The base stations in each local service area are placed like a regular

87

Figure 3.11: Service areas of 7-server configuration, each with m = 1, covering the
same amount of area.

hexagon with ⌈m
3
⌉ intervals along one of its edge, as shown in Figure 3.11.

3.4.2.1 Average Transmission Distance

The average transmission distance in this approach is the discrete version of the

continuous service area’s counterpart. However, it is very difficult to represent in

terms of m, as shown below:

3r
∑m−1

t=0

∑m−t
k=1

√
3(2k + t)2 + 9t2

3m2 + 3m+ 1
(3.21)

Fortunately, we find out that the average transmission distance in this approach

is approximately linear and gets closer to its continuous counterpart as m increases

according to the computer calculation, as shown in Figure 3.12.

88

Figure 3.12: Comparison of average transmission distances of different approaches
covering approximately equal service area.

In other words, we can estimate the average transmission distance by either (3.21),

or the continuous counterpart (3.3) with comparable parameters. In the later sections,

we will use the latter one to focus on the quantitative relationships between the

parameters and the performance rather than the exact value.

3.4.2.2 Probability of Transactions Relevant to Hand-offs

Due to the irregular shape of each local service area, it is difficult to estimate the exact

probability of an arbitrary user around the border moving out of the service area by

equations. However, if users’ moving distances in each time instance are relatively

short compared to a base station’s effective communication range, the perimeter of

each local service area at any point is near a straight line from a user’s point of view.

Therefore, we can borrow the results from the continuous counterpart (3.6) to

89

estimate the probability of a user crossing the borderline. The average probability of

a user crossing the borderline along an arbitrary line which is perpendicular to the

assumed straight borderline is:

δP̄cross(s) =
∫ s

0

{
1

π
cos−1

(
d

s

)}
dd

=
s

π

∫ 1

0
cos−1(k)dk

=
s

π

{
k cos−1(k)−

√
1− k2

}∣∣∣1
0
=

s

π

(3.22)

The perimeter of the service area has to be recalculated as 6(m−1) one-third arcs

and 6 half circles of radius R:

6Ledge = 6(m− 1) ·
(
2πR

3

)
+ 6 ·

(
2πR

2

)
= 2πR(2m+ 1) (3.23)

For a local service area with n edges bordering another one, the length of borderline

eligible to invoke hand-offs is:

nLedge =
nπR(2m+ 1)

3
(3.24)

And we recalculate the service area as well. The area is basically a hexagon with

some “decorations” around the perimeter:

A =
3
√
3

2

(√
3mR +

R√
3

)2

+ 6

{
πR2

2
− R2

√
3
+ (m− 1)

(
πR2

2
−

√
3R2

4

)}

90

= R2

{
9
√
3m2

2
+

(
2π +

3
√
3

2

)
m+ π

}
(3.25)

By accumulating the ¯δP cross along the perimeter and averaging with total area,

the probability of a user crosses the borderline for mobile stations located in the

service area for s ≪ R is:

P̄cross =
nπR(2m+ 1)s

3πR2
{
9
√
3m2

2
+
(
2π + 3

√
3

2

)
m+ π

}
=

n(2m+ 1)s

3R
{
9
√
3m2

2
+
(
2π + 3

√
3

2

)
m+ π

} (3.26)

Similar to the continuous counterpart, PHO is given by the following equation:

PHO =
Pcross

Pcross + Pr

=

E(n)(2m+1)s

3R

{
9
√

3m2

2
+

(
2π+ 3

√
3

2

)
+π

}
E(n)(2m+1)s

3R

{
9
√

3m2

2
+

(
2π+ 3

√
3

2

)
+π

} + α
Dsync
BWs

+Tls

(3.27)

for s ≪ R, where E(n) is the average number of edges bordering another local service

area as well, which is 0 and 24
7
in Configuration A and B, respectively.

3.4.2.3 Average Response Time Comparison of the Two Configurations

The average response time of configuration A TA
response is still 2(Tr +TA

l).The average

traverse time of Configuration B is equal to its continuous counterpart (3.12) as well.

If we expect that Configuration B would bring a shorter average response time over

Configuration A, the upper bound of PB
HO is unchanged:

PB
HO <

(
√
7− 1)(4 + 3 ln(3))

12
√
3 + 2 + 6 ln(3)

≈ 0.4087356087

91

Therefore, the constraints for m, s, R, Dsync

BWs
, α, Tls, and Tu are represented in the

equation below:

8(2m+1)s

R

{
9
√

3m2

2
+

(
2π+ 3

√
3

2

)
+π

}
8(2m+1)s

R

{
9
√

3m2

2
+

(
2π+ 3

√
3

2

)
+π

} + 7α
Dsync
BWs

+Tls

< 0.051091951 (3.28)

3.4.3 Simulation Result

To verify the estimations of Pcross, we use the Monte Carlo method by running a

simulation program which sets up base stations of given R at optimal locations,

randomly puts a large number of mobile stations, moves them away from their original

location a fixed distance in any direction, and measures the number of the mobile

stations escaping from the service area.

To compare the errors of the two different approaches, we set two environments

with short R and large m, and long R with small m, and adjustable s. In the former

environment, we set R = 0.25, m = 40, s varies from 0.1 to 2.0 with 0.01 steps, and

place 107 mobile stations. The PHO derived by the estimators and measured in the

simulation are compared in Figure 3.13.

As we can see, the continuous service area approach is a better estimator since the

shape of the service area is very close to a perfect regular hexagon in this environment.

Furthermore, we compare the error rate of both estimators and compare them in

Figure 3.14.

We can see in this series of simulations, the optimal arranged base stations ap-

proach only works well with very low s. However, when we set R = 2.0 and m = 5

92

Figure 3.13: Comparison of estimations and simulation result with R = 0.25 and
m = 40.

93

Figure 3.14: Comparison of estimation errors with R = 0.25 and m = 40.

94

Figure 3.15: Comparison of estimations and simulation result with R = 2.0 and
m = 5.

and run the same simulations, it becomes a different story as shown in Figure 3.15.

Since the base stations are far less dense than in the previous setting, the “ripples”

around the service area get larger and distort the shape away from a perfect regular

hexagon. As we can see in Figure 3.15, the optimal arranged base stations approach

is a very accurate PHO estimator for s ≤ 0.5 (s ≤ R
4
), and the continuous service area

approach gets more and more accurate PHO in response to increasing user mobility.

By comparing the estimation errors of both approaches in Figure 3.16, we can see

the accuracies of the two estimators significantly depend on user mobility.

95

Figure 3.16: Comparison of estimation errors with R = 2.0 and m = 5.

96

3.5 Performance Evaluation Using the UMTS Ur-

ban Mobility Model

Although the free particle analysis in the previous section relates the overall perfor-

mance to the MS’s mobility and the infrastructure’s geographical parameters, the

arbitrary mobility model is too arbitrary to preview the performance of the proposed

configuration and hand-off protocol in real world. Since each MS moves without in-

ertia and any intelligent intent, it is able to suddenly turn to an opposite direction in

the free particle mobility model. This moving characteristic only makes sense for an

application virtualization service specific for a bunch of drunks wondering on a rural

plain. In the proposed distributed service configuration, the free particle model does

increase the chance an MS triggers and aborts a hand-off procedure in a short period.

Therefore, we need to further evaluate the performance of the proposed configuration

and hand-off protocol in more realistic mobility models.

Of course the most realistic mobility model comes from the field record of a mobile

phone carrier. The data is extremely difficult to be obtained for several reasons. For

instance, carriers may record the users’ moving pattern along with other behaviors

and store them in a huge database in general. In most case, they do not do any

data mining or organization except for their internal research projects. If an outsider

requests a data set about user mobility from a mobile phone carrier, they do not

know where the data is even if they are willing to help. Furthermore, those records

may involve sensitive user privacy. Mobile phone carriers would reluctant to allow

any outsider to get access to the databases to prevent from potential legal issues.

97

Fortunately, European Telecommunication Standards Institute (ETSI) published

a document [37] which described three test environments and user mobility models,

which are Indoor Office, Outdoor to Indoor and Pedestrian, and Vehicular ones, as

common benchmarks to evaluate potential wireless technologies to develop Universal

Mobile Telecommunication System (UMTS). Although the reality of the models is

never explicitly justified and Jugl and Boche [38] have extended the mobility model to

improve the reality, the original UMTS models still provide a fair reference for mobility

related performance evaluation. If more realistic mobility models are available, we

can replace the UMTS ones and obtain more accurate configuration parameters.

In this section, we set up a simulation environment referring to the UMTS’s Out-

door to Indoor and Pedestrian mobility model, also known as the UMTS urban mo-

bility model, and use the empirical approach to establish the correlations between the

performance and the size of each local service area and the capabilities of the network

infrastructure. With our proposed modification, we enable the simulation to run for

an indefinite period of time without presuming any boundary condition.

3.5.1 UMTS Urban Mobility Model

As shown in Figure 3.17, The UMTS Outdoor to Indoor and Pedestrian test environ-

ment is basically a Manhattan-like street structure where MSs move along 30 meters

wide streets and are only allowed to change directions with half chance at the inter-

sections, which are 200 meters apart. Each MS’s moving speed can be updated every

5 meters with 20% chance, and the new speed is generated by a truncated Gaussian

98

Figure 3.17: UMTS outdoor to Indoor and Pedestrian test environment and LSA
arrangement.

distribution whose mean equals 3 km/h, standard deviation equals 0.3 km/h, and

minimum speed equals 0 km/h. All MSs are initially uniformly distributed on the

Manhattan-like streets.

The UMTS document, however, does not explicitly specify where an MS turns

within the intersection area. Therefore we make a reasonable assumption to overcome

the ambiguity. If an MS is supposed to turn in an intersection, it has six points, which

are 5 meters apart along the crosswalk, to change its direction before reaching the

other side. We assume an MS picks one out of the six points with equal chances as

its turning point, which keeps MSs uniformly distributed on the streets rather than

be concentrated on a certain part of the streets over time.

The BSs in the UMTS Outdoor to Indoor and Pedestrian test environment are

99

located at the dark grey dots in Figure 3.17. Although the placement of the BSs is

not optimal, it is not far from that. Considering an actual city could be preoccupied

by tall private buildings on each block, deploying BSs along the streets makes sense

both technically and politically.

One of the shortcomings of the UMTS mobility model is the bounded test area

which generates ambiguities on setting boundary conditions. We consequently add

some special traffic rules, known as portals, to eliminate the boundary discontinuities

and allow the interaction among LSAs to be simulated and observed for indefinite

period of time. These portals will be described in the next subsection.

3.5.2 Möbius City

What interests us is the geographical relation between the service facilities and the

MSs’ moving space. Once we group the BSs in Figure 3.17 to form hexagon-shaped

LSAs that optimize in both coverage and average transmission distance by deploying

servers at the centers, we can find a regular repetitive pattern of streets and service

groups, which depends on N , the number of the BSs per LSA’s edge. If we align the

origin to a BS, the parallelogram ABCD surrounded by four straight lines, which are:

1. (3N − 1)x+ (9N + 5)y = 920(6N2 + 6N + 2) on the north,

2. (3N − 1)x+ (9N + 5)y = −920(6N2 + 6N + 2) on the south,

3. (5N + 3)x− (N − 1)y = −920(3N2 + 3N + 1) on the west,

4. and (5N + 3)x− (N − 1)y = 920(3N2 + 3N + 1) on the east,

100

Figure 3.18: Möbius City map with teleporting directions.

can be regarded as the element of the repetitive pattern and represent sufficient

geographical information we need. We can, therefore, crop out parallelogram ABCD

in Figure 3.17 as our new test area, where we call Möbius City as shown in Figure

3.18, to represent every identical piece comprises the indefinite large test area.

Möbius City only has four LSGs. The center one is the only complete LSA. The

north half (N) and the south half (S), the northwest half (NW) and the southeast half

(SE), and the northeast half (NE) and the southwest half (SW), comprise the three

other LSAs. The latter three LSAs’ allocation emulates six complete LSAs around

the center one in the original test area. Since we are only interested in when, where,

and how frequently an MS moves from one LSA to another rather than specifically

identifying which one it moves from and to, assigning only four LSGs is sufficient for

our work.

Möbius City is comprised by the area cropped from the original street structure

and portals at the boundaries. Just like moving through the tunnels in Pac-Man’s

101

maze, whenever an MS moving among the streets reaches a boundary and is about to

escape from Möbius City, the portal teleports it to a proper location at the opposite

side and reenter Möbius City. The rules of the portals are:

1. For MSs about crossing north boundary, teleport them to

(−230(N − 1),−230(5N + 3)) from their current locations.

2. For MSs about crossing south boundary, teleport them to

(230(N − 1), 230(5N + 3)) from their current locations.

3. For MSs about crossing west boundary and their current locations satisfy 3(N−

1)x+ (9N +5)y > 0, teleport them to (230(4N + 3),−230(4N + 1)) from their

current locations.

4. For MSs about crossing west boundary and their current locations satisfy 3(N−

1)x + (9N + 5)y ≤ 0, teleport them to (230(5N + 2), 230(N + 2)) from their

current locations.

5. For MSs about crossing east boundary, and their current locations satisfy 3(N−

1)x+(9N +5)y > 0, teleport them to (−230(5N + 2),−230(N + 2)) from their

current locations.

6. For MSs about crossing east boundary, and their current locations satisfy 3(N−

1)x+ (9N +5)y ≤ 0, teleport them to (−230(4N + 3), 230(4N + 1)) from their

current locations.

The teleport directions are shown in Figure 3.18 as well.

102

An MS moving through a portal doesn’t encounter any discontinuity except its

coordinates: its direction and speed are the same, it associates with the same LSG,

and the geographical parameters relative to the service group’s facilities remain. Thus,

everything interests us is equivalent as the MS moving into an adjacent parallelogram

area in an indefinite large test area.

3.5.3 Configuration of Backhaul Network

Although connecting every BS to the corresponding server through a line-of-sight

and high-speed direct link offers the lowest transmission latency, constructing such

a backhaul network is impractically expensive. Therefore, we assume each BS only

has direct connections to its six neighboring BSs to form a mesh network as the core

network. In mesh-styled backhaul network, network latency between a BS and the

server depends on the number of nodes along the shortest path, the total length of

the path, and the relay latency per node. The former two factors are related to the

coordinates of the BS and the server, which will be simulated as well.

3.5.4 Traverse Delay

We define the response time as the average time interval between when a user sends

an input and gets an expected output update. The proposed server configuration is

meant to improve the response time by reducing traverse delay along the commu-

nication route between each BS to the server which is hosting the service. Factors

other than the traverse delay, such as computational capabilities provided by servers,

103

would affect the user experience and the quality of our service. Most of them, how-

ever, either affect different configurations equally, or can be overcome with reasonable

cost.

Traverse delay is defined as:

Ttv = 2 ·
{
Lr

Vr

+
Ll

Vl

+Nrt · Trt +Nrl · Trl

}
(3.29)

where Lr is the distance of radio transmission, which is the distance between the MS

and the BS it currently uses, Vr is the propagation speed of radio, which equals to the

speed of light, Ll is the total length of wireline transmission in the mesh network, Vl

is the propagation speed in wireline, which is approximately two thirds of the speed

of light, Nrt is the number of nodes along the transmission path in the mesh network,

Trt is the average waiting time per node in the mesh network, which includes nodal

processing delay, queuing delay, and transmission delay, Nrl is the number of servers

which are receiving the snapshot and relaying data to/from the VM server, and Trl

is the processing and relay time per server in the hand-off chain.

3.5.5 Hand-off Duration

Whenever a VM-level hand-off occurs, i.e., an MS detects that it’s out of the range of

the original BS and the nearest BS belongs to another LSG at the latest update, we

set up an anticipated hand-off end time by adding hand-off duration to the current

104

time. The hand-off duration is given by the following equation:

Tho = Tx +
Ls

Vl

+Ns · Trt (3.30)

where Tx is the total time to deliver every bit of a snapshot to media, which is the

summation of queuing delay, processing delay, and transmission delay of the snapshot,

which is proportional to the size of the snapshot, Ls is the total transmission distance

between the current and the next VM servers, and Ns is the number of nodes between

two neighboring servers, which always equals to 2N + 1 in this case.

3.5.6 Update Time Points and Cost Charging

Updates occur for two reasons: a hand-off is completed, or an MS reaches an up-

date position. At each update time point, Ttv and transaction counts are updated

concurrently.

Whenever a position update comes at Tnow, all hand-off end times registered in

queue earlier than Tnow have to be treated as update time points according to the

algorithm described below:

1. Define Tn as the nth earliest hand-off end time in queue, Lsn as the total trans-

mission distance between servers corresponding to the nth earliest hand-off in

queue, Lr, Ll, Nrt, and Nrl are the current cost parameters calculated by the

MS’s current position and hand-off status, and Tlast as the previous update

time.

105

2. If Tnow > T0, insert an update time point at T0, calculate the transaction counts

by the Poisson process given user input rate λ and time duration (T0−Tlast), set

Tlast = T0, subtract Nrl by one, subtract Nrt by {2N + 1}, subtract Ll by Ls0,

update Ttv according to the new parameters, and remove T0 and corresponding

Ls0 from the queues.

3. Redo step 2 until Tnow < T0 or the queue is emptied.

4. Calculate the transaction counts by the Poisson process given λ and time du-

ration (Tnow − Tlast), update Ttv according to the new parameters, and set new

Tlast = Tnow.

As specified in UMTS urban mobility model, we update the MSs’ positions every

5 meters. Since a hand-off may occur at the same time, we have to handle the extra

cost brought by it as well. When a new hand-off occurs with a position update at

current time Tnow while the previous update time is Tlast, and every hand-off end

time earlier than Tnow is already treated with the above algorithm, we use another

algorithm to update cost parameters, which is described below:

1. Register the new hand-off end time and the corresponding Ls in the queue.

2. Increment Nrl by one.

3. Nrt is recalculated by the MS’s current position and added by {Nrl · (2N +1)}.

4. Let Ll equals to the summation of all Ls’s in queue.

5. Ttv is then updated accordingly.

106

6. The transaction counts are calculated by the Poisson process given λ and time

duration (Tnow − Tlast), and then set new Tlast = Tnow for the next update.

Every transaction in an update interval is charged with identical Ttv. Note that

Ttv updated at a time point T is applied to the transactions occur after T , while

transaction counts calculated at T are placed in the time interval ended at T . Al-

though technically we can create a continuous Ttv function and integrate it in each

update interval to derive a slightly more accurate Ttv, it is unnecessarily complex

since Ttv variation is negligible within the 5 meters (or less) long path.

3.5.7 Traverse Time Accounting

The average Ttv per transaction is calculated at the end of 100,000 independent sim-

ulations, each lasts 86,400 seconds (one day). The simulation results of variable N ,

Trt, Trl, Tx, and λ, are presented in the following section.

3.5.8 Simulation Results

We first simulate how the size of LSAs affects Ttv given nominal parameters, which

are Trt = 20ms, Trl = 500ms, Tx = 600s, and λ = 1.0. The simulation result is shown

in Figure 3.19.

As we can see in Figure 3.19, Ttv is high in small LSA configurations due to

the higher hand-off occurrence rate. As N increases, Ttv first descends, levels for a

range of N ’s, and then linearly ascends. The descending for low N ’s is due to the

reduction of hand-off occurrence. The smooth ascending for higher N ’s is caused by

107

Figure 3.19: Simulation result of different N given Trl = 0.5s Trt = 20ms, and
Tx = 600s, λ = 1.0.

the higher average number of the nodes along the backhaul route and longer average

transmission distance while the hand-off occurrence rate is too low to matter. The

flat bottom in between is the result of the two effects competing with each other. We

can conclude that setting N = 10 in this case is optimal in reducing average Ttv and

keeping the total number of the servers low, which also means lower deployment and

maintenance cost.

Since the above conclusion is only applicable in this set of parameters, we adjust

each parameter in the nominal set to see how it affects Ttv as a function of N in the

following subsections.

3.5.8.1 Effect of Trl

Trl is the cost that only applies in hand-offs. We set Trl to 200ms, 800ms, and

1, 100ms, to see how it affects Ttv. The simulated Ttv as a function of N and Trl given

108

Figure 3.20: Simulated Ttv given Trl = 0.2s, 0.5s, 0.8s, 1.1s and Trt = 20ms, Tx =
600s, λ = 1.0.

Trt = 20ms, Tx = 600s, λ = 1.0 is shown in Figure 3.20.

As we can see in Figure 3.20, higher Trl significantly increases Ttv in small LSA

configurations. As N increases, Ttv given different Trl’s has a tendency to converge

together since the hand-off occurrence rate is dramatically reduced and thus renders

the effect of Trl insignificant.

3.5.8.2 Effect of Trt

Unlike Trl, Trt affects both hand-offs and normal transactions since higher Trt amplifies

the influence of transmission distance. The simulated Ttv as a function of N and Trt

given Trl = 0.5s, Tx = 600s, λ = 1.0 are shown in Figure 3.21.

Figure 3.21 shows the comparison of Ttv’s as functions of N given Trt = 20ms,

40ms, and 60ms. We can easily figure out that as Trt increases, not only Ttv increases,

but it also increases more sharply for higher N and thus compresses the optimal range

of N since higher Trt increases the communication cost per transmission distance in

109

Figure 3.21: Simulated Ttv given Trt = 20ms, 40ms, 60ms and Trl = 500ms, Tx =
600s, λ = 1.0.

the mesh network. In larger LSA configurations, although hand-offs rarely occurs

and thus related cost is minimized, the inner-LSA transmission cost increases more

significantly due to the higher nodal cost Trt.

3.5.8.3 Effect of Tx

Tx affects the cost only in hand-offs. Higher Tx may mean larger synchronization

data, longer hand-off initialization time, or longer queuing delay. How Tx affects Ttv

is represented in Figure 3.22.

Since Tx is the dominant factor of each hand-off’s duration, increasing Tx fairly

increases the proportion of the transactions occurred during hand-offs for every N . It

is why Ttv’s as functions of N given different Tx’s are virtually parallel to each other

and show little tendency to converge as N increases.

110

Figure 3.22: Simulated Ttv given Tx = 300s, 600s, 900s, 1200s and Trt = 20ms,
Trl = 0.5s, λ = 1.0.

3.5.8.4 Effect of λ

Although not being an intuitive factor, we still simulate Ttv’s as functions of N given

different user input rates λ. The simulated Ttv’s given λ = 0.33, 0.5, and 1.0 inputs per

second are almost identical. To visualize the differences, the normalized simulation

results are compared in Figure 3.23.

As we can see in Figure 3.23, there is no difference induces by adjusting λ per se

in statistical view. We should keep in mind, however, that the user experience and

the maximum tolerable response delay depend on the interactivity of the application

software.

111

Figure 3.23: Normalized simulation results given λ = 0.33, 0.5, 1.0 and Trt = 20ms,
Trl = 0.5s, Tx = 600s.

3.6 Performance Evaluation Using the UMTS Ru-

ral Mobility Model

In the previous section, we used UMTS’s urban mobility model to empirically es-

tablish the correlations between the performance and the size of each local service

area and the capabilities of the network infrastructure. In this section, we employ

the Vehicular test environment, also known as the rural vehicular mobility model, of

the UMTS document [37] to complete the performance evaluation of the proposed

configuration and protocol. The other test environment, that is, the Indoor Office en-

vironment described in the UMTS document, will not be discussed in this dissertation

since the communication distance varies relatively small. The Indoor Office environ-

ment is more relevant to the radio and baseband design, which is out of our scope.

In the UMTS rural vehicular mobility model, BSs are sparsely but optimally placed,

112

MSs move faster and more freely, and the hand-off behavior among base stations

is different as well. Although the simulation program in the UMTS rural vehicular

model is significantly different from the one presented in the previous section, the

concept of the indefinite simulation is retained.

3.6.1 UMTS Vehicular Mobility Model

As shown in Figure 3.24, the UMTS rural vehicular test environment is a plain with no

physical obstacle. Each MS’s speed is fixed at 120 km/h. Each MS’s moving direction

is allowed to change up to 45◦ left or right every 20 meters with 20% chance. All MSs

are initially uniformly distributed on the plain.

The BSs in the UMTS rural vehicular test environment are located at the dark

grey dots in Figure 3.24. Each BS has three directional antennae to serve tri-sectored

cells. Each cell is assumed to be a hexagon and seamlessly tiles with each other. Each

cell’s radius R is either 2,000 meters (for services up to 144kbit/s) or 500 meters (for

services above 144kbit/s). Therefore, the minimum distance between two BSs can be

6 km or 1.5 km, respectively.

The original UMTS mobility model generates discontinuities on the boundaries of

the test area. We consequently add some special traffic rules, known as portals, to

eliminate the boundary discontinuities and allow the interaction among LSAs to be

simulated and observed for an indefinite period of time. The characteristics of the

portals will be detailed in the next section.

113

Figure 3.24: The UMTS rural vehicular test environment with LSA arrangement.

114

3.6.2 Möbius County

What interests us is the geographical relation between the service facilities and the

MSs’ moving space. As the method we conducted in the previous section, the first

step is to define a sample area which can represent all the geographical characteristics

of service infrastructure we need. We first group the BSs in Figure 3.24 to form ap-

proximately hexagon-shaped LSAs which are optimized in both coverage and average

transmission distance by deploying servers at the centers. As the urban counterpart,

i.e., Möbius City, in the previous section, the sample area should include one complete

LSA in the center and six neighboring halves. Given R and N, the number of the BS

intervals per LSA’s edge, if we align the origin to the server of an LSG, we define the

Parallelogram ABCD surrounded by four straight lines, which are:

1.
√
3x− 3(2N + 1)y = −6

√
3R(3N2 + 3N + 1) on the north,

2.
√
3x− 3(2N + 1)y = 6

√
3R(3N2 + 3N + 1) on the south,

3.
√
3(2N + 1)x+ y = −3

√
3R(3N2 + 3N + 1) on the west,

4. and
√
3(2N + 1)x+ y = 3

√
3R(3N2 + 3N + 1) on the east.

as the sample area of our best interest. We can, therefore, crop out Parallelogram

ABCD in Figure 3.24 as our test area, where we call Möbius County as shown in

Figure 3.25, to represent every identical piece comprises the indefinite large test area.

Like Möbius City, assigning four logical LSGs in Möbius County is sufficient to

figure out when, where, and how frequently an MS moves from one LSA to another.

115

Figure 3.25: Möbius County map with teleporting directions.

116

However, to apply the hand-off aborting mechanism, which was disabled in the previ-

ous section, we need to distinguish whether an MS is coming back to the LSA it just

left or entering the LSA on the opposite side of the one it just crossed. Therefore, we

have to assign an additional unique identification for each LSG.

The portals around Möbius County are also similar to those around Möbius City.

Whenever an MS is about escaping from Möbius County, the portal teleports it to

a proper location at the opposite side so that it reenters Möbius County. Therefore

Möbius County can emulate a limitless test area. Since there is no street structure to

align in Möbius County, the rules of the portals are much more simple and straight-

forward than of Möbius City:

1. For MSs about crossing the north boundary, teleport them to(
3R,−3

√
3R(2N + 1)

)
from their current locations.

2. For MSs about crossing the south boundary, teleport them to(
−3R, 3

√
3R(2N + 1)

)
from their current locations.

3. For MSs about crossing the west boundary, teleport them to
(
−9R(2N+1)

2
,−3

√
3R
2

)
from their current locations.

4. For MSs about crossing the east boundary, teleport them to
(
9R(2N+1)

2
, 3

√
3R
2

)
from their current locations.

The teleport directions are shown in Figure 3.25 as well.

The purpose of the portals is to eliminate all discontinuities except the MS’s

coordinates when it is moving out of the boundary: it keeps the same direction

117

and speed, it associates with the same logical LSG, and preserves the geographical

parameters relative to the service group’s facilities. Thus, everything interests us is

equivalent as the MS moving into an adjacent parallelogram area in a limitless test

area.

3.6.3 Configuration of Backhaul Network

We assume a mesh-styled backhaul network as we did in the previous section. There-

fore, each BS only has direct links to its six neighboring BSs. In the mesh-styled

backhaul network, network latency between a BS and the server depends on the

number of nodes along the shortest path, the total length of the path, and the relay

latency per node. The former two factors are related to the coordinates of the BS

and the server, while the last one is varied to simulate different nodal transmission

capabilities.

3.6.4 Performance Metricand Hand-off Duration

The definition of the traverse delay is identical to the counterpart in the previous

section:

Ttv = 2 ·
{
Lr

Vr

+
Ll

Vl

+Nrt · Trt +Nrl · Trl

}

The hand-off duration is also the same as in the previous section:

Tho = Tx +
Ls

Vl

+Ns · Trt

118

3.6.5 Update Time Points and Cost Charging

This part of our simulation program is virtually identical to the counterpart in the

previous section. The only differences are: 1) the position update interval is 20

meters instead of 5 meters, 2) the time increment is fixed at 0.6 seconds since each

MS’s moving speed is always 120 km/h.

3.6.6 Traverse Time Accounting

The average Ttv per transaction is calculated at the end of 100,000 independent sim-

ulations, each lasting 86,400 seconds. The simulation results of variable N , Trt, Trl,

Tx, and λ for both R = 2, 000m or 500m, are presented in the following section.

3.6.7 Simulation Results

We first simulate how the size of LSAs affects Ttv given nominal parameters, which

are Trt = 20ms, Trl = 500ms, Tx = 600s, and λ = 1.0. The simulation results of both

R settings are shown in Figure 3.26.

As we can see in Figure 3.26, both Ttv’s bear a strong resemblance in shape to the

counterpart in the previous section despite the significantly different mobility models.

Ttv’s are high in small LSA configurations due to the higher hand-off occurrence rate.

As N increases, Ttv’s first descend, level for several N ’s, and then linearly ascend. The

descending for low N ’s is due to the reduction of hand-off occurrences. The smooth

ascending for higher N ’s is caused by the higher average number of the nodes along

the backhaul route and the longer average transmission distance while the hand-off

119

Figure 3.26: Simulation results of different N of both cell configurations given Trl =
0.5s Trt = 20ms, and Tx = 600s, λ = 1.0.

occurrence rate is too low to matter. The flat bottom in between is the result of the

two effects competing with each other.

Note although we compare two cell configurations, R = 2, 000m and R = 500m,

in the same figure, each LSA of the former one is in fact 4 times larger than of

the latter one. Therefore, each MS encounters much fewer hand-offs in the large cell

configuration than in the small cell one. We can also observe slightly steeper ascending

for higher N ’s in the large cell configuration than in the small cell one due to the

higher propagation delay brought by the longer wireline and wireless transmission

distances.

We can conclude that in this case, setting N = 4 for the large cell configuration,

and N = 8 for the small cell one, are optimal in reducing average Ttv and keeping the

total number of the servers low, which also means lower deployment and maintenance

cost.

120

Figure 3.27: Simulated Ttv’s of both cell configurations given Trl = 0.2s, 0.5s, 0.8s,
1.1s and Trt = 20ms, Tx = 600s, λ = 1.0.

Since the above quantitative conclusion is only applicable in this set of parameters,

we adjust each parameter in the nominal set and compare the results to see how it

affects Ttv’s as functions of N in the following subsections.

3.6.7.1 Effect of Trl

Trl only participates in hand-off conditions. In this simulation, we set Trl to 200ms,

800ms, and 1, 100ms, and see how it affects both Ttv’s. Both simulated Ttv’s in large

and small cell configurations as functions of N and Trl given Trt = 20ms, Tx = 600s,

λ = 1.0 are shown in Figure 3.27.

As we can see in Figure 3.27, higher Trl significantly increases Ttv’s in small LSA

configurations due to the higher occurrence rate of hand-offs. As N increases, Ttv’s

in each cell configuration given different Trl’s have a tendency to converge together

since the hand-off occurrence rate is dramatically reduced and thus renders the effect

121

Figure 3.28: Simulated Ttv’s of both cell configurations given Trt = 20ms, 40ms,
60ms and Trl = 500ms, Tx = 600s, λ = 1.0.

of Trl insignificant. In the large cell configuration, Ttv’s converge more significantly

and earlier due to the extremely low hand-off occurrence rate.

3.6.7.2 Effect of Trt

Higher Trt amplifies the influence of transmission distance. The simulated Ttv’s in

both cell configurations as functions of N and Trt given Trl = 0.5s, Tx = 600s,

λ = 1.0 are shown in Figure 3.28.

Figure 3.28 shows the comparison of Ttv’s of both cell configurations as functions

of N given Trt = 20ms, 40ms, and 60ms. Besides the resemblance in shape to

the counterpart in the previous section, we can also notice that Trt is a more decisive

factor for the large cell configuration’s performance due to the low hand-off occurrence

rate and the long average communication distance in each LSA. Even N = 1 can be

preferable if Trt is greater than 60ms in the large cell configuration.

122

Figure 3.29: Simulated Ttv of both cell configurations given Tx = 300s, 600s, 900s,
1, 200s and Trt = 20ms, Trl = 0.5s, λ = 1.0.

3.6.7.3 Effect of Tx

Tx only affects the cost brought by hand-offs. A higher Tx may mean a larger snapshot

file, a longer hand-off initialization time, or a longer queuing delay. How Tx affects

Ttv is represented in Figure 3.29.

Similar to the counterpart in the previous section, Ttv’s of each cell configuration

as functions of N given different Tx’s are virtually parallel for high N to each other

and show very little tendency to converge as N increases. However, slightly higher

optimal N brought by higher Tx in both configurations is still observable.

3.6.7.4 Effect of λ

Although we have shown that user input rate λ was not a relevant parameter in the

previous section, we still simulate Ttv’s as functions of N given different user input

rates λ in Möbius County. We again confirm that the property doesn’t change in the

123

UMTS rural vehicular mobility model.

However, we should keep in mind that the user experience depends more on the

interactivity of the application software than on the absolute response latency.

3.7 Summary

In this chapter, we have first proposed a geographically distributed server arrange-

ment and a hand-off protocol for application virtualization services for mobile users.

We have also proposed two analyses to evaluate the impact and the benefit of uti-

lizing the proposed hand-off protocol. And we verify the estimators of probability

of a user crossing the borderline by the Monte Carlo experiments and evaluate the

accuracies and limitations of both approaches. After going through the quantitative

approaches to compare different server-user configurations, we find out the factors

which should be taken into consideration when a service provider plans to launch

virtual application services or even virtual desktop services on mobile devices. If they

analyze the user behaviors and the application’s runtime properties and conclude that

their users rarely move, or only move at a low speed, or the data volume required to

recreate the runtime environment is relatively small, it is more likely to improve the

performance by geographically deploying more servers to cover the whole service area

and implement the proposed hand-off protocol. On the other hand, should one or

more factors induce a very high hand-off count or overhead, the conventional single

server configuration would be preferred. In the following two chapters, we proposed

Möbius City and Möbius County, which are based on the original UMTS urban and

124

rural mobility models but modified to enable MSs to move in the test environment for

indefinite period of time without presuming any boundary condition. We simulate

the network delay as a result of MSs movements and the occurrences of VM-level

hand-offs in Möbius City and Möbius County given variable sizes of LSAs, server

relay latencies, routing costs, and transmission delays of snapshots. By using Möbius

City and Möbius County as the test environments, we can evaluate the performance

impact and benefit of different sizes of LSAs and infrastructure technologies and ca-

pabilities before providing an application virtualization service for mobile computing

devices. Möbius City and Möbius County simulations can provide performance pre-

views for planning network infrastructures aim to improve application virtualization

services on unknown urban and rural areas, respectively.

125

126

Chapter 4

Conclusion and Future Work

4.1 Summary

Virtualization technologies have significantly reshaped our computing paradigm. We

used to have to manage, execute, and interact with an application program physically

at the same place. Now we can manage, execute, and interact with them wherever it

is convenient by introducing application virtualization.

However, geographical separation is always playing an important role with regard

to the performance. Application virtualization technologies only make the geograph-

ical separation of software management, execution, and usage possible rather than

guarantee the user experience. In spite of the proliferation of high-speed commu-

nication technologies, exchanging information over the Internet still takes hundreds

or thousands times more than it does in a local bus. Therefore, efficiently dealing

with information exchange between remote and local ends is one of the keys to bring

virtualization technologies to the users who have been used to the responsive and

127

high-performance computers for long.

In this dissertation, we proposed several architectures and algorithms to improve

the current application virtualization technologies in performance. Therefore, we

can enjoy the benefits of application virtualization, such as better serviceability and

compatibility, without compromising too much in performance.

Application virtualization technologies can be implemented based on two con-

cepts. Both implementation concepts are completing each other in different scenarios

and applications, rather than competing with each other. The application streaming

concept is more feasible to introduce virtualization technologies for highly interactive

application software running on high performance client machine, such as contem-

porary personal computers, while the browser based concept can help bringing the

benefits of compatibility and centralized management to handheld mobile computing

devices with lower processing power. We proposed architectures and algorithms to

improve application virtualizations of both concepts.

We developed a novel architecture for virtual computing based on the applica-

tion streaming concept. The proposed architecture combines the merits of the known

methods: (1) storing application software and general operating system components

at the server side to reduce the platform incompatibility and inconsistency, (2) pro-

viding an option to store personal data at the client or server side, which allows the

users who concern about the security and privacy to maintain the control of own data

and files, (3) running the application software on the client side locally to optimize

the performance, (4) prefetching VM pages based on a probability model to mini-

mize the startup and on-demand page delivery delays. We also proposed a feasibility

128

analysis to outline the information required by the prefetch system, an algorithm to

efficiently build a 2-level hierarchical LUT to better manage the probability model,

and an improved hash scheme based on Pearson hashing to implement efficient lookup

without using expensive CAM.

For the browser based concept virtualization, the most prominent challenge is the

long interaction delay between the client and the server sides due to the long commu-

nication distance. We proposed a distributed infrastructure configuration to mitigate

this problem and a hand-off protocol to deal with the user mobility. To figure out

the condition where the performance gain brought by the proposed configuration out-

weighs the loss introduced by the proposed hand-off protocol, we proposed analytical

and empirical performance estimations, where the latter ones are based on the UMTS

mobility model.

The optimal framework of application virtualization has not been thoroughly in-

vestigated yet and performance is merely one of the many concerns raised when shift-

ing an IT environment from a traditional to a virtualized paradigm. For example,

with an application streaming architecture, sooner or later a user can obtain a full

copy of the executable of the software he/she subscribes to in the local storage. If we

do not explore a way to prevent it, the application streaming service will be an easy

subject of piracy and abuse. Therefore, efficiently delivering and making VM pages

available on the client side is only one half of the solution with regard to a real world,

pay-per-use SaaS. We also have to make the VM pages unavailable on the client side

at some time to encourage the subscribers to keep paying for the service.

Availability is another dimension of application virtualization frameworks. The

129

proposed distributed infrastructure configuration in fact has a great potential on

service availability. Although modern data centers have some capability to sustain

short power outages, they are still very vulnerable to long term ones. Since most

outages and failures only take place locally, the distributed nature of the proposed

configuration enables the nearby healthy servers to take over the workload of a failed

one and continue providing application virtualization services with a proper designed

mechanism.

Furthermore, the feasibility analysis prefetch is not only applicable in our appli-

cation virtualization framework. The derivation can also help design any prefetch

systems in terms of information theory. The proposed hash scheme can be used on

any kind of fast data lookup application as well.

4.2 Future Work

In Part 1, we improved the performance of application streaming using the prob-

abilistic characteristics of page usage. While the proposed approach improves the

start-up delay and the performance, we have not addressed the issue of controlling

the code block sequence, when the user behaviors change in real-time generating an

unacceptable rate of misses. In the future, we will investigate the use of information

associated with the misses to adapt the code block sequence in real-time.

The proposed architecture is the foundation of an application virtualization frame-

work. Many other components still need to be designed in the future to make it avail-

able as a software design framework. Furthermore, the impact on power consumption

130

on both server and client sides is currently not considered and will be investigated in

the future.

The proposed information gain analysis can also be applied on prefetch systems in

different level of general computing. If we design a separate data stream supplied as

reference to boost prefetch hit rate, the compilation of the reference data stream can

be compiled according to a static information analysis algorithm following a similar

concept.

As other hashing schemes, the proposed improvement on Pearson hashing can be

applied on many fields other than data structure management. For example, since

the proposed hashing scheme uses two tables instead of one and has lower collision

rate, it could be more helpful in computer security than the original Pearson hashing.

This is also an opportunity for us to investigate in the future.

In Part 2, we employ deterministic infrastructure delay parameters and a simple

usage model to evaluate the performance. We will introduce more sophisticated usage

and infrastructure delay model to facilitate more precise mobile application virtual-

ization service simulations. Furthermore, besides the benefit of lowering the average

response latency, the distributed application virtualization service configuration and

the hand-off protocol can also be applied to load balancing and fault tolerance for bet-

ter resource management and service robustness. We will investigate these potential

applications in the future as well.

131

Bibliography

[1] Chung-Ping Hung and Paul S. Min, “Probabilistic Approach to Network-

based Virtual Computing”, The 9th International Information and

Telecommunication Technologies Symposium (I2TS 2010), Dec. 2010, pp.

117-124.

[2] L. Peter Deutsch and B. W. Lampson, SDS 930 Time-sharing System

Preliminary Reference Manual, Doc. 30.10.10, Project Genie, Univ. Cal.

at Berkeley, April 1965.

[3] Michael Price, “The Paradox of Security in Virtual Environments”, Com-

puter Magazine, Vol. 41, Issue 11, Nov. 2008, pp. 22-28.

[4] Joeng Kim et al., “An Application Streaming Service for Mobile Handheld

Devices”, SCC’06 IEEE International Conference on Services Computing,

Sept. 2006, pp. 323-326.

[5] Philip Winslow et al., “Desktop Virtualization Comes Of Age”, Credit

Suisse, Nov. 26, 2007.

132

[6] Mendel Rosenblum and Tal Garfinkel, “Virtual Machine Monitors: Cur-

rent Technology and Future Trends”, Computer Magazine, Volume 38,

Issue 5, May 2005, pp. 39-47.

[7] Rich Uhlig et al., “Intel Virtualization Technology”, Computer Magazine,

Volume 38, Issue 5, May 2005, pp. 48-56.

[8] S.J. Vaughan-Nichols, “New Approach to Virtualization Is a Lightweight”,

Computer Magazine, Volume 39, Issue 11, November 2006, pp. 12-14.

[9] VMware Inc., “VMware ThinApp Agentless Application Virtualization

Overview,”.

[10] EMA Report: “AppStream: Transforming On-Premise Software for SaaS

Delivery - without Reengineering”

[11] Peter M. Chen and Brian D. Noble, “When Virtual Is Better Than Real”,

Proceedings 8th Workshop Hot Topics in Operating Systems, IEEE CS

Press, 20-22 May 2001, pp. 133-138.

[12] Sunwook Kim et al., “On-demand Software Streaming System for Embed-

ded System”, WiCOM 2006 International Conference on Wireless Com-

munications, Networking and Mobile Computing, 22-24 Sept. 2006, pp.

1-4.

[13] Ana Fernandez Vilas et al., “Providing Web Services over DVB-H: Mobile

Web Services”, IEEE Transactions on Consumer Electronics, Vol. 53, No,

2, May 2007, pp. 644-652.

133

[14] Godmar Back and Wilson C. Hsieh, “The KaffeOS Java Runtime System”,

ACM Transactions on Programming Languages and Systems (TOPLAS),

Volume 27, Issue 4, July 2005, pp. 583-630.

[15] Zhimei Jiang and Leonard Kleinrock, “An Adaptive Network Prefetch

Scheme”, IEEE Journal on Selected Areas in Communications, Vol. 16,

No. 3, April 1998, pp. 358-368.

[16] Themistoklis Palpanas and Alberto Mendelzon, “Web Prefetching Us-

ing Partial Match Prediction”, Proceedings of the 4th International Web

Caching Workshop (WCW99), San Diego, CA, 1999.

[17] Doug Joseph and Dirk Grunwald, “Prefetching using Markov Predictors”,

Proceedings of the 24th Annual International Symposium on Computer

Architecture (ISCA’97), Denver, CO, 1997, pp. 252-263.

[18] Kyle J. Nesbit and James E. Smith, “Data Cahe Prefetching Using a

Global History Buffer”, Proceedings of the 10th International Symposium

on High Performance Computer Architecture (HPCA’04), 2004, pp. 96-

105.

[19] Jian-Hong Lin et al., “A NOR Emulation Strategy over NAND Flash

Memory”, 13th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications (RTCSA 2007), 2007, pp. 95-

102.

134

[20] G. Edward Suh et al., “Job-Speculative Prefetching: Eliminating Page

Faults From Context Switches in Time-Sharing Systems”, Computation

Structure Group, Massachusetts Institute of Technology, 2001.

[21] Derek Chiou et al., “Scheduler-Based Prefetching for Multilevel Memo-

ries”, Computation Structures Group, Massachusetts Institute of Tech-

nology, 2001.

[22] Stanislav A. Belogolov et al., “Scheduler-Assisted Prefetching: Efficient

Demand Paging for Embedded Systems”, The 14th IEEE International

Conference on Embedded and Real-Time Computing Systems and Appli-

cations (RTCSA 2008), 2008, pp. 111-119.

[23] Mark Russinovich, “Inside the Windows Vista Kernel: Part 2”, TechNet

Magazine, March 2007, pp. 24-32.

[24] J.R Quinlan, “Induction of Decision Trees”, Machine Learning, No. 1,

1986, pp. 81-106.

[25] J.R. Quinlan, “Decision Trees and Instance-Based Classifiers”, The Com-

puter Science and Engineering Handbook, 1997, pp. 521-535.

[26] Peter K. Pearson, “Fast Hashing of Variable-length Text Strings”, Com-

munications of the ACM, Vol. 33, No. 6, June 1990, pp. 677-680.

[27] Apple Inc., “App Store Review Guidelines for iOS apps”, 2.7 and 2.8,

http://developer.apple.com/appstore/guidelines.html, Retrieved 9 Sep.

2010.

135

[28] Google Inc., “Android Market Developer Distribution Agreement”, 4.5,

http://www.android.com/us/developer-distribution-agreement.html, Re-

trieved 22 Feb. 2011.

[29] VMware Inc., “VMware MVP (Mobile Virtualization Platform)”,

http://www.vmware.com/products/mobile/overview.html, Retreived 7

Aug. 2011.

[30] Chung-Ping Hung and Paul S. Min, “Infrastructure Arrangement for Ap-

plication Virtualization Services”, The 9th International Information and

Telecommunication Technologies Symposium (I2TS 2010), 2010, pp. 78-

85.

[31] Chung-Ping Hung and Paul S. Min, “Service area optimization for applica-

tion virtualization using UMTS mobility model”, International Conference

on Internet Computing (ICOMP 2011), 2011, pp. 128-134.

[32] Chung-Ping Hung and Paul S. Min, “Performance evaluation of dis-

tributed application virtualization services using the UMTS mobility

model”, The First International Conference on Mobile Services, Re-

sources, and Users (MOBILITY 2011), 2011, pp. 83-89.

[33] Marcin Bienkowski et al., “Competitive Analysis for Service Migration in

VNets”, in Proc. 2nd ACM SIGCOMM Workshop on Virtualized Infras-

tructure Systems and Architectures, 2010, pp. 17-24.

136

[34] Dushyant Arora et al., “On the benefit of virtualization: strategies for

flexible server allocation”, Hot-ICE’11 Proceedings of the 11th USENIX

conference on Hot topics in management of internet, cloud, and enterprise

networks and services, 2011.

[35] VMware Inc., “Virtual Desktop Infrastructure”.

[36] R. Buckminster Fuller, Synergetics: explorations in the geometry of think-

ing, Macmillan Publishing Company, 1975.

[37] ETSI. “Universal Mobile Telecommunications System (UMTS); selection

procedures for the choice of radio transmission technologies of the UMTS

(UMTS 30.03, version 3.2.0)”. Technical report, European Telecomminca-

tion Standards Institute, Apr. 1998.

[38] H. Boche and E. Jugl, “Extension of ETSI’s Mobility Models for UMTS in

Order to Get More Realistic Results”, Proc. UMTS Workshop, Günzburg,

Germany, Nov. 1998.

137

	Improved Designs for Application Virtualization
	Recommended Citation

	tmp.1337878459.pdf.p5FgQ

