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Chapter 1

Introduction

Let G be a finite abelian p-group of type λ = (λ1, ..., λn), where λ is a

partition, that is λi ≥ λi+1 > 0. By the Fundamental Theorem of Finitely

Generated Abelian Groups [7] we can write G = Zpλ1 × · · · × Zpλn , where

Zpλi is a cyclic group of order pλi . Let Lλ(p) be the subgroup lattice of G.

We define [0, λi] to be a totally ordered set (or a chain) of integers from 0

to λi, and [0, λ] = [0, λ1]× · · · × [0, λn] to be a lattice of n-tuples (a1, ..., an),

where ai ∈ [0, λi], with an order relation given by (a1, ..., an) ≤ (b1, ..., bn) if

ai ≤ bi for all i. We call [0, λ] a product of chains of length λi for 1 ≤ i ≤ n.

In [1] and [2] L. Butler categorized Lλ(p) as an order-theoretic p-analogue

of [0, λ] = [0, λ1]× · · ·× [0, λn]. That is, she defined an order preserving map

ϕ : Lλ(p)→ [0, λ] such that there are a power of p subgroups of G correspond-

ing to each element of [0, λ]. The map ϕ satisfies certain technical proper-

ties that make it very useful in attacking combinatorial problems concerning

1



Figure 1.1: Subgroup lattice of G = Z34 ×Z32 on the left and the product of
chains [0, 4]× [0, 2] on the right.

Lλ(p). Figure 1.1 represents the correspondence of the lattice of subgroups

of G = Z34 × Z32 with the product of chains [0, 4]× [0, 2]. Subgroups in the

lattice of subgroups of Z34 ×Z32 are clustered together if they correspond to

the same element of the product of chains. As described in [1] and [2], Lλ(p)

has many very attractive enumerative properties. In [2] L. Butler defined a

set of Hall generators for a subgroup of a finite abelian p-group, which are

defined in Chapter 2. Hall generators proved to be extremely useful tools

that we use extensively throughout the thesis.

We observe that for a finite abelian p-group G of type λ such that λi = 1

for all 1 ≤ i ≤ n the quotient, Lλ(p), of the lattice of subgroups under the

action of a Sylow p-subgroup, Sp, of the group of automorphisms of G is

equal to the product of chains [0, λ]. We became interested in the question

of how the action of Sp on Lλ(p) is related to map ϕ described by Butler,
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which will be discussed in Chapter 3. These are our main results related to

this question. In Theorem 3.1 we show that each orbit of the action of Sp

is contained in a corresponding fiber of ϕ. In Theorem 3.2 we address the

question for which finite abelian p-groups Lλ(p) = [0, λ]. We show that if G

is a finite abelian p-group of type λ such that λ1 = ... = λn or of type λ such

that λi − λt ≤ 1 for all 1 ≤ i < t ≤ n, then Lλ(p) = [0, λ]. We observed that

whenever G is a finite abelian p-group of type λ such that λi − λj ≥ 2 for

some i and j, some fibers of ϕ split into orbits of Sp whose size is equal to

the same power of p. In Theorem 3.3, we assume that G ∼= Zpm × Zpn such

that m − n ≥ 2 and describe conditions under which the orbits of Sp spilt

the corresponding fiber of ϕ into smaller parts of the same size.

In Chapter 4 we will discuss the relationship between the quotient of

Lλ(p) under the action of the group of lattice automorphisms of G and the

quotient of Lλ(p) under the action of the group of lattice automorphisms of

G induced by group automorphisms.

For elementary abelian groups G ∼= (Zp)n such that n ≥ 3 the Fundamen-

tal Theorem of Projective Geometry implies that every lattice automorphism

is induced by a group automorphism. Moreover, Baer’s Theorem [8] (1939)

states that for every finite abelian p-group of type λ such that λ1 = λ3 we

also have that every lattice automorphism is induced by a group automor-

phism. However, this is not the case for every finite abelian p-group. It

is not difficult to see that when G ∼= Zp × Zp for p ≥ 5 there are lattice

automorphisms that are not induced by group automorphism. Our main re-
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sult is stated in Theorem 4.5 that for G ∼= Zpm × Zpn the quotient of Lλ(p)

under the action of the group of lattice automorphisms of G is equal to the

quotient of Lλ(p) under the action of the group of lattice automorphisms of

G induced by group automorphisms. This result is particularly striking be-

cause the group of lattice automorphisms of G is often much larger then the

group of lattice automorphisms of G induced by group automorphisms. The

same result also holds for some larger finite abelian p-groups as described in

Theorem 4.8. However, we conjecture that this is not true in general and

present a potential counterexample at the end of Chapter 4.

Many projects related to the material discussed here remain to be ex-

plored. We will discuss them in Chapter 5.
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Chapter 2

Background and Definitions

2.1 Automorphisms of finite abelian p-groups

Since we will be interested in examining the actions of group automorphisms

on the lattice of subgroups of a finite abelian p-group, we begin by discussing

group automorphisms of finite abelian p-groups. Let G be an abelian p-group

of type λ and let gi be an additive generator for the group Zpλi . (Although

gi is an equivalence class in Z modulo pλi , we will abuse notation slightly

by identifying gi with its representative and using the same notation for

both.) We may assume that gi ≡ 1 mod pλi for each i. Thus, we can write

G ∼=< g1 > × · · ·× < gn >. So, an element of g of G can be represented as

a row vector (a1g1, . . . , angn) with ai ∈ Z and aigi taken modulo pλi .
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2.1.1 Extending endomorphisms to automorphisms

First, we will describe E = End(G), the endomorphism ring of G. The

elements of E are group homomorphisms from G into itself and it is clear

that E is a ring under function addition and composition. It is important to

note that we will consider homomorphisms in E to be acting on G on the

right. Each homomorphism in E is determined by the images of generators

g1, . . . , gn of G. Since we can represent elements of G in vector form and

since G has n generators, we can think of elements of E as n× n matrices.

In order to describe all matrices in End(G), we define R = {(aij) ∈

Zn×n : pλj−λi | aij for 1 ≤ j ≤ i ≤ n}. By noting that every element

A ∈ R can be written in Qn×n as A = PA′P−1, where A′ ∈ Zn×n and P =

diag(pλ1 , . . . , pλn), it is straightforward to see (Lemma 3.2, [5]) that R is a

ring under matrix multiplication. Now consider the mapping ψ : R→End(G)

defined by

(h̄1, . . . , h̄n)ψ(A) = π((h1, . . . , hn)A),

where (h1, . . . , hn) ∈ Zn, (h̄1, . . . , h̄n) ∈ G such that h̄i ∈ Zpλi and hi ∈ Z

is an integral representative of h̄i (hi ≡ h̄i mod pλi), A ∈ R, and π is the

canonical projection from Zn onto G. By Theorem 3.3 in [5] ψ is a surjective

ring homomorphism. The proof of this theorem is based on the fact that for

A ∈ End(G) and generators wi = (0, . . . , gi, . . . , 0), wiA = (h̄i1, . . . , h̄in) and

0 = (pλiwi)A = (pλihi1, . . . , pλihin) imply that pλj | pλihij for all i, j and thus
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pλj−λi | hij when j ≤ i. By Lemma 3.4 in [5] the kernel of ψ is equal to the

set of matrices such that pλj |aij for all i, j. Therefore, R/ker ψ ∼= End(G).

Knowing the structure of End(G), we can describe automorphisms of G, the

units in End(G).

Theorem 2.1. (Theorem 3.6, [5]) An endomorphism M = ψ(A) of G is an

automorphism if and only if A (mod p) ∈ GLn(Fp), where Fp is a finite field

with p elements.

The proof of this theorem is also straightforward once a fact from ele-

mentary linear algebra is invoked: for an n×n integer nonsingular matrix A

there exists a unique n×n integer matrix B such that AB = BA = det(A)I.

Now we will look at some examples of group automorphisms of finite abelian

p-groups.

Example 2.1. Suppose λi = 1 for all i. Then G ∼= (Zp)n, that is we can

think of G as a vector space. It is clear that End(G) is isomorphic to the

ring of all n × n matrices with entries in Fp. Then Theorem 2.1 implies (as

expected) that Aut(G) ∼= GLn(Fp).

Example 2.2. The situation is similar to that of the previous example when-

ever G ∼= (Zpm)n, that is λi = m for all i, where m ≥ 1. Although we can no

longer think of G as a vector space, we have that End(G) ∼= Mn(Zpm), the

set of all n× n matrices with entries in Zpm , and Aut(G) ∼= GLn(Zpm).
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Example 2.3. Suppose n = 3, λ1 = 5, λ2 = 3, and λ3 = 2. Then

End(G) =




a11 a12 a13

a21p
2 a22 a23

a31p
3 a32p a33

 : aij ∈ Zpλj

 .

By Theorem 2.1 every automorphism A ∈ End(G) of G has the form A( mod

p) ∈ GLn(Fp). But A(mod p) is an upper-triangular matrix in Mn(Fp).

Since det A = Πiaii, for A to be in GLn(Fp) we must have that aii is not

divisible by p for every i, that is each aii ∈ (Zpλi )∗, where (Zpλi )∗ is the group

of multiplicative units of Zpλi . Thus

Aut(G) =




a11 a12 a13

a21p
2 a22 a23

a31p
3 a32p a33

 : aij ∈ Zpλj , p - aii

 .

It is clear from above that a matrix corresponding to an automorphism of

G has entries that lie in different rings. However, the product of two such

matrices is well-defined and corresponds to the composition of two automor-

phisms of G, which is also an automorphism of G. Given A,B ∈ Aut(G),

consider C = AB. Then cii = ai1b1ip
λ1−λi +ai2b2ip

|λ2−λi|+ai3b3ip
λi−λ3 , where

the sum is taken modulo pλi . Then cii ≡ aiibii mod p 6≡ 0 mod p, so p - cii.

Also, for j > i we have cji = aj1b1ip
λ1−λj +aj2b2ip

λ2−λj+λi−λ2 +aj3b3ip
λi−λ3 =

pλi−λj(aj1b1ip
λ1−λi + aj2b2i + aj3b3ip

λj−λ3) since j > i implies that j ≥ 2 and

8



i ≤ 2 and where the sum is taken modulo pλi . So, C ∈ Aut(G).

Example 2.4. Suppose λ1 > λ1 > · · · > λn. Then similarly to the previous

example

Aut(G) =





a11 a12 . . . a1n

a21p
λ1−λ2 a22 . . . a2n
...

...
. . .

...

an1p
λ1−λn an2p

λ2−λn . . . ann


: aij ∈ Zpλj , aii ∈ (Zpλi )∗


.

Note that the product of two automorphisms of G is again an automorphism

of G which can be seen by performing calculations similar to the ones done

in the previous example.

Example 2.5. In general, supposeG has type λ = (λ1, ..., λ1︸ ︷︷ ︸
m1

, . . . , λk, . . . , λk︸ ︷︷ ︸
mk

),

where λ1 > · · · > λk ≥ 1 and t1 + · · · + tk = n. Then an endomorphism

A = (aij) of G is an n× n block matrix of the form



M1 ∗ . . . ∗

∗ M2 . . . ∗
...

...
. . .

...

∗ ∗ . . . Mk


,

where Mj is a tj× tj matrix with entries in Zpλj for 1 ≤ j ≤ k and all entries

below the block diagonal are divisible by p. Therefore, A is an automor-

phism of G, that is A is invertible modulo p, if and only if det(A) mod p =

9



Πjdet(Mj) mod p 6= 0 mod p. Also, notice that det(Mj) 6= 0 mod p for every

j = 1, . . . , k, so each Mj is an automorphism of (Zpλj )
tj .

2.1.2 Counting automorphisms

Using Theorem 2.1, we start with a matrix M ∈ GLn(Fp) and extend M to

an automorphism of G. First, we define the upper and lower bounds for the

number of identical parts in the partition λ

dk = max{l : λk = λl}, ck = min{l : λk = λl}.

Note that dk ≥ k and ck ≤ k. We represent the matrix M in terms of dk’s

and ck’s as follows

M =



m11 m12 . . . m1n

...
... . . .

...

md11

md22

. . .

0 mdnn


=



m1c1 ∗

m2c2

. . .

0 mncn . . . mnn


.

Then, as described in [5], we count the number of possible entries in M .

Since columns of M are linearly independent, there are

(pd1 − 1)(pd2 − p) . . . (pdn − pn−1)

10



possible entries for M . Extending M to an automorphism A of G, we see

that in A lower triangular zero entries in M can be any element of pλj−λiZpλj

for j < i in A. Thus, there are Πn
i=1(p

λi)ci−1 ways to extend the necessary

zeros in M to A. Also, we can extend the not necessary zero entries in M :

we want all aij ∈ Zpλj such that aij ≡ mij(mod p). For each mij there are

pλj−1 such aij’s. Thus

|Aut(G)| = Πn
k=1(p

dk − pk−1)Πn
i=1(p

λi)ci−1Πn
j=1(p

λj−1)dj .

Example 2.6. Let G be a finite abelian p-group of type λ = (m,n), where

m > n. Then d1 = 1, d2 = 2, c1 = 1, and c2 = 2. So

|Aut(G)| = (p− 1)(p2 − p)(pm)1−1(pn)2−1(pm−1)1(pn−1)2

= (p− 1)2pm+3n−2.

2.1.3 Sylow p-subgroups of Aut(G)

Now we will discuss Sylow p-subgroups of Aut(G). We begin by examining

the 2-dimensional case G = Zpm × Zpn , where m > n ≥ 1. Note that from

examples above we know that A =

a b

c d

 is an automorphism of G if and

only if a ∈ (Zpm)∗, b ∈ Zpn , c = kpm−n ∈ Zpm , and d ∈ (Zpn)∗. First, we

assume that p is an odd prime. As described in [4], for an odd prime p we

have that (Zpt)∗ ∼= Zpt−1 × Z(p−1). Note that we will be thinking of Zpt−1 and

11



Z(p−1) as subgroups of (Zpt)∗. Then we can write a = a′u, where a′ ∈ Zpm−1

and u ∈ Z(p−1), and d = d′v, where d′ ∈ Zpn−1 and v ∈ Z(p−1). Then we can

decompose A into a product of two matrices:

a b

c d

 =

a′ b′

c′ d′


u 0

0 v

 ,

where b′ = bv−1 and c′ = cu−1, where we think of v−1 and u−1 as inverses of

respectively v and u in (Zpt)∗. It is crucial to observe (as was done in [4])

that matrices

a′ b′

c′ d′

 and

u 0

0 v

 correspond to automorphisms of G and

sets of all such matrices form subgroups Sp and N respectively of Aut(G)

with the following properties:

(1) Sp ∩N = {e}, the identity of G;

(2) SpN = Aut(G);

(3) Sp / Aut(G).

Note that the properties (1) and (2) are clear from definitions of Sp, N , and

Aut(G). By Example 2.6, |Aut(G)| = (p − 1)2pm+3n−2 and by construction

Sp has exactly pm−1+n+n+n−1 = pm+3n−2 elements (pm−1 choices for a′, pn

choices for b′, pn choices for c′, and pn−1 choices for d′). Thus, Sp is a Sylow

p-subgroup of Aut(G). Since any A ∈ Aut(G) can be written as A = PQ,

where P ∈ Sp and Q ∈ N , we have A−1SpA = (PQ)−1Sp(PQ) = Q−1SpQ. If

12



Q =

u 0

0 v

 and

a b

c d

 ∈ Sp, then

u−1 0

0 v−1


a b

c d


u 0

0 v

 =

 a bu−1v

cv−1u d

 ∈ Sp.
Therefore, Sp is a normal subgroup of Aut(G) and thus the unique Sylow

p-subgroup of Aut(G). We take another look at the structure of Sp. Each

element of Sp is of the form

a b

c d

, where a ∈ (Zpm)∗, b ∈ Zpn , c ∈

pm−nZpm , and d ∈ (Zpn)∗. Since a subgroup of Zpm isomorphic to (Zpm)∗ is

generated by 1 + p, we can write an element of Sp as

(1 + p)k b

cpm−n (1 + p)l

,

where 0 ≤ k < pm−1, b ∈ Zpn , 0 ≤ c < pn, and 0 ≤ l < pn−1.

Let us consider G = Z2m × Z2n , where m > n ≥ 1. From [4], for t ≥ 3

we have (Z2t)
∗ ∼= Z2t−2 × Z2 and for t ≤ 2 we have that (Z2t)

∗ ∼= Z2t−1 . If

n ≥ 3, then for an automorphism A =

a b

c d

, we can write a = a′u, where

a′ ∈ Z2m−2 and u ∈ Z2, and d = d′v, where d′ ∈ Z2n−2 , v ∈ Z2. If n ≤ 3, then

in an automorphism A as above, we can write d = d′v, where d′ ∈ Z2n−1 and

v = 1 and if m ≤ 3, then we can write a = a′u, where a′ ∈ Z2m−1 and u = 1.

We write A =

a′ b′

c′ d′


u 0

0 v

, where b′ = bv−1 and c′ = cu−1. Again,
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matrices of the form

a′ b′

c′ d′

 and

u 0

0 v

 correspond to automorphisms

of G and form subgroups S2 and N of Aut(G) such that

(1) S2 ∩N = {e};

(2) S2N = Aut(G);

(3) S2 / Aut(G).

Similarly to the argument above, S2 is the unique Sylow 2-subgroup of

Aut(G). A typical element of S2 is of the form

 3k b

2m−nc 3l

, where 0 ≤

k < m− 2, b ∈ Z/2nZ, 0 ≤ c < pn, and 0 ≤ l < pn−2.

Consider G = Zpm × Zpm for some integer m > 0. Since Aut(G) =

GL2(Fp) and |Aut(G)| = p4m−3(p2−1)(p−2), a Sylow p-subgroup of Aut(G)

is a subgroup of GL2(Fp) and has order p4m−3. Notice that Aut(G) con-

tains multiple Sylow p-subgroups. For instance, the subgroup consisting of

elements of the form (1 + p)k bp

c (1 + p)l

 ,

where 0 ≤ k, l < pm−1, c ∈ Zpm , and 0 ≤ b < pm−1, is a Sylow p-subgroup

of G since the determinant (1 + p)k(1 + p)l − bcp of every element in the

subgroup is not a a multiple of p and the order of the subgroup is p4m−3

(there are pm−1 elements of the form (1 + p)t for 0 ≤ t < pm−1, pm choices

for b and pm−1 choices for c). Similarly, subgroup that contains elements of
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the form  b (1 + p)k

(1 + p)l cp

 ,

where 0 ≤ k, l < pm−1, b ∈ Zpm , and 0 ≤ c < pm−1, is also a Sylow p-subgroup

of G. Thus, Sylow p-subgroups of Aut(G) are not normal.

Notice that techniques described above can be extended in a straight-

forward manner to an arbitrary finite abelian p-group. For example, for

G = Zpm × Zpn × Zpn , where m > n, |Aut(G)| = p8n+m−4(p − 1)2(p2 − 1).

Then a subgroup containing elements of the form


(1 + p)b1 a12 a13

a21p
m−n (1 + p)b2 a23p

a31p
m−n a32 (1 + p)b3

 ,

where 0 ≤ b1 < pm−1, 0 ≤ b2, b3 < pn−1, aij ∈ Zpn for i < j, 0 ≤ a21, a31 < pn,

and 0 ≤ a32 < pn−1, is a Sylow p-subgroup of G. Notice that the block matrix

in the matrix above (1 + p)b2 a23p

a32 (1 + p)b3


corresponds to a Sylow p-subgroup of Zpn × Zpn .

For convenience, whenever λi = λi+k−1 for some i and k − 1, we choose

the k × k block matrix corresponding to a Sylow p-subgroup of Πk
j=1Zpλi to
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be of the form 

a11 a12p . . . a1k

a21 a22 . . . a2kp

...
...

. . .
...

ak1 ak2 . . . akk


,

where aii ≡ 1 mod p.

For a finite abelian p-group of type λ such that λi > λi+1 for 1 ≤ i ≤ n−1

a Sylow p-subgroup of Aut(G) is of the form



(1 + p)b1 a12 . . . a1n

a21p
λ1−λ2 (1 + p)b2 . . . a2n
...

...
. . .

...

an1p
λ1−λn an2p

λ2−λn . . . (1 + p)bn


,

where 0 ≤ bi < pλi−1, aij ∈ Zpλj for i < j, and 0 ≤ aij < pλi for i > j. This

is a unique Sylow p-subgroup of Aut(G) and therefore normal. Notice that

a Sylow p-subgroup of Aut(G) is unique if and only if λi > λi+1 for all i.

2.2 Hall Generators

Let G be a finite abelian p-group of type λ = (λ1, ..., λn) such that λi ≥ λi+1.

In [2] L. Butler defined a set of generators for a subgroup H of G, called a set

of Hall generators, that will be used extensively in the chapters ahead. Sets

of Hall generators have very nice properties and provide extremely useful
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tools for working with subgroups of G in a systematic way.

Definition 2.1. Let H be a subgroup of G of isomorphism type µ =

(µ1, ..., µk). We call an ordered set {h1, ..., hk} of generators of H a set of

Hall generators for H if it satisfies the following conditions:

1. The order of hi = (hi1, ..., h
i
n) is pµi .

Given i, let I be the largest j such that order(hij) = pµi .

2. If j > i, then hjI = 0.

3. If j > i and µj = µi, then J < I.

Notice that I is the position of the right most component of hi that

has order pµi , the order of hi. It is always possible to find Hall generators

of a finite abelian p-group and although the set of Hall generators of G is

not unique in general, when we impose restrictions that hiI = pλI−µi and

hjI < hiI ∈ ZpλI for j < i we fix exactly one set of Hall generators of G.

The following are the assumptions we will be making from now about a

set of Hall generators of a subgroup H of G.

Assumption 1: A set of Hall generators will have restrictions hiI = pλI−µi

and hjI < hiI for all j < i.

Assumption 2: If one of the entries of a Hall generator has the form xpk

for some p - x and k ≤ 0, we assume that xpk = x, that is pk = 1.
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Now we will present a few examples to clarify the definition of a set of

Hall generators for a subgroup H of G.

Example 2.7. Let G = Z34×Z32 . Let H be a subgroup of isomorphism type

(2, 1). Then a possible set of Hall generators for H is h1 = (34−2, x32−2+1) =

(32, 3x) and h2 = (0, 32−1) = (0, 3). Notice that the first component of h1

has order 32 and the second component of h2 has order 3. So I = 1 when

i = 1 and I = 2 when i = 2. Since hjI < hiI for j < i, x = 0. Thus,

h1 = (9, 0), h2 = (0, 3). Another possible set of Hall generators for H is

h1 = (x34−2, 32−2) = (32x, 1) and h2 = (34−1, 0) = (33, 0). Notice that the

second component of h1 has order 32 and the first component of h2 has order

3. Again under the restriction hjI < hiI for j < i, we have that the possible

values of x are 0, 1, 2.

Suppose H has isomorphism type (2, 2). Then h1 = (x34−2, 32−2) =

(32x, 1) and h2 = (34−2, 0) = (32, 0). Since 32x < 32, x = 0. Thus the set of

Hall generators of H is {(0, 1), (9, 0)}.

Suppose H is a cyclic subgroup of isomorphism type (2, 0). Then possible

Hall generators of H are h1 = (32, x32−2+1) = (9, 3x), where x = 0, 1, 2.

Other possible Hall generators of H are h1 = (y34−2, 32−2) = (9y, 1), where

y = 0, ..., 8.

Example 2.8. Let G = Zpm × Zpn × Zps . Let H be a subgroup of G of

isomorphism type (µ1, µ2, µ3) with µ1 > µ2 > µ3. Then one possible set of

Hall generators is h1 = (pm−µ1 , xpn−µ1+1, yps−µ1+1), h2 = (0, pn−µ2 , zps−µ2+1),
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and h3 = (0, 0, ps−µ3), where xpn−µ1+1 < pn−µ2 and yps−µ1+1, zps−µ2+1 <

ps−µ3 .

Suppose H has isomorphism type (µ1, µ2) such that µ1 ≤ λ2 and µ2 ≤ λ3.

Then a possible set of Hall generators of H is h1 = (xpm−µ1 , pn−µ1 , yps−µ1)

and h2 = (zpm−µ2 , 0, ps−µ2), where yps−µ1 ≤ ps−µ2 .

Let H be a subgroup of G of type µ = (µ1, ..., µk) and {h1, ..., hk} be the

set of Hall generators of H. Let eI be the n-tuple that has 1 in the I’th

component and 0’s everywhere else.

Definition 2.2. The Hall type of H is an n-tuple ⊕iµieI , where I is defined

in Definition 2.1.

The Hall type of a subgroup H of G is a permutation of the isomorphism

type µ of H according to the placement of I. Notice that if two subgroups

H,K of G are isomorphic, then their Hall types are the same when reordered

as partitions. Also notice that a subgroup of Hall type ⊕iµieI is isomorphic

to the direct product of Zpµi for 1 ≤ i ≤ k, with the convention Zpµj = {1}

if µj = 0, where the position of Zpµi in the direct product is determined by

the position of µi in ⊕iµieI .

Example 2.9. In Example 2.7, the Hall type of the subgroup generated by

{(9, 0), (0, 3)} is (2, 1) since the first component of h1 has order 32, while the

Hall type of subgroups generated by {(9x, 1), (27, 0)} is (1, 2) since the second

component of h1 has order 32. The Hall type of a subgroup generated by
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{(0, 1), (9, 0)} is (2, 2). Cyclic subgroups of isomorphism type (2, 0) generated

by (9, 3x) have Hall type (2, 0) and cyclic subgroups generated by (9y, 1) have

Hall type (0, 2).

In Example 2.8, the Hall type of the first subgroup is (µ1, µ2, µ3) and the

Hall type of the second subgroup is (0, µ1, µ2) since the right most component

of order pµ1 in h1 is the second component and the right most component of

order pµ2 in h2 is the third component.
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Chapter 3

Sylow p-subgroups of Aut(G)

and subgroup lattices of finite

abelian p-groups

Let G be a finite abelian p-group of type λ = (λ1, ..., λn). Let Lλ(p) be the

lattice of subgroups of G. It is well-known [1] that there exists a correspon-

dence between Lλ(p) and the product of chains [0, λ] = [0, λ1]× · · · × [0, λn].

The correspondence between Lλ(p) and [0, λ] is defined in [2] as follows: for

ϕ : Lλ(p) → [0, λ] let H be a subgroup of type µ = (µ1, ..., µk) in G and

{h1, ..., hk} is the set of Hall generators of H, then ϕ(H) = Hall type of H.

Using enumerative properties of ϕ presented in [1], L. Butler showed in [2]

that Lλ(p) is an order-theoretic p-analogue of [0, λ]. We use the following

definition of an order-theoretic p-analogue as defined in [2].
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Definition 3.1. The graded, rank n poset L(p) in a family indexed by an

infinite set of positive integers is called an order-theoretic p-analogue of a

graded, rank n poset L if there is a surjection φ : L(p)→ L such that

(a) If H < K in L(p), the φ(H) < φ(K) in L.

(b) If α ≤ φ(K), then the cardinality of {H | H ≤ K and φ(H) = α} is a

power of p determined by α and φ(K).

(c) If {α | α ≤ φ(K)} is a chain in L, then {H |H ≤ K} is a chain in L(p).

Let Sp be a Sylow p-subgroup of the group of automorphisms of G. Let

Lλ(p) be the quotient of the lattice of subgroups of G under the action of

Sp. We refer the reader to Section 2.1.3 for a review of Sylow p-subgroups

of Aut(G) in terms of matrices. Naturally, the orbits of the action of Sp in

Lλ(p) have size equal to a power of p. Let H be a subgroup of G. We denote

the orbit of H under the action of Sp in Lλ(p) by Sp(H) = {f(H) | f ∈ Sp}.

We begin with several examples.

Example 3.1. Let G ∼= Z34 × Z3. So, p = 3 and λ = (4, 1). Figure 3.1

shows the lattice of subgroups of G represented by Hall generators. Notice

that subgroups inside boxes with thick border surrounding have the same

Hall type and thus correspond to the same element of [0, 4]× [0, 2] under the

correspondence ϕ defined above. Subgroups that are not inside a box corre-

spond to exactly one element of [0, 4]× [0, 2]. By discussion in Section 2.1.3

Sp is a unique Sylow p-subgroup of Aut(G). A typical element of Sp has
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{1}

〈(27, 2)〉 〈(0, 1)〉〈(27, 1)〉〈(27, 0)〉 order 3

〈(27, 0), (0, 1)〉〈(9, 2)〉〈(9, 1)〉〈(9, 0)〉 order 32

〈(9, 0), (0, 1)〉〈(3, 2)〉〈(3, 1)〉〈(3, 0)〉 order 33

〈(3, 0), (0, 1)〉〈(1, 2)〉〈(1, 1)〉〈(1, 0)〉 order 34

Z34 × Z3

Figure 3.1: Subgroup lattice of G = Z34 × Z3.

the form

(1 + 3)k b

34−1c 1

, where 0 ≤ k < 33, b ∈ Z3, and 0 ≤ c < 3. Then

the subgroups 〈(3a, 0)〉 for a ≥ 1 are fixed by every element of Sp. Also,

(9, 1) → (9((1 + 3)k + 3c), 1) ∈ 〈(9, 1)〉. Thus, 〈(9, 1)〉 forms its own orbit

under the action of Sp. Similarly, we can see that subgroups in subdivided

smaller boxes form individual orbits of Sp in Lλ(p). Note that the fibers of

ϕ in Lλ(p) containing 〈(3, 0)〉 and 〈(9, 0)〉 each of size 3 split into the orbits

of Sp that have size 1. Figure 3.2 compares the the quotient Lλ(p) and the

product of chains [0, 4]× [0, 1]. Notice that we can think of Lλ(p) as splitting

of certain points and edges of [0, λ].

We saw in the beginning of the chapter that the correspondence ϕ between

23



Figure 3.2: Quotient of the subgroup lattice of G = Z34×Z3 under the action
of Sp on the left and the product of chains [0, 4]× [0, 1] on the right.

Lλ(p) and [0, λ] is determined by the Hall type of a subgroup. Although the

process of of determining the Hall type of a subgroup is reminiscent of matrix

row reduction and thus should be close to being a group automorphism, the

correspondence ϕ does not respect group automorphisms as we will see in the

following example. Thus, the advantage of classifying finite abelian p-groups

via the quotients Lλ(p) is that this action respects group automorphisms.

Example 3.2. Let G ∼= Z34 × Z32 . Figure 3.3 illustrates the lattice of

subgroups of G and Figure 3.4 contrasts the quotient of Lλ(p) under the

action of Sp and the product of chains [0, 4] × [0, 2]. Note that subgroups

〈(3, 0), (0, 3)〉, 〈(3, 1), (0, 3)〉, and 〈(3, 2), (0, 3)〉 have Hall type (3, 1), thus

these subgroups lie in the fiber of (3, 1) under the correspondence ϕ. However,

the subgroup H = 〈(3, 0), (0, 3)〉 is fixed by every lattice automorphism, and

thus it is invariant under every group automorphism.

First, we make an important observation that the orbits of the action of
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{ 1 }

〈27, 0〉 〈27, 3〉 〈54, 3〉 〈0, 3〉

〈9, 0〉 〈9, 3〉 〈9, 6〉 〈27 0, 0 3〉 〈9, 1〉〈36, 1〉〈63, 1〉 〈18, 1〉〈45, 1〉〈72, 1〉 〈54, 1〉〈27, 1〉〈0, 1〉

〈3 0〉 〈3 3〉 〈3 6〉 〈9 0, 0 3〉 〈3 1〉 〈3 4〉 〈3 7〉 〈3 2〉 〈3 5〉 〈3 8〉 〈9 1, 27 0〉 〈18 1, 27 0〉 〈0 1, 27 0〉

〈1 0〉 〈1 3〉 〈1 6〉 〈1 1〉 〈1 4〉 〈1 7〉 〈1 2〉 〈1 5〉 〈1 8〉 〈30, 03〉 〈3 1, 0 3〉 〈3 2, 0 1〉 〈0 1, 9 0〉

〈1 0, 0 3〉 〈1 1, 0 3〉 〈1 2, 0 3〉 〈3 0, 0 1〉

Z34 × Z32

Figure 3.3: G = Z34 × Z32 .

Figure 3.4: Quotient of the subgroup lattice of G = Z34 × Z32 under the
action of Sp on the left and the product of chains [0, 4]× [0, 2] on the right.
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Sp on Lλ(p) are contained within subgroups of the same Hall type.

Theorem 3.1. Let G be a finite abelian p-group of type λ. Let H be a

subgroup of G of isomorphism type µ = (µ1, ..., µk) and Hall type µ. Then

the orbit of the action of Sp on Lλ(p) containing H is contained in the fiber

of µ under ϕ, that is Sp(H) ⊂ ϕ−1(µ).

Proof. First we note that µ is a permutation of entries of partition µ, that

is µ is not necessarily a partition. Let (aij) be the matrix associated with a

Sylow p-subgroup of Aut(G) as described in Section 2.1.3. Let {h1, ..., hk} be

a set of Hall generators of H and Ii be the index of the right most component

of hi that has order pµi as described in Section 2.2. Let (hij) be k×n matrix

representing the set of Hall generators of H chosen above. Then (hij)(aij) =

(bij) is a k × n matrix. Since aii ≡ 1 mod pλi for all i, biIi = ciIip
λIi−µi ,

where ciIi ≡ 1 mod pλIi . Also for all other j if hij = dijp
kij , then bij = eijp

kij .

Thus, we can row reduce (bij) so that bij = 0 for j > Ii and biIi = pλIi−µi .

Therefore, we can reduce matrix (bij) to represent Hall generators. Since the

location of pivot points in (bij) is the same as in (hij), subgroup represented

by (bij) has the same Hall type as H. Therefore, the orbit of the action of

Sp containing H, Sp(H), is contained in the fiber of µ, the Hall type of H,

under the correspondence ϕ defined at the beginning of this chapter.

For groups in Examples 3.1 and 3.2 we saw that Lλ(p) was not equal to

the product of chains [0, λ]. However, there are certain finite abelian p-groups

for which Lλ(p) is equal to [0, λ]. We will discuss such subgroups next.
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Theorem 3.2. Let G be a finite abelian p-group of type λ such that λ1 =

... = λn or of type λ such that either λi − λt = 0 or λi − λt = 1 for all

1 ≤ i < t ≤ n. Then Lλ(p) = [0, λ].

Proof. First, we let G ∼= Zpm × Zpm . Let H be a subgroup of isomorphism

µ = (µ1, µ2), where µ1 ≥ µ2. Suppose H has Hall type (µ1, µ2), where

µ1 > µ2. Then a set of Hall generators for H is h1 = (pm−µ1 , xpm−µ1+1) and

h2 = (0, pm−µ2). An element of a Sylow p-subgroup of Aut(G) has the forma bp

c d

, where c ∈ Zpm , a = (1 + p)k, and d = (1 + p)l. Let a = 1 = d and

c = 0. Thenpm−µ1 xpm−µ1+1

0 pm−µ2


1 bp

0 1

 =

pm−µ1 pm−µ1+1(b+ x)

0 pm−µ2

 .

Thus, Sp maps H to a subgroup 〈(pm−µ1 , pm−µ1+1(b+x)), (0, pm−µ2). Since

b is free, H can be mapped to every subgroup of the same Hall type. Thus,

ϕ−1((µ1, µ2)) = Sp(H), where Sp(H) is the orbit of H in Lλ(p) under the

action of Sp.

If H has Hall type (µ2, µ1), where µ1 > µ2. Then a set of Hall gener-

ators for H is h1 = (xpm−µ1 , pm−µ1) and h2 = (pm−µ2 , 0). Then choosing

a = 1 = d and b = 0, we see that H maps to a subgroup 〈(pm−µ1(x +

c), pm−µ1), (pm−µ2 , 0)〉. Since c is free, H is mapped to every subgroup of Hall

type (µ2, µ1).

If H has Hall type (µ1, µ1), then the set of Hall generators of H is h1 =
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(0, pm−µ1) and h2 = (pm−µ1 , 0). Thus there is only one subgroup of such Hall

type and it is fixed by every element of Sp. Therefore, Lλ(p) = [0, λ].

Similar calculations although cumbersome extend to the general case

when G has type λ and H is a subgroup of G of type µ = (µ1, ..., µk) under

the action of Sylow p-subgroup of the form (aij), where aii ≡ 1 mod pm,

aij = pbij for i < j and aij ∈ Zpm for j < i.

Now suppose G ∼= Zpm+1 × Zpm . Let H be a subgroup of G of Hall

type (µ1, µ2), where µ1 > µ2. The set of Hall generators of H is h1 =

(pm−µ1+1, xpm−µ1+1) and h2 = (0, pm−µ2). A Sylow p-subgroup of Aut(G)

has the form

 a b

cp d

, where b ∈ Zpm , a = (1 + p)k, and d = (1 + p)l.

Choosing a = d = 1 and c = 0, we have that H maps to a subgroup

K = 〈(pm−µ1+1, pm−µ1+1(b + x)), (0, pm−µ2). Since b is free, k is an arbi-

trary subgroup of Hall type (µ1, µ2). Thus, the orbit Sp(H) is equal to

ϕ−1((µ1, µ2)).

Let H be a subgroup of G of Hall type (µ2, µ1) with µ1 > µ2. Then a set

of Hall generators for H is h1 = (xpm−µ1+1, pm−µ1) and h2 = (pm−µ2+1, 0).

Letting a = d = 1 and b = 0, H maps to K = 〈(pm−µ1+1(x+ c), pm−µ1),

(pm−µ2+1, 0)〉. Since c was arbitrary, K is an arbitrary subgroup of Hall type

(µ2, µ1).

Similarly to above G contains a unique subgroup of type (µ1, µ1), which

is fixed by every element of Sp. Thus, Lλ(p) = [0, λ].

For a general group G of type λ such that λi − λt = 0 or 1 for all
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1 ≤ i < t ≤ n, let k be such that λk−1 − λk = 1. A Sylow p-subgroup of

Aut(G) is of the form (aij) such that

• aii = (1 + p)bi for 0 ≤ bi < pλ1−1 for i < k and 0 ≤ bi < pλk−1 for i ≥ k,

• aij ∈ Zpλj for i < j, j ≥ k, and i < k,

• aij = cijp for all other i < j,

• aij = cijp for i > j, j < k, and i ≥ k,

• aij ∈ Zpλj for all other i > j.

Similar computation as above can be done with this matrix to show that

a subgroup of Hall type µ = (µ1, ..., µk) can be mapped by an element of a

Sp to an arbitrary subgroup of Hall type µ. Thus, Lλ(p) = [0, λ].

If we examine Examples 3.1 and 3.2, we notice that orbits of Sp split up

fibers of the correspondence ϕ in a systematic manner. In the next Theorem

we classify quotients of subgroup lattices of G ∼= Zpm ×Zpn under the action

of Sp. Notice that the cases when m = n and m = n + 1 are covered in

Theorem 3.2.

Theorem 3.3. Let G ∼= Zpm×Zpn, where m−n ≥ 2. Let H be a subgroup of

G of isomorphism type µ = (µ1, µ2). If the Hall type of H is (µ1, µ2), where

m > µ1 > µ2, then Sp(H) is strictly contained in the fiber ϕ−1([µ1, µ2]), which

splits into smaller orbits of Sp of equal size. Otherwise, ϕ(µ) = Sp(H).
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Proof. Suppose the Hall type of H is (µ1, µ2), where µ1 > µ2, then a set of

Hall generators of H has the form h1 = (pm−µ1 , xpn−µ1+1) and h2 = (0, pn−µ2).

Then multiplying the matrix representation of Hall generators of H on the

left by a matrix representation of an element of the Sylow p-subgroup of H

we get the following

pm−µ1 xpn−µ1+1

0 pn−µ2


 a b

cpm−n d

 =

pm−µ1(a+ cxp) pn−µ1+1(bpm−n−1 + xd)

pm−µ2c pn−µ2d

 ,

where a ≡ 1 mod p and d ≡ 1 mod p. Since a + cxp ≡ 1mod p, it is a unit,

call it u. Notice that u−1 is also of the form 1 + αp for some α ∈ Zpm . By

multiplying the first row by −cu−1pµ1−µ2 and adding it to the second, we

see that the coefficient of pn−µ2 in the lower right entry is a unit since d was

a unit. Thus, after row reduction the second row has the form (0, pn−µ2).

Multiplying the first row by u−1, we have u−1(bpm−n−1 + xd)pn−µ1+1. Since

b is arbitrary and d ≡ 1 mod p, the upper right entry of this matrix does not

depend on u−1. Thus, subgroups that H maps to under Sp have generators

of the form pm−µ1 pn−µ1+1(bpm−n−1 + xd)

0 pn−µ2

 .

Whenever µ1 = m, pn−µ1+1(bpm−n−1 + xd) = b+ xd in the matrix above.
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Since b is arbitrary, H maps to an arbitrary subgroup of the same Hall type

as H. Therefore, in this case the orbit of Sp is equal to ϕ−1([µ1, µ2]).

Suppose that µ1 < m. Let d = 1 + αp, where α is arbitrary, and x = βpl

for some 0 ≤ l and p - β. Then

bpm−n−1 + xd = bpm−n−1 + x(1 + αp) (3.1)

= p(bpm−n−2 + βαpl) + x (3.2)

= pt+1(bpm−n−2−t + βαpl−t) + x, (3.3)

where t = min{m − n − 2, l}. Since both b and α are arbitrary, the or-

bit of H consists of those subgroups K that have Hall generators k1 =

(pm−µ1 , ypn−µ1+1) and k2 = (0, pn−µ2) with y ≡ x mod pt+1. Notice that

the orbit of H depends completely on the selection of h1. Notice that the

size of the orbit of H is equal to pt+1.

Suppose H has Hall type (µ2, µ1) such that µ1 > µ2. Then a set of Hall

generators of H is h1 = (xpm−µ1, pn−µ1) and h2 = (pm−µ2 , 0). Then applying

matrix

 1 0

cpm−n 1

 to H gives the matrix

pm−µ1(x+ c) pn−µ1

pn−µ2 0

 , which

corresponds to an arbitrary subgroup of Hall type (µ2, µ1) since c is arbitrary.

Therefore, Sp(H) = ϕ−1([µ2, µ1]).

Let H be a subgroup of G of Hall type (µ1, µ1). Then it is unique and

thus Sp(H) = ϕ−1([µ1, µ1]).
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Although computations are significantly more cumbersome in a general

case the computations done in the previous Theorem could be extended to

an arbitrary finite abelian p-group.

Corollary 3.1. Let G be a finite abelian p-group of type λ and let H be a

subgroup of G of isomorphism type µ = (µ1, ..., µk). Suppose that H has Hall

type µ = (µk, ..., µ1) or Hall type µ such that mui = λi for 1 ≤ i ≤ k − 1 or

µ1 = µj for all 1 ≤ j ≤ k, then Sp(H) = ϕ−1(µ). Otherwise, the orbit of Sp

is strictly contained in the inverse image of the correspondence function of

µ, ϕ−1(µ) (unless |ϕ−1(µ)| = 1).

It is well-known that for a partition λ = (λ1, ..., λn) the product of chains

[0, λ] is self-dual lattice, that is there exists an order-reversing mapping from

[0, λ] to itself. From Figure 3.2 and Figure 3.4 we see that Lλ(p) is a self-dual

lattice. For G = Zpm × Zpn where m ≥ n + 2 we have seen many examples

that strongly suggest that Lλ(p) is a self-dual lattice.

Conjecture 3.1. For G = Zpm ×Zpn, where m ≥ n+ 2, Lλ(p) is a self-dual

lattice.

The idea for the possible proof was to find an order-reversing involution

that normalizes orbits of Sp in the lattice of subgroups of G. However, we first

needed to examine the relationship between the orbits of the actions of the

group of lattice automorphisms and the subgroup of lattice automorphisms

induced by group automorphism. This topic will be examined in the next

chapter.
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Chapter 4

Orbits of Autoprojectivities in

Subgroup Lattices of Finite

Abelian p-groups

Let G be a finite abelian p-group of type λ = (λ1, ..., λn). Let L(G) be the

lattice of subgroups of G. We call an automorphism of L(G) an autoprojec-

tivity of G. Let P (G) be the group of all autoprojectivities of G and PA(G)

be the group of all autoprojectivities of G induced by automorphisms of G.

Notice that PA(G) is the quotient of the automorphism group of G, Aut(G),

by the subgroup of all automorphisms fixing every subgroup of G, that is

PA(G) ∼= Aut(G)/{ϕ ∈ Aut(G) | ϕ(H) = H ∀ H ≤ G}.
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We say that two subgroups H,K in L(G) are in the same orbit of P (G) (or

PA(G)) if there exists ϕ ∈ P (G) (or ϕ ∈ PA(G)) such that ϕ(H) = K. It is

clear that if H and K are in the same orbit of PA(G), then H is isomorphic

to K. Since every subgroup of an abelian p-group is an abelian p-group

and since an abelian p-group is distinguished among abelian p-groups by its

subgroup lattice, we have that if subgroups H and K of G are in the same

orbit of P (G), they are isomorphic. We will be interested in comparing the

orbits of actions of P (G) and PA(G) on the subgroup lattice L(G).

We will explore these ideas in an example below.

Example 4.1. Let G = Z33 × Z3. So, p = 3 and λ = (3, 1). In the

Figure 4.1, subgroups of G are represented by Hall generators, which will be

defined later. In Figure 4.1 subgroups enclosed in a box represent subgroups

in the same orbit of P (G). Subgroups not enclosed in a box represent the

orbits of P (G) that contain exactly one element. These subgroups are fixed

by every autoprojectivity of G. For instance, subgroup generated by (9, 0)

cannot be moved by any autoprojectivity because there is no other subgroups

order 3 that is contained in four subgroups of order 32. In this case there are

three nontrivial orbits of P (G).

Now we will calculate the orbits of PA(G). We refer the reader to Sec-

tion 2.1 for a review of group automorphisms of a finite abelian p-group. In

our case, a group automorphism of G looks like

 a b

32c d

, where a, b ∈ Z33 ,

c, d ∈ Z3, and a, d are not divisible by p. We can map the subgroup generated
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{1}

〈(9, 2)〉 〈(0, 1)〉〈(9, 1)〉〈(9, 0)〉 order 3

〈(9, 0), (0, 1)〉〈(3, 2)〉〈(3, 1)〉〈(3, 0)〉 order 32

〈(3, 0), (0, 1)〉〈(1, 2)〉〈(1, 1)〉〈(1, 0)〉 order 33

Z33 × Z3

Figure 4.1: G = Z33 × Z3.

by (0, 1) to subgroups generated by (9, 1) and (9, 2) via the group automor-

phism

 1 0

32 d

, where d = 1, 2. Also, we can map the subgroup generated

by (3, 1) to the subgroup generated by (3, 2) via the group automorphism1 0

0 2

. Finally, the subgroup generated by (1, 1) can be mapped to sub-

groups generated by (1, 1) and (1, 2) via

1 0

0 d

, where d = 1, 2. Thus, the

orbits of PA(G) are the same as the orbits of P (G).
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4.1 Elementary Abelian Groups

First, we consider the most basic of finite abelian p-groups: elementary

abelian groups. Let G be an elementary abelian group of order pn, where

n ≥ 1. Then G = (Zp)n. We can think of G as an n-dimensional vector

space over the field Fp with p elements. The lattice of subgroups of G cor-

responds to the projective geometry of G as a vector space, where subspaces

are subgroups of G. For reference check Figure 4.2 where a subgroup lattice

of G = Z3×Z3×Z3 is pictured. A projectivity of a projective geometry of a

vector space is a bijection from one projective space to another that preserves

the ordering of subspaces under inclusion. Then an autoprojectivity of G is

a projectivity in the sense of projective geometry. Since the group of auto-

morphisms of G, Aut(G), is isomorphic to the general linear group of n× n

invertible matrices over Fp, GL(n, p), we have that PA(G) ∼= PGL(n, p), the

projective linear group of n× n matrices over Fp.

Suppose n ≥ 3. The Fundamental Theorem of Projective Geometry

([8], p. 25) states that every autoprojectivity of G is induced by a semilinear

transformation f : G→ G, where a semilinear transformation f is a mapping

such that given a field automorphism θ of Fp for all x, y ∈ G and k ∈ Fp

we have f(x + y) = f(x) + f(y) and f(kx) = θ(k)f(x). Since the only

field automorphism of Fp is the trivial automorphism, we have that every

autoprojectivity of G is induced by a linear transformation of G. Thus,

every autoprojectivity of G is induced by a group automorphism, that is
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Figure 4.2: G = Z3 × Z3 × Z3.

P (G) = PA(G). Therefore, trivially the orbits of P (G) are equal to the

orbits of PA(G).

Suppose n = 2. Then the only nontrivial subgroups of G are cyclic

subgroups of order p. There are p + 1 cyclic subgroups of G which form an

antichain in L(G)/{G, {1}}. Figure 4.3 provides an example of the subgroup

lattice of G = Z3×Z3. Notice that an autoprojectivity of G can be described

as a permutation of these p+1 subgroups. Thus, P (G) ∼= Sp+1, the symmetric

group on p + 1 symbols. Notice that |PGL(2, p)| = (p2 − 1)(p2 − p)/(p −

1) = (p − 1)p(p + 1). It is well-known that the action of PGL(2, p) on the

set of projective lines P1
p induces an injection from PGL(2, p) to Sp+1. By

comparing the sizes of groups we have that PGL(2, 2) ∼= S3 and PGL(2, 3) ∼=

S4. Thus, for n = 2 and p = 2, 3 we have that PA(G) = P (G). For p ≥ 5,

(p−1)p(p+1) = |PA(G)| < |P (G)| = (p+1)!. Therefore, PA(G) is a proper
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{1}

〈(1, 0)〉 〈(1, 1)〉 〈(1, 2)〉 〈(0, 1)〉

Z3 × Z3

Figure 4.3: G = Z3 × Z3.

subgroup of P (G). Since PA(G) is much smaller than P (G) it is not clear

whether the action of PA(G) on L(G) would create smaller orbits than the

action of P (G). Further analysis is needed to determine whether there exist

subgroup H,K in L(G) such that H and K are in the same orbit of P (G)

but it is not possible to find a group automorphism mapping H to K.

We collect results discussed above in the following Theorem.

Theorem 4.1. Let G be an elementary abelian group of order pn with n ≥ 1.

Then for n ≥ 3 and for n = 2 and p = 2, 3 the orbits of PA(G) are equal to

the orbits of P (G).

In 1939 R. Baer generalized Theorem 4.1 to a much larger class of finite

abelian p-groups than elementary abelian groups with n ≥ 3 without the use

of Fundamental Theorem of Projective Geometry.

Theorem 4.2. Baer’s Theorem (Theorem 2.6.7, [8]) Let G be a finite abelian

p-group of type λ such that G contains at least 3 independent elements of or-
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der pλ1, then every autoprojectivity of G is induced by a group automorphism

of G.

In other words, if a finite abelian p-group G has type λ such that λ1 = λ3,

then P (G) ∼= PA(G). For such a finite abelian p-group, the orbits of P (G)

and PA(G) in L(G) are equal trivially. Notice that elementary abelian groups

with n ≥ 3 form a special case of Baer’s Theorem.

We will examine the rest of finite abelian p-groups and their subgroup

lattices under the actions of P (G) and PA(G). We begin with finite abelian

p-groups of the form Zpm × Zpn , where m ≥ n.

4.2 Autoprojectivities of Subgroup Lattices

of Zpm × Zpn.

Let G ∼= Zpm × Zpn , where p is prime and m ≥ n. The structure of P (G) is

well-known and was described by C. Holmes in [6]. Let SL(G) be the meet

semi-lattice of cyclic subgroups of G and Aut(SL(G)) be the group of all

automorphisms of SL(G). Holmes showed that the following result holds.

Theorem 4.3. (Theorems 1, 2, [6]) Suppose G ∼= Zpm ×Zpn. Then P (G) =

Aut(SL(G)). If G = Zpm × Zpm, then P (G) = (Sp)
n−1 o Sp+1, where (Sp)

n

is the n-fold wreath product. If G ∼= Zpm × Zpn with m > n, then P (G) ∼=

Snp × (Sn−1p oSp−1)×· · ·× (Sn−1p oSp−1)×Snp , where there are m−n+1 factors

in the direct product.
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It is particularly interesting that by Theorem 4.3 we see that P (G) is

completely determined by Aut(SL(G)). It is true because, as Holmes showed

in [6], every automorphism of SL(G) can be extended to an automorphism

of L(G). In particular, if H is a subgroup of G of isomorphism type (a, r)

with a ≤ m, r ≤ n, and a > r, that is H ∼= Zpa × Zpr , then H can be

written as H = C ∨ G(r), where C is a cyclic subgroup of H of order pa

and G(r) is the unique subgroup of H isomorphic to Zpr × Zpr . If f is an

automorphism of SL(G) then f extends to f̂ , a map on L(G), as follows

f̂(H) = f̂(C ∨G(r)) = f(C) ∨G(r).

Notice that although a restriction of an autoprojectivity of G to the meet

semi-lattice of cyclic subgroups is an automorphism of SL(G), it is not al-

ways possible to extend an automorphism of SL(G) to an automorphism of

L(G). For instance, if G = (Zp)n for n ≥ 3 and H and K are non-trivial

cyclic subgroups of G of the same order, then since G is vector space over

the finite field Fp a permutation (H,K) is an automorphism of SL(G). This

automorphism is not linear, but as we discussed in Section 4.1 every auto-

projectivity of G is linear as a consequence of the Fundamental Theorem

of Projective Geometry. Therefore, this automorphism of SL(G) cannot be

extended to an automorphism of the subgroup lattice of G.

The explicit structure of P (G) in terms of wreath products comes from

the structure of SL(G) which is straightforward to understand and will be

discussed later.

We use the explicit structure of P (G) described in Theorem 4.3 to gain
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insight into the relationship of orbits in L(G) under the actions of P (G) and

PA(G). We begin with a definition.

Definition 4.1. Let SL be a meet semi-lattice such that each element of

dimension k contains exactly one element of dimension k − 1. We define S

to be of type (n(1), ..., n(k)) if every element of dimension j − 1 is contained

in exactly n(j) elements of dimension j.

First, we consider the case when G = Zpm × Zpm . The identity subgroup

is contained in p+ 1 cyclic subgroups of order p. Let H be a cyclic subgroup

of G of order pk for 1 ≤ k < n. Then H is generated by a Hall generator

h = (xpm−k, ypm−k), where either x ≡ 1 mod p or y ≡ 1 mod p. Then H

is contained in cyclic subgroups of order pk+1 that are generated by Hall

generator of the form (xpm−k + apm−1, ypm−k + bpm−1), where a ≡ 0 mod

pm if x ≡ 1 mod p and b ≡ 0 mod pm if y ≡ 1 mod p. Thus, there are p

cyclic subgroups of order pk+1 that contain H. Therefore, SL(G) is of type

(p + 1, p, ..., p). Lemma 5 in [6] states that if SL is a semi-lattice of type

(n(1), ..., n(k)), then Aut(SL) = (Sn(k) o · · · oSn(2)) oSn(1). Thus, Aut(SL(G))

= (Sp)
n−1 o Sp+1.

The structure of P (G) implies that for every of p + 1 cyclic subgroups

of order p there exists an autoprojectivity mapping it to another cyclic sub-

group of order p. The (n − 1)-fold wreath product of Sp in P (G) implies

that there exists an autoprojectivity among every of p cyclic subgroups of

order p2 ≤ pk ≤ pm lying above a certain cyclic subgroup of order pk−1.

Thus, the structure of P (G) implies that there exists a lattice automorphism
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{1}

〈3, 0〉 〈3, 3〉 〈6, 3〉 〈0, 3〉

〈1, 0〉 〈1, 3〉 〈1, 6〉 〈1, 1〉 〈4, 1〉 〈7, 1〉 〈03, 30〉 〈2, 1〉 〈5, 1〉 〈8, 1〉 〈3, 1〉 〈6, 1〉 〈0, 1〉

〈10, 03〉 〈11, 30〉 〈12, 30〉 〈01, 30〉

Z32 × Z32

Figure 4.4: Lattice of subgroups of G = Z32 × Z32 .

between any two cyclic subgroups of the same order. Since by results in [6]

every lattice automorphism on cyclic subgroups can be extended to a lat-

tice automorphism of L(G), there exists an autoprojectivity between every

two isomorphic subgroups of G. We refer to Figure 4.4 for an example of a

subgroup lattice of G = Z32 × Z32 .

Notice that although the orbits of P (G) are relatively easy to see by

looking at the shape of the subgroup lattice, the same is not true for the

orbits of PA(G) since group automorphisms are more restrictive than lattice

automorphisms. Thus, just by looking at the subgroup lattice of G it is very

difficult to understand how group automorphism act on the subgroup lattice

and get our hands on the orbits of PA(G). To describe group automorphism

explicitly we need to work with some specific information that comes from

subgroups. We discovered that a set of generators of a subgroup of a finite
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abelian p-group described by L. Butler in [2] has a particularly nice structure

and provide a convenient way for describing orbits of P (G) and PA(G) in

L(G) in a systematic way. We invite the reader to review the definition of

Hall generators in Section 2.2.

Suppose there exists an autoprojectivity between subgroups H,K of G.

Then as noted above H and K have the same isomorphism type µ = (µ1, µ2),

where µ1 ≥ µ2. Then either H and K have the same Hall type or the Hall

type of K is a nontrivial permutation of the Hall type of H. Notice that

there is only one subgroup of type (µ1, µ2) when µ1 = µ2. Thus, without

loss of generality, we can assume that µ1 > µ2 and we have to consider three

distinct cases:

Case 1: H and K have Hall type (µ1, µ2).

Then we can write Hall generators {h1, h2} of H and {g1, g2} of K as

h1 = (pm−µ1 , xpm−µ1+1), h2 = (0, pm−µ2) and g1 = (pm−µ1 , ypm−µ1+1),

g2 = (0, pm−µ2), where x, y ∈ Zpm . Then a group automorphism

ϕ defined by the matrix

1 bp

0 1

, where b, d ∈ Zpm , takes h1 to

(pm−µ1 , bpm−µ1+1 + xpm−µ1+1) = (pm−µ1 , pm−µ1+1(b + x)). Since b is

arbitrary, b+ x = y has a solution for any y ∈ Zpm . Moreover, ϕ takes

h2 to g2. Thus, H and K are in the same orbit of PA(G).

Case 2: H and K have Hall type (µ2, µ1).

Then we can write Hall generators {h1, h2} of H and {g1, g2} of K

as h1 = (xpm−µ1 , pm−µ1), h2 = (pm−µ2 , 0) and g1 = (ypm−µ1 , pm−µ1),
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g2 = (pm−µ2 , 0), where x, y ∈ Zpm . Then a group automorphism ϕ

defined by the matrix

1 0

c 1

, where c ∈ Zpm , takes h1 to (xpm−µ1 +

cpm−µ1 , pm−µ1) = (pm−µ1(x+ c), pm−µ1). Since c is arbitrary, x+ c = y

has a solution for every y ∈ Zpm . Also, ϕ takes h2 to g2. Thus, H and

K are in the same orbit of PA(G).

Case 3: H has Hall type (µ1, µ2) and K has Hall type (µ2, µ1).

Then we can write Hall generators {h1, h2} of H as h1 = (pm−µ1 ,

xpm−µ1+1), h2 = (0, pm−µ2) and Hall generators {g1, g2} of K as g1 =

(ypm−µ1 , pm−µ1), g2 = (pm−µ2 , 0), where x, y ∈ Zpm . Then a group au-

tomorphism ϕ defined by the matrix

a 1

1 0

, where a ∈ Zpm , takes

h1 to (apm−µ1 + xpm−µ1+1, pm−µ1) = (pm−µ1(a+ cp), pm−µ1). Since a is

arbitrary, a + cp = y has a solution for every y ∈ Zpm . Moreover, it is

clear that ϕ takes h2 to g2. Thus, H and K are in the same orbit of

PA(G).

All of three cases above are still valid for cyclic groups, when µ2 = 0.

Thus, we have shown that

Theorem 4.4. When G = Zpm × Zpm, the orbits of P (G) and PA(G) on

L(G) coincide.

Now, suppose G ∼= Zpm ×Zpn , where m > n. Let F be the intersection of

all cyclic subgroups of order pm in G. Notice that pn subgroups of order pm
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in G have Hall generators (1, x), where x ∈ Zpn . So, F is a cyclic subgroup

of order pm−n with Hall generator (pn, 0). The chain of subgroups of F ,

including F , has m− n+ 1 element. Every non-trivial subgroups of F has a

Hall generator of the form (pm−k, 0), where 0 < k ≤ m − n. Since no other

subgroup of order pm−n is contained in every subgroup of order pm, F and

the chain of its subgroups is fixed by every autoprojectivity of G.

We can describe the meet semi-lattice of cyclic subgroups SL(G) in terms

of semi-lattices of cyclic subgroups of various types attached to the chain of

subgroups of F . We attach semi-lattices of cyclic subgroups of type (p, ..., p)

to F and the identity subgroup and to all other m − n − 1 subgroups in

the chain of subgroups of F we attach semi-lattices cyclic subgroups of type

(p− 1, p, ..., p). We say that two cyclic subgroups H and K are in the same

branch collection if H ∩ F = K ∩ F . We associate a branch collection with

the corresponding subgroup of F and call it a k-branch collection, where

0 ≤ k ≤ n−m and pk is the order of the corresponding subgroup of F . We

clarify these ideas in the following example.

Example 4.2. Figure 4.5 illustrates the meet semi-lattice of cyclic subgroups

of G = Z34×Z32 . The filled-in circles represent cyclic subgroups of G of order

34. The filled in diamond node represents the intersection of all cyclic sub-

groups of order 34 and the thick line segments and white diamond nodes rep-

resent the chain of cyclic subgroups of F . Notice that F and the chain of its

subgroups cannot be moved by any automorphism of SL(G) and also by any

automorphism of L(G). The bottom node is the identity subgroup. Notice
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Figure 4.5: Meet semi-lattice of cyclic subgroups of G = Z34 × Z32 .

that 3 branches of cyclic subgroups are attached the identity. These branches

can be permuted among themselves via automorphisms of SL(G). Also, two

branches of cyclic subgroups are attached at a cyclic non-trivial subgroup of

F and can be permuted among themselves. Lastly, three branches of cyclic

subgroups are attached at F and also can be permuted among themselves.

We can extend the characterization of SL(G) in terms of the chain of

subgroups of F to the entire subgroup lattice of G as follows: we say that

a subgroup H of G with isomorphism type (µ1, µ2), where µ1 ≥ µ2, is con-

tained in the k-branch collection if the Hall generator of H of order pµ1 is

contained in the k-branch collection. In other words, if {h1, h2} is a set of

Hall generators of H, then H belongs to the same branch collection as h1.

We first consider the 0-branch collection, that is all subgroups of G that

intersect the chain of subgroups of F at the identity subgroup. Notice that

subgroups of order p are all cyclic and either have Hall type (1, 0) or (0, 1).

Subgroups of Hall type (1, 0) are cyclic subgroups that are generated by a

Hall generator of the form (pm−1, xpn−1+1) = (pm−1, xpn) = (pm−1, 0). Thus,
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there is only one subgroup of Hall type (1, 0) and it is a subgroup of F . Thus,

all of subgroups of order p that are contained in the 0-branch collection have

Hall type (0, 1). Then a cyclic subgroup of order pk, where 1 ≤ k ≤ n,

containing a subgroup of Hall type (0, 1) has Hall type (0, k). Therefore,

cyclic subgroups contained in the 0-branch collection have Hall type (0, k).

We will show that all subgroups contained in the 0-branch collection have

Hall type (µ2, µ1), where µ1 ≥ µ2.

Proposition 4.1. If subgroups H and K are contained in the same branch

collection and have the same isomorphism type, then they have the same Hall

type.

Proof. Suppose H is a subgroup of G of Hall type (µ1, µ2), where µ1 > µ2.

Then the set of Hall generators for H is h1 = (pm−µ1 , xpn−µ1+1) and h2 =

(0, pn−µ2), where xpn−µ1+1 < pn−µ2 ∈ Zpn . By definition, H is contained

in the branch collection of h1, which has Hall type (µ1, 0). In fact, we can

calculate the exact branch collection of H. Suppose x = αpa, where p does

not divide α and 0 ≤ a < µ1 − 1. Then pµ1−1−ah1 = (pm−a−1, 0). So H is

contained in the (m−a−1)-branch collection. Since µ1 ≤ m and a < µ1−1,

m− a− 1 6= 0. So, H is not contained in the 0-branch collection. Therefore,

if a subgroup is contained in the 0-branch collection, it has Hall type (µ2, µ1),

where µ1 ≥ µ2.

Suppose subgroups H and K have the same isomorphism type (µ1, µ2),

where µ1 > µ2, but different Hall types. Suppose H has Hall type (µ1, µ2)

and K has Hall type (µ2, µ1). Then K is contained in the 0-branch collection
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and H is not by the argument above. Therefore, H and K are not contained

in the same branch collection.

Now we will examine the relationship between orbits of P (G) and branch

collections.

Proposition 4.2. Subgroups H and K of G are in the same orbit of P (G) if

and only if H and K have the same isomorphism type and they are contained

in the same branch collection.

Proof. Suppose H and K are in the same orbit of P (G). Then there exists

an autoprojectivity ϕ between H and K. Then H and K are finite abelian

p-groups and since finite abelian p-groups are completely distinguished by

their subgroup lattices among other finite abelian p-groups, H and K have

the same isomorphism type (µ1, µ2), where µ1 ≥ µ2 > 0 (if µ2 = 0, then

we have a cyclic subgroup and from the discussion prior to Example 2 H

and K have belong to the same branch collection). Let {h1, h2} and {k1, k2}

be sets of Hall generators for H and K respectively. Then ϕ restricted to

the meet semi-lattice of cyclic subgroups belongs to Aut(SL(G)). Thus,

ϕ(〈h1〉) ∈ K is a cyclic subgroup of K of order pµ1 that belongs to the same

branch collection as 〈h1〉. Suppose ϕ(〈h1〉) and 〈k1〉 are cyclic subgroups that

belong to different branch collections.

Case 1: Suppose the Hall type of H is (µ1, µ2), where µ1 > µ2 > 0. Then

h1 = (pm−µ1 , xpn−µ1+1), where x = apk for some 0 ≤ k and p - a, and

h2 = (0, pn−µ2). Then 〈ϕ(〈h1〉)〉 = 〈(pm−µ1 , ypn−µ1+1)〉 for some y = bpd
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such that b such that p - b. Also, 〈k1〉 has Hall type (µ1, 0) or (0, µ1).

If 〈k1〉 has Hall type (µ1, 0), then 〈k1〉 = (pm−µ1 , zpn−µ1+1) for some

z = cpt for some t 6= d and p - c and k2 = (0, pn−µ2). By exchanging

H and K and replacing ϕ by ϕ−1, without loss of generality we may

assume that t < k. Since we are assuming that 〈k1〉 belongs to a

different branch collection than 〈h1〉, we assume that µ1 ≤ n. SinceK is

generated by k1 and k2 and contains 〈(pm−µ1 , bpdpn−µ1+1)〉, we can write

(pm−µ1 , bpdpn−µ1+1) = α(pm−µ1 , cptpn−µ1+1)+β(0, pn−µ2), which implies

that α = 1. Then we can write bpdpn−µ1+1 = cptpn−µ1+1 + βpn−µ2 =

pn−µ1+1+t(c + βpµ1−µ2−t−1), since by definition of Hall generators n −

µ1 + 1 + t < n − µ2, thus µ2 + 1 + t < µ1. Thus, since t < d we

have c + βpµ1−µ2−t−1 is a power p, which implies that pµ1−µ2−t−1 = 1.

Thus, µ1 − µ2 − t− 1 ≤ 0⇒ µ1 ≤ µ2 + t+ 1, which is a contradiction.

Therefore, z = 0. Since cyclic subgroup 〈(pm−µ1 , 0)〉 is invariant with

respect to lattice automorphisms of G, H would have to be equal to K.

If K has Hall type (µ2, µ1). Then k1 = (zpm−µ1 , pn−µ1) for some z = cpt

for some t ≥ 0 and p - c and k2 = (pm−µ2 , 0). Then the subgroup

〈(pm−µ1 , ypn−µ1+1)〉 cannot be contained in K since (pm−µ1 , bpkpn−µ1+1)

= α(cptpm−µ1 , pn−µ1) + β(pm−µ2 , 0) since m−µ2 > m−µ1 implies that

β = 0, t = 0 and α = c−1. This is a contradiction since bpkpn−µ1+1 6=

c−1pn−µ1 .

Therefore, we can assume that ϕ(〈h1〉) belongs to the same branch

collection as k1. Thus, H and K belong to the same branch collection.
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Case 2: Suppose the Hall type of H is (µ2, µ1), where µ1 > µ2 > 0. Then

h1 = (xpm−µ1 , pn−µ1) and h2 = (pm−µ2 , 0). Notice that h1 and thus H

belongs to the 0-branch collection, as does any subgroup of Hall type

(µ2, µ1). Thus, ϕ(〈h1〉) = 〈(ypm−µ1 , pn−µ1)〉 belongs to the 0-branch

collection. If k1 belongs to a different branch collection than 〈h1〉, then

K has Hall type (µ1, µ2) with Hall generators k1 = (pm−µ1 , zpn−µ1 + 1)

and p - c and k2 = (0, pm−µ2). Then since pn−µ1 + 1 and pm−µ2 are

strictly greater than pn−µ1 , we cannot write (ypm−µ1 , pn−µ1) as a linear

combination of k1 and k2.

Therefore, we can assume that k1 belongs to the 0-branch collection

and thus H and K are in the same branch collection.

Case 3: Say H has Hall type (µ1, µ1). There is a unique subgroup of Hall

type (µ1, µ1), thus if H has Hall type (µ1, µ1), then H = K and H and

K are contained in the same branch collection trivially.

By results in [6], since every automorphism on the semi-lattice of cyclic

subgroups could be extended to an automorphism of L(G), every autopro-

jectivity is completely described by autprojectivities of its cyclic subgroups.

Since by the structure of P (G) in Theorem 4.3 a lattice automorphism among

cyclic subgroups exists only if they are in the same branch collection. Thus,

H and K are in the same branch collection.

Suppose H and K have the same isomorphism type and belong to the

same k-branch collection. We will show in Theorem 4.5 that H and K belong
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to the same orbit of PA(G). Since PA(G) is a subgroup of P (G), H and K

also lie in the same orbit of P (G).

We would like to establish the relationship between orbits of lattice auto-

morphisms and orbits of lattice automorphisms induced by group automor-

phisms but first we will examine an example.

Example 4.3. Let G = Z34 × Z32 . Figure 4.6 contains the lattice of sub-

groups of G and orbits of P (G) and PA(G). Cyclic subgroups of order 34

are of the form 〈(1, x)〉, where x = 0, ..., 8. The intersection of all cyclic

subgroups of order 34 is the cyclic subgroup F = 〈(9, 0)〉, which has order

32. Notice that 〈(9, 0)〉 and its subgroups are stable under the action of lat-

tice automorphisms and therefore under the action of group automorphisms,

since a group automorphism

 a b

34−2c d

, where a, c ∈ Z34 , b, d ∈ Z32 and

a, d not divisible by p, maps (3k, 0), where 2 ≤ k ≤ 4, to (a3k, 0).

As described in Example 4.2, cyclic subgroups H,K of G are in the same

P (G)-orbit if and only if |H| = |K| and H ∩F = K∩F . Cyclic subgroups in

the same orbit of P (G) are enclosed in boxes. Cyclic subgroups that are not

enclosed in a box, are fixed by every autoprojectivity of G and form orbits

of P (G) that contain exactly one element. It is straightforward to calculate

that orbits of P (G) containing cyclic subgroups are also orbits of PA(G). For

instance, (0, 1) is mapped to (x, 1) for 0 ≤ x ≤ 8 via group automorphisms
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 1 0

x32 1

.

Notice that only cyclic subgroups in the branch collection that attaches

at the identity have Hall type (0, µ1). Also, notice that although cyclic

subgroups 〈(9, 3)〉 and 〈(9, 0)〉 have the same Hall type (2, 0), they do not

belong to the same branch collection since 〈(9, 3)〉 is intersects the chain of

subgroups of F at 〈(27, 0)〉.

Recall that a noncyclic subgroup H of G with Hall generators h1, h2 is

said to be in the same branch collection as the subgroup generated by h1.

For example, H = 〈(0, 1), (27, 0)〉 is in the branch collection of the iden-

tity since h1 = 〈(0, 1)〉. An important observation is that subgroups that

belong to the same branch collection have the same Hall type as subgroups

〈(3, 1), (0, 3)〉 and 〈(3, 2), (0, 1)〉 have Hall type (3, 1). However, it is also pos-

sible for subgroups to have the same Hall type, but belong to different branch

collections as both 〈(3, 0), (0, 3)〉 and 〈(3, 1), (0, 3)〉 have Hall type (3, 1) but

〈(3, 0), (0, 3)〉 belongs to the branch collection of 〈(9, 0)〉 and 〈(3, 1), (0, 3)〉

belongs to the branch collection of 〈(27, 0)〉.

Let H be a subgroup of G of isomorphism type (µ1, µ2). Since every

automorphism of the meet semi-lattice of cyclic subgroups extends to a lattice

automorphism of L(G) and by definition the extension depends only on cyclic

subgroups of H of order pµ1 , we see that subgroups that are of the same

isomorphism type and are in the same branch collection lie in the same orbit

of P (G). The boxes surrounding two-generator subgroups represent orbits of
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{ 1 }

〈27, 0〉 〈27, 3〉 〈54, 3〉 〈0, 3〉

〈9, 0〉 〈9, 3〉 〈9, 6〉 〈27 0, 0 3〉 〈9, 1〉〈36, 1〉〈63, 1〉 〈18, 1〉〈45, 1〉〈72, 1〉 〈54, 1〉〈27, 1〉〈0, 1〉

〈3 0〉 〈3 3〉 〈3 6〉 〈9 0, 0 3〉 〈3 1〉 〈3 4〉 〈3 7〉 〈3 2〉 〈3 5〉 〈3 8〉 〈9 1, 27 0〉 〈18 1, 27 0〉 〈0 1, 27 0〉

〈1 0〉 〈1 3〉 〈1 6〉 〈1 1〉 〈1 4〉 〈1 7〉 〈1 2〉 〈1 5〉 〈1 8〉 〈30, 03〉 〈3 1, 0 3〉 〈3 2, 0 1〉 〈0 1, 9 0〉

〈1 0, 0 3〉 〈1 1, 0 3〉 〈1 2, 0 3〉 〈3 0, 0 1〉

Z34 × Z32

Figure 4.6: Orbits of P (G) and PA(G) for G = Z34 × Z32 .

P (G). We can also show that these orbits are also orbits of PA(G). In other

words, for every subgroup in the box there exists a group automorphism that

box moves one subgroup in the box to another. For instance, 〈(0, 1), (27, 0)〉

could be mapped to 〈(k, 1), (27, 0)〉, where k = 9, 18 by group automorphisms 1 0

32c 1

, where c = 1, 2, respectively.

It is interesting to notice that this example is the smallest group such

that p > 2 and the chain of subgroups of F includes a non-trivial subgroup.

Also, this is the smallest group that contains orbits of P (G) whose size is a

multiple of p, but not a power of p. The orbits whose size is not a power

of p come from the branch collections that are attached at non-trivial cyclic
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subgroups of F .

Observations presented in the example above are generalized in the fol-

lowing Theorem.

Theorem 4.5. Orbits of P (G) in L(G) coincide with orbits of PA(G).

Proof. Suppose subgroups H and K of G are contained in the same orbit of

P (G). Then by Proposition 4.2, H and K have the same isomorphism type

and belong to the same branch collections. By Proposition 4.1, H and K

have the same Hall type.

Case 1: H and K have Hall type (µ1, µ2), where µ1 > µ2. Then sets of Hall

generators {h1, h2} for H and {g1, g2} for K are h1 = (pm−µ1 , xpn−µ1+1),

h2 = (0, pn−µ2) and g1 = (pm−µ1 , ypn−µ1+1), g2 = (0, pn−µ2), where

x, y ∈ Zpn , x = αpa, y = βpb, with α, β not divisible by p and 0 ≤

a, b < µ1 − 1, and xpn−µ1+1, ypn−µ1+1 < pn−µ2 . Since H and K are in

the same branch collection, h1 and g1 are in the same branch collection.

Since the branch collection depends exclusively on the power of p in the

second component of h1, we have that h1 is in the (m− a− 1)-branch

collection. Since g1 is in the same branch collection as h1, b = a. Since

both α and β are units in Zpn , there exists d ∈ (Zpn)∗ such that α = dβ.

Then the automorphism

1 0

0 d

 maps h1 to g1 and h2 to dh2. Since

d is a unit in Zpn , dh2 is also a generator for K. Therefore, H and K

are in the same PA(G) orbit.

54



Case 2: H and K have Hall type (µ2, µ1), where µ1 > µ2. We can assume

that µ1 ≤ n. The Hall generators {h1, h2} of H and {g1, g2} of K

can be written as h1 = (xpm−µ1 , pn−µ1), h2 = (pm−µ2 , 0) and g1 =

(ypm−µ1 , pn−µ1), g2 = (pm−µ2 , 0), where x, y ∈ Zpm , x = αpa, y =

βpb, with α, β not divisible by p and 0 ≤ a, b < µ1 − 1, and xpm−µ1 ,

ypm−µ1+1 < pm−µ2 . By Proposition 4.1, H and K belong to the 0-

branch collection. Since α and β are units in Zpm , there exists c ∈

(Zpm)∗ such that β = cα.

Suppose a > b or a < b, then the automorphism

 c 0

(y − cx)pm−n 1


maps h1 to g1 and h2 to ch2. Since c is a unit in Zpm , ch2 is also a

generator for K.

Suppose a = b, the the automorphism

c 0

0 1

 maps h1 to g1 and h2

to ch2. Since c is a unit in Zpm , ch2 is also a generator for K.

Therefore, H and K are in the same PA(G) orbit.
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4.3 Autoprojectivities of Subgroup Lattices

of Finite Abelian p-groups of type λ such

that λ1 > λ3 and λ3 6= 0.

Let G be a finite abelian p-group of type λ = (λ1, ..., λn), where λ1 > λ3 and

λ3 6= 0.

First, we will consider finite abelian p-groups of type λ such that λ1 >

λ2 > ... > λn. While the situation becomes more complicated in the case

when n ≥ 3 than it is when n = 2, we can gain some insight through the

examination of the meet semi-lattice of cyclic subgroups

Example 4.4. Let G = Z34 × Z32 × Z3. Figure 4.7 represents the meet

semi-lattice of cyclic subgroups of G. Notice that this meet semi-lattice of

cyclic subgroups looks quite different than the meet semi-lattice of Z34 ×Z32

illustrated in Figure 4.5. Subgroups on the same level are of the same order.

Cyclic subgroups at the top level are subgroups of order 34. The intersection

of all cyclic subgroups of order 34 is a cyclic subgroup of order 34−2 = 32.

We call this subgroup F and it is represented by the top-most diamond

node. The thick black line and diamond nodes represent the chain of cyclic

subgroups of F . Notice that every element of the chain of subgroups of F is

stabilized by every autoprojectivity of G.

We can think about the meet semi-lattice on Figure 4.7 in terms of sub-

trees being attached at the identity subgroup in the following way: we group
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Figure 4.7: Meet semi-lattice of cyclic subgroups of G = Z34 × Z32 × Z3.

cyclic subgroups into a subtree if their Hall types have non-zero entries in the

same position. For example, all cyclic subgroups that have Hall type (µ, 0, 0),

where 1 ≤ µ ≤ 4, belong to the left most subtree on Figure 4.7 which ends

on the diamond node on the second from the bottom level. We label subtrees

by the corresponding Hall types (0, ..., 0, µ, 0, ..., 0) with 1 ≤ µ ≤ λi in the

ith position. Note that the height of a subtree labeled (0, ..., 0, µ, 0, ..., 0) is

equal to λi, where pλi is the order of the largest cyclic subgroup contained

in that subtree. The height of the subtree (µ, 0, 0) in the example above is

4. Subtree (0, µ, 0) has height 2 and consists of three points on the second

from the bottom level with nine subgroups attached to each point. Notice

that G on Figure 4.7 has three distinct subtrees attached at the identity with

corresponding heights 4, 2, and 1.
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One of the main difference between the meet semi-lattice of a finite abelian

p-group containing three components in the direct product and two compo-

nents in the direct product is that a subtree of subgroups that lies above a

subgroup may not be symmetric. As we can see in Figure 4.7 F is contained

in three subgroups that have subtrees of cyclic subgroups above them and

six subgroups that are not contained in any cyclic subgroup of higher order.

Notice that F = 〈(p2, 0, 0)〉 and three subgroups with subtrees above them

are 〈(p, ap, 0)〉 with a = 0, 1, 2 and six subgroups that contain F have the

the form 〈(p, b, c)〉, where b ∈ (Zp2)∗ and c ∈ Zp. Notice that if a cyclic sub-

group has Hall generators that are all powers of p and it is not the top level

subgroup in its subtree that attaches at the identity subgroup, then there is

a subtree of cyclic subgroups above it. Also, if such a subgroup is contained

in a cyclic subgroups where one of the Hall generators is not a power of p,

then the subtree of cyclic subgroups above it is asymmetric.

In general, if G is a finite abelian p-group of type λ such that λ1 >

λ2 > ... > λn. We would like to describe the structure of L(G). Let F

be the intersection of all cyclic subgroups of order pλ1 , which have the form

〈(1, x2, ..., xn)〉, where xi ∈ Zpλi for 2 ≤ i ≤ n. There are pλ2+···+λn of cyclic

subgroups of order pλ1 . Then F = 〈(pλ2 , 0, ..., 0)〉 and is a cyclic subgroup

of order pλ1−λ2 and Hall type (λ1 − λ2, 0, ..., 0). The chain of subgroups

of F , including F , is fixed by every autoprojectivity of G. There are pn−1

cyclic subgroups of order pλ1−λ2+1 containing F . These subgroups have the

form 〈(pλ1−1, pλ2−1x2, ..., pλn−1xn)〉, where xi ∈ Zpλi . Notice that if a cyclic
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subgroup of G has at least one of the components in its Hall generator that

is not a multiple of p, then it is not contained in any cyclic subgroups. A

cyclic subgroup H of G of Hall type (0, ..., 0, µi, 0, ..., 0) for 1 ≤ i ≤ n such

that all components of its Hall generator are multiples of p is contained in

pn−1 of cyclic subgroups.

Notice that if G is a finite abelian p-groups of type λ such that λ1 > λ2 >

... > λn, the meet semi-lattice of cyclic subgroups of G has n distinct subtrees

that attach at the identity of respective heights λi as described in the example

above. If H and K are subgroups of G that lie in the same orbit of P (G),

then cyclic subgroups of H have to be mapped to cyclic subgroups of K via

an autoprojectivity. Since an autoprojectivity of G restricted to the meet

semi-lattice of cyclic subgroups is an automorphism on the meet semi-lattice

of cyclic subgroups. Clearly, an autoprojectivity maps cyclic subgroups of

to cyclic subgroups of the same order. Notice that cyclic subgroups of the

same order that belong to different cyclic subgroup subtrees that attach at

the identity cannot be mapped to each other via an autoprojectivity because

of the different height of subtrees they belong to.

Now we describe the dependency of subgroups of in the same orbit of

P (G) and their Hall types.

Theorem 4.6. Let G be a finite abelian p-groups of type λ such that λ1 >

λ2 > ... > λn. Suppose subgroups H and K of G are in the same orbit of

P (G). Then H and K have the same Hall type.

Proof. Since H and K are in the same orbit of P (G), they have the same
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isomorphism type µ = (µ1, ..., µl). If all µi are equal, then the subgroup of

this isomorphism type is unique. So, we may assume that not all of µi are

equal. Let {h1, ..., hl} and {k1, ..., kl} be sets of Hall generators for H and

K, respectively. Suppose H and K have different Hall types. Since the Hall

type of a subgroup is a permutation of µ, the subgroup’s isomorphism type,

there exists 1 ≤ i ≤ l such that the ith position in the Hall type of H is the

first position where Hall types of H and K differ. Without loss of generality

the entry in the ith component of the Hall type of H is greater than the

entry in the ith component of the Hall type of K. Suppose µj is in the ith

component in the Hall type of H. Then there exists i < t ≤ l such that µj is

the tth component in the Hall type of K. Note that µj ≤ λi and µj ≤ λt.

By definition of a set of Hall generators, Hall generators hj and kj have

order pµj in H and K respectively. A cyclic subgroup generated by hj, 〈hj〉,

has Hall type (0, ..., 0, µj, 0, ..., 0), where µj is in the ith position. A cyclic

subgroup generated by kj, 〈kj〉, has Hall type (0, ..., 0, µj, 0, ..., 0), where µj

is in the tth position. If H and K belong to the same orbit of P (G), then

there exists an autoprojectivity of G that maps the subgroup lattice of H

onto the subgroup lattice of K. Therefore, 〈hj〉 has to be mapped onto a

cyclic subgroup of K of order pµj . However, since λi > λt, 〈hj〉 and 〈kj〉

are contained in subtrees of different height in the meet semi-lattice of cyclic

subgroups of G, 〈hj〉 could not be mapped by an autoprojectivity of G to

〈kj〉. But since H maps to K via an autoprojectivity, 〈hj〉 has to map

to a cyclic subgroup of K that is in the same subtree in the meet semi-
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lattice of cyclic subgroups as 〈hj〉, which means that some cyclic subgroup

of K has to be of Hall type (0, ..., 0, µj, 0, ..., 0), where µj is in the ith posi-

tion. Suppose K contains a subgroup of Hall type (0, ..., 0, µj, 0, ..., 0) with

µj is in the ith position. Then it contains a cyclic subgroup of the form

〈(a1pλ1−µj , ..., ai−1pλi−1−µj , pλi−µj , ai+1p
λi+1−µj+1, ..., alp

λl−µj+1)〉 which could

be chosen to be one of Hall generators for K, which would change the Hall

type of K. But this is a contradiction since the Hall type of a subgroup is

well-defined (In other words, if K contains both

〈g〉 = 〈(a1pλ1−µj , ..., ai−1pλi−1−µj , pλi−µj , ai+1p
λi+1−µj+1, ..., alp

λl−µj+1)〉

and

〈kj〉 = 〈(b1pλ1−µj , ..., bt−1pλt−1−µj , pλt−µj , bt+1p
λt+1−µj+1, ..., blp

λl−µj+1)〉,

where some of bi could be equal to 0, then 〈g〉 ∨ 〈kj〉 is a subgroup generated

by kj and

(1− atbi)−1(−atkj + g) =

(c1p
λ1−µj , ..., ci−1p

λi−1−µj , pλi−µj , ci+1p
λi+1−µj+1, ..., 0, ...clp

λl−µj+1),

where 0 is in the tth position. Therefore, this subgroup is isomorphic to the

direct product of Zpµj in the ith and tth positions and {1} everywhere else,

which cannot be contained in K since by assumption K is isomorphic to a

direct product of Zpµr ’s with Zpµs for some s < j in the ith component of
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the direct product.) Therefore, H and K cannot be in the same orbit of

P (G).

We explore application of Theorem 4.6 in an example.

Example 4.5. Suppose G = Zpm × Zpn × Zps , where m ≥ n ≥ s. Let H

and K be subgroups of G of isomorphism type µ = (µ1, µ2, µ3) such that

µ1 6= µ2, that is µ1 > µ2. Suppose H has Hall type (µ1, µ2, µ3) and K has

Hall type (µ2, µ1, µ3). Then H has a Hall generator h1 of order pµ1 and 〈h1〉,

the cyclic subgroup generated by h1, has Hall type (µ1, 0, 0). Also, K has a

Hall generator k1 of order pµ1 and 〈k1〉 has Hall type (0, µ1, 0). Since 〈h1〉 and

〈k1〉 belong to subtrees in the meet semi-lattice of cyclic subgroups of G that

have different height, 〈h1〉 cannot be mapped to 〈k1〉 via an autoprojectivity

of G. If H and K are in the same orbit of P (G), then K should contain

a cyclic subgroup that 〈h1〉 could be mapped to and that cyclic subgroup

should be contained in the same subtree as 〈h1〉 and have Hall type (µ1, 0, 0).

But if K contains a cyclic subgroup of Hall type (µ1, 0, 0) then it is of the form

(pm−µ1 , apn−µ1+1, bps−µ1+1) could be written as a linear combination of k1 =

(xpm−µ1 , pn−µ1 , yps−µ1+1), k2 = (pm−µ2 , 0, zps−µ2+1), and k3 = (0, 0, ps−µ3).

The only way to get apn−µ1+1 is to multiply k1 by ap, but then there exists

c such that pm−µ1 = axpm−µ1+1 + cpm−µ2 = pm−µ1+1(ax + cpµ1−µ2−1) since

µ1 > µ2. This is a contradiction. Therefore, H cannot be mapped to K by

a lattice automorphism.

When G is of type λ such that λi = λi + 1 for some i, then it is clear
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that in the meet semi-lattice of cyclic subgroups of G has subtrees attached

at the identity of the same height, that is subtrees of type (0, ..., 0, λi, 0, ..., 0)

and (0, ..., 0, λi+1, 0, ..., 0) have the same height λi. Then it is possible for two

subgroups of different Hall type to be in the same orbit of P (G) and PA(G).

For instance, if G = Z32 × Z3 × Z3, then subgroups H = 〈(0, 1, 0)〉 and

K = 〈(0, 0, 1)〉 have different Hall types (0, 1, 0) and (0, 0, 1) respectively,

but the group automorphism of G represented by the matrix


1 0 0

0 0 1

0 1 0


maps H to K. Thus, H and K belong to the same orbit of PA(G) and the

same orbit of P (G). It is interesting to notice that if λ1 = λk for some k ≥ 2,

then there is no unique subgroup that is an intersection of all subgroups of

order pλ1 that is fixed by every automorphism. We called such a subgroup

F above. Notice that there are k F ’s in such a G that could be permuted

among themselves. From proof of Theorem 4.6 and discussion above we get

the following Corollary.

Corollary 4.1. Let G be a finite abelian p-group of type λ. Suppose subgroups

H and K of G are in the same orbit of P (G) and have isomorphism type µ.

Then either H and K have the same Hall type or H and K have the same

Hall type up to permuting µi = µj for some i and j whenever λi = λj.

Let G be a finite abelian p-group of exponent pn such that G = H ⊕ C,

where H = 〈a〉 ⊕ 〈b〉 and |a| = pn ≥ |b| = pm ≥ exp C = ps 6= 0 such that

either |a| > |b| or |a| = |b| and s < n.
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First, we define some useful subgroups of P (G). Let

Rs(G) = {ρ ∈ P (G) | Ωs(G) = 1}, R(G) = {ρ ∈ Rs(G) |Hρ = H}.

Since (a, b) is a basis of H, we call A = (〈a〉, 〈b〉) the frame associated to

(a, b) and u = 〈pn−ma+ b〉 a unit point. Also, we define

RA(G) = {ρ ∈ R(G) | Aρ = A}, RA,u(G) = {ρ ∈ RA(G) | uρ = u}.

Let φ ∈ P (G). Then we define Aϕ = (〈a〉ϕ, 〈b〉ϕ) and uϕ = uϕ. Similarly

to above, we define

RAϕ(G) = {ρ ∈ R(G) | Aρϕ = Aϕ}, RAϕ,uϕ(G) = {ρ ∈ RAϕ(G) | uρϕ = uϕ}.

In 1998 Constantini, Holmes and Zacher proved the following theorem

defining the structure of P (G).

Theorem 4.7. (Theorem 1.1 [3]) P (G) = RA,u(G)PA(G), where RA,u(G)∩

PA(G) = 1.

In lattice theoretic terms a subgroup basis is a set of all subgroups of G

such that the join of all basis elements is equal to G and and the meet of

a basis element with the join of all other basis elements is the identity of

G. Notice that A is a lattice theoretic basis for G. Since any ϕ ∈ P (G)

preserves the group structure of G, ϕ takes lattice basis elements of G to
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basis elements, thus Aϕ is also a lattice theoretic basis for G. We would like

to extend Theorem 4.7 to RAϕ,uϕ(G) for any ϕ ∈ P (G).

First, we need a Lemma.

Lemma 4.1. Let ϕ ∈ P (G). Then ϕ−1RA,uϕ = RAϕ,uϕ(G).

Proof. Let ρ ∈ RA,u(G). Then applying ϕ−1ρϕ to 〈a〉ϕ we get (〈a〉ϕ)ϕ
−1ρϕ =

〈a〉ρϕ = 〈a〉ϕ since ρ ∈ RA,u(G) implies that ρ ∈ RA(G) and thus 〈a〉ρ = 〈a〉.

Similarly, (〈b〉ϕ)ϕ
−1ρϕ = 〈b〉ϕ and (uϕ)ϕ

−1ρϕ = uϕ. Therefore, Aϕ−1ρϕ
ϕ = Aϕ

and uϕ
−1ρϕ
ϕ = uϕ. So, ϕ−1ρϕ ∈ RAϕ,uϕ(G).

Now, let τ ∈ RAϕ,uϕ(G). Then applying ϕτϕ−1 to 〈a〉 we get 〈a〉ϕτϕ−1
=

(〈a〉ϕ)τϕ
−1

= 〈a〉ϕϕ−1
= 〈a〉 since τ fixes 〈a〉ϕ. Similarly, since τ fixes 〈b〉ϕ

and uϕ, 〈b〉ϕτϕ−1
= 〈b〉 and uϕτϕ

−1
= u. So, ϕτϕ−1 ∈ RA,u(G). Thus,

τ = ϕ−1(ϕτϕ−1)ϕ ∈ ϕ−1RA,uϕ and ϕ−1RA,uϕ = RAϕ,uϕ(G).

We also need the fact from [3]: If G = A+B an abelian p-group of finite

exponent such that exp B = exp (A ∩B) = ps and ps−1A is not cyclic, then

for α, β ∈ PA(G) α = β if and only if α|A = β|A and α|B = β|B.

The proof of the following Corollary will closely follow the proof of The-

orem 4.7 in [3]. As a reminder Ωs(G) = 〈{g ∈ G | gps = 1}〉.

Corollary 4.2. Let ϕ ∈ P (G). Then P (G) = ϕ−1RA,u(G)ϕPA(G), where

ϕ−1RA,u(G)ϕ ∩ PA(G) = 1.

Proof. Let (ci) be a basis of C and let ψ ∈ P (G). Since ψ preserves the

group structure of G, there exists α ∈ PA(G) such that for τ = ψα we
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have Aτϕ = Aϕ, uτϕ = uϕ, and (〈ci〉ϕ)τ = 〈ci〉ϕ. Now, consider τ̄ = τ |Ωs(G).

Since Ωs(G) has at least 3 elements of order ps, by Baer’s Theorem ([8])

we have that τ̄ is induced by a group automorphism on Ωs(G), that is τ̄ ∈

PA(Ωs(G)). Since C ⊂ Ωs(G), τ̄ is induced by a group automorphism of

the form 1 ⊕ γ, where 1 is the identity map on H and γ ∈ Aut(C). Let

β = 1⊕ γ−1. Clearly, β is a group automorphism of G. Consider τβ. Then

by definition τβ ∈ RAϕ,uϕ(G) = ϕ−1RA,u(G)ϕ by Lemma 4.1. Then since

τβ = ψαβ and αβ ∈ PA(G), we have ψ ∈ ϕ−1RA,u(G)ϕPA(G). Now, let

ρ ∈ ϕ−1RA,u(G)ϕ ∩ PA(G). Since by Lemma ϕ−1RA,uϕ = RAϕ,uϕ(G), we

have ρ|H = 1 and ρ|Ωs(G) = 1 Thus, by the fact mentioned above ρ = 1.

Now we would like to discuss orbits of P (G) and PA(G) in

Theorem 4.8. Let G be a finite abelian p-group of type λ = (λ1, ..., λn) such

that λ2 ≤ 2 and λ3 = 1. Then orbits of PA(G) are equal to the orbits of

P (G).

Proof. Suppose subgroups H and K of G are in the same orbit of P (G).

By Theorem 4.7 we have that P (G) = RA,u(G)PA(G). Then there exists

ϕ = τα ∈ P (G) with τ ∈ RA,u(G) and α ∈ PA(G) such that ϕ(H) = K.

Then H and α(H) belong to the same orbit of PA(G) and α(H) and K are

in the same orbit of RA,u(G) and thus in the same orbit of P (G). Thus,

without loss of generality we may assume that H and K are in the same

orbit of RA,u(G). By Theorem 4.6 H and K have the same Hall type.

Case 1: Suppose λ2 = 2 and H has Hall type (µ1, ..., µk) such that µ1 > λ2,
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µ2 = 2, and k ≥ 3. Notice that µ3 = ... = µk = 1. Then Hall generators

for H h1 = (pλ1−µ1 , a11p
λ2−µ1+1, ..., a1n−1p

λn−µ1+1) = (pλ1−µ1 , a11, ..., a
1
n−1)

since µ1 > λ2, h
2 = (0, pλ2−µ2 , a21p

λ3−µ2+1, ..., a2n−2p
λn−µ2+1) = (0, 1, a21,

..., a2n−2) and hi = (0, 0, ..., aij, 0, 1, 0, ..., 0), where 3 ≤ i ≤ k and 1 is

in the same position as µi for 3 ≤ i ≤ k in the Hall type of H and

aij ∈ Zp, where 3 ≤ j ≤ k − 1 and aij is to the left of 1. Also, a12 = 0

and atj = 0 for t = 1, 2 in the same position as 1 in hi for 3 ≤ i ≤ k. By

Corollary 4.1, K either has the same Hall type as H or K has Hall type

µ such that µ1 and µ2 are in the first and second positions respectively

and µ3 through µk are permuted among positions 3 through n.

A group automorphism of G looks like a matrix A = (aij) such that

aii ∈ (Zpλi )∗ for i = 1, 2, aii ∈ Zp for i ≥ 3, aij ∈ Zpλj for i < j,

aij = bijp
λj−λi ∈ Zpλj for i > j, and the n− 2× n− 2 matrix (aij) for

3 ≤ i, j ≤ n has determinant not equal to a multiple of p. Then there

are enough free variable in the matrix A to map H to K via a group

automorphism.

(For instance, ifG = Zpλ1×Zp2×Zp×Zp andH has Hall type (µ1, 2, 0, 1)

with µ1 > 2, then K could have the same Hall type as H or (µ1, 2, 1, 0).

Then h1 = (pλ1−µ1 , 0, a12, 0), h2 = (0, 1, a21, 0), and h3 = (0, 0, a31, 1).

Then either k1 = (pλ1−µ1 , 0, b12, 0), k2 = (0, 1, b21, 0), and k3 = (0, 0, b31, 1)

or k1 = (pλ1−µ1 , 0, 0, b13), k
2 = (0, 1, 0, b22), and k3 = (0, 0, 1, 0). Then the
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group automorphism



1 0 0 0

0 1 a23 0

0 0 a33 0

0 0 a43 1


, where a12a33 = b12, a23 + a21a33 =

b21, and a31a33+a43 = b31, maps H to K if K has the same Hall type as H.

Moreover, the group automorphism



1 0 0 0

0 1 0 a24

0 0 0 a34

0 0 1 a44


, where a12a34 = b13,

a24 + a21a34 = b22, and a31a34 + a44 = 0, maps H to K if K has Hall type

(µ1, 2, 1)).

Suppose λ2 = 1 and H has Hall type µ = (µ1, ..., µk) such that µ1 > 1

and k ≥ 2. By Corollary 4.1 K either has the same Hall type as H or

a permutation of µ2 through µk in positions 2 through n. Then h1 =

(pλ1−µ1 , a11, ..., a
1
n−1) and hi = (0, 0, ..., aij, 0, 1, 0, ..., 0), where 2 ≤ i ≤ k

and 1 is in the same position as µi for 2 ≤ i ≤ k in the Hall type of

H and aij ∈ Zp, where 2 ≤ j ≤ k − 1 and aij is to the left of 1. Also,

a1j = 0 in the same position as 1 in hi for 2 ≤ i ≤ k. We can define the

Hall generators ki similarly to above except maybe for a permutation

of the position of 1’s in kj for 2 ≤ j ≤ k.

A group automorphism of G looks like a matrix A = (aij) such that

a11 ∈ (Zpλ1 )∗, aii ∈ Zp for i ≥ 2, aij ∈ Zpλj for i < j, aij = bijp
λj−λi ∈

Zpλj for i > j, and the n − 3 × n − 3 matrix (aij) for 2 ≤ i, j ≤ n
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has determinant not equal to a multiple of p. Counting the number of

atl that are not equal to 0 and considering the entries of A we can see

that there are enough variables in the group automorphism matrix A

so that H maps to K.

Case 2: Suppose µ1 = 2, µ2 = 1, and H has Hall type µ = (µ1, ..., µk). Then

the Hall generators of H h1 = (pλ1−µ1 , a11p
λ2−µ1+1, ..., a1n−1p

λn−µ1+1) =

(pλ1−2, a11p
λ2−1, a12, ..., a

1
n−1), h

2 = (0, pλ2−µ2 , 0, ..., 0), and hi = (0, ..., 0,

..., aij, ..., 1, 0, ..., 0), where 3 ≤ i ≤ k and 1 is in the same position as µi

for 2 ≤ i ≤ k in the Hall type of H and aij ∈ Zp, where 3 ≤ j ≤ k − 1

and aij is to the left of 1. Also, a1j = 0 in the same position as 1 in

hi for 2 ≤ i ≤ k. Hall generators of K can be described similarly to

the case above. Also, similarly to the case above we have enough free

variables in A to map H to K.

Suppose µ1 = 2, µ2 = 2, and Hall type of H is µ = (µ1, µ2, ..., µk).

Then h1 = (0, 1, a11, ..., a
1
n−2), h

2 = (pλ1−2, 0, a21, ..., a
2
n−2), and hi =

(0, ..., 0, ..., aij, ..., 1, 0, ..., 0) as above. Also, similarly to the case above

we have enough free variables in A to map H to K.

Case 3: Suppose the Hall type of H is µ = (µ2, µ1, ..., µk) such that µ1 = 2

and µ2 = 1 or 0. Then h1 = (a11p
λ1−2, 1, a12, ..., a

1
n−1), h

i = (0, ..., 0, ...,

aij, ..., 1, 0, ..., 0) such that 2 ≤ i ≤ k and 1 is in the same position as µi

for 2 ≤ i ≤ k in the Hall type of H and aij ∈ Zp, where 2 ≤ j ≤ k − 1

and aij is to the left of 1.

69



Suppose the Hall type of H is µ such that µi = 1 for all 1 ≤ i ≤ k.

Then hi = (0, ..., 0, ..., aij, ..., 1, 0, ..., 0) such that 1 ≤ i ≤ k and 1 is in

the same position as µi for 2 ≤ i ≤ k in the Hall type of H and aij ∈ Zp,

where 1 ≤ j ≤ k − 1 and aij is to the left of 1.

For both options in Case 3 there are enough free variables in A that

map H to K.

Thus, H and K are contained in the same orbit of PA(G).

Theorem 4.6 is a generalization of Proposition 4.1, however, we conjecture

that conclusions of Theorem 4.4 do not necessarily extend to finite abelian

p-groups of type λ such that λ3 ≥ 1 as we will see in the discussion that

follows.

Consider G = Zp7×Zp5×Zp2 , where p ≥ 3. Let H = 〈(p2, p, 2), (0, p2, 1),

(0, 0, p)〉 and K = 〈(p2, p, 1), (0, p2, 2), (0, 0, p)〉, represented by sets of Hall

generators. Then H and K have order p9 and Hall type (5, 3, 1). If two

subgroups of G belong to the same orbit of P (G), then by Theorem 4.6 they

have the same Hall type. Moreover, in order to for an autoprojectivity of G

to map one subgroup of G to another, subgroups lattices of both subgroups

have to be of the same shape as well as shapes of subgroup trees above these

subgroups. We would like to show that H and K belong to the same orbit

of P (G). A subgroup of Hall type (5, 3, 1) could be contained in groups of

order p10 of Hall types (6, 3, 1), (5, 4, 1), and (5, 3, 2).

70



1. Subgroups of Hall type (6, 3, 1) have Hall generators of the form

g1 = (p7−6, a1p
5−6+1, a2p

2−6+1) = (p, a1, a2),

g2 = (0, p5−3, a3p
2−3+1) = (0, p2, a3),

g3 = (0, 0, p2−1) = (0, 0, p), where a1 < p2, a2, a3 < p.

2. Subgroups of Hall type (5, 4, 1) have Hall generators of the form

g1 = (p7−5, b1p
5−5+1, b2p

2−5+1) = (p2, b1p, b2),

g2 = (0, p5−4, b3p
2−4+1) = (0, p, b3),

g3 = (0, 0, p2−1) = (0, 0, p), where b1p < p, b2, b3 < p.

Thus g1 = (p2, 0, b2), g
2 = (0, p, b3), g

3 = (0, 0, p).

3. Subgroups of Hall type (5, 3, 2) have Hall generators of the form

g1 = (p7−5, c1p
5−5+1, c2p

2−5+1) = (p2, c1p, c2),

g2 = (0, p5−3, c3p
2−3+1) = (0, p2, c3),

g3 = (0, 0, p2−2) = (0, 0, 1), where c1 < p, c2, c3 < 1.

Thus, g1 = (p2, c1p, 0), g2 = (0, p2, 0), g3 = (0, 0, 1).

By inspecting Hall generators of subgroups of Hall type (6, 3, 1), we see

that pg1 + ag2 6= (p2, p, 2) or (p2, p, 1) for any a ∈ Z. Thus, subgroups of

Hall type (6, 3, 1) cannot contain either H or K. Also similarly, subgroups

of Hall type (5, 4, 1) cannot contain either H or K since they cannot contain

cyclic subgroups 〈0, p2, 1〉 or 〈0, p2, 2〉 (since pg2+bg3 6= (0, p2, 1) or (0, p2, 2)).
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Both H and K are contained in exactly one subgroup of order p10 of Hall type

(5, 3, 2) with Hall generators h1 = (p2, p, 0), h2 = (0, p2, 0), and h3 = (0, 0, 1).

Notice that cyclic subgroups of G generated by Hall generators of H, 〈hi〉,

could be mapped to cyclic subgroups generated by Hall generators of K of

the same order 〈ki〉 by a lattice automorphism since for instance h1 and k1

are of the same Hall type, attach at the same point to the chain of subgroups

of F and don’t have subgroup trees above them. Since subgroups H and

K and their subgroup trees are contained in the same types of subgroups,

pending a computation in GAP we conjecture that H and K belong to the

same orbit of P (G).

Suppose H and K are in the same orbit of PA(G). Then there exists a

group automorphism ϕ, represented by a matrix (aij), such that ϕ(H) = K.


p2 p 2

0 p2 1

0 0 p




a11 a12 a13

a21p
2 a22 a23

a31p
5 a32p

3 a33

 =


a11p

2 + a21p
3 + 2a31p

5 a12p
2 + a22p+ 2a32p

3 a23p+ 2a33

a21p
4 + a31p

5 a22p
2 + a32p

3 a33

a31p
6 a32p

4 a33p

 =


p2(a11 + a21p+ 2a31p

3) p(a12p+ a22 + 2a32p
2) a23p+ 2a33

p4(a21 + a31p) p2(a22 + a32p) a33

a31p
6 a32p

4 a33p

 =
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
p2 p 1

0 p2 2

0 0 p


where aii ∈ (Zpλi )∗ for i = 1, 2, 3 and aij ∈ Zpλj for i < j.

Notice that a11 + a21p+ 2a31p
3 ∈ (Zp7)∗ and a22 + a32p ∈ (Zp5)∗ since a11

and a22 are units. We start row reduce the resulting matrix. By multiplying

the first row by (a11+a21p+2a31p
3)−1 and equating it with the matrix entries

for k1, we see that a12p + a22 + 2a32p
2 = a11 + a21p + 2a31p

3 ⇒ a11 = a22.

Also, we have a23p + 2a33 = a11 + a21p + 2a31p
3 = a11 + a21p ∈ Zp2 . Thus,

2a33 = a11 and a23 = a21. Multiplying the first row by −(a11 + a21p +

2a31p
3)−1(a21 + a31p)p

2 and adding it to the second row we have a33− (a11 +

a21p+ 2a31p
3)−1(a21 + a31p)p

2(a23p+ 2a33) = a33 ∈ Zp2 . Then a33 = 2. Also,

p2(a22 + a32p− p(a11 + a21p+ 2a31p
3)−1(a21 + a31p)(a12p+ a22 + 2a32p

2) = p2

⇒ a22 = 1. Since 2a33 = a11 = a22, a33 = 2−1. But above we determined that

a33 = 2, which is a contradiction. Therefore, there is no group automorphism

between H and K.
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Chapter 5

Future Work

Many future projects related to the questions discussed in the chapters above

remain to be completed. In Theorem 4.5 we have shown that for G = Zpm ×

Zpn such that m ≥ n the orbits of P (G) and PA(G) in the subgroup lattice

of G are equal. We would like to analyze the relationship between Sylow p-

subgroup of P (G) and Aut(G), which we hope would shed light on the proof

of our conjecture that the quotient of the lattice of subgroups of G under

the action of a Sylow p-subgroup of Aut(G). It seems less likely that for a

finite abelian p-group of type λ = (λ1, ..., λn) such that n ≥ 3 and λ3 ≥ 2

Lλ(p) is a self-dual lattice. We would like to further explore combinatorial

and enumerative properties of Lλ(p). Another goal is to understand whether

the action of Sp on subgroup lattice of finite non-abelian p-groups would be

useful in classifying certain non-abelian p-groups in combinatorial terms.
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