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ABSTRACT OF THE THESIS

Adaptive MIMO Radar for Target Detection, Estimation, and Tracking

by

Sandeep Gogineni

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2012

Research Advisor: Dr. Arye Nehorai

We develop and analyze signal processing algorithms to detect, estimate, and track

targets using multiple-input multiple-output (MIMO) radar systems. MIMO radar

systems have attracted much attention in the recent past due to the additional de-

grees of freedom they offer. They are commonly used in two different antenna con-

figurations: widely-separated (distributed) and colocated. Distributed MIMO radar

exploits spatial diversity by utilizing multiple uncorrelated looks at the target. Colo-

cated MIMO radar systems offer performance improvement by exploiting waveform

diversity. Each antenna has the freedom to transmit a waveform that is different from

the waveforms of the other transmitters.

First, we propose a radar system that combines the advantages of distributed MIMO

radar and fully polarimetric radar. We develop the signal model for this system

and analyze the performance of the optimal Neyman-Pearson detector by obtaining

approximate expressions for the probabilities of detection and false alarm. Using these
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expressions, we adaptively design the transmit waveform polarizations that optimize

the target detection performance.

Conventional radar design approaches do not consider the goal of the target itself,

which always tries to reduce its detectability. We propose to incorporate this knowl-

edge about the goal of the target while solving the polarimetric MIMO radar design

problem by formulating it as a game between the target and the radar design engi-

neer. Unlike conventional methods, this game-theoretic design does not require target

parameter estimation from large amounts of training data. Our approach is generic

and can be applied to other radar design problems also.

Next, we propose a distributed MIMO radar system that employs monopulse process-

ing, and develop an algorithm for tracking a moving target using this system. We

electronically generate two beams at each receiver and use them for computing the

local estimates. Later, we efficiently combine the information present in these local

estimates, using the instantaneous signal energies at each receiver to keep track of

the target.

Finally, we develop multiple-target estimation algorithms for both distributed and

colocated MIMO radar by exploiting the inherent sparsity on the delay-Doppler plane.

We propose a new performance metric that naturally fits into this multiple target

scenario and develop an adaptive optimal energy allocation mechanism. We employ

compressive sensing to perform accurate estimation from far fewer samples than the

Nyquist rate. For colocated MIMO radar, we transmit frequency-hopping codes to

exploit the frequency diversity. We derive an analytical expression for the block

coherence measure of the dictionary matrix and design an optimal code matrix using
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this expression. Additionally, we also transmit ultra wideband noise waveforms that

improve the system resolution and provide a low probability of intercept (LPI).
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Chapter 1

Introduction

1.1 Background

Multiple Input Multiple Output (MIMO) radar has attracted much attention recently

due to the additional degrees of freedom and improvement in performance it offers

over conventional single antenna systems [1]. MIMO radar is typically used in two

antenna configurations, namely distributed and colocated. In distributed MIMO

radar [1], [2] the antennas are widely separated. This enables viewing the target from

different angles. Hence, if the target returns between a particular transmitter and

receiver are weak, then it is highly likely that they will be compensated for by the

returns between other antenna pairs. While distributed MIMO radar exploits spatial

diversity, colocated MIMO radar [3], [4] exploits waveform diversity. In a colocated

configuration, all the antennas are closely spaced, and hence the target Radar Cross

Section (RCS) values are the same for all transmitter-receiver pairs. RCS denotes the

transformation undergone by the transmitted signal during reflection from the surface

of the target. This is contrary to the distributed antenna configuration, where each

pair has a different RCS value. In this dissertation, we develop and analyze signal
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processing algorithms to detect, estimate, and track targets using both colocated and

distributed MIMO radar.

1.2 Our Contributions

We proposed a radar system that combines the advantages of distributed MIMO

radar and polarimetric MIMO radar in order to detect a point-like stationary target.

The proposed system employs two–dimensional vector sensors at the receivers, each

of which separately measures the horizontal and vertical components of the received

electric field. We designed the optimal Neyman-Pearson detector for such systems

and derived approximate analytical expressions for the probability of false alarm and

probability of detection. Using numerical simulations, we demonstrated that optimal

design of the antenna polarizations provides improved performance over MIMO sys-

tems that transmit waveforms of fixed polarizations over all the antennas. We also

demonstrated that having multiple widely separated antennas gives improved perfor-

mance over SISO polarimetric radar. Further, we showed that separately processing

the vector measurements at each receiver gives improved performance over systems

that linearly combine both the received signals to give scalar measurements.

Using a game theoretic framework, we formulated the selection of transmit polariza-

tions for distributed MIMO radar as a game between the opponent and the radar

design engineer by examining the impact of all possible transmit schemes on the dif-

ferent available target profiles. This approach does not require accurate estimation of

target properties from measured data, unlike conventional approaches that are very

sensitive to the accuracy of these estimates. Hence it can be implemented in practice

without much cost. Further, this design approach utilizes knowledge about the goals
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of both the target and the radar, unlike conventional approaches that ignore knowl-

edge about the goal of the target. This game theoretic framework is very general and

can be applied to other radar waveform design problems also.

We developed a MIMO radar system with widely separated antennas that employs

monopulse processing at each of the receivers. We used Capon beamforming to gen-

erate the two beams required for the monopulse processing. We also proposed an

algorithm for tracking a moving target using this system. This algorithm is simple

and practical to implement. It efficiently combines the information present in the local

estimates of the receivers. Since most modern tracking radars already use monopulse

processing at the receiver, the proposed system does not need much additional hard-

ware to be put to use. We simulated a realistic radar-target scenario to demonstrate

that the spatial diversity offered by the use of multiple widely separated antennas

gives significant improvement in performance when compared to conventional SISO

monopulse radar systems. We also showed that the proposed algorithm keeps track

of rapidly maneuvering airborne and ground targets under hostile conditions such as

jamming.

We proposed a novel approach to accurately estimate properties (position, velocity)

of multiple moving targets using distributed MIMO radar by employing sparse mod-

eling. We also introduced a new realistic metric to analyze the performance of the

radar system. This metric is generic and can be applied to other multiple target

estimation problems also. Further, we proposed an adaptive mechanism for optimal

energy allocation at the different transmit antennas. This adaptive energy allocation

mechanism significantly improves the performance over MIMO radar systems that

transmit fixed equal energy across all the antennas. We also demonstrated accurate

reconstruction from very few samples by using compressive sensing at the receivers.

3



We considered the problem of multiple target estimation using a colocated MIMO

radar system. We employed sparse modeling to estimate the unknown target param-

eters (delay, Doppler) using a MIMO radar system that transmits frequency-hopping

waveforms. We formulated the measurement model using a block sparse represen-

tation and adaptively designed the transmit waveform parameters (frequencies, am-

plitudes) to achieve improved estimation performance. First, we derived analytical

expressions for the correlations between the different blocks of columns of the sensing

matrix. Using these expressions, we computed the block coherence measure of the

dictionary. We used this measure to optimally design the sensing matrix by selecting

the hopping frequencies for all the transmitters. Second, we adaptively designed the

amplitudes of the transmitted waveforms during each hopping interval to improve the

estimation performance. Using numerical simulations, we demonstrated the perfor-

mance improvement due to the optimal design of waveform parameters. Further, we

employed compressive sensing to perform accurate estimation from far fewer samples

than the Nyquist rate.

Finally, we considered that each antenna of a colocated MIMO radar array transmits

noise waveforms to achieve high resolution. These waveforms are further covered by

codes that are inspired from code division multiple access (CDMA) to exploit code

diversity. We formulated the measurement model using a sparse representation in

an appropriate basis to estimate the unknown target parameters (delays, Dopplers)

using support recovery algorithms. We demonstrated the performance of this system

using numerical simulations.
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Chapter 2

Polarimetric MIMO Radar with

Distributed Antennas for Target

Detection1

2.1 Introduction

The polarization properties of any electro-magnetic wave are usually altered when the

wave reflects from the surface of a target. The target scattering matrix determines

the change in polarization of the transmitted signal [5], [6]. Therefore, knowledge

about the target in terms of its scattering matrix helps us design the optimal trans-

mit waveform polarizations for performance improvement over systems transmitting

waveforms with fixed polarizations over all the antennas. In [7], [8], [9], [10], [11],

polarimetric design is suggested for use in conventional single antenna radar systems

for problems such as detection, estimation and tracking. In [12], radar polarimetry is

1Based on S. Gogineni and A. Nehorai, “Polarimetric MIMO radar with distributed antennas for
target detection,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1689-1697, Mar. 2010. c©[2010]
IEEE.
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also used in multiple antenna systems with colocated antennas. In this chapter, we

propose a radar system that combines the advantages of distributed–antenna MIMO

systems with the advantages offered by optimally choosing the transmit waveform

polarizations (see also [13], [14]). We examine the problem of target detection for

stationary point targets.

2.2 Signal Model

Before we develop the mathematical model, we describe the target and the radar

system. We assume that the target is stationary and is present in the illuminated

space. The target is further assumed to be point-like with a scattering matrix that

depends on the angle of view. We consider a radar system that has M transmit

antennas and N receive antennas with all the antennas widely spaced as shown in

Figure 2.1. Each of the receive antennas employs a two–dimensional vector sensor that

measures both the horizontal and vertical components of the received polarized signal

separately. Polarimetric models exist for describing the signals received in single-

antenna systems [5], [6]. We extend these models to distributed antenna systems in

this section.

We begin by describing the signals on the transmitter side. Define the polarization

vector for the ith transmitter to be ti = [tih, t
i
v]

T
, where each of the entries of the

polarization vectors is a complex number and [·]T represents the transpose of [·].

We further assume that ‖ti‖ = 1, ∀i = 1, . . . ,M . The complex pulse wave shape

transmitted from the ith transmit antenna is defined as wi(t). We assume that all these

transmit waveforms are orthonormal to each other for all mutual delays between them

[1], [2]. In other words, we assume that the cross correlation among these different
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Figure 2.1: MIMO radar system with widely separated antennas.

waveforms is negligible for different lags. At the receiver side, this condition helps us

differentiate between the signals transmitted from different transmit antennas.

After transmission, the polarized waveforms will travel in space and reflect off the

surface of the target towards the receivers with altered polarimetric properties. We

now consider the measurements on the receiver side. The polarized signal reaching

the jth receive antenna is a combination of all the signals reflecting from the surface

of the target towards the jth receiver. Let yj(t) be the complex envelope of the signal

received by the jth receive antenna. Note that yj(t) is a 2–dimensional column vector

consisting of the horizontal and the vertical components of the received signal, and

it is expressed using a formulation similar to that presented in [15], [16], [17]:

yj(t) =

M∑

i=1

aijSijtiwi(t− τ ij) + ej(t), (2.1)

where ej(t) is the 2–dimensional additive noise, τ ij is the time delay because of

propagation and the attenuation is divided into two factors aij and Sij . aij is that

part of attenuation which depends on the properties of the medium, distance between
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the target and radar, etc. We assume that the coefficients {aij} are known because

the radar has an idea about the region which it is illuminating and the properties

of the medium. Sij represents the scattering matrix of the target, which completely

describes the change in the polarimetric properties of the signal transmitted from the

ith transmit antenna to the jth receive antenna. This represents the unknown part of

the attenuation. It has four complex components and is given as

Sij =



sijhh sijhv

sijvh sijvv


 . (2.2)

In order to separate the signals coming from different transmit antennas, the received

signal is processed using a series of M matched filters at each receiver. At each

receiver, the ith matched filter corresponds to a matching with the ith transmit wave-

form. We derive the mathematical model for the proposed MIMO radar system by

using an approach similar to that presented for the single antenna system in [15].

The signals at the output of the matched filters are normalized by dividing by aij .

Note that normalization changes the variances of the normalized noise term, and

hence these variances need not be the same for all transmitter–receiver pairs. The

normalized vector output of the ith matched filter at the jth receiver is expressed as

yij = Sijti + eij , (2.3)

where the column vector yij =
[
yijh , y

ij
v

]T
consists of the horizontal and vertical com-

ponents, respectively. We have now obtained the expressions for the measurements

at each of the antennas on the receiver side. Next we perform some simple operations

to express all these measurements using a linear model.
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Stacking the elements of the scattering matrix Sij into a vector, we define sij =
[
sijhh, s

ij
hv, s

ij
vh, s

ij
vv

]T
. There are MN such vectors, and arranging them into a single

vector gives us a 4MNx1 dimensional column vector:

s =
[(
s11
)T
, . . . ,

(
s1N
)T
, . . . ,

(
sM1

)T
, . . . ,

(
sMN

)T]T
. (2.4)

Similarly, stacking the normalized outputs of the matched filters and also the corre-

sponding additive noise components into column vectors, we define

y =
[(
y11
)T
, . . . ,

(
y1N

)T
, . . . ,

(
yM1

)T
, . . . ,

(
yMN

)T]T
, (2.5)

e =
[(
e11
)T
, . . . ,

(
e1N

)T
, . . . ,

(
eM1

)T
, . . . ,

(
eMN

)T]T
. (2.6)

Define a set of matrices

P i =



tih tiv 0 0

0 0 tih tiv


 , (2.7)

∀i = 1, . . . ,M , each corresponding to a particular transmit antenna.

Using the above definitions, we express the measurement vector y using the following

mathematical model:

y =Hs+ e, (2.8)
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where

H =




P 1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
...

...

0 · · · P 1 · · · 0 · · · 0

...
...

...
. . .

...
...

...

0 · · · 0 · · · PM · · · 0

...
...

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · PM




. (2.9)

0 is a zero matrix of dimensions 2x4. Terms y and e are 2MNx1 dimensional ob-

servation and noise vectors respectively. Thus, we have reduced our mathematical

model to the well–known linear form. We now look at the statistical assumptions

made on these terms.

We assume that the noise terms present in e are uncorrelated and that e follows

proper complex Gaussian distribution. A complex random vector ς = ςR + jς I is

said to be proper if Cov (ςR, ςR) = Cov (ς I, ς I) and Cov (ςR, ς I) = −Cov (ς I, ςR).

Hence, the covariance matrix of e will be diagonal. This diagonal assumption states

that the noise components at the outputs of the matched filters across the various

widely separated receivers over both the polarizations are statistically independent

for any given time snapshot. This assumption is reasonable given the wide separation

between the antennas [2]. The diagonal entries of the covariance matrix of e need

not be the same because of the normalization performed at the output of each of the

matched filters, as mentioned earlier. Define this covariance matrix as Σe and assume

that it is known. The matrix H is a 2MNx4MN dimensional design matrix whose

constituent elements depend on the transmit waveform polarizations. We assume that

the vector s, which contains elements from all the scattering matrices, is a random
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vector following proper complex Gaussian distribution with a 4MNx4MN covariance

matrix given by Σs. We further assume that Σs is known. If the random matrices Sij

are statistically independent, then Σs will have a block diagonal structure. However,

we do not impose any such structural constraint on Σs. Furthermore, we assume that

s and e are independent. Since we have described all the terms in our measurement

model, we shall formally state the detection problem in the next section.

2.3 Problem Formulation

The above mathematical model gives an expression for the observation vector when

the target is present in the illuminated space. When the target is absent, the observa-

tions will consist of only the receiver noise vector e. Hence, the problem of detecting

the target reduces to the following binary hypothesis testing problem:

H0 : y = e, (2.10)

H1 : y =Hs+ e. (2.11)

Therefore, under the null hypothesis, y will have complex Gaussian distribution with

zero mean and covariance matrix Σe. Under the alternative hypothesis, the inde-

pendence of s and e implies that y will follow complex Gaussian distribution with

zero mean and covariance matrix given by C+Σe, where C =HΣsH
H denotes the

covariance matrix of Hs. This result is an application of the well–known properties

of Gaussian random vectors [18]. Next we describe the Neyman-Pearson detector for

this problem.
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2.4 Detector

2.4.1 Test Statistic

Under the above–mentioned hypotheses, the probability density functions of the ob-

servation vector are given as

f(y|H0) ∝
1

|Σe|
e−yH

Σe
−1y, (2.12)

f(y|H1) ∝
1

|Σe +C|e
−yH (Σe+C)−1y. (2.13)

The Neyman-Pearson lemma states that the likelihood ratio test is the most powerful

test for any given size [19]. The likelihood ratio is given as

f(y|H0)

f(y|H1)
=

|Σe +C|
|Σe|

e−yH(Σe
−1−(Σe+C)−1)y. (2.14)

Computing the logarithm of the above expression and ignoring the known constants,

we clearly see that yH
(
Σe

−1 − (Σe +C)−1)
y is our test statistic and we compare it

with a threshold before selecting a hypothesis:

yH
(
Σe

−1 − (Σe +C)−1)
y ≷H1

H0
k, (2.15)

where the threshold k is chosen based on the size specified for the test.
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2.4.2 Estimation of Covariance Matrices

In practice, the covariance matrices needed for implementing the detector may not

be known in advance. In such a scenario, the maximum likelihood estimates (MLE)

of these matrices can be substituted to perform the test. Since the observations

follow Gaussian distribution under both the hypotheses, the MLE of the covariance

matrices are given by the corresponding sample covariance matrices [19], [20]. The

sample covariance matrices are easy to compute in practice. The variance of noise

at each receiver is calculated before the detector starts functioning by evaluating the

sample variance using a large set of training data. The covariance matrix under the

alternative hypothesis is estimated by evaluating the sample covariance matrix using

all the samples of observations in a particular window of time when the detector is

in use. These two estimated matrices are sufficient for implementing the detector. If

there is no target in the illuminated space, then these two estimated matrices will be

close to each other, thereby causing the test statistic to fall below the threshold.

2.4.3 Performance Analysis

In order to analyze the performance of the above–mentioned detector, we need to

know the distribution of the test statistic under both hypotheses. The test statistic

is a quadratic form of the complex Gaussian random vector y. It is well known

in statistics that a quadratic form zTUz of a real Gaussian random vector z with

covariance matrixB will follow Chi-square distribution if and only if the matrixUB is

idempotent [21]. Using this result, we infer that our test statistic does not necessarily

follow Chi-square distribution for all feasible choices of Σe and C because we did

not impose any constraint on Σs. Hence, it is difficult to find the exact probability
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density function (pdf) for it. In order to study the pdf of our test statistic, we first

begin with an assumption that C is diagonal. Later, we will extend this approach to

the non-diagonal case by applying proper diagonalization.

Define the lth diagonal element of C as cl and that of Σe as v
l. Then, the test statistic

reduces to

M∑

i=1

N∑

j=1

((
1

v(2(i−1)N+2j−1)
− 1

v(2(i−1)N+2j−1) + c(2(i−1)N+2j−1)

) ∣∣yijh
∣∣2
)
+

M∑

i=1

N∑

j=1

((
1

v(2(i−1)N+2j)
− 1

v(2(i−1)N+2j) + c(2(i−1)N+2j)

) ∣∣yijv
∣∣2
)
,

where yijh , y
ij
v are always independent Gaussian random variables under both hypothe-

ses for all transmitter–receiver pairs because of the diagonal assumption of Σe and

C. Therefore, the test statistic is a weighted sum of independent Chi-square random

variables and it does not necessarily follow the Chi-square distribution. Its actual

distribution depends on the weights. The pdf of a sum of independent random vari-

ables is obtained by performing multiple convolutions among the constituent pdfs.

However, in this case, it is difficult to find the exact solution. Hence, we shall look

for approximations to the actual pdf.

In [22], the distribution of the weighted sum of Chi squares is studied. If πq are

real positive constants and Nq are independent standard normal random variables

∀q = 1, · · · , K, then the pdf of the Gamma approximation of R =
∑K

q=1 πqNq
2 is

given as

fR (r, α, β) = rα−1 e−
r
β

βαΓ(α)
, (2.16)
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where the parameters α and β are given as

α =
1

2




(∑K

q=1 πq

)2

∑K

q=1 π
2
q


 , (2.17)

β =

(
1

2

(∑K

q=1 πq∑K

q=1 π
2
q

))−1

. (2.18)

Γ is the gamma function defined as Γ(α) =
∫∞
0
tα−1e−tdt.

Under the null hypothesis, yijh and yijv have zero mean and variances v(2(i−1)N+2j−1) and

v(2(i−1)N+2j), respectively. Hence, applying the above approximation with appropriate

weights, the parameters of the Gamma distribution are

αH0 =




(∑2MN

l=1
cl

vl+cl

)2

∑2MN

l=1

(
cl

vl+cl

)2


, (2.19)

βH0 =




∑2MN

l=1
cl

vl+cl

∑2MN

l=1

(
cl

vl+cl

)2




−1

. (2.20)

Under the alternative hypothesis, yijh and yijv have zero mean and variances v(2(i−1)N+2j−1)+

c(2(i−1)N+2j−1) and v(2(i−1)N+2j) + c(2(i−1)N+2j), respectively. The parameters of the

Gamma approximation are

αH1 =




(∑2MN

l=1
cl

vl

)2

∑2MN

l=1

(
cl

vl

)2


, (2.21)
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βH1 =




∑2MN

l=1
cl

vl

∑2MN

l=1

(
cl

vl

)2




−1

. (2.22)

Note that so far we have assumed a diagonal structure for matrix C in the above

discussion. However, we still need to find expressions for the pdf of the test statistic

when C is not diagonal. Diagonalization will be used to extend the analysis even

for the case of non–diagonal matrices [23]. Since Σe and C are covariance matrices,
(
Σe

−1 − (Σe +C)−1) will be a Hermitian matrix, which therefore decomposes into

DHΛD, where Λ is a diagonal matrix consisting of eigenvalues as the diagonal ele-

ments andD contains the corresponding orthonormal eigenvectors. The test statistic

now becomes (Dy)HΛ(Dy). If we show that Dy has a diagonal covariance matrix

under both hypotheses, then our analysis extends to the case in which C is not di-

agonal also, with appropriate adjustments made to the parameters of the Gamma

approximation. Under H0, Dy is a complex Gaussian random vector with a covari-

ance matrix CovH0 (Dy) = DΣeD
H , which is diagonal because Σe is diagonal and

D has orthonormal vectors. Similarly, under H1, Dy is a complex normal random

vector with covariance matrix

CovH1 (Dy) = D(Σe +C)DH , (2.23)

=
(
D(Σe +C)−1

DH
)−1

, (2.24)

=
(
D
(
(Σe +C)−1 −Σe

−1 +Σe
−1
)
DH

)−1
, (2.25)

=
(
DΣe

−1DH −Λ
)−1

, (2.26)

which is diagonal. Hence, under both hypotheses, the test statistic is a weighted

sum of Chi square random variables even when matrix C is not diagonal. The only
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difference is that the weights will now be different, and they are defined by the

diagonalization process.

After approximating the pdf using the Gamma density, the probability of detection

(PD) and the probability of false alarm (PFA) are defined as follows:

PD =

∫ ∞

k

tαH1
−1 e

− t
βH1

β
αH1
H1

Γ(αH1)
dt, (2.27)

PFA =

∫ ∞

k

tαH0
−1 e

− t
βH0

β
αH0
H0

Γ(αH0)
dt, (2.28)

where the parameters αH0 , βH0 , αH1, and βH1 are as mentioned earlier. For a given

value of PFA, the value of the threshold k is calculated easily using the above ex-

pression because functions for evaluating the above expressions exist in MATLAB.

After finding the threshold, PD is calculated accordingly. Note that the value of the

threshold and PD depends on matrix C, which in turn depends on the polarizations

of the transmitted waveforms. Hence, the performance of the detector is related to

the transmit waveform polarizations.

2.4.4 Optimal Design

In order to find the optimal design, we perform a grid search over the possible wave-

form polarizations across all the transmit antennas with the help of the above expres-

sions for PD and PFA. The optimal design corresponds to the transmit polarizations

that give the maximum PD for a given PFA. Later, we will plot the ROC curves to

visualize the improvement in performance because of the optimal design.
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2.5 Scalar Measurement Model

Most of the conventional polarimetric radar systems combine the two received signals

linearly and coherently at each receiver to give only a scalar measurement that de-

pends on the receive polarization vector. For such systems, the output at each receive

antenna is modeled as an inner product of the received signal and the receive antenna

polarization [6], [15]. This receive polarization vector is optimally chosen along with

the transmit waveform polarizations in order to achieve improved performance. We

now use a similar approach to that used earlier in this chapter in order to obtain the

signal model for such systems. From now on, we refer to this model as the scalar

measurement model.

Let rj =
[
rjh, r

j
v

]T
be the polarization vector of the jth receiver, where each of the

entries is a complex number. We further assume that ‖rj‖ = 1, ∀j = 1, . . . , N . The

rest of the variables remain the same as defined earlier, except that the measurement

and the noise at each receiver according to this model will be complex scalars. The

scalar observation at the jth receiver yj(t) is now expressed as follows [15], [16], [17]:

yj(t) =
M∑

i=1

aijrj
T
Sijtiwi(t− τ ij) + ej(t). (2.29)

This signal is now passed through a series of matched filters whose outputs are ap-

propriately normalized to move the effect of aij into the noise term. Finally, the

normalized output of the ith matched filter at the jth receiver is given as

yij = rj
T
Sijti + eij . (2.30)
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Stacking all the observations and the noise components into column vectors, we obtain

MNx1 dimensional vectors y and e, respectively. Vector s remains the same as

defined earlier. However, matrix H changes and now contains the elements of the

receive polarization vectors also. Let us define a set of vectors

ηij =
[(
rjht

i
h

)
,
(
rjht

i
v

)
,
(
rjvt

i
h

)
,
(
rjvt

i
v

)]
, (2.31)

∀i = 1, . . . ,M, each of which corresponds to a particular transmitter–receiver pair.

Under this definition, the observation vector is expressed as

y =Hs+ e, (2.32)

where H is a MNx4MN dimensional matrix given by

H =




η11 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
...

...

0 · · · η1N · · · 0 · · · 0

...
...

...
. . .

...
...

...

0 · · · 0 · · · ηM1 · · · 0

...
...

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · ηMN




. (2.33)

Therefore, we obtain a similar linear model even for the systems with scalar measure-

ments. The only difference lies in the dimensionality of some of the vectors in the

model and also the constituent elements of the matrix H . The optimal design for

such a system will not only include optimization over the transmit polarizations ti

but will also include the optimal selection of the receive polarization vectors rj . The
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problem formulation and analysis of the detector remains the same as for the earlier

model because the basic structure of the model is still the same. Hence, the analysis

performed in Section 2.4 is applicable even to this model. We use this analysis in the

next section to demonstrate the advantage of retaining the vector measurements at

each receiver without combining them.

2.6 Numerical Results

We consider a system with two transmit antennas and two receive antennas under

the same target detection scenario as described so far. Hence, there are 16 complex

elements in the random vector s. We choose the covariance matrix of this vector to

be of the following form:

Σs =




Σ11
s 0 0 0

0 Σ12
s 0 0

0 0 Σ21
s 0

0 0 0 Σ22
s



, (2.34)

where Σij
s represents the covariance matrix of the random vector sij and 0 is a 4x4

dimensional zero matrix. Each of these matrices were chosen as follows:

Σ11
s =




0.3 0.1ǫ 0.1ǫ 0.1ǫ

0.1ǫ∗ 0.2 0.1ǫ 0.1ǫ

0.1ǫ∗ 0.1ǫ∗ 0.4 0.1ǫ

0.1ǫ∗ 0.1ǫ∗ 0.1ǫ∗ 0.5



, (2.35)
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Σ12
s =




0.5 0.05ǫ 0.05ǫ 0.05ǫ

0.05ǫ∗ 0.3 0.05ǫ 0.05ǫ

0.05ǫ∗ 0.05ǫ∗ 0.4 0.05ǫ

0.05ǫ∗ 0.05ǫ∗ 0.05ǫ∗ 0.3



, (2.36)

Σ21
s =




0.4 0.1ǫ 0.1ǫ 0.1ǫ

0.1ǫ∗ 0.3 0.1ǫ 0.1ǫ

0.1ǫ∗ 0.1ǫ∗ 0.2 0.1ǫ

0.1ǫ∗ 0.1ǫ∗ 0.1ǫ∗ 0.4



, (2.37)

Σ22
s =




0.4 0.05ǫ 0.05ǫ 0.05ǫ

0.05ǫ∗ 0.4 0.05ǫ 0.05ǫ

0.05ǫ∗ 0.05ǫ∗ 0.2 0.05ǫ

0.05ǫ∗ 0.05ǫ∗ 0.05ǫ∗ 0.5



, (2.38)

where ǫ = 1 +
√
−1. The complex elements of the noise vector e are assumed to be

uncorrelated, with the variance of each equal to σ2 = 0.2. Before we use the Gamma

approximation to obtain the optimal design, we first check if the approximation is

reasonable, in our case by plotting the cumulative distribution function (cdf) of the

approximate Gamma distribution and comparing it with that formed by generating

random samples from the constituent Chi squares. This comparison assumes all the

antennas are horizontally polarized.

In this scenario, we have the following information available:

t1 = [1, 0] , (2.39)

t2 = [1, 0] . (2.40)
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Therefore, the matrices P 1 and P 2 become P 1 = P 2 =




1 0 0 0

0 0 1 0


 . The matrix

C turns out to be non–diagonal for this example. Hence, after performing the appro-

priate diagonalization and calculating the weights, the coefficients of the Gamma ap-

proximation under the null hypothesis turn out to be αH0 = 7.6833 and βH0 = 0.6283.

Figure 2.2(b) shows the cdf of this approximated Gamma distribution with the above–

mentioned parameters. In order to check if this is indeed a good approximation, we

generated random samples of the observation vector y under the null hypothesis.

We evaluated the test statistic yH
(
Σe

−1 − (Σe +C)−1)
y for each of these random

samples and generated the sample cumulative distribution function, which is plotted

in Figure 2.2(a). It is clear from both figures that the Gamma approximation we

made is indeed very accurate and close to the sample distribution. This finding is

consistent with the results presented in [22]. The sample cdf takes values 0.5827 and

0.9233 whereas the cdf of the Gamma approximation takes values 0.5863 and 0.9242

for argument values of 5 and 7.5 respectively. This shows that the values taken by

these two curves differ only at the third decimal point.
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Figure 2.2: Cumulative distribution function of the test statistic for the chosen ex-
ample under the null hypothesis: (a) Sample cdf, (b) Gamma approximation.
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Now that we have a good enough approximation to the distribution of our test statis-

tic, we look at how the optimal choice of polarizations improves the performance of

the detector. We fix the complex noise variance to σ2 = 0.2 and vary the value of

PFA. This method enables us to plot the optimal ROC curve by performing a grid

search using the analytical results derived earlier in the chapter. Next, we obtain the

reference curves for our results by computing the ROC curves assuming that all the

transmit antennas are horizontally or vertically polarized. These plots are presented

in Figure 2.3, and a significant improvement in performance is clearly visible while

using the optimal waveform polarizations.
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Figure 2.3: ROC curves demonstrating the improvement offered by the optimal choice
of polarizations when σ2 = 0.2.

We proceed with our analysis for this numerical example. First, we fix PFA to be

equal to 0.02. For this value of PFA, we wish to check the improvement offered by

the optimal design for different values of the noise variance. We plot the optimal

PD as a function of σ2. We also plot PD as a function of σ2 for the case in which

only horizontal or vertical polarizations are used. The improvement in performance

offered by the optimal design is clear from Figure 2.4.
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Figure 2.4: Probability of detection (PD) as a function of the complex noise variance
when PFA = 0.02.

So far, we have demonstrated that by optimally selecting the transmit polarizations,

we get performance improvement over conventional MIMO systems with fixed po-

larizations. Now, we plot the ROC curves for SISO radar with optimal transmit

polarizations to show the gain in performance because of the multiple widely sepa-

rated antennas. For the SISO system, we consider only the first transmit and receive

antennas in our above mentioned example. Therefore, the covariance matrix of the

scattering vector s becomes Σs = Σ11
s . In order to make a fair comparison, we trans-

mit more power than the power transmitted per antenna while using MIMO radar.

It is clear from Figure 2.5 that 2X2 polarimetric MIMO radar system significantly

outperforms its SISO counterpart even when the SISO system uses four times the

transmit power used by each antenna in the 2X2 system.

The complexity of the grid search for optimization using our proposed system model

does not increase much with the increase in the number of receivers, because the

number of variables over which the optimization is performed depends only on the

number of transmit antennas. However, with the scalar measurement model, the
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Figure 2.5: ROC curves demonstrating the improvement offered by employing mul-
tiple widely separated antennas compared with single input single output systems
when σ2 = 0.2.

addition of each extra receiver adds extra variables (receive polarization vectors)

in the grid search and makes the calculations more complex. Therefore, in order to

compare the performance of our proposed system with that of the scalar measurement

system, we use the same numerical example as described so far; however, this time

we stick to just two transmitters and one receiver to reduce the complexity of the

optimization step. The Σs matrix now has the following form:

Σs =




Σ11
s 0

0 Σ21
s


 , (2.41)

where matrices Σ11
s and Σ21

s are chosen to be the same, as defined earlier in this

section. The noise variance remains the same for both the systems because the receive

polarization vectors are assumed to be unit norm. We assume the same noise variance

σ2 = 0.1 for both systems in order to make a fair comparison. Figure 2.6 compares

the performance of both systems under the optimal choice of polarization vectors.

It clearly shows that by retaining the 2D vector measurements, we get significantly
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improved results as compared with scalar measurement systems. Even though we

perform joint optimization over both the transmit and receive polarizations for the

scalar measurement systems, we are still finding just the best linear combination of

the two received measurements at each receiver. However, combining them linearly

need not be the overall optimal solution and we might be losing some important

information by doing so. This can be avoided by retaining the vector measurements,

thereby giving better performance as demonstrated in Figure 2.6.
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Figure 2.6: Comparison of performance between systems with scalar measurements
and those with 2D vector measurements as a function of the probability of false alarm
when σ2 = 0.1.

Figure 2.7 shows the performance of both systems as a function of the noise variance

when PFA is fixed to a constant value of 0.02. At higher noise variances (lower signal–

to–noise ratios), the improvement offered by retaining the 2D vector measurements

becomes even more evident.
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Figure 2.7: Comparison of performance between systems with scalar measurements
and those with 2D vector measurements as a function of the noise variance when
PFA = 0.02.

2.7 Summary

We have proposed a radar system that combines the advantages of MIMO radar with

distributed antennas and polarimetric radar at the same time. The proposed system

uses two–dimensional vector sensors at each of the receivers, measuring both the hor-

izontal and vertical components of the received signal. We dealt with the problem

of target detection for such a system. We designed the well–known Neyman-Pearson

detector for this problem and also analyzed the performance of the detector by ob-

taining approximate expressions for the probabilities of false alarm and detection. We

developed a similar mathematical model for the conventional systems that combine

the two received signals linearly and coherently to give only a scalar measurement at

the receiver. Using numerical examples, we showed that the optimal selection of the

polarizations gives significant improvement in performance over conventional systems

using only horizontal or vertical polarizations all the time across all the antennas. We
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showed that the performance improves by employing multiple widely separated an-

tennas. We also demonstrated that retaining the 2D vector measurements enhances

the performance of the proposed polarimetric MIMO radar system, especially at low

signal–to–noise ratios.
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Chapter 3

Game Theoretic Design for

Polarimetric MIMO Radar Target

Detection2

3.1 Introduction

The conventional approaches to polarimetric waveform design for radar systems rely

on obtaining accurate estimates of the target properties from the measured data as we

mentioned in the previous chapter. The improvement in performance is very sensitive

to the accuracy of these estimates. Hence, we need large amounts of training data

for the design scheme to be meaningful, which can be expensive. In this chapter, we

propose a polarimetric design scheme for distributed MIMO radar target detection

that does not depend on the training data (see also [24], [25], [26]). Using a game the-

oretic framework, we formulate the selection of transmit polarizations, by examining

the impact of all possible transmit schemes on the different available target profiles.

2Based on S. Gogineni and A. Nehorai, “Game theoretic design for polarimetric MIMO radar
target detection,” Signal Processing, to appear in. c©[2011] Elsevier.
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This approach does not require accurate estimation of target properties from mea-

sured data and hence it can be implemented in practice without much cost unlike

conventional approaches as mentioned above. This is the prime motivation for our

work.

We will formulate the radar design problem as a game between the opponent and the

radar design engineer. This approach utilizes the knowledge about the goals of both

the players. However, conventional optimization approaches featuring cost functions

that are a weighted summation of individual costs corresponding to different target

profiles ignore knowledge about the goal of the opponent. This is another motivation

for our proposed game theoretic framework. The game theoretic framework that we

develop in this chapter is very general and can be applied to other radar waveform

design problems also. Typically waveforms are expressed in parametric form like

chirps, frequency hopping codes, etc. We can always divide these parameters into

classes of categories and apply the same approach that we will present here.

3.2 Game Theory Background

A normal form game consists of three components: set of players, their strategies,

and the players’ payoff/utility functions [27], [28]. The radar design problem consists

of only two players; player 1 is the opponent who chooses the target and its proper-

ties, player 2 is the radar design engineer who selects the different transmit waveform

polarizations. We assume that players 1 and 2 have sets of R and Q possible pure

strategies to choose from: S = {s1, · · · , sR} and R = {r1, · · · , rQ}. Each of the play-

ers chooses one strategy from their corresponding set of possible strategies. Denote

s and r as the pure strategies chosen by the two players. Then (s, r) denotes the
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profile of actions by the players. For each of the possible profiles, we define utility

functions u1 and u2 for the players. Note that the utility/payoff function for a player

is dependent not just on his action but also on the action of the other player.

The goal for the players is to choose strategies that maximize their own payoff func-

tions. However, since they do not have control over the actions of other player, this

goal is difficult to achieve in practice. Some strategies for certain players are domi-

nated by the others for all choices of strategies made by the other players and hence

they can be eliminated from the list of possible strategies. In a two player game, a

strategy ri for player 2 is said to be dominated strictly by a strategy rj of the same

player if [27]

u2 (sk, rj) > u2 (sk, ri) , ∀k = 1, · · · , R. (3.1)

When the above conditions are satisfied, player 2 can eliminate ri from the set of

possible strategies because it is a strictly dominated strategy. After this, we go to

the next iteration to search for strictly dominated strategies in the set of remaining

possible strategies. We follow the same procedure iteratively to remove all the dom-

inated strategies. However, this approach might not always work because strictly

dominated strategies do not always exist in all the iterations. The Nash equilibrium

is an alternate approach that can be considered in such scenarios.

A pure strategy Nash equilibrium is a profile of strategies such that the strategy for

each player is an optimal response to the strategy of the other player. In other words,

(si, rj) is a Nash equilibrium if

u1 (si, rj) ≥ u1 (sk, rj) , ∀k = 1, · · · , R, (3.2)

u2 (si, rj) ≥ u2 (si, rk) , ∀k = 1, · · · , Q. (3.3)
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Therefore, if player 2 chooses rj, then si is an optimal strategy for player 1 and vice

versa.

A mixed strategy is specified by providing probability distributions over all the pure

strategies for both the players separately [27]. Let a mixed strategy profile for both

the players be given by

P1 = {P1 (s1) , · · · ,P1 (sR)} , (3.4)

P2 = {P2 (r1) , · · · ,P2 (rQ)} . (3.5)

Note that
∑R

k=1P1 (sk) = 1 and
∑Q

k=1P2 (rk) = 1. The player 1 utility function is

defined as

u1 (P1,P2) =
∑

i=1,··· ,R
j=1,··· ,Q

P1 (si)P2 (rj) u1 (si, rj). (3.6)

Further, we define

u1 (P1, rj) =
∑

i=1,··· ,R
P1 (si)u1 (si, rj), (3.7)

and

u1 (si,P2) =
∑

j=1,··· ,Q
P2 (rj)u1 (si, rj). (3.8)

The player 2 utility function is also defined using a similar approach. (P1,P2) is a

Nash equilibrium if

u1 (P1,P2) ≥ u1 (sk,P2) , ∀k = 1, · · · , R, (3.9)

u2 (P1,P2) ≥ u2 (P1, rk) , ∀k = 1, · · · , Q. (3.10)
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The above definition implies that for any other mixed strategies P̃1 and P̃2, by

averaging across the pure strategies on the right hand side, we obtain

u1 (P1,P2) ≥ u1

(
P̃1,P2

)
, (3.11)

u2 (P1,P2) ≥ u2

(
P1, P̃2

)
. (3.12)

For any given problem, the Nash equilibrium need not be unique, and we might end

up with a set of Nash equilibria. At the same time, the existence of a pure strategy

Nash equilibrium is not guaranteed for all the games. However, for a game with a

finite number of pure strategies, the existence of a mixed strategy Nash equilibrium

was shown in [29]. We will see later that our MIMO radar design problem can be

reduced to a set of finite games for each transmitter, and hence the existence of an

equilibrium is always guaranteed. In the next section, we will formulate the radar

design problem using game theoretic framework, and in the numerical simulations,

we will solve it by using well known methods like iterated strict dominance and Nash

equilibrium, as we discussed in this section.

3.3 Polarimetric Design

3.3.1 Problem Formulation

We begin with a description of a distributed MIMO radar system. Let M and N

denote the number of widely separated transmit and receive antennas, respectively.

Each of the transmitters is capable of transmitting a waveform of any arbitrary polar-

ization, and each receiver employs 2D vector sensors that capture both the horizontal
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and vertical components of the received EM wave separately (see also [13]). Let

ti = [tih, t
i
v]

T
denote the polarization of the waveform sent out of the ith transmit

antenna. {·}T denotes the transpose of {·}. The subscripts h and v denote the hor-

izontal and vertical polarization components of the ith transmitter respectively; tih

and tiv are complex numbers such that ‖ti‖ = 1. The complex pulse wave shape

transmitted from the ith transmit antenna is defined as wi(t). These polarized waves

travel in space and are reflected by the target before arriving at the receivers.

We assume that the target contains multiple individual isotropic scatterers. But due

to signal bandwidth constraints, the system cannot resolve these individual scatterers.

Therefore, this collection of scatterers can be expressed as one point scatterer which

represents the radar cross section (RCS) center of gravity of these multiple scatterers

[2]. By point target, we refer to the smallest target that can be resolved by the system

and we do not refer to an isotropic scatterer. The polarizations are altered during

this process of reflection. The polarizations of the received signals are determined by

the target scattering matrices, which can be expressed as

Sij =



sijhh sijhv

sijvh sijvv


 . (3.13)

Due to the distributed nature of all the antennas, the scattering matrix is dependent

on the transmitter and receiver pair under consideration [13]. The signals received

at each of the receivers are a combination of the signals from the different transmit

antennas. Let yj(t) be the complex envelope of the signal received by the jth receive

antenna. Then, the expressions for the received signals of a polarized radar system
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are given as [15], [16], [17]

yj(t) =
M∑

i=1

Sijtiwi(t− τ ij) + ej(t), (3.14)

where ej(t) is the additive noise, τ ij is the time delay because of propagation. Separate

these signals by employing banks of matched filters using the orthogonality of the

waveforms [2]. The output of the ith matched filter at the jth receiver is given as [13]

yij = Sijti + eij , (3.15)

where eij is the additive noise. Note that both yij and eij are two dimensional

complex vectors because each receiver employs 2D vector sensors measuring both the

horizontally and vertically polarized components separately.

We assume eij to be independent realizations of zero mean Gaussian random variables

with variance σ2. ti is the design vector for each transmitter. For each transmitter-

receiver pair, we stack the complex entries of the scattering matrix as

sij =
[
sijhh, s

ij
hv, s

ij
vh, s

ij
vv

]T
. (3.16)

Define

si =
[(
si1
)T
, . . . ,

(
siN
)T]T

, (3.17)

yi =
[(
yi1
)T
, . . . ,

(
yiN
)T]T

, (3.18)

ei =
[(
ei1
)T
, . . . ,

(
eiN
)T]T

. (3.19)
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Therefore, the measurement model corresponding to the ith transmitter index reduces

to

yi =H isi + ei, (3.20)

where

H i = diag
{
P i, . . . ,P i

}
, (3.21)

P i =



tih tiv 0 0

0 0 tih tiv


 . (3.22)

In the above expression, diag{·} represents a block diagonal matrix whose entries are

given by {·}. Further, we assume si follows zero mean Gaussian distribution with

covariance matrix Σi, which depends on the type and nature of target. Different

classes of targets have different Σi, and we do not know the true value of Σi in

advance. However, we assume knowledge about the list of all possible target classes.

Assume there are a total of R target classes

Ξi =
{
Σi

1, · · · ,Σi
R

}
. (3.23)

Note that these target classes differ only in the scattering covariance matrices. Since

this is a detection problem, we test the presence of a target within a particular cell

whose location is always known to the radar [1], [2]. Since, this testing cell is the

same for all the target classes, we do not need to differentiate them in terms of the

target locations.

Player 1 (opponent) selects one of the R possible target classes, and player 2 (design

engineer) does not have knowledge about the true target class. Player 2 can obtain

knowledge about the target class by performing experiments using training data, but
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this can be expensive and time consuming. Instead, we propose an approach in which

player 2 chooses a strategy by studying the list of all possible target classes and their

implications for the radar system’s performance. The pure strategies for player 2

are the choices of different transmit waveform polarizations. Since the transmitted

waveforms are assumed to be mutually orthogonal for all delays, yi does not depend

on tj, when i 6= j. Therefore, we can consider the design problem for each of the M

different transmit antennas separately. Further, we assume that each transmitter has

Q possible pure strategies (waveform polarizations)

Ωi =
{
ti1, · · · , tiQ

}
. (3.24)

Now, we have finished formally defining the players and their pure strategies. The

next step is to define the payoff functions of both the players for the R×Q possible

profiles of strategies.

We consider that the payoff functions of both the players sum to zero. This is a

reasonable assumption because the goals of both players are quite opposite. While

player 1 tries to select a target class that is the most difficult to detect, player 2 will

try to design the transmit waveform polarizations to improve the target detection

performance. Such games, zero-sum games, have been discussed widely in game

theory literature [27], [30]. Therefore, in our radar problem,

u1
(
Σi

k, t
i
l

)
= −u2

(
Σi

k, t
i
l

)
, ∀k = 1, · · · , R, l = 1, · · · , Q. (3.25)
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We define the utility function corresponding to the ith transmitter for player 2 as

u2
(
Σi

k, t
i
l

)
= E

{
‖H i

ls
i
k‖

2
}
, (3.26)

= tr
{
H i

lE
{
siks

i
k

H
}
H i

l

H
}
, (3.27)

= tr
{
H i

lΣ
i
kH

i
l

H
}
. (3.28)

where E{·}, {·}H and tr{·} stand for the expectation, Hermitian, and trace of {·},

respectively. If the players choose the mixed strategy profile (P1,P2), then the

corresponding utility function becomes

u2 (P1,P2) =
∑

k=1,··· ,R
l=1,··· ,Q

P1

(
Σi

k

)
P2

(
til
)
tr
{
H i

lΣ
i
kH

i
l

H
}
. (3.29)

These expressions for the utility functions denote the received energy across all re-

ceivers corresponding to the ith transmitter. So, the goal of each transmitter would

be to maximize its utility and thereby improve the received signal energy. Note that

H i
l is a function of the strategy til chosen by player 2. Maximizing the received signal

energy improves the detectability of the target. This is the goal of player 2. However,

player 1 has the exact opposite goal of minimizing the detectability of the target.

Therefore, the utilities of player 1 are defined as the additive inverse of the utilities

of player 2, thereby leading to the zero-sum game.

To incorporate other mission considerations along with the detectability, we just need

to modify the utility functions. The framework that we developed is very general and

can be easily applied even for other scenarios. For example, our current definition of

utility function considers the received signal energy. The opponent tries to minimize

it. However, for someone designing the shape of the waveform, there may be other
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issues like peak-to-average power ratio, etc that should be considered while designing

the waveforms. In such a scenario, we can define a new utility function that puts

weighted penalties for different mission considerations. This approach allows the use

of this framework in diverse scenarios.

3.3.2 Solution

So far, we have expressed the problem of polarimetric waveform design using a zero-

sum game. Different approaches can be used to solve this problem. As mentioned

earlier, we can follow the procedure of iterated strict dominance. In each iteration,

we look for the strategies that are strictly dominated by one or many of the other

strategies, and remove them from the choices of possible strategies. However, the

existence of such dominated strategies is not guaranteed in each iteration. If this

procedure does not provide a solution, we will look for the possible Nash equilibria

for this game and pick a solution from them. For finite games, the existence of a Nash

equilibrium has been shown in literature [29]. Hence, we can always find at least one

equilibrium solution to our design problem.

This game theoretic design is a one-time offline computation before the radar detec-

tion scan. Conventional design is done online within a particular scan while gath-

ering training data, thereby making complexity a critical issue. The complexity of

game-theoretic design depends only on the number of transmitters and the number

of available profiles. This number is typically very small when compared with the

dimensions of the training data required by conventional approaches. Further, com-

puting the Nash equilibrium of any two-player zero-sum game can be formulated as a
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linear programming problem and hence there exist algorithms to solve it in polynomial

time [31], [32]. Hence, our approach is less complex and easy to implement.

3.4 Numerical Simulations

In this section, we will present numerical examples to demonstrate the performance of

the proposed game theoretic design mechanism and compare it with purely horizon-

tally or vertically polarized radar systems. First, we will present an example which

gives a pure strategy Nash equilibrium solution to the design game. Later, we will

also discuss a scenario in which the only possible Nash equilibrium solution is a mixed

strategy. We are detecting the presence of a point-like target in the area illuminated

by the radar. The simulated radar system consists of two transmit and two receive

antennas that are widely separated and hence view the target from different angles.

Therefore, the goal is to design two transmit polarization vectors that will enhance

the target detection performance of the MIMO radar system. We define the unit

norm complex design polarization vectors as

t1 =
[
t1h, t

1
v

]T
, (3.30)

t2 =
[
t2h, t

2
v

]T
. (3.31)
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Therefore, we need to solve two games, each corresponding to a different transmit an-

tenna. For each of the transmitters, we consider the following five possible strategies:

ti1 = [1, 0] , (3.32)

ti2 = [0, 1] , (3.33)

ti3 =
[
0.5 +

√
−0.5, 0.5 +

√
−0.5

]
, (3.34)

ti4 =
[
0.6 +

√
−0.6, 0.37 +

√
−0.37

]
, (3.35)

ti5 =
[
0.37 +

√
−0.37, 0.6 +

√
−0.6

]
. (3.36)

The first two strategies correspond to using only the horizontal and vertical polarized

waveforms from the transmitters, respectively. The waveforms corresponding to the

other strategies contain both horizontally and vertically polarized components.

The reflection properties of the target are given by the scattering matrices corre-

sponding to the different transmitter–receiver pairs. The statistical properties of

these scattering coefficients are defined by the two covariance matrices Σ1 and Σ2.

We chose these covariance matrices to be of the following block diagonal structure for

i ∈ {1, 2}. Each of the blocks corresponds to a different receive antenna index.

Σi =




Σi1 0

0 Σi2


 . (3.37)

The block diagonal structure of these covariance matrices is a result of the wide

separation between the receive antennas. Since the views of the target are from

different angles, the corresponding target scattering coefficients will be independent.
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We assume that Σ1 is chosen by the opponent from a set of two possible target

classes. The non-zero blocks of the covariance matrix Σ1 corresponding to the first

transmitter and first target class are

Σ11
1 =




0.8 0.05ǫ 0.05ǫ 0.04ǫ

0.05ǫ∗ 0.4 0.03ǫ 0.03ǫ

0.05ǫ∗ 0.03ǫ∗ 0.3 0.03ǫ

0.04ǫ∗ 0.03ǫ∗ 0.03ǫ∗ 0.5



, (3.38)

Σ12
1 =




0.5 0.03ǫ 0.04ǫ 0.05ǫ

0.03ǫ∗ 0.7 0.02ǫ 0.03ǫ

0.04ǫ∗ 0.02ǫ∗ 0.6 0.02ǫ

0.05ǫ∗ 0.03ǫ∗ 0.02ǫ∗ 0.3



. (3.39)

The non-zero blocks of the covariance matrixΣ1 corresponding to the first transmitter

and second target class are

Σ11
2 =




0.7 0.03ǫ 0.04ǫ 0.04ǫ

0.03ǫ∗ 0.8 0.04ǫ 0.05ǫ

0.04ǫ∗ 0.04ǫ∗ 0.6 0.04ǫ

0.04ǫ∗ 0.05ǫ∗ 0.04ǫ∗ 0.4



, (3.40)

Σ12
2 =




0.2 0.04ǫ 0.03ǫ 0.05ǫ

0.04ǫ∗ 0.4 0.02ǫ 0.03ǫ

0.03ǫ∗ 0.02ǫ∗ 0.6 0.04ǫ

0.05ǫ∗ 0.03ǫ∗ 0.04ǫ∗ 0.8



. (3.41)
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Similarly, Σ2 is also chosen by player 1 from a set of two possible target classes. The

non-zero blocks of the covariance matrix Σ2 corresponding to the second transmitter

and first target class are given as

Σ21
1 =




0.3 0.03ǫ 0.04ǫ 0.04ǫ

0.03ǫ∗ 0.5 0.03ǫ 0.05ǫ

0.04ǫ∗ 0.03ǫ∗ 0.2 0.04ǫ

0.04ǫ∗ 0.05ǫ∗ 0.04ǫ∗ 0.4



, (3.42)

Σ22
1 =




0.7 0.02ǫ 0.04ǫ 0.04ǫ

0.02ǫ∗ 0.4 0.03ǫ 0.03ǫ

0.04ǫ∗ 0.03ǫ∗ 0.5 0.05ǫ

0.04ǫ∗ 0.03ǫ∗ 0.05ǫ∗ 0.3



. (3.43)

The non-zero blocks of the covariance matrix Σ2 corresponding to the second trans-

mitter and second target class are

Σ21
2 =




0.5 0.05ǫ 0.05ǫ 0.04ǫ

0.05ǫ∗ 0.8 0.05ǫ 0.03ǫ

0.05ǫ∗ 0.05ǫ∗ 0.2 0.02ǫ

0.04ǫ∗ 0.03ǫ∗ 0.02ǫ∗ 0.5



, (3.44)

Σ22
2 =




0.3 0.04ǫ 0.05ǫ 0.05ǫ

0.04ǫ∗ 0.6 0.02ǫ 0.05ǫ

0.05ǫ∗ 0.02ǫ∗ 0.8 0.03ǫ

0.05ǫ∗ 0.05ǫ∗ 0.03ǫ∗ 0.9



, (3.45)
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where ǫ = 1 +
√
−1.

However, the radar system does not know which of these different possible scattering

matrices corresponds to the actual target. Hence, the radar must consider all the

possible target scenarios before designing the transmit wave polarizations for each of

the two transmit antennas. Given the above sets of possible strategies for each player,

the next step remaining in defining the games is computing the utility functions for

different profiles. There are 2× 5 = 10 profiles in this problem, and we compute the

utility functions for both the players using the expressions mentioned in the previous

section.

Table 3.1: Game corresponding to transmitter 1.
Strategies t11 t12 t13 t14 t15

Σ1
1 2.2 1.9 3.27 3.28 3.1

Σ1
2 2.1 2.4 3.6 3.46 3.55

Table 3.2: Game corresponding to transmitter 2.
Strategies t21 t22 t23 t24 t25

Σ2
1 1.7 1.6 2.67 2.66 2.57

Σ2
2 1.8 2.8 3.66 3.36 3.77

The two games corresponding to the two transmitters are given in tables 3.1 and 3.2,

where we specify the utilities corresponding to player 2. The utilities for player 1

are easily obtained using the zero-sum property of these games. We shall begin by

considering game 1, which corresponds to the selection of polarizations for transmitter

1. We observe that the player 2 strategies t11, t
1
2, and t

1
5 are strictly dominated by the

other two strategies. Similarly, for game 2, the strategies t21, t
2
2, and t

2
4 are dominated

by the other two strategies. Therefore, after eliminating these dominated strategies,

we arrive at the transformed games shown in tables 3.3 and 3.4.
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Table 3.3: Game corresponding to transmitter 1 after removing player 2 dominated
strategies.

Strategies t13 t14
Σ1

1 3.27 3.28
Σ1

2 3.6 3.46

Table 3.4: Game corresponding to transmitter 2 after removing player 2 dominated
strategies.

Strategies t23 t25
Σ2

1 2.67 2.57
Σ2

2 3.66 3.77

If we assume that player 1 is knowledgeable and has information about the utility

functions based on the locations and configuration of the radar system, then he will

always choose the target to be from the first class, because both Σ1
1 and Σ2

1 give lesser

utility to player 2 (higher utility for the opponent) under both the available strategies

for player 2. Therefore, assuming player 1 makes a knowledgeable decision, player 2

selects t14 as the polarization for the first transmit antenna and t23 as the polarization

for the second transmit antenna.

In higher dimensional problems, it might not always be feasible to find the dominated

strategies iteratively and obtain the solution. In such a situation, we can directly

compute the Nash equilibria for the games. Using Gambit [33] software for game

theory, we observe that here, for both the games, there exists only one equilibrium

profile,
(
t14,Σ

1
1

)
for the first game and

(
t23,Σ

2
1

)
for the second. Note that these are

pure strategy profiles. These solutions are exactly same as the solutions obtained

through iterated strict dominance. However, the solutions obtained using any of

these procedures need not be unique in all situations, and we might indeed obtain a

set of solutions, each of which can be an equally good strategy profile in the sense of
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achieving the equilibrium. In such a situation, we assume that there is a mechanism

in place to ensure that both the players expect the same equilibrium [27].

We need to rank all the possible profiles so that each player will pick the strategy

that corresponds to the highest ranked profile among the multiple Nash Equilibria.

Both players should use the same ranking order. So, we assume there is always a

common predefined ranking order used by both the players. Note that the ranks of

the profiles that are not part of the Nash equilibrium will not be considered while

making the decision. There hasn’t been a general argument in game theory literature

that will guarantee this mechanism even though some approaches like focal-power and

Pareto-dominance have been considered in [27] to achieve this common mechanism for

some specific problems. But, equilibrium analysis has historically been very useful in

practical applications and hence it is used for solving many problems [27]. Therefore,

even though there isn’t a clear analytical justification in literature that this procedure

will always work, it has been shown to be very useful for a wide range of problems.

Now, having obtained the transmit waveform polarizations using game theoretic de-

sign, the next step is to observe the improvement in the radar detection performance

due to this design mechanism. For this, we need to analyze the performance of the

optimal Neyman-Pearson detector for this radar system by studying the statistical

properties of the likelihood ratio. In [13] and [14], we derived the approximate ana-

lytical expressions for the probability of detection (PD) and the probability of false

alarm (PFA) of a distributed polarimetric MIMO radar system as a function of the

transmit waveform polarizations while employing the optimal detector. We use these

expressions to plot the performance curves of this detector, as shown in Fig. 3.1 and

Fig. 3.2.
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Figure 3.1: ROC curves when the complex noise variance σ2 = 0.2.

We observe that the game theoretic design of transmit waveform polarizations gives

significant improvement in performance when compared with systems which transmit

only horizontally or vertically polarized waveforms. In these simulations, we assume

the noise samples to be obtained from zero mean complex Gaussian distribution

with variance σ2. In Fig. 3.1, we show the increase in PD as a function of PFA by

plotting the receiver operating characteristics (ROC). Further, in Fig. 3.2, we also

demonstrate the improvement in PD for all values of the complex noise variance σ2.

Further, we see that in this example, the system which transmits purely horizontally

polarized waveforms outperforms the vertically polarized system. This is true only

for this choice of scattering covariance matrices, and it need not always be the case.

In the above problem, the Nash equilibrium solutions to both the games were pure

strategies for both the players. However, this may not be true for all other choices of

covariance matrices. Thus, we will study a problem that does not have pure strategy

equilibrium solutions. For example, assume that the first block of the scattering

covariance matrix corresponding to the first target class in the previous problem is
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Figure 3.2: Probability of detection as a function of the noise variance when PFA =
0.02.

changed to

Σ11
1 =




1.2 0.05ǫ 0.05ǫ 0.04ǫ

0.05ǫ∗ 0.4 0.03ǫ 0.03ǫ

0.05ǫ∗ 0.03ǫ∗ 0.3 0.03ǫ

0.04ǫ∗ 0.03ǫ∗ 0.03ǫ∗ 0.4



. (3.46)

This change affects only the utilities corresponding to the game of the first transmit

antenna, and the modified 2 player game is described in table 3.5.

Table 3.5: Modified game corresponding to transmitter 1.
Strategies t11 t12 t13 t14 t15

Σ1
1 2.6 1.8 3.5 3.61 3.21

Σ1
2 2.1 2.4 3.6 3.46 3.55

The game corresponding to the second transmitter does not change because its cor-

responding covariance matrices have not been altered. Due to the modified utilities

of the players, this zero-sum game does not have any pure strategy Nash equilibrium.

The solution to this game is a unique mixed strategy Nash equilibrium that is given
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by

P1 =

{
14

25
,
11

25

}
, (3.47)

P2 =

{
0, 0,

3

5
,
2

5
, 0

}
. (3.48)

Player 1 assigns non-zero probabilities to both his pure strategies, whereas player 2

assigns non-zero probabilities only to the pure strategies t13 and t14. This assignment

shows that the other pure strategies of player 2, namely t11, t
1
2, and t

1
5, are dominated

by the strategies t13 and t14. Hence, they can be eliminated from the design problem.

In this problem, it is not straightforward to plot the ROC curves because the value of

PD will vary for the different non-dominated pure strategy pairs. We have four such

pairs here, and hence we compute the constituent probabilities of detection PD|Σ1
1, t

1
3,

PD|Σ1
1, t

1
4, PD|Σ1

2, t
1
3, and PD|Σ1

2, t
1
4. Based on the mixing probabilities of the Nash

equilibrium, we define

PD =
2∑

i=1

4∑

j=3

P1(i)P2(j)PD|Σ1
i , t

1
j . (3.49)

Using this definition, we plot the ROC curves in Fig. 3.3. We observe that the

mixed strategy polarimetric design outperforms the radar system with only horizontal

or vertical polarizations. Also, horizontal polarization again gives better detection

performance than vertical polarization. Note that even for plotting these ROC curves

we combined the results corresponding to the two pure strategies of player 1, using

the appropriate probabilities from the equilibrium solution. Further, in Fig. 3.4, we

plotted PD as a function of the noise variance. We notice that the mixed strategy

equilibrium solution has a higher PD for all values of the complex noise variance while

maintaining a fixed PFA.
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Figure 3.3: ROC curves demonstrating the improvement due to the mixed strategy
solution.

3.5 Summary

We approached the problem of polarimetric waveform design for distributed MIMO

radar from a game theoretic perspective. We formulated the problem in the form of a

two player zero-sum game played between an opponent and the radar design engineer

by defining the corresponding utility functions for both the players. This approach

does not require estimation from the training data for performing the system design,

and hence it can be easily implemented in a practical system. We demonstrated

performance advantage of the proposed approach using numerical simulations to show

the improvement in the probability of detection.

In future work, we will include the effect of clutter in our measurement model and

investigate the problem of polarimetric design using the game theoretic approach we

presented in this chapter. We will extend this approach to the problem of selecting

optimal waveform shapes for colocated MIMO radar. Further, we will use this game

theoretic framework for other radar problems including scheduling. We will extend
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Figure 3.4: Probability of detection as a function of the noise variance when PFA =
0.02.

our analysis to continuous-strategy games. Finally, we will also validate our results

using real radar data.
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Chapter 4

Monopulse MIMO Radar for

Target Tracking3

4.1 Introduction

Angle tracking systems are primarily implemented using either of two main mecha-

nisms, sequential lobing and simultaneous lobing [34], [35], [36]. In both these mecha-

nisms, we project the radar beams slightly to either side of the radar axis in both the

angular dimensions (azimuth and elevation). We compare the received signals in each

of these beams to keep track of the angular position of the target. To perform this

comparison, the system computes a ratio which is a function of the signals received

through these beams. This ratio is called Monopulse Ratio [35]. In sequential lobing,

as the name suggests, we carry out this procedure in a sequential manner by alternat-

ing between the different beams from one pulse to another. However, in simultaneous

lobing, we generate all the beams at the same time. Simultaneous lobing is also called

as monopulse.

3Based on S. Gogineni and A. Nehorai, “Monopulse MIMO radar for target tracking,” IEEE

Trans. on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 755-768, Jan. 2011. c©[2011] IEEE.
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If there are heavy fluctuations in the target returns from one time instant to another,

sequential lobing suffers from a degradation in performance whereas monopulse is

immune to these fluctuations because we measure the signals coming from all the

beams at the same time [34], [35], [36]. Apart from this, sequential lobing also suffers

from a reduction in the data rate because we need multiple pulses to receive the data

from all the beams. However, the advantages offered by simultaneous lobing come

at the cost of increased complexity because we need additional hardware to generate

the two beams at the same time. In this chapter, we propose a distributed MIMO

radar system that uses monopulse processing at the receivers (see also [37], [38]). It

provides the spatial diversity offered by distributed MIMO radar and is also immune

to highly fluctuating target returns just like any monopulse tracking radar.

4.2 System Description

In this section, we begin with a brief description of our proposed system. Fig. 4.1

gives the basic structure of our monopulse MIMO radar system. The system has M

transmit antennas and N receive antennas. The different transmitters illuminate the

target from multiple angles and the reflected signals from the surface of the target are

captured by widely separated receivers. All the receivers are connected to a fusion

center which can be a separate block by itself or one of the receivers can function as

the fusion center. Each of the receivers generates two overlapping receive beams on

either side of the boresight axis (see Fig. 4.2). Before initializing the tracking process,

the fusion center makes the boresight axes of all the receivers point towards the same

point in space (see Fig. 4.3). The fusion center has knowledge of the exact locations
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of all the transmit and receive antennas and hence it can direct the receivers to align

their respective axes accordingly.

Figure 4.1: Our proposed monopulse MIMO radar system.

We assume that the target moves only in the azimuth plane scanned by these beams.

However, we can easily extend this to the other angular dimension (elevation) with-

out loss of generality by adding the extra beams. We compare the signals arriving

through the two beams at each of the receivers in order to update the estimate of

the angular position of the target. If the target is present to the left side of the

boresight axis, then we expect the power of the signal from the left beam to be higher

when compared with that from the right beam in an ideal noiseless scenario. After

comparison of the signals, each receiver updates its angular estimate of the target

location by appropriately moving the boresight axis. All the receivers send their new

local angular estimates to the fusion center. The fusion center makes use of all the

information sent to it and makes a final global decision on the location where the

target could be present. It instructs all the receivers to align their boresight axes

towards this estimated target location. After this processing, the receivers get ready
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Figure 4.2: Overlapping monopulse beams at one of the receivers.

for the next iteration. We give the details of how these local and global estimates are

updated in section 4.4.

Target

Y

Figure 4.3: Monopulse MIMO radar receivers.

55



4.3 Signal Model

4.3.1 Transmitted Waveforms

As mentioned in the previous section, we assume there areM widely separated trans-

mit antennas. Let s̃i(t), i = 1, . . . ,M, denote the complex baseband waveform trans-

mitted from the ith antenna. Therefore, after modulation, the bandpass signal ema-

nating from the ith transmit antenna is given as

si(t) = Re
{
s̃i(t)e

j2πfct
}
, (4.1)

where Re{·} denotes the real part of the argument, j =
√
−1, and fc denotes the

carrier frequency. We assume that s̃i(t), ∀i = 1, . . . ,M are narrowband waveforms

with pulse duration T seconds. We repeat each of these pulses once every TR seconds.

We do not impose any further constraints on these waveforms. Especially, note that

we do not need orthogonality between the different transmitted waveforms unlike

conventional MIMO radar with widely separated antennas. As we shall see later in

the chapter, the reason for this is that we do not need a mechanism to separate these

waveforms at the receivers. We process the sum of the signals coming from different

transmitters collectively without separating them. This is another advantage of the

proposed system because the assumption that the waveforms remain orthogonal for

different delays and doppler shifts is unrealistic. In section 4.5 (numerical results),

we considered rectangular pulses.
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4.3.2 Target and Received Signals

We assume a far-field target in our analysis. Further, we assume that the target is

point like with its RCS varying with the angle of view. Hence, the signals coming

from different transmitters undergo different attenuations before they travel to the re-

ceivers. Let aik(t) denote the complex attenuation factor due to the distance of travel

and the target RCS for the signal transmitted from the ith transmitter and reaching

the kth receiver and τik is the corresponding time delay. Note that for a colocated

MIMO system, aik(t) for different transmitter-receiver pairs will be the same because

all the antennas will be viewing the target from closely spaced angles. Different mod-

els have been proposed in literature to model the time varying fluctuations in these

attenuations aik(t) [39], [40], [41]. Some of these models incorporate pulse-to-pulse

fluctuations, scan-to-scan fluctuations, etc. These correspond to fast moving and

slow moving targets respectively. In our numerical simulations, we consider a rapidly

fluctuating scenario where these attenuations keep varying from one pulse instant to

another because of the motion of the target. We assume aik(t) to be constant over

the duration of one pulse. These attenuations aik(t) are not known at the receivers.

The complex envelope of the signal reaching towards the kth receiver is the sum of all

the signals coming from different transmitters

ỹk(t) =
M∑

i=1

aik(t)s̃i(t− τik). (4.2)

Hence, the actual bandpass signal arriving at the kth receiver is

yk(t) =

M∑

i=1

Re
{
aik(t)s̃i(t− τik)e

j2πfc(t−τik)
}
. (4.3)
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So far, we assumed the target to be stationary. When the target is moving, we modify

the above equation to include the Doppler effect. Under the narrowband assumption

for the complex envelopes of the transmitted waveforms, and further assuming the

target velocity to be much smaller than the speed of propagation of the wave in the

medium, the Doppler would not affect the component aik(t)s̃i(t − τik) and it shows

up only in the carrier component, transforming the signal to

yk(t) =

M∑

i=1

Re
{
aik(t)s̃i(t− τik)e

j2π(fc(t−τik)+fDik(t−τik))
}
, (4.4)

where fDik is the Doppler shift along the path from the ith transmitter to the kth

receiver,

fDik =
fc
c

(
〈−→v ,−→u Rk〉 − 〈−→v ,−→u Ti〉

)
, (4.5)

where −→v ,−→u Ti,
−→u Rk denote the target velocity vector, unit vector from the ith trans-

mitter to the target and the unit vector from the target to the kth receiver, respec-

tively; 〈, 〉 is the inner product operator, and c is the speed of propagation of the wave

in the medium. Equation (4.4) is valid only when the target is moving with constant

velocity. It is reasonable to assume uniform motion within any given processing in-

terval because the typical duration of a processing interval is very small. If the target

is accelerating and if the complex envelope is wideband, more detailed expressions

can be derived using the theory in [42], [43], [44], [45]. Note that the Doppler shifts

fDik are not known at the receivers.
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4.3.3 Beamforming

The receive beams are generated using Capon beamformers [46], [47]. Capon beam-

former is the minimum variance distortionless spatial filter. In other words, it mini-

mizes the power of noise and signals arriving from directions other than the specific

direction it was designed for. Each receiver generates two beams located at the same

phase center using two linear arrays. Each array has L elements, each separated by

a uniform distance of λ
2
, where λ = c

fc
is the wavelength corresponding to the carrier.

Under the given antenna spacing, the steering vector of the beamformers becomes

d(θ, f) =
[
1, e−jπ

fλ
c

cos θ, . . . , e−j(L−1)π fλ
c

cos θ
]T
, (4.6)

where [·]T denotes the transpose. Let θk be the angle between the approaching plane

Figure 4.4: Spatial beamformer at the receiver.

wave and the two linear arrays at the kth receiver (see Fig. 4.4). The received

signals are first demodulated before passing through the two beamformers. Define

the outputs of the two beamformers as ylk(t) and y
r
k(t), where the superscripts l and

r correspond to the left and the right beams, respectively (see Fig. 4.2). Also, let
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wl
k =

[
wl

k1, . . . , w
l
kL

]T
and wr

k = [wr
k1, . . . , w

r
kL]

T denote the corresponding weight

vectors of the beamformers. Similarly, elk(t) =
[
elk1(t), . . . , e

l
kL(t)

]T
and erk(t) =

[erk1(t), . . . , e
r
kL(t)]

T are the additive noise vectors of these two spatial filters. The

outputs of these spatial filters become

ylk(t) =
M∑

i=1

aik(t)s̃i(t− τik)e
j2π(fc(−τik)+fDik(t−τik))

(
wl

k

)H
d(θk, fc + fDik) +

(
wl

k

)H
elk(t),

yrk(t) =

M∑

i=1

aik(t)s̃i(t− τik)e
j2π(fc(−τik)+fDik(t−τik))

(
wr

k

)H
d(θk, fc + fDik) +

(
wr

k

)H
erk(t).

Defining

xk(t) ,
M∑

i=1

aik(t)s̃i(t− τik)e
j2π(fc(−τik)+fDik(t−τik)), (4.7)

we get the sampled outputs as

ylk[n] = xk[n]
(
wl

k

)H
d(θk, fc + fDik) +

(
wl

k

)H
elk[n], (4.8)

yrk[n] = xk[n]
(
wr

k

)H
d(θk, fc + fDik) +

(
wr

k

)H
erk[n]. (4.9)

We assume that the additive noise vectors at the two arrays of sensors have zero mean

and covariance matrices Rl
k and Rr

k, respectively. The Capon beamformer creates

the beams by minimizing
(
wl

k

)H
Rl

kw
l
k and

(
wr

k

)H
Rr

kw
r
k subject to the constraints

{(
wl

k

)H
d(θlk, fc) = 1

}
and

{(
wr

k

)H
d(θrk, fc) = 1

}
, respectively. The solution to this

optimization problem gives the weights of the beamformers [47]

wl
k =

(
Rl

k

)−1
d(θlk, fc)

d(θlk, fc)
H(
Rl

k

)−1
d(θlk, fc)

, (4.10)

wr
k =

(
Rr

k

)−1
d(θrk, fc)

d(θrk, fc)
H
(
Rr

k

)−1
d(θrk, fc)

, (4.11)
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where θlk, θ
r
k are the angles at which both the beams are directed. Hence, boresight

axis of the receiver is located at an angle θbk =
θl
k
+θr

k

2
. In practice, the covariance

matrices Rl
k and Rr

k are not known at the receiver apriori. Therefore, they are

approximated using the sample covariance matrices R̂l
k and R̂r

k, respectively.

In Fig. 4.5, we plotted the response of the two spatial filters to exponential signals of

frequency fc coming from different angles. The left and the right beams are designed

for signals coming from angles 80 degrees and 75 degrees, respectively with a frequency

fc. Hence, the boresight axis is at an angle of 77.5 degrees. We used an array of

10 elements to generate these beams and the beams were designed for a diagonal

covariance matrix with a variance of 0.1 for the measurements. The response of these

spatial filters at the boresight angle is 0.9258. We can control the widths of each of

these beams by adjusting the number of elements in the linear array. A larger value

of L gives a narrower beam width because of the increased degrees of freedom.
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Figure 4.5: Responses of the two spatial filters as a function of the angle.
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We evaluate the sum and the difference of the absolute values of the complex outputs

at the two beamformers

ysk[n] = abs
{
ylk[n]

}
+ abs

{
yrk[n]

}
, (4.12)

ydk [n] = abs
{
ylk[n]

}
− abs

{
yrk[n]

}
, (4.13)

where the superscripts s and d denote the sum and difference channels, respectively;

abs{·} represents the absolute value of the complex number in the argument. Now,

we send the measurements from these two channels to the monopulse processor for

the decision making about the angular location of the target.

4.4 Tracking Algorithm

We propose a tracking algorithm for monopulse MIMO radar in this section.

4.4.1 Initialization

The fusion center has the information about the exact locations of all the receivers.

It will initialize the tracking algorithm by making sure that the boresight axes of all

the receivers intersect at the same point in space. After this, the receivers obtain the

measurements from the first pulse according to equations (4.8) and (4.9).
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4.4.2 Monopulse Processing: Local Angular Estimates

After obtaining the measurements from the sum and the difference channels, each of

the receivers computes the monopulse ratio

Mk[n] =
ydk [n]

ysk[n]
. (4.14)

If theMk[n] is positive, it implies that it is highly likely for the target to be present on

the left side of the boresight axis. Similarly, a negative Mk[n] indicates the opposite.

The receiver k will adjust its boresight axis appropriately using the following equation

θ
b(new)
k = θbk + δ{Mk[n]}, (4.15)

where δ is a positive valued design parameter. The above equation essentially in-

creases the value of θbk if the target is present to the left side of the axis and reduces

it if the target is on the other side. The amount of increase or decrease in the angular

adjustment is proportional to the monopulse ratio. The parameter δ has to be chosen

carefully. A larger value of δ will enable tracking faster moving targets but will also

lead to higher steady state errors. However, a smaller δ will increase the convergence

time but the steady state errors will be less. Each of the receivers updates its angular

estimates using the above mentioned processing. In our proposed system, we adjust

the boresight axes electronically by adjusting the weights of both the beamformers.

However, we can also do this by mechanically steering both the beams. The disadvan-

tage of using mechanical steering is the delay encountered while rotating the beams.

Electronic steering by beamforming is very quick and can be done instantaneously by

adjusting the weights appropriately.
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In Fig. 4.6, we plot the monopulse ratio formed by using the two spatial filters shown

in Fig. 4.5. It can be seen that the ratio changes its sign exactly at the middle point

between the two beams i.e, 77.5 degrees. The beams that we used in our numerical

results have exactly the same width and same separation angle as mentioned in this

example.
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Figure 4.6: Monopulse ratio as a function of the angle.

4.4.3 Fusion Center: Global Location Estimate

The primary function of the fusion center is to combine these decentralized estimates

and arrive at a global estimate for the target location. We have solved a similar prob-

lem for localizing acoustic sources using Cramer-Rao bound [48]. Here, we present a

simpler method to combine the decentralized estimates. After obtaining new angular

estimates, each of the receivers sends these new updates to the fusion center. Along

with the angular estimates, the receivers also send the instantaneous energy of the

received signal in the sum channel during that instant.

Ek[n] = (ysk[n])
2. (4.16)
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Figure 4.7: Polygon formed by the points of intersection of the boresight axes of three
receivers.

The fusion center forms a polygon of N(N−1)
2

sides by connecting the points of in-

tersection of the updated boresight axes of each of the N receivers (see Fig. 4.7).

See also [49]. The fusion center will decide upon a point inside this polygon to be

the global estimate of the target location. Define
(
pxij

[n], pyij [n]
)
to be the cartesian

coordinates of the vertex formed by the intersection of the boresight axes coming out

from the ith receiver and the jth receiver. A linear combination of these vertices is

chosen as the estimate of the target location

(p̂x[n], p̂y[n]) =

N∑

i=1

N∑

j=i+1

αij [n]
(
pxij

[n], pyij [n]
)
. (4.17)

We choose the weights αij [n] to be proportional to the sum of instantaneous energies

received from the corresponding receivers and
∑N

i=1

∑N

j=i+1 αij [n] = 1. Therefore,

αij[n] =
Ei[n] + Ej [n]∑N

i
′=1

∑N

j
′=i

′+1

(
Ei

′ [n] + Ej
′ [n]
) . (4.18)

These weights also depend on the locations of the transmitters and receivers relative

to the target. The signal at each receiver is a sum of the signals coming from different
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transmitters and bouncing off the surface of the target. Therefore, the path length

and the target RCS play an important role in determining the received energies.

Hence, it is highly likely that a transmitter-receiver pair which has a good look at the

target and shorter path length will give a significant contribution to the instantaneous

received energy at that receiver.

Finally, the fusion center sends the new estimate (p̂x[n], p̂y[n]) to all the receivers

and guides them to align their axes towards this particular location before the next

iteration. We summarize the important steps of the algorithm in Table 1. Note that

the Doppler frequencies that appear in the expressions for the received measurements

(see section 4.3) will degrade the performance of the tracking algorithm because they

also impact the computation of the monopulse ratio and these frequencies are not

known at the receivers. However, in certain situations, having large Doppler shifts

might be an advantage. Consider an example when there is an additional target close

to the target of interest. In such a scenario, if these targets have significantly different

Doppler frequencies, we can separate the signals from both of them using Doppler

filters if we have a rough estimate of these frequencies. Therefore, in such situations,

it is useful if the Doppler shifts of the targets are far apart.

Table 4.1: Tracking algorithm
Step 1: Fusion center directs all the receivers to align their boresight axes to the
same location.
Step 2: Each receiver calculates Mk[n] and adjusts boresight axis to

θ
b(new)
k = θbk + δ{Mk[n]}.
Step 3: Receivers send θ

b(new)
k and Ek[n] = (ysk[n])

2 to the fusion center.
Step 4: Fusion center identifies the points of intersection of these axes(
pxij

[n], pyij [n]
)

and estimates the target location to be (p̂x[n], p̂y[n]) =∑N

i=1

∑N

j=i+1 αij [n]
(
pxij

[n], pyij [n]
)
, where αij[n] =

Ei[n]+Ej [n]
∑N

i
′
=1

∑N

j
′
=i

′
+1

(

E
i
′ [n]+E

j
′ [n]

) .

Step 5: Fusion center directs all the receivers to point their boresight axes to this
new estimate (p̂x[n], p̂y[n]) and we start again with step 2.
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4.4.4 Multiple Targets

The scenario in which multiple targets are present in the illuminated scene is of

interest. If we have more than a single target, the tracking algorithm might end

up pointing towards neither of the actual targets. It could be pointing towards some

region in between these targets. The multi-target problem has been addressed in [50],

[51], [52], [53], [54], [55]. [50] studies the varieties of monopulse responses to multiple

targets. The problem of estimation of the direction of arrival is studied in [52], in the

context of two unresolved Rayleigh targets. In [54], the authors exploit the Doppler

separation between the targets to perform the tracking of the intended target in the

presence of the interfering target. These different techniques can be applied at each of

the receivers in our proposed system. Also, we use electronic steering for rotating the

beams at the receivers. Hence, this can be done instantaneously without much delay.

This is in contrast with mechanical steering that will have some lag. This helps us

to continue to keep track of the multiple moving targets even when they move into

different range bins. We can quickly switch the receive beams from one angle to

another as we move from one range bin to another. Thus, the point of intersection

of the boresight axes of the receivers (see Fig. 4.3) can be made to change from one

range bin to another. Also, we can apply Doppler processing to separate the targets

in a similar manner as it is done for SISO monopulse radar.
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4.5 Numerical Results

4.5.1 Simulated Scenario

In this section, we demonstrate the advantage of the proposed monopulse MIMO

tracking system under realistic scenarios. We simulated such a scenario to demon-

strate the advantages of this system. First, we describe the locations of the transmit-

ters, receivers, and target on a cartesian coordinate system. The simulated system has

two transmitters that are located on the y-axis at distances of 20km and 40km from

the origin, respectively. There are three receivers located on the x-axis at the origin,

20km and 40km from the origin, respectively. The receiver at the origin also serves

as the fusion center for this setup. The target is initially present at the coordinate

(30, 35). Fig. 4.8 shows the simulated radar-target scenario.
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Figure 4.8: Simulated radar-target scenario.

We chose the carrier frequency fc = 1GHz. We used complex rectangular pulses each

with a constant value 1+
√
−1√
2

and bandwidth 100MHz for the transmitted baseband
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waveforms. Therefore, the pulse duration T = 10−8s. The pulses coming from dif-

ferent transmitters reach the receivers in different intervals of time because of the

different delays caused by the distances between them. The processing remains the

same even if the square pulses from different transmit antennas overlap because we

are only interested in the ratio of the signals in the difference and the sum channels

i.e., we do not need a mechanism to separate these pulses. The pulse repetition inter-

val TR = 4ms. We further had two samples per pulse duration (Nyquist rate). We ran

the simulation for 2s. Hence, we had 500 pulses from each transmitter. The target is

airborne and moving with a constant velocity of (0.25, 0.25) km/s. There are six com-

plex numbers {a11, a12, a13, a21, a22, a23} describing the attenuation experienced by the

signals. It is important to realistically model these attenuations. They were indepen-

dently generated from one pulse to another using zero mean complex normal random

variables with their variances chosen from the set {0.15, 0.3, 0.45, 0.6, 0.75, 0.9}. The

aik corresponding to the antenna pair that are the closest to the target got the higher

values and vice versa. We assumed the additive noise at every element of the receiver

array is uncorrelated zero mean complex Gaussian distributed with variance σ2. The

received powers are different at different receivers because the attenuations aik do

not have the same variances. Therefore, we evaluate the overall signal to noise ratio

(SNR) by computing the average. For a noise variance of σ2 = 0.1, SNR=12.3dB.

We further assumed the noise to be stationary. The noise variance was estimated

from a training data set of 50 samples. We assumed that the target returns were not

present in the training samples that were used. We independently generated the noise

from one time sample to another. The two beams at each receiver were generated

using L = 10 element linear arrays and they were made to point 5 degrees on either

side of the boresight axis. The −3dB beamwidth of these beams is approximately 12

degrees. We chose the parameter δ = 0.25 degrees in our algorithm.
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4.5.2 Spatial Diversity

We first demonstrate the spatial diversity offered by monopulse MIMO radar with

widely separated antennas by comparing this system with monopulse SISO radar.

Since a single receiver monopulse tracking radar can only track the angular location of

the target, we shall compare only the angle errors of the SISO and MIMO monopulse

radars. For SISO radar, we assumed only the first transmitter (0, 20) and the first

receiver (0, 0) (see Fig. 4.8) to be present. First, we assumed that the initial estimate

of the target location for 2x3 MIMO radar is far from the actual location at (32, 32).

Hence, the initial estimate was at a distance of 3.61km from the actual location. The

same initial estimate was also used for SISO radar and it corresponds to an initial

angular error of 4.3987 degrees. In order to make the comparison fair, we deliberately

increased the transmit power per antenna for the SISO system to make the overall

transmit power the same. We chose the complex noise variance σ2 for this comparison

to be 0.1. We plotted the angular error as a function of the pulse index. Fig. 4.9 shows

that the MIMO system overcomes a poor initial estimate and manages to track down

the target much quicker than the SISO radar. The SISO system takes 60 pulses to

come within an angular error of 1 degree. However, the 2x3 MIMO system takes only

20 pulses to reach within the same level of angular error. To obtain good accuracy,

we plotted these curves by averaging the results over 100 independent realizations.

Next, we assumed a good initial estimate of (29.9, 34.9) and plotted the average

angular errors of both these systems as a function of the complex noise variances. As

expected, Fig. 4.10 shows that the average angular error increases with an increase

in the noise variance. MIMO system significantly outperforms the SISO system. The

angular error of these systems can further be reduced by using a smaller value of

δ. However, if the initial estimate of the target location is poor, a smaller δ would
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Figure 4.9: Comparing the angle error of SISO and MIMO monopulse radars as a
function of the pulse index for σ2 = 0.1.

mean that the convergence time of the algorithm would increase. Hence, it is a

trade-off between the steady-state error and convergence rate. Note that as the noise

variance reduces, the gap between the performances of the systems reduces because

the advantage offered by the spatial diversity becomes more relevant when there is

more noise. The performance of any monopulse system is independent of the absolute

values of the signals of interest. This is an outcome of the fact that we use a ratio in

monopulse processing instead of the absolute values of the measured signals in both

the channels. As the noise variance increases, we get to see that the improvement

offered by the spatial diversity of the MIMO system also increases.

The advantage of the proposed monopulse MIMO radar over monopulse SISO radar

stems from the fact that by employing multiple antennas, we are exploiting the fluc-

tuations in the target RCS values with respect to the angle of view. Even if the RCS

between one transmitter-receiver pair is very small, it is highly likely that the other

transmitter-receiver pairs will compensate for it. Also, in our proposed algorithm,

the weights are proportional to the received energies. Hence, with high probability,
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Figure 4.10: Comparing the average angle error of SISO and MIMO monopulse radars
as a function of the complex noise variance σ2.

a transmitter-receiver pair with high RCS value will contribute significantly to the

received energy at that particular receiver.

Along with tracking the angular location of the target, the exact coordinates of the

target location can also be estimated by evaluating the points of intersection of the

boresight axes coming from all the receivers. Since this processing is possible only for

monopulse systems with multiple receivers, we compare the the locating capabilities

of our proposed 2x3 MIMO radar and conventional 2x3 radar. For the conventional

2x3 radar, all the 6 attenuations will be the same where as these attenuations will be

different for MIMO radar due to the wide antenna separation. This takes care of the

target fluctuations. From Fig. 4.11, it is evident that MIMO radar outperforms the

conventional 2x3 radar at all the noise variances since it offers more spatial diversity.

In the following simulations, we show the localizing abilities of 2x3 MIMO radar under

different challenging scenarios.
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Figure 4.11: Comparing the average distance errors of 2x3 MIMO and conventional
radars as a function of the complex noise variance σ2.

4.5.3 Rapidly Maneuvering Airborne Target

A clever target would change its direction of travel at high velocities to reduce the

detectability and to confuse the tracking radar. Hence, it is extremely important to

track a rapidly maneuvering airborne target. In order to check the performance of the

algorithm in this scenario, we increased the velocity of the target to (2.5, 0.833) km/s

and further made the target change its direction at two different locations over a

time span of 8s. These high velocities are a feature of the next generation hypersonic

missiles. We see from Fig. 4.12 that the radar system keeps track of the target inspite

of the very high velocities and direction changes. The noise variance σ2 = 0.1 for this

simulation. This corresponds to an SNR of 12.3dB.

4.5.4 Effect of a Jamming Signal

In defense applications, the enemy tries to mislead the radar by sending jamming

signals that interfere with the target returns. If the frequency of the jamming signals
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Figure 4.12: Monopulse MIMO tracker for a rapidly maneuvering airborne target for
σ2 = 0.1.

is close to fc, it is difficult for the radar to localize the target. This situation is

analogous to having an interfering target apart from the target of interest. We now

show that the proposed monopulse MIMO radar system manages to locate the target

even in the presence of a jamming sinusoid of frequency fc. We assumed the source

of the sinusoid is located at the coordinates (25, 10). We chose the power of the

received sinusoid to be 10 percent of that of each transmitted waveform. We used the

same target path and velocities as described for the rapidly maneuvering airborne

target. We clearly see from Fig. 4.13 that there is a degradation in performance

when compared to Fig. 4.12 because of the jamming signal. The tracker moves in a

different direction for a while but still manages to correct itself and locates the target.

Hence, even in the presence of the jammer, the proposed system manages to follow a

rapidly maneuvering airborne target.
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Figure 4.13: Monopulse MIMO tracker for a rapidly maneuvering airborne target in
the presence of a jammer for σ2 = 0.1.

4.5.5 Sequential vs Simultaneous Lobing

We mentioned in the introduction section that simultaneous lobing (monopulse) is im-

mune to pulse-to-pulse fluctuations whereas sequential lobing suffers from this draw-

back. Now, we demonstrate the advantage of choosing simultaneous lobing for our

proposed system using numerical simulations. We used the same radar, rapidly ma-

neuvering airborne target, jammer scenario as described in this section. In order

to make a fair comparison, we doubled the pulse repetition frequency for sequential

lobing to keep the overall data rate constant. It is evident from Fig. 4.14 that the

system completely loses track of the target in the middle of the flight. It moves

in a completely different direction to that of the target. In fact, the tracker moves

significantly in the direction of the jamming source located at (25, 10). This shows

the shortcomings of sequential lobing and thus emphasizes the advantages of using

monopulse for the proposed multiple antenna tracking radar.
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Figure 4.14: Monopulse MIMO tracker for a rapidly maneuvering airborne target
using sequential lobing in the presence of a jammer for σ2 = 0.1.

4.5.6 Maneuvering Ground Target

Ground targets move at lesser velocities when compared with the airborne targets

we have considered so far. However, ground targets have the flexibility to change

directions at sharp angles. They can sometimes change their direction by 90 degrees.

This poses an important challenge to the tracking system. In Fig. 4.15, we simulated a

ground target moving at a velocity of (25, 25)m/s and completely changing directions

at three different locations. Since the target moves slower than an airborne target, we

chose the pulse repetition rate TR = 0.4s for the simplicity of numerical simulations.

We see that the tracker follows the target at each of these locations inspite of the

sharp angle changes and the reduction of pulse repetition frequency.
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Figure 4.15: Monopulse MIMO tracker for a maneuvering ground target for σ2 = 0.1.

4.6 Summary

We have proposed a multiple distributed antenna tracking radar system with monopulse

receivers. We used Capon beamforming to generate the beams of the monopulse

receivers. Further, we developed a tracking algorithm for this system. We simu-

lated a realistic scenario to analyze the performance of the proposed system. We

demonstrated the advantages offered by this system over conventional single antenna

monopulse tracking radar. This advantage is a result of the spatial diversity offered

by distributed MIMO radar systems. We also showed that the proposed system keeps

track of a rapidly maneuvering airborne target, even in the presence of an intentional

jamming signal. This is an extremely important feature in any defence application.

Further, we demonstrated the advantages of having simultaneous lobing (monopulse)

in our system as opposed to sequential lobing. Also, we showed that the monopulse

MIMO tracker follows a maneuvering ground target that changes its directions at

sharp angles.
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In future work, we will perform an asymptotic error analysis and develop performance

bounds for the proposed tracking algorithm. We will also use real data to demonstrate

the advantages of the proposed system.
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Chapter 5

Target Estimation Using Sparse

Modeling for Distributed MIMO

Radar4

5.1 Introduction

Compressive sensing allows us to accurately reconstruct data from significantly fewer

samples than the Nyquist rate if the received signal is sparse in some basis rep-

resentation [56], [57], [58], [59]. With the improvement in the capabilities of the

computational resources, it has become more feasible to use compressive sensing for

different medical and engineering applications [60], [61], [62], [63], [64], [65]. Since

the number of targets in a radar scene is often limited, we can use sparse modeling

to represent the radar data. Therefore, compressive sensing is applicable to the field

of radar [62], [63], [64], [65].

4Based on S. Gogineni and A. Nehorai, “Target estimation using sparse modeling for distributed
MIMO radar,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5315-5325, Nov. 2011. c©[2011]
IEEE.
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So far, compressive sensing has been used for MIMO radar only in the context of

closely spaced antennas [64]– [66]. In this chapter, we propose to use sparse modeling

and compressive sensing for distributed MIMO radar (see also [67], [68]) in the context

of multiple-target parameter estimation problem. We develop a new realistic metric

to analyze the performance of such systems. Additionally, we propose an optimal

adaptive energy allocation mechanism for distributed MIMO radar by making use of

the estimates of the complex target attenuations from the previous processing interval

(see also [69]).

5.2 Signal Model

In this section, we describe the signal model for our MIMO radar system. We assume

that there are MT transmitters, MR receivers, and K targets. Further, we assume

that all the targets are moving in a two dimensional plane. However, without loss of

generality, we can extend the analysis in this chapter to the three dimensional case.

We assume that each of the targets contains multiple individual isotropic scatterers.

The bandwidth of the transmitted waveform determines the resolution of the system.

We require very high bandwidth to resolve each of the individual scatterers of the

target. But due to practical bandwidth constraints, the system cannot resolve these

individual scatterers. Therefore, this collection of scatterers can be expressed as

one point scatterer which represents the RCS center of gravity of these multiple

scatterers [2], [70]. By point target, we refer to the smallest target that can be

resolved by the system. The RCS center of gravity of the kth target is located at
−→
pk =

[
pkx, p

k
y

]
on a Cartesian coordinate system and it moves with a velocity

−→
vk =

[
vkx, v

k
y

]
. The position and velocity parameters represent the center of gravity of the
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target during a particular processing interval. The ith transmitter and jth receiver are

located at
−→
ti =

[
tix , tiy

]
and −→rj =

[
rjx, rjy

]
, respectively. We transmit orthonormal

waveforms from the different transmitters. Hence, the transmitted energy from the

ith antenna Ei = 1 and the total transmitted energy E =
∑MT

i=1 Ei = MT. Let wi(t)

be the complex baseband waveform transmitted from the ith transmitter. Then, the

bandpass signal emanating from the ith transmit antenna is given as

w̃i(t) = Re
{
wi(t)e

j2πfct
}
, (5.1)

where Re{·} denotes the real part of the argument, j =
√
−1, fc is the carrier

frequency. These signals travel in space and reflect off the surfaces of the targets

and are captured by the receivers. Further, we assume that the cross correlations

between these waveforms is close to zero for different delays [2], [1], [13]. Let akij(t)

denote the attenuation corresponding to the kth target between the ith transmitter

and the jth receiver. Note that the attenuation is dependent on the transmitter-

receiver indices under consideration. This is a result of the wide separation between

the antennas. For a colocated MIMO setup, the RCS value would be the same for all

transmitter-receiver indices [3], [4].

Under a narrow band assumption on the waveforms, the bandpass signal arriving at

the jth receiver can be expressed as

yj(t) = Re

{
K∑

k=1

MT∑

i=1

akij(t)wi

(
t− τkij

)
e
j2π

(

fk
Dij

(t−τkij)+fc(t−τkij)
)

}
, (5.2)

where τkij and f
k
Dij

are the delay and Doppler shift corresponding to the kth target.

τkij =
1

c

(
‖
−→
pk −−→

ti ‖+ ‖
−→
pk −−→rj‖

)
, (5.3)
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fk
Dij

=
fc
c

(
〈
−→
vk,

−→
uk

rj
〉 − 〈

−→
vk,

−→
uk

ti
〉
)
, (5.4)

where
−→
uk

ti
,
−→
uk

rj
denote the unit vector from the ith transmitter to the kth target and

the unit vector from the kth target to the jth receiver, respectively; 〈, 〉 is the inner

product operator, and c is the speed of propagation of the wave in the medium. The

term e−j2πfcτkij represents the phase shift and it is also dependent on the transmitter-

receiver indices under consideration.

The received signals at each receiver are first down converted from the radio frequency

and then passed through a bank of MT matched filters, each of which corresponds

to a particular transmitter. Assume that the target attenuations values do not vary

within a pulse duration and the Doppler shift is small. Therefore, akij(t)e
j2πfDij

t varies

slowly when compared with the waveform wi(t) and is almost constant across a pulse

duration. In other words, it can be taken outside of the integral in the matched filter

operation. This is a valid assumption for targets whose velocity is much smaller than

the speed of light in the medium. So, the integral only contains the waveform terms

and under the orthogonality assumption of the waveforms for all delays [1], [2], [13],

the sampled outputs of the ith matched filter at the jth receiver are given as

yij(n) =
∑

k∈K
akij(n)e

j2π
(

fk
Dij

(nTs−τkij)−fcτ
k
ij

)

+ eij(n), (5.5)

where eij(n) is the additive noise at the output of the ith matched filter of the jth

receiver, K represents a set containing all the targets that contribute to the matched

filter output at n. n and Ts denote the sample index and sampling interval, respec-

tively. Note that the waveform term wi is no longer present in this equation as it is

integrated out of the matched filter due to the orthogonality of the waveforms (see

also [1]).

82



We define the target state vector ζ = [px, py, vx, vy]
T . Hence, the important properties

of the target (position, velocity) are specified by ζ. The goal is to estimate ζ for all

the K targets. Now, we discretize the target state space into a grid of L possible

values
{
ζ l, ∀l = 1, . . . , L

}
. Hence, each of the targets is associated with a state vector

belonging to this grid. If the presence of a target at ζ l would contribute to the matched

filter output at n, then define

ψl
ij(n) = e

j2π
(

f l
Dij

(nTs−τ lij)−fcτ
l
ij

)

. (5.6)

Otherwise, ψl
ij(n) = 0. Also, if ζ l is the state vector of the kth target, we define

slij(n) = akij(n). (5.7)

Otherwise, slij(n) = 0. For each j, we stack slij(n), yij(n), and eij(n) correspond-

ing to different transmitters to obtain MT dimensional column vectors slj(n), yj(n)

and ej(n), respectively. Similarly, we arrange ψl
ij(n) into (MT) × (MT) dimensional

diagonal matrix Ψl
j(n).

slj(n) =
[
sl1j(n), . . . , s

l
MTj

(n)
]T
, (5.8)

yj(n) = [y1j(n), . . . , yMTj(n)]
T , (5.9)

ej(n) = [e1j(n), . . . , eMTj(n)]
T , (5.10)

Ψl
j(n) = diag

{
ψl
1j(n), . . . , ψ

l
MTj(n)

}
, (5.11)

where diag{·} refers to a diagonal matrix whose entries are given by {·} and [·]T de-

notes the transpose of [·]. Further, we arrange
{
slj(n)

}MR

j=1
,
{
yj(n)

}MR

j=1
, and {ej(n)}MR

j=1

into MTMR dimensional column vectors sl(n), y(n), and e(n), respectively and
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{
Ψl

j(n)
}MR

j=1
, into (MTMR)× (MTMR) dimensional diagonal matrix Ψl(n).

sl(n) =
[(
sl1(n)

)T
, . . . ,

(
slMR

(n)
)T]T

, (5.12)

y(n) =
[
(y1(n))

T , . . . ,
(
yMR

(n)
)T]T

, (5.13)

e(n) =
[
(e1(n))

T , . . . , (eMR
(n))T

]T
, (5.14)

Ψl(n) = diag
{
Ψl

1(n), . . . ,Ψ
l
MR

(n)
}
. (5.15)

Finally, stacking
{
sl(n)

}L
l=1

and
{
Ψl(n)

}L
l=1

into LMTMR dimensional column vector

and (MTMR)× (LMTMR) dimensional matrix, respectively, we obtain

s(n) =
[(
s1(n)

)T
, . . . ,

(
sL(n)

)T]T
, (5.16)

Ψ(n) =
[
Ψ1(n), . . . ,ΨL(n)

]
. (5.17)

Therefore, we can express the received vector at n as

y(n) = Ψ(n)s(n) + e(n), (5.18)

where s(n) is a sparse vector with KMTMR non-zero entries. Note that the non

zero entries of this vector appear in blocks of size MTMR. Therefore, we can call

s(n) as a block sparse vector with K non zero blocks and each block containing

MTMR entries. We have expressed our observed data at n using sparse representation.

For each matched filter, let the sampled output signal for each pulse contain NM

samples. When the velocities of the targets are much smaller than the speed of wave

propagation in the medium, we require multiple pulses to estimate these velocities

since the effect of the Doppler with in one pulse duration will be negligible (see Fig.

4.2 in [71]). Hence, in each processing interval we consider NP pulses. Therefore,
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in each processing interval, we have N = NM × NP samples at the output of each

matched filter. We assume that the target attenuation values do not vary over a

period of NP pulses. Now, we stack {y(n)}Nn=1, {e(n)}
N

n=1, and {Ψ(n)}Nn=1 into

y =
[
(y(1))T , . . . , (y(N))T

]T
, (5.19)

e =
[
(e(1))T , . . . , (e(N))T

]T
, (5.20)

Ψ =
[
(Ψ(1))T , . . . , (Ψ(N))T

]T
, (5.21)

to obtain

y(NMTMR)×(1) = Ψ(NMTMR)×(LMTMR)s(LMTMR)×(1) + e(NMTMR)×(1). (5.22)

Note that in the above expression for the measurement vector, Ψ is known and only s

depends on the actuals targets present in the illuminated area. The non zero entries

of s represent the target attenuation values and the corresponding indices determine

the positions and velocities. Further, note that in order to obtain the measurement

vector in the above equation, each of the receivers sends their measurements to a

common processor that stacks them appropriately to obtain y. This common pro-

cessor performs the estimation that we describe in the next section. None of the

receivers perform any local estimation because any such approach can only be sub

optimal. In [72], the authors show that the estimation error of a MIMO radar system

is increased while employing decentralized processing.
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5.3 Sparse Support Recovery

In the previous section, we have expressed the signal received across MR receive an-

tennas over N samples using sparse representation. In order to find the properties of

the targets (position, velocity), we need to recover the sparse vector s from the mea-

surements y. There are many approaches to perform the recovery. Two approaches

are Basis Pursuit [73] (BP) and Matching Pursuit [74] (MP). These algorithms are

well known in the field of sparse signal processing. Further, these algorithms recover

sparse vectors but do not exploit the knowledge of the block sparsity. However, very

recently, in [75], the authors propose an extension of the matching pursuit algorithm

called block-Matching Pursuit (BMP) that exploits the knowledge of block sparsity.

In this section, we present BP and BMP for sparse support recovery. We shall use

these algorithms in the numerical simulations to demonstrate the performance of the

MIMO radar system. We will use the same algorithms while employing compressive

sensing.

5.3.1 Basis Pursuit (BP)

Basis pursuit is an optimization principle. It is presented under two scenarios; in the

absence of noise and in the presence of noise.

Absence of Noise

In the absence of noise, BP aims at minimizing ‖s‖1 under the constraint y = Ψs.

Since usually N ≪ L, there are many different vectors s that satisfy the constraint.

We choose the solution that has the least l1 norm. This optimization problem can
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be modeled as a linear program [73]. There are many existing algorithms to solve

this problem. It can be solved using CVX, a package for specifying and solving convex

programs [76], [77].

Presence of Noise

Clearly the above approach of basis pursuit will fail in the presence of noise. Hence, in

[73], the authors propose Basis Pursuit De-Noising (BPDN). This is an unconstrained

minimization problem

min
1

2
(‖y −Ψs‖2)

2 + λ‖s‖1. (5.23)

When the columns of Ψ are normalized, typically λ = σ
√

2 log (LMTMR) where σ

represents the noise level [73]. In this problem, since we consider multiple pulses in

each processing interval, the columns are not normalized by definition. Therefore, we

scale the λ value accordingly to perform the simulations. We used CVX to implement

this algorithm. We present the results in section 5.6.

5.3.2 Block-Matching Pursuit (BMP)

Before we describe BMP, we shall first give a description of the conventional MP. It

is an iterative algorithm [74] that can be used for sparse signal recovery. Since all

the columns of Ψ are not necessarily independent, there are infinitely many solutions

for s even when there is no noise. In MP, we first initialize the reconstructed vector

s(0) = 0 and the residual r(0) = y. In each subsequent iteration k′, we project the

residual vector r(k
′−1) onto all the columns of Ψ and pick the column ψ(k′) that has

the highest correlation with the residual. We update the estimated reconstructed
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vector

s(k
′) = s(k

′−1) +
〈r(k′−1),ψ(k′)〉
〈ψ(k′),ψ(k′)〉

ψ(k′). (5.24)

We finally update the residual as

r(k
′) = r(0) − s(k′). (5.25)

Even though this algorithm can be used to recover s, it does not make use of the

knowledge that the vector s is block sparse. In [75], the authors propose BMP

which exploits this knowledge. Similar to MP, we initialize the reconstructed vector

s(0) = 0 and the residual r(0) = y. We divide the columns of Ψ into blocks of

size MTMR. There are L such blocks. In each subsequent iteration, we project the

residual vector onto all of these L blocks and pick the block that gives the highest

energy after projection. Now, the estimated reconstructed vector is updated by adding

the projections onto each of the columns of this block. The residual is also updated

accordingly. Note that the main difference when compared with MP is that here

the updates are done one block (columns corresponding to different transmitter and

receivers) at a time whereas in MP, the updates are done one column at a time.

In [75], the authors analyze the performance of block sparsity based approaches and

show that the improvement in using the block sparsity based recovery algorithms

is maximum when all the columns within a block are orthogonal. It can be easily

checked that the columns corresponding to different transmitter-receiver pairs in the

basis matrix Ψ are orthogonal by the definition of Ψ in our signal model. Therefore,

BMP is well suited for recovering s in this problem.

The performance of the sparsity based estimation approaches is determined by the

correlations between the columns of the dictionary matrixΨ and the distance between
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the adjacent grid points. More specifically, when the non zero entries of the sparse

vector appear in blocks, a major factor in determining the performance of the system

is the block coherence measure [75]. Let Ψ[l] denoted the lth block of the dictionary.

Therefore, Ψ[l] has MTMR columns. Define

M [l, r] = ΨH [l]Ψ[r]. (5.26)

The block coherence measure is defined as

µB = max
l,r 6=l

1

MTMR
ρ (M [l, r]), (5.27)

where ρ (M [l, r]) denotes the spectral norm ofM [l, r]. The block coherence measure

should be small in order to obtain good performance. However, as the grid points

come closer, the resolution is improved but block coherence measure increases because

the correlation between the adjacent blocks will increase. Therefore, it is a tradeoff

between the grid size and the coherence measure. In Fig. 5.1, we plot the block

coherence measure as a function of the distance between adjacent grid points (in m

and m/s for position and velocity respectively). We observe the coherence measure

increases as the distance reduces.

5.4 Optimal Adaptive Energy Allocation

Before we propose the energy allocation mechanism, we first define a new performance

metric that naturally fits into this multiple target scenario. Conventional metrics like

mean square error (MSE) are commonly used in radar applications and they are apt

in single target scenarios. However, they do not efficiently capture the estimation
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Figure 5.1: Block coherence measure as a function of the distance between adjacent
grid points.

accuracies in multi-target scenario. For example, even if the estimates of the param-

eters of some of the targets are poor, the overall MSE (averaged over all the targets)

can still be small if the estimates of majority of the other targets are very accurate.

Hence the deficiencies in the estimates of the weak targets will go unnoticed. To

overcome this problem, we propose a new performance metric. We will describe this

metric in this section.

As mentioned earlier, the LMTMR length vector s has onlyKMTMR non-zero entries.

Let the reconstructed vector be denoted by ŝ. We would like to have the most

significant KMTMR entries of ŝ correspond to the same indices as the non-zero entries

of the actual sparse vector s. If this is not the case, then we will wrongly map the

target states for one or more targets. We define a L length vector

s̃(l) =

MT∑

i=1

MR∑

j=1

‖ŝ(MTMR(l − 1) +MR(j − 1) + i)‖2, ∀l = 1, . . . , L. (5.28)
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This vector essentially combines the energies of the components corresponding to the

different transmit-receiver pairs for each point in the target state space. Further,

define s̃∗ as a K length vector which contains the values that s̃ carries at the correct

K indices. Similarly we define s̃∗ as a L length vector that takes a value of 0 at the

correct K indices and takes the same values as s̃ at every other index. It is clear that

the non-zero entries of s̃∗ correspond to the non-target states and the zero entries

correspond to the correct target states.

We define the metric

△ =
min s̃∗

max s̃∗
. (5.29)

The numerator of this metric denotes the weakest target component in the recon-

structed vector. The denominator denotes the strongest non-target component in the

reconstructed vector. If this metric has value greater than one, then all the actual

(correct) target indices dominate the other indices in s̃ and hence the estimates of

position and velocity will exactly match the true values. Otherwise, at least one of

the non-target indices will dominate the weakest target and hence, the position and

velocity estimates do not match the true values. Note that △ > 1 only guarantees

exact estimation of the position and velocity. The accuracy in the estimates of the

target attenuations is determined by the exact value taken by △. If △ is large, then

most of the reconstructed energy is distributed in the correct target indices, thereby

giving accurate estimates of the attenuations. Hence, the higher the value of △, the

better the performance of the system. In section 5.6, we use this metric to analyze

the results.

Adaptive energy allocation has been shown to provide improved detection perfor-

mance in distributed MIMO radar systems [78]. In this chapter, we will present a
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novel adaptive energy allocation scheme to improve the estimation performance. Let

Ei be the energy of the waveform transmitted from the ith transmitter. We initialize

the system by transmitting multiple pulses of unit energy waveforms Ei = 1, from all

the transmitters. Hence, the total energy transmitted per pulse is
∑MT

i=1 Ei =MT. Af-

ter collecting a vector of outputs at the multiple receiver matched filters, the processor

performs the sparse recovery to estimate the attenuations akij using the algorithms

mentioned in the previous section. Since the different antenna pairs view the targets

from different angles, these attenuations and their corresponding estimates will be

different from each other. Hence, equal energy allocation to all the transmitters does

not necessarily give the best performance. After the estimation, the energy allocation

scheme is applied to decide upon the transmit energies for the next set of transmit

pulses while keeping the total transmitted energy constant. The goal of this scheme

is to maximize the minimum target returns. This is naturally motivated from the

performance metric defined earlier in this section. The numerator in the performance

metric denotes the minimum target returns. We solve the following optimization

problem and find the optimal Ei such that
∑MT

i=1 Ei =MT

max
Ei

min
k

MT∑

i=1

MR∑

j=1

Ei‖âkij‖
2

. (5.30)

We can solve the above optimization problem using CVX [76], [77]. Since this prob-

lem depends only on the dimensionality of the MIMO radar configuration and the

number of targets and not on the huge dimensionality of the basis dictionary, it can

be solved quickly. This makes it amenable to use in practical systems in an online

manner. After solving this problem, the processor feeds back this information to the

transmitters which send the next set of pulses with these optimally selected values of

92



energies. Hence, the system operates in a closed loop. The energy allocation mecha-

nism discussed above is not only applicable to the sparsity based estimation method

mentioned in this chapter but it is relevant in any multiple target scenario. Note

that it only requires us to have estimates of the attenuations. In this chapter, these

estimates are computed using sparse support recovery. In principle, these estimates

can be computed using any other approach and still this energy allocation scheme

will be relevant. We shall show in section 5.6 that this optimal choice of waveform

energies gives significant improvement in performance.

5.5 Compressive Sensing

Compressive sensing allows us to accurately reconstruct data from significantly fewer

samples than the Nyquist rate if the received signal is sparse [56]. Nyquist rate sam-

pling assumes the signals to be bandlimited. Similarly, the requirement for applying

compressive sampling is that the signals must have a sparse representation using some

basis. In section 5.2, we saw that the measurement vector y has dimensions NMTMR.

Since our measurement vector is sparse in the space spanned by the columns of the

matrix Ψ, the theory of compressive sensing says that we can reconstruct the vec-

tor s from far fewer samples than contained in the vector y. If the sensing basis

is represented by Φ, then the coherence measure between Φ and Ψ measures the

largest correlation between them. Φ must be such that it has as little coherence

with Ψ as possible [56]. Since random matrices satisfy low coherence properties, we

generate the entries of the (NCS) × (NMTMR) dimensional sensing matrix Φ from

independent Gaussian distribution, where NCS ≪ NMTMR. Since the entries of Φ

are independent from each other, each sensor will project its received data separately
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using Gaussian sequences of appropriate lengths and send the compressed data to the

fusion center which will combine the data from different sensors appropriately. The

new measurement vector at the fusion center in the presence of noise is

yCS = ΦΨs+Φe. (5.31)

For reconstruction of s, we use the same algorithms as presented in section 5.3. Define

NCS

NMTMR
× 100% as the percentage of samples used in compressive sensing. In section

5.6, we will show the performance of the MIMO radar system for different levels of

compression. The adaptive energy allocation mechanism presented in the previous

section can also be applied for the case of compressive sensing. We use the estimates

of the target attenuations âkij to select the energy allocation for the next processing

interval.

5.6 Numerical Results

We begin with a description of the simulated scenario. We simulated a 2× 2 MIMO

radar system. We denote the positions of all the transmitters, targets and receivers

on a common Cartesian coordinate system. The transmitters are located at
−→
t1 =

[100, 0]m and
−→
t2 = [200, 0]m, respectively. The receiver locations are −→r1 = [0, 200]m

and −→r2 = [0, 100]m, respectively. The carrier frequency of the transmitted waveforms

is fc = 1GHz. Within each processing interval, we consider three pulses that are

transmitted 33.3ms apart. We choose N = 243 for the simulation results. Therefore,

y has 972 entries. We divide the target position space into 9× 9 grid points and the

target velocity space into 5 × 5 grid points. Therefore, the total number of possible
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Figure 5.2: Reconstructed vectors using basis pursuit de-noising at SNR=3.7dB, (a)
position estimates, (b) velocity estimates.

target states L = 2025. We considered the presence of 3 targets. Hence, the 8100

dimensional sparse vector s has only KMTMR = 12 non-zero entries corresponding

to the targets.
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Figure 5.3: Reconstructed vectors using block-matching pursuit at SNR=3.7dB, (a)
position estimates, (b) velocity estimates.

The positions and the velocities of the targets are given as

−→
p1 = [110, 280]m, (5.32)

−→
v1 = [120, 100]m/s, (5.33)

−→
p2 = [80, 280]m, (5.34)

−→
v2 = [110, 110]m/s, (5.35)

−→
p3 = [100, 260]m, (5.36)

−→
v3 = [130, 130]m/s. (5.37)
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The complex attenuations corresponding to the 3 targets are

[
a111, a

1
12, a

1
21, a

1
22

]
= [0.3ǫ, 0.3ǫ, 0.7ǫ, 0.8ǫ] , (5.38)

[
a211, a

2
12, a

2
21, a

2
22

]
= [0.4ǫ, 0.5ǫ, 0.3ǫ, 0.2ǫ] , (5.39)

[
a311, a

3
12, a

3
21, a

3
22

]
= [0.4ǫ, 0.5ǫ, 0.8ǫ, 0.7ǫ] , (5.40)

where ǫ = 1 +
√
−1.

The entries of e are generated independently from Gaussian distribution. We assume

each of these samples has the same variance σ2. We define the signal to noise ratio

(SNR) for the MIMO radar system as

SNR = 10 log

(
‖Ψs‖2

E
(
‖e‖2

)
)
dB. (5.41)
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Figure 5.4: Performance metric △ for basis pursuit de-noising and block-matching
pursuit as a function of SNR.

First we compare the performances of the two algorithms basis pursuit de-noising

and block-matching pursuit that we presented in section 5.3. We performed these

simulations at an SNR of 3.7dB. For BMP, we used 10 iterations. Since it is not
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possible to plot the position and velocity on the same plot, we plotted the estimates

of position and velocity separately. For computing the estimate at a particular grid

point on the position plot, we average over all 5×5 velocity grid points corresponding

to that position grid point. Similarly, we average over all the 9×9 position grid points

in order to obtain the velocity plot. We do this only to be able to plot position and

velocity estimates separately.
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Figure 5.5: Reconstructed vectors with optimal energy allocation at SNR=3.7dB, (a)
position estimates, (b) velocity estimates.

From Fig. 5.2 and Fig. 5.3, we can see that both the algorithms are able to estimate

the positions and velocities of the 3 targets at an SNR of 3.7dB but the performance
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of BP is poor especially for the velocity estimates. We can observe this from Fig. 5.2

because the grid points surrounding the correct velocity points also have significant

energies. However, it is important for us to analyze the performances of the two

algorithms by evaluating the performance metric △. Fig. 5.4 plots △ as a function of

the SNR and we can clearly see that BMP outperforms BP. The value of △ remains

above 1 for much lower SNR for BMP when compared with MP. This clearly shows

the improvement in performance as a result of exploiting the block sparse structure

of the vector s. We used 25 independent Monte Carlo runs to generate these results.

When △ < 1, then some of the non-target states dominate the reconstructed vector

and hence estimates of the target positions and velocities are incorrect for at least

one target. Since BMP outperforms BP, for all further simulation results, we shall

use only BMP.

−2 −1 0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

110

SNR (in dB)

∆

 

 

Optimal Energy Allocation

Equal Energy Allocation

Figure 5.6: Performance metric △ with and without adaptive energy allocation.

Now, we shall demonstrate the advantages of having adaptive energy allocation. We

assume we have estimates of the target attenuations from the estimation of the previ-

ous processing interval. We apply the optimization principle we described in section

5.4. The reconstructed vectors for an SNR of 3.7dB are plotted in Fig. 5.5. We can
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clearly see that an equalization effect has been achieved when compared with Fig. 5.3.

This is a result of the optimization. Now, we quantitatively compare the performances

of the MIMO radar system with and without optimal energy allocation. We solve the

optimization problem presented in section 5.4 to obtain the optimal E1 = 1.626 and

E2 = 0.374. Note that the total transmitted energy is the same E = MT = 2. As

we see from Fig. 5.6, the adaptive energy allocation gives significant improvement in

performance. The value of △ for the optimal energy scheme is higher when compared

with the equal energy transmission. Even at an extremely low SNR of −10.7dB, the

value of △ remains greater than 1 for the proposed energy allocation scheme whereas

it falls below 1 with equal transmit energies.
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Figure 5.7: Performance metric △ for MIMO and SISO systems as a function of the
noise level σ.

Next, we demonstrate the improvement offered by the MIMO system over conven-

tional SISO systems. This improvement is a result of the spatial diversity provided by

distributed MIMO radar. We get multiple views of the target in MIMO radar. In Fig.

5.7, we see that MIMO system significantly outperforms the SISO system. For the

SISO system, we considered transmitter and receiver to be present at the locations
−→
t1
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and −→r1, respectively. For fairness of comparison, we increased the number of samples

per each pulse by a factor of MTMR for the SISO system.
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Figure 5.8: Performance metric △ for different percentages of samples.

Now, we shall present the results for compressive sensing. As we defined earlier, the

percentage of samples used is given by

NCS

NMTMR
× 100%. (5.42)

We plot the performance of MIMO radar for different percentages of samples used. As

expected, we observe from Fig. 5.8 that the performance degrades as the percentage

of samples reduces. However, even while using just 25% of the samples, we can obtain

△ > 1 for SNR as low as −3.5dB. In other words, the reconstructed estimates of the

position and velocity match the true values at an SNR of −3.5dB while using only

25% of the samples. We used 25 independent Monte Carlo runs to produce these

results.

We show the advantages of optimal energy allocation even for the compressive sensing

scenario. From Fig. 5.9, we observe that the optimal choice of transmit energies gives
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Figure 5.9: Performance metric △ with and without adaptive energy allocation with
25% of samples.

significant improvement in performance even when we have just 25% of the samples.

The reconstructed vectors for an SNR of 3.7dB are plotted in Fig. 5.10. We can see

an equalization effect even here.

Finally, we wish to investigate the performance of the sparse recovery algorithm when

there are modeling errors. More specifically, the targets may not fall exactly on the

grid points. This can be a result of the grid size not being small enough. Also,

the movement of the targets within the processing intervals can also lead to these

modeling errors. We quantify the modeling error in each dimension as a percentage

of the maximum possible error in that dimension. The maximum possible error is

half the grid size in that dimension. Fig. 5.11 shows the reconstructed vector in the

presence of 20% modeling error in both the x and y dimensions for each of the 3

targets. We observe that at an SNR of 3.7dB, the target parameters are mapped to

the nearest grid points even in the presence of 20% modeling error. Note that we

considered simultaneous errors in all the targets in both the dimensions. The system

can handle larger errors when we consider the modeling errors separately. Fig. 5.12
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Figure 5.10: Reconstructed vectors with optimal energy allocation at SNR=3.7dB
using 25% of the samples, (a) position estimates, (b) velocity estimates.

shows the reconstructed vector in the presence of 95% modeling error in only the

y dimension for one of the 3 targets. We observe that at an SNR of 3.7dB, the

target parameters are mapped to the nearest grid points even in the presence of 95%

modeling error. Further, by including more pulses within a processing interval, the

system can increase its robustness.
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Figure 5.11: Reconstructed vectors with optimal energy allocation at SNR=3.7dB
with 20% modeling errors in all the targets, (a) position estimates, (b) velocity esti-
mates.

5.7 Summary

In this chapter, we used a novel approach to estimate the positions and velocities

of multiple targets using MIMO radar systems with widely separated antennas by

employing sparse modeling and compressive sensing. We also proposed a new metric

to analyze the performance of these systems. We then developed an adaptive optimal

energy allocation mechanism to get significant improvement in performance. We used
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Figure 5.12: Reconstructed vectors with optimal energy allocation at SNR=3.7dB
with 95% modeling errors in one of the targets in one dimension, (a) position esti-
mates, (b) velocity estimates.

numerical simulations to demonstrate this improvement. We demonstrated that by

employing compressive sensing, we can accurately reconstruct the target properties

from very few samples. Finally, we showed that the proposed system is robust to

modeling errors that may arise due to the discretization of the target state space.

In future work, we shall extend our results in this chapter to the case of extended

targets. In such a scenario, the multiple targets will have impulse responses as opposed

to a single reflection coefficient that we use for point targets. Further, we will model
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the grid mismatch error using scaled von Mises distribution and analyze the estimation

performance. Uniform distribution is a special case of von Mises distribution. Von

Mises distribution is commonly used for modeling phase errors in radar problems [78]

since the phase is bounded between [−π, π]. Since the grid error is bounded by half

the grid size, scaled von Mises distribution fits this problem well.
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Chapter 6

Frequency-hopping Code Design

for MIMO Radar Estimation Using

Sparse Modeling5

6.1 Introduction

In this chapter, we employ sparse modeling to estimate the unknown parameters

of multiple targets using a pulsed colocated MIMO radar system that transmits

frequency-hopping waveforms (see also [79], [80], [81]). More specifically, we for-

mulate the measurement model using a block sparse representation. Further, we

adaptively design the parameters of the transmitted waveforms to achieve improved

performance. First, we derive analytical expressions for the correlations between the

different columns of the sensing matrix. Next, we use this result for optimal design

by computing the block coherence measure of the sensing matrix and selecting the

5Based on S. Gogineni and A. Nehorai, “Frequency-hopping code design for MIMO radar esti-
mation using sparse modeling,” IEEE Trans. Signal Process., to appear in. c©[2012] IEEE.
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hopping frequencies of all the transmitters. Finally, we transmit constant modu-

lus waveforms using these selected frequencies to estimate the Radar Cross Section

(RCS) values of all the targets. We use these RCS estimates to adaptively design the

amplitudes of the transmitted waveforms during each hopping interval for achieving

improved sparse recovery performance.

Hop 1 Hop 2 Hop 3

Figure 6.1: Example of a frequency hopping waveform with three hopping intervals.

6.2 Signal Model

We consider the problem of target estimation using a colocated MIMO radar system

operating in a monostatic configuration. We assume there are MT transmit antennas

and MR receive antennas arranged in linear arrays (see Fig. 6.2). The components of

the transmit and receive arrays are separated by a distance of dT and dR, respectively.

Further, we assume that these arrays form an angle θ with the target. The ith

transmitter emits frequency hopping waveform ui(t) (see Fig. 6.1). These waveforms

are a generalization of linear frequency-modulated (LFM) waveforms. LFM is a

special case of frequency hopping waveforms. In LFM, the frequency changes at the

same linear rate, whereas for these codes the rate need not necessarily be linear as

depicted in Fig. 6.1. In [82], the authors demonstrate the performance improvement
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offered by these codes over LFM. Further, we consider a pulsed radar system in this

chapter. Assuming L pulses make up a waveform, the signal from the ith transmitter

is given as

ui(t) =
L−1∑

l=0

φi(t− Tl), (6.1)

where

φi(t) =

Q−1∑

q=0

bi,qe
j2πci,q∆fts(t− q∆t), (6.2)

and

s(t) =





1, if 0 < t < ∆t,

0, otherwise.
(6.3)

Tl and ∆t denote the pulse repetition interval and hopping interval duration, respec-

tively. q and Q denote the hopping index and the total number of hopping intervals,

respectively.

/

Plane 

Wave

Tx Driving Circuit / Rx Processing Unit

Figure 6.2: Transmit/Receive antenna array.

Design of the transmit waveforms amounts to choosing ci,q and bi,q for all the trans-

mitters and all the hopping intervals. ci,q specifies the frequency of the transmitted

signal during each hopping interval and bi,q gives the corresponding amplitude of the

transmitted sinusoid. We assume that each ci,q takes a value from the set {1, . . . , G},

where G is a positive integer. We assume ∆f∆t = 1. Further, to ensure orthogonality
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of the waveforms for zero lag, we assume that for every hopping interval q,

ci,q 6= ci′,q, ∀i 6= i′. (6.4)

We can arrange ci,q into an MT × Q dimensional code matrix C. This code matrix

describes all the transmitted frequencies. Further, we constrain the amplitudes to

satisfy bmin ≤ |bi,q| ≤ bmax for all transmitters and frequencies. This requirement

ensures control over the peak-to-average-power ratio of all the transmitted radar

waveforms. Further, we normalize the transmitted energy for each waveform by

assuming
∑Q−1

q=0 |bi,q|2 = 1.

Define

f =
dR sin(θ)

λ
, (6.5)

γ =
dT
dR
, (6.6)

where λ is the wavelength of the carrier. We assume that the target is made up of

multiple individual isotropic scatterers. But, because of signal bandwidth constraints,

these individual scatterers cannot be resolved. Therefore, we express this collection

of scatterers as one point scatterer representing the RCS center of gravity [2], [70].

Further, we assume that different scattering centers of the target resonate at different

frequencies [83]. Therefore, the target has an RCS that varies with the frequencies

of the waveforms. Note that unlike distributed MIMO radar, the RCS does not vary

with the antenna index for colocated MIMO radar.

The received signal at each receiver is a linear combination of the target-reflected

waveforms from all the transmitters. Therefore, we can express the received signal at
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the kth receiver as

yk(t) =

MT∑

i=1

L−1∑

l=0

Q−1∑

q=0

ai,qbi,qe
j2πci,q∆f(t−Tl−τ)s(t− q∆t− Tl − τ)ej2πνtej2πf(γi+k) + ek(t),

(6.7)

where τ and ν represent the delay and Doppler, respectively, and ek(t) denotes the

additive noise at the kth receiver. The target RCS is given by ai,q. Note that we

consider transmit waveforms whose bandwidth is much smaller when compared with

the carrier frequency. Equation (7.6) gives the measurement model when a single

target is present in the region illuminated by the MIMO radar system.

Now, we consider the presence of multiple targets. Consider R targets in the scene

illuminated by the radar. Here we assume that all the targets are present in the

far-field. Therefore, each of them makes an angle approximately equal to θ with the

radar arrays. Then, the received signal at the kth receiver is a summation of the

reflections from all the targets. We sample the received signal to obtain

yk(n) =

MT∑

i=1

L−1∑

l=0

Q−1∑

q=0

R∑

r=1

ari,qbi,qe
j2πci,q∆f(nTS−Tl−τr)

× s(nTS − q∆t− Tl − τ r)ej2πν
rnTSej2πf(γi+k) + ek(n), ∀n = 1, . . . , N,

where N denotes the total number of samples at each receiver during one processing

interval and TS denotes the corresponding sampling interval. Further, τ r and νr

represent the delay and Doppler of the rth target, respectively.
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6.3 Sparse Representation

Recently, sparse modeling is being used increasingly for solving radar problems by

exploiting sparsity in the target delay-Doppler space [62], [64], [65], [69]. In this

section, we will use sparse modeling to represent the radar measurements given in the

previous section. These measurements can be captured using a block sparse model.

For each of the R targets, the unknown parameters are the attenuation, delay, and

Doppler. We shall discretize the delay-Doppler space into V uniformly spaced grid

points. Only R of these grid points correspond to the true target parameters, and

the goal is to estimate the correct grid points. Let τv and νv represent the delay and

Doppler corresponding to the vth grid point.

For each grid point v ∈ {1, . . . , V }, we define

ψi,k,q(n, v) =
L−1∑

l=0

ej2πci,q∆f(nTS−Tl−τv)s(nTS − q∆t− Tl − τv)e
j2πνvnTSej2πf(γi+k). (6.8)

We stack {ψi,k,q(n, v)}Nn=1 into an N dimensional column vector

ψi,k,q(v) = [ψi,k,q(1, v), . . . , ψi,k,q(N, v)]
T , (6.9)

where {·}T denotes the transpose of {·}.

Similarly, we stack {ψi,k,q(v)}MR
k=1 into an NMR dimensional column vector ψi,q(v).

Each of these column vectors corresponds to a different transmitter and hopping

interval, and we stack the columns corresponding to the same hopping interval to-

gether. Now, for each grid point v, we stack the column vectors into an NMR×MTQ

dimensional matrix Ψ(v). Further, we arrange {Ψ(v)}Vv=1 into an NMR × VMTQ
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dimensional matrix Ψ. This is the dictionary matrix that defines the basis elements

of our sparse representation.

Stacking ari,q and a
r
i,qbi,q corresponding to different transmitters and hopping intervals,

we obtain MTQ dimensional column vectors ar and xr, respectively. Next, we define

sparse vectors a(v) and x(v) whose support set and entries are given as

a(v) =




ar, if (τv, νv) = (τ r, νr),

0, otherwise,
(6.10)

x(v) =




xr, if (τv, νv) = (τ r, νr),

0, otherwise.
(6.11)

Finally, we stack these vectors a(v) and x(v) corresponding to all the grid points to

obtain a VMTQ dimensional block-sparse vectors:

a =
[
a(1)T , . . . ,a(V )T

]T
, (6.12)

x =
[
x(1)T , . . . ,x(V )T

]T
. (6.13)

These sparse vectors contains only R non-zero blocks, each corresponding to a differ-

ent target. Further, each block containsMTQ entries. Therefore (V −R)MTQ entries

of x are zeros.
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We stack the measurements and the additive noise samples at each receiver to obtain

the vectors

yk = [yk(1), . . . , yk(N)]T , (6.14)

ek = [ek(1), . . . , ek(N)]T . (6.15)

Additionally, stacking the measurement and noise vectors at all the receivers, we

obtain

y =
[
yT
1 , . . . ,y

T
MR

]T
, (6.16)

e =
[
eT1 , . . . , e

T
MR

]T
. (6.17)

Then, our measurement model reduces to

y = Ψx+ e. (6.18)

This is a familiar linear model used in most applications of sparse modeling.

The estimation of attenuation, delay, and Doppler for all the targets reduces to re-

covering the non-zero entries and the support set of the sparse vector x from the

measurement vector y. In Section 6.6, we will present a sparse support recovery

algorithm.
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6.4 Block Coherence Measure

In this section, we will analyze the performance of the sparsity-based estimation

approaches as a function of the sensing matrix Ψ. The correlations between the

columns of the dictionary matrix Ψ determine the accuracy of sparse-recovery algo-

rithms. More specifically, when the non-zero entries of the sparse vector appear in

blocks (as in our radar estimation problem), a major factor affecting the performance

of the system is the block coherence measure [75], [84]. This concept is an extension

of the well-known coherence measure [56] used to block sparse signals. It can be used

to derive sufficient conditions for guaranteed sparse support recovery.

LetΨ(v) andΨ(v′) denote the vth and v′th blocks of the dictionary, respectively. Each

block contains MTQ columns. Each column corresponds to a different transmitter

and hopping interval. Since the columns corresponding to different hopping intervals

do not overlap and, further, we imposed the condition in (6.4) to ensure orthogonality

across all the transmitters for zero lag, all the columns within a block are orthogonal.

If any columns of Ψ(v) are exactly the same as the corresponding columns in Ψ(v′),

we can remove them, since they will not contribute to the sparse recovery problem

while comparing these two blocks. Therefore, we define

Dv,v′ =MTQ− dv,v′ , (6.19)

where dv,v′ denotes the number of columns of Ψ(v) that are exactly the same as the

corresponding columns of Ψ(v′). Let us define the correlation matrix M [v, v′] for
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each pair of blocks of the dictionary matrix Ψ as

M [v, v′] = ΨH(v)Ψ(v′). (6.20)

Each entry of this matrix contains the auto-correlation between the different columns

of the selected blocks. Using these notations, the authors in [75] defined the block

coherence measure of the basis matrix as

µB = max
v,v′ 6=v

1

Dv,v′
ρ (M [v, v′]), (6.21)

where ρ (M [v, v′]) denotes the spectral norm [85] of M [v, v′]:

ρ (M [v, v′]) =
1

Dv,v′
λ

1
2
max

(
M [v, v′]

H
M [v, v′]

)
, (6.22)

where λmax (.) denotes the largest eigenvalue of (.).

The block coherence measure provides a sufficiency measure for ensuring sparse sup-

port recovery [75]. Therefore, minimizing the block coherence measure ensures theo-

retical guarantee for sparse support recovery of signals with potentially higher sparsity

level. In the next section, we will use this concept to select the hopping frequencies

of all the transmitters.

6.5 Optimal Hopping-Frequency Design

In this section, we present a mechanism for designing optimal hopping frequencies.

The expression for the block coherence measure µB given in equation (6.21) depends
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on the transmitted code matrix C through the correlation matrices M [v, v′]. First,

we will formulate the frequency-selection problem using the theory developed in the

previous sections. Next, we develop a solution mechanism for this problem to obtain

the code matrix.

6.5.1 Problem Formulation

In order to compute the optimal code matrix, we need to minimize the block coherence

measure by solving the following optimization problem:

Copt = argmin
C

(µB) , (6.23)

= argmin
C

(
max
v,v′ 6=v

1

Dv,v′
ρ (M [v, v′])

)
, (6.24)

= argmin
C

(
max
v,v′ 6=v

1

Dv,v′
λ

1
2
max

(
M [v, v′]

H
M [v, v′]

))
. (6.25)

The correlation matrices are obtained from the basis matrix using equation (6.20).

Substituting this relation into the above expression, we obtain

Copt = argmin
C

(
max
v,v′ 6=v

1

Dv,v′
λ

1
2
max

(
ΨH(v′)Ψ(v)ΨH(v)Ψ(v′)

))
. (6.26)

6.5.2 Correlation Matrix Entries

Since directly computing the block coherence measure is difficult, we first compute

the entries of the correlation matrix M [v, v′]. Let Mrc[v, v
′] represent the (r, c)th

element ofM [v, v′] such that r = qQ+ i and c = q′Q+ i′, where q, q′ ∈ {0, . . . , Q−1}

and i, i′ ∈ {1, . . . ,MT}. Note that there is always a unique mapping between r and

117



(i, q); similarly between c and (i′, q′). Therefore, we will alternatively use the notation

Miq,i′q′ [v, v
′] instead of Mrc[v, v

′]. Let grid point v correspond to the delay-Doppler

pair (τv, νv). Further, let grid point v′ correspond to the delay-Doppler pair (τv′ , νv′).

Below, we state the assumptions made for performing the subsequent derivations.

We assume that the difference between the delays of any two grid points (τv − τv′) is

always a multiple of the duration of the hopping interval ∆t. Additionally, we assume

that ∆t is the size of the delay grid. Therefore, it gives us the range resolution of

the sparsity-based radar estimation. Further, the target velocity components that

are orthogonal to the radial direction (radar array to the target) do not produce a

Doppler shift. The radial speeds of the targets are much smaller than the speed of

wave propagation in the medium. We assume that the sampling rate is at least as

big as the Nyquist rate corresponding to the largest possible hopping frequency:

1

TS
≥ 2G∆f. (6.27)

Therefore, for all choices of coding matrices, we meet the Nyquist sampling criterion.
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Then, we obtain the following expressions for the auto-correlations between the dif-

ferent columns of the blocks corresponding to v and v′:

Mrc[v, v
′] = Miq,i′q′ [v, v

′]

=

MR∑

k=1

N∑

n=1

L−1∑

l=0

ej2π(ci′,q′∆f(nTS−Tl−τv′ )−ci,q∆f(nTS−Tl−τv))

× s(nTS − q′∆t− Tl − τv′)s(nTS − q∆t− Tl − τv)

× ej2π(νv′nTS−νvnTS)ej2π(f(γi
′+k)−f(γi+k)),

= MR

N∑

n=1

L−1∑

l=0

ej2π∆f((ci′,q′−ci,q)(nTS−Tl)+(ci,qτv−ci′,q′τv′ ))

× s(nTS − q′∆t− Tl − τv′)s(nTS − q∆t− Tl − τv)

× ej2π(nTS(νv′−νv)+fγ(i′−i)).

Each column of the dictionary contains delay-Doppler shifted versions of the trans-

mitted waveforms. Since we chose radar waveforms that have a bounded temporal

support (rectangular pulses multiplied by sinusoids), the columns have only a few

non-zero samples. All the other column entries are zero. The expression inside the

summation will be non-zero only when the corresponding entries of both the columns

are non-zero. Therefore, we can express the term inside the summation as

ej2π(∆f(ci′,q′−ci,q)(nTS−Tl)+∆f(ci,qτv−ci′,q′τv′)+nTS(νv′−νv)+fγ(i′−i)), (6.28)

only when

q∆t < nTS − Tl − τv < (q + 1)∆t, (6.29)

and

q′∆t < nTS − Tl − τv′ < (q′ + 1)∆t. (6.30)
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All other entries of the summation will be zero.

These conditions ensure that the rectangular pulses corresponding to both columns

overlap at the given temporal index. For a given q, q′, v, v′ we denote as L and N (L)

the sets containing all l and n satisfying the conditions in (6.29) and (6.30). Note

that for each pulse index, the sample indices that give non-zero entries are different.

Then, we can express the entries of the correlation matrix as

Miq,i′q′ [v, v
′] =MR

∑

(l,n)∈L×N (L)
ej2π(∆f(ci′,q′−ci,q)(nTS−Tl)+∆f(ci,qτv−ci′,q′τv′ )+nTS(νv′−νv)+fγ(i′−i)).

(6.31)

The exponential term on the right side, ej2πfγ(i
′−i), is constant and does not depend

on the time index; hence, it can be moved out of the summation. After removing

this term, each entry of matrix M [v, v′] is a summation of the product of complex

exponentials, ej2π(ci′,q′∆f(nTS−Tl−τv′ )−ci,q∆f(nTS−Tl−τv)) and ej2πnTS(νv′−νv).

Let Nc be the number of samples per hopping interval. In other words, NcTS =

∆t. Since the radial speeds of the targets are much smaller than the speed of wave

propagation in the medium, the Doppler shift is measurable only between pulses and

is negligible within the pulse duration. Therefore, we can express the correlation

terms as a product of separate summations:

Miq,i′q′ [v, v
′] = MRe

j2πfγ(i′−i)
∑

l∈{0,...,L−1}
ej2πTl(νv′−νv) (6.32)

×
∑

ñ∈{0,...,Nc−1}
ej2π∆f(ci′,q′−ci,q)ñ. (6.33)

The above equation contains three product terms. The first term is independent

of the temporal index. The second term represents the contribution between the L
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different pulses, and the third term represents the contribution from within a hopping

interval. The dependence of the third term on the code matrix is evident from the

exponential. Note that the second term depends on the Doppler shift, which in turn

depends on the frequency of the complex exponential. This frequency is a sum of the

carrier frequency and the hopping frequency. Therefore, we conclude that the second

and third terms in equation (6.32) depend on the code matrix (hopping frequencies).

Now, we give expressions for these terms as a function of the code matrix. Define

fc as the carrier frequency, η as the speed of wave propagation in the medium, and

(vr, vr′) as the radial speeds corresponding to the grid points v and v′, respectively.

Then, we have

∑

l∈{0,...,L−1}
ej2πTl(νv′−νv) =

∑

l∈{0,...,L−1}
ej2πTl

1
η ((fc+∆fci′,q′ )v

r ′−(fc+∆fci,q)vr). (6.34)

Even though the term in equation (6.34) depends on the code matrix, the dependence

is negligible since it is absorbed by the carrier frequency term that is much larger when

compared with the baseband code frequencies:

fc ≫ G∆f, (6.35)

where G∆f denotes the maximum hopping frequency. The summation of the samples

of a complex exponential is zero for all TS satisfying (6.27). Hence, we have

∑

ñ∈{0,...,Nc−1}
ej2π∆f(ci′,q′−ci,q)ñ =





Nc, if ci′,q′ = ci,q,

0, otherwise.
(6.36)
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Finally we express the entries Miq,i′q′[v, v
′] of the correlation matrix corresponding to

the blocks v and v′ as

Miq,i′q′ [v, v
′] =





MRNce
j2πfγ(i′−i)

∑
l∈{0,...,L−1} e

j2πTl(νv′−νv), if ci′,q′ = ci,q,

0, otherwise.

(6.37)

Note that the auto-correlation matrixM [v, v′] need not be a Hermitian matrix since

Miq,i′q′ [v, v
′] need not be equal to M∗

i′q′,iq[v, v
′] for all i, q, i′, q′. Therefore, the spectral

norm and spectral radius of M [v, v′] are not the same. Thus, we need to compute

the eigenvalues of M [v, v′]HM [v, v′] to evaluate the spectral norm of M [v, v′].

6.5.3 Correlation Matrix Structure

We now partitionM [v, v′] into Q2 sub-matrices
{
M qq′[v, v′]

}Q−1

q,q′=0
each of dimensions

MT ×MT such that

M qq′

ii′ [v, v
′] =Miq,i′q′[v, v

′], (6.38)

where M qq′

ii′ [v, v
′] is the (i, i′)th element of M qq′[v, v′]. We use this notation to study

the structure of M [v, v′] for different pairs of grid points.

Without loss of generality, assume τv′ ≥ τv. Then, we combine the conditions in

(6.29) and (6.30) to obtain the following conditions:

q − q′ <
(τv′ − τv)

∆t
+ 1, (6.39)

and

q − q′ >
(τv′ − τv)

∆t
− 1. (6.40)
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Since (τv′ − τv) is a multiple of ∆t, the above conditions yield only a maximum of

one possible positive integer value for q such that M qq′[v, v′] is a non-zero matrix:

q = q′ +
(τv′ − τv)

∆t
. (6.41)

When q′ + (τv′−τv)

∆t
> Q − 1, then M qq′[v, v′] = 0 for every choice of valid q. In such

a scenario the entire q′th column of blocks is filled with zero sub-matrices. Therefore,

M [v, v′] can be partitioned into a special structure of sub-matrices. It is a block-lower-

triangular matrix whose non-zero blocks appear in a single diagonal line parallel to

the principal diagonal. The distance between this line and the principal diagonal is

given by
(τv′−τv)

∆t
.

For example, consider the difference between the delays (τv′ − τv) = 2∆t, when the

number of hopping intervals Q = 4. M [v, v′] can be expressed as

M [v, v′] =




0 0 0 0 0

0 0 0 0 0

M 20[v, v′] 0 0 0 0

0 M 31[v, v′] 0 0 0

0 0 M 42[v, v′] 0 0




. (6.42)

Here, the distance between the principal diagonal and the diagonal line of non-zero

blocks is 2. When we are comparing blocks whose grid points have the same delay

but different Doppler, M [v, v′] will be a block-diagonal matrix.
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ComputingM [v, v′]HM [v, v′] for matrices following this structure yields block-diagonal

matrices whose non-zero diagonal blocks are given by the non-zero blocks in the di-

agonal line of the original matrix M [v, v′]. In the above example, we obtain

M [v, v′]
H
M [v, v′] = diag

{
M 20[v, v′]

H
M 20[v, v′],M 31[v, v′]

H
M 31[v, v′],

M 42[v, v′]
H
M 42[v, v′], 0, 0

}
.

Only when τv′ = τv will all the diagonal blocks ofM [v, v′]HM [v, v′] be non-zero. All

the diagonal blocks of M [v, v′]HM [v, v′] will be zero when

(τv′ − τv) > (Q− 1)∆t. (6.43)

This result is a consequence of the fact that for all delays that exceed (Q − 1)∆t,

the radar waveforms do not have overlapping time intervals and hence they will be

orthogonal.

6.5.4 Optimal Code Matrix Selection

We know from the properties of block-diagonal matrices that their largest eigenvalue

can be expressed as the largest of the eigenvalues of each of the individual blocks.

Using this property, we have

λmax

(
M [v, v′]

H
M [v, v′]

)
= maxq,q′

(
λmax

(
M qq′[v, v′]

H
M qq′[v, v′]

))
. (6.44)
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Next, we substitute the above expression into equation (6.25). Then, the code design

problem reduces to

Copt = argmin
C

(
max
v,v′ 6=v

1

Dv,v′
max
q,q′

(
λ

1
2
max

(
M qq′[v, v′]

H
M qq′ [v, v′]

)))
. (6.45)

Let us define

M̃
qq′

[v, v′] =M qq′[v, v′]
H
M qq′[v, v′]. (6.46)

Using the definition of M qq′[v, v′], we compute the (i, i′)th element of the Hermitian

matrix M̃
qq′

[v, v′] as

M̃ qq′

i,i′ [v, v
′] =

MT∑

k′=1

M∗
k′q,iq′[v, v

′]Mk′q,i′q′[v, v
′]. (6.47)

Therefore,

M̃ qq′

i,i′ [v, v
′] =





|α|2ξiqi′q′ej2πfγ(i′−i), if ci,q′ = ci′,q′,

0, otherwise,
(6.48)

where

α =MRNc

∑

l∈{0,...,L−1}
ej2πTl(νv′−νv), (6.49)

and ξiqi′q′ denotes the number of elements in the qth column of code matrix C that

have the same value as ci,q′ = ci′,q′.

Since we assumed orthogonality for zero lag in (6.4), ci,q′ = ci′,q′ if and only if i = i′.

Therefore, equation (6.48) can be reduced to

M̃ qq′

i,i′ [v, v
′] =





|α|2ξiqi′q′ , if i = i′,

0, otherwise.
(6.50)
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Therefore, M̃
qq′

[v, v′] is a diagonal matrix. Further, (6.4) also implies that ξiqiq′ can

take values only from the set {0, 1}. Therefore,

λ
1
2
max

(
M qq′[v, v′]

H
M qq′[v, v′]

)
= |α|. (6.51)

|α| depends only on the difference in the Doppler shifts corresponding to grid points

v and v′, i.e., (νv′ − νv). Since |α| does not depend on the entries of the code matrix,

it does not affect the code selection problem.

Also,

dv,v′ =
∑

i,q,q′=q−(
τ
v′

−τv)
∆t

ξiqiq′. (6.52)

Note that the summation is carried out only among columns that satisfy the condition

in (6.41). Therefore, this summation varies with respect to the difference of delays,

τv−τv′ . Finally, substituting equations (6.51) and (6.52) into (6.45), the optimal code

selection simplifies to the following:

Copt = argmin
C

(
max
v,v′ 6=v

1

Dv,v′

)
, (6.53)

= argmax
C

(
min
v,v′ 6=v

Dv,v′

)
, (6.54)

= argmin
C

(
max
v,v′ 6=v

dv,v′

)
, (6.55)

= argmin
C


max

v,v′ 6=v

∑

i,q,q′=q−(
τ
v′

−τv)
∆t

ξiqiq′


 . (6.56)
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Define

β(C) =


max

v,v′ 6=v

∑

i,q,q′=q−(
τ
v′

−τv)
∆t

ξiqiq′


 . (6.57)

Since β(C) governs the performance of any code matrix C, we will use it in Section

6.9 to show the improvement due to the optimal code design.

6.5.5 Iterative Exhaustive Search Algorithm for Code Selec-

tion

We observe that (6.53) is a combinatorial optimization problem, and these do not

yield easily to direct solution. Further, the solution to this problem need not be

unique. Any of the optimal solutions is equally good for our purpose. Thus, we

will use an iterative approach to obtain an optimal code matrix. First, we notice

from (6.53) that for any code matrix, the objective function is a non-negative integer.

Therefore, we start with a desired objective function value of 0 (corresponding to no

overlaps between the columns satisfying (6.41) for all differences in delays) and search

for availability of codes satisfying this objective. If no such codes exist, we increment

the objective function and follow the same procedure iteratively. We describe the

steps in detail below.

This algorithm is implemented in two major loops. The outer loop corresponds to the

desired objective value and the inner loop corresponds to the code column. Let GMT

denote a set containing all column vectors of size MT whose entries are taken from

{1, . . . , G}. Further, we avoid the repetition of entries within these columns to ensure

orthogonality at zero lag. Let lo and li denote the iteration indices of the outer and

inner loops, respectively. For the first outer iteration, lo = 1 and the corresponding
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objective is d(1) = 0. For the inner loop, we initialize by selecting any arbitrary

column from the set of columns GMT as the first column of our code matrix.

In every subsequent iteration, we increment the column index and add a column from

GMT that satisfies the following condition with regard to the already existing columns:

∑

i,li,q′=li−
(τv′−τv)

∆t

ξiliiq′ ≤ d(lo), ∀v, v′. (6.58)

If no such column exists, we decrement the column index and replace the existing

column of the previous iteration with another alternative that satisfies (6.58). If we

exhaust the inner loop without obtaining sufficient columns to complete the code

matrix, we know that an objective of d(lo) cannot be attained by any code matrix.

Therefore, we increment the objective d(lo+1) = d(lo) + 1 for the next outer iteration

and reset the inner loop index to li = 0.

We terminate the algorithm when we obtain a full (Q columns) code matrix from the

inner loop satisfying the objective given by the outer-loop index. The code matrix

obtained using this algorithm will always have the optimal objective function. How-

ever, the convergence times depend on Q, G, and MT. Fig. 6.3 shows the major

blocks used in the implementation of this algorithm. The column-selection block is

very critical, as it controls the inner loop of the algorithm. It searches for a column

in GM
T that satisfies (6.58). Depending on the result of this search, we increment or

decrement the column index.

Note that there may be other efficient algorithms to solve (6.53) to obtain an opti-

mal code matrix using combinatorial optimization. However, it is beyond the scope

of this chapter to analyze the computational complexity and present the theory of
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Figure 6.3: Flowchart of code selection algorithm.

combinatorial optimization for developing these alternate algorithms. We will explore

these approaches as a future extension to our work. Further, this hopping-frequency

(code matrix) design is done offline, whereas the amplitude design given later in the

chapter is an online design procedure. Therefore, computational complexity is not a

very critical issue when designing the code matrix.

6.6 Sparse Reconstruction

In this section, we present a reconstruction algorithm to recover the sparse vector

s from the noisy measurement vector y. Ideally, in a noiseless scenario, we need to
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solve the following optimization problem to recover the sparse vector

min
z

‖z‖0 s.t. y = Ψz. (6.59)

However, this problem is NP hard. Therefore, this problem is relaxed to one that

involves the l1 norm, and several approaches have been proposed in the literature

to solve it. In [74], a heuristic iterative approach called Matching Pursuit (MP) is

presented. Further, [73], formulates the problem such that it can be solved using

convex programming. Approaches such as Basis Pursuit (BP) and Basis Pursuit

Denoising (BPDN) are popular in this category.

However, these algorithms do not exploit the fact that the non-zero entries of the

sparse vector appear in blocks. Using the knowledge of block sparsity will improve

recovery performance. In [75], the authors present block extension of matching pur-

suit algorithm known as Block Matching Pursuit (BMP). This algorithm is a direct

extension of the conventional MP, and is used when the columns within the blocks of

the dictionary matrix are orthogonal. We observed in Section 6.5 that the columns

of Ψ(v) are orthogonal since ci,q 6= ci′,q, ∀q, i′ 6= i. We start with an initial estimate

of x̂ = 0. Let x̂(v) denote the components of the estimate corresponding to the vth

block. Further, we initialize the residue to be r(0) = y. In each subsequent iteration

l′, we project the residue onto each block of Ψ and pick the block that gives the

maximum correlation with the residue:

v(l
′)

max = argmax
v

(
ΨH(v)r(l

′−1)
)
. (6.60)
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We update the residue as

r(l
′) = r(l

′−1) −ΨH(v(l
′)

max)r
(l′−1)Ψ(vmax). (6.61)

Finally, we update the v
(l′)
max

th
block of the estimate vector as

x̂(v(l
′)

max) = ΨH(v(l
′)

max)r
(l′−1). (6.62)

In a noiseless scenario, after R iterations, the estimate vector x̂ will converge to the

true sparse vector x. Further iterations will not result in a change in the residue or

the estimate. In the presence of noise, some of the incorrect blocks may also contain

non-zero entries.

Note that in the above expressions for sparse support recovery, we assumed that all

the columns of Ψ have unit norm. When all of them are scaled by the same constant

factor (non-unit norm), the update equations change by an appropriate scale factor

corresponding to this norm. We will use BMP in Section 6.9 to perform sparse support

recovery.

6.7 Adaptive Waveform Amplitude Design

6.7.1 Design

After we select hopping frequencies using the block coherence measure mentioned

earlier, the transmitters emit constant modulus waveforms; i.e., bi,q = 1, ∀i, q. We use

sparse recovery algorithm (BMP) to estimate the unknown delay, Doppler, and RCS
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of the targets. We perform the amplitude design for all the transmitters. We use the

target RCS estimates to adaptively design the amplitudes of the sinusoids during each

hopping interval of the subsequent pulses. Since the RCS of the targets are frequency

dependent, the optimal amplitudes need not be the same for all hopping intervals.

As we shall see later, this problem can be divided into independent optimization

problems for each transmitter.

Let x̂ denote the sparse vector reconstructed using the algorithm given in the previous

section. If R gives the support set corresponding to the R highest reconstruction

energies in x̂, then define x̂R as an R-dimensional vector containing only the estimates

corresponding to the indices in R. During the initialization step, since bi,q = 1, the

non-zero entries of the sparse vector x depend only on the attenuations ari,q. Hence,

we obtain âri,q as the estimates of the target attenuations after sparse support recovery.

For all subsequent steps, the entries of x̂R contain the product of the transmitted

amplitude and the target RCS (bi,qâri,q). We compute the summation of the energies

of these estimates for each transmitter over all the hopping interval indices to obtain

x̂ri =

Q−1∑

q=0

b2i,q|âri,q|2. (6.63)

Further, let b∗i,q denote the optimal amplitude for the ith transmitter and qth frequency

hop. We vectorize bi,q and b∗i,q for the ith transmitter into bi, b
∗
i , respectively.

Define the vector

x̃i(bi) = [x̂1i (bi), . . . , x̂
R
i (bi)]. (6.64)
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This vector contains the estimates of the returns from all the R targets. Note that

here we assume that the indices in R correspond to the true target entries; i.e, delay-

Doppler estimates using sparse reconstruction are exact. Otherwise, incorrect indices

will impact the amplitude design and degrade the performance. Using these defini-

tions, the amplitude design problem for each transmitter can be expressed as

b∗i = argmax
bi

(min {x̃i(bi)}) , (6.65)

under the constraints

bmin ≤ |bi,q| ≤ bmax;

Q−1∑

q=0

|bi,q|2 = 1, (6.66)

where min {x̃i(bi)} denotes the minimum entry of the vector x̃i(bi).

We will solve this optimization problem using CVX, a MATLAB package for specifying

and solving convex programs [76], [77] after appropriate convex transformation (see

also [67]). Note that we need to solve this optimization problem for each transmitter

separately. Since the dimensions involved in solving these problems (number of targets

and number of transmitters) are typically small, we can compute the optimal energies

in quick time and implement the design online.

6.7.2 Metric

Next, we present a performance metric to analyze the accuracy of sparse reconstruc-

tion (see also [69], [67] for more details on this metric). Let R and R̄ denote the

support sets of the correct and incorrect target indices, respectively. Then, we define
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the performance metric as

△ =
minx̂R
maxx̂R̄

. (6.67)

The numerator of △ denotes the weakest target reconstruction and the denominator

denotes the strongest reconstruction of the incorrect target indices. Therefore, △ > 1

guarantees that the correct R target indices dominate the others, thereby resulting

in exact estimates of the target delays and Dopplers. The exact value of △ gives the

accuracy in the estimates of the target RCS values.

In Section 6.9, we will demonstrate the improvement in performance as a result of

the optimal transmit amplitude design when compared with the constant modulus

waveforms by using this performance metric.

6.8 Compressive Sensing

In this section, we use compressive sensing to accurately reconstruct the sparse vec-

tor from far fewer samples when compared with the Nyquist rate. The theory of

compressive sensing says that this is possible when the sensing matrix has minimal

coherence with the dictionary matrix. Since random matrices have been shown in

the literature [56] to give a low coherence measure, we will generate the entries of

the sensing matrix as realizations of independent and identically distributed (i.i.d.)

Gaussian random variables.

Let Φ denote an NCS × NMR dimensional random Gaussian sensing matrix, where

NCS < NMR. Define yCS as the measurement vector after compressive sensing. Then,
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the measurement model in equation (7.12) changes to

yCS = ΦΨx+Φe. (6.68)

The sensors receive continuous data across all the pulses. This data is projected

onto a finite lower dimensional space spanned by random continuous Gaussian noise

sequences. The dimensions of this space are much smaller than the Nyquist rate.

Therefore, we are actually sampling directly at a reduced rate. The above equation is

just an equivalent way of representing the signal processing involved in this procedure.

Now we need to recover x from the compressed measurement vector yCS. The recon-

struction algorithm and design schemes presented in the earlier sections of the chapter

are also valid for compressive sensing. We define the percentage of compression as

δ =
NCS

NMR
× 100%. (6.69)

The performance of the system degrades as the value of δ reduces. We will show this

dependence in Section 6.9 for different values of δ.

6.9 Numerical Simulations

In this section, we present numerical simulations to demonstrate the performance of

our proposed radar system.
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6.9.1 Code Matrix Design

First, we will present examples for the code matrix selection. Let the number of

transmitters be MT = 3 and the number of hopping intervals be Q = 5. In addi-

tion, we chose G = 7. Therefore, the code matrix contains 15 entries, each chosen

from {1, . . . , 7}. We ran the iterative algorithm for code selection and obtained the

following code matrix as an optimal code:

Copt =




1 3 2 1 1

2 4 6 4 2

3 5 7 6 3



. (6.70)

For the first three iterations of the outer loop (i.e., d(1) = 0, d(2) = 1, and d(3) = 2), the

objective is not met. An objective of d(4) = 3 is met by the code matrix in equation

(6.70). Note that other code matrices may also give the same objective and provide

equal performance. However, no other code matrix will give better performance. The

block coherence measure corresponding to the following code is the same as that of

the code matrix in (6.70):

Copt =




3 1 4 1 1

5 2 5 2 2

6 7 7 6 3



. (6.71)

Both are equally good for selecting the MIMO radar waveforms, and there is not any

particular advantage in choosing one of them over the other for performing the target

parameter estimation.
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Now, we demonstrate the improvement in performance due to the hopping-frequency

design by plotting β(C) as a function of the number of hopping intervals Q. Note that

we defined β(C) in equation (6.57). Fig. 6.4 compares the curves for the optimal

code matrix and a random code matrix whose columns are chosen uniformly from

the set of possible columns. We average across 10000 Monte Carlo runs to obtain the

curve for the random code matrix. β(C) is a multiple of the block coherence measure.

Therefore, we intend to have as low a β(C) as possible. From Fig. 6.4, we observe

that the optimal code matrix has much lower block coherence when compared with

the average block coherence of the random code matrix. Having a lower β(C) ensures

theoretical guarantee for sparse support recovery of signals with potentially higher

sparsity level [75]. Therefore, Fig. 6.4 essentially states that while using the random

code matrix, we cannot guarantee sparse recovery for the same level of sparsity as

we can for the optimal code word but for specific examples, it might reconstruct the

targets correctly. However, it is not reliable as we do not have any guarantee on the

performance at the higher levels of sparsity.
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Figure 6.4: β(C) as a function of the number of hopping intervals.
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6.9.2 Sparse Support Recovery

In this section we simulated a radar system consisting of MR = 3 receive antennas.

Choose θ = 30◦ and dT = dR = λ
2
, obtaining f = 1

4
and γ = 1. Each processing

interval consists of 10 pulses (i.e., L = 10). The time interval in between the pulses

was chosen to be 3mS. Let the chip duration be ∆t = 1µS. Therefore, the width

of each pulse Q∆t = 5µS. ∆f = 1MHz is the minimum frequency of the waveform

inside a hopping interval. Since we chose G = 7, the maximum hopping frequency

is G∆f = 7MHz. Therefore, we sampled at a Nyquist rate of 14 × 106 samples per

second. During each chip duration, we have 14 samples.

Three targets are present in the illuminated space. Each target resonates differently

at different frequencies. Therefore, we specify the amplitudes of G = 7 attenuations

for each target:

a1 = [0.4, 0.2, 0.5, 0.8, 0.1, 0.4, 0.3], (6.72)

a2 = [0.6, 0.2, 0.8, 0.9, 0.1, 0.3, 0.5], (6.73)

a3 = [0.2, 0.4, 0.3, 0.7, 0.4, 0.1, 0.9]. (6.74)

Using these attenuations, the target RCS corresponding to different hopping frequen-

cies and transmitters can be found. Note that we use (6.70) as our choice of code

matrix.

Now, we discretize the target delay-Doppler space. As we mentioned earlier, we

assume that the grid size in the delay dimension is ∆t = 1µS. The grid points lie

uniformly in the interval [0, 10] µS. Note that this is just an example and the proposed

approach can be applied to any arbitrary grid. In a live tracking system, the grid will
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Figure 6.5: Target estimates using BMP at an SNR of 2.6574dB.

be adjusted to center around the delay estimate from the previous tracking interval.

The Doppler space is uniformly divided in the interval [800, 1300] Hz with a separation

of 25Hz between adjacent grid points. Therefore, we have a total of V = 11×21 = 231

grid points, with only 3 corresponding to the true targets.

We assume the true delays and Doppler shifts of the targets are given as

[
τ 1, τ 2, τ 3

]
= [4, 9, 1] µS, (6.75)

[
ν1, ν2, ν3

]
= [1200, 1075, 1025] Hz. (6.76)

Next, we perform sparse support recovery using the BMP algorithm to estimate the

target parameters. We define the signal-to-noise-ratio (SNR) as

SNR = 10 log

(
‖Ψa‖2

E
(
‖e‖2

)
)
dB, (6.77)

where E{·} denotes the expected value of {·}.
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First we show the reconstructed target parameters in Fig. 6.5 at an SNR of 2.6574dB.

We observe that the delays and Doppler shifts of all three targets are exactly recon-

structed. Since the true target indices dominate the incorrect target indices in the

recovered vector, the value of the performance metric △ will be greater than unity.

We used 30 iterations for the BMP algorithm. We have assumed the target will lie

exactly on the grid points. However, in reality it may lie in between two grid points.

When such modeling errors occur, we have demonstrated in [67] that the reconstruc-

tion algorithm BMP will map the estimates to the grid point that is closest to the

true target parameter. The same holds true even for the results in this chapter as we

are using BMP.
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Figure 6.6: Amplitudes of waveforms from MT = 3 transmitters.

6.9.3 Adaptive Waveform Amplitude Design

After selecting the hopping frequencies using the code matrices mentioned earlier in

the section, we consider waveform amplitude selection. We need to solve MT = 3

optimization problems. For each transmitter, we need to design 5 amplitudes, each

corresponding to a different hopping interval. We constrain these amplitudes to lie in
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the interval [bmin, bmax] = [0.2, 0.8]. Further, the sum of squares of these amplitudes

is constrained to be unity. Using CVX to solve the amplitude selection problem, we

obtain the following optimal transmit amplitudes:

b∗1 = [0.2, 0.50, 0.80, 0.2, 0.2], (6.78)

b∗2 = [0.37, 0.2, 0.2, 0.8, 0.37], (6.79)

b∗3 = [0.61, 0.2, 0.42, 0.2, 0.61]. (6.80)

In Fig. 6.6, we plot these amplitudes as a function of the hopping interval. We

observe that the maximum energy for each transmitter need not be present during

the same hopping interval. Transmitters 1 and 2 emit their maximum energy during

the third and fourth hopping intervals, respectively. However, transmitter 3 emits

its maximum energy during the first and fifth hopping intervals. It transmits equals

energy during both these intervals, since the corresponding frequency entries of the

code matrix in (6.70) are the same.

During each hopping interval, these waveforms are multiplied by exponential wave-

forms whose frequencies are given by the entries of the code matrix in (6.70). If we

constrain the amplitudes such that

bmin = bmax =
1√
Q
, (6.81)

then we will obtain constant-modulus waveforms. Such waveforms are useful when

the variations in the amplitudes of the radar waveforms are not desired because of

hardware constraints of the radar transmit antennas.
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Figure 6.7: Curves demonstrating the improvement in performance due to adaptive
amplitude design.

In Fig. 6.7, we plot the performance metric △ to demonstrate the improvement

offered by the adaptive amplitude design mechanism. Recall that we defined the

performance metric as

△ =
minx̂R
maxx̂R̄

. (6.82)

We would like △ to be as high as possible. △ > 1 assures exact reconstruction of the

target delays and Dopplers. The exact value of △ gives the accuracy in the estimates

of the target RCS values. We observe that for all SNR, the adaptive amplitude design

provides significant improvement in performance. This improvement is a result of

maximizing the minimum target returns.

Now, we will demonstrate the improvement due to the adaptive design for a com-

pletely different choice of attenuations for the 3 targets:

a1 = [0.2, 0.9, 0.3, 0.4, 0.1, 0.7, 0.6], (6.83)

a2 = [0.7, 0.8, 0.2, 0.6, 0.7, 0.3, 0.1], (6.84)

a3 = [0.4, 0.7, 0.8, 0.1, 0.5, 0.1, 0.9]. (6.85)
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Figure 6.8: Curves demonstrating the improvement in performance due to adaptive
amplitude design in the low SNR region.

Note that these attenuations are used only for the results in Figs. 8, 9, and 10. We

perform the sparse support recovery under this scenario and plot the performance

metric as a function of the SNR in Fig. 6.8. In this example, we demonstrate the per-

formance at very low SNR to investigate the situation when the sparse reconstruction

fails to estimate all the target parameters correctly.
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Figure 6.9: Target estimates using BMP at an SNR of −21dB.
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We observe clearly from Fig. 6.8 that the adaptive amplitude design outperforms

constant modulus waveforms even under this scenario. More specifically, we observe

that the value of △ falls below 1 for constant modulus waveform approximately at an

SNR 2.5dB higher than for adaptive amplitude design. Therefore, constant modulus

waveforms fail to estimate the true target parameters at an SNR of −21dB whereas

employing adaptive design enables exact reconstruction even at this low SNR.
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Figure 6.10: Target estimates using BMP at an SNR of −21dB while employing
adaptive amplitude design.

In Fig. 6.9, we plot the reconstructed estimates while using constant modulus wave-

form at an SNR of −21dB. Note that we plotted on a 2-D plane and used the color

map to represent the intensity for better understanding of these results. The darker

the intensity, the higher the reconstruction energy corresponding to that grid point.

We observe that constant modulus waveform fails to estimate the locations of all

the targets correctly. More specifically, the target that has a Doppler of 1200Hz is

wrongly estimated. However, at the same SNR, we observe from Fig. 6.10 that the

adaptive amplitude design manages to distribute the highest reconstruction energy

among the three actual targets. The three grid points that have the highest intensity
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correspond to the three targets. Therefore, this example clearly demonstrates the

motivation for employing the adaptive design scheme.

6.9.4 Compressive Sensing

We employ compressive sensing to observe the performance of the system while using

far fewer samples when compared with the Nyquist rate. In Fig. 6.11, we plot the

reconstructed vector at an SNR of 2.6574dB when the percentage of compression is

only δ = 20%. We can clearly see a degradation in performance when compared

with Fig. 6.5, since a lot of energy in the reconstructed vector is now distributed

among the incorrect grid points. However, the three most significant components of

the estimated vector still correspond to the true target grid points, thereby leading

to exact reconstruction of the delay and Doppler.
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Figure 6.11: Target estimates using BMP at an SNR of 2.6574dB with δ = 20%.

In Fig. 6.12, we plot the performance metric △ for different values of SNR while

employing different levels of compression. We notice the decline in performance with

the increase in the level of compression. However, even at a low SNR of −3.08dB,

145



with a δ = 10% percentage of compression, the value of the performance metric

△ = 1.59. Since △ > 1, we can exactly estimate the delay and Doppler of all three

targets. However, there will be a reduction in the estimation accuracy of the target

RCS values. This reduction shows up in the actual value of △ in the curves in Fig.

6.12.
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Figure 6.12: Performance metric △ as a function of SNR for different levels of com-
pression.

As we mentioned earlier, the adaptive amplitude design is applicable even when em-

ploying compressive sensing. Therefore, in Fig. 6.13 we show the performance im-

provement due to the adaptive amplitude design. We notice that even while δ = 10%,

the adaptive design improves the performance.

6.10 Summary

We proposed a sparsity-based colocated MIMO radar system using frequency-hopping

waveforms. We estimated the unknown target parameters using sparse support recov-

ery algorithm. We derived an analytical expression for the block coherence measure
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Figure 6.13: Curves demonstrating the improvement in performance due to adaptive
amplitude design when δ = 10%.

of the dictionary matrix and, hence, studied the problem of selecting the hopping fre-

quencies. We presented an iterative algorithm for designing an optimal code matrix.

Further, we proposed an approach to optimally design the amplitudes of the transmit-

ted waveforms during each hopping interval using the estimates of the target returns.

We demonstrated the performance improvement due to the optimal design using nu-

merical examples. Further, we showed that accurate estimation can be performed

from far fewer samples than the Nyquist rate by employing compressive sensing.

In future work, we will consider non-uniform grid spacing to reduce the computational

complexity. In addition, we will include the presence of clutter and jammer in the

measurement model. We will consider polarized antennas. We will develop more

efficient algorithms for solving (6.53) using the theory of combinatorial optimization.

We will use multi-objective optimization techniques to jointly solve for the optimal

code frequencies and amplitudes. We will incorporate other performance measures

like mutual information and entropy into the design problem. We aim to validate our

results using real radar data.
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Chapter 7

Sparsity-based MIMO Noise Radar

for Multiple Target Estimation6

7.1 Introduction

In this chapter, we consider colocated MIMO radar with ultra wideband (UWB) noise

waveforms from each transmitter, to obtain good resolution during estimation [86].

Noise waveforms are very important in radar applications since they provide a low

probability of intercept (LPI) [87]. While using UWB waveforms, the target can no

longer be treated as point like because of the enhanced resolution offered by these

waveforms. It has a frequency dependent response that cannot be obtained while

using conventional norrowband waveforms. Noise waveforms have a flat frequency

spectrum, and may not always provide the best match to the target response. Fur-

ther, even though different transmitters emit independent noise sequences, the cross

correlation between them is small but not exactly zero even for zero-lag. We will

overcome these problems by covering the noise waveforms by codes that are inspired

6Based on S. Gogineni and A. Nehorai, “Sparsity-based MIMO noise radar for multiple target
estimation,” Proc. 7th IEEE Sensor Array and Multichannel Signal Processing Workshop, Jun. 2012.
c©[2012] IEEE.
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from code division multiple access (CDMA) [88], [89]. Since these codes have a non-

flat frequency response, target responses vary for different codes. Therefore, we will

completely exploit the code diversity by selecting waveforms that match the target

responses. Further, we will allocate different orthogonal codes for each transmitter

to ensure zero cross correlation at zero-lag (see also [90]).

7.2 Signal Model

We assume the radar operates in monostatic configuration. Let MT and MR denote

the number of transmitters and receivers, respectively. These antennas are arranged

in colocated arrays with inter-element spacings given by dT and dR, respectively. We

assume the targets are located in the far-field. Let the antenna arrays make an angle

θ with the group of targets (see Fig. 7.1). Since the targets are far away from the

radar arrays, the angular separation between them with respect to the arrays will be

negligible. Therefore, we chose the same angle θ for all the targets.

/

Plane 

Wave

Targets

.

..

.

Figure 7.1: Transmit/Receive antenna array used in monostatic configuration.

First, we shall present the measurement model for a single target and later extend it

to multiple targets. Let the ith transmitter emit the noise waveform ui(t) covered by
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the code wi(t). We construct these waveforms and codes as

ui(t) =
C−1∑

c=0

ui,crec(t− c∆t), (7.1)

and

wi(t) =
C−1∑

c=0

wi,crec(t− c∆t), (7.2)

where

rec(t) =





1, if 0 < t < ∆t,

0, otherwise.
(7.3)

∆t denotes the chip interval.

All the covering waveforms are mutually orthogonal [88]. Historically, Walsh functions

have been used as covering waveforms in IS-95 systems [91]. In this chapter, we will

use Walsh functions of order 64. We express the ith transmitted waveform as si(t) =

ui(t)wi(t). These waveforms travel in space and reflect off the surface of the target

before reaching the receive array. In this process, the waveform is attenuated and

delay-Doppler shifted. These signals can resolve the paths emanating from different

scattering centers of the target. Let there be a total of C ′ scattering centers with ac′

being the attenuation corresponding to the c′th scattering center. We assume C ′ is

known.

The received signal at each receiver is a linear combination of the target-reflected

waveforms from all the transmitters. Therefore, the demodulated received signal at

the kth receiver can be expressed as [45]
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yk(t) ≈
MT∑

i=1

C′−1∑

c′=0

ac′

√
1 +

ν

fc
si

((
1 +

ν

fc

)
(t− τ − c′∆t)

)

× ej2πνtej2π(1+
ν
fc
)f(γi+k) + ek(t),

where τ and ν denote the delay and Doppler shift, respectively. ek(t) denotes the

additive noise at the kth receiver. fc is the carrier frequency and

f =
dR sin(θ)

λ
, (7.4)

γ =
dT
dR
, (7.5)

where λ = v
fc+ν

, v is the speed of wave propagation in the medium.

So far, we assumed a single target. Now, consider R targets in the scene illumi-

nated by the radar. Let τ r, νr, and arc′ denote the delay, Doppler, and attenuations

corresponding to the rth target, respectively. After sampling, we can express the

measurements as

yk(n) ≈
MT∑

i=1

C′−1∑

c′=0

R∑

r=1

arc′

√
1 +

νr

fc

× si

((
1 +

νr

fc

)
(nTS − τ r − c′∆t)

)

× ej2πν
rtej2π(1+

νr

fc
)f(γi+k) + ek(t),

where TS denotes the sampling interval.
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7.3 Sparse Representation

In this section, we will express the measurement model presented in the previous

section using sparse signal representation. We discretize the target delay-Doppler

space into V grid points. Only R of them correspond to the actual targets. Let

(τv, νv) represent the delay and Doppler corresponding to the vth grid point. Define

ψi,k,c′(n, v) =

√
1 +

νv
fc
si

((
1 +

νv
fc

)
(nTS − τv − c′∆t)

)

× ej2πνvtej2π(1+
νv
fc
)f(γi+k).

Let there beN samples in a processing interval. Then, we stack {ψi,k,c′(n, v)}Nn=1 into a

column vector ψi,k,c′(v). Next, we arrange
{
ψi,k,c′(v)

}MR

k=1
into a longer column vector

ψi,c′(v). Each of these columns forms a basis function in our sparse representation.

We stack these columns corresponding to different transmitters and paths into a block

of columns Ψ(v). Each block corresponds to a different grid point. We have V such

blocks that we can concatenate to obtain the dictionary matrix Ψ.

Now, we arrange the attenuations arc′ corresponding to different paths into a C ′ di-

mensional vector a′r =
[
ar0, . . . , a

r
C′−1

]T
. Since a′r is independent of the transmitter

index, we define a MTC
′ dimensional vector ar =

[
a′rT , . . . ,a′rT

]T
. Further, we

define a sparse vector a(v)

a(v) =




ar, if (τv, νv) = (τ r, νr),

0, otherwise.
(7.6)
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Arranging the vectors a(v) corresponding to all the grid points, we obtain a VMTC
′

dimensional block-sparse vector

a =
[
a(1)T , . . . ,a(V )T

]T
. (7.7)

Stack the measurements and the noise samples at each receiver, we obtain

yk = [yk(1), . . . , yk(N)]T , (7.8)

ek = [ek(1), . . . , ek(N)]T . (7.9)

Additionally, we arrange

y =
[
yT
1 , . . . ,y

T
MR

]T
, (7.10)

e =
[
eT1 , . . . , e

T
MR

]T
. (7.11)

Therefore, the measurement model

y = Ψa+ e. (7.12)

7.4 Sparse Reconstruction

We observed from the previous section that the non-zero entries of the sparse vector

appear in blocks. Therefore, we will exploit the block-sparsity while recovering the

sparse vector a. More specifically, we will use the block orthogonal matching pursuit

(BOMP) algorithm for sparse recovery [75]. We initialize the residual vector r(0) = y
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and the estimate vector a(0) = 0. In each subsequent iteration, we project the residual

from the previous iteration onto all the blocks of columns of Ψ and pick the block that

gives the largest projection energy. Let v(k
′) be the block selected in the k′th iteration.

Further, define V(k′) as the set containing the indices of all the blocks selected in the

previous iterations.

We update the corresponding entries of the estimate vector by solving

argmin{a(v)}
v∈V(k′)

‖y −
∑

v∈V(k′)

Ψ(v)a(v)‖. (7.13)

Denote a(k′) as the updated estimate vector. Next, we update the residue as

r(k
′) = y −

∑

v∈V(k′)

Ψa(k′)(v). (7.14)

Assume that we terminate the algorithm after K ′ iterations. Therefore, a(K ′) denotes

the final estimate of the sparse vector a containing information about the unknown

target parameters.

7.5 Numerical Simulations

We consider an x-band radar system with carrier frequency of 10GHz. Further, we

assume the signal bandwidth to be 2GHz. Therefore, the chip interval ∆t = 0.5nS.

Let the number of chips in a pulse C = 6400. We consider illumination of the target

scene using a single pulse. We simulate a radar system consisting of 3 transmit

antennas and 3 receive antennas. Choose θ = 30◦ and dT = dR = λ
2
. Further,

assume there are 3 targets in the illuminated area. Considering C ′ = 3, we define the

154



attenuations corresponding to the targets a′1 = [0.5, 0.2, 0.8]T , a′2 = [0.3, 0.6, 0.7]T ,

and a′3 = [0.2, 0.4, 0.1]T .

10 20 30 40 50 60
6

7

8

9

T
a

rg
e

t 
1

 r
e

sp
o

n
se

s

10 20 30 40 50 60
6

7

8

9

T
a

rg
e

t 
2

 r
e

sp
o

n
se

s

10 20 30 40 50 60
2.5

3

3.5

4

Walsh code index

T
a

rg
e

t 
3

 r
e

sp
o

n
se

s

Figure 7.2: ℓ2 norms of the target returns as a function of the Walsh code index.
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Figure 7.3: ℓ2 norm of the minimum target returns as a function of the Walsh code
index.

As mentioned earlier, we generate Walsh codes of the order 64. Assuming we have

accurate estimates of the attenuations from the previous processing intervals, we will

select the Walsh codes for the current iteration. We compute the ℓ2 norm of the signals

reflected from the targets. In Fig. 7.2, we plot these norms as a function of the Walsh

code indices. We notice that the signal returns are highly dependent on the choice
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of Walsh codes. Therefore, we need to match the codes to the target responses in

order to improve the system performance. Since, we have multiple targets, the codes

giving the optimal response for one target need not provide the optimal response for

the other targets. Therefore, we select the code that maximizes the minimum target

returns. We plot the minimum target returns in Fig. 7.3. Note hear that the weakest

target is not fixed apriori. It varies depending on the choice of the code. We observe

that the codes with indices 33, 49, and 17 are best matched to the target responses.

We assign these codes to the three transmit antennas respectively.
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Figure 7.4: Reconstructed sparse vector using optimal Walsh codes.

We discretize the target delay-Doppler space. Assume the true target delays lie

in the interval [2nS, 20nS]. The spacing between these grid points is 2nS. Fur-

ther, assume that the stretch factor
(

νv
fc

)
(due to the Doppler) lies in the interval

[0.000001, 0.0000055]. Let the delays corresponding to the three targets be 12nS, 18nS,

and 6nS respectively. Similarly, let the corresponding stretch factors be 0.000004, 0.000002,

and 0.000003 respectively. In Fig. 7.4, we plot the reconstructed vector at an SNR

of −19.8983dB. We can clearly observe that the parameters of the three targets
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have been accurately reconstructed. The three largest peaks correspond to the three

targets.

7.6 Summary

We used a colocated MIMO noise radar system to solve the multiple target estima-

tion problem. We covered the transmitted noise waveforms using Walsh codes to

ensure orthogonality between different transmitters and to match the transmitted

waveforms to the target responses. We developed a signal model using sparse signal

representation. We used a sparse reconstruction algorithm to estimate the target

parameters. We used numerical simulations to demonstrate the performance of the

proposed system.

In future work, we will analyze the performance in the presence of jamming signals.

We will investigate the robustness of the system to modeling errors. Further, we will

validate our results using real radar data.
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Chapter 8

Conclusions

8.1 Summary

In this dissertation, we developed and analyzed signal processing algorithms to detect,

estimate, and track targets using distributed and colocated MIMO radar systems.

We proposed a radar system that combines the advantages of MIMO radar with

distributed antennas and polarimetric radar at the same time. After designing the

optimal Neyman-Pearson detector for this system, we analyzed the performance of

this detector and designed the optimal transmit polarizations to obtain significant

improvement in detection performance. We demonstrated this improvement using

numerical simulations. Further, we also addressed the same problem using a game

theoretic approach, formulating it in the form of a two player zero-sum game played

between an opponent and the radar design engineer. Unlike conventional methods,

this approach makes use of the knowledge of the goal of the target and does not

require estimation from the training data.
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We presented a distributed MIMO radar system capable of monopulse processing at

the receivers, developed a tracking algorithm for this system, and simulated a real-

istic scenario to analyze the performance of the proposed system. We demonstrated

the advantages offered by this system over conventional single antenna monopulse

tracking radar. We also showed that the proposed system keeps track of a rapidly

maneuvering airborne target, even in the presence of an intentional jamming signal.

We demonstrated that the monopulse MIMO tracker follows a maneuvering ground

target that changes its directions at sharp angles.

We developed a novel approach to estimate the positions and velocities of multiple

moving targets using MIMO radar systems with widely separated antennas by em-

ploying sparse modeling and compressive sensing. After proposing a new metric to

analyze the performance of these systems, we then developed an adaptive optimal en-

ergy allocation mechanism to get significant improvement in performance. We used

numerical simulations to demonstrate this improvement. We demonstrated that by

employing compressive sensing, we can accurately reconstruct the target properties

from very few samples. Finally, we showed that the proposed system is robust to

modeling errors that may arise due to the discretization of the target state space.

We proposed a sparsity-based colocated MIMO radar system using frequency-hopping

waveforms. We estimated the unknown target parameters using sparse support recov-

ery algorithm. We derived an analytical expression for the block coherence measure

of the dictionary matrix and, hence, studied the problem of selecting the hopping fre-

quencies. We presented an iterative algorithm for designing an optimal code matrix.

Further, we proposed an approach to optimally design the amplitudes of the transmit-

ted waveforms during each hopping interval using the estimates of the target returns.
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We demonstrated the performance improvement due to the optimal design using nu-

merical examples. Further, we showed that accurate estimation can be performed

from far fewer samples than the Nyquist rate by employing compressive sensing.

Finally, we used a colocated MIMO noise radar system to solve the multiple target

estimation problem. We covered the transmitted noise waveforms using Walsh codes

to ensure orthogonality between different transmitters and to match the transmitted

waveforms to the target responses. We developed a signal model using sparse signal

representation. We used a sparse reconstruction algorithm to estimate the target

parameters. We used numerical simulations to demonstrate the performance of the

proposed system.

8.2 Future Work

In our future work, we will include the effect of clutter in our measurement models.

We will extend our game theoretic radar design approach to other problems, including

selection of optimal waveform shapes for colocated MIMO radar and optimal radar

scheduling. We will extend our analysis to continuous-strategy games. Next, we

will perform an asymptotic error analysis and develop performance bounds for the

proposed monopulse MIMO tracking algorithm.

We will extend our results on sparsity-based MIMO radar to the case of extended

targets. Further, we will model the grid mismatch error using scaled von Mises

distribution and analyze the estimation performance. Uniform distribution is a special

case of von Mises distribution. Von Mises distribution is commonly used for modeling

phase errors in radar problems since the phase is bounded between [−π, π]. Since the
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grid error is bounded by half the grid size, scaled von Mises distribution fits this

problem well. Additionally, we will consider non-uniform grid spacing to reduce the

computational complexity.

Using the theory of combinatorial optimization, we will develop more efficient al-

gorithms for solving the optimal frequency-hopping code selection problem. Then,

we will use multi-objective optimization techniques to jointly solve for the optimal

code frequencies and amplitudes. We aim to validate our analytical results in this

dissertation using real radar data.
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