Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-10

1990-03-01

The Synchronic Group: A Concurrent Programming Concept and
Its Proof Logic

Gruia-Catalin Roman and H. Conrad Cunningham

Swarm is a computational model which extends UNITY in three important ways: (1) UNITY's
fixed set of variables is replaced by an unbounded set of tuples which are addressed by content
rather than by name; (2) UNITY's static set of statements is replaced by a dynamic set of
transactions; and (3) UNITY's static Il-composition is augmented by dynamic coupling of
transactions into synchronic groups. This paper overviews the Swarm model, introduced the
synchronic group concept, and illustrates their use in the expression of dynamically structured
programs. A UNITY-style programming logic is given for SWARM, the first axiomatic proof
system... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Cunningham, H. Conrad, "The Synchronic Group: A Concurrent Programming
Concept and Its Proof Logic" Report Number: WUCS-90-10 (1990). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/685

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/685?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/685

The Synchronic Group: A Concurrent Programming Concept and Its Proof Logic

Gruia-Catalin Roman and H. Conrad Cunningham

Complete Abstract:

Swarm is a computational model which extends UNITY in three important ways: (1) UNITY's fixed set of
variables is replaced by an unbounded set of tuples which are addressed by content rather than by name;
(2) UNITY's static set of statements is replaced by a dynamic set of transactions; and (3) UNITY's static II-
composition is augmented by dynamic coupling of transactions into synchronic groups. This paper
overviews the Swarm model, introduced the synchronic group concept, and illustrates their use in the
expression of dynamically structured programs. A UNITY-style programming logic is given for SWARM,
the first axiomatic proof system for a shared database language.

https://openscholarship.wustl.edu/cse_research/685?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/685?utm_source=openscholarship.wustl.edu%2Fcse_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages

THE SYNCHRONIC GROUP: A
CONCURRENT PROGRAMMING CONCEPT
AND IT’S PROOF LOGIC

Abridged Version

Gruia-Catalin Roman and H. Conrad Cunningham

WUCS-90-10

March 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

As appeared in the Proceedings of the 10th International Conference on Distributed
Computing Systems, May 1990, pp. 142-149.

The Synchronic Group:
A Concurrent Programming Concept and Its Proof Logic

Gruia-Catalin Romant{ and H. Conrad Cunningham}

t Dept. of Computer Science, Washington University, St. Louis, Missouri, U.S.A.
i Dept. of Computer & Info. Science, University of Mississippi, Oxford, Mississippi, U.S.A.

Abstract

Swarm is a computational model which extends
UNITY in three important ways: (1) UNITY’s fixed
set of variables is replaced by an unbounded set
of tuples which are addressed by content rather
than by name; (2) UNITY s static set of statements
is replaced by a dynamic set of transactions; and
(3) UNITY’s static ||-composition is augmented by
dynamic coupling of transactions into synchronic
groups. This paper overviews the Swarm model,
introduces the synchronic group concept, and il-
lustrates their use in the expression of dynamically
structured programs. A UNITY-style programming
logic is given for Swarm, the first axiomatic proof
system for a shared dataspace language.

1 Introduction

Attempts to meet the challenges of concurrent
programming have led to the emergence of a variety
of models and languages. Chandy and Misra, how-
ever, argue that the fragmentation of programming
approaches along the lines of architectural struc-
ture, application area, and programming language
features obscures the basic unity of the program-
ming task [3]. With the UNITY model, their goal
is to unify seemingly disparate areas of program-
ming with a simple theory consisting of a model of
computation and an associated proof system.

They build the UNITY compuiational model
upon a traditional imperative foundatior, & state-
transition system with named variables to express
the state and conditional multiple-assignment state-
ments to express the state transitions. Above this
foundation, however, UNITY follows a more radical
design: all flow-of-control and communication con-
structs have been eliminated from the notation. A
UNITY program begins execution in a valid initial
state and continues infinitely; at each step an as-
signment is selected nondeterministically, but fairly,
and executed.

To accompany this simple but innovative model,
Chandy and Misra have formulated an assertional
programming logic which frees the program proof
from the necessity of reasoning about execution se-

quences. Unlike most assertional proof sysiems,
which rely on the annotafion of the program text
with predicates, the UNITY logic seeks to extri-
cate the proof from the text by relying upon proof
of program-wide properties such as invariants and
progress conditions.

Swarm [8] is 2 model which extends UNITY by
permitting content-based access to data, a dynamic
set of statements, and the ability to prescribe and
alter the execution mode (i.e., synchronous or asyn-
chronous) for arbitrary collections of program state~
ments. The Swarm model is our primary vehicle
for study of the shared dataspace paradigm {7], a
class of languages and models in which the pri-
mary means for communication among the con-
current components of a program is a common,
content-addressable data structure called a shared
dataspace. Elements of the dataspace may be exam-
ined, inserted, or deleted by programs. Linda [1],
Associons [6], and production rule Jangnages such as
OPS5 [2] all follow the shared dataspace approach.

In designing Swarm, we merged the philosophy of
UNITY with the methods of Linda. Swarm has a
UNITY-like program structure and computational
model and Linda-like communication mechanisms.
We partition the Swarm dataspace into three sub-
sets: a tuple space (a finite set of data tuples),
a transaction space (a finite set of transactions),
and a synchrony relation (a symmetric relation on
the set of all possible transactions). We replace
UNITY?s fixed set of variables with a set of tuples
and UNITY’s fixed set of assignment statements
with a set of transactions.

A Swarm transaction denotes an atomic transfor-
mation of the dataspace. It is 2 set of concurrently
executed query-action pairs. A query comsists of a
predicate over the dataspace; an action consists of
a group of deletions and insertions of dataspace el-
ements. Instances of transactions may be created
dynamically by an executing program.

A Swarm program begins execution from a spec-
ified initial dataspace. On each execution siep, a
transaction is chosen nondeterministically from the
transaction space and executed atomically. This se-
lection is fair in the semse that every transaction in
the transaction space at any point in the computa-
tion will eventually be chosen. An executing trans-

action examines the dataspace and then, depending
upon the results of the examination, can delete tu-
ples {but not transactions) from the dataspace and
insert new tuples and transactions into the data-
space. Unless a transaction explicitly reinserts it-
self into the dataspace, it is deleted as a by-product
of its execution. Program execution continues until
there are no transactions in the dataspace.

The synchrony relation feature adds even more
dynamism and expressive power to Swarm pro-
grams. It is a relation over the set of possible trans-
action instances. This relation may be examined
and modified by programs in the same way as the
tuple and transaction spaces are. To accommodate
the synchrony relation, we extend the program ex-
ecution model in the following way: whenever a
transaction is chosen for execution, all transactions
in the transaction space which are related to the
chosen transaction by (the closure of) the synchrony
relation are also chosen; all of the transactions that
make up this set, called a synchronic group, are ex-
ecuted as if they comprised a single transaction.

By enabling asynchronous program fragments o
be coalesced dynamically into synchronous subcom-
putations, the synchrony relation provides an ele-
gant mechanism for structuring concurrent compu-
tations. This unigue feature facilitates a program-
ming style in which the granularity of the compu-
tation can be changed dynamically to accommo-
date structural variations in the input. This feature
also suggests mechanisms for the programming of a
mixed-modality parallel computer, i.e., a computer
which can simultaneously execute asynchronous and
synchronous computations. Perhaps architectures
of this type could enable both higher performance
and greater flexibility in algorithm design.

In this paper we show how to add this power-
ful capability to Swarm without compromising our
ability to formally verify the resulting programs.
The presentation is organized as follows. Section
2 reviews the basic Swarm notation. Section 3 in-
troduces the notation for the synchrony relation and
discusses the concept of 2 synchronic group. Section
4 illustrates the use of synchronic groups by means
of a program for labeling regions in an image un-
bounded on one side. Section 5 reviews a UNITY-
style assertional programming logic for Swarm with-
out the synchrony relation and then generalizes the
logic to accomodate synchronic groups.

2 Basic Swarm Notation

By choosing the name Swarrm for our shared data-
space programming model, we evoke the image of
2 large, rapidly moving aggregation of small, inde-
pendent agents cooperating to perform a task. In

=(3) | z(4)

i: integer;

z(i: 1 <1< N): array of integer;

{k:1<k <N :uz(k):= A(k);

J=1;

doj< N —
(| F:1<E<NAkmod(j*2)=0=

2(R) 1= 2(k —) + =();

ji=7+2

od

Figure 1: Array Summation

this section we introduce a notation for program-
ming such computations. We first present an algo-
rithm expressed in a {familiar imperative notation—
a parallel diziect of Dijkstra’s Guarded Commands
[5] language. We then construct a Swarm program
with similar semantics.

The algorithm given in Figure 1 sums an array
of N integers. For simplicity, we assume that N is
a positive power of 2. In the program fragment, A4
is the *input” array of integers to be summed and
z is an array of partial sums used by the algorithm.
Both arrays are indexed by the integers 1 through
N. At the termination of the algorithm, z(N) is
the sum of the values in the array A. The loop
computes the sum in a tree-like fashion as shown
in the diagram: adjacent elements of the array are
added in parallel, ther the same is done for the
resulting values, and so forth until a single value
remains. The construct

{| & : predicate : assignment)

is a parallel assignment command. The assignment
is executed in parallel for each value of k which sat-

isfies the predicale; the entire construct is performed
as one atomic action.

Swarm is a shared dataspzce programming
model. Instead of expressing a computation in
terms of a group of named variables, Swarm uses
a set of tuples stored in a dataspace. Each tupleis a
pairing of a type name with a finite sequence of val-
ues; a program accesses a tuple by its content—type
name and values—rather than by a specific name
or address. Swarm programs compute by deleting
existing tuples from, and inserting new tuples into,
the dataspace. The transactions which specify these
atomic dataspace transformations consist of a set of
query-action pairs executed in parallel. Each query-
action palir is similar to a production rule in a lan-
guage like OPS5 [2].

How can we express the array-summation zlgo-
rithm in Swarm? To represent the array z, we in-
troduce tuples of type z in which the first compo-
nent is an integer in the range 1 through N, the
second a partial sum. We can express an instance
of the array assignment in the do loop as a Swarm
transaction in the following way:

vl,v2: z{k — j,v1),=(k, v2)
— =z{k, v2)t, ok, vl + v2)

Above, the part to the left of the — is the query;
the part to the right is the action. The identifiers
vl and v2 designate variables that are local to the
query-action pair. (For now, assume that j and k
are constants.)

The execution of 2 Swarm query is similar to the
evaluation of a clause in Prolog [9]. The above query
canses a search of the dataspace for two tuples of
type £ whose component values have the specified
relationship—the comma separating the two tuple
predicates is interpreted as a conjunction. If one or
more solutions are found, then one of the solutions is
chosen nondeterministically and the matched values
are bound to the local variables v1 and v2 and the
action is performed with this binding. If no solution
is found, then the transaction is said to fail and none
of the specified actions are takern.

The action of the above transaction consists of
the deletion of one tuple and the insertion of an-
other. The t operator indicates that the tuple
z(k,v2), where v2 has the value bound by the query,
is to be deleted from the dataspace. The unmarked
tuple form z(k,vl + v2) indicates that the corre
sponding tuple is to be inserted. Although the ex-
ecution of a transaction is atomic, the effect of an
action is as if all deletions are performed first, then
all insertions.

The parallel assignment command of the algo-
rithm can be expressed similarly in Swarm:

program ArraySum(N, A:
Bp:p>0uN=2", A(i: 1 <i < N))
tuple types
fi,:1 <1< N :3(3,38)]
transaction types
fj:7>0z
Sum(j) =
Mk:1<k<NAkmod(j*2)=0=:
vl,v2 : z(k — j, o1}, s(k, v2)}
— z(k, vl +v2)]
I 7*2< N — Sum{j+2)
]
initialization
Sum(1); [i:1 < i< N =z(i, A(E))]
end

Figure 2: A Swarm Program

[Fk:1<kE<NAkmod(j*2)=02:
vl, 92 : z(k — j,vl),2(k, v2)
— z(k, v2)t, z(k,v1 +v2)]

We call each individual query-action pair a sub-
transaction and the overall construct a transaction.
As with the parallel assignment, the entire transac-
tion is executed atomically. The cumulative effect of
executing a transaction is as if the subtransactions
are executed synchronously: all queries are evalu-
ated first, then the indicated tuples are deleted, and
finally the indicated tuples are inserted.

Like data tuples, transactions are represented as
tuple-like entities in the dataspace. A transaction
instance has an associated type name and a finite
sequence of values called parameters. A subtrans-
action can query and insert transaction instances
in the same way as data tuples are, but transac-
tions cannot be explicitly deleted. Implicitly, a
transaction is deleted as a by-product of its own
execution—regardless of the success or failure of its
component queries.

Two aspects of the array-semmation program’s
do command have not been translated into
Swarm—the doubling of 7 and the conditional repe-
tition of the loop body. Both of these can be incor-
porated into a transaction. We define 2 transaction
type called Sum as follows:

Sum(j) =
l k:1<k< NAkmod(j*2)=0:
v1,v2 : z(k — 7,21), z(k, v2)
— z{k, v2)f, z(k, vl + v2)]
I 7#2< N — Sum(j*2)

Thus transaction Sum(j), representing one itera-
tion of the loop, inseris a successor which represents
the next iteration.

For a correct computation, the Swarm array-
summation program must be initialized with the
following tuple space:

{ (1, AQ1)), =(2, A(2)),- - =(N, A(N)) }

The initial transaction space consists of the trans-
action Sum(1).

Since each x tuple is only referenced once during
a computation, we can modify the Sum subtrans-
actions to delete both z tuples that are referenced.
A complete 4 rraySum program with this modifica~
tion is given in Figure 2. (If a tuple in a query is
marked by a dagger, then, if the overall query suc-
ceeds, the marked tuple will be deleted as a part of
the action.)

3 Synchronic Groups

In our discussion so far we have ignored the third
component of 2 Swarm program’s state—the syn-
chrony relation. The interaction of the synchrony
relation with the execution mechanism provides a
dynamic form of the || operator. The synchrony re-
lation is 2 symmetric, irreflexive relation on the set
of valid transaction instances. The reflexive tran-
sitive closure of the synchrony relation is thus an
equivalence relation. When one of the transactions
in an equivalence class is chosen for execution, then
all members of the class which exist in the transac-
tion space at that point in the computation are also
chosen. This group of related transactions is called
a synchronic group. The subtransactions making up
the transactions of a synchronic group are executed
as if they were part of the same transaction.

The synchrony relation can be examined and
modified in much the same way as the tuple and
transaction spaces can. The predicate

Sum(i) ~ Sum(s)

in the query of a subtransaction examines the syn-
chrony relation for a transaction instance Sum(3)
that is directly related to an instance Sum(j). Nei-
ther transaction instance is required to exist in the
transaction space. The operator = can be used in a
predicate to examine whether transaction instances
are related by the closure of the synchrony relation.

Synchrony relationships between tramsaction in-
stances can be inserted into and deleted from the
relation. The operation

Sum(i) ~ Sum(j)

in the actior of a subtransaction creates a dynamic
coupling between transaction instances Sum(i) and

program ArraySumSynch(N, A:
Bp:p>0uN=2", Ai: 1<i<N))
tuple types
[t,8:1< i< N uxzli,s)]
transaction types
[k,i: 1Sk N, IZj<N=
Sum(k,j) =
21,92 : z(k — 7, v1)f, z{k, v2)t
— z{k, vl + v2)
I j+2<Nimod(j*x4)=0
—+ Sum(k,5+2)

initialization
[i:1<i< Naus(i, A(D)];
[k:1<€k< N kmod2=0: Sum(k 1)}
[kj:1<kE<N,I<j< N
Sum(k, j) ~ Sum(k + 1, 7))
end

Figure 3: A Synchronic Group Program

Sum{f) (where { and j must have bound values). If
two instances are related by the synchrony relation,
then

(Sum(i) ~ Sum())t

deletes the relationship. Note that the closure rela-
tion a2 can be examined, but that only the base syn-
chrony relation ~ can be direcily modified. Initial
synchrony relationships can be specified by putting
appropriate insertion operations into the initializa-
tion section of the Swarm program.

Figure 3 shows a version of the array-summation
program whick uses synchronic groups. The sub-
transactions of Sum(j) have been separated into
distinct transactions Sum(k, j) conpled by the syn-
chrony relation. For each phase j, all transactions
associated with that phase are structured into a sin-
gle synchronic group. The computation’s effect is
the same as that of the earlier program.

4 Region Labeling

In this section we address the problem of label-
ing the equal-intensity regions of a digital image un-
bounded on one side. The image consists of pixels
arranged on a grid with M rowsand an infinite num-
ber of columns. An intensity (brightness) attribute
is associated with each pixel. We identify the pix-
els by coordinates with z-values 1 or larger and y-
values in the range 1 through M. Although the full
image is assumed to extend to the right without

pixel being

llbaselt labe[ed "Iast L
column l column
s e °
QBB L
0 s OG :
DN
DLO W
SYO N
[— T
labeled Window region
region not yet
observed
Label(p) : : :
Label(q) | o—w ® | Labeling
m Synchronic
Groups
Contract(p}
Consract(q) Contraction
Synchronic
Group

Figure 4: The Window Metaphor

bound, we assume that the length (i.e., the num-
ber of columns intersected) of each connected region
of equal-intensity pixels to be finite and bounded
above by the constant MexLen. (We do not allow a
program to use this constant directly.)

We desire a program which labels the regions of
unbounded images of this type. The program must
not use an unbounded amount of space: the num-
ber of tuples and transactions existing at ary point
during the computation must be bounded above by
some constant; the range of values of the integers
used in the program must also be bounded. (Since
Swarm does not have an input operatior, we do
not impose the bounded-values restriction on the
“counter” used to record the current position in the
input stream.)

To keep the number of tuples and transactions
bounded, we adopt a sliding window metaphor for
our solution to the problem. (See Figure 4.) The
window is a contiguous group of columns {rom the
image. At any point in the computation, the win-

program Unbounded(M, Lo, Hi, Intensity :
M > 1, Lo € Hi, Intensity(p : Pizel(p)),
[Vp: Pizel(p) :: Lo < Iniensity(p) < H])
definitions
[P.Q,L::
Pizel(P) =
Ber:P=(cr)ucz1,1<r < M];
adjacent(P, Q) =
Pizel(P), Pizel(Q), (0,0} < [P — Q[< (1,1);
neighbors(P, @) = adjaceni(P,Q),
[3: 2 hasintensity(P,4),
has.intensity(Q,)];
ondefi(P} = Pizel(P),[3r = P =(1,r)];
onright(P) =
Pizel(P),[3c,r: final(c) : P = (c,7)};
ONE = (1,0)

tuple types ...
transaction types ...
initialization ...

end

Figure 5: Region Labeling—Program Header

dow contains all pixels currently being processed.
The program stores information about these pix-
els in the dataspace. The computation begins with
the window positioned over the leftmost (smallest z-
coordinate) column of the image. As a computation
proceeds, the window expands to the right—the col-
umn of the image immediately to the right of the
window is inserted into the window when the pixels
in that column are “needed.” The program needs
the new column when some region extends across all
columns of the window. The window also contracts
from the left—the leftmost column of the window
is deleted when all pixels in the column have been
“completed.” A pixel is complete when all pixels
in its region have been labeled with the region’s la-
bel. {For convenience, we use the lexicographically
smallest coordinates of a pixel in the region as the
region’s label.) The window thus slides across the
image from left to right; the maximum width of the
window is MazLen + 1.

For the size of the numbers used by the program
to be bounded, the program cannot use the abso-
lute coordinate system of the full image. Thus, for
the pixels in the window, we adopt a new coordi-
nate system—the program addresses pixels relative
to the leftmost column of the window. When the
program expands the window, all information in-
serted into the dataspace concerning the new pixels

must use window-relative g-coordinates. When the
program contracts the window, it must also modify
all information concerning the pixels in the window
to reflect the new coordinate system base.

The region labeling program uses three tuple
types and three transaction types. The three tuple
types are has label, which pairs a pixel with a label;
has_intensily, which pairs a pixel with its intensity
value; and final, which records the z-coordinate of
the rightmost column of the window. The three
transaction types are Label, Fxrpand, and Coniract.
The transactions of type Label carry out the label-
ing of the pixels of the image; transactions of type
Ezpand and Contractimplement the window expan-
sion and contraction operations of the sliding win-
dow strategy. Note that the computation begins
with the window positioned over a single column—
the first column of the image. Figure 6 shows the
details of these transaction definitions. Some of the
predicates used in these definitions appear in Fig-
ure 5.

To organize the computation, we take advantage
of the synchronic group feature of Swarm, For in-
stance, we use a syachronic group to contract the
window. The program creates a Contract transac-
tion for each pixel in the window, either at initial-
ization or when a new column is brought into the
window by an Ezpand transaction, and links all of
these transactions together into a synchronic group.
‘When executed, this group simultaneously decre-
ments the z-coordinates for all information recorded
for each pixel in the window.

The program also uses synchreonic groups of Label
transactions to carry ont the labeling of the regions
and to detect when the labeling of a regior is com-
plete. The program creates a Label transaction for
each pixel of the window, either at initialization or
when a new column is brought into the window by
an Ezpand transaction, and links the transactions
for adjacent pixels of the same intensity into the
same synchronic group. When one of these Label
synchronic groups is executed, it either changes the
labels of one or more pixels to a lower value or,
when it detects that labeling of the region is com-
plete, deletes all information concerning the region
from the dataspace.

The special predicates OR, AND, NOR, and
NAND, mezning any, all, none, and not-all, re-
spectively, can be used in transaction queries.
These special predicates examine the success sta-
tus of all the simultaneously executed subtransac-
tion queries which do not involve special predicates,
i.e., the regular queries. For example, the predicate
OR succeeds if any one of the regular queries in
any transaction of the synchromic group also suc-
ceeds; NOR. (not-or) succeeds if none of the regu-

Label(P) =

2 A1, A2

hasJabel(P, A1)}, neighbors(P, p),
has label(p, A2), A2 < AL

— has.label(P, A2)
onyight{P) —+ skip
OR — Label(P)

LA NOR, has_intensity(P,),

has dabel(P, A)}
— skip
NOR
—+ [p:adjacent(P, p) =
(Label(P) ~ Label(p)]

Ezpand(Next) =
oy X, c: on_right(p), hastabel(p, A},

ondef1(A), final(c)t

[rril<rsMyr=(c+1,7)x

has_intensity(r, Intensity((Nest, r))),

hasdabel(r, 1),

Label(r),

[6: adjaceni(r, §),6 < (c+1, M),
Indensity(r) = Intensity(§) =

Label(r) ~ Label(8}],

Contract(r),

[6: adjacent(r,8),6 S (c+1, M) =
Contract(r) ~ Contract(§)],

final(c+ 1),

Ezpand(Nest + 1)

Contract(P) =

f

t:ondefi(P), hasiniensity(P, 1)

~— skip
OR — Contract(P)

¢:NOR, final{c){

— finel(c—1), Contract(F)

1 :NOR, hasantensity(P, 1)1

—+ has_intensity(P— ONE,:)

A NOR, heslabel{ P,)1

-— haslabel(P— ONE, A— ONE},
Label(P~ ONE)

Il [l #:adjacent(P,p) =

NOR, (Label(P) ~ Label(p))t
— Label(P— ONE)
~ Label(p— ONE)]

Figure 6: Region Labeling—Transactions

lar queries succeed. The evaluation of the special
gueries do not affect each other.

In Label{P), {or instance, OR forces the transac-
tion to be reinserted when any Label transaction
within P’s region relabels a pixel or when there
might be 2 portion of the region to the right of
the processing window. The NOR, on the other
hand, detects when the labeling of a region is com-
plete and causes the tuples and synchrony relation
entries for the region to be deleted. Similarly, in
Contract(P), the OR. queries force the reinsertion
of the entire Contract synchronic group whenever
any transaction in the group detects 2 pixel in the
first column of the window; when labeling of all pix-
els in the first column is complete, the NOR query
leads to a one column shift in the z-coordinate of
all entities present in the dataspace.

A proof of this program, using the logic presented
in the next section, appears in [4].

5 Programming Logic

The Swarm computational model] is similar to
that of UNITY [3]; hence, a UNITY-style asser-
tional logic seems appropriate. However, we cannot
use the UNITY logic directly because of the differ-
ences between the UNITY and Swarm frameworks.

In this section we follow the notational conven-
tions for UNITY in [3]. Properties and inference
rules are written without explicit quantification;
these are universally quantified over all the values
of the free variables occurring in them. We use the
notation [#] to denote the predicate “transaction in-
stance t is in the transaction space,” TRS to denote
the set of all possible transactions {not a specific
transaction space), and INIT to denote the initial
state of the program.

The proof rules for the subset of Swarm withount
the synchrony relation are given in [4]. We surmma-
rize them below. The Swarm programming logics
have been defined so that the theorems proved for
UNITY in {3] can also be proved for Swarm.

L {p} t{q}.)
The “Hoare triple” means that, whenever the
dataspace satisfies the precondition predicate p
and transaction instance { is in the transaction
space, all dataspaces which can result from ex-
ecution of transaction ¢ satisfy the postcondi-
tion predicate g.

2. punlessg =
(Vt:te TRS = {pA-g} t{pVallh
This means that, if p is irue at some point in
the computation and g is not, then, after the
next step, p remains true or ¢ becomes true.

3. stable p = p unless false.
This means that, if p becomes true, it remains
true forever.

4. invariant p = (INIT = p) A (stable p).
Invariants are properties which are frue at all
peints in the computation.

5. pensures ¢ =
(p unless g) A
{31:1€ TRS =
(pA~g = [A{pA—g}tie))

This means that, if p is true at some point in
the computation, then (1) p will remain trueas
long as g is false, and (2) if ¢ is false, there is at
least one transaction in the transaction space
which can, when executed, establish ¢ as true.
The “pA=g =+ [t]” requirement generalizes the
UNITY definition of ensures to accomodate
Swarm’s dynamic transaction space.

6. p—rq.

This, read p leads-to g, means that, once p
becomes {rue, g will eventually become true.
(However, p is not guaranteed to remain irue
until g becomes true.) As in UNITY, the as-
sertion p — g is true if and only if it can be
derived by a finite pumber of applications of
the following inference rules:

p ensures g

p =g
pr— 0 97 (transitivity)
p —+ T
o For any set W, (digjunction)
(Vvm :m € W 2 p(m} — g}
{(m :m € W = p(m}) — ¢

7. termination = {V¢:i€ TRS : —f{)).
Unlike UNITY programs, Swarm programs
can ferminate when the transaction space is
empty.

The logic we defined for Swarm programs may be
generalized to accomodate synchronic groups. This
involves the addition of a synchronic group rule and
redefinition of the unless and ensures relations.
The other elements of the logic are the same.

In [4], we define the “Hoare triple” for synchronic
groups

{r} S {¢}

to mean that, whenever the precondition p is true
and S is a synchronic group of the dataspace, all
dataspaces which can result from execution of group
S satisfy postcondition g.

A key difference between this logic and the pre-
vious logic is the set over which the properties must
be proved. For example, the previous logic required

that, in proof of an unless property, an assertion
be proved for all possible transactions, i.e., over the
set TRS. On the other hand, this generalized logic
requires the proof of an assertion for all possible
synchronic groups of the program, denoted by SG.

For the synchronic group logie, we define the log-
ical relation unless as folows:

punless ¢ =
{¥5:5€ SG = {pA-g} S{pVval}

H synchronic groups are restricted to single trans-
actions, this definition is the same 2s the definition
given for the earlier subset Swarm logic.

We define the ensures relation as follows:

pensuresg =
{p unless g) A
{(3i:1€TRS u(pA-g=[t]) A
(vS:5e€8G Ate S
{pA-a} 5 {g)-

This definition requires that, when p A —g is true,
there exists a transaction ¢ in the transaction space
such that all synchronic groups which can contain ¢
will establish g when executed from a state in which
pA—q holds. Because of the fairness criterion, trans-
action ¢ will eventually be chosen for execution, and
hence one of the synchronic groups containing ¢ will
be executed. Instead of reguiring that we find a sin-
gle “statement” which will eventually be executed
and establish the desired state, this rule requires
that a group of “statements” (i.e, set of synchronic
groups) be found such that each will establish the
desired state and that one of them will eventually
be executed. If synchronic groups are restricted to
single transactions, this definition is the same as the
definition for the snbset Swarm logic.

6 Conclusions

The Swarm programming logic is the first ax-
iomatic proof system for a shared dataspace “lan-
guage.” To our knowledge, no axiomatic-style
proof systems have been published for Linda, rule-
based languages, or any other shared dataspace lan-
guage. Exploiting the similarities of the Swarm and
UNITY compnutational models, we have developed
a programming logic for Swarm which is similar in
style to that of UNITY. The Swarm logic uses the
same logical relations as UNITY, but the definitions
of the relations have been generalized to handle the
dynamic nature of Swarm, i.e., dynamically created
transactions and the synchrony relation. In this pa-
per we have shown how one can extend the proof

logic for Swarm to accomodate the dynamic forma- -

tion of synchronic groups specified by the runtime
redefinition of the synchrony relation.

Acknowledgements: This work was supported
by the Department of Computer Science, Wash-
ington University, Saint Louis, Missouri. The un-
bounded region labeling program used in this paper
is based on a program developed by Rose Fulcomer
Gamble and the first author.

References

[1] 8. Ahuja, N. Carriero, and D. Gelernter. Linda
and friends. Computer, 19(8):26-34, Aug. 1986.

[2] L. Brownston, R. Farrell, E. Kant, and N. Mar-
tin. Programming Ezpert Systems in OPS5:
An Introduction to Rule-Based Programming.
Addison-Wesley, Reading, Mass., 1985,

K. M. Chandy and J. Misra. Parallel Program
Design: A Foundation. Addison-Wesley, Read-
ing, Mass., 1988,

H. C. Cunningham. The Shared Dataspace Ap-
proach to Concurrent Computation: The Swarm
Programming Model, Notation, and Logic. PhD
thesis, Washington University, St. Louis, Aug,
1989.

E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

M. Rem. Associons: A program notation with
tuples instead of variables. 4CM Trans. Pro-
gram. Long. Syst., 3(3):251-62, July 1981.

G.-C. Roman. Language and visualization sup-
port for large-scale concurrency. In Proc. 10th
Int. Conf. on Software Engineering, pages 296~
308. JEEE, Apr. 1988.

G.-C. Roman and H. C. Cunningham. A shared
dataspace model of concurrency—Language and

programming implications. In Proc. $th ICDCS,
pages 270-9. IEEE, June 1989,

L. Sterling and E. Shapiro. The Art of Prolog.
MIT Press, Cambridge, Mass., 1986.

14

[5]

	The Synchronic Group: A Concurrent Programming Concept and Its Proof Logic
	Recommended Citation
	The Synchronic Group: A Concurrent Programming Concept and Its Proof Logic

	tmp.1456444019.pdf.HMl5N

