Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-09

1990-04-01

Determine Interior Vertices of Graph Intervals

Victor Jon Griswold

The problem of determining which events occur "between" two bounding events A and B in
partially-ordered logical time is equivalent to being able to list, for a directed acyclic graph, the
vertices on all paths with origin a and terminus b. We present four approaches to this problem,
each progressively less memory-intensive. The two most promising of these approaches are
examined in depth.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Griswold, Victor Jon, "Determine Interior Vertices of Graph Intervals" Report Number: WUCS-90-09 (1990).
All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/684

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/684?utm_source=openscholarship.wustl.edu%2Fcse_research%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

DETERMINING INTERIOR VERTICES
OF GRAPH INTERVALS

Victor Jon Griswold

WUCS-90-09

April 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Abstract

The problem of determining which events occur "between" two bounding events A and
B in partially-ordered logical time is equivalent to being able to list, for a directed acy-
clic graph, the vertices on all paths with origin a and terminus b. We present four
approaches to this problem, each progressively less memory-intensive. The two most
promising of these approaches are examined in depth.

iii

TABLE OF CONTENTS

No. Page
4 ¢ o Ta 5T (o S 1
1.1 Background oo it e i e et e e e e e 1

1.2 Problem Definition oot i et i e i et 3

0 B)« ' - 3

1,22 OperalionS & v it s it it e e e e e e e 4

123 Diagrams it i e e e 5

2. Transitive Closure Methodottt it et e et et et ieieean 9
2.1 APDIOACH .. i et e e e 9

2.2 Algorithm e e e 9

3. Search Tree Method i e e i 13
3.1 Approach e e 13

Lo N 2) 11115+ 15

3.3 ANl IS . vttt e e e e et e 20

4. Wavefront Method i it i e e e e e 23
4.1 ADPPIOACH . e e e e e e 23

4.2 Algorithmttt e e e e e, 23

T 1 T 1. (O 30

5. Bounded-Search Method it it i ittt ittt ittt et i e 33
5.1 APPIoach ... e e e e e 33

6. Fulre WOrK . ..o i e e e e 35
6.1 SIMUIAEON ..ttt it e e e e e e e e 35

6.2 Enhanced QUETIES ... v vt ir ettt ittt e et eee et e e e 35

6.3 Distributed Implementationst rennnn.. 35

. APPENDICES .. i i e it e et e e e 37
APPENDIX 7.1 PSEUDOCODE REPRESENTATION 39

7.1.1 CONTROL STRUCTURES iiiinnn, 39

712 OPERATORS ittt ettt e i e e e 40

7.1.3 SIMPLE AND STRUCTURED TYPES 40

7.1.4 HIGH-LEVEL STRUCTURED TYPES 41

APPENDIX 7.2 ITALIANO’S PATH RETRIEVAL ALGORITHM 43
APPENDIX 7.3 SEARCH TREE METHOD ALGORITHM 47
APPENDIX 74 WAVEFRONT METHOD ALGORITHM 53

8. BIBLIOGRAPHY i it ettt e e e e 61

No.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

iv

LIST OF FIGURES

Page
History Graph Structure and Operations 6
Declaration: of Required Operationst i ettt nr s 10
Operations Provided by Italiano’s Algorithm 11
Cross-Timeline Path Information for Search Tree Method 14
Search Tree Method Data Struclures & ..o vt e i it s e i e e b e e 16
Worst-Case Space for Search Tree Method 0t ii e en., 22
Cross-Timeline Path Information for Wavefront Method 24
Wavefront Method Data Structure Modifications 25

Determining Interior Vertices
of Graph Intervals

Victor Jon Griswold

1. Introduction

1.1 Background

Our work towards the monitoring of distributed systems by means of observing "events”
generated by those systems has made apparent the need to determine which events V, occur
"between" two bounding events A and B in quasi-ordered logical time.* By between events A
and B, we mean A, B, and all events temporally afier A and before B. The basis of temporal
ordering is determined by the binary relation precedes; C precedes I means that, in a given
system, C can be shown to have occurred before D (this often results from some form of
causality).

Transitivity of precedes allows the ordering of many events which might have no obvious
temporal relationship. Since the basic data used fo record a system’s event history consists of the
events gencrated by the system and the "obvious" precedes orderings®** between those evenis,

we must usc transitivity 1o infer the system’s complete precedes information.

* We view the temporal progress of a distributed system in terms of guasi-ordered logical time[6], not real time.
A quasi order is an “ireflexive partial” order, meaning that A < A is false. Though quasi order is the proper
description of distributed time, few people regularly use this term. Throughout the remainder of this paper,
partial order will be used for guasi order except when ambiguity may otherwise result.

wk An "obvious" precedes ordering means that, for two events C and D, it can be shown that C comes beforc D
in all possible systems.

2 Griswold

The nature of eveni-based logical time allows a directed acyclic graph to be constructed
such that its vertices and edges are in one-to-one correspondence with events and the "basic”
temporal precedes orderings mentioned above, respectively. Complete precedes information
would correspond one-to-one with the edges in the transitive closure of such a graph. The above
"list all events between A and B" problem is thercfore equivalent to being able to list, for a
directed acyclic graph, the vertices v; on all paths with origin & and terminus 4. Analogous to
events, such vertices v; are called between # and b (a and b inclusive). For a directed acyclic
graph H, we define the vertices a and & and all other vertices between them as the interval from
a to b, written [a = b}, in H. Interval is similarly defined for the logical-time event history
corresponding to H.

In order to make this report less verbose, we shall, from this point on, make use of the
one-to-one correspondence between a logical-time event history and a directed acyclic graph, H.
Precedes relationships between events map directly to paths (or edges in the transitive closure)
between vertices with no loss or gain of information; we shall therefore consider them identical
except where ambiguity may result. Events map to vertices, but with a significant loss of
information. So that we may refer to events and vertlices as identical with less chance of
ambiguity, we consider it possible for any algorithm working with H to reference the event V;
corresponding to any vertex v; of H, and vice-versa. Thus, if we refer to "adding an event V; to
H," we mean adding a vertex v; to A and establishing relcrences between that vertex and V.

Though the speed of responding to the above "list interval” query is not unimportant, the
nature of our application makes the space complexity required for that response of paramount
importance. A distributed system might generate thousands of events; any algorithm requiring just
o space, v the number of events (vertices in the corresponding history graph), is therefore
considered of no practical use. Instead, we maintain that O(g), & the number of temporal
precedes edges in the basic history graph (not in its transitive closure), to be our target space
complexity. Since our application must perform an operation on each event in the list returned
by the query, there cxists a limiting factor of O(vp) with respect to overall speed of the
application, v; the number of events in the requested interval.

We currently consider only a cenirally-controlled monitor of a distributed system, or

subject. Distribution of the monitor itself, though of interest, is not a current area of research,

Determining Interior Vertices of Graph Intervals 3

1.2 Problem Definition

Partially-ordered logical time is viewed as an jncrementally-constructed history graph H,
with events as veriices and temporal precedes relationships between events as paths, For instance,
if event C occurred before event D, there would be a path in / with origin ¢ and terminus 4. It
is known whether or not an event may potentially be a start or end bound in a "list interval”
query, and it is known whether or not an event may potentially be at the head or tail of a
precedes cdge with an event Iater to be added to H. Events are associated with specific fimelines,
representing individual processors or shared data objects; events from the same timeline are added
to H "in order" with respect to each other. Given this background, we now define the problem

formally:

1.21 Terms

A history graph H = (V, E) is a directed acyclic graph, A vertex v; € V represents a single
event V,, event defined below. A directed edge ¢, = (v, vj) e E represents a temporal
relationship between two events V; and Vj. An event (vertex) V; (v is said to precede
an cvent (vertex) VJ- (vj), written V; < Vj (v; < vj), if there exists a directed path in A with
origin v; and terminus V. Initially, # = H;, which contains a single distinguished vertex
vy and no edges. Event V represents the start of monitoring and is therefore the first
vertex on each timeline, timeling defined below. Let v = |V], and € = |E]|.

A timeline T, € T is a directed path originating at v, and containing only those vertices whose
corresponding events are associated in such a way that they are known, before being
added 10 H, to form a total order. A timeline generally represents the sequential event
history of a single, deterministic component of a distributed system. T is the set
containing all timelines, and T = |T7.

The graph interval, or just interval, from veriex a to vertex & is the set of vertices on all directed
paths in / with origin ¢ and terminus b. This is wrilten [¢ = &]; a is the start bound and
b is the end bound of the interval.

An gvent V; = (A4;, C;) consists of two scts. The elements of A; are tuples called attributes with
the structure {type, value), where type identifies the form of attribute and value is
information associated with the attribute (an event may have more than one atiribute of
the same zype). An cvent may possess characteristics, listed in C;, which enable future

operations to be performed with that event. These characteristics specify that the event

4 Griswold

is a candidate for incidence with a precedes cdge tail or head or for being the gtart or gnd
bound of a queried graph interval. Designated by {, h, s, or e, respectively, the meaning
of these terms will be further clarified below. Every A; contains at least one attribute of
the form (timeline, {timeline id, version)), where timeline is the attribute #ype,
timeline_id specifies a timeline on which the event is ordered, and version is a non-
negative integer which specifies V;’s position on that timeline. V; has characteristic t and

perhaps s, and is the only event with version equal to 0.

1.2.2 Operations

Initially:
H=H, (contains only vg)

Operations: (subject 1o restrictions listed below)
add_event: Add a veriex v; to H and establish references between v; and its corresponding
event V. Record the attributes and characteristics of V.,
add_edge: Add an edge ¢, to /.

rmchar: Remove a characteristic € (t, h, s, e} from an event V,,

Queries: (subject to restrictions listed below)
list_interval: List the interval [V; = Vj] (i.e. list all events temporally between and including

V; and Vj).

Restrictions:

i) The above operations and query are issued in three phases, called
"new_event," “update,” and "query." During the new_event phase, a single event
V; is added 1o H. If edges will ever be added between this new event and any
pre-existing events (any ‘Vj 3 j < 1), they are added during V,’s update phase.
Furthermore, characleristics of any cvents may be removed to reflect new
information during this update phase. Only add_edge and rmchar operations are

legal during update.
The state of the history graph is stable with respect to its existing vertices
after completion of V,’s update phase; the graph in this state is referred to as H;.

The query phase consists of any number of list_interval querics performed on H;.

Determining Interior Vertices of Graph Intervals 5

No add_edge or rmchar operations may take place during the query phase,
which ends with the next add_event. The system starts with Hy in the query
phase, after the implied addition of V; with no edges.

2) An edge ¢, added through add_edge must be from a vertex v; to a vertex i such
that V; has characteristic t and V; has characteristic h,

3) An event V; recorded through add event must have at least the t and h
characteristies so that subsequent edges can associate it with a timeline,

4) The object of rmchar (an event V;) must possess the characteristic to be removed
(note that one can only "add" characteristics to an event at the time of its
recording with add_event).

5) The interval listed through list_interval must be from an event V,; with
characteristic s to an event VJ- with characteristic e.

6) Given an event V; recorded through add_event, there must be at Ieast as many
precedes edges with head v; as V; has timeline attributes. For each timeline
attribute of V; with value {timeline_id, version), version must be equal to the
pre-existing maximum version of an event on timeline timeline_id, plus 1. Call
this pre-existing event with maximum version VJ-; the required precedes edge is
(vj, v;). Note that this restriction enforces both that events on a particular timeline

form a total order and that they are added to A "in order.”

1.2.3 Diagrams

With Figure 1, we show the type of diagram used for a history graph and present an
example of a sequence of valid operations on such a graph. In such a diagram, vertices/events
are represented by circles with the event number inside the circle and the event characteristics to
the side of the circle. Precedes edges arc represented by arrows from tail to head. Vertices
within the same timeline are arranged vertically with the least version number at the top (i.e.
temporal order "flows down" the timeline}. We say that an event V is ordered on a timeline T
if it possesses a timeline attribute with value (T, version); an event V is ordered with a timeline
T if there exists a path from any event Won T to V. Similarly, two events V and W are ordered
with respect each other if one precedes the other.

Figure 1 shows the construction of a history graph # from five events besides V, three

timelines, and the potential for one interval query. In the following discussion, we will refer to

Griswold

— Initial Conditions —

H, t (0)
s (1

t(4) @t

ON

add V= { {{tmIn, (T},2))},
{t.h})

add eg= (v, V)
rmchar V, {t)
rmchar V,, {h)
add es= (v4, v3)
rmchar V3, {h}

add V= ({{tmIn, {T,,1}}},

{ths})
add 80= (Vo-. Vl)
rmchar V,, (h}

1@ @
e Gt

add Vs= { {{tmIn, (T3,1)}},
{t,h}}

add eg= (v, v5)

add er= (vy, v3)

rmchar V,, {t}

rmchar Vs, {h}

t
(3)n
e

add V,= { {(tmIn, {T,,1)},

(th})
add e;= (vg, vo)

add ey= (v, w)
rmchar V,, {h)
add Vg= { {{tmln, (T,,2))},

{the])
add eq= (vz, V3)

H;

s ()
t(4) (2

As to the left, but:
— V, implied
— time within a timeline
implied

Figure 1. History Graph Structure and Operations

Determining Interior Vertices of Graph Intervals 7

the operations and queries performed on A as being supplied by "the user,” though in reality this
"user" will be a program.

As shown in Figure 1, H; contains only v,V has the t characteristic, so precedes edges
may originate at it, but, in this example, V,, has no s characteristic, so no interval query may
designate V as its start bound. Event V, is then added to H, V; belongs to timeline T; and
is version 1 of that timeline (Vj is version 0 of T; and all other timelines). V has the t, h, and
s characteristics, so precedes edges may originate and terminate at it and the user may make an
interval query with V as the start bound (but not an interval query with V, as the end bound).
Precedes edge ¢ is then added to H from V to Vy, as shown by the arrow. The user, in this
example, realizes that ¢ is the only edge which may terminate at V,, and therefore removes its
h characteristic. If the user did not realize this fact and remove the h characteristic, proper query
results would not be affected but certain data structure optimizations might not be possible. This
completes V;’s update phase and thus the construction of H;.

The constructions of H, and, afterwards, H4 are similar to that of H;, and involve the
addition of two events and three edges. Of note is that V4 has the e characteristic; after V4 and
all incident edges are added to H (i.e. after H, is completed in V5’s update phase), the user may
issue an interval query for [V; = V,] (and would receive {Vy, V,, V3} in response).

H), consists of H, with onc more event and two more edges. Also, the user realizes that
no further edges may originate at V, and removes its t characteristic, providing an avenue for
further data structure optimizations. Hs adds the final event and edges to our example. In Hy,
neither V, nor V, may be incident to any new edges to be added to H. With this graph, the
response for an interval query of [V{ = V3] would be {V, V,, V3, V,}. The response would not
include V5 because, though V is after V, its temporal relationship with V5 is indeterminate,

The last graph in Figure 1 shows a somewhat abbreviated representation of H; this is the
style of representation we shall use throughout the remainder of this report. In this style of
representation, Vy and the edges incident to it are implied since they are present in all history
graphs. Additionally, the precedes cdges which show the progression of order along a timeline
are represented simply by segments instead of by arrows, since arrows within a timeline always

point down in our graph representations.

Griswold

Determining Interior Vertices of Graph Intervals 9

2. Transitive Closure Method

2.1 Approach

A rather robust means to respond to an interval query is to maintain complete transitive
closure information about the history graph, making no assumptions about its strocture other than
it is directed and acyclic. When a query is issued for [A = B], the answer is simply the
intersection of all events after A and before B, A and B inclusive.

To our knowledge, the fastest published algorithm for incrementally maintaining the
transitive closure of a directed acyclic graph was developed by Giuseppe F. Italiano.[4] This
algorithm adds edges to a graph in O(v) amortized time per edge and reports the ordering
between two events in O(1) (constant) time. Unfortunately, Italiano’s algorithm requires pre-
knowledge of the number of vertices in the graph, due to storage allocation considerations, and

has a space complexity of ©(v2).

2.2 Algorithm

Though the algorithm’s space complexity is prohibitive and add_edge time undesirable,
it is still of some interest to examine how the algorithm might be employed. Of particular use
for the list_interval query is the v by v lookup table maintained by the algorithm in order to
directly check for the existence of a path from any vertex v, to any other vertex 2t We find the
algorithm’s ability to list a single path from v; to i of little use for our purposes of listing all such
paths.*

We take this opportunity to introduce the pseudocode representation employed for the
expression of algorithms in this report. Our pseudocode employs a Pascal-like syntax, explained
in detail in Appendix 7.1. The thrce operations and query we require are declared in Figure 2,
along with the data types used in the declarations and data structures which might support the
operations.

The operations and data structures provided by Italiano’s algorithm are presented in
Figure 3 and detailed in Appendix 7.2. As shown, one may add an edge, check if a path exists

between two vertices, or {ind a path between two vertices. The data structures maintained include

* It is not feasible to modify Italiano’s algorithm in order to report all paths between a pair of vertices. The very
optimization which allowed him to achieve Q(v) (instead of O{vlogv)) "add edge" time was the removal of
all such "redundant” multiple-path information from the algorithm’s data structures.

10 Griswold

constants
V_limit, e_limit : integer ;= some large positive number [/ greatest # of elements
id_mull : integer = -1; // "no such object”

types

natural = range [0..] of integer;
event_id, edge_id, timeline_id = range [id_null..] of integer;
version_index = natural;

attribute_type = (timeline, other); /1 we are unconcerned about other attribute types

ordering = record // to order an event w.r.t. a specific timeline
tid : timeline_id;
ver : version_index;

end ordering;

attribute = record
case atype : attribute_type of
timeline : {value_t1l : crdering;);
other : (value : tuple;); // arbitrary structure
endcase;
end atiribute;

characteristic = (t, h, s, e); /! edge tail or head, interval start or end

event = record
attrib : Iist of aftribute;
chr: set of characteristic;
end event;

edge = record
tail, head : event_id;

end edge;

globals
V : array [0..V_limit] of event; // any O(1) access time structure
V_total : natural ;= 0; /f current number of events
e : array [0..c_limit] of edge; // any O(1) access time structure
e_total : natural := 0; // current number of edges

procedure add_event (new_V : event; out vid : event_id);
procedure add_edge (t_vid, h_vid : event_id; out ecid : edge_id);
procedure rmchar (rm_vid : event_id; chr : set of characteristic);
function list_interval (s_vid, e_vid : event_id) : list of cvent_id;

Figure 2. Declaration of Required Operations

Determining Interior Vertices of Graph Intervals 11

an array with which to make rapid path existence checks and a set of trees to record the actual
paths.

Unless reorganization of the path existence lookup table is permitted, the number of
vertices is fixed for Italiano’s algorithm* and our add_event procedure is a thus no-op with
respect to the Ialiano data structures, simply making a record of the event attributes. Additionally,
since Italiano’s algorithm makes no optimizations based on knowledge of future add_edge or
list_interval operations, the rmchar operation is effectively a no-op with respect to the algorithm.
The add_edge operation is not a no-op, though is trivial:

procedure add_edge (t_vid, h_vid : event_id; out eid : edge_id);
begin

Ital_add_edge(t_vid, h_vid);

eid = e_total;

return;
end add_edge;

types
Ital_node = record
key : cvent_id;
paient ; Altal_node;
child : Altal_node;
sibling : AMtal_node;
end Ital_node;

giohals
// index[i, j] # null — a path exists from v, 10 i
{/f
index : array [0..V_limit, 0..V_limit] of Altal_node := nuli;
desc : array [0..V_limit] of AMal_node;

procedure Ital_add_edge (tail, head : event_id),
function Ital_check_path (org, term : eveni_id) : Boolean;
function Ital_get_path (org, ierm : eveni_id) : list of event_id;

Figure 3. Operations Provided by Italiano’s Algorithm

* It is possible lo dynamically increase the expected number of vertices in the leokup table, but this operation
Tequires a significant reorganization of that data structure (it does not increase the O(v) running time, just the
constant factor). Such resiructuring would place a bursty, unpredictable performance impact on the monitor
which might well prove unacceptable.

12 Griswold

We perform the list_interval query by reference to Italiano’s index array, effectively
finding the intersection of events after the interval’s start bound with those before its end bound.
This query implementation, though rather straightforward, is still O(v) time, similar to the O(vp

application limit for the query but perhaps much larger.

function list_interval (s_vid, e_vid : event_id) : list of event_id;
Vlist : list of event_id :=[];
vid : event_id;

begin
if index[s_vid, e_vid] then
Vlist &= [s_vid, e_vid];
for vid in 0..V_total - 1 do
if index[s_vid, vid] and index{vid, e_vid] then
Vlist &= [vid];
endif;
endfor;
endif;

return VIist;
end list_interval;

Determining Interior Vertices of Graph Intervals 13

3. Search Tree Method

3.1 Approach

Our next method of responding to the list_inferval query relies on the history graph’s
timeline structure to achieve O('tzlog(sx)ﬂlogv) add_edge and O(t(log(ey)-+vp)) list_interval
time, and to require O(Tey+v) space. We define &y = €-v, a measure of the edge cross-
connectivity between timelines. Though this space bound may at first appear worse than that of
Italiano’s algorithm because €, for a general graph, is ow?), properties of our application make
€ of O(tv). For subjects with a large number of events relative to the number of timelines, the
search tree method may thus require considerably less time and space than the transitive closure
method using Italiano’s algorithm.

In the search tree method, we maintain cach timeline as a sorted set of events* and, for
each pair of timelines, maintain a sorted set containing information about all paths from one
timeline to the other. Specifically, for each edge ¢ incident with a vertex Vi the algorithm checks
every timeline for its highest-version veriex v; such that a path from v; to v; exists which uses e,
as the terminal edge. If a path docs not exist from v; to the previous vertex on vj’s timeline (i.e.
an indirect path does not already exist from v; through the previous vertex to vy, a record of that
path’s existence is made. These pairwise-timeline sorted sets are the reason for the 12 factors in
the above complexity measures; if, for a particular system, temporal reference between timelines
has a strong locality (for instance, cach processor represented by a timeline might only talk with
its "neighbors"), the 72 factors will actually be 1 or tlogt.

Figure 4 illustrates a history graph along with the cross-timeline path information
maintained for that graph. In Figure 4a, we sce a history graph with three timelines and fourteen
events (not counting Vg); Figure 4b-d show the recorded path information for that graph, one sub-
figure for the path information associated with each of the three timelines. In each of Figure 4b-d,
the "other" timelines of the underlying graph are de-emphasized by showing them as dotted lines
while the paths lcading 1o the sub-figure’s timeline are shown as bold lines. Given these cross-

timeline path data structures, checking for the existence of a path from, for example, V4 10 Vi,

proceeds as follows:

* Specifically, we use threaded AVL scarch trees ordered by event version.

14 Griswold

(d)

Figure 4, Cross-Timeline Path Information for Search Tree Method

Determining Interior Vertices of Graph Intervals 15

1) Check for the most recent terminus (at or before V,,) of a path which originates
from V5’s timeline and terminates at V,’s timeline, and which contains no edges
on Vy,’s timeline. This terminus would be V4.

2) Check to see if the origin of that path has a version greater than that of V,. In
this case, the path origin is Vg, which occurs later on the appropriate timeline
than V,, so a path does exist from V, to Vy,. In the abstract sense, this path
originates at V-, proceeds to Vg along some number of edges on their mutual
timeline, proceeds to V,, along some number of edges across some number of
intermediate timelines, and finally terminates at V,, along some number of edges

on the timeline Vg and V,, have in common.

3.2 Algorithm

We assume the cxistence of the sorted set operations described in Appendix 7.1 and that
their implementation requires O(log number of items in tree) time per operation.[10] In addition
to the data structures of Figure 2, we use those presented in Figure 5, Remember that the cross-
timeline data structures keep track not of individual edges, but of paths between timelines. Since
the search tree method still makes no optimizations based on knowledge of future add_edge or
list_interval operations, the rmchar operation is effectively a no-op. The pseudocode presented
here is a high-level description of the algorithm; a more detailed description is found in
Appendix 7.3.

Due 1o the following optimization in the cross_tl_data structure, the search tree method’s
add_event operation just records the event’s attributes. In order to fulfill the list_interval query,
we must report the identifiers of the evenis in the requested interval. The search tree method’s
path recording mechanism, however, generally tracks only the version of an event on a particular
timeline (since that is how events are ordered on a timeline, not by their identifier). We either
must maintain a separate data structure to record the event identifiers or must somehow maintain
the identifiers along with the paths. This optimization makes use of the knowledge that, if a path
is ever recorded between two cvents on the same timeline, the version of the origin is always that
of the terminus, minus 1. The space ordinarily used to hold the origin’s version is used, instead,
to hold the event identifier of the terminus.

As per its definition for the new_event phase, no edges are added during add_event, even

to other events in the same timelines as new_V. Pseudocode for add_event is:

16 Griswold

types
ordering_set = srf_set of ordering key tid;

H Versions of origin and terminus of a path from cne timeline to another. If
/f both timelines are identical, the origin’s version is replaced with the event
// identifier of the terminus since the origin’s version would simply be terminus
// version - 1.
i
tl_path = record

case (cross_timeline, in_timeline) of

cross_timeline : (org : version_index;);

in_timeline : (vid : event_id;);
endcase;
term : version_index;
end tl_path;

cross_tl_data = record
org_tid : timeline_id; // 1l id of origins of recorded paths
p_by_org : srt_set of {I_path key org;
_by_term : srt_set of ti_path key term,;
end cross_tl_data;

timeline = record

tid : timeline_id;

xtdata : srt_set of cross_tl_data key org_tid;
end timeline;

globals
T : srt_set of timeline key tid;

Figure 5. Secarch Tree Method Data Structures

procedure add_event (new_V : event, out vid : event_id);
begin

vid = g unique event identifier,

V[vid] = new_V;

return;
end add_event;

The add_edge operation is rather complex because, after adding an edge from an event
V; to Vj, Vj and all events which follow it must now follow all events which V; follows (i.e. for

all events which precede V;, the data structures must be updated so that they precede all events

Determining Interior Vertices of Graph Intervals 17

which now follow V). Further complications result from the possibility that V; is ordered on
multiple timelines.

An important subroutine of add_edge is update_tl_xt, which accepts an event V; on one
timeline T, and a set of events (timeline versions, actually) which must come before Vj, then
updates T ’s cross-timeline data structure so that these orderings are recorded. The creation of
a new cross-timeline structure (if T, had no existing orderings w.r.t a particular timeline) is also
handled by update tl xt, as is the case when the new precedes information makes existing
precedes information out-of-date (by showing that Vj comes after a later event on a particular
timeline than higher-version events on T, were known (o come after; the precedes information
for those higher-version events on T, is no longer relevant after Vj’s ordering is recorded).

Below, we list update_tl_xt, followed by add_edge:

procedure update_tl_xt(tl : Mimeline; ver : version_index;
vid : event_id; prcd : ordering_set);
Xt Across_tl_data;
ord : ordering;

begin
for each ord of pred do
xt :=tI's cross-timeline data for ord’s timeline;

if no existing data for that timeline then
add a new cross-timeline structure to 1Mxi1data;
add the initial V to that structure;
endif;
if ord’s timeline is not U itself then
if ord’s information is not redundant then
add ord —» ver path to Xt;
remove information made redundant by ord;
endif;
else
add ord’s information to xiMp_by_term only;
endif;
endfor;

return;
end update_tl_xt;

Griswold

procedure add_edge (t_vid, h_vid : event_id; out eid : edge_id);
1l : Mimeline;
h_ver, term_ver : version_index;
Xt : Across_tl_data;
pred : ordering_set = new_srt_sef;

begin
¢id = a unique event identifier;
efeid] = {&_vid, h_vid);

// Find all events which now precede the head (V[h_vid])
1/
find any timeline on which the tail (V[t_vid]) is ordered;
for each xt in that timelineg’s cross-timeline data do
if xt is not for the tail's timeline itself then // handled below
find the latest event on xt's timeline before the tail;
if the event is not just Vg then /{ everylhing comes after Vy; ignore it
add that event to pred;
endif;
endif;
endfor;

for each timeline on which the tail is ordered do
add the tail’s version on that timeline to pred;
endfor;

/{ Update the head to follow pred

1/

for each timeline on which the head is ordered do
1l := that timeline;
h_ver := the head’s version on that timeline;
update_tl_xu(d, h_ver, h_vid, prcd);

endfor;

/{ Update all events which the head precedes to follow pred
i
find any timeline on which the head is ordered,
for each tl of T except the above timeline do
xt = tI's cross-timeline data for the head’'s timeline;
if xt = null andif there is an event on U after the head then
term_ver := the version of that event on 1;
update_t!_xi(l, term_ver, id_null, pred);
endif;
endfor;

return;
end add_edge;

Determining Interior Vertices of Graph Intervals 19

Events in an interval [V, = V] are found by determining all timelines with which V_ is
ordered, then determining the first event on each of those timelines which occurs after V. For
each such timeline, the interval includes all events after V; and before V. Care must be taken
to not multiply list events which are on more than one timeline. Pseudocode for list_interval is:

function list_interval (s_vid, e_vid : event_id) : list of event_id;
Vlist : srt_set of event_id := new_srt_set; // avoid duplicates
mid_e_set : ordering_sct := new_srt_set;
ord : crdering;
tl: Atimeline;
xt: A“cross il dala;

begin
i Find the latest event belore V, (V[e_vid]) on each timeline with which V_ is
[/ ordered,
i

find any timeline on which V¥ is ordered,;
for each xt in that timeline’s cross-timeline data do
if xt is not for V,'s timeline itself then
Jind the latest event on XUs timeline before V,;
else /f this will lead 1o putting V, in Vlist
the event we use is 'V itself,
endif;
if the event is not just Vy then
add that event to mid_e_set;

endif;
endfor;
// Add all events alier V and before V, to Vlist, doing one timeline at a time
/{ between the first event after V; and the latest event before V, (stored in mid_e_set).

i
Jind any timeline on which V, (V[s_vid]) is ordered;
for each ord of mid_e_set do
tl := ord’s timeline;
xt = W's cross-timeline data for V.'s timeline;
if xt # null then
if V is not on tl then
Jind the first event on U after V;
if there is such an event andif it is not after ord’s event then
add all evenis between this event and ord’s event to Vlist (inclusive);
endif;
else /f 'V is on this timeline
if V, is not after ord's event then
add all evenis between V_ and ord’s event fo Vlist (inclusive);
endif;
endif;
endif;
endfor;

return srt_sct_to_list(Vlist);
end list interval;

20 Griswold

3.3 Analysis

The 0(r210g(ax)+ﬂogv) time for add_edge is calculated by direct examination of the
algorithm’s pseudocode. Let us begin by looking at update tl xt. The top level of this
subroutine is a loop for each timeline with which V[vid] should be ordered; there could be T
timelings. Within the loop, V[vid]’s timeline is scarched for a cross-timeline structure
corresponding to the loop variable, ord. This search is OClogt). If this structure is not present,
it is created with an O(logt) insert and another O(logt) scarch. If the new ordering is relevant
to V[vid], it is recorded with either two O(log(ey)) or one O(logv) insertion(s) (depending upon
whether or not the ordering is within V[vid]’s own timeline). Whenever the ordering is not within
Vlvid]’s own timeline, an out-of-order situation must be checked. The pseudocode above
remedies this out-of-order situation with a slow O(gy) delete loop for purposes of storage
reclamation. This is desirable in many cases, but is not the fastest way to remove the out-of-order
information; two tree splits and a tree join, O(log(ey)), are all that is required to rectify the
problem.

The above analysis yields an O(t(logt+log(ey))+logv) running time for update tl xt
(only one of timelines in pred can be V([vid]’s own). Actually, though, we can compare T and
€y in order to achieve a less verbose measure. A timeline has cross-timeline structures for itself
and for all other timelines with which it is ordered; it can be ordered with no more timelines than
there are edges between timelines, €y. Therefore, for this calculation, T < &y + 1 and thus
O(logt) < O(log(ex). The time required by wupdaie_tl xt is hence simplified to
O(tlog(ex)+logv).

The pseudocode for add_edge consists of three primary operations: find all events before
V,» update V’s cross-timeline structures, and update the cross-timeline structures of all events
which follow V. Finding the events before V, (and therefore before Vi) requires a Odlogr)
search to find a V’s timeline T, and, for each of T ’s T potential cross-timeline structures, an
O(log(ey)) search and possible O(logt) insert. The ordering of V, itself with respect to Vy, is
handled with an O(logr) insert for each timeline on which V, is ordered (t possible). Total time
is O(tlog(ey)), using the same O(logt) < O(log(ey)) argument as above.

Updating V.’s cross-timeline structures involves, for each of t possible timelines T, on
which V), is ordered, finding T,, with an O(logt) search and properly applying update tl xt to
it. Given the above analysis for update_tl xt, this opcration is 0(':210g(ax)+ﬂogv).

Determining Interior Vertices of Graph Intervals 21

To complete add_edge, we must update the cross-timeline structures of all events which
follow V,,. For each timeline T, in the graph, we must check to see if it is ordered with respect
to a timeline T, on which Vy, is ordered (O(logD)). If s0, we find the first event on T, after V},
(O(log(ex))) and apply update_tl_xt when appropriate. Completion of add_edge thus requires
O(Tzlog(ex)), similar to updating V}’s cross-timeline structures. With the analysis of the other
two operations within add_edge, this implies that add _edge as a whole is of
O(tHlog(ey)+tlogv).

As for add_edge, list_interval’s time complexity is calculated by examination of the
pseudocode. The algorithm begins by finding V; and V, (requires one O(logt) search), then
finding the latest event V ;4 , before V,, on each timeline with which V, is ordered. There may
be T timelines, and the search requires an O(log(ey)) lookup and an O(logt) insert. Time for
this part of the algorithm is therefore O(t(logt+log(ey)), or O(tlog(ey)) by means of the
OdogT) < O(log(ey)) argument presented above,

We build the list of events to be returned by list_interval one timeline at a time, for each
timeline T, ordered with respect to V. Given a T, we begin by locating it and its orderings with
respect o V' timeline T, (OClogt) searches). If such an ordering exists and T, # T, we find
the first event V.4 (on T, after V¢ (O(log(ey)) and find T,’s self-referential cross-timeline
structure (O(logt)). Finally, we sequentially scan that structure’s event list between T,'s V.4
and V., ., adding to the interval list as we proceed (O(vp). If T, = T, we just immediately
begin scanning between Vg (= V.4 , in this case) and V. .. The list building operation thus
requires O(t(log(ex)+vp)), making this also the time for list_interval as a whole.

We consider the above list_interval measure to be quite pessimistic; the Tvy term is an
accurate measure only if the number of times an event is on more than one timeline is O(t). In
most "realistic” systems, an e¢vent on more than one timeline signifies a rendezvous between two
processes (O(1)), not between some fraction of T processes. For this common case, list_interval
time is O(tlog(ey)+vp.

The scarch tree method’s space requirements (in terms of path entries maintained in the
cross-timeline structures) are measured by examining the data structures themselves instead of the
algorithms which operaie on them. We present two approaches to deriving this space requirement;
one employs commutativity of sequences of add_edge operations, the other directly counts cross-
timeline paths. For both approaches, it is a given that each timeline maintains knowledge of all

paths between its own events; space requirements can not, therefore, be less than O(v).

22 Griswold

For the first approach, we remember what happens when an edge is added. The tail of
the edge is ordered with respect to at most 7 timelines, and, afier the edge is added, the head must
also be ordered with respect to those timelines; a potential of 1 path entries must be recorded for
each new edge. Our problem is that not only the head must be ordered with respect to the tail’s
timeline orderings: all events after the head must be ordered, also. Since there may be T events
ordered immediately after the head, this results in 2 potential path entries being added for the
new edge. The question is whether or not this implies an O(TZSX) space requirement. The
answer is no, because it is possible to rearrange the sequence of event additions —building the
same history graph— so that there exist no events after the head of a new edge. This is because
a history graph is a directed acyclic graph and thus possesses a topological ordering of vertices.
If events (and thus edges) are added to the graph in topological order, no events yet exist after
the head of each new edge and the space required per new edge is at most 7. This yields our
desired O(1ex+V) space complexity. Since an arbitrarily-created history graph and its
corresponding topologically-created history graph are the same graph described with the same
structures, they require the same space to store.

Our second approach counts the maximum cross-timeline paths directly. Each path is
recorded only at its terminus, the head of its last component edge. There are exactly &y of these
head events, and each one may be ordered with at most T timelines. This argument again yields
an O(Tey+V) space complexily.

The above space complexity is a tight bound; the simple graph shown in Figure 6 exhibits

this worst-case space requirement.

Figure 6. Worst-Case Space for Scarch Tree Method

Determining Interior Vertices of Graph Intervals 23

4. Wavefront Method

4.1 Approach

The wavefront method, so named for the manner in which the list_interval query is
satisfied, is our first approach which uses information about event characteristics to diminish
complexity. Specifically, the cross-timeline information used by the search tree method is
maintained only for end bound and tail candidate events (those with characteristics e or t), If the
user is knowledgeable about the events which may still be incident with new edges, this
optimization might save considerable space over the search tree method. Its cost is the loss of
rapidly available complete transitive closure information. *

An example of this optimization is illustrated in Figure 7. Figure 7a presents a simple
history graph. Figure 7b shows the scarch tree method’s cross-timeline structures maintained for
the second timeline of this graph, and Figure 7c¢ shows the cross-timeline structures maintained
by the wavefront method for the same timeline. The collapse of the cross-timeline structures of
events 4, 5, and 6 into that of event 7 demonstrates a space savings over the search tree melhod,
while the cross-timeline collapse from event 8 into event 9 merely moves data from one event to
another (and loses information content in the process). Notice that records of the edges from
event4 to 5, 5 to 6, and 7 to 8 are also collapsed out of the wavefront method’s cross-timeline
structures (though they must be recorded elsewhere in order to satisfy a list_interval query).

Since complete transitive closure information is not readily available, it is not possible to
immediately determine the first event on each timeline which occurs after an interval’s start
bound. In order to satisfy a list_interval query, a depth-first search originating at the start bound
is used to determine the interval’s events. This scarch terminates at the last event on cach
timeline which occurs before the interval’s end bound (knowledge of which is maintained) and

is pruned before leading to any timelines which are unordered with respect to the end bound.

4.2 Algorithm

Slight modifications 1o our basic data structures are necessary for implementation of the
wavelront method. To facilitate the list_interval depth-first search, we add information to cach
event about all edge tails with which the event is incident. This is maintained as a circular list

from the event through each such edge and back 1o the event; details are presented in Figure 8.

* Transilive closure information may very well, however, be regencerated efficiently over individual intervals when
necessary for query purposes.

24

Griswold

(b)

Figure 7. Cross-Timeline Path Information for Wavefront Method

Determining Interior Vertices of Graph Intervals 25

As with the Search Tree Method, the pseudocode presented here is quite high-level. The more
detailed code is found in Appendix 7.4.

Remain aware that, in the following algorithms, only events with characteristics e and ¢
are maintained in the cross-timeline structures, "Consecutive” events recorded on the same
timeline do not necessarily have immediately consecutive versions (though they will, of course,

be in order). Furthermore, an cvent B referenced as an origin for a precedes path will later be

types
next_edge = (edge_link, event_link);

wv_gvent = record
attrib : list of attribute;
chr: set of characteristic;
out: edge_id;

end wv_event;

wv_edge = record
case link : next_edge of
edge_link : (next : edge_id;);
event_link : (tail : event_id;);
endcase;
head : event_id;
end wv_edge;

// Versions of origin and terminus of a path from one timeline to another.
i
tl_path = record
org : version_index;
term : version_index;
end U_path;

wv_ordering = record
vid : event_id;
tid : timeline_id;
ver : version_index;
end wv_ordering;

globals
V :array [0..V_limit] of wv_event; /{ any O(1) access time structure
e : array [0..c_limit] of wy_edge; // any O(1) access time structure

Figure 8. Wavefront Method Data Structure Modifications

26 Griswold

removed from the cross-timeline structures if its e and t characteristics are both removed. Even
with B itself removed from the cross-timeline structures, though, virtually no references to B are

altered since all lookups in these algorithms search relative to their target (< or = the target’s

version), With this example, lookup results would either find some event A before B or some
event C after B, whichever is appropriate.

The add_event procedure is similar to that of the search tree method; the only difference
is the need to initialize the list of edges originating at the event.

procedure add_event (new_V : event, ouf vid : event_id);
begin

vid := a unique event identifier;

V{vid] = {new_V.attrib, new_V.chr, id_null);

return;
end add_event;

The wavefront method’s add_edge procedure (and thus update_tl xt) is actually simpler
than that of the search tree method, though almost identical in general approach. While the
wavefront method must maintain the list of edges originating at each event, it does not treat an
edge between two events on the same timeline as a special case.

procedure update_t1_xi(1l : Mimeline; ver : version_index;
pred : ordering_set);
xt : Across_tl_data;
ord : crdering;
term_ver : version_index;

begin
term_ver := version of the first event on il at or after ver with characteristic e or {;

for each ord of pred do
xt 1= tI's cross-timeline data for ord’s timeline;

if no existing data for that timeline then
add a new cross-timeline structure to 117 xidata;
add the initial Vy to that structure;

endif’

if ord’s information is not redundant then
add ord — term_ver path to xt;
remove information made redundant by ord;
endif;
endfor;

return;
end update_tl_xt;

Determining Interior Vertices of Graph Intervals 27

procedure add_edge (t_vid, h_vid : event_id; out eid : edge_id);
tl : Atimeline;
h_ver, term_ver : version_index;
xt : Across_il_data;
pred @ ordering_set := new_srt_sef;
begin
// Add edge 10 e and to list out of V[t_vid]
i

eid := a unique event identifier;

if this is the first edge oui of the tail event (V[t_vid]) then
efeid] := {event_link, t_vid, h_vid);

else
eleid) = {(edge_link, V[t_vid].out, h_vid);

endif;

V{t_vid].out = eid;

// Find all everts which now precede the head (V[h_vid])

i
find any timeline on which the tail (V{t_vid]) is ordered,

for each xt in that timeling’s cross-timeline data do
find the latest event on xUs timeline before the tail;
if the event is not just V then
add that event to pred;
endif;
endfor;

for each timeline on which the tail is ordered do
add the 1ail's version on that timeline 1o pred;

endfor;
/{ Update the head to follow pred
i

for each timeline on which the head is ordered do
il .= that timeline;
h_ver := the head’s version on that timeline;
update_tl_xt(tl, h_ver, prcd);

endfor;

// Updale all evenis which the head precedes to follow pred

1/
find any timeline on which the head is ordered;

for each Ul of T do
xt ;= I's cross-timeline data for the head's timeline;
if xt s null andif there is an event on Wl qfier the head then
term_ver = the version of that event on tl;
update_tl_xt{l, term_ver, prcd);
endif;
endfor;
return;
end add_edge;

28 Griswold

The rmchar operation begins by removing the chr characteristics from event V[rm_vid}],
then checks whether or not that event still possesses the e or t characteristic. If not, it is removed
from all timelines’ cross-timeline structures. This is done, for each timeline on which V[rm_vid]
is ordered, by finding the next event after V[rm_vid] and propagating V[rm_vid]'s path

information to that next event.

procedure rmchar (rm_vid : event_id; chr : set of characteristic);
xt : Across_tl_data;
tl ; Atimeline;

begin
remove the characteristics in chr from V[rm_vid].chr,

/i If this operation made V[rm_vid] have neither the e nor t characteristic, remove
// it from all xt structures.
/i
if V[rm_vid] now has neither the e nor the t characteristic then
for each timeline on which V[rm_vid] is ordered do
tl = that timeline;
find the next event on 1 gfter V{rm_vid};

i Remove V[rm_vid] and propagate its path information, if any, to the
// next event,
/!

for each xt in U's cross-timeline data do
if V[rm_vid] was the terminus of any path from that other timeline then
remove the record of that path to V{m_vid] from xt;

/I If a path to the next event already exists, it is from a

/f higher-version origin than that to V{rm_vid] and should not be

// overwritten.

1

if there is not already a path to the next event after Vim_vid] then
record the path to V[im_vid] as going to that next event,

endif;
endlif;
endfor;
endif;
return;
end rmechar;

The list_interval operation procceds as a series of passes between two sets of bounds,
todo_set and done_set. The carliest (smallest version) event on each timeline which is known

to follow V[s_vid] but which has not yet been added to the interval list is stored in todo_set;

Determining Interior Vertices of Graph Intervals 29

done_set contains the earliest event on each timeline which should no longer be added to the
interval list, ecither because it has already been added or because it is known to not be in the
interval. The initial value of done_set is those events gne version after the latest events on each
timeline which precede V[e_vid] and the next event after Vie vid]; todo_set begins with
V[s_vid]. Note that only those timelines with which V[e_vid] is ordered have an entry in
done_set. A failed reference to any timeline is therefore considered to mean that the entire
timeline is "done" as far as list_interval is concerned.

During execution, todo_set is broadened to contain an eniry for another timeline whenever
an edge extends from the currenily scanned event to some event B on a different timeline, so long
as B is not "done." A timeline’s entry in tode_set may be pulled back to an earlier version when
new edges are encountered. Timeline entries in done_set are updated at the beginning of every

pass to reflect the span of versions to be added to the interval list during that pass.

function list_interval (s_vid, e_vid : event_id) : list of event_id;
Vlist : srt_set of event_id := new_srt_set; / avoid duplicates
xt : Across_tl_data;
doing, next : wv_ordering;
todo_set : srt_set of wv_ordering key tid := new_srt_set;
done_set : ordering_set := new_srt_set;

begin
I Find the latest event before V, (V{e_vid]) on each timeline with which V, is
// ordered.
i

find any timeline on which V , is ordered,
for each xt in thar timeline's cross-timeline data do
if xt is not for V,'s timeline itself then
find the latest event on XUs timeline before V;
else // this will lead to putting V, in Vlist
the event we use is 'V, itself;
endif;
if the event is not just V; then
add the event just after the one found above to done_set;
endif;
endfor;

30 Griswold

/i Add all events alter V, and before V to Vlist, doing one segment of a timeline
// at a time,
i

find any timeline on which V (V[s_vid]) is ordered,;
if V, is at or after V then
start todo_set at V;

while todo_sct not empty do
doing := any event of todo_set, removing it from todo_set after the selection;
note where, according to done_set, this pass should end,
update done_set to show we have scanned beginning at doing;

while we are not done with this pass do
add doing to Vlist;

// Find where event ‘doing’ leads.
i
next = end of pass; // in case end of timeline
for each edge with tail at doing do
Jfind the head of that edge;
for each timeline on which the head is ordered do
if this timeline is doing’s timeline then
next := the edge’s head;
else
if V, is after the head andif the head is not already scanned
andif (the head is earlier than any event we already know
we need to scan on the head’s timeline) then
add the head to todo_set;
endif;
endif;
endfor;
endfor;
doing = next;
endwhile;
endwhile;
endif;
return srt_set_to_lisi(Vlist);
end list_interval;

4.3 Analysis

For this analysis, we define vyy =the number of events with either the e or t
characteristic. It is more difficult 10 measure &y, the number of events which are recorded as

incident with heads of cross-timeline edges. With the search tree method, this was simply &y;

Determining Interior Vertices of Graph Intervals 31

with the wavefront method’s collapse of perhaps several events’ precede information into that of
the next event with either the e or t characteristic, the measure will be something < g, It will
not, however, necessarily be the count of those events which are both at the head of a cross-
timeline edge and have ecither the e or t characteristic, vy w. The wavefront method’s cross-
timeline structures, remember, might simply move precedes information from one event to
another, not necessarily petforming any combination of information at all. The limit of what we
can safely determine is that vy w € ey < ex.

The add_edge time for the wavefront method is derived effectively the same as for the
search tree method and is 0(1210g(8w)+ﬂog(vw)). Examination of the rmchar pseudocode
reveals this same time complexity. An event A may be on T timelines, each ordered with T
others, and updating the path information takes O(log(ey)) time if that information is not for A’s
own timeline, or O(log(vyy)) if it is.

Initialization for the wavefront method’s list_interval involves done_set in a similar
manner as does the search tree method’s list_interval initialization with mid_e_set, The required
time is O(tlog(ew)). During scanning from todo_set to done_set, list_interval might require
an O(logt) update to done_set for each of vy events within the interval. Also, for each cross-
timeline edge whose tail is incident with an event in the interval (et the count of such edges be
Ew~p)- there is at least an O(logt) search and perhaps an O(logt) update of todo_set. Total time
for list_interval is therefore O(tlog(ey)Hogt(vHew~pD)-

The wavelront method’s space requirement, not surprisingly, is also desived in a similar

manner to that of the search tree method. This requirement is O(Tew+vy).

32

Griswold

Determining Interior Vertices of Graph Intervals 33

5. Bounded-Search Method

5.1 Approach

The fourth method we have investigated to satisfy a list_interval query is one which
attempts to minimize the method’s space requirement at the expense of speed. No cross-timeline
information is maintained except, of course, the edges themselves. The list_interval operation
is performed by what appears, at first, 10 be a sequence of two brute-force depth-first searches:
one from the start bound forward, the other from the end bound back., The interval is known
when the two searches meet at a common events.

It is obvious that a simple search from the start bound forward will terminate only at the
end bound itself or the end of the history graph. This, alone, might not be too terrible if queries
are made shortly after the end bound becomes known. The search back from the end bound,
however, will not necessarily end until the beginning of the history graph: potentially thousands
of events (or more) will be usclessly scanned. We must bracket this backwards search and,
preferably, the forward search as well.

The scarches are limited by maintaining knowledge of the topological order of events.
Topological order requires that, for two events A and B, top(A) < top(B) if A < B. Note that
this is if, not iff. Maintaining topological numbering is trivial if events are added in topological
order, but requires the use of a "differences” tree* or pruned O(g) renumbering when events are
not added in order.

We begin list_interval with a forward depth-first search from S, the start bound, towards
E, the end bound. Each probe of the search is stopped when an event A is encountered such that
top(A) 2 top(EE). This guarantees that we have not searched past E, but does not imply that all
events which have been scanned are in the desired interval (S < A ¢ E). A second search back
from E finishes list_interval. Probes of this scarch stop when some event scanned by the first
search is found, or when an event B is encountcred such that top(B) < top(S). In other words,
when B can no longer be after § and thus can not be in the interval (B 3 8). When, as described

here, the full forward search is performed belore the backwards search is done, one only need

* Such a data structure maintains, at each node, the difference of some attribute between itself and its parent. This
allows the search for a node X to calculate the value of X's attribute by summation along the path to X, and
also allows adding a constant to the attribute of all nodes after X by adjusting X’s attribute difference.

34 Griswold

search back one step (it is for varialions on this approach that we nced the topological bound on
the backwards scarch).

Optimizations to this algorithm might involve heuristics which perform breadth-first
searches between S and E, alternating between the searches in hope that they will "meet in the
middle." Another possibility is to delay updating 1the topological ordering until it is required by

a list_interval, expecting that many intcrmediate updates might not need to be performed.

Determining Interior Vertices of Graph Intervals 35

6. Future Work

6.1 Simulation

We wish to compare actual time and space characteristics of the search tree and wavefront
methods, as well as perhaps the bounded-search method. A simulation driver is being developed
which will allow a variety of loads to be placed on the algorithms, generating from purely random
cross-timeline edges to localized "communication" between timelines such as that experienced in

a hypercube.

6.2 Enhanced Queries

One of the advantages of interval logic is its ability to express nested intervals. The
algorithms presented in this document address only the problem of simple intervals, Their
extension to nested intervals is of considerable importance.

The list_interval query, as defined, returns only those events which must be after the start
bound S and before the end bound E. In many situations, however, it may be desirable to know
those events which could be after § and before E. This issue of temporal ambiguity is one
inherent in distributed time, the area of our algorithms’ application, and should be addressed.

A potential disadvantage of the wavefront method is that it does not maintain complete
transitive closure information. Since some history graph queries might find such information
necessary, it is important to know how difficult it is to generate transitive closure information for

an interval listed by the wavefront method.

6.3 Distributed Implementations

The application utilizing the algorithms presented in this paper is the temporal analysis
of events generated in a distributed system. It is therefore useful to know whether the analysis
algorithms themselves can be distributed, or instead require a centralized control (i.. a potential
bottleneck). We currently belicve that the search tree and wavefront methods can be distributed
without excessive inter-process communication; maintenance of the topological numbering used
by the wavelront method appears 1o best be performed in a centralized manner, though we are not
certain of this. The interaction of distributing the algorithms along with supporting enhanced

queries is an area of tradeolfs and perhaps considerable future investigation,

36

Griswold

Determining Interior Vertices of Graph Intervals

1. APPENDICES

37

38

Griswold

Determining Interior Vertices of Graph Intervals 39

APPENDIX 7.1 PSEUDOCODE REPRESENTATION

The representation of algorithms in this report is done using pseudocode which resembles
a mixture of Pascal, Ada, and C++. All the standard conurol structures are available, defined types
may be expressed, and a variety of operators may be used.

Below are listed the details of this representation. In pseudocode tradition, however, the
more obvious operations in our algorithms are generally expressed with a certain amount of
English instead of detailed statements (such as "for every child of..."” instead of "child:= foo*.child;
while child # null do..."). When such use of English is made instead of formal code, this will be
clarified by italicizing any English in our algorithms {(e.g. "for every child ¢f..." in the above
example).

In the following discussion, bold brackets ([]) indicate 0 or 1 occurrence of the enclosed
item, and bold braces ({ }) indicate O or more occurrences. Comments in this pseudocode are as

in C++: *// indicales that the rest of the line is a comment.

7.1.1 CONTROL STRUCTURES

Flow of control is Ada-like. Semicolons are statcment terminators, not separators, and
loop entry statements are paired with matching loop exit statements. Procedures and functions

may be defined and nested, following the usual scope rules. Syntax is:

Sequence Conditional Alternative
statement, if condition then case expression of
{statement;} sequence; value list:
else (sequence;);
sequence;
endif; others:
(sequence;);
endcase;
Tteration Repetition, Test At Entry Repetition, Test At Exit
for variable in range do while condition do repeat
Sequence; Sequence; sequence;

endfor; endwhile; until condition;

40 Griswold

Procedure Function
procedure proc_name(formal_parameters), function func_name(formal_parameters) :
declarations; result_type,
begin declarations;
sequence; begin
return; Sequence,

return value;

end proc_name;
end func_name;

~- where formal parameters is a list, the elements of which are separated by semicolons and
have the form variable_name{, variable_name} : type

7.12 OPERATORS

assignment: = i var = value
arithmetic: +, -, *,/, % // add, subtract, multiply, divide, modulus
arithmetic assign: +=, =, *= f= %= J/ var op= value = var ;= var op value
comparison: =, #, <, £, >, >
logical: and, or, xor, not, andif, orelse // two “short circuit” operators

7.1.3 SIMPLE AND STRUCTURED TYPES

Basic types include the standard integer, real, Boolean, character. Derived types inciude
enumerations and subranges of any ordinal type. Structure is expressed by use of array, record,
and pointer types which may be arbitrarily nested. Similar to Pascal, records may have variant

fields. Syntax is:

Subrange Enumeration Array
subrange type = enumeration_type = array_type =
range [first..last] (valuef, value}); array [range{, range}]

of base type; of base_type;

Determining Interior Vertices of Graph Intervals 41

Record Variant Record Pointer
record_type = record record_type = record pointer_type = *base_type;
field_name : type; {lfield_name : type;]
[case [ta{; 1 type of Pointer Dereference
end record_type; value list: pointer_variable™
(field_name : type; -
)

others:
(field_name : type;
o N
endcase;]}
end record_type;,

7.14 HIGH-LEVEL STRUCTURED TYPES

Collections of clements of any other type may be built as sets, lsts, and sorted sets (search
trees). The syntax for declaring such coliections and the operations allowed with them are as
follows:

Sets

Sets are defined as unordered collections of objects with no duplicates. Basic set
operations of union, intersection, symmelric diffcrence, proper subset and superset, construction,
and element containment may be expressed U, M, -, C, O, { element{, element} } and e,
respectively.

declaration: type name = set of base_type;
operators: U, N, -, =, G, &, D, 2, €, and the assignment operators W=, M=, and -=

constants: & — the empty set

Lists are defined as colleclions of objects ordered by their sequence of appearance within
the list; duplicates are allowed. Operations include concatenation, construction, element reference,
and sublist reference expressed by &, [element{, element}), list(element_number), and
list{element_range], respectively.

declaration: type name = list of base_type;
operators: &, (element_number), [element_range], and the assignment operator &=

constants: [] — the empty list

42 Griswold

Sorted Sets

Sorted sets are defined as collections of objects ordered by means of a "key" value, with
no duplicate key values allowed between two clements. This key may cither be the element itself,
if the sorted set is of a simple type, or is the value of one field of an element, if the sorted set is
of a record type. Operations include insertion and removal of elements and search according to
a key.

Insertion of an element into a sorted set either adds an entirely new element or replaces
an existing element of the same key. This operation is expressed as set + element. Removal of
an element from a sorted set, expressed as set - element, f{ails if the element is not part of the
sorted set. Reference to an clement by key has many search criteria and retums a pointer to that
element (or null if no such element is found). The scarch may be for the element with key equal
to the search key (=" search); for the element with the greatest key less than the search key (<’
scarch); for the element either with the search key or, if not found, with the greatest key less than
the search key ("<’ search); and so on for > and *>’ search. Equal-to search is common enough
to be expressed as sorted_set[key]; scarches with other criteria are expressed as sorted_set(cri-
terion, key).

declaration: type_name = srt_set of base_type [key field name 1;
operators: +, -, [key] — equivalent to '=" criterion below,
(criterion, key), where criterionisonc of =, <, >, £, or 2

constants: new_srt_set — the emply soried set

Determining Interior Vertices of Graph Intervals 43

APPENDIX 7.2 ITALIANQ'S PATH RETRIEVAL ALGORITHM

Developed by Giuseppe F. Italiano, the following data structures and algorithms permit
the incremental construction of a directed acyclic graph G = (V, E) in such a way that queries
may be made in order to check for the existence of a path between any two vertices in G and to
report the vertices along a path between any origin and terminus vertices in G.[5] Edges are
added and paths reported in O(v) amortized time per operation, v = |V|; the existence of a path

may be checked in O(1) (consiant) time. The data structures require ®(v2) space.

constants
V_limit ; integer = some large positive number [/ greatest # of elements

types
event_id = range [0..] of integer; // used as indices, not just as ids

Ital node = record
key : event_id;
parent ; ~ltal_node;
child ;: AItal_node;
sibling : Atal_node;
end Ital_node;

globals
/' index[i, j] # null — a path exists from v; to K
/f If the path exists, this points to v; in the descendent tree
/I of v,
i

index : array [0..V_limit, 0..V_limit] of Altal_node = null;

// Trees of all descendants of each vertex in the graph

i
desc : array [0..V_limit] of Mtal_node;

44 Griswold

procedure Ital_initialize();
i, j : event_id;

begin
for i := 0 to V_limit do
desc[i] := new(Ital_node);
desc[i}® = (i, null, null, null;
for j := 0 to V_limit do index[i, j] := nuil; endfor;
endfor;

return;
end Ital_initialize;

function Ital_check_path (org, term : event_id) : Boolean;
begin

return index[org, term] # null;
end Ital_check_path;

function Ital_get_path (org, term : event_id) : list of event_id;
Vlist : list of event_id := [}; // path {rom origin to terminus
curr_vertex : Altal_node;

begin
if index[org, term] # null then /{ terminus is reachable from origin
curt_vertex := index[org, term]; // locate terminus in desc{origin]
Vlist = [term];
repeat // go up in desc[origin]
curr_vertex ;= curr_verlex”.parent;
Vlist = [curr_vertexMkey] & Vlist;
until curr_vertexA.parent = null; // ...until the root origin
endif;

return VIist;
end Ital_get_path;

Determining Interior Vertices of Graph Intervals 45

procedure Ital add_edge (tail, head : event_id);
X : event_id;

begin
if index[tail, head] = null then // 1o previous path from tail to head
for x := 0 10 V_limit do
if index[x, tail] # null and index[x, head] = null then
// The edge (v, vy,) gives rise to a new path from v, to v,
I
meld(x, head, tail, head); // update desc[x] by means of desc[head]
endif;
endfor;
endif;

return;
end Ital_add_cdge;

/! Merge desc[meldio] with a prunted subtree of descimeldwith] rooted at with_subtree.
// The vertex of desc[meldto] to which the pruned subtree will be linked is linkio. By
// "pruning,” we mecan removing those vertices already in desc[meldto].
/
procedure meld(meldto, meldwith, linkto, with_subtree : event_id);
parent, child : Altal_node;

begin

// Insert the root of with_subtree into desc[meldto] as a child of linkto

i

index[meldto, with_subtree] = new(Ital_node);

if meldto = linkto then // index does not contain self-loops
parent := desc[linkio];

then
parent ;= index[meldio, linkto];

endif;

index[meldto, with_subtree]? := /f (key, parent, child, sibling)

{with_subtree, parent, null, parent.child);
parent®.child = index{meldio, with_subtree];

for each child of with_subtree in desc[meldwith] do
// If the child and its subtree are not already in desc[meldto], add them
/
if index[meldto, child®key] = null then
meld(meldto, meldwith, with_subtree, childrkey);
endif;
endfor;

refurn;
end meld;

46

Griswold

Determining Interior Vertices of Graph Intervals 47

APPENDIX 7.3 SEARCH TREE METHOD ALGORITHM

The following data structures and algorithms detail the Search Tree Method of interval

detection as presented in this report.

constanis
V_limit, e_limit : integer := some large positive number /[greatest # of elements
id_null : integer = -1; // "mo such object"

types

natural = range [0..] of integer;
event_id, edge_id, timeline_id = range [id_null..] of integer;
version_index = natural;

attribute_type = (limeline, other); // we are unconcerned about other attribute
ordering = record /{ 1o order an event w.rt. a specific timeline
tid : timeline_id;
ver ; version_index;
end ordering;

attribute = record
case atype : attribute_type of
timeline ; (value_1l : ordering;);
other © (value : mple;); /f arbitrary structure
endcase;
end attribute;

characteristic = (t, h, s, e); /f edge 1ail or head, interval start or end

event = record

atlrib : list of attribute;

chr : sef of characteristic;
end cvent;

edge = record
tail, head : event_id;
end cdge;

ordering_set = srt_set of ordering key tid;

48

Griswold

f Versions of origin and terminus of a path from one timeline to another. If
/f both timelines are identical, the origin’s version is replaced with the event
// identifier of the terminus since the origin’s version would simply be terminus
/f version - 1.
/i
tl_path = record

case (cross_timeline, in_timeline) of

cross_timeline : (org : version_index;);
in_timeline : (vid : event_id;);

endease;

term : version_index;
end tl_path;
cross_tl_data = record

org_tid : timeling_id; /{1l id of origins of recorded paths

p_by_org : srt_set of I_path key org;

p_by_term : srt_set of 1_path key term;
end cross_tl_data;
timeline = record

tid : timeline_id;

xtdata : srt_set of cross_tl_data key org_tid;
end timeline;

globals

V :array [0..V_limit] of event; {// any O(1) access time structure
¢ . array [0..e_limit] of edge; {// any O(1) access time structure

T : srt_set of timeline key tid;

procedure add_event (new_V : event, out vid : event_id);
begin

vid := new_event_id{);

V[vid] = ncw_V,

return;
end add_event;

Determining Interior Vertices of Graph Intervals

procedure update_tl_xt{tl : Alimeline; ver : version_index;
vid : event_id; pred : ordering_set);
xt: Across_tl_data;
ord : ordering;
path : MI_path;
begin
for each ord of pred do
xt = tlrxtdataford.tid];

if xt = null then f/ new xt, possibly with self
tlAxtdata += (ord.tid, new_srt_set, new_srt_set);
xt := tI* xtdataford.id];

/{ Vg is on each timeline

i

if ord.lid # tAtid then // between tl and another timeline
i make it before first tI event, which might no longer be version 0
/f if garbage collection has taken place
i
path = tlAxtdataltrtid]Ap_by_term(2, 1);
xMp_by_org += (0, pathA.term);
xtAp_by_term += {0, path®.term);

else /1l with self
xtAp_by_term += (vid, 1);

endif;

endif;

if ord.tid # tiAtid then
if xtAp_by_term(s, ver)M.org < ord.ver then
x18.p_by_org 4= {ord.ver, ver); /i overwrites previous
xthp_by_term += {ord.ver, ver); // ordering, if any

// Remove out-of-order information
i
path = xtA.p_by_term(>, ver);
while path # null andif path?d.org < ord.ver do
x1A.p_by_org -= path;
xtAp_by_term -= path;
path = xtrp_by_term(>, ver);
endwhile;
endif;
else // (’s xt for itself
if xth.p_by_term(s, ver)fterm - 1 < ord.ver then
xthp_by_term += {vid, ver);
endif;
endif;
endfor;

refurn;
end update_tl_xi;

Griswold

procedure add_edge (t_vid, h_vid : event_id; ont ¢id : edge_id);
attrib : attribute;
h_tid ; timeline_id;
h_ver, org_ver, term_ver : version_index;
1l : Atimeline;
xt : Across_tI_data;
pred : ordering_set = new_srt_set;

begin
eid := new_edge_id();
efeid] := {t_vid, h_vid);

// Find all events which now precede V{h_vid}
i
attrib := any altrib of V[t_vid] with altrib.atype = timeline;
tl ;= T{attrib.value_tltid];
term_ver = attrib.value_tlLver;
for each xt in UM xtdata do
if xthorg tid = UALd then // handled below (avoid invalid org ref)
org_ver = xthp_by_term(s, term_ver)h.org;
if org_ver > 0 then /l everything comes after V; ignore it
pred += (xt".org_tid, org_ver);
endif;
endif;
endfor;
/ Check if the tail is V[0]. If so, we want only the head’s timelines, not
/f all the timelines in the graph (that would be quite incfficient, though not
/f actually wrong).
i
if t_vid # 0 then
for each attrib of V[t_vid] with attrib.atype = timeline do

pred += attrib.value_tl; // overwrites previous ordering, if any
endfor;
else
for each attrib of V{h_vid] with atirib.atype = timcline do
pred += attrib.value_tl; // overwrites previous ordering, if any
endfor;
endif;
// Update V[h_vid] to follow prcd
1/

for each attrib of VIh_vid] with altrib.atype = timeline do
tl := T[attrib.value_tl.tid];
h_ver := attrib.value_tl.ver;
update_tl_xt(il, h_ver, h_vid, prcd);

endfor;

Determining Interior Vertices of Graph Intervals 51

/f Update all events which V[h_vid] precedes to follow pred
i
attrib := any attrib of V[h_vid] with attrib.atype = timeline;
h_tid := attrib.value_tLtid;
h_ver := attrib.valuc_tl.ver;
for each tl of T with tIMtid # h_tid do
xt .= tl~xtdata[h_tid];
if xt # null andif xt*.p_by_org(2, h_ver) # null then
term_ver = xth.p_by_org(z, h_verAterm;
update_t1_xt{{l, term_ver, id_null, prcd);
endif;
endfor;

refurn;
end add_edge;

function list_interval (s_vid, e_vid : event_id) : list of event_id;
Vlist : srt_set of event_id := new_srt_set; / avoid duplicates
mid_e_sct : ordering_set := new_srt_set;
altrib : altribute;
ord : ordering;
s_tid : timeline_id;
t; Atimeline;
Xt: Across_tl_data;
s_ver, e_ver, mid_e_ver : version_index;
mid_s, path : AMl_path;

begin
/i Find the latest event before V[e_vid] on each timeline with which V[e_vid] is
// ordered.
i

attrib = any atrib of V[e_vid] with atirib.atype = timeline;
tl := T[attrib.value_tl.tid];
e_ver := attrib.value_ul.ver;
for each xt of t17.xtdata do
if xthorg tid = tlntid then
mid_e_ver = xth.p_by_term(%, e_venh.org;
else // this will lead to putting V[e_vid] in Vlist
mid_e_ver = ¢_ver;
endif;
if mid_e_ver > 0 then
mid_e_set += (x1M.org_tid, mid_e_ver);
endif;
endfor;

52 Griswold

i Add all events afier V[s_vid] and before V[e_vid] to VIst, doing one timeline
// at a time between the first event after V[s_vid] and the latest event before V[e_vid]
// (stored in mid_e_set).
/f
attrib = any attrib ¢f V{[s_vid] with attrib.atype = timeline;
s tid = attrib.value_tl.tid;
s_ver ;= aftrib.value_tlLver;
for each ord of mid_e_set do
1 := Tlord.tid};
Xt := t.xtdatals_tid];
if xt # null then
if xtrorg tid = tAtid then
mid_s = xth.p_by_org(z, s_ver);
if mid_s = null andif mid_sAterm € ord.ver then
Xt ;= tihxtdata[dA.tid];
for each path of xtM.p_by_term
with pathMterm e [mid_sAterm, ord.ver] do
Vlist += pathA.vid;
endfor;
endif;
else J// V[s_vid] is on this timeline
if s_ver £ ord.ver then
for each path of xtMp_by_term
with path™term e [s_ver, ord.ver] do
Vlist += path/M.vid;
endfor;
endif;
endif;
endif;
endfor;

return srt_set_to_list(Vlist);
end list_interval;

Determining Interior Vertices of Graph Intervals 53

APPENDIX 7.4 WAVEFRONT METHOD ALGORITHM

The following data structures and algorithms detail the Wavefront Method of interval

detection as presenied in this report.

types
next_edge = (edge_link, event_link);

wy_event = record
atlrib : list of attribute;
chr : set of characleristic;
out : edge id;

end wv_cvent;

wv_edge = record
case link : next_edge of
edge_link : (next : edge_id;)
event_link : (tail : event_id;);
endcase;
head : event_id;
end wv_edge;

// Versions of origin and terminus of a path {from one timeline to another,
/s
tl_path = record
org : version_index;
term : version_index;
end t1_path;

wv_ordering = record
vid : event_id;
iid ; timeline_id;
ver ¢ version_index;
end wv_ordering;

globals
V : array [0..V_limit] of wv_event; // any O(1) access time structure
e : array [O..c_limil] of wv_edge; /{ any O(1) access time structure

procedure add_event (new_V : event, out vid : event_id);
begin

vid = new_event_id();

Vivid] = {new_V.attrib, new_V.chr, id_null};

return;
end add_event;

54 Griswold

procedure update_tl_xt(tl : Mimeline; ver ; version_index;
pred © ordering_set);
xt: Across_tl_data;
ord : ordering;
path : AMl_path;
term_ver : version_index;

begin
// Find first event with characteristic e or t at or afier ver
i
path = tlAxtdata[tlAtid]A p_by_term(>, ver);
if path = null then
term_ver := ver;
else
term_ver = pathAterm;
endif;
for each ord of pred do
xt ;= 1M xtdataford.tid];

if xt = null then /' new xt, possibly with self
tihxtdata += (ord.tid, new_srt_set, new_srt_set);
xt = tirxtdataford.tid];

/{ Vg is on each timeline

i

if ord.tid # tIrdid then /{ Dbetween tl and ancther timeline
I make it before first {1 event, which might no longer be version 0
J/ if garbage collection has taken place
i

palh := tlAxtdataltiftid]rp_by_term(z, 1);
xthp_by_org += {0, pathrterm);
xtAp_by_term += {0, pathr.termy;

else // Wl with self
xthp_by_org += (0, 1);
xthp_by_term += {0, 1};

endif;

endif;

if xthp_by_term(s, ver)h.org < ord.ver then
xthp_by_org += {ord.ver, term_ver); 1 overwriles previous
xthp_by_term += {ord.ver, term_ver); // ordering, if any

// Remove out-of-order information
i
path = xtAp_by_term(>, term_ver);
while path = null andif path®org < ord.ver do
xthp_by_org = path;
XA p_by_term -= path;
path = xtAp_by_term(>, term_ver);
endwhile;
endif;
endfor;
return;
end update_tl_xt;

Determining Interior Vertices of Graph Intervals

procedure add_edge (t_vid, h_vid : eveni_id; out eid : edge_id);
attrib : attribute;
h_tid : timeline_id
h_ver, org_ver, term_ver : version_index;
I ; Mimeling;
xt : Across_tldata;
prcd :© ordering_set := new_srt_sef;

begin
// Add edge to e and to list out of V[t_vid]
i
eid = new_edge_id();
if V[t_vid].out = id_null then
efeid] := {event_link, t_vid, h_vid);
else
e[eid] := {edge_link, V[t_vid].out, h_vid);
endif;
V[t_vid}.out := eid;

// Find all events which now precede V[h_vid]
{f
attrib := any aitrib of V{t_vid] with attrib.atype = limeline;
tl := Tlattrib.value_tLtid];
term_ver := attrib.value_tl.ver;
for each xt in 11~ xtdata do
org_ver ;= xthp_by_term(s, term_ventorg;

if org_ver > 0 then // everything comes after V; ignore it
pred += (xtMorg_tid, org_ver);
endif;
endfor;
/i Check if the tail is V[0]. If so, we want only the head’s timelines, not

// all the timelines in the graph (that would be quite inefficient, though not
/{ actually wrong).
1
if t_vid # 0 then
for each attrib of V{t_vid] with autrib.atype = timeline do

prcd += attrib.value_tl; /{ overwrites previous ordering, if any
endfor;
else
for each attrib of V[h_vid] with atirib.atype = timeline do
pred += attrib.value_tl; // overwrites previous ordering, if any
endfor;

endif;

56

Griswold

// Update V[h_vid] to follow pred

{

for each autrib of V[h_vid] with attrib.atype = timeline do
tl ;= T[attrib.value_tl.tid];
h_ver ;= attrib.value_tl.ver;
update_tl_xt(tl, h_ver, pred);

endfor;

// Update all events which V[h_vid] precedes to follow prcd
/
attrib = any attrib of V[h_vid] with atirib.atype = timeline;
h_tid .= atirib,value_tl.tid;
h_ver := attrib.value_tl.ver;
for each il of T do
xt = tlr xtdata[b_tid];
if xt # null andif xt*.p_by_org(z, h_ver) = null then
term_ver := xthp_by_org(2, h_ver).term
update_tl_xi(d, term_ver, pred);
endif’;
endfor;

return;

end add_edge;

Determining Interior Vertices of Graph Intervals 57

procedure rmchar (rm_vid : event_id; chr : set of characteristic);

attrib :
path :
xt:
t:

attribute;
Ml_path;
Across_tl_data;
Atimeline;

rm_ver, next_ver : version_index;

begin

Virm_vid].chr -= chr;

/4

If this operation made V[rm_vid] have neither the e nor t characteristic, remove

/it from all xt structures,

i

if not (e e V[rm_vidl.chr or t € V[m_vid].chr) then
for each attriby of VIm_vid] with attrib.atype = timeline do

11 .= Tlattrib.value_tl.1id];
rm_ver := attrib.value_tl.ver;

/f Get the next event alter V[rm_vid]

i/

Xt ;= tlMxtdata[tlAtid]

next_ver = xt*p_by_term(>, m_ver)Mterm;

1 Remove V[rm_vid] and propagate its path information, if any, to the
// next event,
#

for each xt of 1~ xtdata do
path = xt\p_by_term[rm_ver];
if path # null then
xth.p_by_org -= path®;
xtAp_by_term -= path®;

// If a path to the next event already exists, it is from a
/{ higher-version origin than that to V[rm_vid] and should not be
// overwriticn.
i
if xt*.p_by_termfncxt_ver] = null then
xtAp_by_org += (path”.org, next_ver);
Xt p_by_term += {path/.org, next_ver;
endif;
endif;
endfor;

endfor;

endif;

refurn;
end machar;

Griswold

function list_interval (s_vid, c_vid : event_id) : list of event_id;
Vlist : srt_set of event_id := new_srt_set; /{ avoid duplicates
attrib : attribute;
doing, next : wv_ordering;
out : edge_id;
il: “Mimeline;
xt: Across_tl_data;
h_vid : event_id;
s_tid, h_tid : timeline_id;
s_ver, e_ver, h_ver, done_ver ; version_index;
todo_set : srt_set of wv_ordering key tid := new_srt_set;
done_set : ordering_set := new_sri_set;

begin
/! Find the latest event before V[e_vid] on each timeline with which V[e_vid] is
J// ordered.
i

attrib = gny attrib of V[e_vid] with attrib.atype = timeline;
I := Tlattrib.value_tl.tid];
e_ver .= attrib.value_tl.ver;
for each xt of 1. xtdata do
if xtrorg_tid = tiAtid then
done_ver := xthp_by_term(s, e_ven)Morg;
else // this will lead to putting V[e_vid] in Vlist
done_ver := e_ver;
endif;
if done_ver > O then
done_sct += (xtM.org tid, done_ver + 1)
endif;
endfor;

/i Add all events after V[s_vid] and before V[e_vid] to Vlist, doing one segment
// of a timeline at a time.
{/
atirib := any autrib of V{s_vid] with attrib.atype = timeline;
s_tid = attrib.value_tlLtid;
s_ver := attrib.value_tl.ver;
if done_setfs_tid] # null andif done_set[s_tid]*.ver > s_ver then
todo_set += (s_vid, s_tid, s_ver);

while todo_set not empty do
doing := any element of todo_set;
todo_set -= doing;
done_ver := done_set[doing.tid]Aver; // record when to end this pass
done_sct += {doing.tid, doing.ver); // do not repeat this pass

Determining Interior Vertices of Graph Intervals

while doing.ver < done_ver do
Vlist += doing.vid;
// Find where V[doing.vid] lcads.
i
next := (id_null, doing.tid, done_ver); // in case end of timeline
for each out of V[doing.vid] until E[out].link = event_link do
h_vid := E[out].head;
for each attrib of V[h_vid] with altrib.atype = timeline do
h_tid = attrib.value_tLiid;
h_ver ;= attrib.value_tl.ver;

if doing.tid = h_tid then
next := ¢h_vid, h_tid, h_ver);
else
if done_set[h_tid] = null andif done_set[h_tid]*.ver > h_ver
andif (todo_set[h_tid] = null
orelse todo_set{h_tid]* .ver > h_ver) then
todo_set += <(h_vid, h_tid, h_ver);
endif;
endif;
endfor;
endfor;
doing := next;
endwhile;
endwhile;
endif;

return srt_set_to_list(Vlist);
end list_interval;

60

Griswold

Determining Interior Vertices of Graph Intervals 61,

10.

8. BIBLIOGRAPHY

Bates, Peter Charles, and Wileden, Jack C. "EDL: A basis for distributed system
debugging tools." Procecdings of the 15th Hawaii International Conference on Systems
Science (January 1982): 86-93.

Chandy, K. M., and Lamport, Leslie. "Distributed Snapshots: Determining Global States
of Distributed Systems," ACM Transactions on Computer Systems Vol. 3, no. 1 (February
1985): 63-75.

Harter, Paul K.; Heimbigner, Dennis M.; and King, Roger. "IDD: An Interactive
Distributed Debugger.” The Sth International Conference on Distributed Computing
Systems (May 1985): 498-506.

Italiano, Giuseppe F. "Amortized efficiency of a path retrieval data structure.” Theoretical
Computer Science Vol. 48 (1986): 273-281.

Italiano, Giuseppe F. "Finding paths and deleting edges in directed acyclic graphs.”
Information Processing Letiers Vol. 28 (30 May 1988): 5-11.

Lamport, Leslie. "Time, Clocks, and the Ordering of Events in a Distributed System."
Communications of the ACM Vol. 21, no. 7 (July 1978): 558-65.

Lamport, Leslic. "’Sometime’ is Sometimes '"NOT Never’: On the Temporal Logic of
Programs." Conference Record of the 7th Annual ACM Symposium on the Principles Of
Programming Languages (January 1980): 174-85.

LeBlanc, Thomas J., and Mcllor-Crummey, John M. "Debugging Programs with Instant
Replay." IEEE Transactions on Computers Vol. C-36, no. 4 (April 1987): 471-81.

LeBlanc, Thomas JI., and Miller, Barton P, ed. "Summary of ACM Workshop on Parallel
and Distributed Debugging." Operating Systems Review Vol, 22, no, 4 (October 1988):
7-19.

Tarjan, Robert Endre. Data Structurcs and Network Algorithms. Philadelphia, PA: Scciety
For Industrial And Applied Mathematics, 1983.

	Determine Interior Vertices of Graph Intervals
	Recommended Citation

	tmp.1456444019.pdf.yvUOO

