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ABSTRACT OF THE THESIS

Minimum Jerk Trajectory Planning for Trajectory Constrained Redundant Robots

by

Philip Freeman

Doctor of Science in System Science and Mathematics

Washington University in St. Louis, 2012

Research Advisor: Professor Heinz Schaettler

In this dissertation, we develop an efficient method of generating minimal jerk trajec-

tories for redundant robots in trajectory following problems. We show that high jerk

is a local phenomenon, and therefore focus on optimizing regions of high jerk that

occur when using traditional trajectory generation methods. The optimal trajectory

is shown to be located on the foliation of self-motion manifolds, and this property

is exploited to express the problem as a minimal dimension Bolza optimal control

problem. A numerical algorithm based on ideas from pseudo-spectral optimization

methods is proposed and applied to two example planar robot structures with two

redundant degrees of freedom. When compared with existing trajectory generation

methods, the proposed algorithm reduces the integral jerk of the examples by 75%

and 13%. Peak jerk is reduced by 98% and 33%. Finally a real time controller is

proposed to accurately track the planned trajectory given real-time measurements of

the tool-tip’s following error.
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Chapter 1

Introduction and Background

Many industrial automation tasks involve moving a tool along a path where the tool

must follow the path explicitly. If the tool is required to carry out a process along this

path, then the quality of the process is often tied to the velocities and accelerations

of the tool along the path. Thus, the robot must accurately track a trajectory (a

geometric path coupled with a motion law) to successfully execute the task. Examples

include painting, dispensing sealant, automated tape laying for composite fabrication,

routing and trimming of large panels, and water-jet cutting.

For paths that are large, a manipulator with a large work envelope is required. Such

a robot is shown in Figure 1.1. As the link size grows to accommodate the growing

work envelope, the forces and corresponding motor torques required to accelerate the

links grow rapidly. These forces necessitate ever larger motors with their associated

costs and energy requirements. The usual engineering trade-off is to sacrifice dynamic

performance to gain reach and payload capacity. The end result is that these robots

lack the performance required for high dynamic trajectories, such as tight radius turns

at speed and high acceleration at the start and stop of motions.

One proposed solution to this is to use a macro-micro manipulator configuration

where a short stroke micro-manipulator with high dynamic performance is coupled to

a large stroke macro-manipulator to create a redundant robot with improved dynamic

performance while retaining the work envelope of the large manipulator. An example

of such a configuration is shown in Figure 1.2 as a 9 axis robot consisting of a 6-axis

industrial robot coupled with a 3-axis cartesian micro-robot.

1



Figure 1.1: An example of a large scale aerospace drilling robot.

Figure 1.2: A macro-micro robot consisting of a 6-axis industrial robot with a 3-axis
translation stage attached.
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One of the first to propose the macro-micro configuration was Sharon, Hogan, and

Hardt [61]. While several of the concepts developed in Sharon et al. and subsequent

work laid down a foundation for a macro-micro manipulator system, there remain

several unsolved problems towards realization of a practical system. The problem

that is addressed in this dissertation is the efficient generation of smooth joint space

trajectories that follow prescribed task space trajectories, which are desirable for ease

in tracking and control [33].

The remainder of this chapter discusses the relevant background work. First we dis-

cuss the previous work on macro-micro manipulators. Then we present a generic

controller architecture for trajectory constrained robot motion, with emphasis placed

on the trajectory planning stage. We build on this architecture by expanding the

background of macro-micro manipulation to the more general problem of redundancy

resolution in robotics and give motivation for jerk-minimization as our criteria for re-

dundancy resolution at the trajectory planning stage. Finally, we show that the work

done on pseudo-spectral methods results in a very efficient direct numerical method

for solving the two point boundary value problem that arises from the necessary

conditions for optimality.

1.1 Macro-micro manipulators

Much of the work in macro-micro manipulators has centered on developing stable real-

time control methods with the assumption that a reference trajectory was provided

to the robot. That is, given a reference joint-space or task-space trajectory, create a

stable, high-bandwidth control that exploits the redundancy of the manipulator for

disturbance rejection and accurate trajectory tracking.

As mentioned above, one of the first articles to propose the macro-micro manipulator

was Sharon, Hogan, and Hardt [61]. In it, a single degree of freedom macro-micro

manipulator is developed as a pair of stacked parallel linear actuators. A simple closed

loop control law based on the measured displacement of the tool-tip is developed. This

initial work showed that stable control could be achieved with improved dynamics at

the tool-tip. Further work by the authors improved on these results to show contact

force control at a control bandwidth several times higher than the principle mode
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of the macro-structure [60, 62]. Since then, there has been a growing interest in

the use of redundant manipulators for industrial processes as kinematic redundancy

offers advantages of increased dexterity for obstacle avoidance, robustness to singular

configurations, and generation of trajectories that optimize dynamic performance

[9, 38, 48, 63].

Several designs exist for macro-micro manipulators of varying complexity. Kwon et

al. developed a Cartesian X-Y manipulator with parallel macro-micro actuators [32].

Ouyang et al. describe various micro-manipulators based on novel actuation using

piezo transducers (PZT) [50] or combinations of PZT and DC motors [51]. Bowling

and Khatib show that the general approach to the macro-micro manipulator design

problem is to first develop a micro-manipulator with suitable dynamics, and then a

macro manipulator that can be stabilized against the micro design [7].

The approach used to control the resulting macro-micro design depends heavily on

the dynamic characteristics of the system. In the most general case, the robot is

treated as a fully coupled dynamic structure. This is the required approach if the

robot links are elastic such that the high dynamic motions of the micro-manipulator

cause coupling with the flexible modes of the macro-structure.

Xu et al. developed a dynamic controller based on a rigid micro-manipulator coupled

to a flexible macro-manipulator [72]. This was extended to support end-point feedback

compensation for positioning accuracy by Yang et al. [73]. Schubert [58] developed

a controller for a flexible macro-micro system by extending the impedance control

methods introduced by Khatib [29]. In impedance control the desired dynamics are

given in the task space and these are transformed to the joint space by suitable control

laws.

Conversely, if the robot can be modeled as a set of rigid links then Khatib showed

that the task space trajectory control problem can be decoupled into control of a set

of joints using computed torque [30]. Under these conditions, the problem reduces to

the purely kinematic problem of generating a joint space trajectory for a given task

space trajectory and several approaches have been proposed. This dissertation follows

this approach, and develops a new algorithm for optimal trajectory generation.

4
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Figure 1.3: A general architecture for a robot trajectory controller

1.2 Trajectory planning and tracking

In this section, we consider the general architecture for a robot motion controller

shown in Figure 1.3. A task space trajectory x(t) or set of goals xi is given to

the robot, and from this a joint space trajectory q(t) is created. The interpolator,

working at a moderate frequency (e.g. 100 Hz), divides the generated joint space

trajectory into discrete points and passes these as set points to the high frequency

(e.g. 2000 Hz) joint controller in the robot. Task space sensor data is generated and

compared with the plan and this is used to adjust the command points from the

interpolator. Nilsson and Johansson in [44] provide a more detailed treatment of

integrated industrial control architectures, and our schematic follows from theirs in

concept.

The goal of the trajectory planner is to develop a sequence of motions in joint space

that achieve a prescribed task. For industrial applications, the generation of the

task-space plan falls broadly into two classes: goal attainment or path/trajectory

following. We distinguish between paths and trajectories using the definition provided

by Biagiotti and Melchiorri [6]. A path is a curve defined in either the task space x(τ)

or joint space q(τ) of the manipulator τ ∈ [0, 1], and a trajectory is a path coupled

with a motion law τ : t ∈ [t0, tf ] 7→ [0, 1].
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The number of papers generated over the last 30 years of robotics dealing with tra-

jectory planning is huge. Below we point to only a few that illustrate the ideas

discussed.

Goal attainment

For goal attainment, similarly point-to-point motion, specific goal points are planned

in the task space and the trajectory planner builds a joint space trajectory to reach

these discrete task points. Examples of industrial applications include pick-and-place,

machine tending, and spot welding.

For industrial applications with 6-axis non-redundant robot structures, the problem

is either solved using simple joint interpolation from the initial point to the goal point

[52, 65], or a path is generated in task space and the manipulator’s inverse kinematics

is used to map this to the joint space [16, 31, 67].

Recent work on goal based trajectory planning has focused on efficiently finding fea-

sible trajectories in the presence of obstacles, with much of the work aimed at mobile

robotics. The presence of obstacles reduces the joint space C into a feasible set of joint

configurations Cfree [2, 27]. Probabilistically complete methods based on randomly

sampling Cfree are common [35], and often can rapidly find acceptable solutions [8].

In the goal attainment approach, particularly in the case of random sampling based

methods, there is no assurance that the robot will follow a prescribed path or tra-

jectory. Because of this, these methods are unsuitable for our problem of task space

trajectory following.

Path and Trajectory following

In path and trajectory following, the goal is to generate a set of joint space commands

that realize a path or trajectory defined in the task space as a continuous curve. That

is, f(q(τ)) = x(τ) where f is the forward kinematics of the manipulator.

6



This can be viewed as the limit of goal attainment where the goal points are closely

spaced. A common approach is to generate sequences of continuous curve segments

that interpolate a sampling along the path [6].

Simon and Isik made use of trigonometric splines [66] to rapidly generate approxi-

mating curves in the joint space to arbitrary tolerance. Oriolo et al. used random

sampling in Cfree restricted to points on the self-motion manifold [47, 48, 49]. The

self-motion manifold, explained in more detail in Chapter 2, is the set of all joint

configurations that realize a task point. Gasparetto and Zanotto developed a planner

based on B-spline interpolation of joint space solutions along the path [16]. All of

these planners are developed for path following. That is, the rate with which the

path is executed is treated as a variable to be optimized or left as unconstrained.

For trajectory following, not only the path must be followed, but the motion law

τ(t) must be maintained. Trajectory following planners are largely based on the

instantaneous velocity relationship between the joint space and the task space. Since

x(t) is prescribed in the trajectory following problem, the task space velocity ẋ(t) can

be used as the motion constraint. Then a trajectory q(t) with q(t0) = x(t0) and joint

rates satisfying Jq̇ = ẋ will realize the prescribed trajectory where J is the Jacobian

of the manipulator mapping differential joint motion to differential tool motion. If

J is square (a non-redundant robot) and non-singular, then q̇ = J−1ẋ is the unique

solution to the trajectory following problem.

In both trajectory following and goal attainment, either the path, the trajectory, or

both is generated outside of hard real-time constraints. There are two approaches

that can be used: either the trajectory is generated entirely before run-time, or it is

generated concurrently at run-time ahead of the robot’s current position. The former

is termed off-line trajectory generation and the latter on-line trajectory generation.

In online trajectory generation, the goal is to complete the trajectory plan as close

as just-in-time as possible to take advantage of any changing state of the robot or

environment. The only real-time restriction in a trajectory following application is

that the trajectory plan be complete before the robot requires it for motion. At a

minimum this implies that trajectory segments can be solved faster than the robot

traverses them.
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1.3 Redundancy resolution

Given a task-space trajectory generated either off-line or on-line, under the assump-

tion of a rigid link model the trajectory generation problem is one of redundancy

resolution. The task-space trajectory can be realized by possibly an infinite set of

joint space trajectories. The usual goal of redundancy resolution is to select from

this set of feasible trajectories one that satisfies some secondary criteria. Examples of

secondary criteria are minimization of the joint acceleration norm or minimization of

the torque norm [22, 26, 75], reduced energy consumption [21], avoidance of kinematic

singularities [63], and smooth joint motions [21].

Previous work on redundancy resolution follows two basic strategies: local or global

optimization of the performance criteria [28]. In local optimization, the strategy

is to generate joint rate commands that minimize the instantaneous value of the

performance metric. Hollerbach and Suh optimized the instantaneous joint torque

norm [22]. Liégeois used local optimization to prevent the joints from reaching the

actuator limits [36]. Yoshikawa maximized a measure of distance from kinematic

singularities [74].

Local optimization schemes are amenable to online implementations directly in the

hard real-time controller and thus are attractive practically. In these cases, the gener-

ated path trajectory is passed to the interpolator, which implements the redundancy

resolution at the interpolation interval. The problem is the greedy nature of the

methods. By following the gradient of a highly non-linear cost function, the solution

can be led to regions where continued trajectory generation leads to high costs.

More ambitious is global optimization, where the goal is to generate trajectories that

minimize the integral of the performance metric over a prescribed fixed interval, not

just instantaneously in time. Nakamura et al. used the Pontraygin Maximum Princi-

ple to minimize the joint velocity norm in an off-line trajectory planner [42]. Martin

et al. showed similar results to Nakamura using an Euler-Lagrange formulation [39].

Other strategies include the use of general optimization heuristics such as evolutionary

algorithms [23, 70].
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Seereeram and Wen show that global approaches have the advantage of necessar-

ily avoiding kinematic singularities [59]. Kazerounian and Wang showed that local

optimization of the joint acceleration satisfies the necessary conditions for global opti-

mization of the joint velocity [28], however, O’Neil shows that following the minimum

norm joint acceleration leads to instabilities in velocities of the trajectory [46].

The challenge with global optimization is that the problem takes on the form of a two-

point boundary value problem (TPBVP) [28]. The traditional approaches to solving

the resulting problem, e.g. shooting methods, result in numerical methods with slow

convergence. This makes them impractical for on-line trajectory generation, and thus

most effort was shifted to local planning methods.

In this dissertation, we develop a global trajectory planner for minimizing the integral

of the joint space jerk. We show that the resulting TPBVP can be efficiently solved

by pseudo-spectral methods such that it is possible to be used as an online planner.

1.4 Minimum Jerk Trajectories

Jerk is the time derivative of acceleration, and thus is associated with rapidly chang-

ing actuator forces. Excessive jerk leads to premature wear on the actuators, induces

resonant vibrations in the robot’s structure, and is difficult for a controller to track

accurately [3, 16, 33]. Trajectories that minimize jerk therefore have several advan-

tages in path following problems. Some experiments from biomechanics indicate that

our brain realizes a version of minimum-jerk in planning grasping motions for our

arms [13].

Several authors have developed minimum jerk trajectory planners when the path is

defined as a set of via-points in joint space. Kyriakopoulos and Saridids minimized

the maximum jerk norm over an interval for a non-redundant robot that has a max-

imum execution time constraint [34]. Piazzi and Visioli [55] and Simon and Isik [67]

optimized an integral norm of the jerk under the assumptions of fixed execution time.

Gasperetto and Zanotto minimized a combined cost of execution time and the integral

norm of the jerk [16]. None of these solutions strictly follow the task trajectory since

they do not follow the motion law. Further, these solutions assume that a set of joint
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solutions for the via-points is known a priori, which ultimately leaves the redundancy

resolution problem unsolved.

Other authors approach this complex global problem with heuristic search based

methods. For example, Huang et al. solved the problem of point-to-point jerk mini-

mization with fixed time using a genetic algorithm to generate intermediate via-points

[23] and Sullivan and Pipe used an evolutionary algorithm to find a joint space tra-

jectory that minimized the Cartesian task-space jerk [70]. Neither of these authors

considered the case of trajectory constrained motion.

Our approach differs from the above in that we develop a method of efficiently solving

for a globally low jerk trajectory that solves the task-space trajectory following problem.

We do this by adapting pseudo-spectral methods to the problem.

1.5 Pseudo-spectral methods

Pseudo-spectral methods are a type of direct transcription method using collocation

for solving optimal control problems [56, 15, 24, 4, 5]. Direct transcription methods

convert the continuous time optimal control problem into a finite dimension nonlinear

program (NLP) which can then be numerically solved using various methods [18, 19].

In the pseudo-spectral method, the state and control are approximated by interpo-

lating polynomials, where the nodes are the roots of orthogonal polynomials. The

resulting NLP is constrained to satisfy the boundary conditions and the state and

control dynamics at the collocation nodes. The advantage of pseudo-spectral meth-

ods is an exponential decay rate on the convergence of the error when the optimal

solution is analytic [14].

In the traditional application of pseudo-spectral methods, the optimization interval

is approximated by a single polynomial, and the order of the nodes is increased to

increase accuracy. Darby et al. show that improved convergence over a broader class

of functions can be obtained by using a mesh of lower order polynomials [11], and

this is the approach that we have taken.
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1.6 Contributions of Dissertation

The main contribution that this dissertation makes is the development of a new

algorithm for finding near optimal minimal jerk trajectories for redundant robots.

Features of the algorithm are

• Separation of the trajectory into segments that require optimization and seg-

ments that do not,

• Minimum dimension solution space to keep the problem relatively small,

• Solving the resulting TPBVP using a finite dimension NLP,

• Fast execution and simple computations, and

• Trivial parallelization.

These aspects of the algorithm enable the trajectory planner to show potential as an

online trajectory planner in a high performance computing architecture.

Along with the trajectory planner, we develop a real-time compensator that regulates

a robot with kinematic errors to the designed path given task-space sensor data of

the tool-tip trajectory. The compensator is based on a stabilized local minimum-jerk

trajectory planner.

The remainder of the dissertation is laid out in the following chapters. Chapter 2 de-

velops the complete problem definition as a TPBVP within regions of high jerk along

a non-optimal nominal trajectory. Chapter 3 develops the optimization algorithm

based on direct transcription and Gaussian quadrature. Chapters 4 and 5 apply the

developed algorithm to two different planar robots: one composed of a combination of

revolute and prismatic joints, and the other composed of all revolute joints. Chapter

6 presents the real-time compensator and its performance on the all revolute robot

with plant disturbance. Chapter 7 covers our conclusions and further work that would

improve on the algorithm.
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Chapter 2

Problem Definition

In this chapter, we develop in detail the problem that we wish to solve: the generation

of low jerk joint space trajectories for task space trajectory constrained motion.

2.1 Motivation

We motivate our approach with an example. Consider the robot shown in Figure 2.1.

It is composed of a two link macro-manipulator that can position on the X-Y plane a

three link micro-manipulator. The forward kinematics relating joint position to tool

tip position for this manipulator are

x1 = q1 + q2 + q3 (2.1.1)

x2 = cos(q1) + cos(q1 + q2) + q4 cos(x1)− q5 sin(x1) (2.1.2)

x3 = sin(q1) + sin(q1 + q2) + q4 sin(x1) + q5 cos(x1) (2.1.3)

which we write as f(q) : q ∈ R5 7→ x ∈ R3. In these equations, x1 is the angle of the

tool-tip, and (x2, x3) its position. Our goal is to find a trajectory q(t) : t ∈ [t0, tf ] 7→
R5 such that given a task space trajectory x(t) : t ∈ [t0, tf ] 7→ R3 and non-negative

matrix Q giving the relative cost of jerk between the joints, q(t) is “close” to the

optimal trajectory

min
q(t)

J =

∫ tf

t0

‖
...
q ‖Q dt, (2.1.4)

x(t) = f(q(t)). (2.1.5)
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Figure 2.1: Five Link RRRTT Planar Robot

where ‖
...
q ‖Q =

√
...
q TQ

...
q . We wish to be able to find this near optimal trajectory fast

enough that it can be implemented as an online trajectory planner.

The description of the task space trajectory that we adopt is a sequence of points,

{x1, x2, x3 . . .}, and associated speeds, {v1, v2, v3 . . .}, such that the robot moves

along the sequence of points with velocity vi(xi+1 − xi)/||xi+1 − xi|| between points

xi and xi+1. Because the velocity is discontinuous at the nodes (due to a change in

speed and/or direction), we blend the linear segments with a polynomial curve. To

ensure C2 continuity along the path, we choose fifth order Bézier curves according to

the method described by Biagiotti and Melchiorri [6]. The amount of blending at the

nodes is given by the programmer as a blend radius, δ, as shown in Figure 2.2. This

type of trajectory is called “Linear Segments with Polynomial Blends”, or LSPB, and

is common in industrial processes.

From this trajectory description, the task space acceleration and jerk along the tra-

jectory are zero along the constant velocity segments, and cubic and quadratic, re-

spectively, within the blends. Since we seek to minimize the joint space jerk, we

develop the relationship between task motion and joint motion.
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Figure 2.2: Example LSPB Trajectory.

Consider the differential motion of the manipulator at the point q with respect to the

tool coordinates. That is, the coordinate frame whose origin is coincident with the

tool-tip and whose X and Y axes are aligned with joints q4 and q5 in Figure 2.1. This

linear transformation relating joint velocities to tool velocities is called the manipula-

tor Jacobian in tool coordinates [53]. We consider motion in tool coordinates instead

of base coordinates because it greatly simplifies the calculation of the derivatives of

the Jacobian, and it prevents the problem of singularities in the representation that

are not kinematic singularities of the manipulator [64]. The Jacobian of the example

manipulator is

J =

sin(q3) + sin(q2 + q3)− q5 sin(q3)− q5 −q5 1 0

cos(q3) + cos(q2 + q3) + q4 cos(q3) + q4 q4 0 1

1 1 1 0 0

 . (2.1.6)

Which gives the functional relationship of joint velocity to task space velocity

ẋ = Jq̇. (2.1.7)

Note that this is task velocity in the instantaneous tool-tip coordinates. If what is

known is the task velocity in base coordinates, we calculate the velocity in tool co-

ordinates by multiplying by the appropriate rotation transformation: ẋtool = Rẋbase.

From here forward, time derivatives of the task space trajectory will be assumed in

tool coordinates.
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Let J† be the Moore-Penrose pseudoinverse of J . Then the minimum norm solution

for q̇ can be given by the solution

q̇ = J†ẋ, (2.1.8)

and the joint velocity can be bounded by

‖q̇‖ ≤
∥∥J†∥∥ ‖ẋ‖ . (2.1.9)

Thus, when the Jacobian is well conditioned (smallest singular value is sufficiently

far from zero), the joint velocities are bounded by the task velocities.

Differentiating (2.1.7) with respect to t gives the acceleration and jerk relationships

ẍ = J̇ q̇ + Jq̈,
...
x = J̈ q̇ + 2J̇ q̈ + J

...
q . (2.1.10)

The corresponding minimum norm solutions for the acceleration and jerk thus are

q̈ = J†
(
ẍ− J̇ q̇

)
,

...
q = J†

(...
x − 2J̇ q̈ − J̈ q̇

)
. (2.1.11)

From this we express the bounds on q̈ and
...
q as

‖q̈‖ ≤
∥∥J†∥∥(‖ẍ‖+

∥∥∥J̇∥∥∥ ‖q̇‖) (2.1.12)

‖
...
q ‖ ≤

∥∥J†∥∥(‖...x‖+ 2
∥∥∥J̇∥∥∥ ‖q̈‖+

∥∥∥J̈∥∥∥ ‖q̇‖) . (2.1.13)

We conclude that the jerk on the joints will be highest when the task space trajectory

dynamics are high, or the Jacobian is ill-conditioned. Otherwise,
∥∥J†∥∥, ‖...x‖, and ‖ẍ‖

are small and the joint space jerk can be bounded to small values. With an LSPB

trajectory, the task dynamics are only high within the blends between path segments.

The Jacobian becomes ill-conditioned when the robot is near a kinematic singularity.

Thus high jerk is a local phenomenon.
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Direction of
travel

Figure 2.3: An example trajectory for the robot.

Equation (2.1.10) introduces the time derivative of the Jacobian. In these equations,

and throughout the dissertation we use the notation

J̇ =
∂J

∂q
(q̇) , J̈ =

∂2J

∂q2
(q̇, q̇) (2.1.14)

where ∂J/∂q and ∂2J/∂q2 are tensors. Appendix A gives a method of calculating

these terms.

An example trajectory is given in Figure 2.3. Here we restrict our example robot to

q4 = q5 = 0 throughout the trajectory. This creates a non-redundant manipulator,

and the initial configuration of the robot defines the joint space trajectory unambigu-

ously. The speed along the trajectory is a constant velocity of 1. Figure 2.4 shows

that the high jerk is limited to the four blends of the trajectory and the region where

the manipulator passes close to its singularity of q2 = π at t = 3.2.

Because high jerk is localized, we simplify the problem by considering only optimiza-

tion of the trajectory about these isolated regions. That is, we assume that some

feasible trajectory exists and is easily generated using existing trajectory generation

16



0 1 2 3 4 5

2

4

6

8

10

x 10
6

time

||
je
rk
||
2

Figure 2.4: Instantaneous jerk norm along the example trajectory.

methods. Then we identify the regions of high jerk and generate optimal trajectories

within the neighborhood of these regions.

This is the motivation for our solution. We break up a feasible trajectory found using

known methods into regions of high jerk and low jerk according to some threshold.

Then we optimize the regions of high jerk according to equation (2.1.4) along with the

appropriate boundary constraints to ensure C2 continuity and thus finite jerk along

the entire trajectory.

2.2 Self-motion

The optimization problem presented in equation (2.1.4) is infinite dimensional in

curves over the n + 1 dimensional space (t, q) ∈ R × Rn. However, Nakamura and

Hanafusa show that this problem can be reduced to an equivalent problem in R×Rr

with r = n−m, where m = dim(x) [42]. In this section we show similar results using

self-motion manifolds.

The self-motion manifold for a manipulator M is defined as the disjoint union of all

q such that given a task point x we have that f(q) = x (Burdick [10]). That is,

the self-motion manifold is the general solution to the inverse kinematics problem.

Burdick shows that for serial link robotic manipulators these sets are bounded and

continuous, lending them to topological analysis. For our example, the task space has

dimension m = 3, and the joint space has dimension n = 5 so that the self-motion

manifold has dimension r = 2.
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Figure 2.5: Self-motion manifold of x such that f(q) and f(q̂) both map to x

Consider two points q and q̂ that both lie on the self-motion manifold for x. Define

the difference between these two points as η as shown in Figure 2.5.

f(q) = f(q̂) = x. (2.2.1)

Suppose that there are two trajectories that satisfy x(t) and pass through the joint

configurations q and q̂, neither of which is singular. Since self-motion is a manifold,

it follows that there exists a parametrization z ∈ Z of dimension two—a local chart

of coordinates—such that z = 0 7→ q. This parametrization is non-degenerate near

q and thus also for q̂ if η is sufficiently small. Then η can be parameterized on the

manifold η(z, q). That is, q defines the manifold, and z defines the location of q̂

relative to q. Differentiating equation (2.2.1) with respect to z

dx

dz
=

d

dz
f(q̂) =

df(q̂)

dq̂

d(q + η)

dz
= J(q̂)

dη

dz
(2.2.2)

By definition of the self-motion manifold, dx/dz = 0 so that

J(q̂)
∂η

∂z
= 0 (2.2.3)

The tangent spaces of the self-motion manifold are everywhere perpendicular to the

Jacobian of the manipulator’s pose. Variation in η along the manifold causes the
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robot’s joints to move, however since dη/dz lies in the null space of J there is no

motion of the tool tip, hence the moniker “self-motion”.

From equation (2.2.3) and using the Jacobian given in (2.1.6), we get

dη1(sin(q̂3) + sin(q̂2 + q̂3)− q̂5)

+dη2(sin(q̂3)− q̂5)− dη3q̂5 + dη4 = 0
(2.2.4)

dη1(cos(q̂3) + cos(q̂2 + q̂3) + q̂4)

+dη2(cos(q̂3) + q̂4) + dη3q̂4 + dη5 = 0
(2.2.5)

dη1 + dη2 + dη3 = 0 (2.2.6)

Expanding q̂ in the above yields

dη1(sin(q3 + η3) + sin(q2 + q3 + η2 + η3)− (q5 + η5))

+dη2(sin(q3 + η3)− (q5 + η5))− dη3(q5 + η5) + dη4 = 0
(2.2.7)

dη1(cos(q3 + η3) + cos(q2 + q3 + η2 + η3) + (q4 + η4))

+dη2(cos(q3 + η3) + (q4 + η4)) + dη3(q4 + η4) + dη5 = 0
(2.2.8)

dη1 + dη2 + dη3 = 0 (2.2.9)

Introducing the parametrization z1 = η3 and z2 = η2 + η3 and solving the above

equations gives

dη =


0 −1

−1 1

1 0

sin(q3 + z1) sin(q2 + q3 + z2)

cos(q3 + z1) cos(q2 + q3 + z2)

 dz (2.2.10)
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Finally, integrating the above and imposing the condition that z = 0 7→ η = 0 gives

η1 = −z2 (2.2.11)

η2 = z2 − z1 (2.2.12)

η3 = z1 (2.2.13)

η4 = − cos(q3 + z1)− cos(q2 + q3 + z2) + cos(q3) + cos(q2 + q3) (2.2.14)

η5 = sin(q3 + z1) + sin(q2 + q3 + z2)− sin(q3)− sin(q2 + q3) (2.2.15)

This defines the self-motion manifold of our example robot. Notice that our choice

of parametrization leads to the manifold being globally described by the positions of

joints 1 and 3, which are revolute. Thus, the self-motion manifold for the example is

a 2-D torus.

In general, we do not expect to be able to explicitly solve the equations for the self-

motion manifold, nor have a single global parametrization. However, for any local

neighborhood about a non-singular pose, the manifold can be parameterized by the

selection of r joints. For example, in equations (2.2.11)–(2.2.15), we can see that the

parametrization can be chosen as z1 = η1 and z2 = η2.

For a general redundant manipulator, consider the singular value decomposition of

the Jacobian

USV T = J (2.2.16)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and S ∈ Rm×n is diagonal, with

columns permuted such that the diagonal elements of S are in non-increasing order.

Then the last r columns of V are a basis for the null space of J and can be considered

a locally orthogonal parametrization of the self-motion manifold. We choose z as the

largest two joint components of this basis. Thus, we have effectively partitioned the

variable q into z and qm where qm represents a non-singular subset of the manipulator

joints and z locally parameterizes the self-motion manifold.

Similarly, this results in the partition of J (after permutation) as

J =
[
Jz Jm

]
. (2.2.17)
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Figure 2.6: A section of trajectory segmented for optimization from p1 to p2

Given the task space trajectory x(t), and the self-motion trajectory z(t), we can solve

for the remaining joint motions as

q̇m = J−1m (ẋ− Jz ż) (2.2.18)

Finally, given a parametrization z that is locally non-degenerate on the self-motion

manifold of the task point x, we state that feasible solutions to the problem (2.1.4)

must be contained in the set of trajectories that at each time t are on the self-motion

manifold for x(t). These manifolds form a foliation (locally)Mt, and q(t) must lie in

Mt. By replacing our search from one over all q(t) to one over z(t), the dimension of

the problem is reduced from (t, q) ∈ R1 ×Rn to (t, z) ∈ R1 ×Rr.

2.3 Optimization problem

Consider the LSPB trajectory segment shown in Figure 2.6. We assume that nowhere

along the trajectory from p1 to p2 does the robot pass near a kinematic singularity.

Let t0 be the time associated with p0 and tf the time associated with pf . We also

assume that a feasible trajectory q(t), t ∈ [t0, tf ] has been determined. From the

previous section we know that high jerk will be associated with the blend between

linear segments on the trajectory: the region within the circle δ. In this section, we
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show that problem (2.1.4) over the interval t ∈ [t0, tf ] is an optimal control problem

in z with boundary conditions at t0 and tf .

For the path plan from p0 to pf we now seek a minimum jerk trajectory in q that

maintains the tool tip motion along the path and matches twice continuously differ-

entiable with the nominal trajectory at the times t0 and tf . Specifically, our aim is

to find a trajectory for the manipulator, q(t), such that

f(q(t)) = x(t) t ∈ [t0, tf ] (2.3.1)

with the boundary constraints

q(t0−) = q(t0+) q(tf−) = q(tf+) (2.3.2)

q̇(t0−) = q̇(t0+) q̇(tf−) = q̇(tf+) (2.3.3)

q̈(t0−) = q̈(t0+) q̈(tf−) = q̈(tf+) (2.3.4)

Let t 7→ q(t) be a trajectory such that q(t) lies on the foliation Mt of self-motion

manifolds of x(t). The results from the previous section show that this trajectory has

dimension R1 × Rr and can be parameterized as z(t). We permute the joint space

variables such that

q(t, z) =

[
z

qm

]
(2.3.5)

From this it is easy to show that the problem can be formulated as an optimal control

problem in Bolza form. Define the “state” as

σ =

zż
z̈

 ∈ R3r (2.3.6)

and the “control” as

u =
...
z ∈ Rr (2.3.7)

22



Then the dynamic equation is linear, a simple triple integrator,

σ̇ =

0 I 0

0 0 I

0 0 0

σ +

0

0

I

u (2.3.8)

and the cost function (2.1.4) can be expressed in the form

J =

∫ tf

t0

L(σ(t), u(t), t) dt (2.3.9)

with initial and final state boundary conditions

σ(t0) =

z(t0)

ż(t0)

z̈(t0)

 (2.3.10)

and

σ(tf ) =

z(tf )

ż(tf )

z̈(tf )

 . (2.3.11)

The Lagrangian, L, is calculated by first noting that σ(t) and u(t) give the position,

velocity, acceleration, and jerk of a subset of the joints of the robot. We use this to

calculate the remaining joint dynamics. The joint position qm is calculated as the

closure of the kinematic equation

f({z, qm}) = x. (2.3.12)

Joint velocity q̇m is solved using equation (2.2.18), acceleration is calculated by

q̈m = J−1m

(
ẍ− J̇ q̇ − Jz z̈

)
, (2.3.13)

and the jerk is calculated as

...
q m = J−1m

(...
x − J̈ q̇ − 2J̇ q̈ − Jz

...
z
)
. (2.3.14)
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Hence the Lagrangian becomes

L(σ(t), u(t), t) =

([
...
z T

...
q T
m

]
Q

[ ...
z

...
q m

])1/2

(2.3.15)

Solving the above Bolza optimal control problem defines the optimal motion z(t) on

the self-motion manifoldsMt. Using it, we then calculate q to generate the minimum

jerk trajectory q(t), t ∈ [t0, tf ].

Summary

In this chapter, we presented the problem to be solved in this dissertation. Our moti-

vation of the problem was presented as localized optimization of feasible trajectories

in neighborhoods of high jerk. This was shown to be equivalent to a search across the

foliation Mt of the self-motion manifolds generated by the trajectory. The problem

was then shown to be a Bolza optimal control problem with a control of dimension r

and state of dimension 3r, where r is the degree of redundancy of the manipulator.

The system dynamics are linear, but the Lagrangian is highly non-linear and com-

plex. A procedure was outlined how, for a given point z on a self-motion manifold,

the Lagrangian at that point can be computed.

The next chapter develops an algorithm for solving the given Bolza problem by as-

suming that z(t) is expressed as a C2 piecewise polynomial function.
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Chapter 3

Algorithm

In this chapter, we present a numerical solution to the optimal control problem pre-

sented in chapter 2. Our solution is based on representing z(t), the trajectory of the

manipulator along the foliation of self-motion manifolds, as a piecewise C2 polyno-

mial. The polynomial is represented by its discrete values at the Gaussian quadrature

nodes, along with its left boundary node. This generates a finite dimensional version

of the problem well suited to direct transcription to a non-linear programming prob-

lem. The cost equation is estimated through Gaussian integration at the quadrature

nodes.

We begin this chapter with some background material on Gaussian integration and

pseudo-spectral methods.

3.1 Gaussian Integration

This section closely follows the method and presentation in Chapter 5 of Atkinson

[1].

We wish to find an efficient method of estimating the integral of a real-valued function

over an interval

I(f) =

∫ b

a

f(x) dx (3.1.1)

where a and b are finite. It is assumed that the exact computation of the integral of

f(x) either cannot be done or is expensive to do, so we approximate I(f) by assuming

an approximating family of functions {fn(x)}n≥1 with the property that ‖f − fn‖ → 0
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as n → ∞. The family is chosen so that for every n, the exact value I(fn) is easily

calculated. Then, our approximation In(f) is that

In(f) =

∫ b

a

fn(x) dx = I(fn). (3.1.2)

For smooth functions, an obvious choice is to use the family of polynomials where n

indexes the degree of the polynomial. Let pn(x) be the interpolating polynomial of

f(x) over a set of n nodes. Then

I(f) ≈ In(f) =

∫ b

a

pn(x) dx. (3.1.3)

Let the nodes be {xi|xi ∈ [a, b], i = 0, 1, . . . , n}. Then the interpolating polynomial is

given as

pn(x) = f(x0)l0(x) + f(x1)l1(x) + . . .+ f(xn)ln(x) (3.1.4)

where

li(x) =
∏
j 6=i

x− xj
xi − xj

. (3.1.5)

So that li(x) is zero for all nodes except the ith node, where it has the value 1. This is

the Lagrange form of the interpolating polynomial. Substituting the Lagrange form

of pn into (3.1.3) gives

In(f) =

∫ b

a

n∑
i=0

li(x)f(xi) dx =
n∑
i=0

wif(xi) (3.1.6)

where

wi =

∫ b

a

li(x) dx. (3.1.7)

And the integral has been replaced by a linear functional of the finite vector f(xi).

Clearly, this is exact for polynomials of degree less than n.

We are motivated by the above to generalize the approximation In as

In(f) =
n∑
j=1

wj,nf(xj,n) (3.1.8)
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That is, the polynomial approximation of I(f) is a linear functional of n values of f

within the interval [a, b]. We would like this approximation to have zero error for as

high a degree of polynomial as possible.

First, consider the more general integration formula

In(f) =
n∑
j=1

wj,nf(xj,n) ≈
∫ b

a

w(x)f(x) dx = I(f) (3.1.9)

where w(x) is a weight function. In our case, w(x) = 1. Let φn be the orthogonal

polynomials on [a, b] with respect to the weight w(x). Let the nodes xj,n be the zeros

of φn. We also introduce the notation

φn(x) = Anx
n + · · · ; an =

An+1

An
; γn =

∫ b

a

w(x)[φn(x)]2 dx (3.1.10)

The following theorem, which we state without proof, provides the functional and

nodes for the least error on a smooth f(x) approximated by polynomials. This is

Theorem 5.3 in Atkinson, and a proof can be found there on pages 272–276 [1].

Theorem 3.1.1. For each n ≥ 1, there is a unique numerical integration formula

(3.1.9) of degree of precision 2n− 1. Assuming f(x) is 2n times continuously differ-

entiable on [a, b], the formula for In(f) and its error is given by∫ b

a

w(x)f(x) dx =
n∑
j=1

wjf(xj) +
γn

A2
n(2n)!

f (2n)(η) (3.1.11)

for some a < η < b. The nodes {xj} are the zeros of φn(x), and the weights {wj} are

given by

wj =
−anγn

φ′n(xj)φn+1(xj)
j = 1, . . . , n (3.1.12)

The Theorem states that for a given weight function, a sequence of approximations

In(f) exists such that the approximation is exact for f a polynomial of degree less

than 2n − 1. For example, if f can be represented with a polynomial of degree less

than or equal to 5, then its integral can be exactly evaluated with a linear functional

on three points within [a, b]. Conversely, I3 needs only three values for f(x), but will
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Figure 3.1: Nodes for Gauss-Legendre quadrature for various n

return an exact integral for any polynomial of degree less than or equal to five that

interpolates the points.

In our problem we choose w(x) = 1, and the corresponding set of orthogonal polyno-

mials is the Legendre polynomials, Pn(x), for the interval [−1, 1]. The Gauss-Legendre

weights are given by

wi =
−2

(n+ 1)P ′n(xi)Pn+1(xi)
i = 1, 2, . . . , n. (3.1.13)

The Gauss-Legendre nodes are shown in Figure 3.1 for a selection of n. The nodes

and weights for various n can be found in published tables [69]. However, algorithms

for calculating them are quite simple and for moderate n, the table can be calculated

and stored in memory faster than reading a file from disk [20].

To transcribe our problem from [a, b] to [−1, 1] we introduce the change of variables

τ = 2
x− a
b− a

− 1 (3.1.14)
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so that our integral becomes∫ b

a

f(x) dx =
b− a

2

∫ 1

−1
f

(
a+ b+ τ(b− a)

2

)
dτ (3.1.15)

One of the drawbacks that Atkinson points out is that it is difficult to accurately

estimate the error of the integration. It suggests the use of the rule

I − In ≈ Im − In (3.1.16)

for m > n. For well behaved integrands, m = n+ 2 is suggested.

3.2 Pseudo-spectral Methods

Here we briefly present the method of solving Bolza optimal control problems via

pseudo-spectral methods. Our presentation is based largely on Chapters 3 and 5 in

Benson [4]. Our goal is to give insight into the Gauss pseudo-spectral method which

is the basis of the algorithm developed in this dissertation.

For this section, we consider the general boundary constrained non-linear optimal

control problem in Bolza form

Bolza minimize Φ(x, t) +
∫ tf
t0
L(x, u, t) dt over all locally bounded Lebesgue mea-

sureable functions u : [t0, tf ] 7→ Rm such that ẋ = f(x, u) and the boundary

conditions x(t0) = x0 and x(tf ) = xf are satisfied.

Pseudo-spectral methods belong to the broader class of direct transcription methods.

In these methods, the continuous time optimal control problem is discretized at times

along the interval [t0, tf ] such that

t0 ≤ t1 < t2 < · · · < tn ≤ tf (3.2.1)
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For a control vector u = [u(t1), u(t2), . . . , u(tn)]T the differential equation is estimated

at the discrete nodes, and an optimal control sought which minimizes the cost while

maintaining the constraints.

For the Gauss pseudo-spectral method, the problem is mapped by the transformation

in equation (3.1.14) to the interval [-1,1] as

J = Φ(x(1), tf ) +
tf − t0

2

∫ 1

−1
L(x, u, τ) dτ (3.2.2)

The discretization nodes in τ are set to the N + 1 values of -1 along with the N

Gaussian quadrature points from the previous section. The approximation of the

state and control is then the Lagrange interpolating polynomial

x(τ) ≈ X(τ) =
n∑
i=1

x(τi)li(τ) (3.2.3)

u(τ) ≈ U(τ) =
n∑
i=1

u(τi)li(τ) (3.2.4)

Clearly, at the nodes X(τi) = x(τi) and U(τi) = u(τi).

Since X(τ) is the polynomial interpolant of x(τi), we can approximate the derivative

of x(τ) as the derivative of X

ẋ(τk) = Ẋ(τk) =
n∑
i=1

Dkix(ti) k = 1, . . . , n (3.2.5)

where Dki = L̇iτk. That is, D is the derivative operator for X. Since the dynamic

equation must also be satisfied, this generates the constraint equation

2

tf − t0

n∑
i=1

DkiXi = f(Xk, Uk, tk), k = 1, . . . , n (3.2.6)

which for brevity we write as DX = F , where F is the vector (tf − t0)f(Xk, Uk, tk)/2

evaluated at each of the tk.
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The left boundary constraint is met directly through choice of X1 = x(t0) and the

right boundary constraint is then constrained by

X(1) = X(−1) +
tf − t0

2

n∑
i=1

wkf(Xk, Uk, tk) (3.2.7)

which is the approximate solution to the dynamics at τ = 1.

Finally, the cost is approximated by the quadrature rule on the Gauss nodes

J = Φ(Xn, tf ) +
tf − t0

2

n∑
i=1

L(Xi, Ui, τi)wi,n (3.2.8)

From this, the continuous time optimal control problem is transcribed to a finite

dimensional constrained NLP as

NLP minimize J over all (X,U) subject to the constraints DX = F , X(−1) = x(t0),

and X(1) = x(tf ).

Benson demonstrates through several examples that the convergence of the Gauss

pseudo-spectral methods is exponential for smooth problems. This is contrasted with

the polynomial time convergence of other direct transcription methods such as Euler

or Runge-Kutta Transcription.

However, pseudo-spectral methods are generalized to the problem of a non-linear

cost equation, as well as non-linear dynamics. Our optimal control problem, given by

equations (2.3.8)–(2.3.11), presents a non-linear cost equation, but the dynamics are

simple integrators. As such, we can significantly improve upon the performance of a

general purpose approach by tailoring the algorithm.
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3.3 Algorithm for finding minimal jerk trajectory

We recall from Chapter 2 that our goal is to find an optimal z(t) that lies on the

foliation of self-motion manifolds generated by x(t). We use the ideas from pseudo-

spectral methods to develop an efficient numerical method for solving the problem.

We propose an algorithm that rapidly converges to very good solutions based on esti-

mation of the cost by Gaussian quadrature applied to a segmentation of the trajectory

into smooth intervals.

At the highest level, our approach is to break the trajectory into regions of low jerk and

high jerk based on a nominal trajectory planner, such as a local-planner mentioned in

Section 1.3. About the regions of high jerk we break the trajectory up and pass the

region of high jerk to the optimization algorithm, along with the boundary conditions

defined by the nominal trajectory planning process.

Consider again the trajectory segment shown in Figure 2.6. The blend region within

the circle δ is the region of high jerk. The nominal trajectory planner passes the

region of high jerk, along with some fixed amount of trajectory before and after the

region to the optimizer. The region of optimization is defined be the interval from p1

to p2.

In this section, we assume that the nominal generation of the trajectory and segmen-

tation is completed, and our focus turns to the optimization of a trajectory segment

with high jerk and defined boundary conditions. We point out that this can be done as

a stream process, where as soon as the nominal trajectory planner identifies a region

of high jerk and establishes the boundary conditions, this segment can be passed to

the optimizer for replanning. The nominal trajectory planner can continue to process

the remaining trajectory, as this is uninfluenced by the results of the optimizer.

The approach that we take to optimization of a trajectory segment is shown in Algo-

rithm 3.1. What follows is a detailed description of each of the steps in this algorithm.

For convenience we precalculate and store in memory some useful linear operators

and data structures. These are

• The Gauss-Legendre quadrature nodes and weights,
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Algorithm 3.1: Optimal trajectory planner for a trajectory segment

Input: x(t), t ∈ [t0, tf ], LSPB task space trajectory segment and the boundary
conditions q(t0), q̇(t0), q̈(t0), q(tf ), q̇(tf ), q̈(tf )

Output: q(t), t ∈ [t0, tf ], the optimized joint space trajectory
Define the parametrization Z of the self-motion manifold;
Segment t into a mesh of intervals;
Initialize z(t) to a near optimal trajectory;
while Not converged do

Transcribe the meshed problem into a finite NLP and solve;
Test for convergence of the solution;
if Not converged then

Remesh the problem by either dividing existing mesh segments or raising
their polynomial order;

end

end

• The inverse Vandermonde matrices, L−1n , and

• The derivative operators, Dn.

The Gauss-Legendre quadrature nodes and weights were explained in section 3.1. The

inverse Vandermonde matrices and derivative operators are as follows.

Suppose we have a polynomial pn(t), t ∈ [−1, 1] represented by the vector x ∈ Rn+1 of

interpolation values located at -1 and the n Gauss-Legendre nodes. Then the matrix

L−1n ∈ R(n+1)×(n+1) transforms x into the coefficients of the Legendre representation.

That is

pn(t) = α0P0 + α1P1 + · · ·+ αnPn (3.3.1)

where α = L−1n x.

The Vandermonde matrix Ln can be found from the recurrence relationship for the

Legendre polynomials

P0(x) = 1 (3.3.2)

P1(x) = x (3.3.3)

Pn+1(x) =
(2n+ 1)xPn(x)− nPn−1(x)

n+ 1
. (3.3.4)
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Each row of Ln is the recurrence relation calculated at a value of x: −1 and the

Gauss-Legendre nodes. L−1n is then the inverse of this matrix.

The matrices Dn ∈ R(n+1)×(n+1) are derivative operators that transform x into the

values of ṗn(t). That is, if ẋ = Dnx, then ẋ is the value of ṗn(t) at -1 and the n

Gauss-Legendre nodes.

The derivative Vandermonde matrix L′n transforms the vector of coefficients to the

derivative of the interpolating polynomial. Similar to Ln this is calculated from the

recurrence relation

d

dx
P0(x) = 0 (3.3.5)

d

dx
P1(x) = 1 (3.3.6)

d

dx
Pn+1(x) = (2n+ 1)Pn(x) +

d

dx
Pn−1(x). (3.3.7)

We then use this to calculate Dn = L′nL
−1
n .

We now describe each step of Algorithm 3.1.

Define the parametrization Z

As described in Chapter 2, we parameterize the self-motion manifold by the joints

which best span the null space of J(q0). The algorithm for determining the parametriza-

tion of Z is given in Algorithm 3.2

We first assume that the parametrization of Z is sufficient across the entire trajec-

tory segment. However, if this is not the case, then the interval is subdivided into

intervals such that for each interval a single parametrization exists. The selection

of Z partitions the manipulator Jacobian into [Jz Jm] where Jm ∈ Rm×m. Suppose

the optimizer tends towards a trajectory in Z such that Jm becomes ill-conditioned.

Then the solutions for the derivatives of qm given in equations (2.2.18), (2.3.13),

and (2.3.14) will be sensitive to small changes in z. In this case, the optimizer may

make poor choices on the perturbations in z that optimize the trajectory. A strat-

egy for dealing with this based on changing coordinates on the manifold is proposed
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Algorithm 3.2: Parametrization of the self-motion manifold by a subset of the robot
joints

Input: A robot pose q
Output: A parametrization of the self-motion manifold z
J ← Jacobian(q);
[U, S, V ]← svd(J); // The SVD of J such that USV T = J
n← number of columns in V ;
m← number of columns in U ;
r ← n−m;
for i← 1 to r do

zi ← index of maximum absolute value in the (n− i)th column of V ;
Set all elements of the ith row of V to 0;

end

in Chapter 7. For the example robots and trajectories in this dissertation, a single

parametrization for each trajectory segment was sufficient, and the problem of switch-

ing the parametrization of the self-motion manifold within an optimization segment

was not dealt with.

Segment t into a mesh of intervals

We assume that the task trajectory is defined as an LSPB trajectory. In our example,

the task trajectory is linear segments joined by fifth order Bezier blends. This defines

a trajectory that is C2 continuous at the boundaries between trajectory primitives,

but discontinuous in jerk. Our output will be a piecewise polynomial in Z so that

our initial segmentation of the trajectory is to use the boundaries of the task space

primitives, i.e. the transition points between the linear segments and blends. We call

the resulting segmentation on t the “mesh”, and each segment of t a “mesh element”.

To ensure that the cost exists, we set the order of polynomial z(t) over each mesh

element to at least three. Thus, we have a minimum C2 curve in Z and by implication

on the continuity of the motion primitives, a C2 trajectory in q. In practice, since we

know that the task space jerk within blend regions is quadratic, we get better results

by setting the mesh elements associated with blends to be fifth order polynomials.
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Let z(t) be an nth order polynomial on a mesh element. Then the n+ 1 interpolation

nodes for that mesh element are chosen as the left boundary point for the mesh

element, along with the n Gauss-Lagrange quadrature points mapped to the interior

of the mesh element.

Initialize z(t) to a near optimal trajectory

The initial point for the optimization is taken as the trajectory which satisfies the

boundary and kinematic constraints, and is “closest” to the minimum jerk trajectory

that satisfies only the boundary constraints. Here we show that the solution of

the two point boundary value problem that ignores the trajectory constraints of the

system has a simple closed form analytic solution via Pontryagin’s Maximum Principle

(PMP).

Consider the linear kinematic system q̇q̈
...
q

 =

0 I 0

0 0 I

0 0 0


qq̇
q̈

+

0

0

I

 ...
q (3.3.8)

where q ∈ Rn. This forms a set of n independent linear systems. Since our goal is the

jerk-optimal path that satisfies only the boundary conditions, we can independently

consider each joint as a separate linear system, and thus treat the above as though

n = 1.

For simplicity, we form the linear–quadratic cost function

min...
q
J =

∫ 1

0

1

2
‖
...
q ‖2 dτ (3.3.9)

τ =
t− t0
tf − t0

(3.3.10)

subject to initial and final boundary conditions on position, velocity, and acceleration.

This problem is easily solved using the PMP.
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Let x(τ) = [q(τ) dq(τ)/dτ d2q(τ)/dτ 2]T and u(τ) = d3q(t)/dτ 3. The associated

optimal control problem is normal and the Hamiltonian is given by

H(λ(τ), x(τ), u(τ), τ) = λT (Ax+Bu) +
1

2
uTu (3.3.11)

where

A =

0 1 0

0 0 1

0 0 0

 B =

0

0

1

 . (3.3.12)

The conditions of the PMP state that

Instantaneous optimality: λTB + u = 0

Adjoint Equation: λ̇ = −ATλ

Transversality Condition: λ(1) = µ

Let ξ = [x λ]T . The differential equation formed in ξ that results from the above

necessary conditions is

ξ̇ =

[
A −BBT

0 −AT

]
ξ = Pξ (3.3.13)

which has the solution

ξ(τ) = ePτξ(0) =



1 τ τ2

2
− τ5

120
τ4

24
− τ3

6

0 1 τ − τ4

24
τ3

6
− τ2

2

0 0 1 − τ3

6
τ2

2
−τ

0 0 0 1 0 0

0 0 0 −τ 1 0

0 0 0 τ2

2
−τ 1


ξ(0). (3.3.14)

Letting τ = 1, we solve the first three rows for λ(0) as

λ(0) =

720 360 60

360 192 36

60 36 9

x(0) +

−720 360 −60

−360 168 −24

−60 24 −3

x(1) (3.3.15)
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Algorithm 3.3: Adjusting initial point to trajectory

Input: x a point in task space, q a pose of the robot
Output: q a nearby pose such that f(q) = x
J†Q ← Q−1(J(q)Q−1)† ; // Pseudo-inverse of J with weight Q

e = f(q)−1 ⊗ x ; // The error between f(q) and x
while ‖e‖ > ε do

dq ← −J†Qe;
q ← q + dq;
e = f(q)−1 ⊗ x;

J†Q ← Q−1(J(q)Q−1)† ;

end

Thus, given the boundary values on q, we first calculate λ(0), and then using the

first row of ξ we calculate q(t) for each of the nodes along the mesh. Thus q(t) is the

piecewise polynomial that matches the optimally smooth trajectory at the quadrature

points.

This trajectory will almost certainly not satisfy the task space trajectory constraints,

so we use the weighted pseudo-inverse of the Jacobian to move the calculated q onto

the trajectory, as shown in Algorithm 3.3. This gives us a point that satisfies the

trajectory and is “close” to the optimally smooth joint interpolant. An example

initial trajectory is shown in Figure 3.2.

The operator ⊗ in Algorithm 3.3 is the composition of spatial transformations. This

can be calculated, for example, using homogenous transformations. Thus, e is the

spatial transformation such that f(q) ⊗ e = x and −J†Qe gives an approximate dis-

placement in q to cancel e.

We do not directly take the subset of q corresponding to z from the PMP solution

as the initial point for the optimization. We found that this can create a problem if

there is no qm which can satisfy the kinematic constraint f({z, qm}) = x. In this case,

z is not on the foliation of self-motion manifolds. By first ensuring that the kinematic

constraint can be met as above, we know that z(t) is at least kinematically feasible

before starting the optimization.

It is worth noting that the derivatives of the polynomial interpolant of the resulting

z will no longer satisfy the boundary conditions. Therefore, the initial point is not in
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Figure 3.2: Initial trajectory for a single joint from q0 to qf showing the optimally
smooth trajectory, and the resulting kinematically feasible interpolating polynomial
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the feasible space of solutions. However, this method gives a very good initial point

for the optimizer, which can then enforce all of the constraints on z.

Transcribe the problem to an NLP and solve

We estimate the optimal solution of the continuous problem by direct transcription

to a finite dimensional non-linear programming problem.

We begin by considering a single mesh element. Let tm0 and tmf be the initial and final

times of the element respectively. From the set of nodes on each mesh element, we

can apply our precalculated differentiation operators Dn so that

ż =
2

tmf − tm0
Dnz

z̈ =
2

tmf − tm0
Dnż

...
z =

2

tmf − tm0
Dnz̈

(3.3.16)

Then using equations (2.2.18), (2.3.12), (2.3.13), and (2.3.14) we solve for qm(k)

through
...
q m(k), where k are the n+ 1 nodes for the transcribed problem.

The cost (2.3.9) for the mesh element is then approximated as∫ tmf

tm0

‖
...
q (t)‖Q dt ≈

tmf − tm0
2

n∑
k=1

wk ‖
...
q (k)‖Q (3.3.17)

with wk the Gauss-Legendre weights.

Finally, using the inverse Vandermonde matrix, L−1n , we can get the coefficients for

the interpolating Legendre polynomial.

c = L−1n z (3.3.18)

Since the Legendre polynomials all have the value 1 at t = 1, the value of z(tmf ) is the

sum of the coefficients. The value of the derivatives at the final time are calculated

similarly using the derivatives of z.
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The constraints for a feasible solution are on the values of z, ż, and z̈ at each of the

ends of the mesh elements. At t0 we use the value of z (ż, etc.) at -1 on the first

mesh element, and at tf we use the value of z at 1 on the last mesh element. For the

intermesh boundaries

z(tm+1
0 )− z(tmf ) = 0, ż(tm+1

0 )− ż(tmf ) = 0, and z̈(tm+1
0 )− z̈(tmf ) = 0 (3.3.19)

For the transcribed problem, let z be the vector of values of z(t) defined at the

interpolating nodes. Let F be the vector of constraints. There are 3× dim(Z) = 3r

constraints for each mesh element boundary, including the initial and final boundaries.

The first 3r are the constraint values for t0, and the last 3r are for tf . All other

constraints are the intermesh equality constraints from equation (3.3.19). Thus, for

m mesh elements, F ∈ R3(m+1)r. All of these constraints are linear, and form the

equality constraint matrix

F = Az. (3.3.20)

Since the constraints are defined by the neighboring mesh elements, the structure of

A is sparse with dense blocks. An example of the sparsity structure of A is shown for

r = 2 and m = 4 in Figure 3.3.
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Because of this structure, we can construct A one mesh element at a time. Consider

a single mesh element m, t ∈ [tm0 , t
m
f ]. We refer to the constraints associated with

tm0 as the “left” constraints, and the constraints associated with tmf as the “right”

constraints.

We introduce the notation zm to refer to the elements of z that are within the mesh

element m, Aij to refer to an element of A, and Ai: to refer to a group of elements

within a row of A.

First we consider the left constraints. The left position constraint is the value of

z(tm0 ), thus Aij = 1. The left velocity constraint is the first value of

2

tmf − tm0
Dnzm, (3.3.21)

Thus

Ai: = first row of
2

(tmf − tm0 )
Dn. (3.3.22)

Similarly, the left acceleration constraint is

Ai: = first row of
4

(tmf − tm0 )2
D2
n. (3.3.23)

The right constraints are as follows. According to equation (3.3.19), we negate the

values of the right constraints. For the position constraint, the right position is the

sum of the coefficients of the interpolating Legendre polynomial. Recall that the

coefficients are found through L−1n zm so that

Ai: = −column sums of L−1n (3.3.24)

Similarly, the velocity and acceleration constraints are then

Ai: = −column sums of
2

(tmf − tm0 )
L−1n Dn (3.3.25)

Ai: = −column sums of
4

(tmf − tm0 )2
L−1n D2

n (3.3.26)
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Using the convention that the right mesh element constraints are negated means that

for consistency we negate the boundary conditions for tf at the end of the mesh.

Putting it all together, our transcribed NLP is

min
z

num mesh∑
m=1

(
nm∑
k=1

wk ‖
...
q k‖Q

)
(3.3.27)

subject to the linear constraint

F = Az (3.3.28)

We contrast the above with the more general pseudo-spectral algorithm. In the

general pseudo-spectral method, the full complement of state and control variables is

included in the optimization vector. Here, because we know the dynamics are linear

and the approximating trajectory z(t) is polynomial, we optimize only the trajectory

positions, and differentiate to get the remaining state and control variables. This

reduces the dimension of the NLP by a factor of four, and thus significantly speeds up

the execution of the altorithm. Additionally, we automatically satisfy the constraint

equation (3.2.6) and this can be dropped from the NLP. Finally, provided there is no

need to switch parameterizations along z(t), the constraints to the NLP are all linear.

All of this makes solving the NLP particularly efficient, and the problem can be

passed to a general purpose sparse solver. In our case, we have chosen SNOPT, an

implementation of sequential quadratic programming for large scale sparse systems

[19].

Test for convergence and remesh if not converged

We consider convergence on an element by element basis. An element is considered

converged if ∣∣∣∣In+2(f)− In(f)

In+2(f)

∣∣∣∣ < ε. (3.3.29)

where In is the estimated cost from optimization, In+2 is the estimated cost of z(t)

using Gauss-Legendre quadrature two orders higher, and ε is a convergence criteria.

If all elements are converged, then we consider the problem solved.
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Figure 3.4: Comparing the interpolating polynomial of the cost with the exact cost
for a mesh element.

For every mesh element that is not converged, we adjust the mesh element in one of

two ways based on a criterion proposed by Darby, Hager, and Rao [11]. Either the

polynomial order of the mesh element is raised, or the mesh element is split into two

mesh elements. The motivation for this strategy comes from hp-adaptive methods in

finite element analysis [71].

To use this rule, we need some notion of “smooth” vs. “non-smooth” error in the

estimate. Darby et al. uses the residual of the constraint equation (3.2.6) at times

in between the quadrature nodes. However, because of our problem formulation, we

satisfy this constraint exactly everywhere. Therefore we choose a different criteria for

smoothness.

Consider a point that lies at the mid-point of either two adjacent quadrature nodes or

the boundary of the mesh element and the adjacent quadrature node. The cost at this

point can be exactly evaluated by using the value of z(t) at this time. Our quadrature

estimate is accurate if ‖
...
q (t)‖Q is well approximated by a polynomial of order less

than 2n − 1. Thus, we compare the exact cost using z(t) to the polynomial that
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Figure 3.5: Error between the interpolated cost and exact cost at the midpoints
between the nodes.

interpolates the exact cost at the mesh element nodes. This is shown in Figures 3.4

and 3.5.

We calculate the residual error for all such points on the mesh element, and then

normalize this error by the average absolute error. If the maximum absolute normal-

ized error exceeds a threshold ρ, then we define the error as non-smooth and break

the mesh element at that point into two mesh elements, preserving the order of the

nodes to the left and right of the break. If the order drops below three, then the order

is raised to three to ensure C2 continuity. If all normalized error values are within

±ρ, then the error is considered smooth and the polynomial order is raised to give

a better approximation of the error. The normalized error values for Figure 3.4 are

shown in Figure 3.6, along with a threshold value ρ = 3 as suggested by Darby et al.

[11].

Finally, z is set to the values of z(t) calculated at the new mesh nodes. The re-meshing

procedure is summarized in Algorithm 3.4.
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Figure 3.6: Normalized absolute errors of the cost at the internodal points.

Summary

In this chapter, we presented the detailed description of our algorithm for solving

the minimum jerk trajectory along a task-space constrained trajectory segment with

initial and final boundary conditions on the position, velocity, and acceleration. The

algorithm is based on a specialized version of pseudo-spectral methods suited to the

linear dynamics that our problem presents, with the cost estimated through Gauss-

Legendre quadrature. The problem transcribes to a relatively low dimensional non-

linear programming problem with linear constraints, that we solve using SNOPT.

In the next two chapters we apply this algorithm to two examples and demonstrate

its effectiveness.
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Algorithm 3.4: Re-meshing a mesh element that is not converged

Input: Mesh element and optimized z(t) at interpolation nodes
Output: New mesh element(s)
i← 0;
foreach midpoint between interpolation nodes and mesh-element ends do

c1 ← Cost calculated by interpolating the cost polynomial;
c2 ← Cost calculated by evaluating cost at interpolated z(t);
E[i]← |c2 − c1|;
i← i+ 1;

end
Ē ← 1/n

∑n
i=0E[i];

E ← E/Ē;
if max(E) < ρ then

Raise polynomial order on mesh element;
else

Split mesh element at max(E);
Ensure new mesh elements are at least order 3;

end
z ← z(t) evaluated at the new mesh nodes;
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Chapter 4

Minimum Jerk Trajectory for an

RRRTT Planar Robot

This chapter presents the results of applying an implementation of the algorithm

described in Chapter 3 to the example robot from Chapter 2. We present our robot,

the general structure of the nominal planner, optimization parameters, and results

for two variations on the nominal planner: one for unconstrained joint motion and

one for constrained joint motion. These results demonstrate the effectiveness of the

optimization process for minimum jerk trajectory generation, particularly when the

instantaneous minimum velocity norm solution is infeasible.

We again show our example 5-link robot in Figure 4.1. The robot consists of three

revolute links, and two prismatic links (RRRTT) and has a task space in the plane

R2×SO(2). Thus, for this robot dim(q) = 5, dim(x) = 3, and dim(z) = 2 as discussed

in Chapter 2.

4.1 Nominal Planner

For this example, as well as the example that will be presented in Chapter 5, the

nominal trajectory planner is based on the general inverse of the manipulator Jaco-

bian [63, 64]. Recall that the manipulator Jacobian defines the relationship

ẋ = J(q)q̇ (4.1.1)
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Figure 4.1: Five Link RRRTT Planar Robot

For dim(q) > dim(x) the general solution to this equation is

q̇ = J†ẋ+ (I − J†J)q̇0 (4.1.2)

where q̇0 represents an arbitrary joint velocity vector. The term (I−J†J) projects q̇0

onto the null space of J , the tangent space to the self-motion manifold. Thus, we can

use q̇0 to create self-motion that satisfies some secondary criteria without effecting

the primary goal of maintaining the tool tip on the trajectory.

In this dissertation, we will consider two cases:

q̇0 = 0

q̇0 = K∇H(q).
(4.1.3)

The first case we call unconstrained motion, and it generates a trajectory where

every interpolation point is the minimum velocity norm step along the trajectory.

The second case generates self-motion that locally optimizes the cost function KH(q)

along the self-motion manifold, where K is a stabilizing gain constant. Various values

of H(q) have been proposed for meeting different secondary criteria [36, 74, 12]. Here,
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Algorithm 4.1: Nominal trajectory planner

Input: x, ẋ: task space position and velocity
Output: q, q̇: discrete joint space position and velocity commands
q(0)← f−1(x) ; // A starting position in the joint space

q̇(0)← Jẋ;
t← T ;
k ← 1;
while trajectory left to process do

q(k)← q(k − 1) + T q̇(k − 1) ; // T is the interpolation period

e← f(q(k))−1 ⊗ x(k);
ẋc ← ẋ(k)− e/T ;
h← K∇H(q(k));

q̇(k)← J†Qẋc + (I − J†J)h;

t← t+ T ;
k ← k + 1;

end

only a variation on the method described in Liégeois for avoidance of joint limits will

be considered [36]. However, we believe the results are general to the choice of H(q).

The algorithm for generating the nominal trajectory is shown in Algorithm 4.1. This

is implemented as a discrete time filter. It is important to recognize that q(k − 1)

and q̇(k − 1) in the filter are the previous period’s planned trajectory commands,

and not the robot’s sensor feedback. The purpose is to create a nominal joint space

trajectory, not the actuator control for the robot.

One suggestion that was considered was to build the nominal trajectory based on

extending the minimum acceleration equation of Kazerounian and Wang [28] to jerk

as
...
q = J†Q(

...
x − 2J̇ q̇ − Jq̈) + (I − J†J)

...
q 0. (4.1.4)

This was tested, but did not result in an improved nominal or optimized trajectory.

However, this approach did result in an effective controller design for real time control

to the planned trajectory. This is further explored in Chapter 6.
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4.2 Example Trajectory

The test trajectory consists of the list of via points and speeds. Each via point is the

triple (x, y, θ). For the test trajectory of this example, shown in Figure 4.2 the values

are

• x = {(1, 0, 0), (1, 1.5, 0), (0.1, 1.5, 0), (0.1,−0.8, 0), (1,−0.8, 0), (1, 0, 0)}

• v = {1, 1, 1, 1, 1}

For the nominal trajectory generator, the blend radius δ is 0.075 and the interpolation

period is T = 0.001.

For the optimizer the following parameters are used. The jerk threshold is 500. The

lead-in and lead-out region of the optimization segment are 0.150. That is, when

the start and stop times for the region of high jerk are determined, the optimization

segment’s starting time t0 is set to 0.150 time units before and the ending time tf is

set 0.150 time units after the identified region of high jerk. The relative convergence

threshold for integration is ε = 0.001. The threshold for splitting a mesh element is

ρ = 3.0. If the polynomial order is raised, it is increased by two orders. The maximum

polynomial order before splitting the mesh is 8.

The weight matrix Q is diagonal with values [100, 100, 1, 1, 1]. That is, the cost func-

tional strongly penalizes jerk on the macro manipulator over the micro manipulator.

The following two sections present the results with q̇0 = 0 and q̇0 = ∇H(q) where

H(q) is designed to prevent the robot from exceeding its joint limits.

4.3 Unconstrained Motion

The realization of the trajectory with q̇0 = 0 is shown in the following Figures. An

overview of the motion can be seen in Figures 4.2 and 4.3. Figure 4.2 shows the

motion of the tool along the trajectory as a red trace, along with the final pose of

the robot. Figure 4.3 shows the configuration of the robot at 15 instances along the
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Figure 4.2: Robot path. The red line is the motion of the tool tip.

trajectory. This figure shows that the motion is almost entirely realized by the motion

of the micro-manipulator, something that can only be achieved if the range of the

micro-manipulator is the entire work volume. This is impractical since by design the

micro-manipulator has a limited range of motion.

The position trace of the joints is shown in Figure 4.4. The optimal trajectory is

plotted in the upper plot and the difference between the nominal and optimal trajec-

tories below. This again shows the nearly stationary motion of joints 1, 2, and 3, as

would be expected from the chosen Q. Similarly the velocity is plotted in Figure 4.5,

which shows negligible difference between the nominal and optimal trajectory.

Figures 4.6 and 4.7 show the nominal vs. optimized cost along the trajectory. Here

we see that the optimization did improve slightly on the nominal trajectory. The peak

jerk seen in corners 2, 3, and 4 is reduced and the optimized jerk is lowered slightly.

Figure 4.7 shows a closer view of the cost in the second corner of the trajectory. Here

we more clearly see the reduced jerk between the nominal and optimal trajectories.
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Figure 4.3: Robot pose at 15 time intervals along the trajectory. The red dot is the
tool tip location.

Table 4.1: Results for optimization of unconstrained trajectory for RRRTT robot.

Cost Maximum Instantaneous Cost

Nominal 199 1382
Optimal 194 828

54



0 1 2 3 4 5 6

−1

0

1

2

O
pt

im
iz

ed
 T

ra
je

ct
or

y

 

 

0 1 2 3 4 5 6

−5

0

5

x 10
−6

D
iff

er
en

ce
 B

et
w

ee
n

N
om

in
al

 a
nd

 O
pt

im
al

T
ra

je
ct

or
y

time

q
1

q
2

q
3

q
4

q
5

Figure 4.4: Trajectory for RRRTT robot with q̇0 = 0.
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Figure 4.5: Joint velocities for RRRTT with q̇0 = 0.
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Figure 4.6: Instantaneous cost along the trajectory.
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Figure 4.8: H(q) for joints 4 and 5 of the RRRTT robot

Table 4.1 summarizes the result of optimization. This shows a 2% reduction in cost,

with a 40% reduction in peak cost. Overall, optimization with q̇0 = 0 results in only

a modest improvement in cost. Further, the resulting trajectory is not realistic. All

of the motion has been allocated to the micro manipulator, which would result in the

requirement that the size of the micro manipulator be the size of the work envelope,

and thus not micro.

The suggestion to overcome this is to modify the nominal trajectory planner by

adding a motion penalty to the micro manipulator thorough the self-motion term

q̇0 = ∇H(q).

4.4 Constrained Motion

The penalty function H(q) that we introduce is shown in Figure 4.8. The penalty is

0 through the central 50% of the axis stroke on joints 4 and 5. Outside of this range,
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Figure 4.9: Robot path. The red line is the motion of the tool tip. The blue line is
the motion of the end of joint 2, the wrist center.

the penalty is quadratic with a value of 0.5 at ±0.1. Based on empirical testing, a

gain of K = 0.005 was chosen for equation (4.1.3). No motion penalty was applied

to joints 1, 2, or 3.

The resulting self-motion velocity keeps the overall stroke of the micro-manipulator

to reasonable values. The resulting trajectory is shown in Figures 4.9 and 4.10. The

resulting motion is a realistic combination of macro and micro motions. Further, we

point out that by choosing the velocity-norm minimizing step at each interpolation

point, the robot tends to avoid the singularity near (0, 0) at about t = 4.

Figures 4.11–4.13 shows the resulting joint trajectories. These plots show that there

is only a small change between the nominal trajectory and the optimized trajectory.

Figure 4.12 shows the change in trajectory for joints 4 and 5 of the micro manipulator,
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Figure 4.10: Robot pose at 15 time intervals along the trajectory. The red dot is the
tool tip location.
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Figure 4.11: Trajectory for RRRTT robot with q̇0 = ∇H(q).
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Figure 4.12: Trajectory for joints 4 and 5 with q̇0 = ∇H(q). Dashed line is nominal
trajectory and solid line is optimized trajectory.
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Figure 4.13: Segment of trajectory for joints 1 and 2. Dashed lines are nominal plan
and solid lines are optimized plan.
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Figure 4.14: Joint velocity. Dashed lines are nominal plan and solid lines are opti-
mized plan.

and Figure 4.13 shows the motion of the macro-manipulator joints near corner two.

Jerk in the position graph is the rate change in the curvature of the graph. What we

draw attention to is that the jerk on the joints of the micro-manipulator is increased

in order to smooth the trajectory on the macro joints; our desired effect.

This is even more apparent when we look at the velocity and accelerations shown in

Figures 4.14–4.16. In the velocity graph, jerk is curvature, and in the acceleration

graph jerk is slope. Figure 4.16 shows very clearly the significant reduction in jerk on

the macro joints with only a slight change in the trajectory of the joints.
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Figure 4.15: Velocity of joints 1 and 2. Dashed lines are nominal plan and solid lines
are optimized plan.
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Figure 4.16: Acceleration of joints 1 and 2. Dashed lines are nominal plan and solid
lines are optimized plan.
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Figure 4.17: Instantaneous cost along the trajectory.
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Figure 4.18: Instantaneous cost along the trajectory.

Table 4.2: Results for optimization of constrained trajectory for RRRTT robot.

Cost Maximum Instantaneous Cost

Nominal 4314 213565
Optimal 1082 4925

Figures 4.17 and 4.18 show the cost along the trajectory. What is apparent from

these graphs is how the self-motion velocity induced by q̇0 creates discontinuities in

the acceleration, which are impulses in the jerk. The optimization identifies these

high jerk regions and includes them in the optimization process. Figure 4.18 shows

the same cost curves with a different scale on the ordinate to show the optimized cost

more clearly.

Table 4.2 summarizes the results of the optimization. There is a 75% reduction in

total jerk, and numerically 98% reduction in peak jerk. Theoretically, the reduction

in peak jerk is “infinite” as the action of q̇0 is to cause impulsive jerk. The value in

the table is the jerk estimated from a 3rd order 5-point derivative on the interpolated

joint trajectory. Similarly, any real mechanical system cannot realize discontinuous

acceleration with finite forces. The important result is that the resulting trajectory is

significantly smoother.
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Summary

In this chapter, we presented an example of an RRRTT planar robot with a 2-

dimensional self-motion manifold. It was shown that if a standard pseudo-inverse

planner was used to generate the nominal trajectory, then our approach did not sig-

nificantly improve the overall jerk along the trajectory, but did reduce the peak jerk

at instances along the trajectory. However, the resulting trajectory was unrealistic as

it relied entirely on motion of the micro-manipulator. This problem was resolved by

adding a velocity penalty term proportional to the joint displacement. The penalty

term was projected onto the self-motion manifold so that the robot maintained its

trajectory constraint, resulting in a more practical macro-micro trajectory. Using this

standard approach displaced the robot from the instantaneously optimal trajectory

substantially increasing the global cost. Our algorithm was able to reduce the cost of

the resulting nominal trajectory by 75%.

The limitation of this example can be seen in the Jacobian for this manipulator,

given in equation (2.1.6). The structure of the robot is such that joints 3, 4, and 5

provide a simple and orthogonal set of joints that ensure the Jacobian is always well

conditioned. This can be seen in the last three columns of the Jacobian. The upshot

is that for any motion of joints 1 and 2, there is a set of joint values q3, q4, and q5

that will close the kinematic equations. This same fact can be seen in the explicit

formulation of the self-motion manifold in equations (2.2.11)–(2.2.15), where there

exists a global parametrization such that given a displacement of joints 1 and 2 on

the self-motion manifold the position of joints 3, 4, and 5 can be solved.

In the next chapter we consider an example using an all revolute robot that does

not have such a convenient structure and illustrate the challenges associated with

computations in the more general situation.
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Chapter 5

Minimum Jerk Trajectory for an

RRRRR Planar Robot

This chapter presents the results of applying the optimization algorithm of Chapter 3

to a five axis robot composed of all revolute joints. A depiction of the robot is shown

in Figure 5.1. The macro-manipulator is again composed of two links of length 2.

The micro-manipulator is made from two links of length 0.2 and a rotary axis with

zero length to maintain orientation. The robot of this example is also planar, and

has the same dimension of task space (3), joint space (5), and self-motion manifold

(2). Again we use the weight matrix Q = diag{100, 100, 1, 1, 1}.

We use the same nominal planner as in Chapter 4. The trajectory for this robot is

shown in Figure 5.2. The locations of the (x, y, θ) nodes and associated velocities are

• x = {(2.2,−0.3464, 0), (0, 3, 0), (2.5, 3, 0), (0,−2, 0), (2.5,−2, 0), (0,−0.5, 0),

(2.2,−0.3464, 0)}

• v = {1, 1, 1, 1, 1, 1}.

We use the same blend radius of δ = 0.075 and an interpolation period of T = 0.001.

For the optimizer, the parameters are unchanged from the values given in Section 4.2,

except for the optimization lead-in/lead-out time, which was increased to 0.250.

Again, we present results for q̇0 = 0 and q̇0 = ∇H(q).
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Figure 5.1: Five Link RRRRR Planar Robot

For comparison the Jacobian for this manipulator is

J(q) =

 2 {sin(q2 + q3 + q4 + q5) + sin(q3 + q4 + q5)}+ sin(q4+q5)+sin(q5)
5

2 {cos(q2 + q3 + q4 + q5) + cos(q3 + q4 + q5)}+ cos(q4+q5)+cos(q5)
5

1

2 sin(q3 + q4 + q5) + sin(q4+q5)+sin(q5)
5

sin(q4+q5)+sin(q5)
5

sin(q5)
5

0

2 cos(q3 + q4 + q5) + cos(q4+q5)+cos(q5)
5

cos(q4+q5)+cos(q5)
5

cos(q5)
5

0

1 1 1 1


(5.0.1)

5.1 Unconstrained Motion

This section presents the results of optimizing a nominal trajectory generated from

the standard pseudo-inverse approach with q̇0 = 0. The resulting motion is shown in

Figures 5.2 and 5.3. Figure 5.2 shows the motion of the robot along the trajectory.

The red line shows the path taken by the tool tip with the blue line the path followed

by the end of joint 2. Figure 5.3 shows the pose of the robot at 15 time instances

along the trajectory.

We point out that the resulting motion is one of the micro-manipulator “dragging”

the macro-manipulator around the trajectory. The tool-tip moves along the path
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Figure 5.2: Robot path. The red line is the motion of the tool tip. The blue line is
the motion of the end of joint 2.

Table 5.1: Results for optimization of unconstrained trajectory for RRRRR robot.

Cost Maximum Instantaneous Cost

Nominal 3631 68685
Optimal 3487 51304

with the micro manipulator fully extended and the macro joints moving only enough

to ensure the micro-manipulator can reach the commanded path point.

This can be more clearly seen in the trajectory of the joints plotted in Figure 5.4.

Joint 4 stays close to zero throughout the trajectory. Again we also see that the

optimized trajectory is so close to the nominal trajectory that it is indistinguishable

in the plot of joint position.

Figures 5.5–5.7 show the velocity and cost along the trajectory. There is only a slight

change in the generated trajectory, and the effect is to minimize the peak jerk without

significant changes to the overall cost of the trajectory.
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Figure 5.3: Robot pose at 15 time intervals along the trajectory. The red dot is the
tool tip location.
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Figure 5.4: Joint position commands. Dashed lines are nominal plan and solid lines
are optimized plan.
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Figure 5.5: Joint velocity. Dashed lines are nominal plan and solid lines are optimized
plan.
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Figure 5.6: Instantaneous cost along the trajectory.
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Figure 5.7: Closer view of the cost in corner four of the trajectory.
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Figure 5.8: H(q) for joints 3 and 4 of the RRRRR robot

The results are summarized in Table 5.1. The overall cost is reduced by 4%, with

the peak cost reduced by 25%. These results are qualitatively similar to those of the

previous example in Chapter 4. When the nominal trajectory is the instantaneous

minimization of the velocity norm, the algorithm we propose does little to improve

the overall cost, but does reduce the peak jerk.

5.2 Constrained Motion

Similar to the RRRTT robot, we repeat the trajectory with a constraint on the robot

motion. In this case, we apply the penalty to joints 3 and 4, limiting the motion of

the micro-links that position the tool-tip, similar to the RRRTT case. The penalty

function has a similar form to the previous example, and is shown in Figure 5.8.

The resulting motion is shown in Figures 5.9– 5.13. Figure 5.11 shows that joint 4 now

has non-negligible motion, and joint 3 moves through a smaller range of motion com-

pared with the unconstrained case. The velocity of the joints, shown in Figures 5.12
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Figure 5.9: Robot path. The red line is the motion of the tool tip. The blue line is
the motion of the end of joint 2.

Table 5.2: Results for optimization of constrained trajectory for RRRRR robot.

Cost Maximum Instantaneous Cost

Nominal 4010 76217
Optimal 3509 50766

and 5.13 shows that the optimization significantly smooths the motion of joints 1 and

2 in segments of the trajectory that had high jerk from the nominal trajectory.

Figure 5.14 shows the impulsive jerk from the constrained nominal planner. Table 5.2

gives the summary of results for improvement in the smoothing of the trajectory.

The overall cost was reduced by 13%, and the peak jerk was reduced by 33%. While

this is a more modest improvement compared to the RRRTT manipulator, it does

demonstrate the generality of the approach.
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Figure 5.10: Robot pose at 15 time intervals along the trajectory. The red dot is the
tool tip location.
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Figure 5.11: Trajectory for RRRRR robot with q̇0 = ∇H(q).
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Figure 5.13: Velocity of joints 1 and 2. Dashed lines are nominal plan and solid lines
are optimized plan.
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Figure 5.14: Instantaneous cost along the trajectory.
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Table 5.3: Optimization of constrained trajectory.

Segment t0 tf z1 z2 iterations time function evaluations

1 0.000 0.743 5 3 7 0.670 5228
2 0.955 1.458 4 3 10 6.568 44689
3 3.042 3.544 5 4 9 2.278 17311
4 3.680 4.283 5 3 4 23.931 109344
5 6.125 7.130 5 3 8 322.372 660827
6 9.405 9.907 5 3 8 1.263 10499
7 11.666 12.478 5 3 3 0.811 6007
8 14.117 14.681 5 3 6 32.823 159934
9 14.805 15.308 5 3 11 4.836 36310

10 16.384 16.886 5 3 13 9.142 54121
11 16.944 17.994 5 3 2 0.702 4986

total 405.396 1109256

5.3 Computation Statistics

In this section we use the results of the constrained trajectory to show results from

the computation of some of the optimization segments. Principally, we are interested

in showing the efficiency of calculation and convergence of the algorithm. Timings,

where they are given, were done on a AMD Phenom-II processor with 6 cores running

at 2.8 GHz. Optimization of the transcribed NLP was done using SNOPT 7.2 [19].

Aramadillo version 2.4.2 was used as the linear algebra library, with reference versions

of BLAS and LAPACK as dynamically linked libraries [57]. All code was compiled

to a 32-bit executable on a Windows 7 machine using Microsoft Visual C++ 10.0.

Overall, if the optimization was allowed to run to convergence on all segments, the

execution time was 416 seconds, with approximately 405 seconds spent in the opti-

mization algorithm. Optimization required approximately 1.1× 106 calls to the cost

function (integration across all mesh-elements for a particular mesh). These results

are summarized in Table 5.3. A segment was considered converged when all internode

errors had a relative error of less than 0.0001, as described in Section 3.3.

Below we consider the optimization segment 5, which is the segment associated with

the corner near (2.5, 3). This segment required a large number of function evaluations

and time to reach convergence.
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Figure 5.15: hp-adaptation of optimization segment 5 for RRRRR constrained tra-
jectory
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Table 5.4: Comparison of actual cost of optimized segment vs estimated cost from
Gaussian quadrature at each iteration.

Iteration Estimated Cost Actual Cost

Nominal 749.61
1 561.59 843.61
2 548.43 548.48
3 546.68 550.27
4 547.12 550.27
5 544.49 547.71
6 545.55 548.80
7 545.11 548.38
8 545.08 548.35

Table 5.5: Execution statistics by iteration level for segment 5.

Iteration No. free variables No. mesh elements Cum. fctn. calls Cum. time

1 12 3 3753 0.327
2 24 3 7119 0.733
3 24 6 11738 1.279
4 32 7 33325 6.49
5 48 8 194733 46.614
6 48 11 364385 82.79
7 60 13 654066 168.247
8 64 14 660827 301.767

Figure 5.15 shows the mesh refinement with each iteration of the algorithm, along

with the nominal cost over the same interval. As desired, the hp-adaptation tends to

increase the density of nodes near the areas where the jerk is least smooth.

Table 5.4 shows the estimated cost compared with the actual cost, calculated from

the interpolated points along the trajectory at each iteration step. Table 5.5 lists at

each iteration: the number of free variables in the transcribed NLP (total variables

less constraints), the number of mesh elements, the cumulative number of function

calls, and the cumulative time spent in optimization. Finally, Figure 5.16 shows the

nominal and optimized trajectories in Z, in this case joints 5 and 3, at iterations 1,

4, and 8.
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Figure 5.16: Trajectory in Z of the nominal and optimized trajectories for segment
five. The unmarked line is the nominal trajectory, while iterations 1, 4, and 8 are
marked with dots, circles, and squares respectively.
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Figure 5.17: Comparison of number of function calls (blue) with optimized cost
(green) based on maximum number of iterations. The cost in this plot is only the
cost associated with the 11 trajectory segments that were optimized.

Parallelization in this implementation was done at the mesh element level such that

the calculation of cost for each mesh element was a separate execution thread. When

the number of mesh elements exceeds six (the number of cores on the CPU), execution

times grew quickly. In this case, there is always at least some time spent with a mesh

element waiting for a core to be freed before its cost can be calculated.

However, the improvements in cost beyond the first few iterations are minimal. This

pattern of rapid initial convergence, followed by long execution with minimal im-

provement is echoed in the other optimization segments. This strongly suggests that

terminating the optimization after only a few iterations will only marginally degrade

the cost while providing significant savings in execution time. Figure 5.17 shows the

total number of function evaluations and resulting cost versus the maximum number

of iterations.
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Table 5.6: Optimization of constrained trajectory terminating optimization after four
iterations.

Segment t0 tf iterations time function evaluations

1 0.000 0.743 4 0.14 1405
2 0.955 1.458 4 0.172 1826
3 3.042 3.544 4 0.171 1846
4 3.680 4.283 4 22.932 109344
5 6.125 7.130 4 6.692 33325
6 9.405 9.907 4 0.125 1134
7 11.666 12.478 3 0.796 6007
8 14.117 14.681 4 12.075 144476
9 14.805 15.308 4 0.062 723

10 16.384 16.886 4 0.109 898
11 16.944 17.994 2 0.717 4986

total 43.991 305970

The simulation was run again, but the maximum number of iterations was limited

to four. The results of this are presented in Table 5.6. The total cost with only 4

iterations was 3511, compared with 3509 when allowed to run to convergence with no

increase in maximum jerk.

Summary

In this chapter, the example given was for a 5-link RRRRR robot. The optimization

method generated an 11% improvement in integral jerk when compared with the nom-

inal trajectory generated with q̇0 = ∇H(q). Along with the results from optimization,

we presented some of the computational costs associated with the optimization. It

was shown that convergence to near optimal solutions happens quickly, and successive

iterations only improve optimality slightly. As a result, significant improvement in

execution time with only moderate loss in optimality can be obtained by terminating

the optimization after only a few mesh refinements.
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Chapter 6

Feedback Controller

The trajectory planner presented thus far does not have any means of correcting

the trajectory due to sensor feedback. For example, all robots have kinematic errors

due to the geometry of the robot not matching the design. In this case, the motion

of the tool tip given a trajectory in joint space defined on the nominal kinematics

will not match the planned task space trajectory. Alternatively, consider a task like

welding, where the robot’s plan is to follow a seam. The trajectory planner described

in this dissertation could be used to plan a smooth nominal trajectory based on the

CAD data for the seam, but sensor feedback on the seam location will be needed to

accurately track the actual seam location vs. the CAD data.

In this chapter we present a simple controller that adjusts the planned trajectory in

hard real time based on task-space position error from sensor data. The controller

is based on instantaneous optimality of the jerk equation, with stabilization for the

self-motion velocity and acceleration.

6.1 Unstable self-motion

The approach we take for the controller is to correct the trajectory based on the error

between the measured task space position and the desired task space position. The

correction is given as an added joint trajectory qc(t) that satisfies

...
q c = J†(

...
x c − 2J̇ q̈c − J̈ q̇c) + (I − J†J)

...
q 0 (6.1.1)
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where
...
x c(t) is a task space jerk and

...
q 0(t) a joint space jerk such that q(t) + qc(t)

realizes the trajectory and is stable.

Previous authors have investigated the local minimization of the acceleration norm.

This was first proposed by Hollerbach and Suh in developing trajectories that min-

imized actuator torques [22]. Kazerounian and Wang show that satisfying the in-

stantaneous minimization at the acceleration level is a necessary condition for global

minimization of the kinetic energy [28]. Hollerbach notes that following the resulting

trajectory from an initial joint position q0 led to instabilities in the joint velocity.

Kazerounian shows that further boundary conditions are required to generate stable

trajectories.

O’Neil identifies this problem as one of self-motion [46]. He shows that the velocity on

the self-motion manifold can diverge in faster than exponential time when using only

the pseudo-inverse. This is compared to the concept of a system’s zero dynamics by

De Luca [37]. Isidori and Byrnes show that the zero dynamics of a non-linear system

are analogous to transmission zeros of a linear system [25]. Internal system dynamics

can thus be realized on the self-motion manifold (zero dynamics submanifold) that

do not effect the tracking of the end-effector (output zeroing).

O’Neil shows that for a purely kinematic system, these divergent velocities can be

stabilized through a linear feedback of the self-motion velocity

q̈ = J†(ẍ− J̇ q̇) + (I − J†J)Kv q̇. (6.1.2)

That is, the velocities on the self-motion manifold are regulated to zero, stabilizing

the trajectory.

When extending the results from minimization of the acceleration norm to minimiza-

tion of the jerk norm, both the self-motion velocity and acceleration become zero-

dynamics of the system. As a result, we add regulating terms to both the velocity

and acceleration.

...
q = J†(

...
x − 2J̇ q̈ − J̈ q̇) + (I − J†J)(Kv q̇ +Kaq̈) (6.1.3)
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Thus our additional joint space jerk
...
q 0 in equation (6.1.1) is the stabilizing feedback

term Kv q̇c +Kaq̈c.

The resulting dynamic equations are implemented as a real-time discrete filter on the

controller, described in the following section.

6.2 Real-time controller

We are given a desired discrete time task space trajectory x(k) and the pre-planned

minimum jerk joint space trajectory q(k) generated by the algorithm described in

Chapter 3. At each step k, we receive sensor data on the actual tool-tip location

xs(k). Our goal is to generate a correction trajectory qc(k) such that the trajectory

q(k) + qc(k) drives the error x−1(k) ⊗ xs(k) to zero asymptotically with minimal

additional jerk.

The discrete dynamic equation for qc(k) isqcq̇c
q̈c


k+1

=

1 T T 2/2

0 1 T

0 0 1


qcq̇c
q̈c


k

+

T
3/6

T 2/2

T

 ...
q c(k) (6.2.1)

At time step k we can define our trajectory following error as

ep = x(k)−1 ⊗ xs(k). (6.2.2)

The velocity and acceleration errors can be reasonably approximated by

ev = ẋs − ẋ ≈ J(q̇ + q̇c)− Jq̇ = Jq̇c (6.2.3)

ea = ẍs − ẍ ≈ J̇(q̇ + q̇c) + J(q̈ + q̈c)− J̇ q̇ + Jq̈ = J̇ q̇c + Jq̈c. (6.2.4)

These are approximations because the Jacobian for q̇ + q̇c is not exactly equal to

the Jacobian for q̇ alone. However, the Jacobian is continuous with q and thus the

approximation is close for small qc
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If we consider the task space dynamics, we again have a simple system of integratorsxẋ
ẍ


k+1

=

1 T T 2/2

0 1 T

0 0 1


xẋ
ẍ


k

+

T
3/6

T 2/2

T

 ...
x k (6.2.5)

Using state feedback, we can determine the task space jerk to drive the errors to zero

as xẋ
ẍ


k+1

=

1 T T 2/2

0 1 T

0 0 1


xẋ
ẍ


k

+

T
3/6

T 2/2

T

[Kxp Kxv Kxa

]epev
ea


k

(6.2.6)

And the gains can be found through pole placement for the desired task space tracking

dynamics. With the gains chosen to stabilize the above, the task space jerk correction

is

...
x c =

[
Kxp Kxv Kxa

]epev
ea


k

(6.2.7)

We can similarly stabilize the self-motion dynamics through pole placement on the

dynamic system[
q̇c

q̈c

]
k+1

=

[
1 T

0 1

][
q̇c

q̈c

]
k

+

[
T 2/2

T

] [
Kv Ka

] [q̇c
q̈c

]
k

. (6.2.8)

In this case, the choice of pole location involves a trade-off between robustness to

stability, and favoring the instantaneous minimum jerk trajectory. If the poles are

placed at zero, then at each k, the velocity and acceleration of qc on the self-motion

manifold is driven to zero. The result is a correction that follows the minimum velocity

norm solution. Placing the poles too near the unit circle results in an unstable system

as the control calculated by equation (6.1.1) is based on a linear approximation to the

non-linear system of kinematic equations. The goal is to have soft enough poles that

the system is stabilized without overpowering the minimum jerk correction calculated

by the pseudo-inverse term.

The resulting compensator is given by Algorithm 6.1.
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Algorithm 6.1: Compensator based on task space position feedback

Input: q(k) and its derivatives as a trajectory plan; xs: task space position
measurement.

Output: q(k): compensated trajectory point
Data: qc and its derivatives as persistent state variables; Kxp, Kxv, Kxa, Kv, Ka:

feedback gains
qc ← qc + T q̇c + T 2/2q̈c + T 3/6

...
q c;

q̇c ← q̇c + T q̈c + T 2/2
...
q c;

q̈c ← q̈c + T q̈c;
ep ← f(q(k))−1 ⊗ xs ; // f() is the nominal forward kinematics

ev ← Jq̇c;

ea ← J̇ q̇c + Jq̈c;...
x c ← Kxpep +Kxvev +Kxaea;...
q c ← J†(

...
x c − 2J̇ q̈c − J̈ q̇) + (I − J†J)(Kv q̇c +Kaq̈c);

q(k)← q(k) + qc;

6.3 Results for the RRRRR robot

As an example, we apply the developed compensator to the constrained trajectory of

the RRRRR robot from Chapter 5.

In order to assess the performance of the compensator alone, we make some simpli-

fying assumptions about the sensor and robot. Namely, we neglect sensor and robot

dynamics, and treat the sensor as noiseless. We acknowledge that these are very

strong assumptions. A real system would reveal the robot dynamics through the sen-

sor measurements, and the sensor would have its own noise and possibly measurement

dynamics as well. These would undoubtedly influence the performance of our pro-

posed compensator. However, in this section, our interest is in how the compensator

performs without these influences.

We create a trajectory disturbance by altering the kinematic model of the robot with

respect to the nominal model that the planner used. Each of the nine kinematic pa-

rameters of the model were given normal random errors with zero mean and standard

deviation as shown in Table 6.1. From this, the sensor reading at each time step was

calculated as the forward kinematics of the disturbed model. This would be similar

to an external metrology system tracking the tool tip location of the robot when the

robot kinematics are inaccurately known.
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Table 6.1: Parameters and standard deviation of disturbance.

Parameter Standard Deviation

q1 ang. offset 0.001
Link 1 length 0.02
q2 ang. offset 0.001
Link 2 length 0.02
q3 ang. offset 0.003
Link 3 length 0.002
q4 ang. offset 0.003
Link 4 length 0.002
q5 ang. offset 0.003
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Figure 6.1: Trajectory resulting from compensating optimal trajectory with disturbed
kinematics. Dashed lines are planned trajectory, and solid lines are compensated
trajectory.

The task space poles for the controller were located at zero, giving gain values of

Kxp = −1/T 3, Kxv = −2/T 2, and Kxa = −11/6/T . The self-motion stabilizing poles

were located at 0.987 ± 0.0219i, which gives a natural frequency of ωn = π/100/T

and a damping ratio of ξ = 0.7. This sets the gains to Kv = −9.65 × 104/T 2 and

Ka = −0.0435/T .

The calculated nominal and optimal trajectories were then given to this simulated

robot, and the resulting joint trajectory calculated, along with the following error

and newly realized cost. Figure 6.1 shows the change in the optimized trajectory.

The dashed lines are the optimally planned trajectory, and the solid lines are the

87



0 2 4 6 8 10 12 14 16 18
−4

−3

−2

−1

0

1

2
x 10

−4

Time

F
ol

lo
w

in
g 

E
rr

or

 

 

x
y

θ

Figure 6.2: Following error of the compensated trajectory.

Table 6.2: Resulting costs of disturbed trajectories.

Nominal Trajectory Optimized Trajectory

Undisturbed Kinematics 4010 3509
Disturbed Kinematics 4232 3757

trajectory modified by the sensor feedback. Figure 6.2 shows the residual following

error from the controller.

The resulting following error is minimal along the trajectory, not exceeding 4× 10−4.

The additional jerk realized by the compensated trajectory is similar in both the

nominal and optimized trajectory, such that for the compensated trajectory the im-

provement in cost is 11%, a trivial loss in optimality.

The simulation was run multiple times with randomly generated kinematics. In each

case, the resulting trajectory showed similar improvement vs. the nominal plan using

the same compensator. The results from five simulations are shown in Table 6.3
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Table 6.3: Results from five simulations.

Nominal Trajectory Optimized Trajectory Improvement

Run 1 4233 3760 11%
Run 2 4121 3636 12%
Run 3 4085 3595 12%
Run 4 4367 3881 11%
Run 5 4091 3600 12%

Summary

In this chapter we presented a simple real-time compensator based on instantaneous

minimization of the jerk. Because the velocity and acceleration are unstable when

minimizing jerk via the pseudo-inverse, a stabilizing term was introduced that regu-

lated the self-motion velocity and accelerations. This compensator was applied to the

RRRRR robot with kinematic errors introduced. The resulting trajectory was shown

to be close to the planned trajectory with minimal task space following error while

preserving the improved jerk performance over the nominal trajectory.
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Chapter 7

Conclusions and Further Work

Macro-micro manipulators are an effective method for solving the problem of gen-

erating high dynamic motion over large volumes. However, because they introduce

kinematic redundancy, the trajectory planning problem is non-trivial. Previous ap-

proaches to trajectory planning for redundant manipulators can be divided into either

local methods—where the next trajectory point generated depends only on the state

of the manipulator at the current time instance—or global methods—where a cost

function is optimized over large spans of the trajectory.

The typical approach for local methods is to use the pseudo-inverse of the manipula-

tor’s Jacobian to generate least-norm trajectory steps. Using local methods, trajecto-

ries have the advantage of being generated in real-time on the controller. This allows

for direct use of sensor data and trajectory refinement for tracking and control. The

disadvantage is that there is no assurance that following the steepest decent along

the cost surface necessarily generates a minimal cost over the trajectory. In Chap-

ters 4 and 5 we showed that this is certainly the case when secondary optimization

criteria—such as limiting joint motion—are introduced through projections into the

null space of the Jacobian. These methods drive the trajectory away from the least

norm solution in a way that strongly influences the jerk.

Previous work on global methods either adopted costly heuristic search methods, e.g.

evolutionary algorithms, or inefficient solution methods for the resulting two point

boundary value problem, e.g. shooting methods. The general conclusion from these

approaches was that the processes were too slow to be used as an on-line trajectory

generation method, and so were restricted to off-line applications. That is, the trajec-

tory could not be generated faster than the robot could traverse it and the trajectory
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had to be calculated ahead of time and stored for the robot to retrieve at runtime.

The clear disadvantage of these methods is that the robot cannot use information

available after the plan is generated, and this precludes the use of sensor feedback in

a real-time controller.

In this dissertation, we have developed an efficient method for generating minimal jerk

trajectories for trajectory constrained redundant manipulators that overcomes these

previous limitations. We choose jerk as the minimization criteria because low jerk

trajectories have been shown to reduce both excitation of the structural dynamics

and wear on the actuators. Our approach was to develop the problem as a minimum

dimension optimal control problem by characterizing the optimal trajectory as a

piecewise polynomial along the foliation of self-motion manifolds generated by the

task-space trajectory x(t).

Our solution is unique in several ways from previous solutions to the redundancy

resolution problem. To keep the size of the optimization problem small, we segmented

a nominal trajectory (generated using local methods) into regions of high and low jerk.

We then optimized the regions of high jerk while maintaining C2-continuity with the

surrounding trajectory. Using ideas from pseudo-spectral methods, we developed a

direct transcription method of solving the problem that resulted in a very efficient

generation of near-optimal trajectories. Finally, we introduced a controller based on

local-methods that allowed for real-time compensation of the generated trajectory

based on task-space feedback. The effectiveness of these methods was demonstrated

on two different robot structures in Chapters 4–6.

While we presented a promising method for smooth trajectory generation, there are

several ways that we think the algorithm can be significantly improved, as well as

other areas of research and development that are necessary before the solution is

ready for industrial deployment.

7.1 Efficiency of calculation

Our algorithm is very efficient, and for several of the optimization segments solutions

were found in less time than the duration of motion for that segment. However, this
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Table 7.1: Number of function evaluations required for finite differencing vs. cost
evaluation.

Segment total function evalua-
tions

function evaluations for
cost only

1 1405 26
2 1826 35
3 1846 34
4 109344 862
5 33325 272
6 1134 22
7 6007 80
8 144476 973
9 723 15

10 898 17
11 4986 76

total 305970 2412

was not the case for all segments. The largest contributor to the time needed to

calculate the solution was the number of times the cost function was evaluated.

Table 5.6 shows that segments four and eight of the optimization together took over

34 seconds to optimize, even when limited to only four iterations. Correspondingly,

the cost function was evaluated over 100,000 times for each of these optimizations. An

analysis of the output by SNOPT shows that the vast majority of these evaluations

were for the purpose of estimating the derivative of the cost equation using finite

differencing.

A comparison of the number of function evaluations for all segments for finite dif-

ferences vs. the number needed for cost evaluation in the sequential quadratic pro-

gramming method used by SNOPT is shown in table 7.1. This shows that on the

order of 100 function evaluations are performed for finite differencing for every cost

evaluation required for SNOPT. This is due to the 2r function calls required for every

node along the optimization trajectory to estimate the gradient of the cost function.

One way to improve the efficiency of the algorithm would be to code the gradient

of the cost function directly, and use this instead of finite differencing. An attempt

was made at this, but it proved intractable. We considered automatic differentiation,
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such as that provided by SnadiOPT [17], but found it to be unusable because of the

need to solve linear systems of equations in the cost function (equations (2.3.13) and

(2.3.14)).

An alternative is to improve the efficiency of the finite differencing. As the imple-

mentation is now, the complete cost function is evaluated for each perturbation of a

state variable zi(t). Thus, every mesh element is re-evaluated in spite of the fact that

only the Gauss quadrature of the mesh-element containing zi(t) is effected. Further,

the gradient of the integral on the mesh-element is linear with the value of the cost

at the node (equation (3.3.17)), and the cost at the node is a function of
...
q m and

...
z .

The value of
...
z is linear in z by equation (3.3.16), and the value of

...
q m is found by

solving a linear system of equations (with non-linear dependence on z). An obvious

improvement is to evaluate the derivatives at the mesh-element level, and exploit the

dependence of the gradient on the structure of the problem as much as possible. If

the number of mesh elements is small, then the gains are probably marginal. But

as the number of mesh elements grows due to adaptation, there may be significant

efficiency gains.

Numerical differentiation based on finite differences limits the accuracy of solvers

that use gradient descent, such as SNOPT, and can lead to excessive iterations and

slow convergence [18]. An alternative method of numerical differentiation based on

complex calculus is proposed by Squire and Trapp [68]. It approximates the derivative

of the functional f with respect to x by calculating the imaginary part of the functional

evaluated with a small complex step ih added to x and dividing by the step size h.

∂f

∂x
≈ Im[f(x+ ih)]

h
. (7.1.1)

Martins, Sturdza, and Alonso show that this method avoids the cancelation and

rounding errors associated with finite differences and can be made accurate to machine

precision, at the expense of some additional calculation [40]. Cerviño and Bewley [45]

suggest that care needs to be taken for application of the complex step derivative to

pseudo-spectral methods. It maybe that the gains obtained by using a more accurate

estimate of the derivative offset the additional computational cost.

A final alternative for possibly reducing the number of function evaluations is to

eliminate the estimation of gradients by using gradient free optimization methods,
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e.g. simplex methods. Gradient free methods typically require more iterations than

gradient based methods but given that we are evaluating the cost function on the

order of 100 times for every iteration of the optimizer, that may be enough excess to

justify a gradient free approach.

Aside from reducing the number of function evaluations, the approach to evaluating

the cost function is embarrassingly parallel. In our implementation, parallelization

was accomplished at the mesh-element level using the Microsoft Parallel Patterns

Library. This kept the thread count to something on the order of the number of

cores on our CPU, and provided a reasonable balance of parallelism and the overhead

associated with thread allocation and management.

However, the Gauss quadrature computation depends only on the cost evaluated at

the discrete nodes of the mesh elements, and each node can be independently calcu-

lated for a given state with no dependence on the calculation of the values at the other

nodes. Further, each node calculation is simple with only a tiny amount of memory

and moderate number of floating-point operations. This strongly suggests that the

problem can exploit a massively parallel computational engine with minimal commu-

nication between the computational elements, making it suitable for general purpose

graphical processing unit (GPGPU) computations, such as provided by CUDA [43]

or OpenCL [41].

For example, the NVIDIA Tesla C2075 has 448 cores. For the RRRRR problem with

iterations limited to four, the most number of nodes for any mesh was 43. Thus,

with a single GPGPU there could be 10 cores available for calculation for each node’s

value. Overall, GPGPU development is an emerging area, and application to this

problem is still unexplored.

We also believe that improvements can be made to the adaptation algorithm. Szabó

and Babuška show that optimal convergence is achieved for finite element methods

when hp-adaptation of the mesh is done as a geometric progression towards the sin-

gular points and the polynomial order for each element is then set linearly by size

[71]. This is very different from the approach suggested by Darby et al. [11] that we

have used here. If it could be shown that the functions describing our error measure

have the same form as the functions describing the error in energy norm for finite
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element methods, then it would make sense to adopt the mesh-refinement methods

developed by the FEM community.

All of the above are rich areas of research and development for improving the efficiency

of the optimization. We think that with some combination of the above improvements,

solutions can be consistently calculated fast enough for online use.

7.2 Development for Industrial Application

There are still shortcomings in the algorithm that make it unsuitable for reliable

industrial application.

So far, we have demonstrated the problem as it applies to planar manipulators. There

is some work that needs to be done to show that the methods extend to the set of

three translations and three rotations of spatial robots in R3 × SO(3). Overall,

this should not be a problem. Optimization is done on the self-motion manifold

which is embedded in the joint space. The only real challenges that we foresee in

extending the method to R3 × SO(3) is in the representation of orientations and

angular rates. However, this is a problem that is well addressed by other work on

rotational representations for robotics, and choice of representation is a matter of

examining the trade-offs of the various representations already established, and the

sometimes messy implementation of these choices in software.

The real-time controller that we presented in Chapter 6 is a very basic implementation

of a kinematic controller. We think that this could be an area where significant

improvements could be made. For example, Benson [4] shows that the solution of

the Gauss pseudo-spectral method gives an accurate estimate of the initial costate.

This could be used to develop a perturbation feedback solution to the generated

optimal control problem, which could produce a more optimal control in terms of jerk.

Alternatively, we suggest augmenting the kinematic controller to one that includes

the robot dynamics via any of the methods suggested by Peters et al. [54].

As was pointed out in Chapter 3, there is no guarantee that the parametrization of

Mt is continuous everywhere, even if x(t) is regular. For example, consider the simple
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Figure 7.1: A circular self-motion manifold

case ofMt(t) being isomorphic to a circle and embedded in R2 (Figure 7.1). Suppose

at t = t0 the initial point is given by x0 and at t = tf the final point by x1. Based

on the initial point, our algorithm would choose q1 as the parametrization of the

manifold, so that q2 =
√

1− q21. As the trajectory moves along Mt, the sensitivity

of q2 to changes in q1 grows unbounded as q1 → 1, and at q1 = 1 changes in q1

are ambiguous to resolve in q2. At some point before q1 = 1, we should change the

parametrization on the manifold to z = q2.

Firstly, a test is needed to determine when to switch parameterizations. We pro-

pose that the angles between the columns of Jm be calculated at the nodes via the

inner product, and if the result approaches zero for some column of Jm, that the

parametrization be swapped for the column of Jz with the greatest angular separa-

tion. Where the parametrization changes, a new mesh-element should be introduced

so that each mesh-element has only a single parametrization.

With this change in parametrization, the constraints on continuity of position, veloc-

ity, and acceleration between the adjacent mesh-elements will be non-linear. Calcu-

lation of the full complement of q, q̇, and q̈ is already implemented, and evaluating
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the constraint violation across the boundary is then simple. For gradient based ap-

proaches, this will also introduce the need to estimate the gradient of the constraints,

but all of the previous comments on improving the efficiency of derivative calculations

should apply here as well.

Lastly, there is considerable engineering to develop the work presented here into a

reliable industrial solution. Consideration needs to be given to limits on actuator

dynamics and valid joint space configurations. The solution needs to be interrupted

and return a best-effort if it is taking too long to converge. Rules need to be applied

so that for task space trajectories that result in closely spaced high-jerk regions, the

optimizer doesn’t take too big a bite out of the nominal trajectory, but breaks it up

into more manageable segments. We feel that much of this can be managed with a

conservative nominal planner, since the optimizer should choose trajectories that lie

near the nominal plan.
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Appendix A

Calculation of the Manipulator

Jacobian and its Derivatives

In developing the problem statement and its solution in Chapter 2, we require the

manipulator Jacobian and its derivatives. This appendix develops a rapid method

of calculating these terms at run time using only the kinematic description of the

manipulator. This greatly simplifies the coding requirements for applying the opti-

mization procedure to new serial link structures, as only the forward kinematics on a

link-by-link basis need to be given, and not the tensor structure for the Manipulator

Jacobian and its higher derivatives. The method is based on an extension of the

method in Paul to higher derivatives [53].

Consider a serial link kinematic mechanism composed of N lower-pair joints. The

forward kinematics can be described by the product of the transformations of the

individual joints as

T =
N∏
j=1

Aj(qj) (A.0.1)

where T is a coordinate transformation represented as a homogenous matrix. Small

changes in T can be represented by a differential change in the position and orientation

dT = T∆T

= T


0 −εz εy δx

εz 0 −εx δy

−εy εx 0 δz

0 0 0 0


(A.0.2)
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applied to the transformation. Let ∆Ti be the differential transformation of the tool-

tip due to differential motion of joint i. Paul shows that

∆Ti =
i
A−1n ∆i

iAn (A.0.3)

where ∆i is the joint differential transformation and iAn is the kinematic transforma-

tion from link i to the tool tip. If the manipulator is defined using Denavit-Hartenberg

parameters, then ∆i for a rotary joint is

∆i =


0 −dqi 0 0

dqi 0 0 0

0 0 0 0

0 0 0 0

 (A.0.4)

and for a prismatic joint is

∆i =


0 0 0 0

0 0 0 0

0 0 0 dqi

0 0 0 0

 . (A.0.5)

Finally, the ith column of the Jacobian with respect to tool motions is the vector

[δx δy δz εx εy εz]
T with elements taken from ∆Ti.

Since the elements of the Jacobian are taken directly from the entries of ∆Ti, the

higher derivatives of the Jacobian can be calculated by differentiating (A.0.3). Let

∆2Tij be the derivative of ∆Ti with respect to differential motion of joint j. Rear-

ranging and differentiating (A.0.3) with respect to qj gives

d iAn
dqj

∆Ti + iAn∆2Tij = ∆i
d iAn
dqj

(A.0.6)

It is clear that for j ≤ i,
d iAn
dqj

= 0, and for j > i

d iAn
dqj

= Ai . . . Aj−1∆jAj . . . An (A.0.7)
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Substituting (A.0.7) into (A.0.6) and solving gives

∆2Tij = iAn
−1∆iAi . . . Aj−1∆jAj . . . An

−iAn−1Ai . . . Aj−1∆jAj . . . An∆Ti
(A.0.8)

which simplifies to

∆2Tij =

0 j ≤ i

∆Ti∆Tj −∆Tj∆Ti j > i
(A.0.9)

The rotation and translation elements of ∆Tij are the columns of the tensor ∂J/∂q.

Finally, let ∆3Tijk be the derivative of ∆2Tij with respect to differential motion of

joint k. Differentiating the above gives

∆3Tijk =


0 k ≤ i, orj ≤ i

∆2Tik∆Tj −∆Tj∆
2Tik i < k ≤ j

∆2Tik∆Tj −∆Tj∆
2Tik

+ ∆Ti∆
2Tjk −∆2Tjk∆Ti

i < j < k

(A.0.10)

whose elements are the columns of the tensor ∂2J/∂q2.

In Chapter 2, J̇ and J̈ are then the matrices found through

J̇ =
∂J

∂q
(q̇) (A.0.11)

J̈ =
∂2J

∂q2
(q̇, q̇) (A.0.12)
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