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ABSTRACT

Previous matching algorithms have achieved high speeds
through algorithm simplification andfor relied on custom
hardware. The objective of our work has been the develope-
ment a robust high-speed stereo matcher by exploiting parallel
algorithms executing on general purpose SIMD machines. Our
approach is based on several existing techniques dealing with
the classification and evaluation of matches, the application of
ordering constraints, and relaxation-based matching. The tech-
nigues have been integrated and reformulated in terms of paral-
lel execution on a theoretical SIMD machine. Feasibility is
demonstrated by implementation on a commercially available
SIMD machine. Its performance is compared with that of the
idealized machine.

1. INTRODUCTION

The goal of stereo vision is the recovery of depth informa-
tion from the relative lateral displacements in the positions of
objects within a pair of images taken from slightly differing
viewpoints. The recovered depth information may then be used
to reconstruct the three-dimensional structure of a scene. The
fundamental problem in stereo vision is the matching of
commesponding points in the different views. Because of possible
occlusions, not all points may have matches and context infor-
mation is wsed to infer the depth of the unmatched points [1].
Techniques differ in the strategy they follow with regard to the
generation of a unique and consistent set of matches.

Recent techniques have been able to reduce the search space
required to maintain global consistency between matches and
have yielded speed improvements without compromising relia-
bility [2]. However, these algorithms still fall short of the real-
time stereo matching requirements for navigation systems, robot
vision, machine inspection and other areas of computer vision
where rapid response is critical.

Some matching algorithms have achieved high speeds
through algorithm simplification [3] andfor relied on custom
hardware {4]. The objective of our work has been the develop-
ment of a robust real-time stereo matcher by exploiting parallel
algorithms executing on general purpose SIMD machines. Qur
approach is based on several existing techniques dealing with
the classification and evaluation of matches [5], the application
of ordering constraints [6], and relaxation-based matching [7].
The techniques have been integrated and reformulated in terms
of parallel execution on a theoretical SIMD machine. The algo-
rithm was then implemented on a commercially available SIMD
machine.

Our parallel algorithm consists of two phases. First,
unlikely matches are discarded based on & loose geometric con-
straint and the ordering of any previous matches. Remaining
matches are then evaluated using criteria based on precomputed
similarity measures (such as direction and intensity on each side
of an edge). Each set of matches, perhaps containing several

candidate matches, is classified based on the aggregate of the
previously evaluated candidate matches. Finally, each set of
matches is sorted and truncated so that it contains no more than
tlree of the most likely candidates,

Phase two computes initial estimates of the probability of
each possible match based on the individual evaluation of the
match and the classification of its set. These initial estimates are
refined during a relaxation process, by 2 consistency rule that
successively increases (decreases) the probability of matches if
nearby points have similar (different) disparity. Afterwards,
accepted matches are identified and the entire algorithm may be
repeated. At the start of each iteration, previously accepted
matches may be used to provide a context for the incremental
accumulation of new matches.

The machine model on which the parallel algorithm has
been formulated assumes a 2-D array of pipelined processors
and a set of memory arrays that may be read and/or updated dur-
ing each machine cycle. Each processor is capable of perform-
ing four kinds of operations: logical, integer arithmetic,
max/min, and functions of one variable. Model parameters
include the number of stages per pipeline, input and output
bandwidth and stage interconnection bandwidth.

The performance of the parallel algorithm is directly related
to maximum disparity (&) and can run in constant time on an
idealized machine having 28 pipelines, four stages per pipeline,
16-bit interconnection links and an output bus no wider than six
pipelines, (6 x 16)-bits . The parallel algorithm has been imple-
mented as part of an interactive environment [3], consisting of a
stereo workstation driven by dual Gould/De Anza IP-8500's, and
a MicroVax II host. Performance measurements show that on a
typical commercial pipelined SIMD machine the algorithm
accomplishes the match of a 512 x 512 x 8-bit pair of stereo
images with a maximum disparity range (8) of 32 pixels in less
than 30 seconds.

The remaining sections of this paper are organized as fol-
lows. Section 2 presents an informal overview of the matching
strategy. Section 3 provides a formal description of the SIMD
machine model. Section 4 contains a detailed description of the
parallel algorithm and the resources it requires. Section 5 com-
pares the performance analysis for a theoreticaily ideal machine
and an actual implementation. Finally, a discussion and conclu-
sions are presented in section 6.

2. MATCHING STRATEGY

This section presents an overview of the matching process
including all necessary preprocessing steps. 'We assume an epi-
polar camera model (i.¢., the horizontal scan lines of both cam-
eras are parallel to the baseline so that all disparities are hor-
izontal) and constrain searches for candidate matches to some
predetermined disparity range. While the primitive features
matched are edgels (edge pixels), the similarity measures used
to compare features are based on the properties of edge seg-
ments (i.e., chains of edgels). The paragraphs below describe



the preprocessing steps, candidate selection criteria, and relaxa-
tion method used to produce a consistent set of matched
features.

Preprocessing. Edgels with magnitude and direction infor-
mation are produced by a Kirsh edge detecior [8]. Edge thin-
ning is accomplished using nonmaxima absorption in the gra-
dient direction [9]. The edge magnitudes are then thresholded
and the resulting binary edgels thinned, producing 8-connected
edge segments one pixel wide. Non-horizontal chains have at
most one pixel per scanline when the images are aligned along
the epipolar axis; horizontal and nearly horizontal chains have at
most one pixel per colunn.

Next, for each chain in the image we compute it’s direction
and the average intensity along it's left and right sides. The
precomputed properties are stored as characteristic images. A
characteristic image associates with each edgel in a chain a
value in the range [1-255] corresponding to some property of
the whole chain to which the edgel belongs. Image pixels that
do not belong to a chain are assigned the value zero.

Candidate selection. Input to the matcher consists of a set
of selected edgels, three sets of characteristic images and,
(optionaily) a set of previously matched edgels. Intervals
between any previously matched edgels are labeled sequentially
to provide a global context in which to embed new matches.
Previously matched edgels are then removed from the set of
selected edgels to avoid the possibility of rematching. An initial
set of possible matches is constructed by pairing each edgel in
the left image with every edgel from the right image which is on
the same epipolar line and within some distance & of the loca-
tion of the edgel in the left image. Some of these candidates
may be eliminated by the ordering constraint imposed by previ-
ous matches [3], and the orientation of corresponding chains.

The remaining candidates within the poel are sorted by
evaluating the degree of similarity between the precomputed
properties of corresponding chains. The evaluation process
results in partitioning the pool of candidates into three disjoint
sets with respect to similarities in orientation, left-side and
right-side intensity.

Next, the pool itself is classified based on the aggregate of
its previously evaluated candidates. Pocls containing a single
(unique) candidate or a candidate that is discernibly better than
all other candidates are preferred. This classification informa-
tion is used later to assign initial estimates of probabilities of
candidates for relaxation.

Following the classification process, each pool is truncated
so that it contains no more than thres of the most promising can-
didates. Since more than one promising candidaies are kept, the
opportunily to reevaluate their credibility and to corract some
false matches remains. We do this by employing a relaxation
method that comrects most local emrors [10] by relying on two
types of continuity constraints.

Relaxation. Initial probabilities are assigned to each candi-
date in the pool, using a simple weighting function which takes
into account the candidate’s previous evaluation, and the
classification of ils pool. These initial estimates are jteratively
refined by applying a consistency mile to all the candidates
within the pool, updating the probability of each candidate, and
normalizing the new probability estimates, The relaxation fol-
Iows the procedure of Bernard [7} and has been formulated o
apply constraints on figural continuity as well as disparity con-
tinuity. Candidates that are continuously connected along the
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same figural contour are allowed to support each other in a
cooperative sense. After several iterations, consistent candi-
dates increase in probability. Conversely, inconsistent candi-
dates, having no connected neighbors satisfying the disparity
constraint, receive little support, and decrease in probability.

In practice, only small changes in probabilities are observed
after a few iterations. For this reason, matches with probabili-
ties greater than an empirically selected threshold (0.7) are
accepted. Accepted matches are assigned probability 1.0, and
saved. In subsequent iterations, these matches provide global
support for new candidates that are locally consistent.

The same matching process is also applied to matching
features in the right image with features in the left image and a
final set of matches is produced by selecting those pairs of
edgels that survived both right-to-left and left-to-right matching
processes,

3. MACHINE MODEL

The method above has been cast as a parallel algorithm exe-
cuting on a theoretical pipelined SIMD machine. As shown in
Figure 1, the machine consists of a two-dimensional array of
processors and a set of dual ported memories. The machine is
organized as a system of n pipelines, each consisting of m
stages. Stages are linked to form a rectangular network of hor-
izontal pipelines, with no feedback between stages. Data may
flow from processor (i,j), the jth stage of pipeline i, to proces-
sors (f, j+1), (i+1, j+1), or (i—1, j+1). Conversely, processor
(i.f ) may accept inputs from processors (I, j—1), (i+1, j-1),
and (i-1, j-1). Input data, supplied from as many as w
memories (w = 21 ) are processed and delivered to as many as p
memories (p < n) within & single machine ¢ycle. Each memeory
may be connected to several pipeline inputs, and read simultane-
ously by the first stage of each pipeline., However, each
memory may be connected to one pipeline output at most. A
pipeline may deliver its data to more than cne memory within
the same machine cycle.

Figure 1. Machine model of a parallel synchronous pipelined network.

For b -bit processors, all links (input, stage, output) are b-
bits wide, the input bus has width Iess than or equal to 2nb -bits
and the output bus has width less than or equal to pb -bits. Inter-
nal processing within each stage includes the following simple
operations: logical operations (A, v, —, ®), integer arithmetic



(+ =, X, min, max), accumulation, and functions of one vari-
able. Each processor may have no more than two forward input
links' and one output link, active during any one machine cycle.
We adopt the notation A!*¥! to denote a group of contiguous
memories 1 through N. Each distinct memory A® may consist
of one or more contiguous bit-planes, depending on the data
type stored. Thus, A* identifies the k-th memory of group A.
When the name of the memory group A stands alome, it
represents the complete set of contiguous memories [1: N ].

For purposes of making more obvicus the mapping of the
algorithmic steps to the architecture, operations aleng the stages
of each pipeline are contained between the delimiters "(" and
"), concumrent processing of more than one pipeline is
specified by the symbel ||, and memory coordinates ranging
over an entire image memory are preceded by the symbol O .
For example, consider the statement below where memories A*
and B contain boolean data, one-bit deep:

|[l: IS kSN u{ T iguAf (G ,j) = (AR L)V B (+k,j) =B (i+k,j)).

Each (distinct) A* is computed over a sub-network of two pipe-
lines, each having two stages, executing in parallel and synchro-
nously. The first stage of one pipeline forms the logical union
of memories A* and B, with memory B shifted & pixels along
the horizontal axis. The result is passed to the second stage of
an adjacent pipeline where B is subtracted from the union, and
its output delivered back to memory A*.

We need two pipelines because each stage may process no
more than two inputs per operation. One way of linking the
processors needed to carry out this computation is shown above
in Figure 1, for the £-th network. The complete computation
Tequires ¥ identical pipelined sub-networks executing in paral-
lel. For a real machine with n pipelines, where n <2V, the
operation requires [ 2N/n] passes. Memory B (i+k) is read by
the first stages of each distinct sub-network simultaneously. All
the pixels within a memory (O {,f) are processed uniformly
within each pipeline in a single machine cycle. Thus, all A®'s
are updated in paralle! in one machine cycle.

The notation serves only to help the reader in understanding
the parallel algorithm presented in this paper, and is not
intended to be a complete specification language for parallel
synchronous computations in general. Each statement consists
of a quantified expression of the form { operator variables :
range :: expression } . Allowed operators are||, ¥, 0, +, -, X, v,
A, min and max. An expression may be an assignment, a condi-
tional assignment, or another quantified expression. A state-
ment is evaluated by applying an operator to the set of expres-
sions obtained by instantiation over the range of bound vari-
ables. If the range is obvious it is omitted. For example, [ i
=V Ij:omin £ i € xmax, ymin < j € ymax. In the next section
we use this notation to present a parallel version of the matching
algorithm described earlier.

4. ALGORITHM

In describing the algorithm, we will use L and R to refer to
the sets of edgels belonging to chains selected from the left and
right images. M; and My will refer to any edgels previously
matched. These sets are encoded as binary two-dimensional
arrays with the index ranging over the image space. L(i,j), for
instance, assummes the value "1" if the position (i,j) contains an
edgel belonging to a chain selected from the left image and the

'However, in practice, lateral inpuis for bit-sliced arithmetic and
carry operations are allowed when necessary.
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value "0" otherwise. As described earlier, the first phase of the
matching algorithm identifies the three most promising candi-
dates within each match pocl. The second phase applies a relax-
ation method to ideniify the most consistent of the three candi-
dates.

Phase 1. For sake of clarity, we restrict our discussion to
matching features from the left image to features in the right
image. Comesponding right-based matching may be performed
in parallel, and is symmetric with respect to the equations and
steps below. The first phase is deseribed in nine steps.

{Step 0) Label intervals between previous matches. The set
of previcusly matched edgel-pairs is a bijection. Therefore on
each epipolar line, the intervals between matched edgels match
pairwise, In this step, we label the intervals between already
matched edgels; we assign identical labels to all pixels within a
given interval. The labels are used later to enforce an ordering
constraint.

OijrBr(i,j)=mod(28—1)y, x:(0<y i In(0<x <) o My (23D
O Be(ig)=dmed(22-1) y,x:(0<y S IM0<x iy Mp (x,3))

Br(i.j) is compuled by counting the number of previously
matched edgels from M, (0,0) to My (i,7). The resuit is that all
pixels within matching intervals have the same label. All the
labels stored in By and Bp are computed in parallel in one
machine cycle. Memories By and B, are at least b-bits wide,
such that (2% - 1) is at least the length of a scanline. Thus label
values remain unique within each scanline.

(Step 1) Eliminate previous matches. Any previous
matches (M; and Mjy) are eliminated from the set of selected
edgels (L and R). Memories M; and My supply input data for
both pipelines simultaneously, allowing L and R to be modified
in parallel.

Oij = (LGJ) = (LGN YMLEG) ) - M@d))
Oif = (RGJ) = (REIVMRULS) ) ~ MR(F))

{Step 2) Build disparity map. For each edgel ({,j) in the
left image and disparity k in the range 0 to §, if an edgel exits in
the right image a bit is set in an image memory CP£. For each
match pool associated with an edgel in L, candidates from R
having disparity k are identified by computing the conjunction
of input edgel sets L and R, where R has been shifted ¥ pixels
along the epipolar axis.

Nk:0<k<8 u (Oij = CPEGEGY=L(i,J) n R((i+k),j))

All candidates are identified in a single machine cycle by a stack
of & independent pipelines executing in parallel.

{Step 3) Apply ordering constraint. In this step, candidates
are eliminated from further consideration if they do no not fall
within matching intervals, i.e., if they do not have the same
label number. Candidates not violating the ordering constraint
simply pass through and are returned to memory CP;. for further
processing.

s Ok = (O s CPEG ) = if ( Be(i )= B ((+k).j)=0)
then CPE(G.j) else 0 )

Candidates for all 8 disparities, each stored in a distinct memory
CPf, me processed in parallel by § pipelined networks. Thus,
candidates of all disparities are tested in one machine cycle.



(Step 4) Apply orientation constraint, Lpp and Rpg are
characteristic images containing the precomputed values for
orientation of chains belonging to the left and right edgel sets
respectively. The absolute difference between the orientations
of comesponding chains belonging to a candidate is compared 1o
a preselected threshold o . For candidates of disparity k, pro-
perty values in the right characteristic image are found by shift-
ing memory Rpp k pixels along the epipolar axis. Candidates
of all 8 disparities are compared in parallel. If for some candi-
date CPE(i ,j), the difference is Iess the threshold {e.g., ¢:=30),
the candidate remains viable, and is stored in CPE(i,j). Other-
wise it is discarded.

|k 0<k<d = { Clij = CPAGj) =
if {|Lpm(i.j)—Rpm((i+k)j)| <) then CPE(G,j) else 0)

The computational structure is similar to the ordering constraint
described above, and requires only a single machine cycle o
process candidates at all & disparities.

(Step 5) Count candidates within each pool. For each can-
didate pool CP¥i,j), the surviving candidates are counted
and the total sum is stored in memory COUNT, . Candidates at
all 3 possible disparities are tallied in parallel by one or more
function tables {foouy ) that count the mumber of bits set within

each CP. (i ) pool. Since it is only possible to count §/ b -bits?
at a time, if [%] = 1, memories CP*® are partitioned into { %]

disjoint groups of contiguous bitplanes. The k-th distinet group
is addressed below as memory CP ¥, The sums for all candidate
pools are computed in a single machine cycle.

(Oij::COUNTL(i,jy=(+k: 1<k<[ ] : f eouns (CPAFNEJIN) )

{Step 6) Identify candidates satisfying at least one similarity
constraint. The three parallel computations below inject the can-
didates of CPy, into three similarity groups, Spi, Srs and Sps.
{Lgs, Rps Y and (Lgg, Ry ) are pairs of characteristic images for
the average intensity along the left side and right side of chains
within edge images L and R, respectively. After the completion
of one machine cycle, memory Sp;z contains all the candidates
whose comresponding chains are similar in orentation. For
example, consider a candidate identified by the bit set in
memory CPE(i,j); the candidate (bit) will be copied into
memory Sk (i ,j) if its corresponding property values Lpg (i,7)
and Rp (i +k.j) differ (absolutely) by less than max.dir.

(Vs O<beed o { L3 if:SEr(i )=
if (Lo (i 1j ) —Rpyi (i+k ).j )| < max.dir) then CPL(i.j) else 0)

Likewise, memories S;g and Spy contain candidates whose
corresponding chains are similar in left-sided and right-sided
intensity, respectively, Candidates may be included in more
than one § -group.

% In this case, our notation fails to explicitly specify the linkage
between the stages of the pipes used to accomplish the (binary) addition
operation. However, for ¥ inputs, the operation requires at most

[-L":)*—’] stages per pipe.
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[Hhe: O<ke® o { Oij o Sheli,j) =
i | Les (o )~ Rus (G4, )| < max.Is) then CPH( j ) else 0)

k2 Okeadss { Tli s Sko(i ) =
if (|Lgs(i.J }=Rps ((i+k).7)] < max.rs) then CPE(i j) else 0)

All three parallel computations are similar to Step 4 in structure.
Candidates at all & disparities are identified in parallel in one
machine cycle. The three similarity groups Sppg, Sis and Sps
are used in the next step to evalvate all candidates in parallel.

(Step 7) Evaluate each candidate within a pool. Each can-
didate within a pool (i,j) is assigned to one of three disjeint par-
titions based on "goodness" of match. The highest quality can-
didates are assigned to partition T'y and are identified by the con-
junction of candidates belonging to similarity groups Spse, Scs
and Sps. The conjunction of candidates of all § disparities is
computed in parallel.

(Oij s TESEG) = (SARG.T) ASEYE )Y A SENE))

Candidates are assigned to partition Ty by first computing the
disjunction of candidates in similarity groups Sgs and Sgg. Can-
didates of the union are then intersected with candidates of simi-
larity group Spr. To keep partitions T, and T'; disjoint, candi-
dates must not have already been assigned to partition T';.

(OiguTi )=
(SBiCE ) ASE YV SR E TN AT (1,7))

Candidates assigned to the third partition, T';, are simply the
remaining candidates that have not been assigned to either parti-
tion Ty or T's.

(O3 THO(L)) = CP¥(j) @ SE°GLI) v SEF¥G.7)))

COUNTy, and COUNTy, are computed similarly to Step 5
above, and are used in the next step 1o classify each maich pool
in parallel.

(Oij = COUNT( ) =(+k: 1<k<[ ] * Feoum (TG

(D‘J COUWT:(‘J) (+k 1<k<[ ] fcaum(T%k}(‘J)))>

(Step 8) Classify each pool into one of four disjoint sets. In
each classification operation below, all pools are processed in
parallel. A pool at position (i,j) having exactly one candidate at
some disparity ¥ belonging to partition T, is identified in
memory CLASSyy (Unique of type I) at the same position.
Similarly, pools in image memory CLASSy;; have a unigque can-
didate belonging to pariition T,. The pools identified in image
memory CLASSp; have more than one candidate, but exactly
one of them belongs to partition T, making it discernibly betier
than the rest. Similarly, the pools of CLASSy,, have more than
one candidate, but have exactly one candidate belonging to T
and exactly zero candidates belonging to partition T;.

{0 CLASSy1(i.j) = (COUNTy (i .j)=1 ACOUNT. (i ,j)= 1)

(Oij:: CLASSyo(i ,j) = (COUNTr (i ,j)=1 ACOUNT (i ,j)=1)



{Oij:: CLASSs (i ,j) = (COUNTR (i ,j)=1 ACOUNTL(i,j)> 1)

{(Oij = CLASSpo(i.f )= (COUNTL( ,J)=0)A(COUNTL(i j)=1)

A (COUNT (i, f)> 1)

The four classes above may be computed in a single machine
cycle by four independent pipelines executing in parallel. The
four classes are consolidated into a single memory C by the dis-
junction of all classes. Each distinct function f. outputs a
unique value labeling CLASS, pools.

{(QijuCl,jy=(vec:ice [ULU2B1B2}:: f.(CLASS. }))

Phase 2. The next phase of the computation consists of 2
relaxation method that employs constraints on figural continnity
[11,12] and disparity continuity to correct most local errors.
Below, phase two is described in six steps.

(Step 9) Identify the three most likely candidales from each
match pool. As described earlier in step seven, we partitioned
all candidates into one of three disjoint sets, T, Ty and T3, In
the equation below, the variable ¢ ranges over the number Typ
of candidate types, so in our methed, Typ=3. In order to iden-
tify the most promising candidates first, binding of the variable
t proceeds from 1 (the most promising candidates are of type
Ty) to 3 (the least promising candidates are of type 7). The
variable n ranges over the number N of (best) candidates saved.
In our methed, we save the three most likely candidates within
each pool, so N=3. For each ¢, as many as N distinct candi-
dates are identified in parailel. At the completion of this step,
memories D*(i,j) and W* (i ,j ) will respectively contain dispar-
ity and weight values of the n-th candidate of pool (i,/). Ini-
tially all ¥ disparity memories (D*) and weight memories (W?)
are cleared. If for some type ¢, there exists a candidate within
pool (i,j) of T, (and D™ (i,j) is empty) then memories D" (i,j)
and W"{i.j) are assigned disparity and weight values of the
candidate, respectively.

t=1.3:||n:1<n<N =
Dr@.j), W) =
if ((D*EN=0)A(f5pT I N=20))
thent [ Boparing (%0 o Yo Frvig(C (47 )
else D™, jy, W*({./))

Let us examine how all N pairs of disparity and weight
values are computed in parallel, for each candidate type t. Con-
sider a pool (i,f). The function f5,. takes as input all the candi-
dates of pool (i,j) stored in memory T, and returns the value
"1" if there exists at least n candidates in the pool. Similarly,
the function ffi., takes as input all the candidates of pool
{i,j) and assigns a disparity value to (exactly) the n-th candi-
date of each pool, relative to the (bit-plane) index {1:8] of
memory T,. For example, if the n-th candidate of a pool is
stored in memory T} then it (the n-th candidate) is assigned a
relative disparity vailue "7". The function f,‘.,,,-gy., assigns a
weight to each admitted candidate by a table lookup of precom-
puted values®, If during a subsequent iteration ¢, there exists

(0Oi,j=

3 Each value is a measured sam which takes into account the type
of candidate and the classification of its pool. Weights range from 0.0
(the least promising candidates) to 1.0 (the most promising candidates).
There are Typ distinct f,,..5 functions precomputed as follows:

5.

another candidate within the same {{,j) pool, and disparity
memory D* contains a previcus entry for pool {i,j), the dispar-
ity entry and weight value are not effected by the pass. Simi-
larly, if there is no candidate within pool T,{f,j) and disparity
D*(i.j)is empty, memories D™ and W* are left unchanged.
The best candidates of type ¢ {at any of & possible dispari-
ties) are identified in parallel. After Typ machine cycles,
memory groups D and W¥ contain the disparities and asso-
ciated weights for the N most likely candidates, respectively.
The weight of each candidate is used in the next step to compute
probability values for all N candidates of each pool in parallel.

(Step 10) Calculate the initial probability of each candidate
in every pool. This computation is accomplished in three steps.
First, the maximum weight of the N candidates within each pool
is identified in parallel. Image memory /* contains an initial
estimate of the probability that every pool (i, ) is matchable.

(O al"G )= 1.0~ (max n:1<n <N =W"(F )N

Next, the sum of all N candidates within each pool (i,7 ) is com-
puted and stored in S (,5).

(Di)j = SGJ)=(+n:lsn SN W GL5)))

Each candidate weight of pool (i,j) is converted into an initial
probability estimate through normalization. The hmetion
Sreciprocat 18 @ precomputed table that outputs the inverse of it's
input value.

We use fixed point arithmetic for all analytic computations.*
Fixed point division is accomplished by computing the recipro-
cal (at one stage) and then multiplying (at a subsequent stage).
We can aveid costly real division without the loss of precision
because we can determine the domain of input values for any
pool size N. For example, since each candidate within a given
pool is assigned a measured weight less than or equal to 1.0, the
total sum of all candidates is less than or equal to ¥, and the
range of § (i ,j ) is constrained to the interval [(:N].

|lm:lsnsN o{i,juPr({,j)=
(Wn(ij)xfrtm}waml(s(iaf)))X(I_I.U’j)))

All N candidates of every pool are normalized in parallel, at a
cost of one machine cycle. At the end of the cycle, the
memories P!¥ contain the normalized probability values for all
N candidates of every pool. In the next step, these normalized
probabilities are used to determine how consistent each candi-
date is with it’s neighbors,

(Step 11) Compute local support for each candidate. The
local support of each candidate is computed by summing the
probability values of comnected neighbors. Only connected
neighbors {above or below) with disparity differences less than
one pixel are allowed to contribute support. The total support
for the n-th candidate of pool (i,j) is stored in memory
O"(i.j). The variables [ and k scroll memories D™ and P™ in

fo t1e(124) nce(128) % flun(e) = 0.6[Ifc] +o.4[1n] .

Values of the variable ¢ are associated with candidaie types 1, 2 and 3,
respectively. Values of the variable ¢ are associated with unigue classes
(U1,U2), classes contzining a discemibly better candidate (B1,B2), and
candidates belonging other pools (pools with a single type 3 candidate
or multiple candidates of the same type), respectively.

“In practice, we found 16-bits of precision yielded sufficient accu-
racy for all nemerical computations of this algorithm.



phase with respect to pool (7,j) so that the six connected neigh-
bors (three above and three below) of D" (i,j) are allowed to
contribute suppert for candidate D*{i ,j ), provided they are con-
sistent with candidate D™ (i ,j ).

nlgngN (0O, 2 Q" (. j)=
(+k0m:ke [-1,0,1}ale {-1,1} AlSm <N =

(f consisen ({ D", J)—D™ (i-+k, j+1) ) I)XP™ (i+k, j+1))))

The function fepnsigens Tetumns the value "1" if the (absolute)
difference between disparity D*(i,j) and some connected
neighbor disparity D™ (i-+k, j+l) is less than or equal to one.
Otherwise the function returns the value "0". The output of the
function is multiplied by the probability value of the same con-
nected neighbor P™ (i+k, j+1). There are two levels of parallel-
ism taking place. The probabilities of all six conmected neigh-
bors are allowed to contribute to the sum of Q" (i,j) in paraliel.
The support available from all the neighbors of neighborhood m
is gathered simultanteously for all N candidates in each pool.
Any previous matches (assigned probability 1.0) provide a net-
work of global support for any new locally consistent matches.
The operation is repeated N times (over the variable n) to allow
each candidate to obtain support from N distinct neighborhoods.
In the next step, the quantity of support stored in memory
Q°(i,j) for each candidate, is used to modify (increase or
decrease) in parallel the probability values stored in memory
P

{Step 12) Update the probability of each candidate. In the
computation below, o and B are parameters that influence the
convergence characteristics of the updating rule. Briefly, o and
B can be interpreted as damping and gain parameters. The value
o delays the suppression of unlikely candidates, and p deter-
mines the rate of convergence [13]. In our experiments, o = 0.3
and B = 3.
||m:1<n <N ={ Oij sPRL) =

(PP} o) +{((PHEHXBIXQ"EG) )

For all N candidates, the probabilities stored in each pool of P*
are multiplied by constants o and [ in parallel. Image
memories Q%¥ and PY¥, containing the quantity of local sup-
port, and the previous probability of each candidate, are read
simultaneously. The resulting modified probability estimates
for all N candidates of each pool are summed in parallel and
stored in memeories PI’N(i,j). The next two steps normalize
these updated probability estimates in parallel.

(Step 13) Compute the sum of probability estimates for can-
didates within each pool. The sum of the updated probabilities
for all N candidates within each pool is computed in parallel
and stored in S (i,7).

(Oij = 83G,j) = { (+n:12n <N =P (i) )

(Step 14) Normalize probability estimates P and I”.
Finally, the probability estimates are normalized in parallel for
alt N candidates within each pool (i,j). This step is similar to
Step 1 except that memory I* is updated in parallel through an
independent pipeline. The final normalized probabilities are
stored in memories P1¥

[Ir:lgsnsN = (0Oi,j = PG00 =
ﬁ”(i,j)x fmcxprml(s(l-.’)): l‘(llj)x frcc&:mml(s(i-j)) )
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Steps 11 through 14 are repeated until the network reaches
steady state or until cnly small changes in probabilities are
observed. In our experiments, the network required at most four
iterations to stabilize. In the mext section, we compare the
optimal performance of the parallel algorithm with that of a real
machine.

5. PERFORMANCE ANALYSIS

In this section we compare the performance of the algorithm
for ideal, typical and implementation machines. A formal com-
parison. and complexity analysis may be found in [14]. All of
the steps of phase one can be executed in constant time for any
disparity range 8, provided the network has at least 28 pipelines.
Similarly, most of the steps of phase two can be executed in
constant time with the exception of steps eight and ten. The run
time of step eight is directly related to the number of distinct
candidate types, Typ, while the run time of step ten is exactly N,
the number of best candidates saved from each pool. Both
parameters are typically small numbers. Assuming Typ=3 and
N=3, minimum computation time is achievable by an idealized
machine having the following configuration: 28 pipelines (n),
21 stages (m), 16 bits/link (&), 6 outputs (p). The cost of the
parallel algorithm is a function of the dispasrity parameter &
alone. Therefore, parallel architectures that can accommodate
large input bandwidth (#) are most suited for high-speed stereo
matching applicaticns. Only steps eight and eleven required
more than four stages to achieve optimal time. This suggests
that the topology of such a pipelined network should consist of a
large number of pipelines with few stages.

An ideal machine, operating at 60 Hz, can accomplish
stereo matching in 1.5 seconds, using 88 machine cycles. How-
ever, typical commercial image processing machines (e.g.,
Pixar, Vicon, Comptel, /25, and Sun/TACC) often have Iess
resources and run at slower clock speeds. For a machine with
four pipelines, four stages per pipeline, and 8-bit interconnec-
tion links we could expect to accomplish stereo matching in
about 11.9 seconds, using 357 cycles, at 30 Hz. There exists a
four fold difference between the number of cycles needed on a
theoretical machine and the number of cycles needed for most
commercially available machines. Depending on the require-
ments of the application, this difference may be tolerable for
high-speed stereo matching,

We implemented each step of the algonithm on a
Gould/DeAnza IP-8500 image processor, equipped with a Digi-
tal Video Processor (DVP). The architecture of the DVP con-
sists of a network of four pipelines, with limited interconnection
links. Input bandwidth of the network is 8x10-bits (&>x2n).
Output bandwidth is 4x8-bits (pxb). There are seven distinct
stages within each pipeline. The stages of the DVP are not uni-
form and could not perform the complete set of operations
described for the stages of our idealized machine. On account
of this mismatch, it was often necessary to adjust the algorithm
to accommodate differences in functionality and other con-
siderations (idiosyncrasies) of the DVP architecture. Stereo
matching was achieved in 13.5 seconds using 404 DVP cycles.
Actual execution time (wall clock) is about 23 seconds due to
the hidden cost of down loading at each step pipeline
configuration instructions and stage opcodes from a MicroVax
H host. In general, the disparity in performance between the
ideal machine and the implementation machine can principally
be attributed to the limited (specialized) functionality of the
stages, lack of flexible (dynamic) interconnection links, and lm-
ited (insufficient) input bandwidth.



6. CONCLUSIONS

We have presented a parallel algorithm for stereo matching
that achieves high-speed by exploiting the parallel architectures
of typical SIMD processors. The cost of the parallel algorithm
is a function of maximum disparity (8) alone, when executing
on an idealized machine having a small mumber of stages, rea-
sonable interconnection bandwidth, and modest output
bandwidth. Paralle] architectures that can accommodate large
input bandwidth are best suited for high-speed stereo matching
applications, Only two sieps of the algorithm required more
than four stages per pipeline to achieve optimal time. This sug-
gests that the topology of a pipelined network tuned for stereo
matching should consist of a large number of pipelines with few
stages. The parallel formulations presented in this paper exhibit
a methodology that may be useful to others in the computer
vision community who are interrested In reformulating existing
low-level vision algorithms for high-spead parallel execution.

The feasibility of our parallel algorithm was shown by
implementation on a typical commercial SIMD pipelined pro-
cessor. As advances in hardware technology continue to reduce
machine cycle times, and highly interconnected multicomputers
with flexible fopologies are produced at practical costs, real-
time performance of this parallel algerithm will be achievable
and appealing for applications where rapid response is critical.
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