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Chapter 1: Bargaining with Revoking Costs

1 Introduction

A trade union leader who announces a demand in a negotiation with the man-

agement may risk losing his job if he accepts a lower share than the demand.

The President of a country may face a tougher re-election prospect if she fails

to achieve her publicly announced demand in a domestic or international bar-

gaining situation. More generally, backing down from an initial demand made

in some bargaining scenarios may entail a cost that depends on the amount

conceded. While seemingly a weakness, these costs may actually confer greater

bargaining power to the party facing these costs. If this cost makes the party

prefer an impasse to concession, following incompatible o↵ers, the said party

can force a concession from her opponent who does not face such costs. The

cost of revoking an earlier demand therefore gives a bargainer an ability to par-

tially commit herself to a stated demand. The object of this study is to identify

and characterize the relationship between such revoking costs and bargaining

power.

Following the insights found in Schelling(1956) regarding the role of com-

mitment tactics in bargaining, Crawford(1982) presents a formal model where

a bargainer can revoke her stated demand at some cost. The game involves

two stages with players simultaneously making demands in the first stage. In-

compatible demands (add up to more than one) lead to a second stage where

players decide simultaneously whether to revoke their demand or concede to

the other o↵er. The present paper uses this basic framework but drops the as-

sumption in Crawford(1982) that revoking costs are unknown at the demand
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stage and independent of the extent of concession, with each player getting

to know their own revoking cost before the second stage. Instead, following

Muthoo(1996)(henceforth M), the revoking costs are assumed to be known and

increasing in the extent of the concession. Crawford(1982) studies the role such

commitment tactics play in generating ine�ciency in bargaining. This issue is

also studied by Ellingsen and Miettinen(2008) where attempting commitment

is assumed to be costly.1 While the complete information structure in both M

and the present paper results in e�ciency readily, the goal here is to study the

relationship between revoking costs and bargaining power.

M addresses this issue using a one shot simultaneous move demand game

between two players over a unit sized pie. Following incompatible demands,

the outcome is selected by the Nash Bargaining Solution (NBS) applied to

a modified utility possibility set(UPS).2 For a given pair of incompatible de-

mands, a division of the pie is mapped to this UPS with players paying a cost,

for a share lower than their initial demand. The analysis is carried out for con-

vex cost functions and concave utility functions that are strictly increasing and

twice continuously di↵erentiable. In its unique e�cient Nash Equilibrium out-

come a player’s equilibrium share is shown to increase in her marginal revoking

cost. Leventoglu and Tarar(2005) (henceforth LT) conduct their analysis on

the linear version of this game, by explicitly modeling the post incompatible

o↵ers stage as a Rubinstein bargaining game (Rubinstein(1982)) played over

the modified UPS. Importantly they find that payo↵ e�ciency is attained only

1
Li(2010), in a related paper, shows that the ine�ciency result potentially depends on

whether the decisions regarding demand and attempting commitment were made simulta-

neously or sequentially.

2
The result that the unique SPE in the Rubinstein bargaining game converges to the

NBS when the discount factors are the same, and the time between o↵ers converges to 0 is

used to support the use of the NBS in Muthoo(1999).
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at the limit when the equal discount factors converge to 1.

This paper extends M’s analysis and results to a model where, instead of

using the NBS, the bargainers, following incompatible o↵ers, play a one-shot

game like in Crawford(1982) to determine their payo↵s. More precisely, the

two players bargain over a unit sized pie in a two stage game. Each player

announces a demand in the first stage. If the demands are compatible they

split midway between their demands. Otherwise, in the second stage, each

party chooses simultaneously whether to stick to their own demand or accept

the other’s o↵er. Both parties sticking to their incompatible demands results in

an impasse. Accepting the other player’s o↵er, however, is costly, with the cost

increasing in the amount by which the accepted share is less than the demanded

share. A set of e�cient pure strategy subgame perfect equilibria emerges,

which is characterized in terms of the cost and payo↵ functions. Unlike in M, no

further convexity assumptions are required on these functions for equilibrium

existence. Analogous to M’s unique equilibrium behavior, however, the highest

and lowest equilibrium payo↵s for a given player are shown to increase with

an increase in their revoking cost functions. Importantly, the set of equilibria

is shown to shrink with higher cost functions. Indeed, as the cost functions

are made arbitrarily high the limit of the equilibrium set is shown to make

a unique equilibrium selection in the limiting Nash Demand Game(NDG).

The model captures the insight that a bargainer wishes to make it di�cult

for herself to concede to a lower o↵er. Interestingly, it shows how making a

greater demand for oneself results in making concession more di�cult for the

other party, giving the latter higher commitment ability. The equilibria, as a

result, are characterized by a tradeo↵ between the twin needs of higher shares

and greater commitment ability.
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While M(implicitly) and LT capture scenarios where bargainers have the

ability to renegotiate endlessly after their initial demand, the present model

studies the opposite benchmark, where bargainers cannot make o↵ers beyond

the initial demand they partially commit to. The goal here is to provide a

transparent and simple analysis of the tradeo↵ between higher demands and

greater commitment in the presence of revoking costs while assuming away the

influence of time preferences. The simple two stage framework, however, can

be used as the stage game of a repeated game, to capture scenarios like interna-

tional negotiations where each party gets to change their publicly announced

demands after the failure of an earlier round of negotiation, but backing down

from the most recent stated demand in a given round of negotiation incurs a

cost. Given the general class of cost functions which the paper studies one

could model scenarios where these cost functions change over time.

M suggests that allowing players to back down from incompatible demands

at a cost can be seen as a perturbation of the commitment structure implicit

in the NDG. Making these costs arbitrarily high, therefore, gives the NDG at

the limit. The limit equilibrium prediction then makes an equilibrium selec-

tion in the NDG. I conduct a similar limit analysis of the two stage model.

Surprisingly, the unique equilibrium selected in the NDG corresponds to the

Proportional Bargaining Solution(PBS) of Kalai(1977), in contrast with the

results of Nash(1953) and Carlsson(1991). The proportion is determined by

the limiting ratio of the cost functions. Section 5.2 discusses this in detail.

Interestingly, the rationale for extreme divisions being ruled out in this

model and the equilibrium strategies are similar in spirit to findings in Kambe(1999),

Abreu and Gul(2000) and Compte and Jehiel(2002), where by making a lower

demand a player can force her opponent to make the initial mass acceptance
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in the second stage war of attrition. The commitment possibilities in these

papers, however, are generated by the presence of behavioral types.3

The rest of the paper is as follows. Section 2 presents the formal model.

Section 3 analyzes the special case of the model where the payo↵ and cost

functions are linear. The intuition behind the equilibrium strategies in the

general model can be found here. Further, it is easier to foresee the comparative

statics and limit arguments for the general model, by analyzing the linear case.

Section 4 characterizes the equilibrium set for the general model. Section 5

deals with comparative statics and the limit predictions of the model as the

cost functions are made arbitrarily high. Section 6 concludes. All proofs are

collected in the appendix.

2 The Bargaining Game

Two players, 1 and 2, play a two stage game. In the first stage, player i chooses

a level of demand zi 2 [0, 1). Let d = z1 + z2 � 1 measure the excess of the

aggregate demand over the size of the pie. If d  0 the game ends with player

i getting xi = zi � d/2, the amount demanded plus half the excess of the

size of the pie over the aggregate demand. 4 The corresponding payo↵s are

⇡1(x1), ⇡2(x2), where ⇡i is the payo↵ function for player i. If d > 0 then the

3
Li(2007) considers an infinite horizon alternating o↵ers bargaining model where the

ability to commit arises due to history dependent preferences. In particular, a player prefers

an impasse to an agreement with a lower discounted utility than would have been achieved

by accepting an earlier o↵er.

4
All the results remain the same if the bargainers get their exact demands when the

demand profile adds up to less than the pie size, as in Nash(1953)
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following second stage simultaneous move game is played.

Accept Stick

Accept ⇡1(x1)� c1(z1 � x1), ⇡2(x2)� c2(z2 � x2) ⇡1(1� z2)� c1(d), ⇡2(z2)

Stick ⇡1(z1), ⇡2(1� z1)� c2(d) ⇡1(0), ⇡2(0)

The interpretation of this game is as follows. If and when the two players

make incompatible demands (d > 0), player i must choose whether to stick to

her own demand or accept j’s o↵er, which must be less . However, there

is a cost attached to accepting a division of the pie that is less than the

share demanded in the first stage. This can happen if either player i Accepts

while j Sticks or if both players choose Accept. This feature is captured

by the cost function ci for player i. So if player i had initially demanded zi

which was incompatible with player j’s demand, zj, then accepting j’s o↵er

in the second stage while j sticks to his o↵er would give player i a payo↵ of

⇡i(1 � zj) � ci(zi � (1 � zj)). If both players choose to Accept in the second

stage following incompatible o↵ers (z1, z2), then player i gets a compromise

share xi = zi � d/2 with a payo↵ of ⇡i(xi) and also pays the cost for accepting

a lower share, ci(zi�xi). Note that since the second stage game is played only

if d > 0, it must be true that xi < zi. Finally if both players decide to stick to

their incompatible demands they get their disagreement payo↵, (⇡1(0), ⇡2(0)).

The following assumptions are met by the payo↵ and cost functions in the rest

of the note.

A1. For i 2 {1, 2}, ⇡i is a strictly increasing and continuously di↵erentiable

function. Further ⇡i(0) = 0 and ⇡i(1) is some finite value.
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A2. For i 2 {1, 2}, ci : <+ ! <+ is a strictly increasing and continuously

di↵erentiable function with ci(0) = 0.

This completes the description of the two stage bargaining game.

3 The Linear Model

In this section the payo↵ and cost functions are assumed to be linear. In

particular, ⇡i(x) = x and ci(d) = kid where ki > 0. The second stage game,

therefore, is as follows

Accept Stick

Accept x1 � k1(z1 � x1), x2 � k2(z2 � x2) 1� z2 � k1(d), z2

Stick z1, 1� z1 � k2(d) 0, 0

Proposition 1.

k2
1+k1

 z⇤2
z⇤1

 1+k2
k1

and z⇤1+z⇤2 = 1 are necessary and su�cient

conditions for (z⇤1 , z
⇤
2) to be a pure strategy subgame perfect equilibrium outcome

of the bargaining game with linear payo↵s and costs.

Figure 1 illustrates the intuition behind Proposition 1. BA represents

demand profiles that add up to one. OE and EF represent z2/z1 = (1+k2)/k1

and z2/z1 = k2/(1+k1), respectively. BD is the graph of 1�z2�k1(z1+z2�1) =

0 while CA graphs 1� z1�k2(z1+ z2� 1) = 0. For points lying above (below)

BD it must be that 1 � z2 � k1(z1 + z2 � 1) < (>)0. Similarly points lying

above (below) CA satisfy 1 � z1 � k2(z1 + z2 � 1) < (>)0. Demand profiles

below BA cannot be subgame perfect as both players will have an incentive
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Figure 1: The Linear Model

to increase their demands. Demand profiles above BA, say (z1, z2), eventually

result in some player j getting a payo↵ less than 1 � zi, where i is the other

player, since (Accept, Accept) is not a NE of the second stage game. Player j

could then profitably deviate to demanding 1� zi. Subgame perfect demands

in the first stage must therefore lie on BA, as shown by Lemma A1 and A2.

I will now show that extreme divisions along this line, BA, can be elim-

inated by profitable deviations by the less favored player. Such deviations

would lead to incompatible demands (points above BA), resulting in payo↵s

determined by equilibrium behavior in the second stage game. Incompatible

demands can be separated into 4 regions, in terms of second stage equilibrium

behavior. For points above CY ⇤D, both players prefer Stick to Accept. In

the AY ⇤D region the unique NE in the second stage involves 1 playing Accept

while 2 Sticks. Incompatible demands from the CBY ⇤ region results in the

unique NE (Stick, Accept) in the second stage. Finally for first stage o↵ers in

BY ⇤A both (Accept, Stick) and (Stick, Accept) are NE of the second stage.

Lemma A3 essentially shows that equilibrium demands cannot be in the AN

8



region since player 2 would then have the incentive to deviate to a point in

AY ⇤D, forcing a concession from player 1 and getting a higher payo↵. A sym-

metric argument rules out the BM region. Notice that player 1 making a high

demand (greater than Y1) gives player 2 greater commitment power. Indeed

by making a demand that selects a point in AY ⇤D player 2 ends up making

Stick her dominant strategy in the second stage game, while leaving player 1

enough room to prefer conceding to an impasse. Demand profiles that are not

ruled out as above, therefore, lie on MN . The proof for Proposition 1 also

specifies subgame perfect strategies to support these demands.

From Figure 1 it is easy to see how the equilibrium set changes with changes

in ki. An increase in k1, for instance, moves the interval MN towards A,

thereby increasing player 1’s highest and lowest equilibrium payo↵s. Notice

also that increasing the ki’s result in both CA and BD shift towards BA,

which makes Y ⇤ move closer to BA. This, in turn, makes OE and OF get

closer to each other. Indeed, the limit equilibrium set, as the costs are made

arbitrarily high, consists of a single e�cient demand profile. Consider, for

example, k1 = c and k2 = ↵c. The limit equilibrium set as c ! 1 consists of

the unique demand profile (z1, z2) with z1 + z2 = 1 and z2/z1 = ↵. This issue

is discussed further in Section 5.

4 The General Model

In this section the only assumptions imposed on the payo↵ and cost functions

are A1 and A2.

Figure 2 captures the workings of Proposition 3. Note that the coordinates

of a given point in the figure correspond to the shares of the pie demanded
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Figure 2: The General Model

by each party. BA is the same as in Fig. 1. BD is the graph for ⇡1(1 �

z2) � c1(z1 + z2 � 1) = 0, while CA graphs ⇡2(1 � z1) � c2(z1 + z2 � 1) = 0.

The intuition for why first stage demands must lie on MN is exactly the same

as in the linear case, as can be seen by comparing this with Fig. 1. The

only substantial addition for the general model is to show that the curves,

BD and CA, which are generated by the particular payo↵ and cost functions,

have a unique intersection point. This is indeed true given A1 and A2 and is

established by Proposition 2.

Proposition 2. There exists a unique (y1, y2) with yi 2 (0, 1) that solves

⇡1(1� y2) = c1(y1 + y2 � 1) (1)

and

⇡2(1� y1) = c2(y1 + y2 � 1). (2)

The uniqueness of the intersection point is driven by the fact that the curve

BD must have a slope less than �1 while the slope of AC must be strictly
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greater than �1.

Let (y⇤1, y
⇤
2) be the unique solution to (1) and (2), guaranteed by Proposition

2.

Proposition 3. Given A1 and A2 the demand profile in any pure strat-

egy subgame perfect equilibrium of the bargaining game must be an element of

{(z⇤1 , z⇤2) s.t. z⇤1 + z⇤2 = 1, z⇤1  y⇤1 and z⇤2  y⇤2}.

It can be easily verified that ( 1+k1
1+k1+k2

, 1+k2
1+k1+k2

) solves (1) and (2) in the

linear model of Section 2. Proposition 3 then readily gives us the relevant

inequalities of Proposition 1.

5 Implications

5.1 Comparative Statics

Corollary 3.1 makes precise how higher revoking cost functions lead to greater

bargaining power. Higher revoking cost functions essentially give the player

greater ability to commit to their stated demands. Consequently, fearing even-

tual concession to a low o↵er, the opponent must make a lower demand. It is

also shown how the set of equilibria shrinks with higher cost functions.

Corollary 3.1. Given A1 and A2 an increase in player i’s revoking cost

function, increases her highest and lowest equilibrium payo↵s. Further the dif-

ference between the highest and lowest equilibrium cake share for either player

decreases.
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5.2 Equilibrium Selection in the Nash Demand Game

M suggests how the perfect commitment implicit in the NDG can be perturbed

by allowing players to back down from their stated demands, at some cost.

Indeed, he shows that at the limit as the revoking cost is made arbitrarily high,

a unique equilibrium in the NDG survives. The present model derives a similar

result replacing the Nash Bargaining Solution by equilibrium behavior in the

second stage game above to determine payo↵s after incompatible demands.

Surprisingly, the unique equilibrium selected in the NDG corresponds to the

division selected by the Proportional Bargaining Solution of Kalai(1977) with

the proportion equal to the ratio of the marginal revoking costs evaluated at

0+.

Let ⇧A1 and C be the sets of all functions that satisfy A1 and A2 re-

spectively. Let �c1,c2(⇡1, ⇡2) denote a two stage bargaining game as outlined

in Section 2, with ⇡i 2 ⇧A1 and ci 2 C. The corresponding set of subgame

perfect payo↵ profiles is denoted by ⇠(�c1,c2(⇡1, ⇡2)). �c1,c2 , therefore, maps

any pair of payo↵ functions in ⇧A1 into a corresponding two stage bargaining

game. Consider a sequence of such mappings {�cn1 ,c
n
2 }1n=1 such that as n ! 1,

cn
0

i (0+) ! 1 (the right derivative of the cost functions at 0 becomes arbi-

trarily large) with cni 2 C for all n. Further, it is assumed that 9✏ > 0 and

an integer M such that 8d 2 [0, ✏) and 8n > M , cn1 (d)/c
n
2 (d) (ratio of the

revoking cost functions) is a constant. Along such a sequence, payo↵ function

pairs are mapped into games where the amount a player can a↵ord to concede

becomes progressively smaller. Consequently, at the limit any pair of payo↵

functions is mapped to its corresponding NDG, where one does not have the

ability to back down from incompatible demands. The assumption of the ratio

of the revoking costs being constant for an arbitrarily small interval containing

12



0 guarantees that the limit of the equilibrium set exists.

Define,

⇠⇤�(⇡1, ⇡2) = limn!1 ⇠(�cn1 ,c
n
2 (⇡1, ⇡2)) where � = limn!1 cn1 (0+)/cn2 (0+).

Given a pair of payo↵ functions, ⇠⇤� gives the limit equilibrium prediction of

the two stage model when the revoking costs are made arbitrarily high with

the parameter � capturing the ratio of the revoking costs evaluated at 0+. ⇠⇤�

therefore makes the equilibrium selection in the corresponding NDG.

Let ⇧(⇡1, ⇡2) = {(u1, u2)|ui = ⇡i(xi), 0  xi + xj  1, xi � 0, 8i 2

{1, 2}, j 6= i} denote the set of feasible payo↵s of the bargaining game and

d = (⇡1(0), ⇡2(0)) = (0, 0), the disagreement point. (⇧(⇡1, ⇡2), d) gives the

familiar object of a bargaining problem from axiomatic bargaining theory.

B = {(⇧(⇡1, ⇡2), d)|⇡1, ⇡2 2 ⇧A1}, therefore, is the set of bargaining problems

that can be generated by payo↵ functions that satisfy A1.

The PBS with proportions (�, 1), denoted by K�, is defined as K�(⇧, d) =

�(⇧, d)(�, 1), 8⇧ 2 B where �(⇧, d) = max{t : t(�, 1) 2 ⇧}.5

Corollary 3.2. 8⇡1, ⇡2 2 ⇧A1, ⇠
⇤
�(⇡1, ⇡2) = K�(⇧(⇡1, ⇡2), d).

Kalai(1977) proves the remarkable result that any bargaining solution that

satisfies the axioms of Independence of Irrelevant Alternatives, Individual Mono-

tonicity and Continuity must be a Proportional Bargaining Solution. The

analysis gives a family of bargaining solutions parameterized by the propor-

tions, suggesting that finding the appropriate proportion needs looking beyond

the information contained in the bargaining problem (⇧, d). The present anal-

ysis does just that, with the proportion given by the ratio of the revoking cost

functions at 0+. Such information is typically not considered in the axiomatic

5
The dependence of ⇧ on ⇡1 and ⇡2 is suppressed for notational convenience.
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theory of bargaining. The simplicity of the NDG makes it all the more attrac-

tive that the PBS is supported by an equilibrium selection argument in the

NDG.

To see the intuition behind the result, consider the following example. Let

player 1’s cost function always be ↵ times player 2’s cost function, for every

pair in the sequence of cost functions. In particular, cn1 (d) = ↵cn2 (d) with

cn2 2 C, 8n, 8d > 0 and ↵ > 0. Let the payo↵ functions be ⇡1, ⇡2 2 ⇧A1.

Notice first that the extreme points for the set of equilibrium demands, are

given by (1�yn2 , y
n
2 ) and (yn1 , 1�yn1 ) where y

n
1 and yn2 solve (1) and (2) given the

corresponding cost functions, cn1 and cn2 . The following crucial characterization

of these extreme points is then evident,

⇡1(1� yn2 )

⇡2(1� yn1 )
= ↵, 8n. (3)

So the ratio of payo↵s to the two players with each getting the least share

of the pie that they get in any equilibrium is a fixed number, ↵. Further,

↵ = limn!1 cn1 (0+)/cn2 (0+). Along the sequence as the cost functions increase

the solution to (1) and (2) requires progressively smaller amounts of yn1 +

yn2 � 1. The assumption that cn
0

i (0+) ! 1 as n ! 1 therefore results

in limn!1 yn1 = limn!1 1 � yn2 . This delivers the result that at the limit

there exists a unique demand profile that can be supported in equilibrium.

Consequently at this limit the unique equilibrium demand share for player 1

is also her least equilibrium demand share. (3) then makes it necessary that

the ratio of payo↵s at this limit equilibrium must indeed be ↵. This unique

e�cient payo↵ profile therefore coincides with the PBS prediction given by

K↵(⇡1, ⇡2). In fact, for any pair of payo↵ functions (⇡1, ⇡2) the PBS, K↵,
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predicts the e�cient payo↵ profile that has a ratio of ↵. To see that this is

also the case with the equilibrium selection procedure, note that (3) must be

satisfied irrespective of the particular pair of payo↵ functions the players are

equipped with.

This result, however, is in sharp contrast with previous equilibrium se-

lection arguments in the NDG which deliver the Nash Bargaining Solution

as the unique outcome. Nash(1953), himself suggested the “smoothing argu-

ment” where the NDG is approached by a sequence of games in which the

payo↵ following incompatible o↵ers smoothly tapers o↵ to zero. The limit

equilibrium outcomes of the smoothed games as the amount of smoothing

goes to zero would then converge to the NBS. Particular examples of such

smoothing procedures can be found in Binmore(1987) and van Damme(1991).

Carlsson(1991) gives a model closely related to Binmore(1987) in which the

smoothing is generated by the fact that players tremble when making their

demands. In all these papers the perturbations are of an informational nature,

while in this paper and M it is the perfect commitment implicit in the NDG

which is perturbed. Further in this paper, the payo↵s following incompatible

o↵ers are generated by a complete information non-cooperative game between

the players. Therefore the result is determined entirely by strategic incentives

as opposed to informational features. Finally it should be noted that in this

paper the payo↵s following incompatible o↵ers in the perturbed games do not

smoothly taper o↵ to zero. The curves BD and AC in figure 2 are instances

where the payo↵s are discontinuous. Therefore, the present analysis, does not

satisfy the “smoothing argument” of Nash(1953).
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6 Conclusion

The tradeo↵ between higher demands and higher commitment ability has been

studied using a simple and transparent two stage non-cooperative model of bar-

gaining. The ability to commit is generated by making backing down from a

stated demand costly. When these costs are common knowledge and increas-

ing in the extent of concession, higher cost functions yield greater bargaining

power. The objective of this study has been to provide a simple tractable

model to capture this relationship, which can then be applied to model sce-

narios where players have the ability to modify their commitments. While

backing down in a negotiation may be costly, the breakdown of a negotiation

(i.e. (Stick, Stick)) could lead to a new round of negotiation where the two

parties get to choose new levels of demand to commit to. Given the general

class of payo↵ and cost functions that the present analysis considers it would

indeed be possible to consider the e↵ect of changing cost structures over time

in such scenarios. The limit prediction of the model as the revoking costs are

made arbitrarily high has been used as an equilibrium selection argument in

the Nash Demand Game, delivering the Proportional Bargaining Solution with

proportion equal to the ratio of revoking costs as the outcome.

A Appendix

Let (z1, z2) be the demands made in the first stage of a pure strategy subgame

perfect equilibrium of the linear model.

Lemma A1. z1 + z2 ⌅ 1

Proof. This is immediate, since if z1+z2 < 1, player i can deviate by demanding

16



1 � zj. Since (1 � zj, zj) is still compatible, player i gets a payo↵ of 1 � zj

which is strictly higher than the original payo↵ zi, as z1 + z2 < 1.

Lemma A2. z1 + z2 ⇧ 1

Proof. Suppose z1 + z2 > 1. Let the payo↵s in the second stage game, which

must now be played, be (y1, y2). Due to the nature of the bargaining game

the outcome must be determined by a pure strategy Nash Equilibrium of the

second stage game. Note that {Accept, Accept} could never be a Nash Equi-

librium of the second stage game.

Suppose the Nash Equilibrium in the second stage game for this SPE in-

volves the strategies {Stick, Accept}. Then y1 = z1 and y2 = 1� z1 � k2(z1 +

z2 � 1). Consider what happens if player 2 deviates to making the compat-

ible demand z̃2 = 1 � z1, in the first stage. The payo↵s from this deviation

are (z1, 1 � z1). Given that 1 � z1 > y2, this is a profitable deviation. So if

z1 + z2 > 1 and (z1, z2) are demands made in a subgame perfect equilibrium,

the second stage Nash Equilibrium cannot involve {Stick, Accept}. A symmet-

ric argument rules out {Accept, Stick}. If the second stage Nash Equilibrium

is {Stick, Stick} then y1 = y2 = 0. Player i could then profitably deviate by

demanding z̃i = ✏ where 0 < ✏ = 1�zj, thereby making a compatible o↵er and

receiving a payo↵ of ✏. So irrespective of the pure strategy Nash Equilibrium

in the second stage game, there is always a profitable deviation for some player

if z1 + z2 > 1.

Lemmas A1 and A2 imply that if (z1, z2) are demands made in a pure

strategy SPE of the bargaining game, it must be that z1 + z2 = 1.

Lemma A3. If (z1, z2) is the demand profile in a pure strategy SPE of the
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bargaining game with z1 + z2 = 1 then @✏ > 0 and i 2 {1, 2}such that

1� zi � kj✏ < 0 (4)

and

1� zj � ✏� ki✏ > 0. (5)

Proof. Suppose not. Let ✏ > 0 and let 1� zi� kj✏ < 0 and 1� zj � ✏� ki✏ > 0

for some i 2 {1, 2} with (zi, zj) being the demands made in an SPE of the

bargaining game. I will show that player j has a profitable deviation. With the

present demand profile, (zi, zj) the payo↵s are also (zi, zj) due to compatibility.

Now suppose player j deviates to making the incompatible o↵er zj + ✏. Due to

incompatible o↵ers the second stage game would have to be played. If player

i chooses Accept then player j is clearly better o↵ choosing Stick. If player

i chooses Stick then j’s payo↵ from choosing Accept is 1 � zi � kj✏ which is

strictly less than the 0 he gets if he Sticks, given the assumption above. So

Stick strictly dominates Accept for player j. Given that player j will choose

Stick player i would get 1 � zj � ✏ � ki✏ if she chose Accept which is strictly

greater than the 0 she would get if she chooses Stick. Consequently the unique

Strict Nash Equilibrium of the second stage game following the deviation would

involve i playing Accept and j playing Stick, with a payo↵ of zj + ✏ for player

j. Hence player j has a profitable deviation.

Proposition 1

Necessity

Proof. Let (z⇤1 , z
⇤
2) be the demands made in a pure strategy SPE of the bar-

gaining game. From lemmas A1 and A2 it must be that z⇤1 + z⇤2 = 1. If an ✏
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satisfies the conditions of Lemma A3 for (z⇤1 , z
⇤
2) it must be that ✏ > z⇤1

k1
(from

(4), setting i = 2) and ✏ <
z⇤2

1+k2
(from (5), setting i = 2). So it must be that

z⇤1
k1

< ✏ <
z⇤2

1+k2
. Now, given that z⇤2

1+k2
is bounded above by 1, such an ✏ will not

exist iff
z⇤2

1 + k2
 z⇤1

k1
. (6)

A similar argument using (4) and (5) and setting i = 1 shows that for profitable

deviations of the kind considered in Lemma 3 not to exist, it must also be true

that
z⇤1

1 + k1
 z⇤2

k2
. (7)

Combining (6) and (7) gives us the necessary condition for (z⇤1 , z
⇤
2) to be the

equilibrium demands; namely

k2
1 + k1

 z⇤2
z⇤1

 1 + k2
k1

. (8)

Su�ciency

Proof. Let (z⇤1 , z
⇤
2) satisfy (8) and z⇤1 + z⇤2 = 1. I will construct strategies that

constitute an SPE of the bargaining game using these demands. In the first

stage player 1 demands z⇤1 while player 2 demands z⇤2 . If the second stage game

is reached and if player 2 demanded z2 > z⇤2 in the first stage, then player 1

chooses {Stick} while player 2 chooses {Accept} if 1 � z⇤1 � k2(z2 � z⇤2) >

0 and {Stick} otherwise. Similarly, if player 1 demanded z1 > z⇤1 in the

first stage, then player 2 chooses {Stick} while player 1 chooses {Accept} if

1� z⇤2 � k1(z1 � z⇤1) > 0 and {Stick} otherwise.

To see why these strategies constitute an SPE of the bargaining game, note
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first that neither player has any incentive to demand a lesser amount. Now

consider player i’s incentives to deviate by demanding zi > z⇤1 . If in the second

stage player i is required by the strategies to play {Accept} then it must be

that 1 � z⇤j � ki(zi � z⇤i ) > 0. Given that player j’s strategy requires j to

{Stick}, i would do strictly worse by deviating to {Stick}. Further, given

that i chooses {Accept} player j can do no better than play {Stick} as is

required by his strategies. In other words the o↵ equilibrium strategies induce

a strict Nash Equilibrium of the second stage game when i demands zi > z⇤i and

1�z⇤j �ki(zi�z⇤i ) > 0. So by deviating to zi, i gets a payo↵ of 1�z⇤j �ki(zi�z⇤i )

which is strictly less than the payo↵ of 1 � z⇤j she was guaranteed under the

original strategies. Now, if the deviation zi is such that 1� z⇤j �ki(zi� z⇤i ) < 0

the strategies require i to {Stick} which is indeed her dominant strategy in

this case. By the fact that (z⇤1 , z
⇤
2) satisfies (8) it must be the case that @✏ > 0

such that 1� z⇤j � ki✏ < 0 and 1� z⇤i � ✏� kj✏ > 0. However the deviation zi

is such that setting ✏ = zi � z⇤i we get 1 � z⇤j � ki✏ < 0. So (8) implies that

1� z⇤i � ✏� kj✏  0. Substituting for ✏ we get 1� zi � kj(z⇤j � (1� zi))  0.

The left hand term in this inequality is the payo↵ j gets from choosing Accept

while choosing Stick gives him 0. Therefore, j’s optimal action continues to

be {Stick} as suggested by the strategies. The pure Nash Equilibrium in

the second stage after such deviations, thus, involve a payo↵ of (0, 0), which

makes i strictly worse o↵. As a result i has no incentive to deviate from the

specified strategies. Hence, the strategies specified above constitute an SPE of

the bargaining game.

Lemma A4. There exists a unique ȳj 2 (0, 1) such that ⇡i(1� yj) = ci(yj).

Proof. Let gi(yj) = ⇡i(1� yj)� ci(yj)

Note that gi(0) = ⇡i(1) = mi > 0 and gi(1) = �ci(1) < 0. Further, gi is a
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strictly decreasing and continuous function. Consequently by the intermediate

value theorem there exists ȳj such that gi(ȳj) = 0. Further, given that gi is

strictly decreasing, ȳj 2 (0, 1).

Proposition 2

Proof. Define the function ŷ1(y2) = c�1
1 (⇡1(1 � y2)) + 1 � y2 for all y2 2 [0, 1]

such that 9 d > 0 with c1(d) = ⇡1(1� y2).

Note that ŷ1(1) = 0. By Lemma A4 there exists ȳ2 2 (0, 1) such that ŷ1(ȳ2) =

1. Further, given A1 and A2, ŷ1 is a well defined, continuously di↵erentiable

and strictly decreasing function on [ȳ2, 1] with

@ŷ1
@y2

=
�⇡0

1(1� y2)

c01(c
�1
1 (⇡1(1� y2)))

� 1 < �1. (9)

Similarly define the function ŷ2(y1) = c�1
2 (⇡2(1 � y1)) + 1 � y1 for all y1 2

[0, 1] such that 9 d > 0 with c2(d) = ⇡2(1 � y1). By the same arguments as

before, ŷ2 is a continuously di↵erentiable strictly decreasing function on the

corresponding [ȳ1, 1] with

@ŷ2
@y1

=
�⇡0

2(1� y1)

c02(c
�1
2 (⇡2(1� y1)))

� 1 < �1. (10)

Let ỹ2 : [0, 1] ! < be defined by ỹ2(y1) = ŷ�1
1 (y1).

Note that ỹ2(0) = 1 while ỹ2(1) = ȳ2. Also ỹ2 is a continuous and strictly

decreasing function with

�1 <
@ỹ2
@y1

=
1

�⇡0
1(1�y2)

c01(c
�1
1 (⇡1(1�y2)))

� 1
< 0. (11)

Therefore ỹ2(ȳ1) < 1, since ȳ1 2 (0, 1).
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Consequently (ŷ2 � ỹ2)(ȳ1) = 1� ỹ2(ȳ1) > 0.

Also, (ŷ2 � ỹ2)(1) = 0� ȳ2 < 0.

Finally, the function (ŷ2 � ỹ2) is a strictly decreasing function of y1 on [ȳ1, 1]

as can be seen by subtracting the fraction in (11) from that in (10), the former

being strictly greater than �1, the latter strictly less than �1 and both being

negative.

Therefore by the intermediate value theorem and the fact that (ŷ2 � ỹ2) is a

strictly decreasing function of y1 on [ȳ1, 1], there exists a unique y⇤1 2 (ȳ1, 1)

such that (ŷ2 � ỹ2)(y⇤1) = 0. Let y⇤2 = ŷ2(y⇤1). y⇤2 2 (0, 1) since y⇤1 2 (ȳ1, 1).

Further, y⇤2 = ỹ2(y⇤1) ) y⇤1 = ŷ1(y⇤2). Therefore, (y
⇤
1, y

⇤
2) solves (6) and (7) and

does so uniquely amongst any (y1, y2) with y1 2 [ȳ1, 1]. The proof concludes

by showing that (7) cannot hold for any y1 < ȳ1.

Let y1 < ȳ1. By the definition of ȳ1, it must be that ⇡2(1� y1) > c2(y1).

) ⇡2(1 � y1) > c2(y1 + y2 � 1) for all 1 � y1  y2  1 as c2(·) is a strictly

increasing function.

Proposition 3

Proof. The argument for z⇤1 + z⇤2 = 1 is very similar to the linear case and is

therefore skipped. I will first show that (zi, zj) with zi > y⇤i and z1 + z2 = 1

cannot be the demand profile of a pure strategy subgame perfect equilibrium.

The payo↵s generated by these demands are (⇡i(zi), ⇡j(zj)). Further, ỹj(zi) is

well defined as zi > y⇤i > ȳi and satisfies ỹj(zi) > zj. Now, given that zi > y⇤i

it must be that (ŷj � ỹj)(zi) < 0.

) ŷj(zi) < ỹj(zi).
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Since ⇡j(1� zi) = cj(zi + ŷj(zi)� 1) by definition, it follows that

⇡j(1� zi)� cj(zi + ỹj(zi)� ✏� 1) < 0 (12)

for a small enough ✏ > 0.

On the other hand, since ⇡i(1 � ỹj(zi)) � cj(zi + ỹj(zi) � 1) = 0 it must also

be true that

⇡i(1� (ỹj(zi)� ✏))� cj(zi + ỹj(zi)� ✏� 1) > 0 (13)

for a small enough ✏ > 0.

Consider the deviation by player j involving a demand of ỹj(zi) � ✏ in the

first stage. This leads to incompatible demands thereby leading to the second

stage. Now, given (12) it is a dominant strategy for j to play {Stick}. Further

(13) implies that player i would strictly prefer {Accept} to {Stick} conditional

on j playing {Stick}. Consequently the unique Nash Equilibrium in the second

stage would involve i accepting and j sticking to her o↵er. The payo↵ to j

from this deviation is ⇡j(ỹj(zi)� ✏) which is strictly greater than her original

payo↵. This profitable deviation rules out the possibility of the equilibrium

demand profile being (zi, zj) with zi > y⇤i and z1 + z2 = 1.

Finally I construct a pure strategy SPE to support an element of the set

{(z⇤1 , z⇤2) s.t. z⇤1 + z⇤2 = 1, z⇤1  y⇤1 and z⇤2  y⇤2} as the first stage demand

profile. Let {(z⇤1 , z⇤2) be such an element. The strategies are as follows, Player

i demands z⇤i in the first stage. If the second stage game is reached and if

player j demanded zj > z⇤j in the first stage, then i chooses {Stick}, while

j chooses {Accept} if ⇡j(1 � z⇤i ) � cj(z⇤i + zj � 1) > 0 and chooses {Stick}

otherwise.
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The above strategies can be verified to be subgame perfect, using arguments

similar to the linear case. This concludes the proof.

Corollary 3.1

Proof. Recall from Proposition 2 that (y⇤1, y
⇤
2) is the unique solution to (1) and

(2). Proposition 3, then makes it clear that the highest share for player i in

equilibrium is y⇤i and the lowest, 1 � y⇤j . To see what happens to equilibrium

shares if player i’s cost function increases, consider the following setup. I fix

player j’s payo↵ and cost functions at ⇡j and cj. Player i’s payo↵ function is

given by ⇡i, while two cost functions ci and ĉi are considered with ci(d) < ĉi(d),

for all d > 0. Payo↵ and cost functions are assumed to satisfy A1 and A2

respectively. Let y⇤i and 1 � y⇤j be the highest and lowest equilibrium payo↵s

for i with cost function ci. Let the corresponding payo↵s for the cost function

ĉi be y⇤⇤i and 1�y⇤⇤j . Define ŷi and ȳj for the cost function ci as in the proof for

Proposition 2. Let ˆ̂yi and ¯̄yj be the corresponding objects for ĉi. By definition,

⇡i(1� ȳj) = ci(ȳj) (14)

and

⇡i(1� ¯̄yj) = ĉi(¯̄yj). (15)

Given A1, A2 and ci(d) < ĉi(d), for all d > 0, it must be true that ¯̄yj < ȳj. It

is also easy to verify that ˆ̂yi(yj) < ŷi(yj) for all yj 2 [ȳj, 1]. By the definition

of y⇤j it must be true that (ŷi� ỹi)(y⇤j ) = 0. Therefore (ˆ̂yi� ỹi)(y⇤j ) < 0. On the

other hand (ˆ̂yi� ỹi)(¯̄yj) = 1� ỹi(¯̄yj) > 0. Consequently there exists x 2 (¯̄yj, y⇤j )

such that (ˆ̂yi � ỹi)(x) = 0. In other words y⇤⇤j = x. Importantly, note that

y⇤⇤j < y⇤j . Further, since y⇤⇤i = ỹi(y⇤⇤j ) with ỹi being a strictly decreasing
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function, it is true that y⇤⇤i > y⇤i . Therefore increasing the cost function for

player i from c⇤i to c⇤⇤i increases both her lowest payo↵ from 1� y⇤j to 1� y⇤⇤j

and her highest payo↵ from y⇤i to y⇤⇤i . In this sense, the more costly it is to

back down from the first stage demand, the greater is the player’s bargaining

power.

Finally note that the di↵erence between the highest and lowest equilibrium

share for either player given the initial(modified) cost functions is equal to

y⇤1 + y⇤2 � 1 (y⇤⇤1 + y⇤⇤2 � 1). By definition, ⇡j(1 � y⇤i ) = cj(y⇤1 + y⇤2 � 1) and

⇡j(1� y⇤⇤i ) = cj(y⇤⇤1 + y⇤⇤2 � 1). Since y⇤i < y⇤⇤i it follows that y⇤⇤1 + y⇤⇤2 � 1 <

y⇤1 + y⇤2 � 1. Therefore an increase in the cost functions shrinks the set of

equilibria.

Corollary 3.2

Proof. (⇡1, ⇡2) 2 ⇧A1 gives a corresponding (⇧(⇡1, ⇡2), d) 2 B. Now given the

definition of K� it is clear that K�(⇧(⇡1, ⇡2), d) = (u1, u2) where u1 = ⇡1(x),

u2 = ⇡2(1� x) with 0  x  1 and ⇡1(x)/⇡2(1� x) = �.

Given (⇡1, ⇡2) let (y⇤n1 , y⇤n2 ) solve (1) and (2) for revoking cost functions cn1

and cn2 . Therefore,

⇡1(1� y⇤n2 ) = cn1 (y
⇤n
1 + y⇤n2 � 1),

⇡2(1� y⇤n1 ) = cn2 (y
⇤n
1 + y⇤n2 � 1).

As n ! 1 by assumption cn
0

i ! 1. Since ⇡i is bounded above it must be

that y⇤n1 + y⇤n2 � 1 ! 0. Recalling the assumption that 9✏ > 0 and an integer

M such that 8d 2 [0, ✏) and 8n > M , cn1 (d)/c
n
2 (d) = �, it must be that for
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high enough values of n, ⇡1(1�y⇤n2 )
⇡2(1�y⇤n1 ) = �. So the limit of the solution to (1) and

(2) as n ! 1 is given by (y⇤⇤1 , y⇤⇤2 ), such that ⇡1(1�y⇤⇤2 )
⇡2(1�y⇤⇤1 ) = � and y⇤⇤1 + y⇤⇤2 = 1.

Also for high enough values of n,

⇡1(1� y⇤n2 )

⇡2(y⇤n2 )
 �  ⇡1(y⇤n1 )

⇡2(1� y⇤n1 )
(16)

since y⇤n1 + y⇤n2 � 1 > 0 for every n. Now, by Proposition 3, for (zn1 , z
n
2 ) to be a

subgame perfect demand profile for �cn1 ,c
n
2 (⇡1, ⇡2) it must be that zn1 + zn2 = 1

with zn1  y⇤n1 and zn2  y⇤n2 . In other words,

⇡1(1� y⇤n2 )

⇡2(y⇤n2 )
 ⇡1(zn1 )

⇡2(zn2 )
 ⇡1(y⇤n1 )

⇡2(1� y⇤n1 )
(17)

It is easy to see from (16) and (17) that (z⇤1 , z
⇤
2) such that z⇤1 + z⇤2 = 1 and

⇡1(z⇤1 )
⇡2(z⇤2 )

= � is an element of the limit set of subgame perfect demand profiles as

n ! 1. To show that it is also the unique element in the limit set consider

(z1, z2) such that z1 + z2 = 1 and ⇡1(z1)
⇡2(z2)

= � + ✏ for some ✏ > 0. Given

that limn!1y⇤n1 = y⇤⇤1 and the continuity of the ⇡i functions, it is true that

⇡1(y⇤n1 )
⇡2(1�y⇤n1 ) 

⇡1(y⇤⇤1 )
⇡2(1�y⇤⇤1 )+✏/2 = �+✏/2 for all n > N where N is high enough. This

implies that 8n > N , ⇡1(z1)
⇡2(z2)

= � + ✏ >
⇡1(y⇤n1 )

⇡2(1�y⇤n1 ) , violating (17). Consequently,

such a demand profile cannot be an element of the limit set. A similar argument

eliminates demand profiles (z1, z2) such that z1 + z2 = 1 and ⇡1(z1)
⇡2(z2)

= � � ✏

for some ✏ > 0. Therefore the unique limit subgame perfect demand profile

(z⇤1 , z
⇤
2) is characterized by z⇤1 + z⇤2 = 1 and ⇡1(z⇤1 )

⇡2(z⇤2 )
= �.

As a result, ⇠⇤�(⇡1, ⇡2) = (u1, u2) such that u1 = ⇡1(x), u2 = ⇡2(1 � x) with

0  x  1 and ⇡1(x)/⇡2(1� x) = �.
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Chapter 2: Bargaining with Uncertain Commitment:

On the Limits of Disagreement

1 Introduction

Bargaining impasses entail significant costs. Whether they manifest as strikes,

lockouts or war, the bargaining parties end up at a highly ine�cient outcome.

One explanation for the existence of such disagreement relies on the ability

of rational bargaining agents to commit themselves to aggressive demands.

An agent who credibly commits herself to an aggressive demand can force an

uncommitted opponent to concede. The ability to commit arises from a (re-

voking)cost which rational agents must pay to back down from their stated

demand. Uncertainty regarding the revoking cost results in uncertain com-

mitment ability. Both players may then attempt commitment to aggressive

demands hoping that they themselves face a high revoking cost while their

opponent faces a low (or no) cost. Simultaneous attempts to commit to ag-

gressive demands yield disagreement. This leads to the question that this

paper formally addresses: When does the ability to attempt commitment to

aggressive demands lead to disagreement in bargaining between two rational

agents, given that the success of the commitment attempt is ex ante uncertain?

The above question has been answered in the asymmetric information en-

vironment by Crawford(1982). This paper extends the basic model of Craw-

ford(1982) to analyze the symmetric information case. In particular, I study

a two stage game with two players bargaining over a pie of size 1. In stage 1

the two players announce their demands simultaneously. If these demands are

compatible (add up to no more than 1) then each agent gets her own demand
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and half the remaining surplus, if any. If the demands are incompatible a

second stage simultaneous move game is played. Each player can either stick

to her demand or accept the other’s o↵er. If one player sticks to her demand

while the other player concedes (Accept), the former gets her first stage de-

mand while the latter only gets what was o↵ered by the former. In addition,

the conceding player must pay his revoking cost. If both players concede then

both get their opponents o↵er, pay their respective revoking costs and split in

half the excess of the surplus over the sum of their o↵ers. Both players sticking

to their incompatible demands results in disagreement with a resulting payo↵

of 0 to both. When making their demands the two players only know the

distribution of the revoking costs. These costs become commonly known only

after the demand stage but before the second stage game. This feature gives

rise to the uncertain commitment ability of players.

I study this basic model under two sets of informational assumptions. In

the first, as in Crawford(1982), I assume that the revoking costs can take

values of either 0 or some number greater than 1 (henceforth referred to as

binary distributions). If the players face revoking costs which have independent

and identical binary distributions then I find that disagreement can always be

supported in equilibrium, irrespective of the particular probability of facing

the high cost, q. Further, if facing a high cost is less probable, 0 < q < 1/2,

any equilibrium must involve disagreement. Disagreement continues to be

supported in equilibrium even if the revoking cost distribution functions are

identical and perfectly positively correlated (the two players face an identical

but uncertain cost). These results are collected in Proposition 2, showing the

pervasiveness of disagreement in the presence of binary distributions.

In the second set of informational assumptions, players do not believe that
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intermediate revoking costs are impossible. In particular, the density functions

for the revoking costs are assumed to be strictly positive and continuous over an

interval between and including 0 and some value greater than 1.1 In addition

it is assumed that before the second stage game each player gets to know the

realized values of the revoking costs but with a small amount of noise. The

equilibrium predictions of this model are analyzed for the limit case when

the amount of noise is made arbitrarily small. Proposition 3 shows that if

the revoking cost distribution functions are identical and perfectly positively

correlated, disagreement cannot be supported in equilibrium, irrespective of

the particular distribution function considered. If the distribution functions are

independent and First Order Stochastically Dominate the uniform distribution

then two results hold. First, the e�cient profile of each party demanding half

the surplus can be supported in equilibrium. Second, disagreement cannot be

supported in equilibrium.

Symmetric Information: The study of symmetric information environ-

ments in this paper is motivated by the observation that in bargaining settings

where such commitment tactics are available the revoking costs often end up

becoming (almost) commonly known before concession decisions are made. For

example, in international or domestic political disputes revoking costs take the

form of “audience costs” as discussed in Fearon(1994). The two leaders make

public announcements of their demand while the domestic audiences assess the

performance of the leadership. Backing down may entail a revoking cost in the

form of a significantly lower chance of reelection. The particular cost is deter-

mined by the relevance of a particular negotiation to the domestic audience’s

1Such density functions made the problem intractable in the asymmetric information
setting of Crawford(1982).
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assessment. While uncertain when the demands are made, these costs can be

easily ascertained by all parties soon after.

A recent movement in India, for example, involved Anna Hazare and the

Indian government making incompatible demands regarding the contents of

an anti corruption bill to be passed in parliament. Given the unconstitutional

nature of the Hazare demand on the one hand and the ine↵ective past anti

corruption role of the government on the other, it was by no means certain

which way public opinion would swing. The Hazare movement ended up with

an unprecedented level of public support. Hazare’s high realized revoking cost

consisted of losing credibility in front of such a large group of supporters. The

Indian Government garnered less sympathy and therefore stood to lose less by

backing down. News outlets, opinion polls and visible public rallies made the

costs apparent to all soon after the demands had been made public. Eventually

the Indian Government backed down.

Similar examples can be found in the the debt ceiling debates of the Obama

and Clinton administrations. In such instances lobbying groups are an impor-

tant source of revoking costs for elected leaders. Importantly, in all these

cases, the uncertainty regarding revoking costs when demands are made gets

resolved almost entirely before the concession decisions are made. Many more

illuminating examples of such bargaining instances are discussed in detail in

Schelling(1960), Martin(1993) and Fearon(1994).

Ellingsen and Miettinen(2008)(henceforth EM) also analyze symmetric in-

formation settings, but with findings that contrast sharply with this paper. EM

show that the presence of uncertain commitment always results in disagree-

ment, with both parties demanding the entire surplus in equilibrium. In EM

bargaining agents have access to independent random commitment devices,
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using which, following incompatible demands, an agent is forced to either back

down or stick (achieve commitment) to her demand with exogenously fixed

probabilities. The key modeling di↵erence in the present paper is that achiev-

ing commitment is required to be the result of equilibrium behavior in the

second stage game, as in Crawford(1982). An agent must choose to play Stick

in order to achieve commitment. This modeling di↵erence leads to very distinct

implications. In particular, in EM, the probability of a successful commitment

attempt is independent of the demands made. By contrast, in this paper, with

continuous densities and noisy signals, equilibrium play results in a system-

atic dependence of second stage concession behavior on first stage demands.

The particular dependence, so established, often eliminates the possibility of

disagreement. In such a setting, demanding the entire surplus can never be

supported in equilibrium.

Demands and Concession Behavior: The analysis of binary distribu-

tions in this paper gives results that are similar to EM. In particular, dis-

agreement is shown to always be supportable in equilibrium. The reason for

this lies in the existence of equilibria in these models in which the probability

with which a player backs down in the second stage does not depend upon

the first stage demands. Notice that a player has no option but to stick to

her demand when her revoking cost is greater than 1. So, if one player faces

a cost of 0 and the other faces the high cost, the dominance solvable outcome

involves the latter playing Stick while the former plays Accept. The existence

of multiple equilibria in the second stage game, when both player face 0 costs,

makes supporting disagreement essentially a question of selecting an appro-

priate equilibrium. Making the particular equilibrium selection independent

of first stage demands makes supporting disagreement in equilibrium possible.
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In other words, such equilibria behave as if the probability of a successful

commitment attempt were exogenous.

The analysis of continuous distributions with noisy signals, however, lim-

its the possibility of disagreement considerably. To understand the intuition

behind these results it will help to spell out the counteracting forces involved

in the model. Disagreement arises if both parties make high demands that are

incompatible, since there is always a state of the world where neither player

can back down following such a demand profile. Player 1’s incentive to make

a higher demand is driven by the possibility that following incompatible de-

mands she will face a high revoking cost (and therefore achieve commitment),

while player 2 faces a low cost and is therefore better o↵ conceding. The op-

posite scenario works as a disincentive for making higher demands. A second

disincentive arises from the possibility that both face high costs and are unable

to back down resulting in the loss of the entire surplus.

These features are present in both the binary and continuous distribution

models. The continuous distribution models along with the global games in-

formation structure, by making concession behavior dependent on first stage

demands, gives rise to another disincentive to making higher demands. A

higher demand systematically makes it more di�cult for one’s opponent to

concede thereby conferring a greater probability of success to the latter’s com-

mitment attempt. This in turn reduces the payo↵ an agent can hope to get by

making the higher demand. It is the addition of this disincentive that results

in the lack of disagreement in the continuous density models. Importantly, it

is not merely the use of continuous densities that yields the agreement results.

The presence of noise is critical for generating the global games argument.

Section 4.2 gives an example of disagreement with continuous, identical and

34



perfectly correlated density functions in the absence of noise.

The global games structure results in the risk dominant outcome of the

second stage being played as a result of iterated elimination of dominated

strategies whenever there would otherwise be multiple equilibria. This argu-

ment is especially acute for the case where both agents face the same (but

uncertain) revoking cost. Given an incompatible demand profile, in equilib-

rium, if one player makes a (su�ciently) higher demand than the other, then

in the second stage either both players stick to their demands (when the cost

is high enough) or the player with the higher demand backs down while the

one with the lower demand gets her way. So, in equilibrium, conditional on

making incompatible demands, each player would want to make the smaller

demand. Consequently there is always some player who wishes to deviate from

an incompatible demand profile. When the distributions are independent, the

players weigh the benefits of making a higher demand against the subsequent

shrinking of the risk dominant region (of the state space) where she actually

gets her demand. This systematic relationship between the probability of a

successful commitment attempt and first stage demands makes the results of

this analysis di↵erent from those with binary distributions or exogenous com-

mitment probabilities.

The paper proceeds as follows. Section 2 discusses the related literature.

Section 3 presents the disagreement results in informational settings involving

binary distributions. Section 4 considers the continuous density case where

both parties face an identical but uncertain cost. Section 5 deals with the

independent continuous density case. Section 6 concludes. Proofs are collected

in the appendix.
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2 Related Literature

Commitment and Reputation in Bargaining: The basic framework of

the present analysis is almost identical to that of a symmetric information

version of Crawford(1982). The only di↵erence is the payo↵s that result fol-

lowing incompatible demands if both player’s choose to back down. In Craw-

ford(1982) the payo↵ is given by an exogenously set compromise payo↵, while

in the present model each player gets what the other o↵ered and half the re-

maining surplus. This assumption is also made in Kambe(1999), Abreu and

Gul(2000) and Compte and Jehiel(2002). To show that this di↵erence pre-

serves the arguments leading to disagreement in the asymmetric information

model in Crawford(1982), the latter’s disagreement results are replicated us-

ing the present model in Section 3.1. Given that the analysis gets rid of an

additional parameter (the compromise solution), the disagreement result of

Crawford(1982) can in fact be seen in a simpler setting.

While specific arguments regarding the role of commitment tactics in bar-

gaining can be traced back to Schelling(1960), Crawford(1982) was the first

to analyze this issue in a formal game theoretic setting. A number of papers

have extended the asymmetric information model of Crawford(1982) in a way

closely related to the notion of reputation. Kambe(1999) replaces the second

stage one-shot game with an infinite horizon counterpart where players may

either stick to their demand or lower it, giving rise to a war of attrition game.

While focussing on binary distributions, the analysis rules out the possibility

of delay. Wolitzky(2011) considers the same model as Kambe(1999), but fo-

cusses on minmax profiles and payo↵s as opposed to sequential equilibria. The

goal here is to characterize the highest payo↵ a player can guarantee herself
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by announcing a bargaining posture, with the only assumptions being that her

opponent is rational and believes that she will be committed to her posture

(face the high cost) with some given probability. In Myerson(1991), Abreu

and Gul(2000) and Compte and Jehiel(2002), the irrational or obstinate types

are given exogenously, and rational players attempt to increase their shares

by mimicking these types. This is in contrast with the earlier papers where

following the choice of any demand, the player could become obstinate with a

given probability(the probability of facing the high revoking cost). Abreu and

Gul(2000) show the possibility of delay when with positive probability a player

could be an obstinate type. Compte and Jehiel(2002) show that the existence

of outside options in this setting may cancel out the e↵ects of these obstinate

types.

Relation to the Global Games Literature: A few comments regarding

the global games information structure, critical for the results in this paper,

are in order. Firstly, while the paper heavily uses the methods developed in

Carlsson and Van Damme(1993) (henceforth CvD), it is not possible to directly

apply the results of CvD in the present setting. In CvD it is shown that for

a certain kind of perturbation to a fixed complete information strategic game

with multiple strict equilibria, as the perturbation is made arbitrarily small,

the unique rationalizable strategy profile corresponds to the risk dominant

profile. In the present paper multiplicity of equilibria is a potential problem

in the second stage game. However, the second stage game is itself generated

endogenously by the choice of demands in the first stage. In such a case

it is by no means self evident that for a su�ciently small amount of noise,

in equilibrium only the risk dominant profiles will be played in all second

stage games. Indeed, the latter statement is false for any positive amount of
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noise. The crucial part comprises in proving that the class of games where the

multiplicity is unresolved for a small enough amount of noise, has a su�ciently

negligible e↵ect on the choices made in the first stage. The non trivial nature

of such an extension of the equilibrium selection argument to endogenously

determined games in the global games literature along with a general result in

this regard can be found in Chassang(2008). Unfortunately the particular game

studied in this paper does not satisfy the required conditions of Chassang(2008)

and must therefore be studied separately.

Secondly the equilibrium selection result implicit in this paper is not one

involving the perturbation of a perfect information game. The original game

in this study is already one of incomplete information. The equilibrium se-

lection argument in this case applies to subgame perfect strategy profiles of

the incomplete information game. Consequently the criticism of Weinstein and

Yildiz(2007) does not apply in this case. The limit results in this paper involve

the amount of private noise becoming arbitrarily small. The common uncer-

tainty (public noise) regarding revoking costs shared by both players in the

first stage is held fixed since it is an intrinsic part of the strategic environment

studied here and not itself a perturbation of some complete information game.

Any concern regarding the generality of the class of perturbations considered

here would then have to do with the class of densities considered for private

noise. The generality of this class can be assessed by evaluating assumptions

A2 and A3 in Section 4.1.
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3 Binary distributions and pervasive disagreement

This section shows that if the revoking costs are drawn from binary distribu-

tions, either 0 or some value greater than the size of the entire pie, then there

always exist equilibria which result in a positive probability of disagreement.

This is true irrespective of whether the revoking costs become known pri-

vately(asymmetric case) or publicly(symmetric case), following incompatible

demands.

For the rest of the section the following basic model applies. Each subsec-

tion will add a di↵erent set of assumptions to this framework. Two players, 1

and 2, play a two stage game. In what follows, a generic player will be denoted

as player i where i 2 {1, 2}, with j being the other player, j 2 {1, 2}, j 6= i.

In the first stage player i makes a demand zi 2 [0, 1]. If the demands are

compatible, z1 + z2  1, the game ends and the payo↵s are given by (y1, y2)

where yi = zi � d with d = (z1 + z2 � 1)/2. If the demands are incompatible,

z1 + z2 > 1, the payo↵s for the players are determined by the outcome of the

following game.

Accept Stick
Accept 1� z2 + d� k1, 1� z1 + d� k2 1� z2 � k1, z2
Stick z1, 1� z1 � k2 0, 0

Table 1: Payo↵s following incompatible demands

3.1 Asymmetric information case

The informational assumptions of this subsection are identical to that of Craw-

ford(1982). The only modeling di↵erence lies in the payo↵ specification when

both players simultaneously concede following incompatible demands. In Craw-

39



ford(1982) these payo↵s are given exogenously, while it is endogenously deter-

mined here. The results below show that the disagreement results of Craw-

ford(1982) are not weakened by this change. Moreover, in the absence of

additional parameters representing exogenous compromise payo↵s, the dis-

agreement results can be seen more transparently.

Add to the game defined above, the assumption that players in the first

stage do not know the value of ki. They only know that they are independent

random variables with Pr(ki > 1) = q and Pr(ki = 0) = 1 � q. Following

incompatible demands and before playing the second stage game, players get

to know their own but not their opponent’s revoking cost, ki. Given these

assumptions the following results hold.

Proposition 1. (a) For any value of q 2 (0, 1) there exists an equilibrium

with a positive, q2, probability of disagreement.

(b) If 0 < q < 1
2 then any equilibrium must entail a positive probability of

disagreement.

Proposition 1(a) may seem like a stronger result than the disagreement

result in Crawford(1982). In the latter paper it was shown that disagreement

can be supported in equilibrium if q is small. The possibility of disagreement

with high values of q was indeterminate. Proposition 1, on the other hand,

shows that even if, ex ante, the probability of commitment is arbitrarily high

(close to 1), the players may still choose incompatible demands and therefore

lose the surplus with near certainty. However, Gori and Villanacci(2011) have

shown that disagreement can be supported in the Crawford(1982) model even

when q is large.
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To understand the rationale behind Proposition 1(a), notice first that fol-

lowing incompatible demands if a player faces the high revoking cost her

strictly dominant action (irrespective of the demands made) is to play Stick.

Suppose player i plays Accept when her cost is 0. Then the two second stage

choices available to j yield exactly the same payo↵ if both players made a de-

mand of z = q+1
2 . Further if player i makes a demand higher than z while still

playing Accept when her cost is 0, player j must then optimally choose Stick

when her cost is 0. Following a demand profile (z, z) each player can therefore

play Stick with a high cost and Accept with a low cost in equilibrium. A higher

demand by player i can be dissuaded by player j playing Stick irrespective of

the cost, forcing i to concede when the cost is 0, resulting in a payo↵ loss. The

strategies for the second stage Bayesian game with demands (z, z)) continue

to be in equilibrium if one of the players makes a lower but still incompatible

demand, giving the latter a lower payo↵.

Given such a second stage strategy profile and initial demands of z = q+1
2

each, no player has an incentive to deviate. Such a demand profile, being in-

compatible, leads to disagreement with probability q2. It may seem surprising

that players would not want to deviate to simply making a compatible de-

mand, especially when q is very high. Notice, though, that when q is really

high, the share being o↵ered by the other player is also su�ciently low, 1�q
2 .

This low o↵er makes it a strictly better alternative for a player to make the

higher incompatible demand and rely on the small probability with which she

gets her stated demand.

Proposition 1(b) is driven by the fact that when q < 1
2 , if some player

deviates from compatible demands to making a higher demand, the probability

with which the entire surplus is lost, q2, is less than the probability with which
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the deviating player gets her demand q(1�q). If the deviating player’s increase

in demand is small enough, she can ensure that there is still enough room for

the other player to back down upon facing a 0 cost. Given a compatible

demand profile, the deviating player would be the one with the smaller of the

two compatible demands.

3.2 Symmetric information case

Asymmetric information has been shown to give rise to ine�ciency in numer-

ous bargaining models. In studying the role of commitment it is important

to ascertain if the disagreement results are an artifact of asymmetric infor-

mation. Ellingsen and Miettinen(2008) have shown that, even without asym-

metric information, when the probability of a successful commitment attempt

is exogenous(and commonly known), disagreement is an immediate outcome.

This subsection studies the symmetric information scenario by making the re-

voking costs publicly known following incompatible demands. However, the

probability of a successful commitment attempt is derived endogenously from

equilibrium behavior in the second stage game. The results below show that

when the revoking costs are drawn from binary distributions, there always ex-

ist equilibria that support disagreement. This is true even if the players know

for sure that they will face the same revoking cost in the second stage but are

unsure about its value when making their demands.

In this subsection, in addition to the basic model outlined earlier, it is

assumed that while the costs of backing down are uncertain to both players

at the demand stage, they become common knowledge following incompatible

demand profiles. In particular, in the first stage it is common knowledge that

player i faces cost ki which takes a value greater than 1 with probability q
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while Pr(ki = 0) = 1� q.

Two settings are analyzed. In the first, the distribution functions for k1

and k2 are assumed to be independent. In the second it is assumed that both

players face identical revoking costs, Pr(k1 = k2) = 1. Following incompatible

demands the true values of k1 and k2 are made common knowledge before the

second stage game is played. The departure from Section 3.1 lies in the elimi-

nation of asymmetric information in the second stage game. In this symmetric

information setup the following results hold.

Proposition 2. If the distribution functions for k1 and k2 are independent,

(a) For 0 < q < 1, the incompatible demand profile (1, 1) can be supported in

equilibrium, resulting in disagreement with probability q2.

(b) For 0 < q < 1/2, no e�cient equilibrium exists.

If the players face the same revoking cost, Pr(k1 = k2) = 1,

(c) For 0 < q < 1 the incompatible demand profile (1, 1) can be supported in

equilibrium, resulting in disagreement with probability q2.

The disagreement results in Proposition 2 depend heavily on the multi-

plicity of Nash Equilibria in the second stage games following incompatible

demands. The multiplicity allows for the construction of equilibria in which

the probability with which a player backs down in the second stage does not

depend upon the particular demands made in the first stage. It is this in-

dependence of second stage behavior from first stage demands that makes

disagreement supportable in equilibrium.

Consider the setting with independent revoking costs. Following incom-

patible demands, three of the possible four second stage games are dominance

solvable. If both players face high costs the unique profile is (Stick, Stick). If

player i faces the high cost and j the low cost, the dominance solvable profile
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involves i playing Stick and j playing Accept. If both players face 0 costs,

however, there exist two strict pure strategy Nash Equilibria. The disagree-

ment result of Proposition 2(a) relies on the appropriate equilibrium selection

in these second stage games, following di↵erent incompatible demand profiles.

In the subgame perfect equilibrium constructed to support the profile (1, 1),

the choice of second stage Nash Equilibrium for the case of k1 = k2 = 0 is

entirely independent of the first stage incompatible demands. In particular,

Player 1 plays Stick while Player 2 plays Accept following any incompatible

profile when they both face a cost of 0. Player 2 cannot, for instance, force

Player 1 to concede by making a lower demand since the second stage behavior

is independent of the particular incompatible demand profile.

Proposition 2(c) further highlights the acuteness of the second stage mul-

tiplicity problem. In this case both players know that they will face identical

revoking costs in the second stage. So the incentive to making a higher de-

mand that arises from the possibility that one will find it too costly to back

down while one’s opponent wont simply does not exist. Disagreement is again

supported by making appropriate equilibrium selection in the second stage

games, independent of the first stage demands. If player 1 never backs down,

irrespective of the revoking cost, then player 2 can do no worse by playing Ac-

cept when the cost is 0. Further if both players demand the entire pie, making

a compatible o↵er does not help either. The rationale behind the non existence

of e�cient equilibria when the probability of facing a high revoking cost is low,

as established in Proposition 2(b), is very similar to that for Proposition 1(b).

Deviating from a compatible profile yields a gain with probability q(1� q) and

a loss of the entire surplus with probability q2. When q is small, deviating to

a demand of 1 results in a gain that outweighs the loss.
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Interestingly, both players demanding the entire pie cannot be supported

in the asymmetric information environment of Section 3.1. The second stage

multiplicity in the symmetric information setting, in fact, makes it easier to

support disagreement. As argued earlier, disagreement is easy to support if the

probability of a successful commitment attempt can be made independent of

the first stage demands. In the strategic environments described in Sections 4

and 5, it is precisely this independence of second stage behavior from first stage

demands that collapses. Further, the particular dependence that is established

overturns the disagreement results of this section.

4 Identical revoking costs with continuous density func-

tions

This section studies the bargaining game in settings where the revoking cost

can take values from an interval containing the points 0 and 1. The idea

captured in this assumption is that players do not believe that intermediate

values of revoking costs are impossible. The probability attached to such

values, however, can be arbitrarily small.

Two players, 1 and 2, play a two stage game. In what follows, a generic

player will be denoted as player i where i 2 {1, 2}, with j being the other

player, j 2 {1, 2}, j 6= i. In the first stage player i makes a demand zi 2 [0, 1].

If the demands are compatible, z1+ z2  1, the game ends and the payo↵s are

given by (y1, y2) where yi = zi � d with d = (z1 + z2 � 1)/2. If the demands

are incompatible, z1 + z2 > 1, the payo↵s for the players are determined by

the outcome of the following game.
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Accept Stick
Accept 1� z2 + d� k, 1� z1 + d� k 1� z2 � k, z2
Stick z1, 1� z1 � k 0, 0

Table 2: Payo↵s following incompatible demands

4.1 Noisy signals and agreement

In the first stage, when choosing their demands, players’ prior regarding the

cost of backing down k is given by a random variable K which takes values in

[0, k̄] where k̄ > 1. Having announced their demands, each player i gets a noisy

signal, k✏
i about k before playing the simultaneous move game. In particular,

player i observes a realization of the random variable K✏
i that is defined by

K✏
i = K + ✏Ei, i = 1, 2

where Ei is a random variable taking values in R and ✏ > 0 serves as the

scale parameter for the noise. A strategy for player i, comprises of a demand

zi 2 [0, 1] and a measurable function si(z1, z2) for every incompatible demand

profile, that gives the probability of playing Accept as a function of the the

observed cost of backing down k✏
i . So, si(z1, z2) : [�✏, k̄+ ✏] ! [0, 1]. �✏ is used

to denote this two stage game for a particular value of ✏.

The following assumptions are made on the parameters of the model.

A1. K admits a density h that is continuously di↵erentiable on (0, k̄), strictly

positive, continuous and bounded on [0, k̄].

A2. The vector (E1, E2) is independent of K and admits a density '.

A3. The support of each Ei is contained in the interval [�1, 1] in R and ' is

continuous on [�1, 1]⇥ [�1, 1].
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As a result of these assumptions the model acquires the structure of a global

game as studied in CvD. I am interested in the perfect equilibrium prediction

of �✏ for small values of ✏. To this e↵ect the following proposition holds.

Proposition 3. Given A1, A2, A3, and for su�ciently small ✏ > 0, if players

use pure strategies for their first stage demands, there is never any disagree-

ment in any perfect equilibrium of the game �✏.

The impossibility of disagreement in this setting is in sharp contrast with

Proposition 2(c) which showed that disagreement can be supported in equi-

librium irrespective of the revoking cost probability function. Notice that the

assumptions for Proposition 3 allow for density functions that can arbitrarily

approximate the two point random variables considered in Section 3.

Figure 1: Second stage equilibrium behavior: Common Cost

To get some intuition for Proposition 3 consider Figure 1. Suppose player

1 makes the higher demand in an incompatible demand profile (z1, z2). The

0k̄ line represents the state space for the revoking cost. In the absence of noise

(✏ = 0), the second stage game following the incompatible profile (z1, z2) would

be one of complete information and would depend on the realized value (k)

of the revoking cost, K. Now for all realizations of K in the Bk̄ region the

dominant strategy for both players would be to play Stick since backing down

would incur a cost strictly greater than the share received by playing Accept.
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The unique NE in the second stage for such values of K would thus be (Stick,

Stick). If K takes a value in AB, then Player 2 has a strictly dominant action

in Stick since it would be too costly for her to back down. Conditional on

Player 2 backing down, the optimal choice for Player 1 is to play Accept, since

the revoking cost is not higher than the share she would get by conceding. The

unique NE for all such k in AB is thus (Accept, Stick). K taking a value in 0A,

however results in multiplicity. Both (Accept, Stick) and (Stick, Accept) are

pure NE of the second stage game for such values of K. Since the revoking cost

is low enough relative to the amount received by both players upon concession,

the problem now becomes one of coordination. In the absence of noise, the

choice of Nash Equilibrium in this region can be entirely arbitrary.

It turns out, however, that for all values of K in the region 0B the unique

risk dominant profile is (Accept, Stick). In the presence of a small amount

of noise the setting becomes a global game. Iterated elimination of strictly

dominated strategies in the resulting Bayesian games results in the players

coordinating on the risk dominant profile for every realization of K. This in

turn implies that while (Stick, Stick) is played for all realizations in the region

Bk̄, (Accept, Stick) would be played for all realizations in the 0B region.

Player 1 receiving a noisy signal su�ciently in the interior ofBk̄ would know

for sure that the true state of the world is in fact in Bk̄ and would therefore

play her strictly dominant action Stick for such observations. Similarly player

2 would play Stick following any observation su�ciently in the interior of Ak̄.

Given that player 2 plays Stick for observations in Ak̄, player 1 upon observing

a value su�ciently in the interior of AB would infer that player 2 must have

observed a value greater than A. It would then be conditionally dominant for

Player 1 to play Accept for such observations. So there emerges an interval
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where the profile (Accept, Stick) is played. The question now is what is the

left limit of this interval. In other words, what is the highest observed value of

K when one of these players choose to switch their actions from the (Accept,

Stick) profile. For a small enough value of ✏ it turns out that this left limit

cannot be greater than 0, resulting in the profile (Accept, Stick) being played

for all values of K when earlier there was multiplicity.

A crucial part of this argument is the existence of a su�ciently large (with

respect to ✏) region AB. So if Player 1 makes a su�ciently larger demand than

Player 2, given an incompatible profile, whenever some player does back down

it must be Player 1. Since backing down always pays less than simply accepting

the other parties o↵er, Player 1 would be better o↵ making a compatible

demand in the first stage. More importantly this shows that conditional on an

incompatible demand being made each party would want to make the lower

demand and force the other to concede. This applies to the case when the

region AB is not that large. In this case one of the players would have a

strict incentive to lower her demand marginally and force a concession from

the other whenever the cost is low. Such a deviation may not be possible

if lowering ones demand essentially leads to a compatible profile. However

it is shown that for an incompatible demand profile that makes deviation to

compatible positions unprofitable, it must be that both players are making

su�ciently high demands. This in turn ensures the possibility of lowering ones

demand and still make it incompatible.

The result, therefore, relies on these two features of equilibrium strategies

in this game. Firstly for a given incompatible profile, if no player wants to

simply deviate to a compatible demand then the original demands must be

su�ciently high. Secondly, conditional on making incompatible demands that
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are su�ciently high, each player has a strict incentive to make a lower demand

and force the other player to concede most of the time. These two features

make the existence of an incompatible demand profile and consequently dis-

agreement, in equilibrium, an impossibility.

It should be pointed out that the assumptions A1, A2, A3, are slightly

weaker than the corresponding assumptions made for the one-dimensional case

in CvD. In particular the noise density function is allowed to be discontinuous

at the boundary points of its support in the present study, while this is ruled

out by the assumptions in CvD.2

The outline of the proof is as follows. Lemma 1 establishes a result that

is crucial for the global game arguments used for the result. In particular the

distribution of player 1’s observation conditional on player 2’s observation is

symmetric to the distribution of player 2’s observation conditional on player

1’s observation, in the sense that they add up arbitrarily close to 1. Lemma 2

establishes a continuity result. It shows that for a given profile of measurable

strategies,(si)i2{1,2} , and for any incompatible demand profile, the probability

with which player i chooses Accept and the expected value of the true revok-

ing cost, k, conditional on player j making an observation,kj, is continuous in

player j’s observation. Lemma 3 shows how following an incompatible demand

profile if player i observes a cost su�ciently larger than 1 � zj her dominant

action is to play Stick. It is then argued in Lemma 4 that following incompat-

ible demands (z1, z2) if zi is su�ciently larger than zj, then there will always

be observation values for which the unique dominance solvable outcome would

2Indeed, the motivating example in CvD involves noise with a uniform density, and does
not satisfy the assumptions of their paper. However the discontinuity at the boundary
points merely requires a little more work as is done in Lemma 2, and does not endanger
the equilibrium selection argument in CvD. I thank Hans Carlsson for helping me with my
doubts regarding this issue.
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involve i backing down while j plays Stick. Lemmas 5 - 7 then show that fol-

lowing such an incompatible demand profile, either for all lower observations i

will continue to back down with j playing Stick, or there will be two observa-

tion values particularly close to each other where the two players will switch

their actions. Lemma 8, the critical part of the proof, then shows that if zi is

su�ciently larger than zj, such switch points cannot exist and therefore player

i will continue to back down with j playing Stick. This result is a consequence

of the global games information structure that appears in the model for small

enough ✏ > 0. Lemma 8 relies heavily on the properties of symmetry and

continuity established in Lemmas 1 and 2. This result allows for a complete

characterization of equilibrium second stage strategies and payo↵s following

incompatible demand profiles and is stated in Lemma 9.

I then consider the choice of first stage demands. It can be easily seen

that demands that add up to less than 1 always allow for deviations. Lemma

10, in addition, also shows that incompatible profiles with one player mak-

ing a su�ciently higher demand than the other cannot be supported. This is

a natural implication of Lemma 8 where the player with the higher demand

was shown to always be the one to concede. Making a compatible demand

would do strictly better than making such a high incompatible demand. Next,

Lemma 11 establishes a lower bound that the sum of the demands must sat-

isfy to be an incompatible profile from which neither player wants to deviate

to a compatible profile. Finally it is shown that if an incompatible profile of

demands involves z1 and z2 that do not di↵er much in value (no demand is

su�ciently greater than the other as in Lemma 8 ) but sum up to greater than

the bound mentioned in Lemma 11, then there is always a player i who could

strictly improve her payo↵ by making a lower but still incompatible demand.
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This lower demand by i forces j, in equilibrium, to always be the one backing

down in the second stage. These arguments together exhaust the possible set

of incompatible demand profiles. Consequently it is shown that equilibria in-

volving pure strategies in the first stage cannot involve incompatible demands,

thereby eliminating the possibility of disagreement.

First I define a few terms for the game �✏ that allow the use of Lemma 4.1 in

Carlsson and van Damme(1993), henceforth (CvD). Let F ✏
i (kj|ki) and f ✏

i (kj|ki)

be the distribution and density functions, respectively, of K✏
j conditional on

K✏
i = ki. Let '✏ be the joint density of (✏E1, ✏E2). Then,

f ✏
i (kj|ki) =

R
h(k)'✏(k1 � k, k2 � k)dkR R
h(k)'✏(k1 � k, k2 � k)dkjdk

(1)

The following lemma is the one dimensional version of Lemma 4.1 in CvD that

applies to the present model. This symmetry result is critical for the proof of

Lemma 8.

Lemma 1 (CvD). Let k1, k2 2 [�✏, k̄+ ✏]. Then there exists a constant  > 0

such that for su�ciently small ✏ > 0,

|F ✏
1(k2|k1) + F ✏

2(k1|k2)� 1|  ✏ (2)

Next, it is shown that for a pair of measurable second stage strategies,

player i’s expectation regarding the true value of k and the probability with

which j plays Accept, conditional on observing k✏
i are continuous functions

of k✏
i . Given j’s second stage strategy sj, let the probability with which i,

conditional on observing k✏
i , expects that j will play Accept be denoted by
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Pr(Aj|k✏
i , sj).

3 So,

Pr(Aj|k✏
i , sj) =

Z
sj(kj)f

✏
i (kj|k✏

i )dkj (3)

Also, let i’s expectation of k given her observation k✏
i be denoted as E✏(k|k✏

i ).

Lemma 2. For a given incompatible demand profile (z1, z2) and strategies

si, sj, Pr(Aj|k✏
i , sj) and E✏(k|k✏

i ) are continuous in player i’s observation k✏
i .

Equilibrium behavior in the second stage game following an incompatible

demand profile is considered next. The payo↵s specified in Table 2 make

it evident that if the observed cost is high enough the player would strictly

prefer to play Stick. The following lemma captures this immediate but useful

implication of observing such high costs of backing down.

Lemma 3. In equilibrium, following an incompatible demand profile (z1, z2),

conditional on observing k✏
i > 1� zj + ✏, Stick is the strictly dominant action

for player i.

Lemma 3 shows that for high enough observation values (i.e. greater than

1�min{z1, z2}+✏) the unique dominance solvable outcome in the second stage

game is (Stick, Stick).

The next lemma shows that if the higher of the two incompatible demands

is su�ciently larger than the lower demand, there will be an interval of ob-

servations that would always lead to a unique dominance solvable outcome in

the second stage game where the player with the higher demand plays Accept

while the other plays Stick. This is the crucial dominance solvable region in

CvD that has a remote influence on the rest of the state space.

3The dependence of sj on the demand profile (z1, z2) is suppressed for notational con-
venience, but it should be noted that the arguments are for a given pair of incompatible
demands.
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Lemma 4. For an incompatible demand profile (z1, z2) such that zi � zj > 4✏,

the unique dominance solvable outcome of the second stage game following both

players making an observation in (1 � zi + 3✏, 1 � zj � ✏), involves i playing

Accept and j playing Stick.

Given an equilibrium of �✏ and a pair of incompatible demands (z1, z2)

where zi � zj > 4✏, let k✏⇤
i denote the highest observation value k✏

i below

1 � zi + 3✏ for which i chooses to play Stick. Similarly let k✏⇤
j denote the

highest observation value k✏
j below 1 � zi + 3✏ for which j chooses to play

Accept. It is assumed that if i following some observation strictly greater than

�✏ is indi↵erent between her actions she chooses to play Stick while when j is

indi↵erent he plays Accept. The next lemma shows that k✏⇤
i and k✏⇤

j are well

defined. In other words, it is shown that unless the players continue to play

the strategies they used in the dominance solvable region of Lemma 4 for even

lower values of K, there must exist points (highest value of their respective

observations) on the state space at which the players switch the strategies.

The continuity result of Lemma 2 is critical to establishing this result.

Let B✏
i (z1, z2) denote the set of observations k✏

i > �✏ such that k✏
i  1 �

zi + 3✏ and i plays Stick for such observations (i.e. si(k✏
i ) = 0). Similarly let

B✏
j(z1, z2) denote the set of observations k✏

j > �✏ such that k✏
j  1 � zi + 3✏

and j plays Accept for such observations (i.e. sj(k✏
j) = 0).

Lemma 5. In any equilibrium of �✏ following a pair of incompatible demands

(z1, z2) where zi � zj > 4✏, either B✏
i (z1, z2) is empty or k✏⇤

i = max{x|x 2

B✏
i (z1, z2)} is well defined.

Similarly, either B✏
j(z1, z2) is empty or k✏⇤

j = max{x|x 2 B✏
j(z1, z2)} is well

defined.
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The following lemma shows that if one player does not switch her second

stage action at smaller values of observed cost from that used in the dominance

solvable region of Lemma 4, then the other player would not make a switch

either.

Lemma 6. If B✏
i (z1, z2) or B✏

j(z1, z2) is empty then they are both empty.

The next lemma establishes a relation between k✏⇤
i and k✏⇤

j when they are

well defined. In particular it is shown that the switching points when they

exist would be near each other.

Lemma 7. In any equilibrium of �✏ following a pair of incompatible demands

(z1, z2) where zi � zj > 4✏ if the terms are well defined then, k✏⇤
i < k✏⇤

j + 2✏.

The next lemma contains the crucial argument that drives the result, since

it shows that for incompatible demands with the higher demand su�ciently

larger than the smaller one, the player with the higher demand always concedes

whenever the observed cost is in the range that generated multiplicity in the

complete information game. The symmetry of conditional beliefs guaranteed

by Lemma 1 plays a significant role here.

Lemma 8. In any equilibrium of �✏ following a pair of incompatible demands

(z1, z2) where zi � zj � max{4✏, (+2)✏
d }, the sets B✏

i (z1, z2) and B✏
j(z1, z2) are

empty.

Lemma 8 makes it immediate that following an incompatible demand pro-

file (z1, z2), where zi�zj � max{4✏, (+2)✏
d }, player j plays Stick irrespective of

the observation k✏
j. On the other hand player i plays Stick for k✏

i > 1� zj + ✏

while playing Accept for k✏
i < 1�zj�✏. This allows for a characterization of the

expected payo↵s in the first stage, from making such incompatible demands.
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Let yi(z1, z2) and yj(z1, z2) denote i and j’s expected payo↵ in equilibrium

from making demands zi and zj. The following lemma is delivered simply by

calculating payo↵s given the characterization of equilibrium behavior in the

second stage discussed in Lemmas 3, 4 and 8.

Lemma 9. In any equilibrium of �✏ following a pair of incompatible demands

(z1, z2) where zi � zj � max{4✏, (+2)✏
d }, it must be that

zjF
✏
i (1� zj � ✏)  yj  zjF

✏
i (1� zj + ✏) (4)

yi 
Z 1�zj

0

(1� zj � w)h(w)dw (5)

The analysis can now turn to the choice of first stage demands. Let the

set of demand profiles that can be supported by equilibrium strategies in �✏

be denoted by Eq✏. Further let �(d) = max{4✏, (+2)✏
d }. The following lemma

shows how equilibrium demands could never add up to less than 1. Also,

it states the immediate implication of Lemma 8 that incompatible demands

with one player making a significantly higher demand than the other cannot

be supported in equilibrium.

Lemma 10. If (z1, z2) satisfies either of the following conditions,

1. z1 + z2 < 1

2. z1 + z2 > 1 and |z1 � z2| � �(d)

then, (z1, z2) 62 Eq✏.

Let k̂ =
R
min{k, 1}h(k)dk. The following lemma shows that for an in-

compatible demand profile to be supported in equilibrium, the excess demand

must be above a positive lower bound. If this were not to be the case then at
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least one of the players would have a strict incentive to deviate to making a

compatible demand.

Lemma 11. If z1 + z2 > 1 and d < k̂/2 then (z1, z2) 62 Eq✏.

Recall that �(d) = max{4✏, (+2)✏
d }. Let �⇤ = �(k̂/8). The next lemma

shows that incompatible demands that are close to each other but result in an

excess demand that exceeds the bound from Lemma 11 cannot be supported

in equilibrium. Since the demand profile satisfies the lower bound, the result

relies on the existence of some player i who can lower her demand enough to

force the j to always do the conceding, thereby generating a higher expected

payo↵ for i.

Lemma 12. If z1 + z2 > 1, d � k̂/2 and |z1 � z2| < �(d) then (z1, z2) 62 Eq✏

for small enough ✏.

Proof of Proposition 3

Proof. Proposition 3 follows immediately from the observation that Lemmas

10, 11 and 12 exhaust the entire set of incompatible demand profiles.

4.2 Example of disagreement in the absence of noise

With revoking costs perfectly correlated and identical across players, Proposi-

tion 3 shows that with continuous density functions there is no disagreement

while Proposition 2 shows that there can always be disagreement with binary

distributions. The critical di↵erence that gives rise to the contrasting results,

however, is the presence of noisy signals in the continuous density case.4 This

4Global game arguments require the state space to be a continuum and therefore has no
analog in the discrete case.
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can be seen by observing that without the noise there may be disagreement

even in the continuous density case. An example of such a scenario follows.

Consider the game outlined earlier in this section with the additional as-

sumption that ✏ = 0. In other words, both players, following incompatible

demands get to know the precise value of the revoking cost. Let the distribu-

tion function for the revoking cost be given by F with the interval [0, k̄] as its

support where k̄ > 1. It is assumed that F (1/4) = 9/10 and F (q) = 2/5 where

q 2 (0, 1/4). As outlined earlier, the players choose their demands in the first

stage, with common knowledge regarding the distribution of the revoking cost,

k. Following the demand stage, both players get to know the realized value

of k and then decide simultaneously whether to stick to their demand or back

down.

Consider the following subgame perfect strategy profile that leads to a

positive probability of disagreement. The players demand identical amounts,

namely z1 = z2 = 3/4. In the second stage, if k � 1/4, both players play

Stick. If k 2 (q, 1/4) then player 1 plays Accept while player 2 plays Stick. If

k  q then player 1 plays Stick while player 2 plays Accept. In the subgame

following player i making a demand, z̃i > zi, player �i plays Stick irrespective

of the realized value of k, while player i plays Accept if k  1/4 and Stick

otherwise. In the subgame following player i making a demand, z̃i < zi but

z̃i > 1 � zi, the following profile is played. If k � 1 � z̃i both players play

Stick. If k 2 1/4, (1� z̃i) then player i plays Stick and player �i plays Accept.

Finally, if k  1/4 then player i plays Accept while player �i plays Stick.

The expected payo↵ to player 1, y1, from the above strategy profile is given

by,

y1 =
3

4
· 2
5
+

1

4
· 1
2
�
Z 1/4

q

kf(k) dk
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The expected payo↵ to player 2 is given by,

y2 =
3

4
· 1
2
+

1

4
· 2
5
�

Z q

0

kf(k) dk

Clearly, y1 > 3
10 and y2 > 3

8 . It can be easily checked that the second stage

strategies are all Nash Equilibria of the subgames induced by the di↵erent

values of k. To see that no player can do better by changing the first stage

demand, notice first that by making a compatible demand a player would get,

at best, 1/4 which is lower than both y1 and y2. If a player deviates to making

a higher demand than 3/4 then her expected payo↵ would fall to strictly less

than 1/4, rendering it a loss making deviation. If either player makes a lower

demand, then given the stated strategy profile her highest possible expected

payo↵ must still be strictly less than 3
4 · 1

10 , again less than both y1 and y2.

The strategy profile outlined above is therefore subgame perfect and results in

a positive probability of disagreement.

5 Independent revoking costs.

In this section I consider the opposite benchmark that involves the revoking

costs being independently distributed. The first stage game is exactly as out-

lined in Section 4. Further the payo↵s following incompatible demands are

determined by the outcome of the game outlined in Table 1. In the first stage

the players’ common priors regarding the revoking costs k1 and k2 are given by

the random vector K that takes values in [0, k̄1]⇥ [0, k̄2] with k̄i > 1. Follow-

ing incompatible demands both players observe the realized value of K before

taking their second stage actions.

In the following analysis, whenever there is multiplicity in the second stage
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game, the risk dominant outcome will be selected. Instead of imposing it, this

equilibrium selection criterion can indeed be derived by perturbing the model

above to give it a global game information structure as was done in Section 4.

The limit equilibrium prediction of such a perturbed model as the amount of

noise is made arbitrarily small then delivers the equilibrium selection rule of

the risk dominant outcome being played. The proof for this result, however, is

largely of a technical nature and of marginal interest with respect to the results

in CvD and Section 4.1 and is therefore omitted.5 In particular, it requires

the extension of the two dimensional version of the global games argument in

CvD to the present game where the game itself is endogenously determined by

the actions taken in the first stage.

One di↵erence between the global games argument involved in Section 4.1

and the present section should be noted. In Section 4.1, when both players

made equal demands that were incompatible, the global games argument could

not resolve the subsequent second stage multiplicity. This is due to the lack of

the required dominance solvable region. In this section, on the other hand, due

to the independent distributions assumption, the required dominance solvable

regions exist irrespective of the particular incompatible demand profile. This

allows the expected payo↵ following any demand profile to be pinned down

precisely.

Let ⇥ = [0, k̄1] ⇥ [0, k̄2]. While I do not explicitly solve the full global

games model, the following assumption on the fundamentals of the model is

required for the global game argument to work (with the addition of the noise

parameters) and is therefore stated.

A1a. K admits a density h that is strictly positive, continuously di↵erentiable,

5The proof for this result is available upon request.
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and bounded and continuous on ⇥.

Suppose (z1, z2) is an incompatible demand profile. LetD(z1, z2), D1(z1, z2)

and D2(z1, z2) denote the part of the state space where the dominance solv-

able outcome of the second stage game are (Stick, Stick), (Stick, Accept) and

(Accept, Stick), respectively. Formally,

D(z1, z2) = {k 2 ⇥|k1 > 1� z2 and k2 > 1� z1} . (6)

Di(z1, z2) = {k 2 ⇥|ki > 1� zj and kj < 1� zi} (7)

Figure 2: Second stage equilibrium behavior:Independent Costs

Figure 2 depicts the second stage equilibrium behavior over the entire

state space, 0k̄1Wk̄2, following an incompatible demand profile (z1, z2) where

z1 > z2. The dominance solvable regions D(z1, z2), D1(z1, z2) and D2(z1, z2)

correspond toMQWR, MPk̄1Q andMNk̄2R. 0NMP marks the region where

both (Stick, Accept) and (Accept, Stick) are strict Nash equilibria.
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The equilibrium selection argument of risk dominance splits the state space

(⇥) into three regions, following any incompatible demand profile, in terms

of the action profile played in the second stage game. Let Ri(z1, z2) denote

the region of the state space where the risk dominant outcome in the second

stage game following the incompatible demand profile (z1, z2) involves Player

i playing Stick and Player j playing Accept. From Table 1 these regions can

be completely characterized. In particular,

Ri(z1, z2) =

⇢
k 2 ⇥|ki < 1� zj and kj < 1� zi and kj < ki

d+ 1� zi
d+ 1� zj

+
d(zj � zi)

d+ 1� zj

�

[Di(z1, z2) (8)

In Figure 2, R1(z1, z2) and R2(z1, z2) correspond to LMQk̄1 and 0LMRk̄2.

From (8) it can be seen that the line LM passes through the origin only if the

two demands are the same.

Given this characterization it is possible to precisely pin down the pay-

o↵s following incompatible demands. In particular, following incompatible de-

mands (z1, z2), if k 2 R1(z1, z2), Player 1 gets z1 while Player 2 gets 1�z1�k2.

Similarly if k 2 R2(z1, z2), Player 1 gets 1� z2 � k1 while Player 2 gets z2. Fi-

nally if k 2 D(z1, z2) then both players get 0. Notice that each player now faces

a tradeo↵ between making a higher demand and increasing her risk dominant

region where she actually receives her demand.

Figure 3 shows the changes in second stage behavior when Player 1 lowers

her demand from z1 to a still incompatible z̄1. Player 1, therefore, receives the

lower share z̄1 whenever k takes a value in her risk dominant region. However,

her risk dominant region itself has now increased because of her lower demand,

from LMQk̄1 to UTV k̄10. Her greatest gain comes from converting the TV QM
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Figure 3: Lower demand and larger risk dominant region

region which earlier resulted in the full surplus being lost, to a region where she

gets her exact demand. It is this tradeo↵ that prevents players from making

arbitrarily high demands and results in the agreement results below.

Proposition 4. If A1a is satisfied and K1 and K2 are independently dis-

tributed,with distribution functions F1 and F2, then the e�cient demand profile

(1/2, 1/2) can be supported in equilibrium, for any pair of Fi that First Order

Stochastically Dominate the uniform distribution.

This e�ciency argument is further strengthened by the non existence of

equilibria supporting disagreement for the same range of distribution functions.

In particular, the following result holds.

Proposition 5. If A1a is satisfied and K1 and K2 are independently dis-

tributed, with distribution functions F1 and F2, then disagreement can not be

supported in equilibrium for any pair of Fi that First Order Stochastically

Dominate the uniform distribution.
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Example of Disagreement when FOSD Relation Fails: The fol-

lowing example was numerically computed using a program that calculated

expected payo↵s following incompatible demands exactly as outlined above,

on Mathematica. Let K1 and K2 be identically and independently distributed

according to a Beta distribution, F (↵, �), with ↵ = 2 and � = 15. Observe

that F does not FOSD the uniform distribution. Let the two players make

equal demands of z1 = z2 = 0.5985. Following any incompatible demand pro-

file (z1, z2) and observations of (k1, k2), the corresponding unique risk dominant

profile is played in the second stage. It can be checked that such a strategy

profile satisfies subgame perfection. Being incompatible, such a demand profile

gives rise to disagreement with positive probability.

6 Conclusion

The ability to attempt commitment to aggressive demands does not necessarily

lead to disagreement in bargaining between two rational agents, when the

success of the commitment attempt is ex ante uncertain. Firstly, it is important

to specify the cause of such commitment ability. If players have access to

exogenous random commitment devices, then disagreement would necessarily

follow, as shown in EM. If the ability to commit arises from the presence of

uncertain revoking costs, then the possibility of disagreement depends on the

finer details of the players beliefs about such uncertainty. If the players believe

that revoking costs can only take values of 0 or some number greater than

the surplus, then disagreement can always be supported in equilibrium, even if

they know that their revoking costs are identical (though uncertain). However,

if the players’ believe that the revoking costs can take all possible intermediate
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values as well then the possibility of disagreement is significantly limited. If the

revoking costs are identical (but uncertain) then disagreement cannot obtain,

irrespective of the particular distribution chosen. Even when the revoking

costs are independent across players there cannot be any disagreement if the

distribution functions FOSD the uniform distribution. In a sense if the ex ante

probability of facing a high revoking cost is high enough, disagreement cannot

occur.

Secondly, the key factor influencing the di↵erent results is the dependence

of concession behavior on first stage demands. Binary distributions for re-

voking costs or the use of exogenous commitment devices result in equilibria

where the probability of a successful commitment attempt does not depend on

the demands made in the first stage. Continuous densities with noisy signals

force equilibrium behavior in the game to establish a systematic dependence

of concession behavior on first stage demands. In particular a higher demand

always increases the success probability of the opponents commitment attempt

while reducing one’s own. Equilibria are therefore determined by the tradeo↵

between making a larger demand and increasing the probability of actually

getting one’s own demand. Such incentives often rule out the possibility of

disagreement.

The analysis in this paper also highlights a particular feature of modeling

behavioral types. In particular, models of behavioral types tend to be discrete

in the sense that players are either fully rational or a specified type, due to

the use of binary distributions. Allowing for the density, instead, to be contin-

uous in the cost that must be paid to deviate from the actions of some type,

necessarily makes the model a continuous one. In the present analysis this

distinction led to sharply contrasting results. Whether such contrast applies
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more widely remains to be ascertained.

A Appendix

Proposition 1(a)

Proof. Fix q 2 (0, 1). Let z = q+1
2 . Following an incompatible demand profile

(z1, z2), in the second stage Bayesian game, player i must always play the

strictly dominant action Stick when ki > 1. Equilibrium behavior when ki = 0

needs to be pinned down. In this regard notice that playing Accept when ki = 0

for both i, would constitute a Bayesian Nash Equilibrium if the following two

inequalities hold.

q(1� z2) + (1� q)(1� z2 + d) � (1� q)z1 (9)

q(1� z1) + (1� q)(1� z1 + d) � (1� q)z2 (10)

The left hand (right hand) side of the inequalities gives the expected payo↵

to the player with ki = 0 from playing Accept (Stick) when her opponent’s

strategy involves playing Accept when the cost is zero and Stick when it is

greater than 1. (9) and (10) hold with equality if z1 = z2 = z = q+1
2 .6 Clearly

the demand profile (z, z) is incompatible.

Consider now the following strategies. Each player demands z. Following

the demand profile (z, z) player i plays Accept when ki = 0 and Stick when

ki > 1. Following a demand profile where zi = z but zj > z, player i plays

Stick irrespective of ki while j plays Accept when kj = 0 and Stick when

kj > 1. Following an incompatible demand profile where zi = z but zj < z,

6Note that d(z, z) = q
2

66



both players play Accept when their cost is 0 and Stick, when it is high. The

strategies also subscribe actions that constitute a BNE for any subgame not

considered above. It will be shown that such a strategy profile constitutes a

Perfect Bayesian Nash Equilibrium of the game.

Consider first, behavior in the second stage subgames. Only the behavior

of the types facing ki = 0 needs to be checked, since i must always play Stick

when ki > 1 as it is the strictly dominant action in that case. Following the

profile (z, z) both players with 0 cost play Accept. It has been shown earlier

that for this to be a BNE (9) and (10) must be satisfied. Given the derivation

of z, this is in fact the case. For incompatible demand profiles where zi = z

and zj > z, the strategies suggest that the low type of player i should play

Stick while player j with kj = 0 should play Accept. Given j’s strategy i’s low

type choice would be optimal if

q(1� zj) + (1� q)(1� zj + d) < (1� q)z (11)

Given that this relation holds with equality when zj = z and that the left

hand side is strictly decreasing in zj, it must be that for zj > z, (11) is indeed

satisfied. Further given that player i plays Stick always, player j does strictly

better by playing Accept when kj = 0. Finally for incompatible demand

profiles with zi = z and zj < z, notice that the inequalities (9) and (10)

continue to be satisfied. As a result the strategies involving low cost types

playing Accept does induce a BNE in such subgames. As for the first stage

decisions, consider player 1. The expected payo↵ to 1 from demanding z when

2 demands z is given by q(1�q)z+(1�q)[q(1�z)+(1�q)(1�z+(2z�1)/2)].

If 1 demands less than z, (z1 < z) her expected payo↵ is q(1 � q)z1 + (1 �
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q)[q(1�z)+(1� q)(1�z+(z+z1�1)/2)] which is clearly less than her payo↵

from not deviating. If 1 demands z1 > z then her expected payo↵ is merely

(1� q)(1� z), again strictly less than if she had not deviated. It remains to be

shown that no player would want to deviate from the profile (z, z) to making

the compatible demand 1� z. Suppose this is a profitable deviation. Then it

must be that,

q(1� q)z + (1� q)[q(1� z) + (1� q)(1� z + d)] < 1� z

)q(1� q)z + (1� q)(1� z) + (1� q)2d < 1� z

)q(1� q)z � q(1� z) + (1� q)2
q

2
< 0

)z � zq � 1 + z +
(1� q)2

2
< 0

)2z � 1� zq +
(1� q)2

2
< 0

)q � q + 1

2
q +

(1� q)2

2
< 0

)2q � q2 � q + 1� 2q + q2 < 0

)q > 1 (12)

(12) contradicts the initial assumption of q 2 (0, 1). As a result no player

would want to deviate to making a compatible o↵er, from the incompatible

profile (z, z).

Proposition 1(b)

Proof. Suppose not. Let the compatible demand profile supported in equilib-

rium be (z1, z2) where z1+z2 = 1. WLOG let z1  z2. Notice that substituting

z1 and z2 into the inequalities (9) and (10) makes the inequalities strict. Fur-

ther d(z1, z2) = 0. In particular, q(1 � z2) + (1 � q)(1 � z2) > (1 � q)z1.
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Consequently if player 1 makes a higher demand, z1 + �, the inequality will

still be satisfied for small enough values of �. Indeed, to satisfy the inequality

(9), � should satisfy, q(1� z2)+ (1� q)(1� z2+(�/2)) � (1� q)(z1+ �), which

in turn implies that,

�  2qz1
1� q

(13)

To ensure that such a deviation maintains the second inequality it must be

that, q(1 � z1 � �) + (1 � q)(1 � z1 � � + (�/2)) � (1 � q)z2. This in turn,

simplifies to,

�  2qz2
1 + q

(14)

So if � satisfies both (13) and (14), then following such a deviation, the subgame

involving the incompatible demand profile, (z1 + �, z2), would involve both

players playing Stick when the cost is high and Accept when it is 0. To see

that no other BNE exists in the second stage game, note that both low types

playing Stick cannot occur in equilibrium. Further given that the inequalities

(13) and (14) are satisfied, if one of the low types plays Accept then the low

type of the other player must also play Accept. The expected payo↵ to player

1 from such a profile would therefore be, q2(0)+ q(1� q)(z1+ �)+(1� q)[q(1�

z2) + (1 � q)(1 � z2 + (�/2))]. For this deviation to be profitable it must be

that,

[q(1� q) + (1� q)]z1 + q(1� q)� + (1� q)2(�/2) > z1

)q(1� q)� + (1� q)2(�/2) > z1q
2

)(1� q2)� > 2z1q
2

)� >
2z1q2

1� q2
(15)
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Let z1 > 0. Then for such a deviation to exist, it simply needs to be shown that

there exists � > 0 that simultaneously satisfies (13), (14) and (15). Notice that

2z1q2

1�q2 < 2qz1
1�q , q

1+q < 1, and is satisfied for all q > 0. Further 2z1q2

1�q2 < 2qz2
1+q ,

z1q
1�q < z2. Given that z1  z2, this is satisfied for all q < 1/2. Consequently, if

z1 > 0 and 0 < q < 1/2, there always exists a profitable deviation for player 1.

For the case where z1 = 0 and z2 = 1. If 1 deviates by demanding � > 0

that satisfies � < 2q
1+q , the inequality (9) would be reversed and hold strictly.

In other words following the demand profile (�, 1), if player 2 plays Accept

when k2 = 0 and Stick otherwise, then player 1 would play Stick always. Also,

given that 1 plays Stick always, 2’s optimal action when k2 = 0 is indeed to

play Accept since it gives a payo↵ of 1 � � as opposed to the payo↵ of 0 if

Stick is played. So these strategies constitute a BNE of the subgame following

(�, 1). Both players playing Stick always is not a BNE of this subgame since

the low type of player 2 would strictly prefer to play Accept, as just described.

The low types of both players playing Accept cannot happen due to the strict

reversal of the inequality (9). So the only other potential BNE of this subgame

involves player 2 playing Stick always while the low type of player 1 plays

Accept. This would require the low type of player 2 to choose Stick, requiring,

q(1� �)+ (1� q)(1� �+(�/2))  (1� q)(1). But, this inequality is violated if

� < 2q
1+q . The only BNE following a deviation to �, therefore involves player 1

always playing Stick with the low type for player 2 playing Accept. Since this

deviation gives a strictly positive payo↵ to player 1 it is a profitable deviation.

So it has been shown that given any compatible demand profile (z1, z2)

with z1  z2 as long as 0 < q < 1/2, there always exists a profitable deviation

for player 1. Clearly, a symmetric argument applies for z2  z1. Consequently

with 0 < q < 1/2 there cannot be any equilibrium involving compatible de-
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mands.

Proposition 2(a)

Proof. Consider the following strategies. Both players demand 1 in the first

stage. Following any incompatible demand profile (z1, z2), player i plays Stick

when ki > 1. If ki = 0 and kj > 1, then player i plays Accept. If k1 = k2 = 0,

then player 1 plays Stick while player 2 plays Accept.

Table 1 makes it clear that the strategies outlined above induce a Nash

Equilibrium in every subgame following incompatible demand profiles. Notice

that these subgames are dominance solvable except for the case where k1 =

k2 = 0. In the latter case both (Accept, Stick) and (Stick, Accept) are Nash

Equilibria. The particular selection made in this case is entirely arbitrary, but

su�cient to support the incompatible profile as an equilibrium outcome.

The expected payo↵ to player 1 from the strategies above is q(1� q)(1) +

(1 � q)(1 � q)(1). Deviating to any lower incompatible demand z1 gives an

expected payo↵, q(1� q)(z1) + (1� q)(1� q)(z1), while making a compatible

demand gives a payo↵ of 0. So player 1 has no incentive to deviate. Player 2’s

expected payo↵ from the stated strategies is q(1� q)(1). Deviating to a lower

but still incompatible demand, z2, gives her q(1� q)z2. Finally deviating to a

compatible demand gives her 0. As a result player 2 also has no incentive to

deviate.

Proposition 2(b)

Proof. Suppose not. Let (z1, z2) be supported in equilibrium, where z1+z2 = 1.

Suppose player i deviates to demanding z̃i = 1. Player i’s expected payo↵ from

such a deviation must be no less than q2(0) + q(1� q)(1) + (1� q)q(1� zj) +

(1� q)2(1� zj) = q(1� q)+(1� q)zi. For such a deviation to not be profitable

71



it must be that zi � q(1 � q) + (1 � q)zi. This implies, zi � 1 � q. Given

that q < 1/2 and z1 + z2 = 1, it must be that for some i 2 {1, 2}, zi < 1 � q

holds. Such a player i would then do strictly better by deviating to a demand

of 1.

Proposition 2(c)

Proof. Let k1 = k2 = k. When k > 1, the unique Nash Equilibrium in the sec-

ond stage game involves both players playing Stick. k = 0, on the other hand,

results in two pure strategy NE, namely (Accept, Stick) and (Stick, Accept).

Consider the following strategies. Both players demand 1. Following any in-

compatible demand profile (z1, z2), if k = 0, player 1 plays Stick while 2 plays

Accept. Facing k > 1, both players play Stick. As mentioned earlier, the sub-

game strategies constitute Nash Equilibria. Player 1 gets an expected payo↵

of 1 � q. By deviating to making any other demand z1, the expected payo↵

would become strictly less, (1�q)z1. Player 2, on the other hand, would always

get 0 irrespective of her first stage demand and therefore has no incentive to

deviate. Consequently the strategies support the demand (1, 1) in equilibrium.

The subsequent probability of disagreement is therefore q2.

Lemma 1(CvD)

Proof. Let l = maxk2[0,k̄] |h0(k)|, where h0(k) is the derivative of the function h

at k for k 2 (0, k̄) with h0(0) and h0(k̄) defined as limk!0 h
0(k) and limk!k̄ h

0(k),

respectively. Given A1, l is well defined with l � 0. Let ⌫ = mink2[0,k̄] h(k).

Given that h is continuous and strictly positive on [0, k̄], ⌫ is well defined with

⌫ > 0. Let ✏ be such that l✏ < ⌫/2. Then (1) leads to the following inequality
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for all ki, kj 2 [0, k̄] ,

f ✏i (kj|ki) 
(h(ki) + l✏)

R
'✏(k1 � k, k2 � k)dk

(h(ki)� l✏)
R R

'✏(k1 � k, k2 � k)dkjdk
=

(h(ki) + l✏) ✏(k1 � k2)

h(ki)� l✏

 ✏ is the density function for ✏E1 � ✏E2 and is equal to the integral in the

numerator of the second term for given values of k1 and k2 . Note that the

double integral in the denominator of the second term above is equal to 1.

Similarly, (h(ki)�l✏) ✏(k1�k2)
h(ki)+l✏  f ✏i (kj|ki). For ki 2 [�✏, 0] the relevant inequality

is (h(0)�l✏) ✏(k1�k2)
h(0)+l✏  f ✏i (kj|ki)  (h(0)+l✏) ✏(k1�k2)

h(0)�l✏ . If ki 2 [k̄, k̄ + ✏] then the

inequality is (h(k̄)�l✏) ✏(k1�k2)
h(k̄)+l✏

 f ✏i (kj|ki) 
(h(k̄)+l✏) ✏(k1�k2)

h(k̄)�l✏
. Therefore,

(1� 2l✏

h(ki) + l✏
) ✏(k1 � k2)  f ✏i (kj|ki)  (1 +

2l✏

h(ki)� l✏
) ✏(k1 � k2)7

Further let  = 8l
⌫ . Now,

1 +
2l✏

h(ki)� l✏
 1 +

2l✏

⌫ � l✏

 1 +
2l✏

⌫/2

Also,

1� 2l✏

h(ki) + l✏
� 1� 2l✏

h(ki)� l✏

� 1� 2l✏

⌫ � l✏

� 1� 2l✏

⌫/2

7For values of ki in [�✏, 0] and [k̄, k̄ + ✏] replace h(ki) by h(0) and h(k̄), respectively.
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Then,

 ✏(k1 � k2)(1� (✏)/2)  f ✏
i (kj|ki)   ✏(k1 � k2)(1 + (✏)/2) (16)

)
Z

yk2

 ✏(k1 � y)dy � (✏)/2  F ✏
1(k2|k1) 

Z

yk2

 ✏(k1 � y)dy + (✏)/2

(17)

(16) also implies,

Z

zk1

 ✏(z � k2)dz � (✏)/2  F ✏
2(k1|k2) 

Z

zk1

 ✏(z � k2)dz + (✏)/2

)
Z

z�k1

 ✏(z � k2)dz + (✏)/2 � 1� F ✏
2(k1|k2) �

Z

z�k1

 ✏(z � k2)dz � (✏)/2

)
Z

yk2

 ✏(k1 � y)dy + (✏)/2 � 1� F ✏
2(k1|k2) �

Z

yk2

 ✏(k1 � y)dy � (✏)/2

(18)

Subtracting (18) from (17) gives the required inequality.

Lemma 2

Proof. The continuity of '✏ is implied by the continuity of ' assumed in A2.

Consider the numerator in the expression for f ✏
i (kj|ki) as expressed in (1).

WLOG take a sequence kn
1 that converges to k1, such that kn

1 2 [�✏, k̄+✏] for all

n. Given the continuity of '✏ it is immediate that holding k2 fixed, h(k)'✏(kn
1 �

k, k2 � k) ! h(k)'✏(k1 � k, k2 � k), almost everywhere in [0, k̄]. Further

h(k)'✏(kn
1 �k, k2�k)  h(k)'̄✏ for all n and k, where '̄✏ is the maximum value

taken by the function ' on [�1, 1]⇥ [�1, 1]. Consequently by the Dominated

Convergence Theorem,
R
h(k)'✏(k1 � k, k2 � k)dk = limn!1

R
h(k)'✏(kn

1 �

k, k2 � k)dk. In other words,
R
h(k)'✏(k1 � k, k2 � k)dk is continuous in ki.
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For the denominator in (1), consider first the marginal density. Fix k. Let

k1 62 {k�✏, k+✏}. Then for any sequence kn
1 that converges to k1 it must be the

case that '✏(kn
1�k, k2�k) ! '✏(kn

1�k, k2�k) for all values of k2, byA3. Again

by the Bounded Convergence Theorem, the marginal
R
'✏(kn

1 �k, k2�k)dk2 for

a given value of k is found to be continuous at all k1 other than potentially two

points, k� ✏ and k+ ✏. Consequently for any sequence kn
1 that converges to k1,

it is true that h(k)
R
'✏(kn

1 �k, k2�k)dk2 ! h(k)
R
'✏(k1�k, k2�k)dk2 for all

values of k other than possibly k1�✏ and k1+✏. Further, h(k)
R
'✏(kn

1 �k, k2�

k)dk2  h(k)'̄✏ for all k, n. By the Dominated Convergence Theorem, it must

be that
R
h(k)

R
'✏(kn

1 �k, k2�k)dk2dk, the denominator in (1), is continuous

in k1. Given A1 and the additive structure of the noise, the denominator

is also strictly positive for all k1 2 (�✏, k̄ + ✏). Therefore for all k1, k2 2

[�✏, k̄ + ✏], f ✏
i (kj|ki) is continuous in ki. f ✏

i (kj|ki) is also continuous in kj,

since kj does not a↵ect the denominator of (1), while its influence on the

numerator is symmetric to that of ki. So let f̄✏ be the maximum value taken by

f ✏
i (kj|ki) for k1, k2 2 [�✏, k̄ + ✏]. Then for any measurable function sj, it must

be that sj(kj)f ✏
i (kj|kn

i ) ! sj(kj)f ✏
i (kj|ki) if kn

i ! ki and sj(kj)f ✏
i (kj|kn

i ) 

sjkj f̄✏, for all values of kj. Therefore by the Dominated Convergence Theorem,

Pr(Aj|k✏
i , sj) =

R
sj(kj)f ✏

i (kj|k✏
i )dkj is continuous in k✏

i .

To show that E✏(k|k✏
i ) is continuous in k✏

i consider first the conditional

density of the true k given an observation ki.

f ✏
i (k|ki) =

R
h(k)'✏(k1 � k, k2 � k)dkjR R
h(k)'✏(k1 � k, k2 � k)dkjdk

(19)

Continuity of the denominator of (19) in ki has already been established before.

The numerator for a given k is the product of the strictly positive h(k) and the
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marginal density of ki. It has been shown earlier that for a given k the marginal

density of ki is continuous at all ki other than possibly when ki 2 {k�✏, k+✏},

the boundary points. As a result, for a given k, f ✏
i (k|ki) is continuous for all

ki other than the two boundary points. Therefore for a sequence kn
i that

converges to ki, kf ✏
i (k|kn

i ) ! kf ✏
i (k|ki) for all k other than possibly when

k 2 {ki�✏, ki+✏}. Further since the denominator in (19) is bounded below and

the numerator bounded above, the Dominated Convergence Theorem delivers

the continuity of E✏(k|k✏
i ) =

R
kf ✏

i (k|k✏
i )dk in k✏

i .

Lemma 3

Proof. Given the payo↵s in Table 2, it is clear that whenever j chooses Accept,

i always does strictly better by choosing Stick. Upon observing k✏
i > 1� zj + ✏

player i knows that for all the possible values that k can take she would get

a strictly negative payo↵ by playing Accept if j plays Stick. As a result i

would still strictly prefer to play Stick since it guarantees a payo↵ of 0 as

opposed to the negative expected payo↵ from playing Accept, when j plays

Stick. Consequently, upon observing k✏
i > 1 � zj + ✏, Stick is the strictly

dominant action for player i.

Lemma 4

Proof. From lemma 3 it is already known that j plays Stick for every observa-

tion k✏
j > 1�zi+ ✏. Player i making an observation k✏

i 2 (1�zi+3✏, 1�zj� ✏)

learns two things. Firstly, she knows that j must have observed k✏
j > 1� zi+ ✏

and must therefore be playing the strictly dominant Stick. Secondly, she knows

that the true state k must lie in the interval (1�zi+2✏, 1�zj). Conditional on j

playing Stick for any such value of k, playing Accept strictly dominates playing
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Stick for i. The dominance solvable outcome following such an observation,

therefore, involves i playing Accept while j plays Stick.

Lemma 5

Proof. Suppose the statement is false for player i, who makes the higher de-

mand. This means thatB✏
i (z1, z2) is non empty but y = sup{x|x 2 B✏

i (z1, z2)} 62

B✏
i (z1, z2). So there exists a sequence of observations kn

i that converge to y,

with i playing Stick for all n but she plays Accept upon observing y. i’s

expected payo↵ from playing Accept following an observation ki is given by

1�zj�E✏(k|ki)+dPr(Aj|ki) while it is ziPr(Aj|ki) from playing Stick. Given

that i plays Stick for all observations in the sequence kn
i it must be that

ziPr(Aj|kn
i ) � 1 � zj � E(k|kn

i ) + dPr(Aj|kn
i ). By Lemma 2, E✏(k|ki) and

Pr(Aj|ki) are continuous in ki for all measurable strategies, sj. So if kn
i ! y it

must be that ziPr(Aj|y) � 1� zj � E(k|y) + dPr(Aj|y). Given the tie break

rule mentioned earlier this implies that i would play Stick upon observing y.

This contradicts the earlier claim and proves the lemma for i. A symmetric

argument proves the lemma for player j.

Lemma 6

Proof. Let B✏
i (z1, z2) be empty. Then for all observations k✏

i  1 � zi + 3✏

player i chooses to play Accept. In that case whenever player j receives a

signal k✏
j  1� zi + 3✏ it is conditionally dominant for him to play Stick. This

would imply that B✏
j(z1, z2) is empty.

Now if B✏
j(z1, z2) is empty then for all observations k✏

j  1� zi + 3✏ player

j chooses to play Stick. Player i following an observation k✏
i  1 � zi + 3✏

knows that the true value of k is such that 1 � zj � k > 0. Consequently
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conditional on j playing Stick, she is strictly better o↵ playing Accept. As a

result B✏
i (z1, z2) is empty.

Lemma 7

Proof. Let k✏⇤
j + 2✏  k✏

i  1 � zi + 3✏. Conditional on such an observation

player i knows that for all the possible values of k, 1�zj�k > 0 and hence she

would strictly prefer to play Accept if j plays Stick. Further such an observation

implies that j has observed k✏
j > k✏⇤

j implying that j would certainly play Stick.

Consequently i’s conditionally dominant action is to play Accept.

Lemma 8

Proof. Suppose not. Then, by Lemmas 5 and 6, k✏⇤
i , k✏⇤

j > �✏ are well de-

fined. Let player i’s payo↵ from playing Accept and Stick upon observing

k✏⇤
i be denoted as ui(Ai|k✏⇤

i ) and ui(Si|k✏⇤
i ) respectively. Given the payo↵s in

Table 2, ui(Ai|k✏⇤
i ) = 1 � zj � E✏(k|k✏⇤

i ) + dPr(Aj|k✏⇤
i ). Also ui(Si|k✏⇤

i ) =

ziPr(Aj|k✏⇤
i ). Given that i chooses Stick after such an observation, it must be

that ui(Si|k✏⇤
i ) � ui(Ai|k✏⇤

i ). This in turn implies the following inequality,

Pr(Aj|k✏⇤
i ) � 1� zj � E✏(k|k✏⇤

i )

zi � d
(20)

Similarly, player j choosing Accept upon observing k✏⇤
j implies that uj(Aj|k✏⇤

j ) �

uj(Sj|k✏⇤
j ). Writing out the payo↵s, 1�zi�E✏(k|k✏⇤

j )+dPr(Ai|k✏⇤
j ) � zjPr(Ai|k✏⇤

j ).

This gives rise to the following inequality,

Pr(Ai|k✏⇤
j ) 

1� zi � E✏(k|k✏⇤
j )

zj � d
(21)

Now, player j plays Stick following any observation k✏
j > k✏⇤

j . Therefore, it
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must be that,

Pr(Aj|k✏⇤
i )  F ✏

i (k
✏⇤
j |k✏⇤

i ) (22)

On the other hand, player i plays Accept for observations k✏
i > k✏⇤

i as long as

k✏
i < 1 � zj � ✏. For values of k✏

i that are within 2✏ of k✏⇤
j it must be that

k✏
i < 1� zj � ✏ since k✏⇤

j  1� zi + ✏ by Lemma 3 and 1� zi + ✏ < 1� zj � 2✏

by assumption. As a result the following inequality holds.

Pr(Ai|k✏⇤
j ) � 1� F ✏

j (k
✏⇤
i |k✏⇤

j ) (23)

Subtracting (23) from (22) and using (2) from Lemma 1 gives the inequality,

Pr(Aj|k✏⇤
i )� Pr(Ai|k✏⇤

j )  ✏ (24)

Finally combining (20), (21) and (24) gives,

✏ � 1� zj � E✏(k|k✏⇤
i )

zi � d
�

1� zi � E✏(k|k✏⇤
j )

zj � d
(25)

� 1� zj � k✏⇤
i � ✏

zi � d
�

1� zi � k✏⇤
j + ✏

zj � d
(26)

>
1� zj � k✏⇤

j � 3✏

zi � d
�

1� zi � k✏⇤
j + ✏

zj � d
(27)

(25) ) (26) by the fact that E✏(k|k✏⇤
i )  k✏⇤

i +✏ and E✏(k|k✏⇤
j ) � k✏⇤

j �✏. While

the inequality from Lemma 7, namely k✏⇤
i < k✏⇤

j + 2✏, makes (26) ) (27).
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(27) )

✏(zi � d)(zj � d) > (zj � zi)(1� k✏⇤
j + d)� (z2j � z2i )� 3✏zj � ✏zi + 4✏d

)✏(1� (zi � zj)
2) > (zj � zi)(1� k✏⇤

j � (zi + zj) + d) + ✏(zi � zj)� 2✏

)✏(1� (zi � zj)
2) > (zi � zj)(k

✏⇤
j + d+ ✏)� 2✏

)k✏⇤
j + d+ ✏ <

✏(1� (zi � zj)2)

zi � zj
+

2✏

zi � zj

)k✏⇤
j < �✏+

✏

zi � zj
+

2✏

zi � zj
� d� ✏(zi + zj)

)k✏⇤
j < �✏+

(+ 2)✏

zi � zj
� d (28)

Given that k✏⇤
j must be a value strictly greater than �✏, (28) delivers a con-

tradiction to the initial claim if,

zi � zj �
(+ 2)✏

d
(29)

The premise in the lemma satisfies (29) and therefore it must be that B✏
j(z1, z2)

is empty. Lemma 6 then guarantees that B✏
i (z1, z2) is empty too.

Lemma 10

Proof. (a) is immediate, since player i has an incentive to demand 1� zj and

strictly increase her payo↵ by 1�zj�zi > 0. Lemma 9 shows that following an

incompatible demand profile such as (b), the player with the higher demand,

say i, has an expected payo↵ yi 
R 1�zj
0 (1� zj �w)h(w)dw < 1� zj and could

do strictly better by simply making the compatible demand 1� zj.

Lemma 11

Proof. Following an incompatible demand profile, the payo↵s are determined
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by outcomes in the second stage game described in Table 2. Notice that

following any possible realization, k, the maximum total payo↵ would be

max{1 � k, 0}. As a result the expected payo↵s from making incompatible

demands must satisfy, y1 + y2  1 � k̂. Now for the incompatible profile

(z1, z2) to be supported as an equilibrium in �✏, it must be that neither player

gains by making a compatible demand instead. This means, yi � 1� zj. Sum-

ming across the two players gives, y1 + y2 � 2� z1 � z2, which in turn implies,

2�z1�z2  1� k̂. Given that d = (z1+z2�1)/2 it must be that d � k̂/2.

Lemma 12

Proof. Equilibrium behavior in the second stage game involves a total payo↵

of 0 if both parties play Stick or 1 � k if (Accept, Stick) or (Stick, Accept) is

the outcome. Players using mixed strategies results in the total payo↵ lying

in the interval [0,max{0, 1 � k}]. Lemma 2 makes it clear that if k > 1 �

min{z1, z2} + 2✏ then the players would always play (Stick, Stick). So it can

be said for certain that following an incompatible demand profile, the total

expected payo↵ in equilibrium must be no more than (1 �
R
kh(k|k  1 �

min{z1, z2}+2✏)dk)H(1�min{z1, z2}+2✏). This in turn implies that following

incompatible demands there exists i with an expected payo↵,

yi 
1

2
(1�

Z
kh(k|k  1�min{z1, z2}+2✏)dk)H(1�min{z1, z2}+2✏) (30)

d � k̂/2 implies zi + zj � 1 � k̂. Also by the definition of �, it must be that
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�(d)  �⇤ since d � k̂/2. So,

|zi � zj| < �(d)  �⇤

)2min{z1, z2}+ �⇤ � 1 � k̂

)min{z1, z2} � 1

2
+

k̂

2
� �⇤

2
(31)

Let ✏ be small enough such that �⇤ < k̂
8 .

Then,

(31) ) min{z1, z2} >
1

2
+

7

16
k̂ (32)

Now consider what happens if player i, who receives the payo↵ mentioned

in (30), deviates to making a still incompatible demand of z̃i = 1/2. Note

that zj � z̃i >
7
16 k̂ > �⇤. Further d(z̃i, zj) >

7
32 k̂ which implies that �(d)  �⇤.

Therefore zj�z̃i > �(d(z̃i, zj)). As a result, the new demand profile satisfies the

condition of Lemma 9, which implies that player i following such a deviation

must expect a payo↵ ỹi,

ỹi �
1

2
F ✏
i (
1

2
� ✏) � 1

2
H(

1

2
� 2✏) (33)

Player i’s initial payo↵ inequality described in (30) along with (32) implies,

yi <
1

2
H(

1

2
� 7

16
k̂ + 2✏) (34)

For small enough values of ✏, it is clear that yi < ỹi. Given that such a

profitable deviation exists, (z1, z2) 62 Eq✏.

Proposition 4

82



Proof. Consider the following strategies. Both players demand 1/2 in the first

stage. If player j makes a demand higher than 1/2 then in the second stage,

in the event of multiplicity, both players play actions in accordance to the

risk dominant outcome of the second stage game. Further if the state of the

world (k1, k2) lies in the region D(1/2, zj) then both players play Stick. Given

these strategies it is easy to see that second stage behavior satisfies equilibrium

behavior since it either involves playing the unique dominance solvable action

profile or playing one of the Nash Equilibria; in particular, the risk dominant

action profile. However, it must be checked if any player has an incentive to

deviate in the first stage. Deviating to a smaller demand is obviously less

profitable to the deviator and hence ruled out.

Suppose Player 1 deviates to making a higher demand z1 > 1/2. By doing

so, Player 1 would gain a higher payo↵ for every k that lies in her new risk

dominant region, R1(z1, 1/2). Denote this gain by G. From (8), it must be

that,

G  (z1 � 1/2)(1� F1(1/2))F2(1� z1) + 1/2(z1 � 1/2)F1(1/2)F2(1/2). (35)

On the other hand Player 1 ends up losing her share of 1/2 in the new disagree-

ment region, D(z1, 1/2), while also paying her revoking cost in her opponents

risk dominant region R2(z1, 1/2). Denote this loss by L. From (8) and (6), it

must be that,

L >
1

2
(1� F1(1/2))(1� F2(1� z1)) (36)

The proposition will be first proven for F1 and F2 being uniform. If F1 and F2
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are uniform then (35) can be rewritten as,

G  (z1 � 1/2)

✓
k̄1 � 1/2

k̄1

◆✓
1� z1
k̄2

◆
+

1

2
(z1 � 1/2)

✓
(1/2)2

k̄1k̄2

◆
(37)

Similarly (36) implies,

L >
1

2

✓
k̄1 � 1/2

k̄1

◆✓
k̄2 � 1/2

k̄2

◆
+

1

2

✓
k̄1 � 1/2

k̄1

◆✓
z1 � 1/2

k̄2

◆
(38)

Note that z1 > 1/2 and k̄i > 1. Consequently, for such a deviation to be

profitable it must be that G > L. This in turn, from (37) and (38), implies

that a profitable deviation must involve,

1

2

✓
k̄1 � 1/2

k̄1

◆✓
k̄2 � 1/2

k̄2

◆
<

1

2
(z1 � 1/2)

✓
(1/2)2

k̄1k̄2

◆

)1 < z1 � 1/2 (39)

The impossibility of (39) rules out any profitable deviation for Player 1. A sym-

metric argument rules out any profitable deviation for Player 2. Consequently

the strategies outlined above constitute a Subgame Perfect Equilibrium when

the Fi are uniform distributions. To see how the argument then extends to

any pair of distributions that FOSD the uniform distribution, notice that to

arrive at the contradiction above, it was shown that,
✓
z1 �

1

2

◆✓
1� F1

✓
1

2

◆◆
F2(1�z1)+

✓
z1 �

1

2

◆
F1

✓
1

2

◆
F2

✓
1

2

◆
<

1

2
(1�F1(1/2))(1�F2(1�z1))

(40)

when the Fi are uniform. It is easy to see that if the Fi FOSD the uniform

distribution, the right hand side of (40) would be even higher, while the left

hand side even lower than in the uniform case. Consequently the relationship

L > G would hold for all such distributions. The result follows.
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Proposition 5

Proof. First, note that an incompatible demand profile with at least one player

making a demand of zi = 1 cannot be supported in equilibrium. Following such

an incompatible profile, player i either backs down in the second stage or the

entire surplus is lost, since player j will never back down. In other words,

Ri(zi = 1, zj) = ;. Therefore player i’s expected payo↵ must be strictly less

than 1 � zj, which in turn makes the first stage deviation to a compatible

demand a profitable one if zj < 1. If, however, z1 = z2 = 1, then each player

is better o↵ making a demand of 1/2 instead. The demand profile (1, 1) yields

a payo↵ of 0 to both players. If player 1 makes a demand of 1/2 instead her

expected payo↵ becomes, (1/2)F2(1/2) which is clearly payo↵ improving.

Having eliminated the possibility of a demand of 1 in equilibrium, the

result shall first be proven for the Fi being uniform distributions. It will then

be shown that the arguments generalize easily to any pair of distributions that

each First Order Stochastically Dominates the uniform distribution.

The statement is proved by contradiction. Suppose (z1, z2) is an incom-

patible demand profile that is supported in equilibrium with Fi being a uni-

form distribution. It must be true then that neither player can have her

payo↵ strictly increases by making a compatible demand in the first stage.

Consider the options for Player 2. If she deviates to making a compati-

ble demand she gains 1 � z1 in the region D(z1, z2). She also gains the re-

voking cost she would have had to pay following incompatible demands in

the region R1(z1, z2). The total expected gain from such a deviation is de-

noted by G where G � (1 � z1)[1 � F2(1 � z1)][1 � F1(1 � z2)] + E(k2|k2 

1� z1)[1� F1(1� z2)]F2(1� z1). For the purpose of this proof the inequality,

G � (1 � z1)[1 � F2(1 � z1)][1 � F1(1 � z2)] will su�ce. Such a deviation,
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however, results in a loss of z2 � (1� z1) in the region R2(z1, z2). Denote the

expected loss by L where L  [z2 � (1� z1)]F1(1� z2).

Since the Fi are uniform distributions the relevant inequalities become,

G � (1� z1)

✓
k̄2 � (1� z1)

k̄2

◆✓
k̄1 � (1� z2)

k̄1

◆
(41)

L  (z2 � (1� z1))
1� z2
k̄1

(42)

Given that such a deviation is not profitable by assumption it must be that

L � G. Since ki > 1, L � G implies the following inequality,

(z1 + z2 � 1)(1� z2) � (1� z1)z2z1 (43)

A symmetric argument shows that for Player 1 to not be strictly better of from

deviating to a compatible demand, the following inequality must hold.

(z1 + z2 � 1)(1� z1) � (1� z2)z1z2 (44)

Now suppose z1 � z2. Then to satisfy (44) it must be that z1 + z2 � 1 � z1z2,

which in turn implies zi � 1. On the other hand if z2 � z1 then satisfying (43)

would require zi � 1. Since the possibility of zi = 1 in equilibrium was ruled

out earlier this delivers the contradiction.

The uniform distribution case was proved by essentially showing that at

least one of the inequalities,

(1� zi)[1� Fj(1� zi)][1� Fi(1� zj)] > [zj � (1� zi)]Fi(1� zj) (45)

for i 2 {1, 2}, holds if both players are not demanding 1 each. This made
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the deviation to a compatible demand a profitable one for Player j. Notice

that for any other pair of distribution functions, F1 and F2 that FOSD the

uniform distribution, this inequality would continue to hold since it would

simply decrease the right hand side of (45) while increasing the left hand

side. This would make the required inequality, G > L, hold for all such

distributions.
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Chapter 3: Coordinating by Not Committing:

E�ciency as the Unique Outcome

1 Introduction

The role of commitment in determining the outcome of strategic interactions

has been studied in a variety of settings since the classic work of Schelling(1960).

From the simple observation that the Stackelberg outcome of a game need not

be a Nash Equilibrium to the commitment folk theorem of Kalai et al(2010),

the influence of commitment ability is seen to be both significant and diverse.

Evidently the exact role of commitment crucially depends upon the precise

description of the commitment ability itself.

One form of commitment ability comprises in the capability of agents to

limit their own set of choices available for a given strategic interaction. Cited

examples of such ability range from armies burning their bridges thereby elim-

inating the option of a retreat to making a sunk contribution towards a joint

project making it impossible to contribute less than the latter amount. Re-

nou(2009) studies such commitment ability by adding a commitment stage to

strategic games. Players, in the first stage, simultaneously choose a subset of

the (finite set of) actions available to them in the strategic game. In the sec-

ond stage they play the new strategic game with only the restricted action sets

available to each player. Bade et al.(2009) analyze a game in which two players

can repeatedly and irreversibly rule out their own actions over a fixed number

of periods and simultaneously choose from the remaining actions in the final

period. The initial action space in this setup is a closed interval of the real line,

while players are allowed to commit to closed convex subsets of the original
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space. The payo↵ functions are assumed to be continuous and strictly quasi

concave. Importantly they find that an outcome that can be supported in a

commitment game lasting T period can be supported in a one period commit-

ment game. One could therefore without loss of generality study single period

commitment games. While both these papers involve players voluntarily re-

stricting their own choice sets, Nava(2008) considers games where players can

restrict the set of action profiles (not merely their own actions) if they unan-

imously choose to do so. The requirement of unanimity retains the voluntary

nature of commitment ability of the earlier studies. The analysis is carried

out for both single and multiple rounds of commitment. A common finding in

all these papers is that such commitment ability typically increases the set of

outcomes supported by equilibrium arguments. While e�cient outcomes that

were not Nash Equilibria(NE) of the original game may now be achievable

through commitment, the original set of NE continues to be outcomes sup-

ported by SPE strategies in the commitment games analyzed in these papers.

Nava(2008), going further, shows that if the players have multiple rounds to

make their joint commitments a folk theorem holds. Such a folk theorem also

holds when players have the ability to make conditional commitments as in

Kalai et al.(2010).

The present paper contributes to this research program by analyzing two

player finite games, as in Renou(2009), where the players can repeatedly rule

out actions in their own choice set, as in Bade et al.(2009). However, there

are three points of departure from earlier studies. Firstly, committing to a

smaller set of actions is assumed to be costly. This assumption is informed by

the casual observation that whether such commitment involves the physical

elimination of an option (burning bridges) or rendering an option infeasible by
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making it too costly (a President announcing publicly that he would veto a par-

ticular bill, making backing down prohibitively costly for re election prospects),

the very act of constraining one’s choices may involve a cost. Importantly, this

cost may be arbitrarily small in comparison to the payo↵s involved in the ac-

tual strategic game. While the cost of making a public announcement may be

negligible in comparison to the payo↵s involved in a particular bill being passed

or not, the cost is still strictly positive. Secondly, players have the ability to

commit to not commit. This assumption is interesting for both normative and

positive reasons. On the one hand it is common for people to take a “no fur-

ther comments” stand when making a comment would potentially constrain

their future choices. On the other hand, the normative analysis in this paper

shows that having the ability to rule out future commitments may be hugely

beneficial to both parties concerned, allowing them to avoid Pareto ine�cient

Nash Equilibrium outcomes. Finally, the number of periods for which the game

continues is determined endogenously. The players can continue to commit to

progressively smaller subsets of their choice sets. The final strategic game is

played following a period when all players who retain the ability to commit

choose not to constrain their choices further.

Given a finite strategic game between two players this paper embeds it in

a larger multi stage game, referred to as a dynamic commitment game. In the

first period the players decide whether they want to make a strict commitment

by irreversibly eliminating some actions from their original choice sets. Alter-

natively a player could commit to not commit thereby giving up the possibility

of making any future commitments. A player could also play passive, involving

no strict commitments, while leaving the option of future commitments open.

The two players make their commitment decisions simultaneously. In the next
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period players who can still make commitments face the same set of commit-

ment options as the previous period and make their decisions simultaneously.

Only now their choice set does not contain the actions eliminated by them ear-

lier. The game continues in this way until a period is reached when all players

who have the ability to commit either play passive or commit to not commit.

In the subsequent period a strategic game is played with each player choosing

from actions still available to them in their constrained choice sets. Given a

strategy profile for the dynamic commitment game, a player gets the payo↵

from the outcome of the induced strategic game while paying the total cost

for all the strict commitments she made on the equilibrium path. The cost of

making a strict commitment is assumed to be some small constant. So if the

player made strict commitments in four periods on the equilibrium path, she

incurs a cost of four times the said constant. The analysis focuses on the out-

comes of the final period strategic game induced by subgame perfect strategy

profiles for the dynamic commitment game when the cost of making a strict

commitment is made arbitrarily small. Such outcomes are called supportable.

An immediate but important feature of the dynamic commitment game

outlined above is that Nash Equilibria of the original game need not be sup-

portable. To see why this is the case consider the strategic game depicted in

Example 1.

Example 1: Nash Equilibrium not supportable.

a2 b2

a1 3, 3 0, 7
b1 2, 0 1, 1

Example 1 is in fact a dominance solvable game with (b1, b2) as its unique

Nash Equilibrium. The unique supportable profile, however, turns out to be
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(a1, a2). To see why (b1, b2) is not supportable note first that both players

simultaneously committing to a single action each cannot be part of an SPE.

For instance if players 1 and 2 commit to {b1} and {b2} respectively, the out-

come would be (b1, b2) with a payo↵ of 1 � ✏ where ✏ is the cost of making a

strict commitment. If player 2, on the other hand, deviates to committing to

not commit, the strategic game �({b1}, {a2, b2}) must be played in the next

period, resulting in the same outcome (b1, b2) but giving player 2 a payo↵

of 1, thereby making it a profitable deviation. Since the game has just two

actions per player, eliminating simultaneous commitments to a single action

each, suggests that any SPE must involve no more than one player making

a strict commitment in the first period. If player 2 is the one making the

commitment she must get at least 3� ✏ since she can simply commit to {a2}
guaranteeing herself her Stackelberg payo↵, thereby rejecting possible support

of the NE, (b1, b2). If player 1 is the only one to make a commitment in period

1 and chooses {b1} the resultant payo↵ would be 1 � ✏. Again deviating to

playing either passive or committing to not commit would result in the original

game being played in the next period, resulting in the same outcome. Player

1, however, would save on the ✏ cost from this deviation, thereby making the

stated strategy profile fail subgame perfection. Finally consider the strategy

profile involving the players choosing either PS or NC in the first period, fol-

lowed by the profile (b1, b2) in the subsequent strategic game. Player 2 would

again have the strictly profitable deviation to committing to {a2}, forcing the

outcome (a1, a2) in the subsequent strategic game, and getting a payo↵ of 3�✏

as opposed to the original 1. (b1, b2), as a result, fails to be supportable.

While not all Nash Equilibria of the original game are supportable, it turns

out that if there exists a Nash Equilibrium that Pareto dominates all other
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outcomes then it will be supportable. In fact such a Nash Equilibria can be

supported without any player making any strict commitments in equilibrium.

This leads to the main results of the paper which show that for two classes of

strategic games not only is the Pareto dominant Nash Equilibrium supported

it is also the unique supportable outcome. The two classes are games of pure

coordination and n ⇥ n games with n Nash Equilibria. These results mark

a significant departure from the earlier commitment results. In Renou(2009),

Bade et al.(2009) and Nava(2008) e�ciency is often made achievable by the

commitment ability but it is by no means guaranteed due to the multiplic-

ity of equilibria, in particular the ine�cient Nash Equilibria that are always

supportable. Pure coordination games pose a particularly frustrating problem

here, since there are usually a number of Pareto dominated Nash Equilibria

despite the fact that the preferences of the two players are perfectly aligned

across all outcomes.

The definition of pure coordination games used in this paper is a purely

ordinal one, requiring that if one player prefers outcome x to y then so does

the other player. The uniqueness result is surprising also in that the ruling

out of ine�cient equilibria does not require players making strict commit-

ments in equilibrium; the possibility alone su�ces. Pure coordination games

have been studied extensively and a number of studies have analyzed ways

in which the players could achieve the Pareto dominant outcome. Laguno↵

and Matsui(1997) show that if a (cardinal) pure coordination game is re-

peated infinitely, but the players move asynchronously in the stage games, the

Pareto dominant outcome is achieved uniquely for su�ciently patient players.

Calcagno and Lovo(2010) and Kamada and Sugaya(2010) consider a setup

more similar to the present analysis where the strategic game is played just
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once at the end. In these studies players have the ability to revise their ac-

tions stochastically till a deadline is reached when the most recent actions

are played. In games that are su�ciently similar to pure coordination games,

the unique outcome is found to be the Pareto dominant Nash Equilibrium.

Caruana and Einav(2008) consider games where the players get to revise their

actions sequentially in some predetermined order before a deadline when the

final actions are played. Revising actions, however, is costly with the cost in-

creasing as the deadline approaches. They find a unique equilibrium for generic

2 ⇥ 2 games that is independent of the order and timing of moves as long as

each party gets to revise their actions frequently enough. This is a remarkable

result since the commitment ability of players is determined endogenously but

still the outcome is invariant to the particular revision protocol used. A crucial

aspect in all these papers, however, is the asynchronicity of moves made by

the players. While explicit in Laguno↵ and Matsui(1997), it is implicit in the

idiosyncratic posting ine�ciency of Calcagno and Lovo(2010), the indepen-

dent stochastic arrival of revision possibilities in Kamada and Sugaya(2010)

and the requirement of the revision process to be sequential in Caruana and

Einav(2008). All these studies acknowledge that this asynchronicity is crucial

for their results. The present paper, in contrast, involves the players making

their commitment decisions simultaneously. As a result the rationale for why

the Pareto dominant NE is the unique outcome of dynamic commitment games

is markedly di↵erent.

Indeed the logic behind the uniqueness result relies on a signalling e↵ect

that the choice of not making any commitments has(discussed in greater detail

in Section 4), similar in spirit to the role played by the possibility of burning

money in Ben-Porath and Dekel(1992). In the latter paper the ability of
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one player to burn money before the strategic game is played can lead to

her most preferred outcome being played. In a pure coordination game this

outcome would be the Pareto dominant Nash Equilibrium. Further, the option

of burning money alone su�ces, no money is burnt in equilibrium. However

this result does not hold if both players can simultaneously burn money, and

further the argument relies on the iterated elimination of weakly dominated

strategies. In the present analysis the equilibrium concept used is that of

subgame perfection, while allowing for simultaneous commitments to be made.

An e�ciency result similar to the present paper can be found in Jackson

and Wilkie(2005). The latter paper studies two stage games where the play-

ers simultaneously announce binding outcome contingent transfers in the first

stage, and play the so modified strategic game in the second stage. While not

explicitly mentioned in the paper, a natural consequence of their characteriza-

tion results is that if a strict 2 player strategic game has a Nash Equilibrium

that Pareto dominates all other outcomes, then it will be the unique support-

able outcome of their two stage game.1 Note that this result does not require

the strategic game to be either one of pure coordination or an n⇥n game with

n Nash Equilibria and therefore has a larger scope. The rationale behind this

result, however, is quite distinct from that of the present paper. In particular

the Jackson and Wilkie(2005) result relies on the ability of a given player,

say i, to make the Pareto dominant Nash Equilibrium action for player �i,

her strictly dominant action by promising a su�cient amount of transfer for

any outcome that involves �i playing the said action. Interestingly while all

other outcomes are ruled out, the unique supportable outcome itself may be

supported without the use of transfers. Again, the ability alone to make such

1
I thank Matthew Jackson for his help in my understanding of this issue.
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transfers su�ces. One implicit assumption necessary for this result, however,

should be pointed out. The transfers, in a sense, do not need to satisfy any

budget constraints. In particular making the Pareto dominant NE action a

dominant action may require transfers that are larger than any possible payo↵

in the original game. Therefore making such a commitment credible requires

the availability of such amounts to the players from sources outside the game.

The rest of the paper is as follows. Section 2 formally introduces dynamic

commitment games. Section 3 presents a couple of results relating to general

strict games. In particular it is shown that while Nash Equilibria of the orig-

inal game may or may not be supportable, some outcomes related to Nash

Equilibria of the original game are never supportable. Section 4 presents the

result for ordinal pure coordination games while section 5 does the same for

n⇥n games with n Nash Equilibria. Section 6 discusses the role of the assump-

tions made, in particular pointing out the necessity of the ability to commit

to not commit. The role of multiple rounds of commitment is discussed here

too. Section 7 discusses how the commitment ability studied in this game

does not necessarily lead to more e�cient outcomes in general games. Section

8 concludes.

2 Model

N = {1, 2} is used to denote the set of 2 players. The letter i is used to refer

to a generic player in this set, while �i is used for the other player. Each

player i has a finite set of actions denoted by Xi. Let X ⌘ X1 ⇥ X2 and

let �(X) denote the set of all probability functions over elements of X. The

payo↵ function for player i is given by ui : X ! R. Let C be the set of all
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2 component vectors c with ci 2 {0, 1} for all i 2 N . Fix a small ✏ > 0. A

dynamic commitment game g

✏(A, u, c) with A = X and c = q 2 C is defined

as follows.

If qi = 1, 8i 2 N , then the simultaneous move game, �(X, u) is played,

following which the game ends. If 9i 2 N such that qi = 0, then all players who

can still commit simultaneously choose from their feasible actions (specified

below), following which the game moves on to the next period and g

✏(A, u, c)

is played with A = X

0 and c = q

0.

If qi = 0 then player i has the ability to make commitments (can still

commit), and can choose to do one of the following.

• Make a strict commitment (SC ), by choosing some X 0
i ⇢ Xi. This results

in q

0
i = 0 if |X 0| � 2 and q

0
i = 1 if |X 0| = 1.2

• Commit to not commit(NC ), resulting in q

0
i = 1 while X

0
i = Xi.

• Play passive(PS ) in which case X

0
i = Xi.

• Choose a mixed strategy involving a probability function over the above

options.

If qi = 0 and player i plays PS, then q

0
i = 0 if X 0

�i 6= X�i and q

0
i = 1 otherwise.

In other words, player i playing passive leaves her commitment options open

next period as long as the other player makes a strict commitment. However, if

every player with commitment ability either plays PS or NC then the induced

simultaneous move game is played in the next period.

Finally committing to not commit as the name suggests, results in no fur-

ther commitment opportunities. Formally, if qi = 1 and q�i = 0 then q

0
i = 1

2
The symbol ⇢ is used to denote is a non empty strict subset of while |A| denotes the

cardinality of the set A.
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and X

0
i = Xi. Notice that if qi = 1 for all i 2 N then the induced simultaneous

move game is played, implicitly ending further commitment abilities.

The number of periods for which the game continues, given the specification

above, is endogenously determined, though necessarily finite. A typical non

terminal history of the game g

✏(A, u, c) comprises of a sequence of feasible

action sets and commitment vectors, ((X0
, c

0), (X1
, c

1), . . . , (XT
, c

T )), with

X

0 = A and c

0 = c. Given the specification of the game above and for any

feasible non terminal history ((X0
, c

0), (X1
, c

1), . . . , (XT
, c

T )), the following

must be true for all t 2 {0, 1, . . . , T � 1}.

c

t
i = 1 ) c

t+1
i = 1, X t+1

i = X

t
i .

X

t+1
i ⇢ X

t
i ) c

t
i = 0

X

t+1
i ⇢ X

t
i&|X t+1

i | � 2 ) c

t+1
i = 0

c

t 6= (1, 1)

The last equation captures the fact that if for a given non terminal history

neither player can commit in period t, then it must be that t = T , since the

simultaneous move game �(X t
, u) should be played in the next period.

A non terminal history with c

T = (1, 1) is called a semi terminal history.

Notice that following a semi terminal history, the induced simultaneous move

game, �(XT
, u) is played. A strategy �i, for player i specifies a mapping from

the set of all non terminal histories to her available choices described earlier.

A terminal history, h = ((X0
, c

0), (X1
, c

1), . . . , (XT
, c

T ), x) comprises of a

semi terminal history followed by action choices made in the induced simulta-

neous move game, x 2 X

T . The payo↵ to player i at such a terminal history
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is given by

⇡i(h) = ui(x)� zi(h)✏ (1)

where zi(h) is the number of times player i made a strict commitment in the

history, h.

A strategy profile � = (�i)i2N generates a probability function over the set

of all terminal histories. Player i’s expected payo↵ from such a strategy profile

is given by,

⇡i(�) = E(⇡i(h)|�). (2)

The probability function over the elements ofX generated by a strategy profile,

�, in the dynamic commitment game, g✏(X, u, c = (0, 0)) is denoted by µ(�).

The object of this study is to identify action profiles that are played in the

simultaneous move games induced by subgame perfect equilibrium strategies

of the dynamic commitment game, when ✏ is made arbitrarily small.

Definition 1. Given X and u, a probability function ' 2 � is said to be sup-

portable in g

✏(X, u, c = (0, 0)) if there exists a subgame perfect equilibrium

strategy profile, � for the game g

✏(X, u, c = 0N) such that ' = µ(�).

The set of supportable probability functions in g

✏(X, u, c = (0, 0)) is denoted

by, O(g✏(X, u)). An outcome x 2 X is called supportable in g

✏(X, u, c =

(0, 0)) if there exists ' 2 O(g✏(X, u)) such that '(x) = 1. Through a minor

abuse of notation such outcomes would be characterized by the inclusion, x 2
O(g✏(X, u)). The set of all such outcomes is denoted by the set OP (g✏(X, u)) =

{x 2 X|x 2 O(g✏(X, u))}.

Definition 2. Given X and u, a probability function ' 2 � is said to be

supportable if there exists a sequence of ✏

k
> 0, with limk!1 ✏

k = 0 such that
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' 2 limk!1(O(g✏(X, u))).

The set of all supportable probability functions given X and u is denoted by

O(g(X, u)). Again, x 2 O(g(X, u)) implies that there exists ' 2 O(g(X, u))

such that '(x) = 1. Such outcomes are collected in OP (g(X, u)) = {x 2 X|x 2
O(g(X, u)). The set of Nash Equilibria of a simultaneous move game �(X, u)

is denoted by NE(�(X, u)).

Finally, a dynamic commitment game, g✏(X, u, c) with a finite X and c 2 C

is a finite extensive form game with perfect recall. As a result for all such

games, the existence of an SPE is guaranteed.

3 Results for General Strict Games

A simultaneous move game �(X, u) is called a strict game if 8x, y 2 X, x 6=
y ) ui(x) 6= ui(y), 8i 2 {1, 2}. This paper focuses entirely on the class of strict

games. The first observation highlights the role that the ✏ cost of commitment

plays in deterring players from making non payo↵ improving commitments. If

one player chooses to commit to a single action, then the other player, in the

same period, can never do worse by playing NC. Indeed by ruling out further

commitment ability not only does she retain greater flexibility in choosing her

best response, she saves on the cost of making a strict commitment.

Lemma 1. Given a strict game �(X, u) and its corresponding dynamic com-

mitment game g

✏(X, u, c = (0, 0)), an SPE strategy profile for the latter cannot

have both players making a strict commitment to a single action each after

any history.

Proof. Consider a subgame where both players still have the ability to make
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commitments, g(X t
, u, c = 0).3 Suppose both players commit to a single action

each xi. The payo↵ to player i at this subgame would then be ui(x) � ✏. If

player i deviates to playing NC, the game must move to the next period

where g(X t+1
, u, c = (1, 1)) is played with X

t+1
i = X

t
i and X

t+1
�i = {x�i}. Note

that this subgame is in fact the simultaneous move game, �(X t+1
, u). The

outcome would then be y = (z, x�i) where z is player i’s unique best response

to x�i in the set X

t+1
i = X

t
i , resulting in a payo↵ of ui(y) to player i in the

original subgame, g(X t
, u, c = 0). Since z is player i’s best response to x�i

in the set X

t+1
i and z, x�i 2 X

t+1
i it must be that ui(y) � ui(x). The above

deviation must then be strictly profitable since ui(y) > ui(x)�✏. Consequently,

simultaneously committing to a single action each by both players cannot be

part of SPE strategies following any history.

The second observation establishes a relationship between pure strategy

Nash Equilibria of a simultaneous move game with outcomes of the correspond-

ing dynamic commitment game. As shown in Example 1, a Nash Equilibrium

outcome of a simultaneous move game is not necessarily an outcome of the

dynamic commitment game. Interestingly, however, such a Nash Equilibrium

outcome would systematically eliminate the possibility of some other related

outcomes to be supportable in the dynamic commitment game.

Proposition 1. Given a strict game, �(X, u), if (x1, x2) 2 NE(�(X, u)) then

8y 2 X�i such that y 6= x�i, (xi, y) is not supportable.

Proof. Let (x1, x2) 2 NE(�(X, u). Consider a strategy profile � that induces

a unique simultaneous move game with outcome (y, xi), where y 6= x�i. Fur-

ther let the semi terminal history that precedes the simultaneous move game

3
Remember that c = 0 ) |Xt

i | � 2.
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be h

T = ((X0
, c

0), . . . , (XT
, c

T )). It must be that xi 2 X

t
i , 80  t  T .

Consider a deviation by player �i in the first period involving the strict com-

mitment to the single action set {x�i}. The resulting subgame would be

g

✏({x�i}, X1
i , u, ci = 0, c�i = 1). If player i does not make any strict com-

mitment in this subgame, her payo↵ would be determined by the (necessarily

unique) Nash Equilibrium outcome in the induced simultaneous move game,

�({x�i}, X1
i , u), namely (x1, x2). Any other strategy of player i would give her

no more than ui(x�i, y) � ✏, with y 2 X

1
i . Since ui(x�i, y) � ✏ < ui(x1, x2),

such strategies would violate subgame perfection. Player i’s optimal choice

thus involves not making a strict commitment. Consequently, player �i’s ini-

tial deviation guarantees her a payo↵ of u�i(x1, x2) that is strictly higher than

her payo↵ of u�i(xi, y), since x�i is her unique best response to xi in X

0
�i.

Therefore the strategy profile � cannot be subgame perfect.

If a Nash Equilibrium of the strategic game Pareto dominates all other

outcomes then it is in fact supportable. Subgame perfect strategy profiles

required to support such an outcome does not need any strict commitments to

be made on the equilibrium path. Indeed the simplest strategy profile su�ces

and is outlined below. Note that an outcome that Pareto dominates all other

outcomes must necessarily be a Nash Equilibrium outcome.

Proposition 2. Given a strict game, �(X, u) if 9x 2 X such that x Pareto

dominates all y 2 X\{x}, then x is supportable. Further there exists a subgame

perfect strategy profile that supports x involving no strict commitments on the

equilibrium path.

Proof. Consider the following strategies. Both players play passive in period

1. In the original strategic game played in period 2, the Pareto dominant
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Nash Equilibrium profile x is played. Subgame perfect strategies are used for

every other subgame. It is clear that no deviation by any player, given these

strategies, can give the said player a higher payo↵. In fact deviation to any

strict commitment would give the deviating player a strictly lower payo↵.

4 Ordinal Pure Coordination Games

A simultaneous move strict game �(X, u) is said to be an ordinal pure coordi-

nation game(OPC game) if

8x, y 2 X, u1(x) > u1(y) , u2(x) > u2(y).

A feature of OPC games is the existence of a Nash Equilibrium outcome

that Pareto dominates all other outcomes. Given an OPC game �(X, u), its

Pareto dominant outcome is denoted by P(�(X, u)). Notice that following any

sequence of strict commitments in an OPC game, the resulting game is also an

OPC game. The following lemma shows that for small enough values of ✏, in

a dynamic commitment game induced by an OPC game �(X, u), if only one

player has the ability to make commitments, the unique supportable outcome

is in fact the Pareto dominant one. Further, there exists an SPE in which no

strict commitment is made.

Lemma 2. Given X and u such that �(X, u) is an ordinal pure coordina-

tion game, the unique supportable outcome in g

✏(X, u, ci = 0, c�i = 1) is

P(�(X, u)), for all small enough ✏. There exists SPE strategies that support

this outcome involving no strict commitments.

Proof. In the first period of the game g

✏(X, u, ci = 0, c�i = 1), only player i

104



has the ability to make strict commitments. It is clear that ui(P(�(X, u))) >

ui(y), for all y 2 X \ {P(�(X, u))}. To show that no other outcome can be

supportable in this game, consider strategies that result in a di↵erent outcome,

say y 2 X such that y 6= P(�(X, u). Consider the outcome if player i deviates

by committing to the single action Pi(�(X, u)). Following such a commitment

the game �(X�i, {Pi(�(X, u))}, u) is played in the next period. The outcome,

Pi(�(X, u)), from such a deviation brings player i a payo↵ of ui(P(�(X, u)))�✏.

Given that her original payo↵ was ui(y), the deviation must be profitable for

small enough values of ✏ since P(�(X, u)) strictly Pareto dominates all other

outcomes.

To show that there exists SPE strategies supporting the Pareto dominant

outcome involving no strict commitments on the equilibrium path consider

the following. Player i plays passive in the first period. In the subsequent

subgame g

✏(X, u, c = 1N), the profile P(�(X, u)) is played. Subgame perfect

strategies are played following any other subgame. It is easy to see that these

strategies constitute an SPE of g✏(X, u, ci = 0, c�i = 1), since any deviation

must result either in a Pareto dominated outcome or in an outcome involving

a commitment cost of ✏.

Notice that the lemma above ruled out the scenario where player i plays

passive and then ends up coordinating with �i on a Pareto ine�cient Nash

Equilibrium. As can be seen in the proof, such a scenario is ruled out as player

i would then prefer to make a strict commitment, instead of playing passive,

that would ensure the Pareto dominant profile to be the outcome. Since such

a deviation is always available to player i the only outcome that can result

following player i not making a strict commitment, in equilibrium, would have

to be the Pareto dominant one.
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The following proposition shows how this Pareto dominant outcome is in

fact the unique outcome of the corresponding dynamic commitment game when

both players can commit, for any small enough value of ✏. Before delving in to

the formal proof of the proposition, it may help to consider a particularly subtle

role played by the commitment ability studied in this paper in avoiding Pareto

ine�cient Nash Equilibria. Consider what is required by subgame perfection

following a first period choice of no commitment by both players. In a setup

without commitment ability the two players could coordinate on an ine�cient

outcome. Player i could believe that player �i wants to take the ine�cient

equilibrium action, and simply best responds to it. i believes that �i will

make such a choice because i believes that �i believes that i will play the

ine�cient equilibrium action and so on. In a dynamic commitment game of

an OPC game, if neither player makes a commitment in the first period then

such beliefs that end up supporting ine�cient equilibria cannot be sustained.

In particular if i believes that �i will take the ine�cient equilibrium action

in period 2, then it must be because i believes that �i believes that i will

take the ine�cient equilibrium action in period 2. However, if this were to be

true then �i should have made a payo↵ improving commitment to the Pareto

dominant profile action in period 1. Since �i did not make such a commitment

in period 1, it must mean that �i believes that i intends to coordinate on

the Pareto dominant profile. Consequently �i not making a commitment in

period 1 credibly signals that she herself intends to coordinate on the Pareto

dominant profile. This implies that following no commitments in period 1 only

the Pareto dominant profile can be played in period 2 with strategy profiles

that are subgame perfect.

Proposition 3. Given X and u such that �(X, u) is an ordinal pure coordi-
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nation game, P(�(X, u)) is the unique supportable outcome.

Proof. The set of all strategy profiles (�1, �2) for the game g

✏(X, u, c = 0)

can be categorized in the following way. Given any strategy profile, in the

first period either player i makes a strict commitment and �i does not or both

players make a strict commitment or neither player makes a strict commitment.

Consider a strategy profile that results in an outcome y 6= P(�(X, u)) that

involves only player i making a strict commitment in the first period. Such a

strategy profile results in a payo↵ of at most ui(y) � ✏ for player i. If player

i deviates by making a strict commitment to the single action Pi(�(X, u)),

then subsequently the subgame g({Pi(�(X, u))}, X�i, u, ci = 1, c�i = 0) must

be played. Lemma 2 shows that the outcome from such a subgame must

be P(�(X, u)) for small enough ✏. Player i’s payo↵ from such a deviation is

therefore ui(P(�(X, u))) � ✏ which is strictly higher than her original payo↵.

This profitable deviation rules out the possibility of strategy profiles with only

player i making a strict commitment in the first period resulting in a Pareto

dominated outcome from being subgame perfect.

Now consider strategy profiles that involve both players making a strict

commitment in the first period of g

✏(X, u, c = 0) that results in a Pareto

dominated outcome y. The actions still available to the two players in the

second period are captured by the sets X

1
1 and X

1
2 . Note that X

1 and u

also define a game of ordinal pure coordination. Subgame perfection then

dictates that y = P(�(X1
, u)). To see why this must be the case consider

the opposite scenario where y 6= P(�(X1
, u)). The payo↵ to player i in

this case is at most ui(y) � ✏. Player i, however, can deviate in the first

period to making a strict commitment to Pi(�(X1
, u)). This in turn, by

Lemma 2, would lead to the outcome P(�(X1
, u)) in the subsequent sub-
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game g

✏({Pi(�(X1
, u))}, X1

�i, u, ci = 1, c�i = 0) for small enough ✏. Such a

deviation yields a payo↵ of ui(P(�(X1
, u)) � ✏ to player i and is therefore

a profitable deviation. It is clear therefore that if both players make strict

commitments resulting in X

1, by subgame perfection, the outcome must be

P(�(X1
, u)), and player i gets a payo↵ of ui(P(�(X1

, u)) � ✏. Consider now

player i’s ability to deviate in the first period by committing to not commit.

Such a deviation would give rise to the subsequent subgame g✏(X0
i , X

1
�i, u, ci =

1, c�i = 1). Again by Lemma 2, the unique outcome in such a subgame must

be P(�(X0
i , X

1
�i, u)) resulting in a payo↵ of ui(P(�(X0

i , X
1
�i, u))) to player i.

Given thatX and u define an OPC game, it must be that ui(P(�(X0
i , X

1
�i, u))) �

ui(P(�(X1
i , X

1
�i, u))). As a result player i can profitably deviate by commit-

ting to not commit in the first period and save herself at least the ✏ cost of

commitment, if not more. This implies that both players making strict com-

mitments in the first period that finally result in a Pareto dominated outcome

y cannot satisfy subgame perfection.

Strategy profiles involving both players not making any strict commitments

in the first period must necessarily involve the outcome, P(�(X, u)) in the

subsequent simultaneous move game �(X, u), to satisfy subgame perfection.

This is true since for any other outcome, player i would have a strict incentive

in the first period to make a strict commitment to Pi(�(X, u)). By Lemma 2,

the subsequent subgame yields P(�(X, u)) as the unique SPE outcome.

This concludes the proof of why no Pareto dominant outcome is supportable

in an OPC game.

Finally it is shown by construction that P(�(X, u)) is in fact supportable.

Consider a strategy profile for g

✏(X, u, c = 0) which involves both players

playing Passive in the first period and playing Pi(�(X, u)) in the subsequent
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game, �(X, u). The profiles involve subgame perfect strategies following every

other subgame. It is easy to see that such a profile does in fact satisfy subgame

perfection. The proof concludes by noting that the SPE profile involves no

strict commitments on the equilibrium path.

5 n ⇥ n games with n Nash Equilibria

A simultaneous move strict game �(X, u) is said to be an n ⇥ n game with n

Nash Equilibria(n-Eq game) if |Xi| = n and |NE(�(X, u)| = n. A particular

feature of n-Eq games is that,

8xi 2 Xi, 9 a unique x�i 2 X�i, s.t.(xi, x�i) 2 NE(�(X, u). (3)

This feature, in turn, implies that if one of the Nash Equilibria Pareto domi-

nates the others then it also Pareto dominates all other outcomes. It is clear

from Proposition 1 and (3) that outcomes that are not a Nash Equilibrium

of n-Eq games cannot be supportable. The following proposition shows that if

an n-Eq game has a Pareto dominant outcome then the latter will also be the

unique supportable outcome.

Proposition 4. Given X and u such that �(X, u) is an n-Eq game, if there

exists a Pareto dominant Nash Equilibrium then it is the unique supportable

outcome.

Proof. Let P(X, u) be the Pareto dominant Nash Equilibrium of the n-Eq

game �(X, u). Consider first strategy profiles involving at least one player, say

�i not making a strict commitment in the first period. Subgame perfection

would require the outcome from all such profiles to be P(X, u). Otherwise
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player i could deviate by choosing the single action commitment {Pi(X, u)}
in the first period. Such a deviation gives rise to the subsequent subgame,

g

✏({Pi(X, u)}, X�i, ci = 1, c�i). The argument used in Lemma 2 applies here

as well, requiring that the only supportable outcome in such a subgame must in

fact be P(X, u). The payo↵ to player i from such a deviation is ui(P(X, u))�✏.

Any other outcome would result in a payo↵ strictly less than ui(P(X, u)) for

player i. The deviation would therefore be profitable for all small enough ✏.

Now consider strategy profiles involving both players making strict com-

mitments in the first period. Suppose the strict commitments are X

1
1 and X

1
2

and let the outcome from such a strategy profile be some y 6= P(X, u). Again

from Proposition 1 and (3) it must be that y 2 NE(�(X, u)) which in turn im-

plies that y 2 NE(�(X1
, u)). It will be shown that such a profile must violate

subgame perfection. Let xi denote the Nash Equilibrium profile of �(X0
i , X

1
�i)

that gives player i her highest payo↵. Formally,

x̂

i ⌘ arg max
y2NE(�(X0

i ,X
1
�i))

ui(y).

If x̂1 = x̂

2, then both players have a strict incentive to deviate to playing NC. In

particular, consider player i’s deviation to playing NC. The resulting subgame

is g✏(X0
i , X

1
�i, ci = 1, c�i = 0). First notice that x̂1 = x̂

2 2 X

0
i ⇥X

1
�i. Since �i

is the only player with commitment abilities, she can guarantee herself a payo↵

of u�i(x̂�i) by committing to the single action set, {x̂�i
�i}. The possibility of

any other outcome can be ruled out by noting that,

8X ⇢ X

1
�i, u�i(x̂

�i) � max
y2NE(�(X0

i ,X))
u�i(y).

Therefore x̂

1 = x̂

2 is the unique outcome for the subgame g

✏(X0
i , X

1
�i, ci =
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1, c�i = 0). Remember that the initial strategy profile resulted in y 2 NE(�(X1
i , X

1
�i, u)).

So it must be the case that

ui(x̂i) � ui(y)

As a result by deviating to playing NC in the first period player does strictly

better saving, at the very least, on the cost of commitment ✏. This ends the

proof of why simultaneous strict commitments in the first period that support a

Pareto dominated outcome does not satisfy subgame perfection when x̂

1 = x̂

2.

Consider the remaining case of a strategy profile that supports a Pareto

dominated Nash Equilibrium, y, involving simultaneous commitments to X

1
1

and X

1
2 in the first period with x̂

1 6= x̂

2. It must be that y 6= x̂

i for some

i 2 {1, 2}. WLOG let y 6= x̂

1. It is clear that u1(y) < u1(x̂1). Player 1

can then profitably deviate to making the single action commitment of {x̂1
1},

thereby forcing the outcome, x̂1. This deviation rules out the possibility of the

stated strategy profile satisfying subgame perfection.

6 Discussion regarding the assumptions

The role played by the ✏ cost of making a strict commitment is obvious from

Example 1. Without such a cost, all Nash Equilibria of the original game would

be supportable. A few comments regarding the particular structure of these

commitment costs, however, are in order. The analysis deals with arbitrarily

small values of this cost to capture the idea that if a player prefers outcome x to

y then she would continue to prefer x to y even if the latter requires a large but

finite number of commitments to achieve. In a sense, with small commitment

costs, a players preference over final outcomes does not get changed if she

takes into account the cost she must incur to achieve those outcomes. At the
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same time the existence of these costs makes sure that players choose to use

strict commitments only if it strictly increases their payo↵. The fact that all

strict commitments yield the same cost is not necessary for any of the results

in this paper. For a given set A and any subset B, the commitment from A to

B could potentially depend upon the identity of the two sets, say a function

f(A,B). The requirement would then be that to arrive at the cost such a

function should be scaled down enough to represent a small enough cost as

discussed earlier. This could be done by letting the cost be ✏f(A,B) where

the ✏ serves as a scale variable. All the results in this paper would hold for

any arbitrary strictly positive function f , for small enough values of ✏. Some

of the strategy profiles outlined in examples, however, may then need to be

suitably modified.

An implicit assumption that does play a crucial role is that committing to

not commit is costless. The assumption required for the results to hold, how-

ever, is that the cost of committing to not commit is less than that of making

a strict commitment. It is very possible that in certain strategic environments

this assumption would in fact fail. The normative message of the paper how-

ever would still hold in pointing out the benefit of making a committing to not

commit option available and cheap for certain games.

The critical role played by the option of committing to not commit can be

seen in the following example.

Example 2: The importance of committing to not commit.

a2 b2 c2 d2

a1 5, 7 , , ,

b1 , 4, 3 , ,

c1 , , 2, 2 ,

d1 , , , 10, 13
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The cells which have been left empty can be filled with any set of values

as long as they are all less than 2. This would make all the (filled in) diagonal

elements strict Nash Equilibria. Example 2 can then be used not only as an

example of n ⇥ n games with n Nash Equilibria but also a pure coordination

games (with suitably chosen values). Suppose the option of committing to

not commit is not available to players. They may only choose between strict

commitments and playing passive. In such a commitment game it can be shown

that the Pareto ine�cient Nash Equilibrium profile (b1, b2) can be supportable.

Consider the following strategy profile that supports (b1, b2). In period 1

players 1 and 2 commit to {b1, c1} and {b2, c2} respectively. In period 2 both

players play passive. In the resulting third period strategic game, the profile

(b1, b2) is played. If player i deviates by playing passive in period 1 then in

period 2 player i commits to {bi, ci}, while player �i plays passive. In period 3

along this history, both players play passive and play the profile (b1, b2) in the

period 4 strategic game. In the period 2 subgame after player i’s deviation in

period 1 to playing passive, if player i deviates by playing passive then in period

3 the strategic game with action sets {ai, bi, ci, di} and {b�i, c�i} is played. In

this strategic game the profile (c1, c2) is played. Subgame perfect strategies are

used for every other subgame. The resulting strategy profile is subgame perfect

with a payo↵ of 4�✏ to player 1 and 3�✏ to player 2. Notice that the only way

player i can do any better is by not making a commitment and saving on the

✏ cost. Such a deviation in period 1, however, only leads to a subgame where

player i must now commit to what her original commitment should have been.

The reason why the profile is subgame perfect in this particular subgame is

that if player i were to not make a commitment, it would result in a strategic

game being played where the worse Nash Equilibrium would be played. So
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player i makes the commitment in period 1 because she knows that playing

passive would simply mean she would have to make the same commitment in

the next period, and she must make the latter commitment in the next period

since failing to do so would result in coordinating on an even worse Nash

Equilibrium profile, namely (c1, c2). If player i had the ability to commit to

not commit, then she would simply deviate to NC in the first period, and not

be forced to make the commitment in the subsequent period. The argument

in this example can be extended to show that every Nash Equilibrium but

the worst one can be supported in an n⇥ n game with n Pareto ranked Nash

Equilibria, if players cannot commit to not commit.

The ability to make strict commitments in multiple periods has a critical

bearing on the set of supportable outcomes. Thus unlike in Bade et al.(2009)

there is a loss of generality in restricting the commitment ability of players

to a single period. This feature of dynamic commitment games can be seen

clearly in the following example.

Example 3: E�ciency achievable with multiple commitment periods but not
with just one period.

a2 b2 c2

a1 3, 3 0, 7 �1, 2
b1 2, 0 1, 1 0,�1
c1 7,�1 �1, 0 �1,�2

The unique Nash Equilibrium of the strategic game in Example 3 is the

profile (b1, b2). Allowing for players to make a single round of commitment as

in Renou(2009) does not allow the e�cient profile (a1, a2) to be supportable.

On the other hand the following strategy profile in the dynamic commitment

game studied in this paper does support the e�cient profile. In period 1,
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player 1 makes a strict commitment to {a1, b1} while player 2 plays passive. In

period 2, player 1 plays passive while player 2 makes a strict commitment to

{a2, c2}. In period 3 both players play passive resulting in the strategic game

�({a1, b1}, {a2, c2}) being played in period 4. In the said strategic game the

unique Nash Equilibrium profile, (a1, a2) is played. The payo↵ to both players

from this profile is 3� ✏.

7 Commitment and E�ciency

Does the commitment ability studied in this paper always have an e�ciency

enhancing e↵ect on a general strategic game? The answer to this question

is no. The possibility of making commitments may lead players to reach an

outcome that is Pareto ine�cient even though the unique Nash Equilibrium

in the original game involved a Pareto e�cient outcome.

Example 4: Ine�ciency due to commitment.

a2 b2 c2

a1 8, 8 10, 0 4, 2
b1 0, 10 6, 6 3, 5
c1 2, 4 5, 3 �1,�1

Example 4 is again a dominance solvable game. The unique Nash Equilib-

rium, (a1, a2), is an e�cient outcome. While (a1, a2) continues to be support-

able, the dynamic commitment games also allow the ine�cient profile (b1, b2)

to be supportable. Consider the following subgame perfect strategy profile.

Players 1 and 2 commit to the subsets (b1, c1) and (b2, c2), respectively, in

the first period. In the second period both players choose to play passive. In

the subsequent strategic game �({(b1, c1), (b2, c2) the unique Nash Equilibrium

(b1, b2) is played. Subgame perfect strategies are played following every other
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subgame. The payo↵ to each player is 6 � ✏. To see why this strategy profile

is subgame perfect consider the deviation possibilities available to players on

the equilibrium path. For player i to do any better by making some other

strict commitments she needs the outcome (a1, b2) to be played with some

positive probability. Committing to the {ai} does not work since it yields the

outcome (ai, c�i). The two remaining options are {ai, bi} and {ai, ci}. Com-

mitting to {ai, bi} gives rise to the subgame g

✏({ai, bi}, {b�i, c�i}, c = (0, 0)).

No further commitments would result in outcome (ai, c�i) again. Lemma 1

shows how both players will not simultaneously commit to one action each

in any subgame. So the only options remaining involve only one of the play-

ers making a strict commitment. The resulting subgame perfect outcome if

player i commits further would be (b1, b2). If player �i makes the commitment

the outcome would be (ai, c�i). As a result the highest payo↵ i can guaran-

tee herself by deviating to some other strict commitment is 6 � ✏. The only

other deviation possibilities for player i in period 1 involves playing passive

or committing to not commit. The latter option would result in the outcome

(ai, c�i) with a payo↵ of 2 to player i. Playing passive results in the subgame,

g

✏({ai, bi, ci}, {b�i, c�i}, c = (0, 0)). Again the only way i can get more than

6� ✏ is by achieving the outcome (ai, b�i). However as long as ai is part of her

choice set it would also continue to strictly dominate her other actions. So in

the induced strategic game she must play ai with probability 1. Player �i’s

best response to ai, though, is c�i, with the consequent outcome, (ai, c�i), giv-

ing player i a payo↵ no more than 2. This eliminates any profitable deviation

in period 1. The argument concludes by noticing that given the strategy pro-

file if there were profitable deviations in period 2 there would be a profitable

deviation in period 1.
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It has been shown that a Nash Equilibrium that Pareto dominates all other

outcomes is supportable. However, it turns out that supportability does not

necessarily extend to all Pareto e�cient Nash Equilibria. The following exam-

ple provides a case in point.

Example 5: Pareto E�cient Nash Equilibrium not supportable.

a2 b2

a1 1, 0 4, 3
b1 2, 4 5, 1

Example 5 is again a dominance solvable game with a unique Pareto ef-

ficient Nash Equilibrium, (b1, a2). The unique supportable profile, however,

turns out to be (a1, b2). Both players playing passive or committing to not

commit and then playing (b1, a2) is not subgame perfect as player 1 could de-

viate by committing to {a1}. Again by Lemma 1, both players making a strict

commitment can be ruled out. If player 1 were the only one making a strict

commitment the preferred option would be {a1}. If player 2 were the only

one making a strict commitment, then the option to commit to {a2} would

not be subgame perfect, since the outcome would be (b1, a2) with a payo↵ of

4� ✏. Player 2 could save the ✏ cost by playing passive resulting in the original

strategic game being played with the resultant unique Nash Equilibrium out-

come, (b1, a2). The outcome (a1, b2) on the other hand is supported by player

1 making a strict commitment to {a1} while player 2 plays passive in period 1.

Period 2 involves neither party making any strict commitments, while period

3 involves the profile (a1, b2) being played in the induced strategic game. O↵

the equilibrium path, if player 1 were to not make any strict commitments,

the Nash Equilibrium profile (b1, a2) is played. Subgame perfect strategies are

used for every other subgame.

117



8 Conclusion

The simultaneity of moves in strategic games often results in a multiplicity

of equilibria. It has been shown that for two classes of two player games it

is possible to avoid the Pareto ine�cient equilibria without resorting to an

asynchronous move structure. If the players can eliminate actions from their

feasible choice sets at some arbitrarily small cost and also have the ability to

commit to not making any further eliminations then they can coordinate on

the Pareto e�cient outcome. The two classes of games where it applies, pure

coordination games and n⇥ n games with n Nash Equilibria, are particularly

plagued with multiple Nash Equilibria. The result relies on the use of commit-

ting to not commit as a signalling device but does not require asynchronous

moves as in the earlier money burning papers. The cost of committing to

eliminate some actions, the presence of endogenously determined number of

rounds to make such commitments and the ability to commit to not commit

are all necessary for the uniqueness result. For any strategic game, while its

Nash Equilibria may or may not be supportable, each of these Nash Equilibria

systematically eliminate a set of outcomes from being supportable.

Dynamic commitment games do not always have an e�ciency enhancing

e↵ect on the underlying game. The precise class of games for which it delivers

a unique e�cient prediction is yet to be characterized. It also remains to be

seen how the arguments presented here carry over to Bayesian games.
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