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Abstract

The arguments against centralized solutions focus on the performance bottleneck associated with a
single central uniprocessor having a limited throughput and, possibly, a small number of ports. These
limitations can be overcome to a large extent if the central processor is replaced by a modem SIMD (Single
Instruction Multiple Data) machine. Several order of magnitude gains in parallelism are thus achievable
while maintaining the logical simplicity of a centralized control. We call such a scheme parallel
synchroncus control (PSC). In this paper, we explore this approach by presenting a PSC solution to the
classical Dining Philosophers problem and by contrasting it with a centralized cne in which the

philosophers are serviced sequentially.
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1. Introduction

The last decade has been dominated by a popular trend toward distributed computing and has been
marked by much research on the development of algorithms that exhibit little or no centralized control.
Dijkstra's original solution of the Dining Philosophers problem [4], for instance, relied on the use of
semaphores—a construct that emerged in a multiprogramming environment where centralized control was a
reasonable choice. By contrast all subsequent solutions attempted to cope with the challenges of a totally
distributed control. Chang presented the first distributed solution to the problem. Lynch [5] addressed it by
presenting a general solution to the static resource allocation problem. A randomized algorithm to solve
the Dining Philosophers problem was proposed by Rabin and Lehmann [6]. While these algorithms use
shared memory variables, Chandy and Misra [3] proposed a solution using the message passing model. In
general, all these algorithms treat the philosophers as processes and the forks as shared data. Agha [2], and
Aggarwal, Barbara and Meth [1], however, proposed solutions where both the philosophers and the forks are

processes.

The arguments against centralized solutions focus on the performance bottleneck associated with a
single central uniprocessor having a limited throughput and, possibly, a small number of ports. These
limitations can be overcome to a large extent if the central processor is replaced by a modem SIMD (Single
Instruction Multiple Data) machine. Several order of magnitude gains in parallelism are thus achievable
while maintaining the logical simplicity of a centralized control. We call such a scheme parallel
synchronous control (PSC). In this paper, we explore this approach by presenting a PSC solution to the
classical Dining Philosophers problem and by contrasting it with a centralized one in which the

philosophers are serviced sequentially.

The presentation is divided in four sections. Section 2 introduces the Dining Philosophers problem and
gives a general view of the centralized solution. Section 3 describes the solution using centralized control
in the form of an explicit manager of the forks. Section 4 presents the parallel version of the solution
where each fork is “working” in synchrony with the others. Section 5 shows the absence of deadlock in the

parallel synchronized version.

2 Problem definition

in the Dining Philosophers problem, N philosophers are gathered in a common area to think and,
occasionally, to eat. To do this second activity, they have a table with N chairs and N forks, each fork
being located between two chairs. When a philosopher is hungry, he chooses a seat, picks up the two forks

located immediately to his left and right, and eats. Once done eating, he puts down the two forks and
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resumes thinking. We denote each philosopher by P; and a fork by Fj, P; having F;.7 on his left and F; on
his right.

In general centralized solution shared variables are used to communicate between the philosophers and
a server supervising the seating of the philosophers and the availability of the forks. Each philosopher is
represented by a separate process which seeks permission to eat from the special entity. This arrangement
is shown in Figure 1. The philosophers processes are “seated” around the server, depicted as a table holding
the forks. Read and write accesses to the variables shared by the philosophers and the central server are
represented by arrows. All read and write actions are considered atornic in the sense that whenever a read
overlaps a write to the same variable , the value returned by the read is either the value before or after the
write. The shared variables Phil; store the status of each philosopher, i.e., thinking, trying to eat, or done
eating. Left; and Right; respectively inform the philosopher i that his left or right fork has been granted

by the central server.

The algorithm used by the server is correct if it satisfies the following requirements: (1) mutual
exclusion between any two neighbor philosophers, (2) absence of deadlock among the philosophers, and (3)
fairness in the sense that any philosopher willing to eat will eventually do so. In the two following

sections, we will examine two specific protocols employed by the server.,

Figure I: Seating of N=4 philosophers
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3 Traditional centralized control

In this section, as depicted in Figure I, the server is a single process that has complete knowledge of
the status of each philosopher (communicated by the variables Phil;) and grants forks based on this global
knowledge of the situation. The server repeatedly serves each philosopher in sequential order, checking for
a possible change of status of the corresponding philosopher or the availability of the forks related to that
philosopher. Figure 2 contains the code for a philosopher process and the server, The server keeps track of
granted forks using the variables g(i /) meaning “philosopher { has been granted fork j.” Each compuiation
is modulo N. Mutual exclusion is easily enforced by preventing a philosopher from using a fork if the
other philosopher already has it. Deadlock is prevented by letting at most N-1 philosophers eat at any one
time, This ensures that at least one philosopher can get his two forks. Finally any philosopher accepted in
the waiting list W will eat after at most N-1 other philosophers thus guaranteeing the fairness of the

algorithm,

4 Parallel synchronized control

In this section, the server is redefined based on the concept of parallel synchronous control. The single
waiter is replaced by N synchronized fork processes, each responsible for the management of one fork. The
reasoning leading to this solution is as following. Each philosopher only has to deal with two forks.
Similarly, each fork is only concerned with the status of the two philosophers that could grab it. Thus we
can break the management of the forks into N local fork processes, each accessing only 4 shared variables.
This important reduction of accessed shared variables—compared with 3NV accessed by the central “waiter”—
combined with an increase in the number of ports (potentially one for each process) results in a much better
throughput due to an increased parallelism of the /O activites. Since no fork requires any information
about the other forks, they can all compute in parallel. However, every pair of forks F; and F;4.7 needs the
status of common philosopher, and the status as seen by each fork through access to the corresponding
shared variable must be the same. This condition can be easily enforced by means of a global
synchronization of the fork processes. In this context, however, we need to reexamine our definition of
atomic read and write. A synchronous atomic read performed by several synchronized processes is an atomic
read whose value is “broadcast” to all the processes involved. Similarly, a synchronous atomic write (o a
variable changes that variable—using an atomic write—to the common value written by all the processes
involved. Based on these definitions, we need to synchronize every pair of forks to ensure that they read the
same philosopher status, i.e., all the forks have to execute synchronously as it is the case in a typical
SIMD machine. Figure 3 describes the relations between forks and philosophers by means of the shared

variables,
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Vari h Philosopher; waiter:

Left;, Right; ¢ {True,False}: initially False;
Phil; € {‘think’,’hungry’,’done’}: initially ‘think’;
where ie {0.N-1}

for Phil her;::

do forever
think;
Phily= ‘hungry’;
do --Left; or —Right; — skip; od
eat;
Phil; := ‘done’;
do Phil; = ‘done’ — skip; od
od

r the waiter;

Local variables:
p € {‘think’,’hungry’,’done’};
g(ii-1), g(if) € {TrueFalse} : initially False;
Wil set of {0.1N-1} : initially ¢;

where ie {0.N-1}

do forever
do for i = 0.N-1
p := Phil; ;

if hungry() AiWl<NAaie W
— Wi=Wu {i};fi

if hungry(p) Aie W A free(i-1)
— g{ij-1) :=True ; fi

if hungry(p) A g(ii-1) A free(d)
= g(ii)=True ; fi

if done(p)
— g(i,i-1) == g(i.i ) := False; W := W - {{}; Phil; := *think’; fi

Left; , Right; := g(i,i-1) , g(i.i);

od
od

where free(iy= g(i-1.)) A g(i.)) , hungry(p) = (p="hungry"), done(p) = (p="done’)

Figure 2: Centralized management of the forks
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Figure 3: Relations between forks and philosophers

Each fork is in a state that reflects the status of both philosophers sharing the fork. The state is a tuple
<A.B> where A and B can take the values 0, 1 or 2. These values reflect the “age” of a philosopher or,
more precisely, how long he has been waiting for the corresponding fork while the other philosopher was
eating. This scheme is used to prevent a philosopher from eating twice while his neighbor is waiting, thus
enforcing faimess between each pair of philosophers. A value of O means that the corresponding
philosopher is thinking., A value of 1 indicates that the philosopher has been granted the fork. Finally, if a
philosopher wants a fork that is currently used by the other, the corresponding value is 2. The transitions
between each potential state are conditioned by the change of status of the two philosophers. Figure 4
shows all the possible states of a fork and the conditions under which each transition is taken. The
simplest case corresponds to an available fork F; wanted by a single philosopher P;: the fork state changes
from <0,0> to <1,0>, showing that the fork has been granted to the philosopher, and then back to <0,0>,
once the philosopher is done eating. In a more complex situation like two philosophers P7 and P wanting
the fork Fy simultaneously, the sequence of state can be <0,0> 10 <2,1> (P2 gets the fork, P7 has to wait),
followed by <1,0> (P2 is done, PJ is then allowed to eat), and finally back to <0,0> (when Pj is done).
Figure 5 contains the code of a philosopher and a fork processes based on this state diagram. The multiple
IF statement of each process is executed by each process according to the process local state while the other
statements—which all involve shared variables—are performed simultaneously by all the forks. Thus, a

fork process executing quickly its state transition has to wait for the other forks to complete their state
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transitions before the synchronous reads and writes are executed in a lock-step fashion. Each synchronous

statement is indicated in the algorithm by the symbol b.

<0,0>

/\

h(® ) hh(Pf )
h P
i) R T )

h{@;

t i+l) ) ’( \ hzl(’i :
<2,1>

‘// \\

<2,0>_‘_§-— _’_____,<0,2>
h(P; ) d(P;y; ) h(P;, ;) d®; )

Figure 4: State of a fork /
where h(P) = (P="hungry’} , d(P} = (P="done’) and t(P) = (P="think")

5 Proof outline

In this section, we first demonstrate that deadlock is avoided. We then show by example that, in the

absence of synchronization, the algorithm can lead to deadlock.

Claim 1: The algorithm is deadlock-free if the forks are synchronized.
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Yariables sh Philgsopher; and Fork; ;
Left;, Right; ¢ {True,False}: initially False;
Phil; e {‘think’,’hungry’,’done’}: initially ‘think’;
where i € {0.N-1}

Code for Philosopher;;
do forever
think;

Phily= ‘hungry’;
do —Right; or —Left;;7 — skip; od
eaty
Phil; := ‘done’;
do Phil; = *done’ — skip; od
od

Forky:

Local variables:
P;, Pi+] € {‘think’,’hungry’,’done’);
Li, Rieg € {0,1,2} : initially 0;

do forever
¥ P;, Py :=Phil;, Phil;y ;
if Li=0,Rj47=0,tP),hPi+])

0 Lij=0,Ri+71=0, hP), t@i+1)
0 Li=0,Ri+7=0,h{®}), hP;+]),ieven
a Li=O)Ri+I=0,h(Pi)sh(Pi+1);iOdd
U Li=0,Ri47=1tP), dPi+1}
0 Li=0,Ri+7=1,hP),h®i+])
g Li=05Ri+1= 1 sh(Pi)sd(Pi-i-I)
0 Li=1,Rj4+1=0,tPj+1), dP)
0 Li=1,Ri+7=0,hP;+7),h;)
0 Lj=1,Ri+]7=0,h@Pi+1),dP;)
0 Lij=2,Ri+7=1,d®+])
ﬂf_ Li=1,Risp=2,dP)
1

¥ Phil;, Philj+7 == Pj, Pi4J;

P if L;j=1 -> Right; :=True; fi

# if Rjp7=1 — Leftjyj = True;fi
od

- Rie =13

- Lj=1;

—» Lii=1; Rj41:=2;

— Li=2; Rjp =13 .

= Rj41:=0; Pj41:="think";

— Li=2;

— Lii=1; Rj 4+ 1:=0; Pj+7:="think’;
— Li:=0; Pi:="think’;

= Rip1:=2;

~3 Lj:=03; Rj+1:=1; P;:="think’;
— Lj:=1; Ri4 7:=0; Piy 7:="think’;
— Lj=0; Rjy j:=1; Pj:="think";

where h(P) = (P="hungry’) , d(P} = (P="done") and t(P} = (P="think’);

Figure 5: Synchronized forks
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Proof:

The philosophers will be deadlocked if each “owns” one fork but is not able to get the other. This
happens if all forks are in state <2,1> {(or <1,2>). To prove that this situation can not occur, we need to
show that none of the non-deadlocked states (thereafier referred as eligible states) can lead to a deadlocked
global state. The global state is defined as the combination of the states of each fork at any step.

We only need to look at the eligible states from which a deadlock can be reached in one step. Without
loss of generality, we restrict our attention to the deadlocked state in which all forks are in the state <2,1>,
Based on the state transition graph, one can see that if a fork is in state <2,1>, its previous state was either
<0,0>, <0,1> or <2,1>. And, since a philosopher is seen by two forks, an “age” of 0 for a fork i—
meaning that the philosopher is not present at the table—implies a corresponding “age” of 0 for the fork
i+I. With those constraints, the possible states of the set of forks {i—7 i,i+1} potentially leading in one
step to the deadlocked state {<2,1>,<2,1>,<2,1>} are limited to 4. And, as shown in the table 6, none can
actually lead to this deadlocked state. We can conclude that the algorithm is deadlock-free since a deadlock
state can not be reached from an eligible state. |

{I-1,F.I1+1} Conditions required to move to <2,1>,<2,1>,<2,1>

<0,0>,<0,0>,<0,0> I-1 even, | even, I+1 even

<0,0>,<0,0>,<0,1> I-1 even, Ieven

<0,0>,<0,1>,<2,1> only potential state of forks I-2,1-1.1 is <0,0>,<0,0>,<0,1> which can’t lead
to <2,1>,<2,1>,<2,1> as shown above.

<0,1>,<2,1>,<2,1> | same as previously with forks I~1,1-2,1.3

Table 6: No state leads to a deadlocked state

Claim 2: The algorithm is not deadlock-free if the forks are not synchronized.

Proof:

The previous proof is based on the fact that all forks check the philosophers’ status at once, and change
state synchronously. Let us assume that the forks are not synchronized. In the worst case, this means that
only one fork is selected and can change state at a time. Also no fork is required to notice the fact thata
philosopher has entered the room. With this scheme, it is possible to devise a sequence of steps that leads
to a deadlocked global state. The table 7 shows one such sequence with 4 forks and 4 philosophers. The

state of each fork is given after each action (which corresponds to one or more steps). ]
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Actions States Explanation
F; Fa F3 Fyq
initially <0,0> § <0,0> | <0,0> | <0,0> —P(i), i=1...4
P3 & P4 enter <0,0> | <0,0> | <0,0> | <0,0> P(2), P4
F1 checks <1,0> | <0,0> | <0,0> | <0,0> P4, —P(1) -> <1,0>
F3 checks <1,0> | <0,0> | <1,0> | <0,0> P(2), —P(3) -> <1,0>
Py & P3 enter <1,0> § <0,0> | <1,0> | <0,0> P(1), P(3)
F1 checks <1,2> | <0,0> | <1,0> | <0,0> <1,0>, P(1) > <1,2>
3 checks <1,2> | <1,2> | <1,0> | <0,0> P(1), P(2), 2 even -> <1,2>
F3 checks <1,2> | «1,2> | <1,2> | <0,0> <1,0>, P(3) > <1,2>
F4 checks <1,2>|<1,2>)<1,2>|<1,2> P(3), P(4}, 4 even -> <1 2>

Table 7: Deadlock reached without synchrony among forks

6 Conclusion

Rapid technological changes force the computer scientist continuously to reexamine the question of
what is a reasonable solution for a particular problem or class of problems. In this paper we have shown
the advent of very large SIMD machines adds a new nuance to the dichotomy between centralized and
distributed control: the parallel synchronous control (PSC). While essentially centralized, PSC exhibits
very high levels of parallelism and a strong potential for reliability. Although PSC may not scale up to
the same degree as a fully distributed control, it appears to be a reasonable middle ground option that has
not been previously explored. Our solution to the dining philosophers problem illustrates one application

of this concept.
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