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ABSTRACT OF THE DISSERTATION
Identification of Novel Fluid Biomarkers for Alzheimer’'s Disease
by
Rebecca June Craig-Schapiro
Doctor of Philosophy in Biology and Biomedical Sciences
Neurosciences Program
Washington University in St. Louis, 2012

Dr. David M. Holtzman, Chairperson

Clinicopathological studies suggest that Alzheimer’s disease (AD) pathology
begins to appear ~10-20 years before the resulting cognitive impairment draws medical
attention. Biomarkers that can detect AD pathology in its early stages and predict
dementia onset and progression would, therefore, be invaluable for patient care and
efficient clinical trial design. To discover such biomarkers, we measured AD-associated
changes in the cerebrospinal fluid (CSF) using an unbiased proteomics approach (two-
dimensional difference gel electrophoresis with liquid chromatography tandem mass
spectrometry). From this, we identified 47 proteins that differed in abundance between
cognitively normal (Clinical Dementia Rating [CDR] 0) and mildly demented (CDR 1)
subjects. To validate these findings, we measured a subset of the identified candidate
biomarkers by enzyme linked immunosorbent assay (ELISA); promising candidates in
this discovery cohort (N=47) were further evaluated by ELISA in a larger validation CSF
cohort (N=292) that contained an additional very mildly demented (CDR 0.5) group.
Levels of four novel biomarkers were significantly altered in AD, and Receiver-operating
characteristic (ROC) analyses using a stepwise logistic regression model identified
optimal panels containing these markers that distinguished CDR 0 from CDR>0 (tau,

YKL-40, NCAM) and CDR 1 from CDR<1 (tau, chromogranin-A, carnosinase-l). Plasma



levels of the most promising marker, YKL-40, were also found to be increased in CDR
0.5 and 1 groups and to correlate with CSF levels. Importantly, the CSF YKL-40/ApB42
ratio predicted risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) as
well as the best CSF biomarkers identified to date, tau/AB42 and p-tau181/AB42.
Additionally, YKL-40 immunoreactivity was observed within astrocytes near a subset of
amyloid plaques, implicating YKL-40 in the neuroinflammatory response to AR
deposition. Utilizing an alternative, targeted proteomics approach to identify novel
biomarkers, 333 CSF samples were evaluated for levels of 190 analytes using a
multiplexed Luminex platform. The mean concentrations of 37 analytes were found to
differ between CDR 0 and CDR>0 participants. ROC and statistical machine learning
algorithms identified novel biomarker panels that improved upon the ability of the current
best biomarkers to discriminate very mildly demented from cognitively normal
participants, and identified a novel biomarker, Calbindin, with significant prognostic

potential.
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Introduction and Perspective

Portions of this chapter were published in the August 2009 issue of Neurobiology of
Disease.



Chapter 1. Introduction and Perspective

Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder estimated
to affect 5.3 million Americans (1). Although the course of AD can be heterogeneous
among individuals, there are many common symptoms. The initial symptom is often a
problem remembering recently learned information, which is frequently mistaken or
dismissed as a normal effect of aging. Disease progression is characterized by a gradual
decline in memory, orientation, comprehension, and judgment, and in advanced stages,
a loss of control over bodily functions. The mean life expectancy following diagnosis is
approximately 5 years (2, 3). For most individuals with “late-onset” AD, symptoms first
begin after age 65; however, the onset is generally gradual and insidious, leading to a
delay between symptom onset and diagnosis of approximately 3 years (4). It has been
reported that episodic memory deficits may be detectable by clinical testing up to six
years before diagnosis (5). While the majority of AD cases are late-onset, an estimated
200,000 Americans have “early-onset” AD, when symptoms present before age 65 (1).
Many of these cases are familial (FAD), caused by autosomal dominant mutations in one
of three genes: amyloid precursor protein (APP) gene on chromosome 21 (6), presenilin
1 (PSENT) gene on chromosome 14 (7), and presenilin 2 (PSENZ2) gene on
chromosome 1 (8). Studies of the proteins encoded by these genes has furthered our
understanding of the molecular mechanisms contributing to AD. A hallmark
neuropathological feature of AD is the accumulation of extracellular amyloid plaques
consisting primarily of amyloid-beta (AB). AB is a 38-43 amino acid peptide that is
generated by sequential cleavage of APP by B-secretase and y-secretase; PSENT and
PSENZ2 encode components of the y-secretase enzyme complex (9). PSENT mutations

account for the majority of FAD cases, and most PSEN1, PSEN2, and APP mutations
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are thought to affect APP processing such that AR production, and specifically the more
amyloidogenic form, AB42, is increased. Additionally, individuals with Down Syndrome
(trisomy 21) have three copies of APP, resulting in increased AB production and early-
onset AD neuropathology (10). These findings, as well as evidence that AB is the
primary component of plaques and that cerebrospinal fluid (CSF) AB42 levels are altered
in AD, point to a critical role for AB in AD pathogenesis. The ‘amyloid cascade
hypothesis’ holds that increased AB production and accumulation, whether early in life
from genetic causes or later in life in sporadic cases, leads to Af oligomerization,
aggregation, and deposition in plaques, eventually resulting in synaptic and neuronal
injury, glial activation, and ultimately dementia (11). This hypothesis has garnered much
support, however, additional work is needed to fill in missing details and perceived
weaknesses in the theory, in particular, improved understanding of the relationship
between amyloid and neurofibrillary tangle pathology and neurodegeneration (discussed
more in depth below), and the identity of the specific AR species that drives

neurotoxicity.

For late-onset AD, the chromosome 19 gene encoding apolipoprotein E (APOE)
has been the most extensively investigated, and until recently the only consistently
replicated, genetic risk factor for AD (12). ApoE has three isoforms, €2, €3, and €4, that
differ by cysteine-arginine interchanges at position 112 and 158 (13). The ApoE €4 allele
has been shown to be a risk factor for late-onset familial and sporadic AD (14), as well
as early-onset sporadic cases (15, 16). This risk is dose dependent, with homozygotes
at increased risk of disease and demonstrating earlier age of onset than heterozygotes
or those not carrying an €4 allele (12, 14, 17). Conversely, it appears that the €2 allele
may have a protective effect against the development of late-onset AD (18, 19), and

confer a reduced risk of cognitive decline among cognitively normal elderly (20-22).
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Furthermore, €2 carriers may have less amyloid and tangle pathology (23-26) than non-
carriers. Additionally, ApoE has been found to bind AB and to co-localize with cerebral
amyloid deposits in AD and cerebral amyloid angiopathy (CAA) (27, 28). Although the
ApoE ¢4 allele is a well validated risk factor for late-onset AD, there are likely other
genetic or environmental factors involved in determining risk, as €4 is neither necessary
nor sufficient for disease. Indeed, recent genome wide association studies utilizing many
thousands of individuals have identified apolipoprotein J (CLU) and phosphatidylinositol
binding clathrin assembly protein (PICALM) (29-31) as late-onset AD susceptibility loci.
The mechanisms underlying these associations remain to be determined.

In addition to amyloid plaques, a second neuropathological hallmark of AD is the
accumulation of intracellular neurofibrillary tangles composed primarily of
hyperphosphorylated tau (p-tau). Abnormal tau deposition is seen in other conditions as
well, including frontotemporal dementia (FTD), progressive supranuclear palsy (PSP),
and corticobasal degeneration (CBD), and while no AD-causing mutations have been
identified in the tau gene (MAPT), tau mutations have been linked with FTD with
parkinsonism, suggesting that tau dysfunction can cause neurodegeneration (32, 33).
The tau protein is known to bind and stabilize microtubules, and the abnormal
phosphorylation of tau that occurs in AD is thought to lead to microtubule disassembly,
disruption of intracellular trafficking, and ultimately neuronal dysfunction (34-36).
Additionally, abnormal tau aggregates into insoluble paired helical flaments (PHFs)
which are hypothesized to further compromise neuronal function by occluding axons and
dendrites (35). Whether phosphorylation of tau drives PHF formation (by preventing tau
binding to microtubules and thus increasing the availability of unbound tau to aggregate)
or whether the converse is true, is unknown. Additionally, understanding of the
regulation of tau phosphorylation is largely incomplete. Importantly, the mechanistic
relationships between AR, tau, and brain degeneration remain unclear. According to the

4
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amyloid cascade hypothesis, AB is the primary driver of AD pathogenesis, with tau
hyperphosphorylation and neurofibrillary tangle formation downstream events.
Unresolved details of the amyloid cascade hypothesis, along with the relatively
disappointing results of clinical trials with amyloid-reducing therapeutic agents, have, in
part, lent support to a ‘tau hypothesis’ of AD neurodegeneration; additionally, proponents
point to mutations in tau that can cause FTD with parkinsonism, a dementing illness
lacking amyloid pathology, as demonstrating that tau dysregulation alone is sufficient to
cause neurodegenerative disease. Some in the field have proposed a “dual pathway”
model postulating that Ap and tau pathologies are two distinct processes linked by a
common upstream driver, rather than representing a linear cascade (37). What this
upstream driver or the signaling pathways between amyloid and tau pathologies may be
are unknown. A ‘modified’ amyloid cascade hypothesis such that A accumulation
initiates the disease process, but a secondary event (i.e. tau dysfunction) is necessary
for subsequent neurodegeneration is also possible, and is supported by a number of
animal studies of AD (38-41).

The pattern and chronology of plaque and tangle formation have been well
studied, and their associations with clinical symptoms have been investigated in an
attempt to clarify these unresolved relationships. While various findings have
strengthened one hypothesized model of AD neurodegeneration or another, no model
has yet been conclusively proven. For example, individuals with APP mutations
eventually develop plaques and tangles, appearing to suggest that AR dysregulation
causes or leads to tangle formation. Studies by Braak and Braak have suggested that
neurofibrillary tangles, initially appearing in the limbic system and later spreading to the
cortex, appear before plaques, which first appear in the frontal cortex and later spread to
other regions (42, 43). However, subsequent clinicopathologic studies have strongly
suggested that amyloid plaques, followed by neurofibrillary tangles, begin to accumulate

5
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~10-15 years prior to cognitive decline, and that synaptic and neuronal loss best
correlate with symptom onset (44, 45). A number of studies have shown that dementia
severity better correlates with the number of neurofibrillary tangles than the amount of
plague deposition (46-50), leading some to hypothesize that neurofibrillary tangles are
the key factor in the development of dementing symptoms. More recently, however, it
has been suggested that neurofibrillary tangles and amyloid plaques are not the
neurotoxic agents, but rather the final pathological hallmarks of the disease. Instead,
oligomers of AB (51-53) or tau forms intermediate between normally phosphorylated
protein and hyperphosphorylated fibrils are thought to represent the neurotoxic species
(54). It should also be noted that AD pathophysiology does not consist solely of plaque
and tangle formation, and that microglia and reactive astrocytes can be found
surrounding plaques (55), implicating neuroinflammatory processes in the pathogenesis
of AD as well. Whether neuroinflammation is a cause or result of AD is still a matter of
debate. The interplay between amyloid, tau, and neurodegeneration is an area that
clearly warrants further study, as the mechanisms of neurodegeneration in AD will have
important consequences on the time course of biomarker changes that reflect these

pathologies, as well as ultimately the choice of therapeutic targets.

The need for biomarkers of AD

Reports that the number of AD deaths increased by 46% from 2000-2006, and
that the number of affected is projected to nearly triple by 2050 have made the ability to
accurately and reliably diagnose AD in its earliest stages a public health priority (56).
Currently, the diagnosis of ‘possible’ or ‘probable’ AD is based on clinical assessment

using the criteria of the National Institute of Neurological and Communicative Diseases



Chapter 1. Introduction and Perspective

and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)
and Diagnostic and Statistical Manual of Mental Disorders, 4th ed (DSM-IV-TR) (57),
with definitive diagnosis only at autopsy, or rarely, by biopsy. Although the antemortem
clinical diagnosis of AD is quite accurate in specialized centers, diagnostic accuracy is
much lower in non-specialized settings, and, in particular, sensitivity at milder disease
stages can be limited (58-63). Thus, measures to increase diagnostic sensitivity and
specificity will be extremely important for improving early detection, and consequently
early intervention. Biomarkers may be useful in this regard, facilitating a more accurate
and earlier diagnosis, which is particularly difficult given that there are no signs or
symptoms unique to AD. The Biomarkers Definitions Working Group of the National
Institutes of Health defines a biomarker as “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention” (64).

Importantly, biomarkers may allow for the identification of individuals with
preclinical AD (those with AD neuropathology but do not yet display clinical symptoms)
(44, 45, 65-67). Identifying individuals in the preclinical stage is particularly critical, as
this group will likely have the greatest chance of benefit from targeted therapeutics.
Biomarkers may be instrumental not only in the diagnosis of disease cases, but may aid
in following disease progression and response to treatment as well. In these capacities,
biomarkers will be crucial for the design and evaluation of clinical trials of disease-
modifying therapies by helping to reduce sample size, reduce trial duration, and evaluate
treatment efficacy. Finally, biomarkers are key in advancing our understanding of the
pathophysiology of AD, which in turn has important implications for patient diagnosis and
treatment.

Recognizing the potential utility of biomarkers and the significant scientific
advances in the AD field over the last two decades, recent efforts have aimed at revising

7
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the current diagnostic criteria, which, although widely used, have not been modified
since their publication in 1984. This effort, led by scientific workgroups convened by the
National Institute on Aging and the Alzheimer’s Association, seeks to update diagnostic
criteria for “Alzheimer’s dementia (AD)” and “mild cognitive impairment (MCI),” and
proposes a new diagnostic category of “preclinical AD.” As such, the proposed
guidelines for dementia diagnosis are largely unchanged (cognitive and behavioral
symptoms with a progressive decline), with amendments refining “probable” and
“possible” AD categories to reflect advances in our understanding of other dementing
illnesses, the genetics of AD, and biomarkers. To increase the confidence of AD
diagnosis, biomarkers such as CSF AB42, tau, p-tau, and imaging measures of brain
amyloid, metabolism, and atrophy (discussed more in depth in the relevant sections
below) are included in the proposed criteria; however, as there are not yet standardized
practices to measure and evaluate these biomarkers, and formal cut-offs have not been
identified, biomarkers will not be required for clinical diagnosis, and are mainly intended
for use in research settings.

The proposal also includes revised criteria for the diagnosis of MCI, or the
symptomatic pre-dementia phase of AD. This stage is analogous to a Clinical Dementia
Rating (CDR) of 0.5 in the CDR scale developed at Washington University to rate
cognitive and functional performance (68-70). Using informant-based clinical
assessment, this scale rates individuals as cognitively normal (CDR 0), very mildly
impaired (CDR 0.5), mildly demented (CDR 1), moderately demented (CDR 2), or
severely demented (CDR 3) (68). The overall CDR score is based on scores in six
functional domains (memory, orientation, judgment and problem solving, community
affairs, home and hobbies, and personal care); these six subscores can be combined
into a “sum of boxes” score. Under the newly proposed diagnostic criteria (similar to the
old criteria),the clinical diagnosis of MCI is based on impairment in one or more cognitive

8
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domains, but an absence of dementia, and a maintenance of independence of function
in daily life. The domains in which the cognitive impairment can occur have been
widened to include, in addition to memory, executive functioning, language, visuospatial
skills, and attentional control. Additionally, as with the proposed AD criteria, biomarker
measurements are also included to increase the confidence of diagnosis, although they
are intended primarily for research purposes. A major focus of MCI research has been
the identification of individuals who will progress to AD from those who will not, as this
stage allows for an opportunity for medical intervention to perhaps prevent or postpone
disease progression. Annual conversion rates from MCI to AD are approximately 15% in
clinic groups, with somewhat lower rates reported for community-recruited groups (71);
this difference has been attributed to an increased baseline functional impairment of
clinic versus community MCI groups, as measured by the CDR sum of boxes, which
most strongly associated with future progression to AD (71). As many here at
Washington University use the CDR scale, it is important to note that some individuals
receiving a CDR of 0.5 are insufficiently impaired to meet MCI criteria, and can be
considered “pre-MCI” (70). A study of these pre-MCI individuals reported a median
survival time of ~8 years, approximately twice as long as that of the CDR 0.5 individuals
that met MCI criteria (~4 years, comparable to annual rates of progression of MCl to AD
of ~15%) (70). These pre-MCI and MCI subjects were followed longitudinally, and 91%
and 90%, respectively, of those that came to autopsy had a neuropathological diagnosis
of AD. These results, along with others, strongly suggest that MCI usually represents
early-stage AD, and that an even earlier stage of AD, pre-MCI, can be identified (69, 70).
Criteria for a new diagnostic category, preclinical AD, are also among the
changes recommended by the working group. These preclinical criteria are intended for
use only in research settings at this point, to determine the measures that will best
define the preclinical stage. This ‘pre-symptomatic stage’ of AD, during which amyloid

9
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plagues and neurofibrillary tangles being to appear, is estimated to be ~10-15 years in
duration (44, 66, 72), thus providing a lengthy and crucial period for intervention with
disease modifying therapies. Although AD was first described approximately 100 years
ago, there are currently no treatments to prevent or delay disease onset or halt disease
progression. While over 100 compounds have been tested as potential therapeutics,
only five medications are Food and Drug Administration-approved for AD, all of which
provide only modest symptomatic benefit of short duration (memantine, donepezil,
galantamine, rivastigmine, and tacrine) (73). The largely disappointing clinical trial
results are thought to be due, in part, to the focus of many trials on already symptomatic
study subjects. It is likely that therapies applied earlier in the disease process
(preclinically) will have the greatest opportunity for disease modification, and indeed,
animal studies of AD have suggested that therapies may have limited benefit once
neurodegeneration has begun. The hope is that the application of these new preclinical
criteria, which rely on biomarkers for diagnosis, will facilitate characterization of the
sequences of events and the biological players of preclinical AD, and allow for the
development of standardized biomarkers panels or biomarker modalities to enhance our
ability to identify preclinical individuals and predict clinical course. Ultimately these
findings will have important consequences on drug development and the enroliment and
end-point monitoring of clinical trials.

The road to biomarker discovery has not been a simple one, however. The
identification of reliable biomarkers has been hindered by the fact that patient
classification relies on clinical diagnosis which is not always accurate, especially at early
stages of the disease. Requiring postmortem confirmation of disease diagnosis has
been impractical for biomarker studies. Moreover, control groups are likely to contain
individuals with preclinical AD, resulting in the observation of overlapping biomarkers
values between clinical groups. Limited patient sample size and lack of adjustment for

10
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covariates such as age, gender, ethnicity, and APOE genotype have restricted the
application of results from some studies to the general population. In addition, protocols
for sample collection, preparation, and analysis often vary widely between labs, thus
contributing additional methodological variability. Adopting standardized protocols for
clinical assessment, sample analysis, and statistical evaluation would help overcome
many of these shortcomings. Because of these concerns regarding biomarker discovery,
it is essential that new candidate biomarkers are validated in independent cohorts by
multiple groups, a practice not uniformly applied, and even when carried out, often fails
to replicate initial findings. Given the multifactorial nature of the disease, it is unlikely that
a single biomarker will meet the needs for clinical diagnosis, while a panel of biomarkers
may offer improved sensitivity, specificity, and positive and negative predictive values.
These limitations not withstanding, many potential biomarkers have been identified, the
most promising of which are discussed below. Furthermore, to appropriately evaluate a
newly discovered candidate biomarker, its performance must be considered in the
context of existing biomarkers, and, more broadly, the current standing of the AD

biomarker field.

The State of the AD Biomarker Field: Fluid Biomarkers

The postmortem pathological diagnosis of an AD brain relies on the presence of
amyloid plaques and neurofibrillary tangles. These amyloid plaques are composed of
AB, a proteolytic fragment of APP. If altered proteolytic processing of APP underlies AD,
then measures of APP or its derivatives may serve as diagnostic markers. Indeed, early
studies (74-76) observed increased levels of APP and/or its secreted forms in the CSF
of AD individuals. However, later studies have reported decreased (77-79) or unchanged
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(80) levels. Several studies of AD patients have shown reduced CSF levels of sAPPq,
the soluble product released following a-secretase cleavage of APP (79, 81, 82). These
inconsistent findings between studies do not currently support a consensus of CSF APP

being a useful biomarker for AD.

AB

APP is expressed in all tissues and undergoes cleavage by B-secretase to
release the ectodomain (sAPP-8) and subsequent cleavage by y-secretase to release
AB peptides of 38-43 amino acids (83). Because AB42 is the dominant component of the
plagues seen in AD (84), many groups have investigated the use of Ap42, as well as the
other AP species, as a diagnostic tool. The amount of total AR in CSF is not well
correlated with the diagnosis of AD (85-87). The majority of studies have demonstrated a
decrease in CSF ApB42 in AD patients (88-112); however, there have been a few reports
of increased (113) or unchanged (114, 115) CSF AB42. These discrepancies are likely
due to differing methods for assaying samples and varying sizes and selection criteria of
patient groups, as well as the inclusion of subjects at different points along the disease
spectrum.

A number of studies have investigated CSF AB42 levels in conjunction with those
of CSF tau, the primary protein component of neurofibrillary tangles. In perhaps the most
comprehensive analysis of AB42 and tau levels to date, Sunderland et al. (2003)
assayed 131 AD patients and 72 controls, and performed a meta-analysis of 17 studies
of CSF AB42 levels and 34 studies of CSF tau levels. In their own patient cohort, they
observed significantly lower mean levels of CSF AB42 and higher mean levels of CSF
tau in AD compared to controls, but with significant overlap between the clinical groups.
The results of the meta-analysis mimicked their findings, with an effect size, or difference
in levels between AD and controls, of 1.53 for AB42 and 1.31 for tau. Several interesting
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correlations were observed, with tau correlating with the age of the controls but not of
the AD individuals, with gender for the AD group only, and with CDR and Mini Mental
State Examination (MMSE) scores, but not duration of illness. While the meta-analysis
did not reveal correlations between CSF AB42 and any score of dementia severity, age,
or duration of illness, there have been studies reporting a negative correlation between
AB42 and dementia severity (91, 113, 116) and APOE €4 dosage (91).

In addition to distinguishing AD from non-demented subjects, decreased levels of
CSF AB42 have been shown to be predictive of future dementia in MCI patients (109,
117-124). Additionally, significantly decreased CSF Ap42 has been observed in patients
with very mild dementia (MMSE score of 25-28 or CDR 0.5) (99, 107).

In the evaluation of a candidate biomarker, it is important to consider whether the
particular marker makes sense in the context of the disease pathophysiology. Mouse
models of AD have shown that CSF AP levels are related to the amount of plaque in the
brain (125), and human studies have shown that increased neocortical and hippocampal
plague burden and cerebral amyloid angiopathy is highly associated with decreased
AB42 in postmortem CSF (126). These finding were furthered by Fagan and colleagues
(107, 127) who reported an inverse relationship between CSF AB42 and in vivo plaque
load using the amyloid imaging agent Pittsburgh Compound B (PIB) in living humans,
supporting the authors’ claim that plaques can function as “sinks” or “traps” of AB42, thus
decreasing the amount of AB42 clearing the brain to the CSF. Other groups have
likewise proposed this hypothesis (88, 116). Recent studies have shown that low CSF
AB42 levels can identify PIB-positive individuals with excellent sensitivity and specificity
(128).

One possible limitation of AB42 for AD diagnosis is that decreased CSF levels
have also been reported in FTD (93, 96, 129), Creutzfeldt-Jakob disease (CJD) (95, 105,
110), Gerstmann-Straussler-Scheinker syndrome (105), amyotrophic lateral sclerosis
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(102), multiple system atrophy (130), and dementia with Lewy bodies (DLB) (97, 105,
112). While a number of studies have shown that CSF AB40 is unchanged in AD (98,
106, 107, 115, 131), the ratio of AB42 to ApR40, rather than either marker alone, has
been shown to better distinguish AD subjects from controls or other dementias and to
identify incipient AD in MCI subjects (92, 106, 122, 131). The ratios of other markers
such as tau/AB (114), tau/AB42 (104, 107, 114, 132), and p-tau181/AB42 (107, 133)
have similarly been used, and the CSF tau/AB42 ratio has been shown to predict future
dementia in non-demented cohorts (107, 132).

While CSF is thought to more closely reflect what is happening in the brain, CSF
is not as routinely obtained as blood. However, there has been little consensus among
studies as to the relationship between plasma/serum AR and AD. Although increased
plasma AB40 (98) and decreased plasma ApR42 (134) have been reported in AD, most
groups have reported no difference in plasma/serum AR levels between sporadic AD and
controls (AB40 and AB42 (135-137), AB42 (98, 112)). In contrast, plasma AB42 has been
found to be increased (137, 138) and AB40 decreased (137) in individuals with
autosomal dominant, disease-causing mutations (FAD). Based on the findings of an
early study showing that plasma AB42 is elevated in presymptomatic FAD mutation
carriers (138), a recent study investigated the levels of AB42 in asymptomatic first-
degree relatives of individuals with sporadic AD (139). As compared to controls, plasma
AB42 was found to be elevated in these subjects, irrespective of APOE €4 or FAD
mutations. The difference between the Ap42 levels of the sporadic AD relatives and the
controls was small, however (14.210.6 and 12.320.7 pM, respectively). It will be
interesting to see in longitudinal studies whether these relatives with increased plasma
AB42 will go on to develop AD dementia.

Interestingly, several longitudinal studies have found that baseline plasma Ap42
levels were significantly higher in those cognitively normal individuals who later
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progressed to AD as compared to those who did not (140, 141). Additionally, AB42
levels were observed to decrease over time in these individuals, suggesting that while
plasma AB42 does not appear to be a suitable diagnostic marker for AD, it may be a
marker for progression (141). Similarly, a case-cohort study originating from the
prospective Rotterdam study found that increased plasma AB40 at baseline was
associated with an increased risk of AD as well as vascular dementia (VD) (142).

In a recent study however, any association between plasma AB40 or AB42 levels
and progression from a normal to demented state was lost after adjusting for covariates
such as age, cognitive status, cerebrovascular disease, APOE genotype, and kidney
function (143). A longitudinal study of MCI patients similarly found no correlation
between plasma AR species and progression to AD (124). This lack of association
between plasma AB and AD is further supported by studies demonstrating that plasma
AB40 and AB42 levels do not reflect brain AB or plaque levels (127, 144) and that there
is no correlation between plasma and CSF AB42 or AR40 (112, 145).

A number of anti-amyloid clinical trials have aimed at slowing or stopping the
progression of AD by decreasing the production of AB42, increasing its clearance, or
reducing its aggregation. Based on animal findings that immunization with AB42 resulted
in a reduction of brain amyloid plaques (146-148), a phase Il clinical trial (AN1792, Elan
Pharmaceuticals) was undertaken to study its effects in humans. While this trial was cut
short because of an increased incidence of meningoencephalitis (6%), a six-year follow
up of a subset of the patients from the earlier phase | trial revealed a positive effect on
AB load and plaque removal, but no effect on cognitive function, clinical outcomes, or
long-term survival (149). These findings would appear to cast doubt on the role of AB as
a culprit in the cognitive decline characteristic of AD. The lack of correlation between
amyloid load and dementia severity in clinicopathologic studies would also support this
assertion (46, 48). It may be, however, that the immunizations were given too late in the
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disease course, as the subjects already had mild to moderate dementia at the time of
treatment. Studies have shown that brain accumulation of AB probably begins 10-20
years before clinical manifestations of the disease (150) and can be imaged with a
variety of compounds that can be visualized by PET (see below), and that this
accumulation may drive the further accumulation of tau aggregates within vulnerable
neurons (151). If the phase | demented patients already had substantial tau aggregation,
it may be that the reduction of A could not reverse the tau-associated pathology and
consequent cognitive impairment once the disease had progressed too far. However,
this does not mean that A is not promising as a candidate biomarker of AD. A repertoire
of biomarkers that can serve as surrogates of underlying disease pathology would be
crucial to our diagnosing of AD and following its progression and response to treatment.
While it has been shown that CSF AB42 reflects the presence of brain amyloid, the
results from the AB42 immunization trial suggests that tau is likely a better marker to
follow for clinical disease progression and clinical outcomes. However, since AB load in
the brain does not correlate with dementia severity (46, 48), and some degree of tangle
pathology can exist in older individuals in the absence of dementia (152-154), accurate
diagnosis and prognosis of AD will most likely require a combination of these pathology-

related biomarkers.

Tau and p-tau

The other pathognomic feature of AD brains, neurofibrillary tangles, is composed
primarily of tau, a microtubule-associated protein which has similarly been extensively
investigated as a biomarker. Many studies have demonstrated that CSF tau is increased
in AD patients (88, 91, 92, 96, 97, 100-102, 107, 114, 131, 155-181).

In AD, tau undergoes abnormal hyperphosphorylation at many sites, and enzyme
linked immunosorbent assays (ELISAs) have been developed to recognize various
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phosphorylated epitopes such as threonine 181 and 231 and serine 199, 235, 396, and
404 (119). As a result of this aberrant phosphorylation, tau is likely unable to bind and
stabilize microtubules, possibly leading to axon degeneration (34). Thus, one possibility
is that the increase in tau seen in AD CSF is due to the release of tau from degenerating
neurons and its subsequent diffusion into the CSF (34). With the disturbance of the tau-
microtubule binding equilibrium, there is a resulting increase in the cytosolic unbound
levels of tau as well, and consequently an increased likelihood of protein misfolding and
subsequent aggregation as neuropil threads in dystrophic neurites and as neurofibrillary
tangles (182). While these observations suggest possible reasons for the increases in
CSF tau level in AD, it is still unclear what is really happening in the human disease
process.

Given that increased levels of CSF tau can be seen in other neurodegenerative
disorders, in particular FTD, stroke, corticobasal degeneration, and CJD (179), studies
have begun looking specifically at phosphorylated forms of tau as diagnostic markers for
AD. Hampel et al., (2004) compared the accuracy of CSF p-tau231, p-tau181, and p-
tau199 in discriminating AD from FTD, LBD, VD, and normal controls. They found that all
three proteins were significantly increased in AD as compared to the other groups;
however, the discriminative power of each differed, with p-tau231 providing for the
greatest discrimination between AD and non-AD, AD and controls, and AD and FTD
(183). The combined use of the three p-tau markers did not provide further
discrimination. Several studies have similarly shown that p-tau231 and p-tau199 can
discriminate AD from other neurological disorders with sensitivities and specificities in
the 80%-90% range (179, 184, 185).

While AB42 and tau are specific markers of AD pathogenesis, a recent study has
investigated the utility of a marker of neuronal death in the diagnosis of AD (186).
Visinin-like protein 1 (VLP-1), a cytoplasmic calcium sensor protein that is thought to
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leak from damaged or dying neurons, was found to be significantly increased in the CSF
of AD subjects compared to controls (186). Although VLP-1 is not specific to AD and
indeed was originally studied in ischemic stroke subjects (187), the combined use of
AB42, tau, p-tau, and VLP-1 resulted in increased diagnostic accuracy over any marker
individually. Several studies have shown little correlation between amyloid plaque load
and dementia severity (46, 48), thus VLP-1, in representing the end-result of the disease
process, may provide a better reflection of the degree of dementia. In this preliminary
study, only VLP-1 and none of the other markers were found to correlate with MMSE
(186). Clearly additional study of this molecule as a potential biomarker of cell death in

AD is warranted.

Isoprostanes

Growing evidence suggests that oxidative damage may be important in the
pathogenesis of AD. Isoprostanes, the end-products of lipid peroxidation, and in
particular F2-isoprostanes, have been found to be increased in the frontal and temporal
cortex of AD compared to control and FTD brains, suggesting a specificity for AD (188,
189). Studies have shown F2-isoprostanes to be increased in postmortem ventricular
CSF obtained from autopsy-verified AD cases (188, 190, 191), as well as in antemortem
CSF from individuals diagnosed with AD dementia (192-196). CSF F2-isoprostanes
have been shown to correlate with brain weight, degree of cortical atrophy, and Braak
stage (191), as well as with dementia severity (193). Several longitudinal studies have
shown that over one and two year periods, CSF F2-isoprostanes increase in MCl and
AD patients (197, 198), and that baseline measurements could distinguish individuals
that progress to MCI or AD from stable patients with 100% accuracy (199). Moreover,
the addition of isoprostane measurements to conventional memory testing or to
quantitative MRI measurements resulted in increased diagnostic and prognostic power
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(199), although confirmation awaits investigation in a larger number of subjects.
Preclinical FAD mutation carriers have been shown to have increased CSF F2-
isoprostanes as well, indicating this marker may be suitable for both sporadic and
familial AD (200). Using a combined analysis of CSF AB42, tau, and F2-isoprostanes,
Montine et al., (2001) were able to diagnose AD with a sensitivity of 84% and specificity
of 89%, while Grossman et al., (2005) were able to classify 88.5% of patients in
accordance with their clinical or autopsy diagnosis using this same panel of markers
(194, 196).

Results have been less consistent in regard to peripheral F2-isoprostanes, with
reports of increased (193, 195) or unchanged (201-203) plasma levels in AD subjects.
Similarly, urinary F2-isoprostanes have been reported to be increased (193, 195, 204) or
unchanged (203, 205). The discrepancies concerning peripheral F2-isoprostanes may
be due to differences in patient selection criteria between studies, as smoking and other
conditions associated with oxidative stress, such as cardiovascular disease and

diabetes, can significantly alter isoprostane levels (206).

Inflammatory markers

In addition to the classical pathological features of amyloid plaques and
neurofibrillary tangles, AD brains display characteristics of inflammatory processes
(207). One well investigated potential inflammatory marker of AD is as-antichymotrypsin
(ACT), a serine protease inhibitor that is a colocalized with AB in senile/neuritic plaques
(208-210). Early studies of ACT yielded inconsistent results, however, with reports of
increased ACT in AD serum (211-214) or CSF (211, 215), along with reports of
unchanged ACT in AD serum (216-218) or CSF (216-218). Four recent studies,
however, have attempted to put this controversy to rest by measuring ACT levels in
large groups of subjects or by including additional controls. In a study of 196 subjects,
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Licastro et al., (2000) observed increased plasma ACT in AD, and found that levels
inversely correlated with cognitive performance (219). DeKosky et al., (2003) carried out
a large study of 516 individuals, with AD subjects stratified by dementia severity, and
similarly found that plasma and CSF ACT were increased, and that levels were
negatively correlated with dementia severity. This study excluded those with systemic
inflammatory diseases or those taking anti-inflammatory medications in an attempt to
achieve as homogeneous a study population as possible. Additionally, plasma ACT was
significantly increased in women compared to men, perhaps further explaining why
previous studies which did not control for gender yielded inconsistent results (220). In a
700+ subject case-cohort study within the Rotterdam Study, Engelhart et al., (2004)
found that increased plasma ACT was associated with increased risk of dementia, AD,
and VD (221). A proteomics approach, using gel electrophoresis and mass
spectrometry, identified CSF ACT as being increased in AD versus control subjects, and
findings were confirmed by ELISA validation in an independent sample set (222). CSF
ACT has also been found to be elevated in DLB, suggesting that it may be ineffective in
distinguishing between these types of dementia (223).

The results of cytokine studies in AD have been highly inconsistent between
groups. For example, in AD patients, CSF interleukin-6 (IL-6) has been found to be
increased (224-227), decreased (228), or unchanged (218, 229-233). Plasma/serum IL-6
results have similarly been mixed (218, 219, 233-236). Additionally, whereas one report
was able to discriminate VD from AD by CSF IL-6 levels (237), another found no
difference in levels between VD and AD (225). These inconsistencies have been
mimicked in studies of IL-6 receptor, Gp130, IL-1B, TNF-a, and Hp 2-1 (238). Moreover,
most studies have either found no concentration differences or have yielded inconsistent
results for additional cytokines such as IL-4, IL-8, IL-10, interferon-gamma, complement
C1q, and TGF-B (206). These discrepancies between studies are likely due to several
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significant obstacles to the evaluation of cytokines in AD. Cytokine concentration can
vary considerably over time, and can be influenced by an individual's genetic
background, comorbid systemic inflammatory processes, usage of anti-inflammatory
drugs, and exposure to environmental factors (206). Moreover, many studies use
subjects with neurological diseases other than AD, such as Parkinson’s disease (PD) or

amyotrophic lateral sclerosis, as “controls.”

Proteomics

A newer field of biomarker studies is moving away from the traditional approach
of investigating levels of a single, or several, candidate biomarkers that have been
implicated in the pathogenesis of AD, and is instead focusing on nonbiased profiling of
human fluids in an attempt to discover novel biomarkers. As a result of improved mass
spectrometry (MS) techniques, proteomics has emerged as a powerful tool for biomarker
discovery. General methods in proteomic studies typically include protein separation by
two-dimensional gel electrophoresis (2-DE), liquid chromatography (LC), or protein-chip
arrays, followed by MS or tandem MS and database searches to determine protein
identity. Recent efforts to characterize the human CSF proteome have identified 2,594
proteins (239) and 563 peptide forms and 798 proteins (240) using a combination of
approaches. By comparing the differences in protein expression levels between AD and
control CSF samples, a number of studies have identified potential diagnostic markers
(222, 241-246). Additional studies have carried out similar analyses in samples with
postmortem neuropathological confirmation of AD (247, 248), with one study analyzing
both antemortem and postmortem CSF from the same individuals (249).

An important concern of proteomics-based discovery, however, is that often
candidate markers identified by a study are not confirmed in independent studies or by
other more quantitative methods, indicating the present need for large validation studies
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and corroboration by alternative techniques. While some candidates have been
identified in multiple studies, and furthermore have been implicated in AD pathogenesis,
they unfortunately have not been consistently reported as increased or decreased in AD
CSF. For example, B2-microglobulin, the constant component of the class | major
histocompatibility complex, has been identified as increased (241, 243, 245, 250, 251)
and decreased (242) in AD CSF. Although the function of this protein is still unclear, it
has been shown to accumulate as amyloid fibrils in dialysis patients (252, 253).
Similarly, transthyretin has been reported to be increased (241, 245) and decreased
(242, 248) in AD CSF. Transthyretin is thought to play a role in AD pathogenesis, as it
can form complexes with AB40 and AB42, thus preventing AR aggregation (254-256) and
has been shown to negatively correlate with senile plaque abundance (257). Such
inconsistencies in proteomics studies, and more broadly in biomarker studies in general,
may be due in part to post-translational modifications, such as limited proteolysis in vivo,
which are often overlooked.

Many studies have formulated panels of proteins for the discrimination of AD
from normal cohorts. For example, using 2-DE and tandem MS, Finehout et al., (2006)
formulated a panel of 23 protein spots that differentiated AD from non-AD with a
sensitivity and specificity of 94% and a predictive error rate of 5.9%; the application of
this same panel to a validation cohort yielded only slightly lower values (258). Moreover,
panels derived from proteomic studies have been shown to differentiate AD, PD, and
DBL with high accuracy (246) and to distinguish MCI individuals who progress to AD
from those who do not (250). Interestingly, the fragment signature of four CSF AR
species (Ap1-16, AB1-33, AB1-39, and AB1-42) as analyzed by Matrix-Assisted Laser
Desorption/lonization Time-of-Flight MS (MALDI-TOF-MS) has been shown to
discriminate AD with a sensitivity of 89%, specificity of 83%, and accuracy of 86% (259).
Finally, the few proteomic studies of serum (260, 261) and of plasma (262, 263) have
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similarly yielded markers to distinguish AD from controls, as well as to predict
progression from MCI to AD (263), although verification in independent cohorts is

needed.

Imaging Biomarkers

Neuroimaging techniques have increasingly been used to detect brain changes
associated with AD, and thus have potential as markers of disease progression,
monitors of therapeutic effects, and predictors of future dementia prior to symptoms.
Because the work in this thesis is focused on the search for novel fluid biomarkers of
AD, only a cursory overview of imaging biomarkers will be provided. In brief, in MCI and
AD subjects, computed tomography (CT) (264, 265) and magnetic resonance imaging
(MRI) (266-274) have been used to examine atrophy and rates of atrophy of various
brain regions, functional MRI (fMRI) has been used to examine abnormalities in brain
activation (275-285), and single photon emission computed tomography (SPECT) (264,
286-298) and arterial spin-labeling perfusion MR imaging (ASL-MRI) (299-301) have
been used to study cerebral perfusion defects. Additionally, positron emission
tomography (PET) has been employed in a number of AD studies to examine regional
cerebral metabolism using "®F-2-deoxy-2-fluoro-D-glucose (CMRglc using FDG-PET)

(302-310).

While currently definitive diagnosis of AD relies on the presence of amyloid
plagues and neurofibrillary tangles at autopsy, recent studies have aimed at developing
compounds for the in vivo imaging of AD pathology. These imaging markers would allow
for earlier diagnosis, as AD pathology precedes the onset of dementia symptoms by
many years, and for the monitoring of disease progression and treatment efficacy.

Promising results have been reported using PET and SPECT ligands for microglial
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activation ([''C](R)-PK11195 (311, 312) and ['®F] FE-DAA1106 (313, 314)). Over the last
decade there has been intense interest in PET ligands for brain amyloid, with a
proliferation of new tracers in development or clinical trials, such as ''C-SB-13 (315) and
"C-BF-227 (316). The most widely studied amyloid imaging agent, and the one used in
our studies, is ''C-labelled Pittsburgh compound B, or PIB, (2-[4’-(methylamino)phenyl]-
6-hydrobenzothiazole) (317). In AD, PIB retention is increased in the frontal, parietal,
temporal, and occipital cortices and striatum, and studies have consistently shown that
nearly all patients diagnosed with Alzheimer’s dementia test PIB-positive (318-321).
Additionally, the difference in ligand binding in AD versus controls is significantly more
robust with PIB than with another commonly used amyloid agent, FDDNP (318, 322-
324). PIB binding correlates well with rates of cerebral atrophy in AD (325) and with
reductions in CSF AB42 (107, 127, 326). PIB retention is also inversely correlated with
cerebral glucose metabolism as determined by FDG-PET (318), and is strongly related
to the degree of memory impairment in MCI and AD (321, 326, 327). Interestingly, a
longitudinal study of early AD patients taking cholinesterase inhibitors and/or the NMDA
antagonist memantine, found that PIB retention did not change over a two-year follow-
up, although cortical rCMRGIc decreased (327). This suggests that amyloid burden
reaches a maximum early in the course of the disease, and indeed, several studies have
found that certain MCI individuals have PIB uptake in the AD range (320, 321, 328, 329).
Importantly, studies have also shown PIB uptake in a proportion of non-demented
elderly controls (127, 320, 321, 329-332), consistent with the known presence of AD
pathology in a subset of cognitively normal elders as reported in clinicopathological
studies (66, 150). These subjects presumably have preclinical AD, but longitudinal
studies are needed to test this hypothesis before we can conclude that brain amyloid
has adequate sensitivity and specificity to be considered a viable biomarker of AD. PIB
retention is not observed in frontotemporal lobar degeneration (FTLD) (319), or more
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specifically in its two syndromes FTD (320) and semantic dementia (333). PIB imaging
has also been shown to detect cerebral amyloid angiopathy (334, 335).

Although as of 2008 PIB had been used in over 40 centers and 3000 individuals
world-wide (336), the 20 minute half-life of ''C has restricted its use to centers with an
on-site or near-by cyclotron. For this reason, recent efforts have focused on the
development of tracers labeled with 8F. which has a half-life of 110 minutes, facilitating
wider use in research and clinical centers. The first ®F labeled tracer, ['*FJFDDNP (324,
337-339), has quickly been followed up by the development at least nine other agents,
including "8F-BAY94-9172 (340), "®F-GE-067 (341), "®F-3"-F-PIB (342), and, the
particularly promising '®F-AV-45. Currently in FDA phase Il clinical trials, '®F-AV-45 has
shown favorable brain uptake and amyloid imaging properties (343-345). As detailed
above, the great wealth of information on imaging with "'C-PIB suggest that it may be
suitable for confirming the diagnosis of AD in symptomatic cases as well as for
identifying individuals in the pre-symptomatic (preclinical) stage of the disease. It is
likely, however, that in the future, more than one amyloid imaging agent will be
commonly used, and the goal of the many "®F studies currently underway is to find a
tracer with diagnostic potential similar to that of PIB. No imaging agent selective for tau
aggregates has yet been developed, and such a discovery would be a major contribution

to the field.

Conclusions

The urgent need for biomarkers is reflected by the growing number of studies
aimed at investigating biomarker candidates for AD. Additionally, the biomarker field has
experienced a renewed level of enthusiasm due to better reagent availability and novel

methods for the assessment of a variety of fluid and imaging measures. Apart from brain
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biopsy or brain catheterization, the collection of CSF and blood is the most direct and
convenient approach to studying the biochemical changes that occur in the brain. Thus,
these fluids, and in particular CSF because of its direct contact with the extracellular
space of the brain, have been considered attractive sources for potential AD biomarkers.
Indeed, the biomarkers showing the greatest promise to date for use in AD diagnosis
and prognosis are CSF AB42, tau, and p-tau. CSF AB42 and tau have proved
particularly promising as potential predictors of cognitive decline in individuals with very
mild cognitive impairment, as well as future dementia in non-demented cohorts. Further,
low levels of CSF AB42 are an excellent marker for the presence of neocortical amyloid
deposition, in the presence or absence of dementia. Whether brain amyloid invariably
leads to subsequent dementia in AD is currently being studied. Even for these promising
biomarkers, however, there is substantial overlap in levels between AD and control
groups, and specificity against other dementing conditions is not perfect. Consequently,
there remains a need for supplemental biomarkers to improve diagnostic accuracy. More
rigorous investigation of fluid markers of inflammation, oxidative damage, and neuronal
death is clearly warranted. Plasma and serum analytes have been notoriously difficult to
interrogate, with most studies yielding inconsistent results. Improved techniques have
lead to the emergence of the field of proteomics as a powerful tool for biomarker
discovery; however, an important concern of proteomics-based discovery is that
candidate markers are often not confirmed in independent cohorts or by other
quantitative methods, indicating the present need for large validation studies and
corroboration by alternative techniques. Additionally, most proteomics studies, and the
majority of biomarker studies in general, have compared AD subjects to non-demented
controls (or controls with other neurological conditions), thus identifying biomarkers with
diagnostic potential, but not necessarily prognostic potential. Moreover, of the studies
aimed at discovering prognostic biomarkers, most have focused on the search for
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markers predictive of progression from MCI to AD. Increased efforts should be placed on
identifying markers predictive of the progression from cognitive normalcy or preclinical
stages to AD, as emerging therapies will best preserve cognitive function if at-risk
individuals are identified in these earlier stages. These studies will require large, well-
characterized, longitudinally followed cohorts of study participants, which are not readily
available for evaluation at most institutions. The development of imaging agents for the
detection of AD pathologies (amyloid, tangles, activated microglia) has propelled the
imaging field forward, with PIB-PET imaging emerging as a particularly promising
modality. Given the multifactorial nature of the disease, it is unlikely that a single
biomarker will meet the needs for clinical diagnosis, while a panel of biomarkers and
multiple biomarker modalities, especially combinations of fluid and imaging measures,
may offer improved sensitivity, specificity, and positive and negative predictive values.
Biomarkers may be useful in the more immediate future in clinical trial design and
enroliment, allowing for the enrichment of study populations for characteristics of
interest, thereby helping to reduce sample size, trial duration, and ultimately cost.
Finally, newly identified candidate biomarkers, regardless of whether they outperform
existing biomarkers, may advance our understanding of the pathophysiology of the

disease, which in turn may inform new therapeutic targets.

27



Chapter 1. Introduction and Perspective

T CSF tau and phosphorylated tau

Brain atrophy (CT/MRI)

Regional hypometabolism (fluorodeoxyglucose PET)

Altered brain activation (fMRI)

Microgliosis (for example PK11195 PET)

Inflammation/oxidative stress

Brain amyloid (for example PIB PET)

1 CSF A4,

Genetic predisposition (for example SNPs, APOE allele and so on)

Biomarkers

Neuronal integrity

Max

Amyloid plaques

Neurofibrillary tangles

Min

Non- : Non-demented
demented: (Preclinical AD)

Figure 1.1. Hypothesized relationship between the time course of changes in
various biomarkers in relation to the neuropathology and clinical changes of
Alzheimer's disease. The stages of AD (bar) are associated with the formation of
amyloid plaques (red line), the accumulation of neurofibrillary tangles (blue line), and
synaptic and neuronal loss (green line). The most promising biomarker candidates are
listed (in chronological order from bottom to top) according to the earliest stage of the
pathological process they appear to demonstrate utility. For example, genetic variations
(SNPs) may be considered biomarkers that allow the earliest possible estimation of risk,
and decreased CSF AB42 levels may provide the earliest evidence of AD pathology in

the brain.
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Abbreviations: CSF, cerebrospinal fluid; CT, computed tomography; MRI, magnetic
resonance imaging; PET, positron-emission tomography; fMRI, functional magnetic
resonance imaging; PIB, Pittsburgh compound B; SNPs, single nucleotide

polymorphisms; AD, Alzheimer’s disease; MCI, mild cognitive impairment.
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Table 1.1. Select candidate fluid and imaging biomarkers of AD

Fluid Biomarker Observations References

CSF AB42 1. Decreased in AD 1. (88-112, 346)
2. Decreased in subjects with brain 2. (107, 127)
amyloid deposition 3. (109, 117, 118, 120-124)
3. Predictive of conversion from
MCI to AD

Plasma and/or serum Ap42 1. Mostly no difference in AD 1. (98, 107, 112, 134-137)
2. Mixed results for prediction of 2. (124, 139-141, 143)
conversion from normal or MCI to 3. (137, 138)
AD
3. Increased in FAD

CSF AB40 No difference in AD (90, 98, 106, 107)

Plasma and/or serum AB40 1. Mostly no difference in AD

2. Mixed results for prediction of
conversion from normal or MCI to
AD

3. Decreased in FAD

2
3

124, 142, 143)

1,
- (137)

0
(98, 107, 135-137)
(
(

CSF Ratio of AB species 1. Discriminates AD from normals 1. (92, 106, 107, 131)
(AB40 and Ap42) 2. Predictive of conversion from 2. (122)
MCI to AD
CSF Tau Increased in AD (88, 91, 92, 96, 97, 100-102,
107, 110, 114, 131, 155-181,
346)
CSF p-tau231, p-tau181, and 1. Increased in AD 1. (107, 179, 183, 184, 347)
p-tau199 2. p-tau231 predicts conversion 2.(185)
from MCI to AD
CSF Ratio of tau species to 1. Increased in AD 1. (104, 107, 114, 133)
Ap42 2. Predictive of conversion from 2. (107, 132)
normal to MCI or AD 3. (348)
3. Predictive of conversion from
MCI to AD
CSF Isoprostanes 1. Increased in postmortem and 1. (188, 190-196)

antemortem AD CSF
2. Predictive of conversion from
normal to MCI or AD

2. (199)
3. (200)
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3. Increased in preclinical FAD
mutation carriers

Plasma Isoprostanes Results mixed, showing increase or (193, 195, 201-203)
no change in AD
Urine Isoprostanes Results mixed, showing increase or (193, 195, 203-205)
no change in AD
CSF aq-antichymotrypsin Results mixed, showing increase or (211, 215-217, 218 , 222, 349)

no change in AD

Plasma and/or serum

aq-antichymotrypsin

1. Results mixed, showing increase
or no change in AD
2. Predictive of AD risk

1. (211-214, 216-219, 349)
2. (221)

CSF

Interleukin-6

Results mixed

(218, 224-233)

Plasma

Interleukin-6

Results mixed, showing increase or
no change in AD

(218, 219, 233-236)

CSF and plasma

Various markers of

Results mixed

For reviews see (206, 238)

inflammation
Imaging Modality Observations References
CT and MRI 1. Regional atrophy in AD 1. (264, 265, 350)
2. Whole brain atrophy in AD 2. (269, 270)
3. Predictive of conversion from 3. (266-268)
MCI to AD 4. (351)
4. Predictive of conversion from
normal to MCI
fMRI 1. Altered activation in AD 1. (275-278, 283, 352)
2. Altered activation in MCI 2. (276, 277, 279-284)
FDG-PET 1. Regional hypometabolismin AD 1. (302-305)
2. Predictive of conversion from 2. (306-310)
MCI to AD
H,°O-PET Altered activation in AD (353-356)
SPECT 1. Altered regional cerebral 1. (264, 286-291)
perfusion in AD 2. (292-297)

2. Predictive of conversion from
MCI to AD

ASL-MRI and contrast-based MRI

Regional hypoperfusion in AD

(288, 299-301, 357, 358)

FDDNP-PET

Increased retention in AD and MCI

(324, 337, 339)
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brain

PIB-PET

1. Increased retention in AD brain
2. Increased retention in a subset
of cognitively normal controls

3. Detects cerebral amyloid
angiopathy

1.(318-321)
2. (127, 320, 321, 329-332)
3. (334, 335)

Other PET amyloid imaging agents: ' C-SB-13,
"C-BF-227, "®F-BAY94-9172, "®F-GE-067, "°F-
3-F-PIB, "®F-AV-45

Increased retention in AD brain

(315, 316, 340-345)

PET markers of microglial activation: [ C](R)-
PK11195 and ['*lliodo-PK11195

Increased retention in AD and MCI
brain

(311, 312)

AD, indicates clinical diagnosis of dementia believed to be Alzheimer’s disease, not necessarily autopsy confirmed AD cases.

FAD, Familial Alzheimer’s disease
MCI, mild cognitive impairment
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Summary

Background: Ideally, disease modifying therapies for Alzheimer disease (AD) will be
applied during the ‘preclinical’ stage (amyloid plaques and other pathology present with
cognition intact) before severe neuronal damage occurs, or at the first signs of cognitive
impairment. Developing and judiciously administering such therapies will require
biomarker panels that can identify early AD pathology, classify disease stage, monitor
pathological progression, and predict cognitive decline. To discover biomarkers that may
be useful in this regard, we measured AD-associated changes in the cerebrospinal fluid

(CSF) proteome.

Methods and Findings: Because low CSF AB42 has previously been shown to

correlate with amyloid deposition, we selected N=24 CSF samples from cognitively
normal controls (Clinical Dementia Rating [CDR] 0) with high AB42 concentrations and
N=24 from mild "probable AD” (CDR 1) individuals with low AB42. Samples were
subjected to two-dimensional difference-in-gel electrophoresis (2D-DIGE). Gel features
(protein spots) with intensity differences between groups were excised, trypsinized, and
subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) for protein
identification. Within 119 gel features that differed in intensity between groups, 47
proteins were identified. Eleven candidate biomarker proteins were re-evaluated by
enzyme-linked immunosorbent assays (ELISA) in the original sample set. Six of these
candidates (NrCAM, YKL-40, chromogranin A, carnosinase |, transthyretin, cystatin C)
showed differences in mean concentration between the original AD (CDR 1) and control
(CDR 0) groups, and were subsequently evaluated in a larger independent sample set
(N=292) that included CDR 0, CDR 0.5 (very mild dementia), and CDR 1 groups. CSF

AB42, tau and phospho-tau (p-tau181) concentrations were also measured. In this larger
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independent sample set, CDR 0 and CDR>0 groups showed significant differences in
mean concentrations of YKL-40, carnosinase |, tau, p-tau181 and Ap42; CDR 1 and
CDR <1 groups showed differences in carnosinase |, chromogranin A, NrCAM, tau, p-
tau181 and ApB42. Receiver-operating characteristic curve analyses using a stepwise
logistic regression model yielded optimal biomarker panels to distinguish CDR 0 from
CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A,
carnosinase |) with areas under the curve of 0.90 (0.85 - 0.94 95% confidence interval

[CI]) and 0.88 (0.81 — 0.94 Cl), respectively.

Conclusions: This study identifies 47 candidate CSF protein biomarkers for mild AD,
and, in an independent cohort, demonstrates that four of these biomarkers (NrCAM,
YKL-40, chromogranin A, carnosinase |), can improve upon the ability of CSF AB42 and
tau to define three clinical categories: cognitive normalcy (CDR 0), very mild dementia
(CDR 0.5), and mild dementia (CDR 1). Building upon findings from previous studies of
AB42 and tau (107, 121, 132), this panel of six CSF biomarkers might aid subject
categorization into six early clinicopathological stages (cognitively normal without
amyloid, cognitively normal with amyloid [‘preclinical AD’], cognitively normal at
increased risk for dementia [‘at risk’], very mild symptomatic AD, very mild symptomatic
AD at increased risk of short-term progression, and mild symptomatic AD). Use of such
a biomarker panel to guide subject enroliment might increase the efficiency of clinical
trials. Future study of these candidate CSF biomarkers will be required to evaluate their
potential for monitoring disease progression and for distinguishing AD from other

common causes of dementia.
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Introduction

Clinicopathological studies suggest that Alzheimer’s disease (AD) pathology
(amyloid plaque formation, followed by gliosis and neurofibrillary tangle formation)
begins 10-15 years before the onset of very mild dementia (43, 44). This period of
‘preclinical AD’ could provide an opportunity for disease modifying therapies to prevent
or forestall the synaptic and neuronal losses associated with cognitive impairment (65,
67, 359). However, before such interventions can be developed and judiciously
administered, accurate tools must be in place to diagnose and monitor the
pathophysiological condition of individuals with preclinical AD and very early stage AD
dementia. Clinical examination cannot detect preclinical disease or measure cellular and
molecular changes within the brain, and has limited accuracy when diagnosing the very
earliest symptomatic stages of AD. Therefore, there is an urgent need to identify
biomarkers that can do so. Because its composition is rapidly and directly influenced by
the brain, the cerebrospinal fluid (CSF) proteome represents an appealing source for
such biomarkers.

Indeed, a few CSF proteins have already shown promise as diagnostic
biomarkers for clinical AD (Dementia of the Alzheimer Type [DAT]) and even preclinical
AD. Lower mean levels of CSF AB42 and higher mean levels of tau and phosphorylated
tau can distinguish groups with DAT from cognitively normal controls (88, 346).
Unfortunately, value ranges for each biomarker show substantial overlap between
groups.

Recently, using PET imaging with Pittsburgh Compound B (PIB) to measure
brain amyloid in vivo, it has been demonstrated that low CSF AB42 can serve as an
indicator of amyloid deposition (107, 127), and that CSF tau levels correlate positively
with in vivo brain amyloid load (128, 360). Importantly, both of these associations are
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independent of clinical diagnosis (107, 128), though CSF tau does correlate with more
sensitive measures of cognition (360). These findings suggest that the overlap of
biomarker values between clinical groups may, in part, reflect “contamination” of control
groups by cognitively normal individuals with amyloid plaques and early
neurodegeneration (preclinical AD), low CSF AB42 and elevated CSF tau. Supporting
this notion, elevated ratios of tau/AB42 and p-tau181/AB42 (consistent with the presence
of amyloid plaques and neurodegeneration) have been associated with increased risk of
converting from cognitive normalcy to dementia (107, 132). Together, these findings
suggest that CSF biomarkers can describe neuropathological state and trajectory. They
also suggest that a pathological staging system based on biomarkers might be a
favorable alternative or adjunct to clinical staging for guiding treatment decisions or
designing clinical trials.

Beyond amyloid plaque formation, other features of AD pathophysiology might
also be exploited as therapeutic targets, sources of diagnostic biomarkers, or measures
of disease progression. In addition to AB42 and tau, many other candidate AD
biomarkers have been identified by either targeted or unbiased proteomics screens
(241-243, 245, 246, 250, 263, 361-365). Only a few of these studies have tested large,
well-characterized cohorts, however. Even fewer have evaluated biomarkers for their
ability to distinguish the very early stages of AD pathophysiology. Thus, there remains a
critical need for validated AD biomarkers that can properly categorize individuals by
early pathological stage; such markers may have potential for monitoring
neuropathological decline and, thereby, for evaluating response to disease-modifying
therapies.

The goal of this study, therefore, is to identify such CSF protein biomarkers for
AD using the unbiased proteomic technique of two-dimensional difference-in-gel
electrophoresis (2D-DIGE) coupled with liquid chromatography and tandem mass
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spectrometry (LC-MS/MS), and to evaluate them further in a larger independent cohort
using quantitative enzyme-linked immunosorbent assays (ELISA). Our findings suggest
that a small ensemble of novel biomarkers may be able to distinguish several stages of
cognitive decline in early AD, and improve the ability of current leading biomarkers tau

and AB42 to discriminate early symptomatic AD from cognitive normalcy.

Methods

Subject selection - Discovery cohort

Subjects (N=48), community-dwelling volunteers from University of Washington
(N=18), Oregon Health and Science University (N=11), University of Pennsylvania
(N=11), and University of California San Diego (N=8), were 51-87 years of age and in
good general health, having no other neurological, psychiatric, or major medical
diagnoses that could contribute to dementia, nor use of exclusionary medications (e.g.
anticoagulants) within 1-3 months of lumbar puncture (LP). Cognitive status was
evaluated based on criteria from the National Institute of Neurological and
Communicative Diseases and Stroke-Alzheimer’s Disease and Related Disorders
Association (57). In the morning after overnight fasting, CSF was collected in
polypropylene tubes by LP and immediately frozen at -80°C. Subjects who were
cognitively normal (CDR 0, N=24) or had mild “probable AD” (CDR 1, N=24), were
selected from a larger group of 120 samples on the basis of CSF AB42 (relatively high
and low values, respectively), and, when possible, CSF tau (relatively low and high
values, respectively) to increase the likelihood of CDR 1 subjects having and CDR 0
subjects not having AD pathology. CSF AB42 and tau levels for the discovery cohort

were all measured in a single laboratory using well-established ELISA assays (366).
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Although quantitative thresholds were not defined prior to sample selection, the lowest
CDR 0 value and the highest CDR 1 value for CSF AB42 in this discovery cohort were
609 and 361 pg/mL, respectively; ranges for CSF tau were 141-461 pg/mL for CDR 0

and 215-1965 pg/mL for CDR 1.

Subject selection - Validation cohort

Subjects (N=292), community-dwelling volunteers enrolled at the Knight
Alzheimer Disease Research Center at Washington University (WU-ADRC), were 260
years of age and met the same exclusion criteria as the discovery cohort. Cognitive
status was determined as with the discovery cohort. Subjects who were cognitively
normal (CDR 0, N=198), very mildly demented (CDR 0.5, N=65) or mildly demented
(CDR 1, N=29) at the time of LP were selected without regard to previously measured
biomarkers. Some CDR 0.5 subjects met criteria for mild cognitive impairment (MCI) and
some were more mildly impaired, or “pre-MCI” (70). All CDR 1 individuals had received a
diagnosis of DAT (demographic characteristics in Table 2.1). Apolipoprotein E (APOE)
genotypes were determined by the WU-ADRC Genetics Core. Fasted CSF was

collected, gently mixed, centrifuged, and frozen at -80°C in polypropylene tubes (107).

Multi-affinity immunodepletion of CSF

A pooled CSF sample, containing an equivalent volume from every ‘discovery’
cohort sample, was prepared as an internal standard for 2D-DIGE to facilitate the
matching of gel features, and to allow for normalization of the intensity of each gel
feature among different gels. To enrich for proteins of low-abundance prior to 2D-DIGE,
each CSF sample was depleted of six highly-abundant proteins (albumin, 1gG, IgA,
haptoglobin, transferrin, and a-1-antitrypsin) by immunoaffinity chromatography (Agilent
Technologies, Palo Alto, CA) according to the manufacturer’s instructions and as
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described previously (251). Depleted samples were then concentrated using 10 kDa
exclusion filters to retain larger molecules. As a ‘benchmark’ of immunodepletion column
performance, an aliquot of reference CSF was depleted after every group of seven
experimental chromatographic depletions. Non-depleted reference CSF, depleted CSF
and the proteins that were retained by the column were analyzed by 2D-DIGE as
previously described (222, 251); gel images obtained from all reference CSF depletion

analyses were similar (data not shown).

2D-DIGE

2D-DIGE was performed as described previously (222, 251). Briefly, CDR 0 and
CDR 1 samples were randomly paired. Fifty-micrograms of protein from each paired
sample and from an aliquot of the pooled CSF sample were labeled with one of three N-
hydroxysuccinimide cyanine dyes (Cy2, Cy3, or Cy5). The labeled proteins and 100
micrograms of unlabeled protein from each sample were mixed and equilibrated with an
immobilized pH gradient strip for isoelectric focusing (first dimension), after which the
strip was treated with reducing and alkylating solutions prior to SDS-PAGE (second
dimension). Cy2, Cy3 and Cy5-labeled images were acquired on a Typhoon 9400
scanner (GE Healthcare) at excitation/emission wavelengths of 488/520, 532/580, and

633/670 nm, respectively.

Gel image and statistical analysis

The comparative two-dimensional gel analysis was performed using an
established experimental design (367) in which the high variation between gels is
minimized by including a common, labeled pooled sample in all gels. Intra-gel feature
detection and quantification, and inter-gel matching and quantification were performed
using the Differential In-Gel Analysis (DIA) and Biological Variation Analysis (BVA)
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modules of DeCyder software v 6.5 (GE Healthcare), respectively, as described
previously (251). This process (DIA analysis) resulted in approximately 5,000 gel
features per gel image. In five gels, one sample contained significant amounts of
hemoglobin indicating possible blood contamination. Therefore, all images from gels with
these hemoglobin-containing samples were removed from further analysis. Remaining
gel images were separated into three sets: standard (pool of all samples), CDR 0 and
CDR 1. The pooled sample image with the largest number of well-resolved gel features
was chosen as a master image. Gel features in each remaining pooled sample image
were hand matched to gel features in the master image. For each gel feature that was
matched across >50% of the gels (N=764), a Student’s t-test (0¢=0.05) was performed to
determine the statistical significance of CDR 0/CDR 1 ratios, using the DeCyder EDA
(Extended Data Analysis) module. To maximize discovery rate and minimize type Il
error, no multiple test correction was applied. The image intensity data for the
statistically significant gel features (N=119) were then subjected to unsupervised

hierarchical clustering (DeCyder EDA module).

Protein/peptide identification by LC-MS/MS

Gel features with significant intensity differences were targeted by a robotic gel
sampling system (ProPic; Genomics Solutions, Ann Arbor, Ml) and transferred into 96
well plates for in-gel digestion with trypsin using a modification of a method (368)
described previously (222). Aliquots of these digests were processed for and analyzed
by LC-MS/MS using a capillary LC (Eksigent, Livermore CA) interfaced to a nano-LC-
linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometer
(nano-LC-FTMS) (369), QStar (370), or LTQ (369). The tandem spectra were searched
against the National Center for Biotechnology Information non-redundant protein
database NR (downloaded on 02-18-2007) using MASCOT, version 2.2.04 (Matrix
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Sciences, London). The database searches were constrained by allowing for trypsin
cleavage (with up to two missed cleavage sites), fixed modifications
(carbamidomethylation of Cys residues) and variable modifications (oxidation of Met
residues and N-terminal pyroglutamate formation). Protein identifications were
considered genuine if at least two peptides were matched with individual MASCOT ion
scores = 40.

Using nano-LC-MS/MS, multiple proteins were identified in the majority of
individual gel features. The frequent observation of multiple proteins in single gel
features was attributed to the sensitivity and greater peptide coverage that can be
achieved with nano-LC-MS methods as compared to, for example, MALDI-MS analysis
of peptides from gel features. Assignment of the major protein(s) from each gel feature
was achieved using quantitative proteomics from spectra counting (371). The detection
of multiple proteins within single gel features could also be attributed to artifacts and
technical issues associated with 2D gel electrophoresis: 1) incomplete resolution of
proteins by gel electrophoresis (due to similar charge and size characteristics, excessive
abundance of neighboring proteins, or artifactual streaking); 2) changes in molecular
weight associated with cyanine dye labeling, particularly for lower molecular weight
proteins; and 3) sample ‘carryover’ during robotic gel sampling or during nano-LC-

MS/MS.

Enzyme Linked Immunosorbent Assays (ELISAs) and statistical analyses

CSF samples were analyzed by ELISA in duplicate for Ap42, total tau, and
phospho-tau181 (Innotest, Innogenetics) after one freeze-thaw cycle, and in triplicate for
all other ELISAs after two freeze-thaw cycles. Samples were evaluated using
commercially available ELISAs for NrCAM (R&D Systems), YKL-40 (Quidel),
apolipoprotein E (Medical and Biological Laboratories), clusterin/apolipoprotein J
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(ALPCO Diagnostics), pigment epithelium-derived factor (PEDF)/serpin-F1 (Chemicon
International), -2 microglobulin (ALPCO Diagnostics), ceruloplasmin (Assaypro),
chromogranin A (ALPCO Diagnostics, low binding capacity manufacturing protocol),
transthyretin (Assaypro), and cystatin C (US Biological), according to manufacturer’s
instructions, with adjustments for the analysis of CSF. A sandwich ELISA was developed
for carnosinase | using goat anti-human carnosinase | antibody (2 pg/mL, R&D Systems)
for capture, rabbit anti-human carnosinase | antibody (1 pg/mL, Sigma) for detection,
goat anti-rabbit:horseradish peroxidase (1:5000, Upstate) for reporting, and TMB Super
Slow (Sigma) for color development; recombinant carnosinase | (R&D Systems) was
used as standard.

Statistical analyses were performed using commercially available software: SAS
9.2 (SAS Institute Inc, Cary, NC) for ROC/AUC calculations and logistic regression
analyses, and SPSS 18 (SPSS Inc, Chicago, IL) for all other analyses.

Comparisons between CDR 0 and CDR 1 groups of the discovery cohort (one
sample was unavailable for re-evaluation, N=47) were performed using unpaired t-test.
For the validation cohort (N=292), correlations with age and gender were evaluated
using the Spearman rho correlation coefficient (a=0.05). Chi-square analyses were
performed to evaluate need for adjustment for observed correlations. Comparisons
between the three CDR groups were performed using one-way analysis of variance
(ANOVA), with Bonferroni and LSD post-hoc tests for pair-wise group comparisons, with
the following exceptions: one-way ANOVA with Welch’s correction was applied for
markers (transthyretin) demonstrating unequal variances (Levene <.05); markers
correlating with age (tau, p-tau181, AB42, YKL-40) were evaluated by analysis of
covariance (ANCOVA) adjusting for age, followed by Bonferroni and LSD post-hoc tests.
Multiple post-hoc tests were applied in recognition of their different levels of stringency
(Bonferroni > LSD), and their non-uniform popularity among statisticians. For CDR 0 vs
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>0 comparisons and CDR 1 vs <1 comparisons, unpaired t-test was used; Welchs’
correction for unequal variances was applied for YKL-40, p-tau, tau, and AB42. For each
biomarker measured in the larger ‘validation’ cohort, the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC) were calculated for predicting
CDR 0 versus CDR>0. A stepwise logistic regression analysis was used to identify an
optimal combination of these biomarkers for this data set. These analyses were

repeated for CDR 1 vs CDR<1.

Results

Sample processing and 2D-DIGE analysis

To identify new candidate biomarkers for AD, we utilized an unbiased proteomics
approach, 2D-DIGE LC-MS/MS (222, 251), to compare the relative concentrations of
CSF proteins in individuals with mild “probable AD” (CDR 1, N=24) to those in individuals
without dementia (CDR 0, N=24). The two clinical groups were selected on the basis of
relative biomarker values for CSF AB42 and tau (see Methods), and differed somewhat
with respect to age at LP and gender (CDR 0: 64.8 + 8.8 yrs, 38% female; CDR 1: 72.8
yrs £ 7.9 yrs, 54% female). Five samples showed evidence of blood contamination by
2D-DIGE; the five gels containing these samples were excluded from subsequent image
analysis. The remaining individual sample images (N=38, from 19 gels) were aligned
using the BVA modules (see Methods).

Among the 764 gel features that were present in >50% of the gels, 119 were
found to have significant intensity differences between CDR 0 and CDR 1 groups
(Student’s t-test [a=0.05]) (Figure 2.1A). The image intensity data for these 119 gel
features were subjected to unsupervised hierarchical clustering (EDA module, DeCyder

software) and the gel features themselves were analyzed for protein composition.
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Protein identification by LC-MS/MS

LC-MS/MS identified single dominant proteins in 77 of the 119 gel features
(Table 2.2). In 30 gel features, our analyses identified two or more co-dominant proteins.
The 12 remaining gel features were not annotated from the nano-LC-MS/MS data.
Among the characterized gel features, there was considerable redundancy in protein
identifications, with some proteins appearing in multiple gel features. Such ‘redundant’
gel features, likely representing a modified form or variant of the same ‘parent’ protein,
generally migrated with some proximity on 2D-gel electrophoresis (Figure 2.1). Forty-
seven unique proteins were identified (Table 2.2). Thirteen of these unique proteins had
been identified in our previous studies (222, 251) (including chromogranin B, cystatin C,
prostaglandin H2 D-isomerase/beta trace, neuronal pentraxin receptor, gelsolin, 3-2
microglobulin, carnosinase |, angiotensinogen, apolipoprotein H, secretogranin lll, a-1-
antichymotrypsin, chitinase 3-like 1 / YKL-40, and kininogen |) and others have been
reported by other groups (243, 245, 246, 361, 363, 364). These previous reports provide
supporting evidence that this list of proteins may contain viable candidate biomarkers for

AD that are worthy of pursuit in validation experiments.

Unsupervised clustering analysis

The intensity data from the 119 gel features of interest were subjected to an
unsupervised clustering analysis to evaluate their ability to segregate the CDR 0 and
CDR 1 subjects, and to assess their collective potential as a diagnostic biomarker panel
(Figure 2.2). The ‘heatmap’ generated from this analysis appeared to segregate CDR 0
and CDR 1 individuals (indicated by green and red squares, respectively) almost
completely, with only four subjects ‘misclassified.” However, closer examination
revealed an additional layer of segregation on the basis of APOE genotype (indicated by

45



Chapter 2. Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early
Alzheimer’s Disease Using Proteomics and ELISA

‘ApoE 4+ Cluster and ‘ApoE 4 — Cluster’) which showed perfect subject segregation.
Given that the APOE-¢4 allele is a dominant genetic risk factor for AD, some clustering
of individuals by APOE genotype might be expected simply from successful segregation
of CDR 0 and CDR 1 subjects. However, we hypothesize that the apoE protein exerts a
dominant clustering influence through the markedly different electrophoretic profiles of its
different isoforms derived from APOE-£2, APOE-£3 and APOE-¢4 alleles (illustrated in
Figure 2.3). ApoE was present in 24 of the 119 gel features found to differ in intensity
between the CDR groups, and was found to be the primary protein in 12 of these gel
features. This heterogeneous electrophoretic mobility of apoE results from the inherent
charge differences of the three major apoE isoforms (-E2, -E3, -E4) and the appearance
of each isoform as an array of multiple distinct gel features caused by post-translational
modifications. These isoform-specific differences are reflected in the prominent red and
green clusters, located within the lower third of Figure 2.2 (corresponding to gel features
83-90 and 107-116), that correlate very closely with subject APOE genotypes.
Recognizing this correlation, we hypothesized that APOE genotypes were in large part
driving the clustering of subjects in Figure 2.2. To test this hypothesis, we performed a
second unsupervised clustering analysis, including only those gel features from the initial
analysis that did not contain apoE protein (Figure 2.4). Although this ‘apoE-free’
analysis segregated CDR 1 and CDR 0 groups less completely, it appropriately re-
clustered (by CDR status) several subjects (#12, 36, 37) who were aberrantly
segregated in Figure 2.2, potentially due to their APOE genotypes. Moreover, clustering
of subjects into APOE genotype subgroups in Figure 2.4 appears negligible. The
underlying benefit of this ‘apoE-free’ analysis is that it reveals the subject-clustering
potential of other gel features, which was previously obscured by the inclusion of apoE-
containing gel features. As can now be better visualized in Figure 2.4, gel features
appearing within the upper three-fourths of the heatmap appear to show greater intensity
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in CDR 1 subjects; the converse is true of gel features within the lower fourth. Itis
important to note that measurements of AB42 and tau (two proteins measured by ELISA
and not detected by 2D-DIGE) were not included in these clustering analyses; because
these subjects were selected on the basis of CSF AB42 and tau levels, such inclusion
would presumably yield perfect or near-perfect segregation by CDR status in this
‘discovery’ cohort. Therefore, this analysis reflects the potential of these candidate
biomarkers to segregate CDR 0 and CDR 1 subjects independent of any contribution
from current leading CSF biomarkers AB42 and tau. It does not address whether these

biomarker candidates might improve upon the utility of AB42 and tau, however.

Validation of candidate biomarkers by ELISA

Before evaluating a subset of these candidate biomarkers in a larger
independent sample set, we first assessed the capacity of protein-specific quantitative
ELISAs to detect significant differences between the CDR 0 and CDR 1 subject groups
of the original discovery cohort. When possible, to facilitate future reproduction of our
findings by other groups and potential translation to clinical use, we applied
commercially available ELISA kits.

Of the eleven ELISAs applied to the discovery cohort (N=47, one sample was
unavailable for validation), six (NrCAM, YKL-40, chromogranin A, carnosinase |,
transthyretin, cystatin C) showed statistically significant or near-significant differences
between CDR 0 and CDR 1 groups (Figure 2.5); five others (PEDF, -2 microglobulin,
clusterin/apod, ceruloplasmin, apoE) did not.

The six ELISAs that measured differences between the CDR 0 and CDR 1 CSF
samples of the discovery cohort were subsequently applied to a larger, independent set
of CSF samples (N=292) collected from volunteer participants studied by the WU-ADRC.
This ‘validation’ cohort included a CDR 0.5 group in addition to CDR 0 and CDR 1
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groups, allowing for biomarker assessment in the very early clinical stage of AD.
Demographic, clinical, and genetic characteristics of these subjects at time of sample
collection are presented in Table 2.1. Unlike the discovery cohort, this validation cohort
was not preselected on the basis of prior biomarker values (CSF AB42 and tau),
although assays for CSF AB42, tau, and p-tau181 were performed.

Because the age and gender compositions differed among the clinical groups of
the validation cohort, we evaluated each of the 9 biomarkers (six novel candidates,
AB42, tau, and p-tau181) for age and gender correlations in order to apply covariate
analyses appropriately. Correlating with age were: tau (r=0.318, p<0.0001), p-tau181
(r=0.2216, p<0.001), AB42 (r=-0.2334, p<0.0001) and YKL-40 (r=0.4001, p<0.001); no
biomarkers correlated with gender (p>0.05).

As shown in Figure 2.6, statistically significant differences between clinically
defined groups were measured for Ap42, tau, p-tau181, NrCAM, YKL-40, chromogranin
A, and carnosinase I; for transthyretin and cystatin C, non-significant trends were
measured. These differences appeared in three patterns: AB42 showed a pronounced
decrease from CDR 0 to CDR 0.5 and a lesser reduction from CDR 0.5 to CDR 1; tau, p-
tau 181, and YKL-40 showed increases that were equivalent in CDR 0.5 and CDR 1
relative to CDR 0; NrCAM, chromogranin A, and carnosinase | showed decreases

relative to CDR 0 only in CDR 1, and not in CDR 0.5.

Diagnostic utility of validated candidate biomarkers

To evaluate and compare the potential of the validated candidate biomarkers and
AB42, tau, and p-tau181 for identifying either very mild to mild dementia (combined CDR
0.5 and CDR 1) or mild dementia (CDR 1), ROC curves and AUCs were calculated for
each biomarker using data from the validation cohort (Figure 2.7A, B, Table 2.3A, B).
Stepwise logistic regression analyses indicated that, among the nine biomarkers under
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consideration, YKL-40, NrCAM, and tau yielded an AUC of 0.896 in discriminating
cognitive normalcy (CDR 0) from very mild to mild dementia (CDR>0) (Figure 2.7C,Table
2.3A); for discriminating mild dementia (CDR 1) from CDR<1, carnosinase |,

chromogranin A and tau yielded an AUC of 0.876 (Figure 2.7D, Table 2.3B).

Discussion

The results from the 2D-DIGE LC-MS/MS portion of this study suggest that many
of the recognized neuropathological changes of AD are represented by changes in the
CSF proteome. Most of the 47 candidate biomarker proteins identified in this study can
be placed into structural and/or functional categories (e.g. synaptic adhesion, synaptic
function, dense core synaptic vesicle proteins, inflammation/complement, protease
activity/inhibition, apolipoproteins, etc.) associated with accepted
neuropathophysiological changes in AD (Table 2.4). Unsupervised clustering analyses of
this 2D-DIGE data, performed without the influence of CSF AB42, tau, p-tau and APOE
genotype, additionally suggest that these biomarker candidates collectively show utility
for discriminating groups with and without mild DAT (Figure 2.4).

In the second phase of this study, designed to measure a subset of candidate
biomarker proteins in two independent sample sets by ELISA, four of the eleven
candidate biomarkers tested showed capacity to distinguish clinical groups. However,
seven candidate biomarkers did not show statistically significant differences between
clinical groups in either the smaller discovery cohort or the larger validation cohort.
Superficially, this ‘failure rate’ might cast doubt on the list of candidate biomarkers
identified through 2D-DIGE. However, it is important to note that 2D-DIGE is sensitive to
changes in concentrations of minor protein isoforms and post-translational modifications

that may not significantly alter the global concentrations of a ‘parent’ protein, which
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would be measured by ELISA. Therefore, it is not surprising that some of the candidate
biomarker ELISAs did not replicate the findings from 2D-DIGE. Transthyretin provides a
prime example: all of the significant gel-features ascribed to transthyretin (gel features #
20, 52, 57, 58, 60, 77, 78, 79, 84, 87, 110, 115; Table 2.2) showed unusual
electrophoretic patterns and were dwarfed by the canonical transthyretin gel features
that did not individually show statistical differences (Figure 2.1B). In fact, whereas most
of the significant transthyretin 2D-DIGE gel features were decreased in AD, the global
transthyretin levels measured by ELISA in the discovery and validation cohorts were
actually mildly increased in groups with cognitive impairment (CDR>0) relative to those
without (CDR 0) (Figures 2.5 and 2.6). To measure the sub-species of transthyretin that
were identified by 2D-DIGE as decreasing in AD will require assays that specifically
target relevant post-translational modifications and exclude other forms of transthyretin.
Similarly, other 2D-DIGE biomarker candidates may also require specifically tailored
assays for accurate, high-throughput measurement.

Nevertheless, four candidate biomarkers were successfully validated in both
cohorts, and two others showed non-significant trends by ELISA in the larger validation
cohort (Figure 2.6). This larger cohort represented three different cognitive stages:
normalcy, very mild dementia, and mild dementia (CDRO, CDR 0.5, CDR 1,
respectively), and revealed different patterns of CSF biomarker levels, vis-a-vis cognitive
status. The CSF concentration of YKL-40, an astrocytic marker of plaque-associated
neuroinflammation (372-383), is increased by the very earliest stage of clinical disease
(CDR 0.5). Transthyretin (241, 248, 384-390) and cystatin C (362, 390-394), two
proteins with neuroprotective qualities that are implicated in preventing amyloidogenesis
of AR peptide, show a similar pattern. In contrast, the concentrations of NFCAM, a
synaptic adhesion molecule (361, 395-398), chromogranin A, a dense core synaptic
vesicle protein (361, 362, 399-402), and carnosinase |, a neuronal dipeptidase
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responsible for degradation of the anti-oxidant and metal-chelating dipeptide carnosine
(403-405), do not decline until mild dementia ensues (CDR 1).

Like the current leading CSF biomarkers for AD (AB42, tau and p-tau181), all of
these biomarker candidates show ranges with substantial overlap between clinically
defined subject groups. This issue of overlapping values, common among candidate AD
CSF biomarkers reported to date, suggests that any one biomarker will be insufficient to
accurately identify early AD, and that an ensemble of complementary biomarkers will be
required to provide adequate sensitivity and specificity. Therefore, to identify an optimal
combination of these biomarkers that can distinguish the early clinical stages of AD from
cognitive normalcy, we applied stepwise logistic regression analyses to the ELISA data
from our ‘validation’ cohort (Figure 2.7, Table 2.3). These analyses suggest that four
candidate AD biomarkers (YKL-40, NrCAM, chromogranin A, carnosinase |) can improve
the ability of tau to classify individuals into CDRO, CDR 0.5 and CDR 1 groups with
appreciable accuracy.

It may appear counter-intuitive that AB42 and p-tau, which individually
discriminate very mild AD and mild AD from cognitively normal groups quite well, were
not incorporated into either ‘optimal’ biomarker panel by the stepwise linear regression
analyses. Likewise, NrCAM was included in the optimal CDR 0 vs CDR>0 biomarker
panel (AUC 0.896) even though its mean levels did not independently show a statistical
difference between CDR 0 and CDR>0 groups. In considering this outcome, it may be
worth noting that if NrCAM, transthyretin, chromogranin and cystatin C are removed from
consideration, the stepwise linear regression model for the CDR 0 vs CDR>0
comparison yields an ‘optimal’ biomarker panel that includes only tau, AB42 and
carnosinase |, with an AUC of 0.849. In this restricted analysis, the paired contribution of
AB42 and carnosinase | to tau is apparently greater than that of YKL-40. These
analyses illustrate how ‘unpredictable’ and context-dependent optimal biomarker
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combinations can be, and suggest that biomarker complementarity may be more
important to consider than each biomarkers’ independent performance, when choosing a
biomarker panel. Of course, it will be important to replicate these findings in additional
independent cohorts. It will also be important to evaluate a greater number of candidate
biomarkers in similar fashion, in order to construct a biomarker panel with even greater
accuracy.

Nevertheless, by providing proof of concept, this study outlines a scheme to
categorize the early stages of AD using CSF protein biomarkers that reflect established
features of the pathophysiological evolution of the disease (Figure 2.8). Building upon
previous findings that low CSF AB42 can identify cognitively normal individuals with
plaques (preclinical AD) (127), and that tau/AB42 and YKL-40/AB42 ratios can predict
risk of developing cognitive impairment (107, 132, 372), this minimal panel of six CSF
biomarkers (YKL-40, NrCAM, chromogranin A, carnosinase |, tau and AB42) begins to
segregate subjects into six clinicopathological categories: normal cognition without
amyloid plaques, normal cognition with amyloid plaques (preclinical AD), normal
cognition at increased risk to develop dementia (converters), very mild dementia (CDR
0.5), very mild dementia at increased risk for progression, and mild dementia (CDR 1)
(Figure 2.8).

We acknowledge that this minimal panel of biomarkers currently has insufficient
sensitivity and specificity for clinical application, particularly because it has not been fully
evaluated for its ability to discriminate AD from non-AD causes of dementia (AB42, p-
tau181, tau, and specific fragments of chromogranin A and cystatin C have shown some
ability to distinguish AD from FTLD (362, 406, 407). The incorporation of additional
biomarkers that are likely to discriminate early AD from cognitive normalcy, such as
those identified in the first phase of this study, or other biomarkers that have already
shown promise for distinguishing AD from other leading causes of dementia (e.g. agouti
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related peptide, eotaxin-3, and hepatocyte growth factor (361), complement C3a des-arg
and integral membrane protein 2B CT (362) for FTLDs; and alpha-synuclein (408), ApoH
and vitamin D binding protein (246) for Lewy body disorders), would likely improve the
panel’'s diagnostic utility. However, even in its current form, this initial panel might show
value if applied in the context of clinical trial design, wherein simple enrichment of study
populations for characteristics of interest would increase efficiency and power and
reduce duration and cost. A biomarker panel like this one might also allow clinical trials
to evaluate stage-specific responses to treatment, which may differ. Finally, because
most of these biomarkers reflect underlying pathological changes in real time, it is
appealing to speculate that these biomarkers may have additional utility for evaluating
clinically imperceptible treatment responses (as in (409)) and for monitoring

neuropathological — rather than cognitive — decline.
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Tabkle2.1. Demegraphie, ¢clinical, genotype characteristics of validation ¢cohort

Characteristic CDRO CDRO0.5 CDR1

Number of Participants 198 85 29

Gender (% Female) 63% 54% 52%
" APOE genotype, % td+ " 35% " 51% " 59%
" Mean MMSE score(SD) 28911.3) 263128  223(39)
" Mean age at LP SD. yrs 71017.3) 738168  765(6.2)
' Mean CSF AB42(SD).pg/mL  605(240)  446(230)  351(118)
" Mean CSF tau {SD), pgimL ' 3041161)  539(276)  552(263)
' Mean CSF ptau181iSD),pg/mL  55i25)  85(44)  77(38)

Abbraviations: COR, Clinical Dementia Rating; APQE, apolipoprotein E;MMSE,
Mini-M ental State Examination; LP, lumbar puncture; SD, standard deviation;
CSF, cerebrospinal fluid; AR42; ptau181, tau phosphorylated at threonine 181.
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Figure 2.1. Two-dimensional difference in gel electrophoresis (2D-DIGE) of
cerebrospinal fluid immunodepleted of six high abundance proteins.

A) Representative 2D-DIGE (grayscale) image with labeled locations of 119 gel features
that differed in intensity between CDR 0 and CDR 1 groups. Gel features are numbered
1 through 119, and relevant information about each is listed in Table 2.2. Approximate
molecular weight (in kDa) is indicated along the right border; pl ranges from 3 (left) to 11
(right) and is non-linear. B) Two-dimensional gel electrophoresis pattern of transthyretin.
The large, intense, protein spots commonly attributed to transthyretin are boxed; those
appearing in our study as differentially abundant between cognitively normal (CDR 0)
and mildly demented participants (CDR 1) are circled in red, and are partially obscured
by yellow dots (yellow dots indicate sites targeted by robotic sampling for mass

spectrometric identification of proteins).
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Table 2.2. Proteins that were identified by 2D-DIGE and LC-MS/MS to have differences in mild DAT versus non-demented control CSF

Protein

Spot | BVA | Gl number(s) Protein Change | p value #

1 4709 | 31543193 hypothetical protein LOC146556 -1.36 7.02E-04 1

2 5659 | 4502807 chromogranin B -1.31 1.18E-03 2

3 4683 | 4502101 annexin | -1.31 9.54E-04 3

4 4608 | 62089004 chromogranin B -1.24 6.49E-03
181387 cystatin C 4
134464 Secretogranin-2 5

5 4297 | 4502807 chromogranin B -1.26 0.0157

6 4545 -1.34 3.86E-03

7 4695 | 4502807 chromogranin B -1.27 0.0115

8 4044 | 4502807 chromogranin B -1.32 2.15E-03

9 1314 | 1621283 neuronal cell adhesion molecule (NrCAM) -1.22 0.0119 6

10 1320 | 1621283 neuronal cell adhesion molecule (NrCAM) -1.33 6.31E-04

11 1382 | 6651381 neuronal cell adhesion molecule (NrCAM) -1.28 9.53E-04

12 1383 | 6651381 neuronal cell adhesion molecule (NrCAM) -1.25 6.64E-03

13 4033 | 4502807 chromogranin B -1.21 0.0419

14 4191 | 4502807 chromogranin B -1.23 0.0107

15 4293 | 4502807 chromogranin B -1.33 4.64E-03
825635 calmodulin 7

16 4266 | 62089004 chromogranin B -1.22 0.0315

17 4615 -1.22 0.0188

18 4677 -1.3 9.63E-03

19 4906 | 5454032 S100 calcium binding protein A1 -1.3 1.36E-04 8
62898141 prosaposin 9
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627391 brain-associated small cell lung cancer antigen / NCAM-140 / CD56 10
17136078 VGF nerve growth factor inducible precursor 11
20 5014 | 443295 transthyretin -1.3 2.10E-03 12
21 4884 | 224917 apolipoprotein ClII -1.34 9.78E-04 13
337760 prosaposin / cerebroside sulfate activator protein
22 3423 | 39654998 Chain A, Hr1b Domain From Prk1 -1.27 0.0133 14
32171249 prostaglandin H2 D-isomerase / beta trace 15
23 3470 | 17402888 neuronal pentraxin receptor -1.25 7.23E-03 16
24 4954 | 34616 beta-2 microglobulin -1.3 4.15E-03 17
25 3436 | 32171249 prostaglandin H2 D-isomerase -1.22 0.0266
178775 proapolipoprotein 18
39654998 Chain A, Hr1b Domain From Prk1
26 3714 -1.27 0.03
27 4922 | 39654998 Chain A, Hr1b Domain From Prk1 -1.27 0.0194
28 3786 | 2072129 chromogranin A -1.38 8.96E-03 19
29 4076 | 7341255 brain acetylcholinesterase putative membrane anchor -1.25 0.0375 20
30 4111 | 62089004 chromogranin B -1.28 0.0206
31 4167 | 4502807 chromogranin B -1.29 0.0207
32 2652 | 28373309 gelsolin -1.23 0.0346 21
33 1313 | 6651381 neuronal cell adhesion molecule (NrCAM) -1.19 8.08E-03
34 1372 | 1620909 ceruloplasmin -1.19 9.00E-03 22
1483187 inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) 23
31874098 hypothetical protein (NrCAM)
6651381 neuronal cell adhesion molecule (NrCAM)
35 1387 | 68534652 neuronal cell adhesion molecule (NrCAM) -1.29 8.16E-05
1620909 ceruloplasmin
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36 4808 | 337760 prosaposin / cerebroside sulfate activator protein -1.22 0.0114

37 1319 | 68534652 neuronal cell adhesion molecule (NrCAM) -1.19 0.0198
1942284 ceruloplasmin

38 1386 | 6651381 neuronal cell adhesion molecule (NrCAM) -1.29 1.24E-03

39 1353 | 21706696 calsyntenin 1 -1.22 0.0417 24

40 1329 | 1621283 neuronal cell adhesion molecule (NrCAM) -1.22 4.61E-03

41 2456 | 5802984 UDP-GIcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1 -1.13 0.0449 25

42 2550 | 20178323 pigment epithelium-derived factor precursor (PEDF) / Serpin-F1 / EPC-1 -1.15 0.022 26

43 2125 | 21071039 carnosinase 1 -1.21 0.0245 27

44 2131 | 21071039 carnosinase 1 -1.19 0.049

45 2152 | 21071039 carnosinase 1 -1.15 0.0366

46 5614 | 21071039 carnosinase 1 -1.18 0.0109

47 2166 | 21071039 carnosinase 1 -1.21 0.0122

48 2328 | 416180 Man9-mannosidase / a1,2-mannosidase |IA -1.16 0.0464 28

49 3360 -1.15 0.045

50 3447 | 32171249 prostaglandin H2 D-isomerase / beta trace -1.19 0.0334

51 3546 | 1621283 neuronal cell adhesion molecule (NrCAM) -1.17 0.0368
32171249 prostaglandin H2 D-isomerase / beta trace

52 4745 | 443295 transthyretin -1.26 0.0181

53 3032 | 11056046 Nectin-like molecule-1/ SynCAM3 / TSLL1 -1.13 0.0472 29
4506147 protease, serine, 2 preproprotein 30

54 3718 | 39654998 Chain A, Hr1b Domain From Prk1 -1.14 0.0455
32171249 prostaglandin H2 D-isomerase / beta trace

55 4902 | 14277770 apolipoprotein C-li -1.19 0.0495 31
337760 prosaposin / cerebroside sulfate activator protein
2072129 chromogranin A
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56 3290 | 409725 carbonic anhydrase IV -1.14 0.0141 32

57 4379 | 17942890 transthyretin -1.15 0.0219
39654998 Chain A, Hr1b Domain From Prk1
34999 cadherin 2 precursor 33

58 4388 | 32171249 prostaglandin H2 D-isomerase / beta trace -1.14 0.0218
39654998 Chain A, Hr1b Domain From Prk1
443295 transthyretin

59 2192 | 21071039 carnosinase 1 -1.34 6.56E-03
532198 angiotensinogen 34
5531817 secretogranin lll 35
9665262 EGF-containing fibulin-like extracellular matrix protein 1 / Fibulin-3 36
177933 alpha-1-antichymotrypsin 37
4504893 kininogen 1 38
36573 vitronectin 39

60 5336 | 443295 transthyretin -1.17 0.0301

61 3009 | 178855 apolipoprotein J / clusterin -1.26 0.0288 40
4557325 apolipoprotein E 41
4506147 protease, serine, 2 preproprotein

62 3042 | 4557325/ 178853 | apolipoprotein E -1.21 0.047
338305 apolipoprotein J / clusterin

63 3016 | 338305 apolipoprotein J / clusterin -1.32 6.69E-05

64 3050 | 4557325/ 178853 | apolipoprotein E -1.24 5.19E-04
178855 apolipoprotein J / clusterin

65 3075 | 4557325/ 178853 | apolipoprotein E -1.42 5.59E-06
178855 apolipoprotein J / clusterin

66 3038 | 4557325/ 178853 | apolipoprotein E -1.41 2.84E-05

59




Chapter 2. Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer’s Disease Using Proteomics and

ELISA

178855 apolipoprotein J / clusterin
67 3301 | 178849 apolipoprotein E -1.4 1.29E-05
68 3182 | 4557325/ 178853 | apolipoprotein E -1.41 3.43E-04
178855 apolipoprotein J / clusterin
69 2443 | 532198 angiotensinogen -1.2 6.85E-03
70 2493 | 4503009 carboxypeptidase E precursor -1.23 6.09E-03 42
71 5621 | 532198 angiotensinogen -1.17 0.0434
72 5624 | 532198 angiotensinogen -1.22 0.0147
73 5622 | 553181 angiotensinogen -1.17 0.04
74 5625 | 532198 angiotensinogen -1.16 0.0423
75 5627 -1.22 0.0113
76 2849 | 4557325 apolipoprotein E -1.28 6.26E-03
77 5009 | 443295 transthyretin -1.24 0.0268
78 5033 | 443295 transthyretin -1.27 4.59E-03
79 5078 | 443295 transthyretin -1.2 0.0144
80 2958 | 4504067 aspartate aminotransferase 1 -1.22 8.60E-03 43
81 3657 | 32171249 prostaglandin H2 D-isomerase / beta trace -1.22 3.07E-03
82 3867 -1.28 0.0437
83 3176 | 4557325 apolipoprotein E -1.63 3.03E-04
84 3228 | 4557325 apolipoprotein E -1.4 1.39E-03
443295 transthyretin
85 3074 | 4557325/ 178853 | apolipoprotein E -2.36 4.41E-09
86 5647 | 4557325 apolipoprotein E -2.35 2.92E-07
87 3224 | 4557325/ 178853 | apolipoprotein E -2.13 6.36E-07
443295 transthyretin
88 3126 | 4557325/ 178853 | apolipoprotein E -1.93 7.55E-06
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89 5297 -1.44 0.0473
90 3083 | 4557325 apolipoprotein E -1.7 2.82E-05
91 2218 | 112911 alpha-2-macroglobulin 1.22 0.0282 44
92 2226 | 6573461 apolipoprotein H 1.27 0.0305 45
93 2252 | 112911 alpha-2-macroglobulin 1.26 0.0267
4557327 apolipoprotein H
94 3255 1.24 0.0315
95 3630 | 178775 proapolipoprotein 1.24 0.0287
32171249 prostaglandin H2 D-isomerase / beta trace
39654998 Chain A, Hr1b Domain From Prk1
96 2229 | 177933 alpha-1-antichymotrypsin 1.42 3.09E-03
97 2235 | 177933 alpha-1-antichymotrypsin 1.35 0.0388
98 2261 | 177933 alpha-1-antichymotrypsin 1.3 6.04E-03
99 2262 | 177933 alpha-1-antichymotrypsin 1.25 0.0294
100 | 2220 1.29 0.0158
101 | 3084 1.16 0.0211
102 | 3508 | 32171249 prostaglandin H2 D-isomerase / beta trace 1.22 9.21E-03
103 | 2825 | 23512215 chitinase 3-like 1/ YKL-40 / HC-gp39 1.41 0.0167 46
104 | 2863 | 4557018 chitinase 3-like 1/ YKL-40 / HC-gp39 1.5 0.0144
105 | 2846 | 29726259 chitinase 3-like 1/ YKL-40 / HC-gp39 1.46 7.88E-03
106 | 2843 | 23512215 chitinase 3-like 1/ YKL-40 / HC-gp39 1.32 0.0241
107 | 3030 | 4557325 apolipoprotein E 2.46 3.70E-05
108 | 3152 | 4557325/ 178853 | apolipoprotein E 2.39 8.73E-07
109 | 3203 | 178853 apolipoprotein E 3.23 3.13E-07
110 | 3185 | 4557325/ 178853 | apolipoprotein E 1.9 9.72E-04
443295 transthyretin
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111 | 3069 | 338305 apolipoprotein J / clusterin 1.5 6.40E-04
112 | 3079 1.64 4.47E-04
113 | 3133 | 178853 apolipoprotein E 1.49 8.66E-04
338057 apolipoprotein J / clusterin
114 | 3151 | 178853 apolipoprotein E 1.28 9.25E-03
338057 apolipoprotein J / clusterin
115 | 3249 | 4557325 apolipoprotein E 1.37 2.46E-03
178855 apolipoprotein J / clusterin
443295 transthyretin
116 | 3118 | 4557325/ 178853 | apolipoprotein E 1.64 9.96E-04
117 | 5698 | 178855 apolipoprotein J / clusterin 1.73 5.82E-04
118 | 2819 | 40737343 C4B3 2 0.038 47
119 | 3137 | 4557325 apolipoprotein E -2.5 8.52E-07

Table 2.2. Proteins that were identified by 2D-DIGE and LC-MS/MS to have differences in mild DAT versus non-demented

control CSF. Column 1, coded protein spot ID (as in Figure 2.1). Column 2, biological variation analysis (BVA) number for that

spot generated by the DeCyder software. Column 3, Gl accession number(s) assigned to the proteins identified by MASCOT.

Column 4, name of the protein identified by MASCOT. Column 5, fold change in protein abundance comparing CDR 1 with CDR 0

samples (negative values indicate decreases in abundance in CDR 1 samples compared to controls (CDR 0)). Column 6, p value of

the CDR 0 versus CDR 1 comparison (Student's t test). Column 7, consecutive numbering identifying proteins as unique.
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Figure 2.2. Unsupervised Clustering of CSF Samples by 2D-DIGE data from the 119
statistically significant gel features (Student’s t-test, a=0.05, present in >50% of images).
Five gels containing hemoglobin (N=10 samples) were excluded. Columns represent

samples; rows, numbered 1 through 119 from top to bottom, represent gel features
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depicted in Figure 2.1A. Gel feature intensity is encoded colorimetrically from red (high
in AD) to green (low in AD). CDR status of individual subjects at time of CSF collection is
encoded below by small green and orange squares; CDR 0 and CDR 1 clusters are
indicated below by green and orange bars, respectively. APOE-¢4 allele status of
individuals and groups, alike, is indicated by black (possessing one or two APOE-¢4
alleles) or blue (possessing no APOE-¢4 alleles). Rows representing gel features

containing ApoE protein are indicated along the lower right border.
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Figure 2.3. ApoE protein isoforms appear in different gel features on 2D-DIGE.

Overlays of fluorescent 2D-DIGE images from gels representing CSF from two

individuals with homozygosity for APOE-¢2 (green) or APOE-¢€3 (red) (center, upper

image) and for APOE-¢3 (green) or APOE-¢4 (red) (center, lower image) illustrate the

heterogeneity of signal distribution by isoelectric point and molecular weight among

ApoE protein isoforms derived from different alleles. Signal intensities of individual CSF

samples, grouped by genotype (2/2, 3/3 and 4/4 represent homozygotes; 2/3, 3/4

represent heterozygotes) is indicated for six ApoE gel features, illustrating that gel

features 1 and 2 represent ApoE2; gel feature 3 represents multiple forms; gel feature 4

represents ApoE3; and gel features 5 and 6, ApoE4.
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Figure 2.4. Unsupervised Clustering of CSF Samples by 2D-DIGE data, excluding
gel features containing ApoE protein; all other statistically significant gel features
(Student’s T-test a=0.05, present in >50% of images) are retained. As in Figure 2.2, five
gels containing hemoglobin (N=10 samples) were excluded. Columns represent
samples, numbered by position in Figure 2.2; rows represent gel features, numbered by
position in Figure 2.2, with ApoE-containing features removed. Gel feature intensity is
encoded colorimetrically from red (high in AD) to green (low in AD); white indicates
absent data. CDR status of subjects at time of CSF collection is encoded below, by
small green and orange squares. APOE-¢4 status is indicated in blue or black.

Clustering pattern of samples relative to Figure 2.2 is indicated below.
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Figure 2.5. Quantitative ELISAs for 11 biomarker candidates were applied to the
discovery cohort of CSF samples (one sample was unavailable for analysis, N=47).
Each assay was performed in triplicate, with one mean value reported for each sample.
The six assays represented in the upper row (NrCAM, YKL-40, chromogranin A,
carnosinase |, transthyretin, and cystatin C) measured promising differences between

these relatively small CDR 0 and CDR 1 groups (Student’s T-test).
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Figure 2.6. ELISAs for six biomarker candidates and established biomarkers tau,
p-tau181 and AB42 applied to validation cohort CSF samples (N=292). Each
candidate biomarker assay was performed in triplicate, with one mean value reported for
each sample; assays for tau, p-tau181 and AB42 were performed in duplicate. In
addition to A. tau, B. p-tau181 and C. AB42 (top row), four assays (D. YKL-40, E.
carnosinase |, F. chromogranin A, G. NrCAM) measured statistical differences between
clinically defined groups, as indicated; H. transthyretin and I. cystatin C did not reach

criterion (a=0.05) for any comparisons. * p<0.05; * * p<0.01; ** * p< 0.001;
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**** p<0.0001; solid circle p<0.05 by LSD only; double solid circle p<0.05 by unpaired

T-test and Mann-Whitney, not by unpaired T-test with Welchs correction.
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Figure 2.7. Receiver Operating Characteristic (ROC) curves of ELISA data from

validation cohort. Simple ROC analyses were performed for each biomarker to

distinguish a) CDR>0 from CDR 0 (“earlier diagnosis”) and b) CDR 1 from CDR<1

(“early diagnosis”). Stepwise logistic regression models were used to identify

combinations of these biomarkers that would distinguish ¢) CDR>0 from CDR 0 (“earlier

diagnosis”), AUC = 0.90 and d) CDR 1 from CDR<1 (“early diagnosis”), AUC = 0.88.
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Table 2.3A. Receiver Operating Characteristic Curve Areas for CDR0 vs >0 Comparison

Biomarker Area Under Curve Standard Error | 95% Confidence Interval
Tau 0.8004 0.0279 0.7457 - 0.8551
Ap42 0.7429 0.0315 0.6812~-0.8046
p-tau181 0.7339 0.0315 0.6721-0.7956
YKL-40 0.6717 0.0349 0.6033-0.7401
Transthyretin 0.6190 0.0331 0.5541-0.6838
Carnosinase | 0.5735 0.0365 0.5020 - 0.6450
NrCAM 0.5422 0.0355 0.4726~0.6118
ChromograninA | 0.5303 0.0373 0.4572-0.6034
CystatinC 0.5297 0.0366 0.4579-0.6014
Logistic Regr. 0.8955 0.0212 0.8539-0.9372

Table 2.3B. Recelver Operating Characteristic Curve Areas for CDR 1 vs <1 Comparisen

Biomarker Area Under Curve | Standard Error | 95% Confidence Interval
Ajd2 0.7690 0.0376 0.6953-0.8427
Tau 0.7502 0.0420 0.6679-0.8325
Carnosinase | 0.7277 0.0512 0.6273-0.8281
ChromograninA | 0.6879 0.0566 0.5771-0.7988
Transthyretin 0.6605 0.0380 0.5860-0.7350
p-tau181 0.6512 0.0483 0.5566-0.7458
NrCAM 0.6411 0.0553 0.5326-0.7495
YKL-40 0.6271 0.0532 0.5228~-0.7313
CystatinC 0.5752 0.0565 0.4645-0.6858
Logistic Regr. 0.8762 0.0314 0.8147-=0.9377

Table 2.3. Statistical analyses associated with Receiver Operating Characteristic
(ROC) curves of ELISA data from validation cohort. ROC analyses were performed
for each biomarker to distinguish A. CDR>0 from CDR 0 (“earlier diagnosis”) and B.
CDR 1 from CDR<1 (“early diagnosis”). Stepwise logistic regression models were

applied to identify a complementary combination of these biomarkers for each analysis
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that would optimize accuracy (maximize area under the curve [AUC]) without including
additional non-contributory biomarkers. In A, the stepwise logistic regression model
accepted tau, YKL-40 and NrCAM and yielded an AUC of 0.8955 (Logistic Regr.). In B,
the model accepted tau, carnosinase | and chromogranin A, yielding an AUC of 0.8762

(Logistic Regr.).
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Table 2.4. CSF biomarkers grouped by functional/structural category

Functional / Structural Category Protein

Adhesion molecules N-Cadherin
NrCAM
Calsyntenin

Neuronal Pentraxin Receptor

Brain Associated Small Cell Lung Cancer Antigen (NCAM-
140/CD56)

Nectin-like molecule-1/ TSLL1 / SynCam3

Dense core vesicles

Chromogranin A

Chromogranin B

Secretogranin Il

Secretogranin 11l

VGF NGF Inducible precursor

Carboxypeptidase E

Synaptic/Neuronal metabolism

Aspartate aminotransferase |

Synaptic Function

S100A1 (binds synapsins)

Neuronal Pentraxin Receptor (presynaptic)

Brain Acetylcholinesterase Putative Membrane Anchor (CutA1)

Calsyntenin (postsynaptic)

Neuroprotection

PEDF (Serpin-F1)

Annexin |

Prosaposin

Secretogranin |

Carnosinase |

Apoptosis / actin remodeling

Gelsolin

Prk-1 (PKN)
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Synaptic plasticity / learning and memory VGF NGF inducible precursor

NrCAM

B3GnT1

Carnosinase |

Carbonic Anhydrase IV

S100A1

Carboxypeptidase E

Calmodulin

Inflammation / Complement YKL-40 / Chitinase 3-Like 1

PEDF (Serpin-F1)

Annexin |

IHRP /ITIH4

Vitronectin

Complement C4B3

Kininogen |

Chromogranin A

Secretogranin Ill

Apolipoprotein J

Beta 2-microglobulin

Prostaglandin metabolism Prostaglandin H2 D Isomerase / Beta-trace

Amyloid beta peptide binding / amyloidogenesis Apolipoprotein A1 (proapolipoprotein)

Apolipoprotein E

Apolipoprotein J

Transthyretin

Gelsolin

Vitronectin

Cystatin C
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Prostaglandin H2 D Isomerase / Beta-trace

a-2-macroglobulin

a-1-antichymotrypsin

Protease activity a-1-antichymotrypsin

a-2-macroglobulin

Cystatin C

Carboxypeptidase E

Matrix proteins Fibulin 3 (EFEMP1)
Vitronectin
Phospholipase activity Annexin | (Lipocortin)
Prosaposin
Apolipoproteins Apolipoprotein A1 (proapolipoprotein)

Apolipoprotein ClI

Apolipoprotein CllI

Apolipoprotein E

Apolipoprotein J

Apolipoprotein H

Calcium binding / homeostasis Calmodulin

S100A1

Annexin | (Lipocortin)

Calsyntenin (post-synaptic cytoplasmic domain)

Gelsolin

Metal (Copper and Iron) Binding Carnosinase |

Ceruloplasmin

Brain Acetylcholinesterase Putative Membrane Anchor (CutA1)

Chaperone complex / activity S100A1

Transthyretin (prealbumin)
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Endoplasmic Reticulum - Associated Degradation Man9-mannosidase

(ERAD)

Extracellular and Intraneuronal pH Carbonic Anhydrase IV
Carnosinase |

Glycobiology (lactosamine synthesis) B3GnT1 (lactosamine synthesis)

CNS renin-angiotensinogen system Angiotensinogen

Thyroid hormone transport Transthyretin (prealbumin)

Unknown Hypothetical protein

Table 2.4. Candidate CSF biomarkers reflect AD-related pathophysiological
changes. Candidate CSF biomarkers are grouped according to reported function(s) and,

when appropriate, cellular locations.
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Figure 2.8. Hypothetical model to define early stages of AD by temporal pattern of
CSF protein biomarker levels. The horizontal bar (below) describes the early
clinicopathological progression from non-AD to mild dementia (CDR 1) in six stages. As
depicted by the curves above, ‘Non-AD’ CSF has high AB42 (red line), high
chromogranin A (Chr A), carnosinase | (Carno 1) and NrCAM (green line), and low YKL-
40 and tau (blue line). Reduced CSF Ap42 correlates with amyloid plaque deposits, the
first sign of neuropathologically identifiable AD (“preclinical AD”) (127). CSF Ap42
appears to decline further as cognition declines from CDR 0 to 0.5 to 1. When
considered as ratios with AB42, CSF markers of neuroinflammation (e.g. YKL-40) and
neurofibrillary tangle pathology (e.g. tau) appear to increase before and predict the onset
of very mild cognitive impairment (CDR 0.5), defining a CDR 0 group ‘At Risk’ for
cognitive decline (107, 121, 132, 372); YKL-40 and tau also appear to be higher among
those who progress rapidly from very mild to mild dementia, defining a CDR 0.5 group

‘At Risk’ for cognitive decline. Reductions in synapse-associated (NrCAM,
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chromogranin A) and neuronal (carnosinase |) proteins, and increases in tau mirror the
progression and anatomical spread of synaptic and neuronal losses and tau pathology

associated with cognitive decline, and can be used to define CDR 0.5 and CDR 1.
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Chapter 3.

YKL-40: A Novel Diagnostic and Prognostic Fluid Biomarker for Preclinical and

Early Alzheimer’s Disease

Portions of this chapter will appear in the November 2010 issue of Biological Psychiatry.
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Summary

Background: Disease-modifying therapies for Alzheimer’s disease (AD) would be most
beneficial if applied during the ‘preclinical’ stage (pathology present with cognition intact)
before significant neuronal loss occurs. Therefore, biomarkers that can detect AD
pathology in its early stages and predict dementia onset and progression will be

invaluable for patient care and efficient clinical trial design.

Methods: Previously, 2D-difference gel electrophoresis and liquid chromatography
tandem mass spectrometry were used to measure AD-associated changes in
cerebrospinal fluid (CSF). Concentrations of one of the most promising candidates
identified by this method, CSF YKL-40, were further evaluated by enzyme-linked
immunosorbent assay in the discovery cohort (N=47), an independent sample set
(N=292) with paired plasma samples (N=237), frontotemporal lobar degeneration (N=9),
and progressive supranuclear palsy (PSP, N=6). Human AD brain was studied

immunohistochemically to identify potential source(s) of YKL-40.

Results: In the discovery and validation cohorts, mean CSF YKL-40 was higher in very
mild and mild AD-type dementia (Clinical Dementia Rating [CDR] 0.5 and 1) vs. controls
(CDR 0) and PSP. Importantly, CSF YKL-40/AB42 ratio predicted risk of developing
cognitive impairment (CDR 0 to CDR>0 conversion) as well as the best CSF biomarkers
identified to date, tau/AB42 and p-tau181/AB42. Mean plasma YKL-40 was higher in
CDR 0.5 and 1 vs. CDR 0 groups, and correlated with CSF levels. YKL-40
immunoreactivity was observed within astrocytes near a subset of amyloid plaques,

implicating YKL-40 in the neuroinflammatory response to A deposition.
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Conclusions: These data demonstrate that YKL-40, a putative indicator of
neuroinflammation, is elevated in AD, and that, together with AB42, has potential

prognostic utility as a biomarker for preclinical AD.
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Introduction

Clinicopathological studies suggest that the pathological hallmarks of AD,
amyloid plaques and neurofibrillary tangles, begin to appear ~10-20 years before the
synaptic and neuronal loss that accompany dementia onset (44, 66, 72). Identifying and
treating individuals during this preclinical stage will maximize benefit from disease-
modifying therapies. By definition, this preclinical phase of AD will elude detection by
conventional clinical examination, and will therefore require the use of biomarkers for
diagnosis. Beyond diagnosis, biomarkers may also provide prognostic information and
facilitate the monitoring of disease progression and response to treatment. In addition,
novel biomarkers may advance our understanding of AD pathophysiology, and thereby
inform future treatment strategies.

Because many proteins expressed in the brain are present in the cerebrospinal
fluid (CSF), the CSF proteome is a logical source for potential AD biomarkers. Indeed,
CSF amyloid-B42 (AB42), tau, and phosphorylated forms of tau (p-tau) have already
shown great promise for use in AD diagnosis and prognosis (410-413). Nevertheless,
there remains a need for supplemental biomarkers that represent different aspects of AD
pathophysiology and can improve diagnosis and prognosis at early disease stages.

To discover additional CSF biomarkers for early AD, we used two-dimensional
difference gel electrophoresis in conjunction with tandem mass spectrometry (2-D DIGE
LC-MS/MS) to identify proteins that increase or decrease in the setting of early AD
relative to age-matched cognitively normal controls (see Chapter 2 for details). One
protein found in that study to be significantly more abundant in AD CSF, YKL-40
(chitinase-3 like-1 [CHI3L1], human cartilage glycoprotein-39 [HC-gp39], and chondrex),
is a secreted 40-kDa glycoprotein with sequence homology to bacterial and fungal

chitinases and chitin binding ability, but no chitinase activity (379). Reports suggest a
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role in inflammation and tissue remodeling, and an upregulation in AD brain (373), but its
physiological function remains unclear (414, 415). Nevertheless, plasma/serum and/or
CSF levels of YKL-40 have been proposed as a candidate biomarker for arthritis,
asthma, multiple sclerosis, and myriad cancers (414-416).

In this study, we evaluate the potential of CSF and plasma YKL-40 to serve as
diagnostic and prognostic biomarkers for AD; additionally, using immunohistochemistry,
we investigate the source(s) of YKL-40 in the brain in the setting of AD. Our data
suggest that CSF YKL-40 is produced by astrocytes, is significantly elevated in very mild
and mild AD, and predicts conversion from cognitive normalcy to very mild cognitive

impairment.

Methods

Subjects

Discovery cohort: Subjects (N=48), community-dwelling volunteers from

University of Washington (N=18), Oregon Health and Science University (N=11),
University of Pennsylvania (N=11), and University of California San Diego (N=8), were
51-87 years of age and in good general health, having no other neurological, psychiatric,
or major medical diagnoses that could contribute importantly to dementia, nor use of
exclusionary medications within 1-3 months of lumbar puncture (LP) (e.g. neuroleptics,
anticonvulsants, anticoagulants). Study protocols at each institution were approved by
their respective Institutional Review Boards and written informed consent was obtained
from each participant. Cognitive status was evaluated based on criteria from the National
Institute of Neurological and Communicative Diseases and Stroke-Alzheimer’s Disease
and Related Disorders Association (57). CSF was collected in the morning by LP after
overnight fasting and immediately frozen at -80°C. Subjects with a clinical dementia
rating (CDR) of 0 (N=24), indicating no dementia, and CDR 1 (N=24), indicating mild
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dementia, were selected from a larger group of 120 samples on the basis of CSF AB42
(relatively high and low values, respectively), and, when possible, CSF tau (relatively low
and high values, respectively) to increase the likelihood of CDR 1 subjects having and
CDR 0 subjects not having AD pathology. CSF AB42 and tau levels were measured in a
single laboratory using well-established ELISAs ((366) and Innotest, Innogenetics,
respectively). Quantitative thresholds were not defined prior to sample selection; the
lowest CDR 0 and highest CDR 1 CSF AB42 value were 572 and 399 pg/mL,

respectively; CSF tau ranges were CDR 0: 141-448 pg/mL, CDR 1: 216-1965 pg/mL.

Validation cohort: Subjects (N=292), community-dwelling volunteers enrolled in

longitudinal studies of healthy aging and dementia at the Washington University
Alzheimer Disease Research Center (WU-ADRC), were =260 years of age and met the
same exclusion criteria as the discovery cohort. The study protocol was approved by the
Human Studies Committee at WU, and we obtained written and verbal informed consent
from participants at enroliment. CDR status was determined as with the discovery
cohort, with an additional category of CDR 0.5, indicating very mild dementia; some of
these met criteria for MCI and some were more mildly impaired, or “pre-MCI” (70). A
subset of subjects (N=159) underwent positron emission tomography (PET) imaging with
Pittsburgh Compound-B (PIB) for assessment of in vivo amyloid burden (127, 318, 330).
Apolipoprotein E (APOE) genotypes were determined by the WU-ADRC Genetics Core.
Fasted CSF was collected, mixed, centrifuged, and frozen at -80°C in polypropylene
tubes; blood was collected at the time of LP, and plasma prepared by centrifugation and

stored at -80°C (107).

FTLD/PSP Cohort: Volunteer subjects were diagnosed with frontotemporal lobar

degeneration (FTLD) (N=9) or progressive supranuclear palsy (PSP) (N=6) at the
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University of California San Francisco (UCSF) Memory and Aging Center using
published criteria (417, 418). Subjects in the FTLD group met criteria for one of the three
clinical syndromes that comprise FTLD: frontotemporal dementia (FTD) (N=6), semantic
dementia (SD) (N=1), and progressive non-fluent aphasia (PNFA) (N=2) (417). The
study protocol was approved by the UCSF Committee on Human Research, and
informed consent was obtained from all participants. CSF was collected by LP and

immediately frozen at -80°C.

2-D DIGE LC-MS/MS Proteomic Analysis

Details for sample processing and analysis can be found in Chapter 2. In brief, discovery
cohort CSF samples and a pooled reference sample were immunodepleted of six highly
abundant proteins (albumin, I1gG, a1-antitrypsin, IgA, haptoglobin, transferrin). Samples
were randomly paired (CDR 0 and CDR 1), labeled with one of three cyanine dyes, and
loaded with the labeled reference sample onto the same 2-D gel. Protein spot
quantification and between-gel spot matching were performed on digitized images. To
focus efforts on candidate biomarkers more likely to be measurable in the CSF of a
majority of individuals, only gel features with significant intensity differences between
CDR 0 and CDR 1 groups (Student’s t-test, a=0.05) that were present in >50% of gels
were excised, trypsinized, and subjected to LC-MS/MS. Proteins were identified from
peptide fragmentation spectra using MASCOT (v2.8, Matrix Sciences) and the NCBI

non-redundant protein database (downloaded 11/11/2008).
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Enzyme Linked Immunosorbent Assays (ELISAS)

CSF and plasma samples were analyzed by ELISA for AB42, total tau, and
phospho-tau181 (Innotest, Innogenetics) after one freeze-thaw, and for YKL-40 (Quidel)
after two freeze-thaw cycles. Intra- and inter-assay coefficient of variation for CSF YKL-

40 were 5.27% and 6.03%, respectively; for plasma, 5.73% and 11.26%.

Statistical Analyses

Correlations were evaluated using the Pearson rho correlation coefficient
(a=0.05). Survival analyses assessed the ability of baseline biomarkers and biomarker
ratios to predict time to conversion from cognitive normalcy (CDR 0) to very mild or mild
dementia (CDR 0.5, 1) and time to progression from very mild dementia (CDR 0.5) to
more severe dementia (CDR>0.5). Data from subjects who did not convert/progress
were statistically censored at the date of last assessment. Biomarker measurements
were converted to standard Z-scores to allow comparison of hazard ratios between
different biomarkers. Cox proportional hazard models adjusted for age and gender were
conducted treating the CSF biomarkers as continuous and categorical variables.
Categorical analyses compared subjects within the highest tertile of baseline values to
those within the lowest two tertiles; this tertile-based assessment was applied because
Kaplan-Meier curves illustrating the unadjusted time to CDR>0 for each tertile of each
biomarker suggested similar outcomes for the lower two tertiles. The difference between
the survival curves reflecting the upper tertile versus the lower tertiles of each biomarker
was tested using the log-rank test. Survival analyses were conducted using baseline
CDR scores determined at clinical assessment prior to LP; analyses using scores
determined at clinical assessment closest to LP yielded almost identical results. Similar

survival analyses were carried out for plasma YKL-40.

86



Chapter 3. YKL-40: A Novel Diagnostic and Prognostic Fluid Biomarker for Preclinical and Early
Alzheimer’s Disease

Immunohistochemistry

Six-um-thick sections of formalin-fixed, paraffin-embedded human postmortem
brain tissue (middle frontal gyrus, post mortem interval <6 hrs) from the WU-ADRC
Neuropathology Core were double-labeled using rabbit anti-human YKL-40 antibody
(Quidel) in series with either goat anti-human GFAP (Santa Cruz), mouse anti-human
HLA Class Il antigen, LN-3 (Novocastra), RCA-1 (Vector), or mouse anti-human PHF-1
(gift of Dr. Peter Davies), followed by staining with the ImmPress kit (Vector). In control
experiments, the primary antibody was omitted and replaced with 1% bovine serum
albumin-PBS. Thioflavin S stain (1% aqueous) was applied for 20 minutes and destained

with 50% ethanol.

Results

Proteomic Analysis Identifies YKL-40 as Increased in AD CSF

To identify new candidate biomarkers for AD, we utilized an unbiased proteomics
approach, 2-D DIGE LC-MS/MS (222, 251), to compare the concentrations of CSF
proteins in individuals with mild dementia (CDR 1, N=24) of the Alzheimer’s type to those
in individuals without dementia (CDR 0, N=24) (see Chapter 2 for details of this portion).
The two groups differed with respect to age at LP and gender (CDR 0: 64.8 yrs, 38%
female; CDR 1: 72.8 yrs, 54% female). From this proteomic analysis, we identified 47
proteins that differed in abundance between the CDR 0 and CDR 1 groups (Chapter 2);
one of the most promising, in terms of fold-change and novelty, was YKL-40.
Interestingly, in a smaller, previous study, we identified YKL-40 as being significantly
more abundant in CSF from CDR 0.5 relative to CDR 0 subjects (251). YKL-40
appeared in four gel features that were more abundant in the CDR 1 group (Figure
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3.1A). Tryptic peptides from these spots collectively provide amino acid sequence
coverage of 52% and span virtually the full length of the protein (Figure 3.1B),
suggesting that these spots represent full-length secreted YKL-40. We hypothesize that
this pattern of four spots may be due to allelic differences, post-translational

modifications, or both.

ELISA Confirms Increased CSF YKL-40 in AD in Original and Independent Cohorts

To validate our 2-D DIGE findings, we applied a YKL-40 ELISA to the original
‘discovery’ cohort samples (one sample was unavailable for re-evaluation, N=47). Mean
CSF YKL-40 was increased 43% in the CDR 1 vs CDR 0 group (p=.0016) (Figure 3.2A),
consistent with the fold-changes measured by 2-D DIGE. We next assayed a larger,
independent set of CDR 0, 0.5, and 1 CSF samples collected at the WU-ADRC (N=292)
that was not preselected on the basis of CSF AB42 and tau values (characteristics at
baseline assessment in Table 3.1). In this validation cohort, mean CSF YKL-40 was
significantly (27%) higher in the CDR 0.5 and CDR 1 groups vs. CDR 0 (p<.0001 and
p=.004, respectively) (Figure 3.2B). An analysis of covariance (ANCOVA) revealed that

this increase remained significant after adjusting for age, F(2, 288) = 9.075, p<.0001.

CSF YKL-40 is Increased in FTLD and Decreased in PSP

In an effort to determine whether CSF YKL-40 might have potential to distinguish
AD from other dementing ilinesses, we evaluated levels in two other neurodegenerative
diseases: frontotemporal lobar degeneration (FTLD, N=9) and progressive supranuclear
palsy (PSP, N=6). Mean CSF YKL-40 was increased in FTLD relative to AD, although a
wide range of values was observed, possibly reflecting the pathological heterogeneity of
FTLD; in contrast, PSP cases showed relatively low levels and range of CSF YKL-40
(Figure 3.3A). Although this study does not evaluate the complete differential diagnosis
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for mild cognitive impairment or mild dementia, these data suggest that CSF YKL-40

may be useful to distinguish AD from some other forms of neurodegenerative disease.

Correlation of CSF YKL-40 With Demographic Features and Other Biomarker

Values

Because the CDR 0, 0.5, and 1 groups show somewhat different distributions
with regard to age at LP, gender, and APOE genotype, levels of CSF YKL-40 were
evaluated for potential correlation with these variables. CSF YKL-40 levels did not vary
based on gender (p=.8355) or APOE genotype (not shown) but did correlate with
increasing age (r=.3943, p<.0001) (Figure 3.4). Next, seeking insight into the role of
YKL-40 in AD pathology, we evaluated its associations with CSF AB42, CSF tau, and
cortical amyloid burden measured by PIB-PET imaging. In this validation cohort, CSF
YKL-40 did not correlate with CSF ApR42 (r=-.02463, p=.6745), but did correlate with CSF
tau (r=.6331, p<.0001), and p-tau181 (r=.5947, p<.0001), and modestly with cortical
amyloid burden (r=.2093, p=.0081) (Figure 3.4). Interestingly, a similar correlation of
CSF YKL-40 with tau was observed in FTLD (r=.9109, p=.0006), but not in PSP
(r=.2434, p=.6422) (Figure 3.3B,C), suggesting that these two biomarkers are not
inextricably linked, and that they may reflect separate but interrelated pathophysiological

processes.

Ability of CSF YKL-40 To Predict Onset and Progression of Dementia

Recognizing the need for preclinical diagnosis and prognosis, we applied survival
analyses to evaluate whether CSF YKL-40 can predict risk of developing cognitive
impairment (conversion from CDR 0 to CDR>0) and of dementia progression (CDR 0.5
to CDR>0.5). Of the 174 CDR 0 subjects with at least one follow-up clinical assessment,
26 received a CDR>0 at follow-up, and thus were classified as “converters.” Since CSF
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tau/Ap42 and p-tau181/Ap42 ratios have been shown to predict cognitive decline in
cognitively normal (107, 132) and MCI (348, 419) cohorts, survival analyses were also
conducted for these biomarkers. Treated as categorical variables, subjects with high
ratios (upper tertile) of CSF YKL-40/AB42, tau/ApR42, and p-tau181/ApR42 were faster to
convert to CDR>0 than were subjects with lower ratios (lower tertiles) (Figure 3.5A),
even after adjusting for age and gender (Figure 3.6). Likewise, when treated as
continuous variables, CSF YKL-40/AB42, tau/Ap42, and p-tau181/ApB42 ratios again
predicted conversion from CDR 0 to CDR>0 (p=0.0003, p=0.0001, p<.0001,
respectively) after adjustment for age and gender (Figure 3.6). Importantly, when
evaluated individually, CSF YKL-40, ApB42, tau, and p-tau181 did not perform as well as
the YKL-40/AB42, tau/AB42, and p-tau181/AB42 ratios at predicting conversion from
CDR 0 to CDR>0 (Figure 3.7). Thus, the CSF YKL-40/AB42 ratio, as a prognostic
biomarker of future cognitive impairment in normal individuals, is comparable to the best
CSF biomarkers of this type to date, tau/AB42 and p-tau181/AR42.

Of the 59 CDR 0.5 subjects with at least one follow-up clinical assessment, 24
received a CDR>0.5 at follow-up, and thus were classified as “progressors.” Kaplan-
Meier estimates of the rate of progression suggest that those with high CSF YKL-
40/AB42 ratios (upper tertile) were faster to progress to CDR>0.5 than those with lower
CSF YKL-40/AB42 ratios (lower two tertiles) (p=.0648) (Figure 3.5B). The tau/AB42 and
p-tau181/AB42 ratios showed similar patterns (Figure 3.5B). After adjustment for age
and gender, similar results were found for all three categorical biomarker variables
(Figure 3.6). Treated as a continuous variable and adjusted for age and gender, p-
tau181/ApR42 and YKL-40/Ap42 ratios showed trends associated with time to

progression that did not reach statistical significance (Figure 3.6).
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Plasma YKL-40 Demonstrates Limited Utility as AD Biomarker

To evaluate plasma YKL-40 as a potential AD biomarker, we applied the ELISA
to 237 plasma samples from the validation cohort. Mean plasma YKL-40 was
significantly higher in the CDR 0.5 and CDR 1 vs CDR 0 group (p=.046, p=.031,
respectively, One-way ANOVA, Tukey post-hoc), with percent increases similar to those
observed in CSF (Figure 3.8A). Plasma and CSF YKL-40 levels correlated modestly
(r=.2376, p=.0002) (Figure 3.8B), with levels roughly 5-fold higher in CSF. Plasma YKL-
40 also correlated with increasing age (r=.2284, p=.0004), but not with gender
(p=.6558), CSF AB42 (r= -.07902, p=.2255), CSF tau (r=.03769, p=.5637), CSF p-
tau181 (r=-.02738, p=.6749), or cortical amyloid load (r=.01789, p=.8576) (Figure 3.9).

Plasma YKL-40 did not demonstrate utility for predicting cognitive decline (not shown).

In AD Brain, YKL-40 is Expressed in Astrocytes in Vicinity of Plagues and in Rare

White Matter Neurons

To investigate potential source(s) of YKL-40 in AD, we performed single and
double-label immunohistochemistry on human frontal cortex. YKL-40 immunoreactivity
was observed in the vicinity of a subset of thioflavin S-positive amyloid plaques (Figure
3.10A,B,C) within GFAP-positive astrocytes (Figure 3.10D), and not within microglia
stained with LN-3 (Figure 3.10E,F) or lectin RCA-1 (not shown). YKL-40
immunoreactivity was also present in plaque-associated cell processes (Figure 3.10G)
that lacked reactivity for dystrophic neurite marker PHF-1 (Figure 3.10H) and microglial
marker LN-3 (Figure 3.10J,K,L representing adjacent focal planes), and that may
represent astrocytic processes (suggested in Figure 3.10l by the plaque-associated
YKL-40-positive astrocyte in lower left quadrant). YKL-40 immunoreactivity was also
observed within the superficial cortical white matter in rare neurons (Figure 3.10M,N,O)
with occasional PHF-1-positive neurofibrillary tangles (Figure 3.10N,O). These neurons
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may represent cells of multiform layer VI and/or ‘interstitial neurons’ of the white matter

(420).

Discussion

This study suggests that CSF YKL-40, a novel inflammatory biomarker for AD, is
increased in AD, and, together with AB42, will assist in prognosis of patients and clinical
trial participants who are under examination for the preclinical and early clinical stages of

AD.

Having identified CSF YKL-40 as a potential AD biomarker through non-biased
proteomics, we verified this finding using a commercially available ELISA, and more
importantly, validated the results in a much larger, independent cohort. By including very
mildly impaired (CDR 0.5) individuals who may be classified at some other institutions as
having MCI, or even “pre-MCI,” as some were insufficiently impaired to meet MCI
criteria, this validation cohort revealed the promise of CSF YKL-40 as a biomarker for
very early stage AD. By including individuals with FTLD and PSP, albeit in small
numbers, we also demonstrated that CSF YKL-40 shows promise for distinguishing AD
from PSP.

By including individuals who were cognitively normal at the time of CSF
collection, but subsequently developed cognitive impairment, this validation cohort also
revealed the potential utility of YKL-40, coupled with AB42, to predict cognitive decline. It
has previously been shown that ratios of CSF tau/A42 and p-tau181/AB42 can predict
conversion from cognitively normal to cognitively impaired over a 2-4 year period (107,
132). Here we confirm those findings in a cohort of twice the size, and show that CSF
YKL-40/AB42 has predictive value comparable to that of these best current CSF

measures. This finding is particularly notable because, whereas CSF tau is derived
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principally from neurons, YKL-40 appears to be secreted predominantly from astrocytes.
To our knowledge, YKL-40 is the first astrocyte-derived marker shown to be useful in
such a way. CSF YKL-40/AB42 also showed promise in predicting progression of
dementia from CDR 0.5 to CDR>0.5. However, tau/AB42 and p-tau181/AR42 appear to
show greater utility for predicting progression.

We also evaluated plasma YKL-40 as a potential AD biomarker. While plasma
YKL-40 levels displayed a pattern of elevation in the CDR 0.5 and 1 groups similar to
that observed for CSF, and plasma and CSF levels were modestly correlated, plasma
YKL-40 did not show similar prognostic utility. Whether this increase in plasma YKL-40
reflects passive or active export of central nervous system (CNS)-derived YKL-40 or
coincident peripheral production in response to a systemic inflammatory signal is
unclear. Similar coincident elevations of CSF and serum YKL-40 levels have been
reported with aneurysmal subarachnoid hemorrhage (421) and multiple sclerosis (416).
However, in the setting of CNS infection, CSF levels of YKL-40 appear to rise without a
concomitant increase in serum levels (375, 376), suggesting that YKL-40 produced in
the brain does not influence serum/plasma levels. Data to address the converse-
whether YKL-40 produced in the periphery can influence CSF levels- have not yet been
reported. This issue is important to assess in future studies because peripheral
inflammatory and neoplastic conditions are not uncommon within populations most likely
to be screened for AD.

To examine its role in AD and to identify potential sources of CSF YKL-40, we
immunohistochemically double-labeled human AD brain tissue for YKL-40 and other cell-
specific markers, and observed YKL-40 in a subset of plaque-associated astrocytes and
in rare white matter neurons. These results should help to clarify the origins of CSF YKL-
40, which have been controversial among the small number of relevant studies (375,
383, 422). Additionally, the pattern of expression within a subset of plaque-associated
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astrocytes may account for the positive correlation we observe between CSF YKL-40
and cortical amyloid load (Figure 3.4); as amyloid plaque burden increases, so does the
amount of plaque associated-astrocyte activation, and likely, the amount of CSF YKL-40.
It may also account for the lack of correlation we observe between CSF YKL-40 and
CSF AB42, and for the relatively equal levels of CSF YKL-40 between CDR 0.5 and
CDR 1 groups; once plaque formation commences, which is estimated to occur ~15
years prior to cognitive decline (410, 411, 413), CSF AB42 remains at a low steady state
(94, 127, 128, 423), so no correlation with YKL-40 would be expected. Likewise, amyloid
burden appears close to its maximal extent once cognitive decline begins (107, 127,
128), so plaque burden and CSF YKL-40 levels might be expected to be similar in CDR
0.5 and CDR 1 groups. More importantly, these results implicate YKL-40 in the astrocytic
neuroinflammatory response to fibrillar AR deposition that appears to play a role in AD
pathogenesis (207, 424, 425).

What induces YKL-40 expression in the presence of AD pathology, and how
increased YKL-40 expression may influence the disease process are unknown. In
models of peripheral inflammation such as asthma and arthritis, tumor necrosis factor-a
(TNF-a) and interleukin-1 (IL-1f) appear to stimulate YKL-40 synthesis in macrophages
and chondrocytes (382, 426). Since TNF-a and IL-1B are implicated in AD
neuroinflammation, it is reasonable to hypothesize that astrocytic expression of YKL-40
may be similarly induced. Given that TNF-a and IL-1 can cross the blood brain barrier,
it is also reasonable to hypothesize that YKL-40 levels in plasma and CSF might be
modulated by systemic or central inflammation. Defining the factors required to induce
YKL-40 expression in astrocytes will be an important first step in understanding the role
of YKL-40 in AD and, more generally, in the CNS.

Defining the targets of YKL-40 in the brain is also critically important for
understanding its role in AD. In the periphery, YKL-40 can reportedly stimulate
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connective tissue cell growth (427, 428); modulate the effects of inflammatory cytokines
in fibroblasts (381); bind collagen and influence its fibrillogenesis (429); stimulate
endothelial cell migration (430); modulate vascular smooth muscle cell adhesion and
migration (431); support antigen-induced Th2 inflammatory responses (432); and
stimulate alveolar macrophages to release metalloproteinases and pro-inflammatory and
fibrogenic chemokines (382). In the brain, YKL-40 is reported to release extracellular
matrix-bound bFGF (375). Clearly, further study of YKL-40 in AD and, more generally,
within the CNS and periphery, is warranted to define its pathophysiological role(s).

This study identifies YKL-40 as a novel astrocyte-derived CSF biomarker that
can distinguish groups of AD and control subjects and predict risk of developing
dementia among cognitively normal subjects. Nevertheless, like all AD biomarker
candidates to date, YKL-40 is likely to have less value when applied in isolation, and,
alone, will be insufficient to provide definitive information for an individual patient. While
significant differences in mean CSF and plasma YKL-40 levels exist between CDR 0 and
CDR 0.5, and CDR 0 and CDR 1 groups, the ranges of YKL-40 values among the
groups show considerable overlap. This overlap may stem from several sources. The
greatest contribution is likely due to the inclusion of individuals with asymptomatic
(preclinical) AD pathology in the CDR 0 group; AD neuropathology is present in ~25% of
non-demented individuals age =75 years (150, 433). It is also possible that different
alleles of the CHI3L1 gene may influence baseline or reactive levels of YKL-40 protein
expression, or that members of this cohort may be afflicted by other diseases that affect
CSF YKL-40 levels. For example, elevated CSF YKL-40 has been reported in the setting
of other CNS pathologies (375, 376, 416, 421); however, most of these conditions would
be easily distinguishable from early AD on the basis of clinical assessment. It is
important to note that the overlap observed for CSF YKL-40 is comparable to that seen
for the best biomarkers identified to date, CSF AB42 and CSF tau (Figure 3.2 D&E)
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(346). The best use of YKL-40 may be in a panel of biomarkers that provide
complementary information to guide diagnosis, prognosis, clinical trial design, and
treatment decisions. Indeed, in other work stemming from this 2-D DIGE study, stepwise
logistic regression analyses indicate that YKL-40, as part of a panel with other CSF
biomarkers, contributes additional sensitivity and specificity for discriminating mildly
demented individuals from cognitively normal individuals (see Chapter 2). Additionally,
YKL-40 may confer specificity to a panel by distinguishing PSP or other illnesses from
AD, as our early results suggest. It will be of interest in future studies to confirm these
results and to evaluate CSF YKL-40 levels in the setting of additional dementing
conditions. Perhaps more importantly, YKL-40, for its own part, might contribute
diagnostic sensitivity for early cognitive impairment, prognostic information for risk of
cognitive decline in normal and very mildly impaired individuals, and, more
fundamentally, a direct estimate of neuroinflammation, which tau and AB42 do not

provide.
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Figure 3.1. (A) A representative 2-D DIGE image of CSF from the discovery cohort.

Samples were depleted of six highly abundant proteins, fluorescently labeled, and

subjected to isoelectric focusing followed by SDS-PAGE. YKL-40 is more abundant in

four spots in the CDR 1 group (labeled 1-4 in the inset, with mean fold changes of 1.41,

1.50, 1.46, 1.32, respectively). The near invisibility of spot 4 in this printed representation

illustrates the great sensitivity of 2-D DIGE to detect proteins of low abundance. (B)

Sequence coverage of human YKL-40 by mass spectrometry. Indicated in red is the

compilation of peptides identified in the four spots. The signal sequence is shown in

green, and polymorphisms are indicated by boxes.
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Table 3.1. Demographic, Clinical, and Genotypic
Characteristics of Validation Cohort

Characteristic CDRO CDR 0.5 CDR1

n 198 65 29
Gender (% Female) 63% 54% 52%
APOE genotype, % ¢4+ 35% 51% 59%
Mean MMSE score (SD) 28.9(1.3) | 26.3(2.8) 22.3(3.9)
Mean age at LP (SD), yrs 71.0(7.3) | 73.8(6.8) 765 (6.2)
Mean CSF AB42 (SD), pg/mL 605 (240) | 446 (230) | 351 (118)
Mean CSF tau (SD), pg/mL 304 (161) | 539 (276) | 552 (263)
Mean CSF ptau181 (SD), pg/mL | 55 (25) 85 (44) 77 (38)

Table 3.1. Demographic, Clinical, and Genotypic Characteristics of Validation

Cohort.

Abbreviations: CDR, Clinical Dementia Rating; APOE, apolipoprotein E; MMSE, Mini-

Mental State Examination; LP, lumbar puncture; SD, standard deviation; CSF,

cerebrospinal fluid; AB-42, amyloid-beta peptide 1-42; ptau181, tau phosphorylated at

threonine 181.
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Figure 3.2. Mean YKL-40 is increased in the CSF of CDR 0.5 and CDR 1 subjects. (A)
CSF from the discovery cohort (CDR 0, N=24; CDR 1, N=23) was analyzed for YKL-40
by ELISA (CDR 0= 293.6 +/- 23.9; CDR 1= 422.2 +/- 30.0, ng/mL, mean +/- SEM). CSF
YKL-40 was significantly higher in the CDR 1 group as compared to the CDR 0 group
(p=.0016, unpaired student’s t-test). (B) CSF from a larger, independent sample set
(N=292) was analyzed for YKL-40 by ELISA. Mean CSF YKL-40 was significantly higher
in the CDR 0.5 and CDR 1 groups as compared to the CDR 0 group (** p=.004, ***
p<.0001; One-way ANOVA with Welch’s correction for unequal variances, Tukey post-
hoc Test) (CDR 0= 282.1 +/- 6.7; CDR 0.5= 358.9 +/- 16.9; CDR 1= 351.7 +/- 22.6,
ng/mL, mean +/- SEM). (C) Mean CSF YKL-40/AB42 was significantly higher in the CDR
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0.5 and CDR 1 groups as compared to the CDR 0 group (*** p<.0001; One-way ANOVA
with Welch’s correction for unequal variances, Tukey post-hoc Test). (D & E) Mean CSF
AB42 was significantly higher while mean CSF tau was significantly lower in the CDR 0.5
and CDR 1 groups as compared to the CDR 0 group (*** p<.0001; One-way ANOVA
with Welch’s correction for unequal variances, Tukey post-hoc Test). The degree of

overlap between clinical groups is comparable for all biomarkers evaluated.
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Figure 3.3. (A) CSF samples from subjects with FTLD (N=9) and PSP (N=6) were
analyzed for YKL-40 by ELISA, and levels were compared to those of the validation
cohort (CDR 0 and CDR>0 [CDR 0.5&1 combined], N=292). Because the groups
differed with respect to mean age at LP (FTLD: 59 yrs, PSP: 66 yrs, CDR 0: 71 yrs, CDR
0.5&1: 75 yrs), analyses were adjusted for age. CSF YKL-40 was significantly higher in
the FTLD group as compared to the PSP, CDR 0, and CDR>0 groups (*** p<.0001;
ANCOVA, LSD post-hoc Test). While not reaching statistical significance (defined here
as a=0.05), CSF YKL-40 levels trended lower in the PSP group as compared to the
CDR>0 group. (B-C) CSF YKL-40 and CSF tau values correlated strongly in the FTLD

group, but did not correlate in the PSP group.
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Figure 3.4. In the validation cohort, CSF YKL-40 levels do not vary based on gender

and are not correlated with CSF AB42. However, CSF YKL-40 levels are correlated with

age, CSF tau, CSF p-tau181, and mean cortical PIB binding potential.
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Figure 3.5. CSF YKL-40/Ap42, tau/AB42, and p-tau/AB42 as predictors of (A)

conversion from CDR 0 to CDR>0 and (B) progression from CDR 0.5 to CDR>0.5.

Kaplan-Meier estimates of rates of conversion and progression are shown with red

curves representing the upper tertile and black curves representing the lower two
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tertiles. The bottom panel shows for the CSF YKL-40/AB42 analyses the number of

subjects in the upper and lower tertiles at baseline and at each year of follow-up.
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Utility of CSF Biomarkers in Predicting Conversion from COR 0 to CDR=0
Biomarker HR {35%Cl}  p value

Continuous Y KL-40/AF42 1./8(1.31-2.44) 0003 ——
tau/Ap42 1.54 (1.24-1.93) 0001 —-—
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ptau/Ap42 425 (1.76-10.26) .0013 -

Hazard Ratio

Figure 3.6. Cox proportional hazards models were used to assess the ability of CSF
YKL-40/AB42, tau/AB42, and ptau/AB42 to predict (top) conversion from cognitive
normalcy (CDR 0) to cognitive impairment (CDR>0) and (bottom) progression from very
mild dementia (CDR 0.5) to mild or moderate dementia (CDR>0.5). Biomarker measures
were analyzed as both continuous and categorical variables, and were converted to
standard Z-scores to allow comparison of hazard ratios between different biomarkers. In
evaluating risk, analyses were adjusted for age and gender. Abbreviations: HR, hazard

ratio; Cl, confidence interval.
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Figure 3.7. (A) CSF YKL-40, tau, p-tau181, and AB42 as predictors of conversion from
CDR 0 to CDR>0. Kaplan-Meier estimates of rates of conversion are shown with red
curves representing the upper tertile and black curves representing the lower two
tertiles. (B) Cox proportional hazards models were used to assess the ability of CSF
YKL-40, tau, p-tau181, and AB42 to predict conversion from cognitive normalcy (CDR 0)
to cognitive impairment (CDR>0). Biomarker measures were analyzed as both
continuous and categorical variables. In evaluating risk, “Biomarker” analyses (YKL-40,
tau, p-tau181, AB42) were adjusted for age and gender. Likewise, analyses for “Age”
were adjusted for biomarker and gender, and analyses for “Women” were adjusted for

biomarker and age. Abbreviations: HR, hazard ratio; CI, confidence interval.
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Figure 3.8. Plasma samples of the validation cohort (N=237) were evaluated for YKL-40
by ELISA. (A) Mean plasma YKL-40 was significantly higher in the CDR 0.5 and CDR 1
groups as compared to the CDR 0 group (+ p=.046, * p=.031; One-way ANOVA, Tukey
post-hoc Test) (CDR 0= 62.5 +/- 3.4; CDR 0.5= 81.1 +/- 8.0; CDR 1=91.9 +/- 15.0,
ng/mL, mean +/- SEM). (B) CSF and plasma YKL-40 levels are significantly correlated (r

=.2376, p=.0002).
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Figure 3.9. Plasma YKL-40 levels do not vary based on gender, but are correlated with

age. Plasma YKL-40 levels are not correlated with other CSF biomarkers such as AB42,

tau, p-tau181, or with mean cortical PIB binding potential.
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Figure 3.10. In AD neocortex, YKL-40 immunoreactivity is observed in the vicinity of
thioflavin S-positive fibrillar amyloid plaques (A,B,C). YKL-40 immunoreactivity is present
within a subset of GFAP-positive astrocytes (D) and not in LN-3-positive microglia (E,F).
YKL-40 is also observed in cell processes associated with plaques (G); these processes
lack reactivity for dystrophic neurite marker PHF-1 (H,I) and microglial marker LN-3

(J,K,L representing adjacent focal planes), and may represent astrocytic processes.
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YKL-40 immunoreactivity is also observed in occasional neurons in the superficial white
matter (M,N,O), some of which contain neurofibrillary tangles (evidenced by PHF-1
staining, N,O). These neurons may represent cells of multiform layer VI or ‘interstitial
neurons’ of the white matter. Scale bars = 50 ym; scale bar in A applies to A-C; scale

bar in D applies to D-O, with the exception of N.
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Prior to the experiments described in Chapters 2 and 3, a similar series of
proteomics experiments utilizing 2-D DIGE, but on a smaller scale, were performed by
the Holtzman lab in conjunction with the Proteomics Core. As in Chapter 2, a number of
candidate biomarkers were identified in these preliminary studies, and were
subsequently evaluated by ELISA in an independent cohort. To follow up on these
studies, | sought to evaluate several of these biomarkers on a larger scale; these

experiments are described below.

Introduction

The efficacy of emerging Alzheimer’s disease (AD) modifying treatments will
likely rely on the ability to accurately and reliably diagnose individuals early in the
disease process. Currently, diagnosis of AD is based upon clinical assessment, with
definitive diagnosis requiring pathological evaluation at autopsy. The identification of
biomarkers for AD may allow for a less invasive and more accurate diagnosis in the
antemortem period. Additionally, biomarkers may facilitate early diagnosis, which is
particularly difficult given that there are no signs or symptoms unique to AD. Indeed, a
few cerebrospinal fluid (CSF) proteins (most notably AB42, tau, and phosphorylated tau)
have already shown great promise as diagnostic biomarkers for AD (346).

To identify new candidate biomarkers for AD, our lab used an unbiased
proteomic approach of two-dimensional difference in gel electrophoresis (2D-DIGE)
coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS) to
compare the relative concentrations of CSF proteins of individuals with mild dementia
(Clinical Dementia Rating [CDR] 1, N=6) to those of cognitively normal individuals (CDR

0, N=6) (222) [a larger validation/expansion 2D-DIGE study can be found in Chapter 2].

113



Chapter 4. Follow-up study: Quantitation by ELISA of four candidate biomarkers identified by 2D-
DIGE LC-MS/MS

From this analysis, 11 candidate biomarkers were identified, 6 of which were
subsequently evaluated by enzyme-linked immunosorbent assay (ELISA) in the same
discovery cohort (N=12) and in a larger, independent cohort (N=81). In the independent
cohort, which also included very mildly demented (CDR 0.5) individuals, CSF levels of
a1-antichymotrypsin (ACT), antithrombin 11l (ATIIIl), and zinc-a2-glycoprotein (ZAG) were
significantly higher in the very mild/mild AD (CDR 0.5 and 1) group, confirming the 2D-
DIGE findings. Levels of carnosinase 1 (CNDP1) were lower in the very mild/mild AD
group, but did not reach statistical significance (p=0.076). In contrast to the 2D-DIGE
findings, levels of gelsolin (GSN) and angiotensinogen (AGT) were not found by ELISA
to be significantly different between the clinical groups. Importantly, the combination of
these promising novel biomarkers (ACT, ATIII, ZAG, CNDP1) with more ‘established’
biomarkers CSF AB42 and tau, resulted in a higher AUC and sensitivity than for any
biomarker individually. This increase in AUC did not reach statistical significance, but it is
worth noting that this study may have been underpowered to detect the biological
differences between groups. It will be of interest whether the changes observed in this
panel of markers will reach statistical significance in a larger, independent data set or if
alternative combinations of biomarkers (including fluid or imaging markers) will result in
improved performance. The current study was undertaken to address these issues.
However, evaluation of the levels of ACT, ATIIl, ZAG, and AGT by ELISA in 138 CSF
samples from cognitively normal, very mildly, and mildly demented individuals did not

demonstrate any significant differences between the clinical groups.
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Methods

Study Participants

Participants (N=138) were community-dwelling volunteers at the Knight
Alzheimer’s Disease Research Center at Washington University (ADRC-WU). Informed
consent was obtained from all study participants, and protocols were approved by the
WU institutional review board for human studies. At sample collection, subjects were 37
to 90 years of age and in good general health, having no other neurological, psychiatric,
or major medical diagnoses that could contribute importantly to dementia. Cognitive
status was evaluated and rated by the ADRC Clinical Core based on criteria from the
National Institute of Neurological and Communicative Diseases and Stroke-Alzheimer’s
Disease and Related Disorders Association (57). A clinical dementia rating (CDR) of 0
(N=81) indicated no dementia, CDR 0.5 (N=41) indicated very mild dementia, CDR 1
(N=14) indicated mild dementia, and CDR 2 (N=2) indicated moderate dementia. Some
of the CDR 0.5 participants met the criteria for mild cognitive impairment (MCI) and
some were more mildly impaired and could be considered “pre-MCI” (70). Twenty-five to
30 mL of CSF was collected by lumbar puncture (LP) at 8 AM following overnight fasting.
Samples were inverted to avoid gradient effects, centrifuged (2,000g, 5 minutes, 4°C) to
remove any cellular elements, and aliquoted into polypropylene tubes for freezing and

storage at -80°C.

Enzyme Linked Immunosorbent Assays (ELISAS)

CSF samples were analyzed for AB42, total tau, and phospho-tau181 in duplicate
by quantitative ELISA after a single freeze-thaw cycle according to the manufacturer’s
instructions (Innotest, Innogenetics, Ghent, Belgium). CSF samples were analyzed for

ACT, ATII, ZAG, and AGT in triplicate after two freeze-thaw cycles using ELISAs
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developed ‘in-house.’ A sandwich ELISA was developed for a1-antichymotrypsin (ACT)
using rabbit anti-human ACT antibody (1:1000; DAKO, Carpinteria, CA) for capture,
sheep anti-human ACT antibody (1:1000; The Binding Site, San Diego, CA) for
detection, biotinylated rabbit anti-sheep antibody (1:5000; Vector, Burlingame, CA) for
reporting, poly-HRP streptavidin (Vector, Burlingame, CA), and Elite ABC (Vector,
Burlingame, CA) for color development; ACT purified from human plasma was used as
standard (Sigma, St. Louis, MO). A sandwich ELISA was developed for antithrombin IlI
(ATIIN) using rabbit anti-human ATIII antibody (1:1000; DAKO, Carpinteria, CA) for
capture, mouse anti-human ATIIIl antibody (1:2000; Antibody Shop, Denmark) for
detection, biotinylated rabbit anti-mouse antibody (1:5000; Jackson, West Grove, PA) for
reporting, poly-HRP20 streptavidin (1:2000; Fitzgerald, Concord, MA), and Super Slow
TMB (Sigma, St. Louis, MO) for color development; ATIII purified from human plasma
was used as standard (Sigma, St. Louis, MO). A sandwich ELISA was developed for
zinc-a2-glycoprotein (ZAG) using rabbit anti-human ZAG antibody (1:1000; gift from Dr.
Iwao Ohkubo, Shiga University of Medical Science, Japan) for capture, mouse anti-
human ZAG antibody (clone 1D4, 1:100; Santa Cruz Biotechnology, Santa Cruz, CA) for
detection, biotinylated rabbit anti-mouse antibody (1:5000; Jackson, West Grove, PA) for
reporting, poly-HRP20 streptavidin (1:2000; Fitzgerald, Concord, MA),and Super
Sensitive TMB (Sigma, St. Louis, MO) for color development; ZAG purified from human
seminal plasma was used as standard (gift from Dr. lwao Ohkubo). A sandwich ELISA
was developed for angiotensinogen (AGT) using mouse anti-AGT antibody (clone F8A2,
1:288; gift from Dr. Claus Oxvig, University of Aarhus, Denmark) for capture, chicken
anti-AGT antibody (1:1200; gift from Dr. Claus Oxvig) for detection, rabbit anti-chicken:
horseradish peroxidase antibody (1:15,000; Sigma, St. Louis, MO) for reporting, and
Super Sensitive TMB (Sigma, St. Louis, MO) for color development; AGT purified from
human plasma was used as standard (Calbiochem, San Diego, CA).
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Statistical Analyses

Statistical analyses were performed in PASW 18 (SPSS Inc, Chicago, IL). The
distributions of analytes were tested for normalcy by Shapiro-Wilk test, and, when
appropriate, log10 transformed to approximate a normal distribution. Analysis of
covariance (ANCOVA) using the General Linear Model (GLM) procedure in PASW was
used to determine analytes that differed in concentration between AD (CDR>0) and
control (CDR 0) groups while adjusting for the effects of age and gender. Because
nearly identical results were obtained for analyses using log transformed data as for
analyses using data in the original scale (non-transformed), results are reported using

the original scale data.

Results

To follow-up on the candidate biomarkers identified in the initial discovery study
(222), we used ELISAs to measure the levels of ACT, ATIIl, ZAG, and AGT in CSF from
63 cognitively normal (CDR 0), 36 very mildly demented (CDR 0.5), and 11 mild-
moderately demented (CDR 1&2) individuals. In the initial discovery study, for the very
mild/mild AD group, ACT, ATIIl, and ZAG levels were significantly higher, CNDP1 levels
trended lower, and GSN and AGT levels were unchanged. Because GSN did not
demonstrate promise in the initial study and because of CNDP1 reagent limitations,
these two markers were not chosen for further analysis in the current study.

Although the CDR 0 and CDR>0 groups were well matched with regard to age
(CDR0=71.9 +/- 7.1, CDR>0=72.4 +/- 9.7, mean +/- SD), they differed with respect to
gender (CDR 0= 63% female, CDR>0= 43% female). Additionally, because our initial

study found some of the analytes to correlate with these variables, we evaluated the
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levels of each analyte for potential correlation with age and gender. CSF ACT and AGT
levels correlated modestly with increasing age (r=0.265, p=0.005, and r=0.242, p=0.024,
respectively), while levels of ACT, ATIIl, and ZAG were significantly higher in males than
in females (p=.047, p=.019, p<.001, respectively, Student’s t-test). Additionally,
participants with very mild to moderate dementia exhibited the typical AD CSF biomarker
profile characterized by significantly lower mean levels of CSF AB42 (CDR>0= 406.8 +/-
200.9, CDR 0=573.8 +/- 269.7 pg/mL, mean +/- SD) and higher mean levels of CSF tau
(CDR>0= 538.5 +/- 280.9, CDR 0=313.3 +/- 188.5 pg/mL, mean +/- SD) and CSF p-
tau181 (CDR>0= 76.8 +/- 38.0, CDR 0=52.8 +/- 24.7 pg/mL, mean +/- SD).

No difference in ACT, ATIIl, ZAG, or AGT levels was found between the AD
(CDR>0) and control (CDR 0) group by analysis of covariance adjusting for the effects of
age and gender (p=0.535, p=0.332, p=0.403, p=0.651, respectively). These
observations were not qualitatively different from those using the log-transformed or
unadjusted data.

The ELISA protocols used here varied slightly from those of the initial study due
to changes in personnel, reagent availability, and optimizations for assay performance.
To assess whether these changes may have contributed to the inability to validate our
initial findings, 28 samples (CDR 0, N=18; CDR>0, N=10) of the initial study were re-
assayed (‘overlap’ samples). Although concentrations measured for these overlap
samples correlated strongly between the two experiments (ACT r=0.849, ATIll r=0.837,
ZAG r=0.798, AGT r=0.823), absolute values were approximately 50% higher for the
new ATIII, ZAG, and AGT measurements. For these 28 overlap samples, levels of ZAG
were significantly higher in the CDR>0 group compared to the CDR 0 group (p=0.014),
while levels of ACT, ATIIl, and AGT were not different between the clinical groups
(p=0.184, p=0.131, p=0.480, respectively). Combining the 110 new CSF samples of this
study with the 28 overlap samples still did not reveal any differences in ACT, ATIII, ZAG,
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or AGT levels between the clinical groups (p=0.939, p=0.772, p=0.982, p=0.417,

respectively) (Figure 4.1).
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Figure 4.1. Mean levels of CSF ACT, ATIIIl, ZAG, and AGT are not significantly different
between AD (CDR>0) and control (CDR 0) groups (analysis of covariance, adjusting for
age and gender). CSF from a total of 81 CDR 0 and 57 CDR>0 participants (110
samples from this study + 28 samples overlapping from initial discovery study) was
analyzed by ELISA (original-scale data shown; outlier indicated by the unfilled circle for

ZAG was removed from analyses).
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Discussion

In a 138-subject cohort we were unable to validate the findings of an initial report
of increased ACT, ATIIl, and ZAG levels in AD (CDR>0) CSF. However, interestingly, an
increase in ZAG levels in the AD group was observed for the 28 samples that
overlapped between the initial report and this study, suggesting that the results of the
initial study may have been cohort-dependent. The inconsistency in ACT results
between our two studies may not be particularly surprising, given that a number of other
studies have found either increased (211, 215, 220) or unchanged ACT levels in AD
CSF (216-218). The other markers (i.e. ATIll, ZAG, and AGT) have not been well
studied in AD, and to our knowledge, changes in their levels in AD CSF have not been
evaluated by other groups. These findings would appear not to support a role for ACT,
ATIIl, ZAG, or AGT as biomarkers for AD. However, it is important to note that these four
proteins were first identified as differing significantly in abundance between the AD and
control group by 2D-DIGE, a technique sensitive to concentration changes of minor
protein isoforms and post-translational modifications which may not substantially alter
global concentrations of a ‘parent’ protein. For ELISAs that measure the parent protein,
or total protein level, it is perhaps to be expected that some candidate biomarkers
identified by 2D-DIGE would not be validated by ELISAs not tailored to detect only
specific isoforms or protein ‘sub-species.’ Indeed, ATIIl, ZAG, and AGT are known to
have different isoforms (434-437), and ACT, ATIIl, and AGT were identified in multiple
protein spots on the 2-D gels of the discovery study, suggesting different protein
isoforms. Therefore, a thorough evaluation of the potential of these analytes as
biomarkers for AD would appear to require either high-throughput 2D-DIGE of every
sample to be analyzed or the design of ELISAs targeting specific post-translational

modifications or specific ‘sub-species’ of interest.
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Chapters 2-4 of this work have focused on relatively intact, large molecular weight
proteins, just as the bulk of published biomarker research. A relatively unexplored
avenue for research is the CSF peptidome. The following chapter describes the
development of methods for such an analysis, as well as some preliminary results from

their application to a small number of CSF samples.

Introduction

Improved proteomics technologies, in particular advances in mass spectrometry
(MS) techniques, have solidified proteomics as a valuable tool for biomarker discovery.
Indeed, during the last two years, over one thousand articles have been published on
the subject, including recent efforts to characterize the human cerebrospinal fluid (CSF)
proteome (239, 240). General methods in proteomic studies typically include protein
separation by two-dimensional gel electrophoresis (2-DE), liquid chromatography (LC),
or protein-chip arrays, followed by MS or tandem MS and database searches to
determine protein identity. Powerful proteomic approaches, allowing for the
simultaneous screening of large numbers of proteins in a given sample, expand the
possibilities for biomarker discovery beyond standard targeted techniques, such as
enzyme linked immunosorbent assay, that assess single or small numbers of proteins.
Applied to Alzheimer’s disease (AD), proteomic studies comparing the differences in
protein expression levels between AD and control CSF samples have identified a
number of potential diagnostic markers (222, 241-246). Few studies, however, have
investigated the low molecular weight (MW) components of CSF for potential AD

biomarkers. This is primarily due to a lack of techniques for isolating and detecting low
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MW, low abundance species for mass spectrometry. In our prior proteomic studies
(Chapter 2 and 4), for example, CSF samples were initially processed with 10 kDa MW
exclusion filters to remove salts and to retain and analyze the larger molecules (222,
251). Additionally, many proteomics studies utilize 2-DE, a technique which is usually
unable to resolve peptides and proteins smaller than 15 kDa (438). Because the low MW
components of CSF remain a relatively untapped source for potential novel biomarkers,
we have developed a protocol for the extraction and identification of peptides from CSF.
With this protocol, the <10 kDa fraction can be probed for peptides that differ in
abundance between AD and control groups. More generally, this protocol can be applied
to the search for novel biomarkers or altered proteolytic pathways of a number of central

nervous system (CNS) diseases.

Methods
CSF sampling:

CSF samples were obtained by lumbar puncture (LP) from volunteer participants
enrolled in longitudinal studies of healthy aging and dementia at the Knight Alzheimer’s
Disease Research Center at Washington University (ADRC-WU). Study protocols were
approved by the WU Institutional Review Board, and written informed consent was
obtained from each participant. Cognitive status was evaluated and rated based on
criteria from the National Institute of Neurological and Communicative Diseases and
Stroke-Alzheimer’s Disease and Related Disorders Association (57). A clinical dementia
rating (CDR) of 0 indicated no dementia, whereas CDR 1 indicated mild dementia. For a

‘mixed clinical sample,” de-identified, discarded CSF from diagnostic LPs was pooled
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from 20+ patients with a variety of medical conditions to provide a large source of CSF

for protocol development and testing.

Sample preparation, solid phase extraction, and mass spectrometry:

To isolate low MW species, CSF samples were passed through a 10-kDa MW
cut-off centrifugal filter unit (Amicon Ultra-4 centrifugal filter units). Sample filtrates were
then acidified with trifluoroacetic acid (TFA) and spiked with a mixture of tryptic peptides
from bovine serum albumin (BSA) as an internal standard (1% TFA final, 2 pmol
BSA/200 uL CSF). For desalting and concentrating low MW proteins and peptides, solid
phase extraction procedures were developed using Hypercarb (porous graphitic carbon)
material in both a column (Hypersep, Thermo Scientific) and tip (NuTip, Glygen) format.
For the tips, the Hypercarb chromatography material was first washed with 60%
acetonitrile (ACN)/ 1% formic acid (FA) and then equilibrated with 1% ACN/1% FA. A
more stringent initial wash sequence was used for the columns, involving washes with
95% ACN/1% TFA, 60% ACN/1% TFA, and 90% ACN/1% TFA, to remove polymer
contamination likely leaching from the column. Samples were loaded onto washed
columns or tips; peptides that did not bind the first column or tip were sequentially
extracted from the same sample with additional columns or NuTips. Columns and tips
were rinsed with 1% ACN/1% FA, and peptides were eluted with sequential applications
of 60% ACN/1% FA and 90% ACN/1% FA. MALDI-TOF/TOF (Proteomics 4700, Applied
Biosystems) was used to evaluate the recovery of the internal standard BSA peptides
and to assess intra- and inter-sample preparation reproducibility. Samples were then
evaporated to dryness in a Speed-Vac centrifuge, and dissolved in 1% ACN/1% FA for

LC-MS/MS (nano-LC-linear quadrupole Fourier transform ion cyclotron) for peptide
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identification and quantification. Tandem spectra were searched against the National
Center for Biotechnology Information non-redundant database NR using MASCOT,
version 1.9 (Matrix Science, London) and neurloProSight (University of lllinois). Relative
peptide quantification was determined using X-calibur (Thermo Fisher Scientific) and

Rosetta Elucidator (Rosetta Biosoftware).

Results and Discussion

In developing a solid phase extraction protocol for CSF peptides, we evaluated
the performance of Hypercarb chromatography material in both column and tip formats
(Figure 5.1). In the tip format, the chromatography material is embedded in the inner
surface of a pipette tip. Hypercarb material is composed of flat sheets of hexagonally
arranged carbon atoms, and is capable of separating very closely related compounds,
including geometric isomers and diastereoisomers. Analyte binding is multimodal, with
interactions through both hydrophobic and electrostatic mechanisms. The efficiency of
CSF processing with the two formats differed; initially, all NuTips were processed
manually one-at-a-time, while the columns could be connected to a vacuum manifold,
allowing for the processing of 16 samples simultaneously (Figure 5.1). Subsequently, we
integrated a robot with the NuTip protocol, allowing up to 96 samples to be processed

simultaneously with excellent tip-to-tip reproducibility.
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Figure 5.1. Solid phase extraction procedures were developed using Hypercarb
(porous graphitic carbon) material in both A) column (Hypersep, Thermo

Scientific) and B) tip (NuTip, Glygen) format. The columns can be connected to a
vacuum manifold (A), while the tips can be processed using a pipettor (B) or can

be interfaced with a robot (not pictured).

The general steps of a typical solid phase extraction involve 0) (may not be
necessary) washing the cartridge (i.e. column or tip), 1) equilibrating or conditioning of
cartridge with a non-polar or slightly polar solvent that prepares/'wets’ the surface, 2)
loading the sample, 3) rinsing the cartridge to remove residual unbound species, and 4)
eluting with solvents of varying strengths. For our analyses, initial sample preparation
involved filtering the samples (10-kDa MWCO) to obtain peptides and low molecular
weight proteins, acidifying the filtrate, and spiking it with a mixture of tryptic peptides
from BSA as an internal standard. This BSA standard allowed us to compare the
reproducibility between columns/tips and between runs, and to assess recovery

performance.
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Using the columns, many of our initial spectra contained a series of peaks with a
major mass difference between them of 44 Da, suggesting polyethylene glycol
contamination that was likely a by-product of column manufacturing. Therefore, we
tested a series of different column washes to remove the polymer contamination, and
found that sequential 95% ACN/1% TFA, 60% ACN/1% TFA, and 90% ACN/1% TFA
washes were successful. We did not observe polymer contamination with the tips.
Indeed, one advantage reported by the NuTip manufacturer is the lack of polymers or
glue, thus avoiding potential contamination or permeability problems (Glygen).

Initial recovery of BSA peptides was low; however, the flow-through lacked BSA
peptides, indicating that the issue was not with binding to the column, but with elution
from the column. Thus, to increase percent recovery, we tested various elution solvents
and electronic modifiers, including 60% ACN, 90% ACN, 60% ACN/1% TFA, 90%
ACN/1% TFA, 60% ACN/1% FA, 90% ACN/1% FA, 20% IPA/50% ACN, 40% IPA/50%
ACN, 20% IPA/50% ACN/1% TFA, and 40% IPA/50% ACN/1% TFA (TFA=
trifluoroacetic acid; ACN= acetonitrile; FA= formic acid; IPA= isopropanol). We found that
60% ACN/1% FA gave the greatest peptide recovery, and that following it with 90%
ACN/1% FA eluted additional (albeit fewer) peptides of a different general profile.

In developing a protocol for the extraction and identification of peptides from
CSF, we discovered that Hypercarb material yielded better results in the NuTip format
(higher signal intensity, more recovered peptides) than in the column format. Although
we tested a number of elution solvents of varying strengths, used 25 mg and 50 mg
capacity columns and loaded varying CSF volumes, incorporated additional wash steps
after sample loading to remove residual salt that can cause signal attenuation, and

employed other ‘troubleshooting’ techniques, the performance of the columns appeared
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inferior to that of the tips. To test whether multiple tips would be needed for each sample

to ensure maximal peptide recovery, unbound peptides were sequentially extracted from

the same sample using three NuTips. The maijority of the BSA peptides were extracted

with the first tip, with the number of peptides and the signal intensity decreasing

dramatically for the second and third tips (Figure 5.2).
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Figure 5.2.
Sequential
extraction of
spiked internal
standard BSA
peptides from
CSF, evaluated
by MALDI-
TOF/TOF. The
flow-through
from Tip 1
(containing any
unbound
peptides) was
applied to Tip 2;
the flow-through
from Tip 2 was
applied to Tip 3.
As
demonstrated,
most peptides
were extracted
with the first tip.
The signal
intensity (upper
right corner of
each spectrum)
decreased
significantly
after the first tip.

We then applied our NuTip protocol to CSF from a cognitively normal individual

(CDR 0), an individual with mild dementia of the Alzheimer’s type (CDR 1), and a mixed

clinical sample (20+ subjects with a variety of medical conditions). In this preliminary
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study, MALDI-TOF/TOF and LC-MS/MS analysis of internal standard BSA peptide
recovery demonstrated good method reproducibility, thus providing confidence of the
validity of endogenous peptides detected and identified. Specifically, MASCOT search of
the LC-MS/MS data identified 100+ BSA peptides, ten of which were randomly selected
for quantitation using X-calibur (Table 5.1). No differences were detected for BSA across

the three samples (p=.1204, general linear model procedure in SAS).

Table 5.1.
BSA Peptide Peptide Area- Area- Area- Ten random
Peptides Sequence miz Score Pooled CDR 1 CDRO BSA
1 QTALYELLK 997 600 54 595119 973232 258666 | peptides,
2 LYVSTQTALA 501.798 61| 5478748 | 2772177 | 3542600 | shown here,
3 EACFAVEGPK 554 264 65 722101 525554 750671 we]re d
4 KQTALVELLK 571.862 82| 5674598 | 4220047 | 2259844 | SO ect.e for
quantitation.
5 FKDLGEEHFK 625.317 66 344566 276029 373076 | No
6 HLYDEPQNLIK 653.362 80 | 33534198 | 25793920 | 52492392 | differences
7 TYMENF VAFVDK 708.350 101 | 8518997 | 2571714 | 1152917 | were
8 FyAPELLY YANK T46.382 &4 635892 163799 25189 | detected for
9 DAFLGSFLYEYSR 784 377 78| 325794 14264 2574 | BSA across
the three
10 HPYFYAPELLYYANK | 630316 74 378289 10188 13008
samples
(Area- pooled,
CDR 1, CDR
0) (p=.1204).

Fifty-six unique peptides (with MASCOT scores =30), representing nineteen
unique proteins, were identified by tandem MS in the CDR 0, CDR 1, and mixed clinical
CSF (Table 5.2). Five proteins were selected for further study based on their well shown
association with AD (amyloid-beta precursor protein, tau, apolipoprotein E) or because
our previous studies have identified them as being differentially expressed in AD versus
control CSF (chromogranin B, VGF nerve growth factor (222)). For these five selected

proteins, quantification of peptides from the ion currents that comprised the selected ion
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chromatogram (illustrated in Figure 5.3, 5.4) revealed differences in abundance in these
peptides between CDR 0, CDR 1, and mixed clinical CSF samples (Table 5.3).

Using the protocol presented here, we have extracted and identified endogenous
peptides from CSF. Quantification of a subset of these peptides revealed differences in
abundance among pooled, CDR 1, and CDR 0 CSF samples, albeit with a limited
sample number. Additionally, recovery of internal standard BSA peptides (~2 pmol from
200 uL) was not statistically significantly different between sample runs, demonstrating
the reproducibility of the extraction and LC-MS method. Sample preparation and
obtaining high quality MS data are perhaps the largest challenges of proteomic analysis,
and during our protocol development, many different experimental variations were
tested, not all of which are represented here. Subsequent efforts to purify and
concentrate the fractions eluted from the NuTips increased the number of peptides
detected and the number of unique proteins (now, 36) represented. It will be of interest
in future studies to find whether further protocol optimization, in particular sample
digestion, can improve the detection and identification of peptides in CSF. For complex
biological samples it is often necessary to digest prior to mass spectrometry; sample
digestion generates peptides with molecular masses in the optimal range of the mass
spectrometer that can also be fragmented more efficiently. Indeed, initial experiments
have shown that our ability to identify peptides was increased upon trypsin digestion.
The future application of this protocol to larger numbers of AD and control CSF samples
may identify many novel candidate biomarkers for AD; additionally, this protocol for the
low molecular weight species in CSF may be used for discovery studies of other

neurological disorders as well.

130



Chapter 5. Development of a Solid Phase Extraction Protocol For Peptides From Cerebrospinal
Fluid In Conjunction with Tandem Mass Spectrometry to Identify Novel Biomarkers for
Alzheimer’s Disease

o 200 2,600 30,000 300,000 2827€8
= —
1400 = z
1300 = - .
: i —

1200

I\IL Iill\ljﬂll"l' [LCARRITR [T

1100 =- =

1000+

m/z

843000  103500¢

Time (Minutes)

Figure 5.3. High-resolution two-dimensional LC-MS peptide map.

Shown is a representative example of a two-dimensional LC-MS peptide map from one
of the samples. Visualization of the LC-MS data in this way allows for assessment of the
overall sample complexity and of the quality of the LC separation. Along the x-axis is
shown retention time in minutes, while along the y-axis is shown the mass (m) to charge
(z) ratio. Signal intensity is represented colormetrically, with yellow-red indicating
features of greater intensity. The inset (a feature shown at greater magnification) shows

the isotopic cluster for the doubly-charged chromogranin B peptide with m/z of 1013.41.
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Figure 5.4. A) Representative LC-MS/MS data from low MW CSF eluate.
(A) Selected ion chromatogram showing a single peak at the accurate mass of 1013.41,
representing a chromogranin B peptide; (B) corresponding mass spectrum

demonstrating the isotopic distribution of peak represented in (A).
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Table 5.2. Peptides detected and identified by tandem MS in pooled, CDR 0, and

CDR 1 CSF
Protein Peptide Sequence m/z Score
1 | chromogranin B precursor | RPQSEESWDEED 753.8056 55
RSQEESEEGEEDATSEVD 1013.4159 97
SKGQPRSQEESEEGEEDATSEVD 842.0328 90
SSQGGSLPSEEKGHPQEESEESNVS 873.0621 60
SSQGGSLPSEEKGHPQEESEESNVSMASLGE | 1069.1471 67
SSQGGSLPSEEKGHPQEESEESNVSMASLGE | 1069.4847 57
2 | VGF nerve growth factor LGGSEAGERL 494.7592 73
inducible precursor
LFAEEEDGEAGAED 741.3054 106
QQETAAAETETRTHT 828.8937 55
GLQEAAEERESAREEEEAEQE 807.361 55
GLQEAAEERESAREEEEAEQE 807.365 63
GGEERVGEEDEEAAEAEAEAEEAERA 922.0626 91
3 | testican AVTEDDEDEDDDK 748.2952 51
AVTEDDEDEDDDKE 812.8209 110
AVTEDDEDEDDDKEDE 935.859 90
AVTEDDEDEDDDKEDEVG 1013.3917 65
AVTEDDEDEDDDKEDEVGY 1095.424 110
4 | neuron-specific protein VLSEEKLSEQETEAAEKSA 693.684 87
5 | extracellular matrix protein | QMUMKHGNLEQ 625.3168 73
FRAS1 precursor
LSEVSNFTMEDIN 757.4318 40
6 | amyloid beta A4 precursor | DHSKLVDVPFQVEFPAPKNELVQKF 729.6345 62
protein
DHSKLVDVPFQVEFPAPKNELVQKF 729.6364 52
DHSKLVDVPFQVEFPAPKNELVQKF 729.8872 75
7 | fibrinopeptide A DSGEGDFLAEGGGV 655.2823 92
ADSGEGDFLAEGGGVR 768.8611 116
8 | fibrinogen alphaA DSGEGDFLAEGGGV 655.2823 92
ADSGEGDFLAEGGGVR 768.8611 116
SMGSWNSGSSGTGSTGNQNP 643.2718 38
9 | TPA: microtubule- TGSSGAKEMKLKGAD 741.3054 69
associated protein tau
10 | hemicentin 1 FNAIGSF 756.3593 35
EQVTNVSVLLNQL 732.3136 40
QCTVSNAAGKQAKD 741.3054 79
SGISTPARIDLLEL 495.2418 33
11 | SLC43A2 protein VSCLLIAYGASK 642.3611 67
DANQCVGRAGAPAPSPQP 897.863 33
12 | poly(A) binding protein, HQAKEATQKAVNSA 741.8063 72
cytoplasmic 3
QKAVDEMNGKELNGKQIYVG 747.7208 56
13 | glycine-, glutamate-, RATDAEMRARRKAATEEAEKQ 807.365 72
thienylcyclohexylpiperidine-
binding protein
14 | leptin receptor isoform 2 SLYPIFMEGVGK 671.3491 44
EQDRNCSLCADNIEGK 637.5971 37
EQDRNCSLCADNIEGK 955.898 69
EQDRNCSLCADNIEGK 956.4018 53
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EQDRNCSLCADNIEGK 956.8949 64
EQDRNCSLCADNIEGK 957.3944 52
15 | apolipoprotein E KVKQAVETEPEPEL 799.9102 71
KVKQAVETEPEPEL 800.41 71
KVEQAVETEPEPEL 799.9102 84
KVEQAVETEPEPEL 800.9118 58
16 | unnamed protein product HQAKETAQKAVNSA 741.8063 88
(Gl # 34534986)
17 | unnamed protein product EQVTNVSVLLNQL 732.3136 40
(Gl # 6551993)
QCTVSNAAGKQAKD 741.3054 79
18 | hypothetical protein (Gl # TCAEKEEENQEN 741.3054 70
47027976)
19 | unnamed protein product MQNIGEQGHMA 417.2122 54
(Gl #70905151)
MQNIGEQGHMA 417.2133 65
MQNIGEQGHMA 625.818 69
MQNIGEQGHMA 625.8196 63

Table 5.2. Nineteen unique proteins (56 unique peptides with MASCOT scores 230)

were identified by tandem MS in the CDR 0, CDR 1, and mixed clinical CSF.
Abbreviations: m/z = mass to charge ratio. “Score” is the MASCOT ion score, which is a
measure of the reliability of each identification; scores above 30 are generally

considered significant.
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Table 5.3. Quantification of selected peptides

Area- Area- Area-
Peptide Sequence m/z Peptide Score Pooled CDR1 CDRO

chromogranin B precursor | RPQSEESWDEED 753.806 55 107119 3256 3962
RSQEESEEGEEDATSEVD 1013.416 97 266789 50777 148372
SKGQPRSQEESEEGEEDATSEVD 842.033 90 245278 2048 4162
SSQGGSLPSEEKGHPQEESEESNVS 873.062 60 2218 37165 88850
SSQGGSLPSEEKGHPQEESEESNVSMASLGE | 1069.147 67 0 46270 133
SSQGGSLPSEEKGHPQEESEESNVSMASLGE | 1069.485 57 0 27048 0

VGF nerve growth factor

inducible precursor LGGSEAGERL 494.759 73 98051 6903 992
LFAEEEDGEAGAED 741.305 106 307906 0 592
QQETAAAETETRTHT 828.894 55 5473 47895 3E+06
GLQEAAEERESAREEEEAEQE 807.361 55 14947 72131 405950
GLQEAAEERESAREEEEAEQE 807.365 63 14947 72131 405950
GGEERVGEEDEEAAEAEAEAEEAERA 922.063 91 73079 0 9045

amyloid beta A4 precursor

protein DHSKLVDVPFQVEFPAPKNELVQKF 729.635 62 431472 145650 87484
DHSKLVDVPFQVEFPAPKNELVQKF 729.636 52 431472 145650 87484
DHSKLVDVPFQVEFPAPKNELVQKF 729.887 75 345224 114203 79671

TPA: microtubule-

associated protein tau TGSSGAKEMKLKGAD 741.305 69 307906 0 592

apolipoprotein E KVKQAVETEPEPEL 799.910 71 4359929 4357 7075
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KVKQAVETEPEPEL 800.410 71 1943888 1157 2180
KVEQAVETEPEPEL 799.910 84 4359929 4357 7075
KVEQAVETEPEPEL 800.912 58 565296 0 0

Table 5.3. Quantification of peptides from the ion currents that comprised the selected ion chromatogram for each peptide are listed.
Differences in peptide abundance can be seen between the samples; for example, the first chromogranin B peptide listed appears

much higher in the pooled, or mixed clinical, sample as compared to the CDR 0 and CDR 1 samples.
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Chapters 2-5 of this work reflect efforts to identify novel biomarkers for AD through
unbiased approaches. Alternatively, targeted approaches focusing on molecules or
processes already implicated in disease can also be used for biomarker discovery. A
convenient compromise between these two approaches is offered by established
targeted multiplexed immunoassay platforms, which allow for the simultaneous
quantitation of large numbers of molecules. We utilized one such resource, Rules Based
Medicine, which has assembled a platform for the analysis of 190 markers of varied
functional classes, many of which have not been investigated in AD, in an attempt to

identify novel biomarkers of AD.

Introduction

With the growing prevalence of Alzheimer’s disease (AD), the ability to accurately
and reliably diagnose AD in its earliest stages has become a public health priority. The
concept of ‘earliest stages,” however, warrants revision as it is increasingly clear there
exists a ‘preclinical’ or ‘presymptomatic’ stage during which the pathological changes
associated with AD, amyloid plaques and neurofibrillary tangles, begin to appear without
concomitant clinical features. This period has been estimated to be ~10-15 years in
duration. Means to identify this preclinical phase of AD may facilitate medical
intervention to prevent or slow neurodegeneration and the resulting cognitive
impairment. Because clinical examination cannot detect preclinical disease and has
limited accuracy with very mild stages of AD, there is a pressing need for biomarkers for
AD. Furthermore, biomarkers may have significant utility in clinical trial design, providing
greater diagnostic certainty for enrollment than is possible by clinical diagnosis alone,

and allowing for the selective enrollment of individuals at greater risk of developing
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future cognitive impairment, ultimately resulting in trials of shorter duration, smaller size,

and reduced cost.

The cerebrospinal fluid (CSF) is a logical source of potential AD biomarkers, as it
reflects biochemical changes in the brain. Indeed, the fluid biomarkers thus far showing
the greatest promise for use in AD diagnosis and prognosis are CSF amyloid-g42
(Ap42), tau, and phosphorylated forms of tau (p-tau) (119, 410-413). Concentrations of
CSF AB42 decrease in association with the deposition of AB42 into plaques within the
brain (107, 127, 128, 360). This process occurs years prior to the clinical onset of AD
and may mark the earliest phase of AD pathology. CSF AB42 levels remain low
throughout the disease course (94, 127, 423). In contrast, CSF tau and p-tau levels
progressively increase with the advancing stages of AD, and in some individuals, begin
to rise several years prior to diagnosis (107, 439, 440). The ratios of tau or p-tau to Ap42
have also proven useful for predicting clinical progression in individuals who have very
mild dementia or mild cognitive impairment (MCI), and for predicting future AD dementia
among those who are cognitively normal (107, 132, 348). Nevertheless, even for these
analytes, there is substantial overlap between control and AD groups (346).
Consequently, there remains a need for supplemental biomarkers to improve diagnosis
and prognosis at different disease stages. Given the multifactorial nature of AD
pathophysiology, it is likely that there will be other CSF biomarkers that will be useful in
this regard. While proteomic screens have identified a number of other candidate AD
biomarkers (222, 241-243, 245, 246, 250, 361, 362, 364), few studies have utilized
large, well-characterized cohorts or have looked for biomarkers of preclinical or very

early stage disease.
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In this study, a large number of CSF samples (N=333) selected from well-
characterized MCl/very early stage-AD and cognitively normal control cohorts were
chosen for protein profiling using a commercially available panel that measures a variety
of cytokines, chemokines, metabolic markers, growth factors, and other markers.
Multiplex immunoassay platforms such as the one used here, Rules Based Medicine
Discovery MAP 1.0 panel, allow for the simultaneous quantitation of many analytes, and
by adhering to clinical laboratory improvement amendments (CLIA) standards, are
amenable for clinical trial work. Using multiple statistical approaches, our findings
suggest novel biomarkers that may improve the ability of traditional AD biomarkers,
AB42 and tau, to distinguish MCl/early-stage AD from cognitive normalcy and to predict

the development of future cognitive impairment (i.e. detection of preclinical AD).

Methods

Participant Selection

Participants (N=333) were community-dwelling volunteers enrolled in longitudinal
studies of healthy aging and dementia at the Knight Alzheimer’s Disease Research
Center at Washington University (WU-ADRC). The study protocol was approved by the
Human Studies Committee at Washington University, and written and verbal informed
consent was obtained from participants at enroliment. At sample collection, participants
were 260 years of age and in good general health, having no other neurological,
psychiatric, or major medical diagnoses that could contribute importantly to dementia.
Cognitive status was evaluated based on criteria from the National Institute of
Neurological and Communicative Diseases and Stroke-Alzheimer’s Disease and Related

Disorders Association (NINCDS-ADRDA) (57). A clinical dementia rating (CDR) of 0
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(N=242) indicated no dementia, CDR 0.5 (N=63) indicated very mild dementia, and CDR
1 (N=28) indicated mild dementia (68). Some of these CDR 0.5 participants met the
criteria for mild cognitive impairment (MCI) and some were more mildly impaired and
were considered “pre-MCI” (70, 441). A subset of participants (N=179) in this cohort had
also undergone positron emission tomography (PET) imaging with Pittsburgh
Compound-B (PIB) for assessment of in vivo amyloid burden (127, 318, 330).
Apolipoprotein E (APOE) genotypes were determined by the WU-ADRC Genetics Core.
Twenty-five to 30 mL of CSF was collected by lumbar puncture (LP) at 8 AM following
overnight fasting. Samples were inverted to avoid gradient effects, centrifuged briefly
(2,000g, 5 minutes, 4°C) to remove any cellular elements, and aliquoted into

polypropylene tubes for freezing and storage at -80°C (107).

Analyte Measurements

CSF AB42, total tau, and phospho-tau181 levels (from here on referred to as
‘traditional’ biomarkers) were analyzed in duplicate by the WU-ADRC Biomarker Core by
quantitative ELISA after a single freeze-thaw cycle according to the manufacturer’s
specifications (Innotest, Innogenetics, Ghent, Belgium).

CSF samples were evaluated by Rules Based Medicine, Inc. (RBM) (Austin, TX)
for levels of 190 analytes using the Human Discovery Multi-Analyte Profile (MAP) 1.0
panel and a Luminex 100 platform. This 190 analyte panel (from here on referred to as
‘RBM analytes’) was assembled by RBM to measure a range of cytokines, chemokines,
growth factors, hormones, metabolic markers, and other proteins thought to be important

in disease; a complete list of analytes is available at www.rulesbasedmedicine.com.
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At RBM, the samples were thawed at room temperature (RT), vortexed, spun at
13,000g for 5 minutes for clarification, and 1.0 mL was removed into a master microtiter
plate for MAP analysis. Using automated pipetting, an aliquot of each sample was
introduced into one of the capture microsphere multiplexes of the Human
DiscoveryMAP. The mixtures of sample and capture microspheres were thoroughly
mixed and incubated at RT for 1 hour. Multiplexed cocktails of biotinylated reporter
antibodies for each multiplex were then added robotically, and after thorough mixing,
were incubated for an additional hour at RT. Multiplexes were developed using an
excess of streptavidin-phycoerythrin solution which was thoroughly mixed into each
multiplex and incubated for 1 hour at RT. The volume of each multiplexed reaction was
reduced by vacuum filtration and then increased by dilution into matrix buffer for
analysis. Analysis was performed in a Luminex 100 instrument and the resulting data
stream was interpreted using proprietary data analysis software developed at RBM. For
each multiplex, both calibrators and controls were included on each microtiter plate.
Eight-point calibrators were run in the first and last column of each plate and 3-level
controls were included in duplicate. Testing results were determined first for the high,
medium and low controls for each multiplex to ensure proper assay performance.
Unknown values for each of the analytes localized in a specific multiplex were
determined using 4 and 5 parameter, weighted and non-weighted curve fitting algorithms

included in the data analysis package.

Statistical Analysis

Statistical analyses were performed in SAS 9.2 (SAS Institute Inc, Cary, NC) for

univariate analyses, ROC/AUC calculations, and Cox proportional hazards models, and
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in R version 2.10.1 for predictive modeling (442). For the RBM analytes, data below the
lower detection limit (LDL) were imputed to LDL/2, and data more than five standard
deviations beyond the mean were imputed using a nearest neighbor algorithm. Analytes
with more than 10% of data missing or below the LDL were excluded from analysis. The
distributions of analytes were tested for normalcy by Box-Cox analysis and, when
appropriate, log10 transformed to approximate a normal distribution. Correlations
between RBM analytes, traditional AD biomarkers, and demographic variables were
evaluated using the Spearman rho correlation coefficient (a=0.05). Analysis of
covariance (ANCOVA) using the General Linear Model (GLM) procedure in SAS was
used to determine analytes that differed in concentration between AD and control groups
while adjusting for the effects of age and gender. For each analyte showing promise by
univariate analysis, the area under the receiver operating characteristic curve (AUC,
ROC) was calculated for predicting CDR 0 versus CDR>0. The method of Xiong et al.,
2004 was implemented to determine the optimum linear combination of analytes and to
calculate the confidence interval on the AUC and the sensitivity (443).To obtain relatively
unbiased estimates of expected future performance of the three marker panels in
predicting CDR 0 versus CDR>0, a bootstrapping resampling technique was used to
randomly divide the dataset into many subsets. Averages of performance measures
were taken over 100 repetitions.

Cox proportional hazard models assessed the ability of baseline biomarkers to
predict time to conversion from cognitive normalcy (CDR 0) to very mild or mild dementia
(CDR 0.5 and 1). Data from subjects who did not convert were statistically censored at
the date of last assessment. Biomarker measurements were treated as continuous

variables and were converted to standard Z-scores to allow for comparison of hazard
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ratios between different biomarkers. Baseline variables were considered for inclusion in
multivariate models if they were associated with time to conversion in a univariate
analysis (p<.15). Variables were retained in multivariate proportional hazard models if
p<.05. AIC (Akaike Information Criterion), a measure of goodness of fit of an estimated
statistical model, was used to compare different models, with a lower AIC indicating
better model fit.

Several statistical machine learning techniques were utilized to predict subject
outcomes as a function of baseline characteristics (e.g. age) and the candidate
biomarkers. Rather than focusing on a specific model, a panel of predictive modeling
techniques was applied to the data. Most of these models contain “tuning parameters”
that cannot be directly estimated from the data; these values were chosen using
resampling techniques. The models used were:

o Partial Least Squares (PLS) is a latent variable model that produces linear class
boundaries and works well with correlated predictors (444). Candidate values of
the tuning parameter, the number of PLS components, ranged from 1 to 20.

o Sparse Partial Least Squares (SPLS) is a variant of PLS that incorporates
feature selection in the model fitting (445). The number of PLS components was
varied in the same manner as the basic PLS model and the additional tuning
parameter for regularization was varied from 0.1 to 0.9.

¢ Random Forests (RF) is a tree-based ensemble method (446). The number of
randomly selected variables at each split was varied over five values (generally 2
to the number of predictors in the model).

o Boosted Trees are another tree-based ensemble model (447). The three tuning

parameters are the depth of the tree (even values from 2 to 10 were evaluated),
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the number of boosting iterations (20 iterations to 2000 in 100 iteration
increments) and the learning rate (fixed at 0.1).

Support Vector Machine (SVM) are a kernel based method (448). The radial
basis function kernel was used. The kernel parameter was estimated analytically
(449) and the five candidate values of the cost parameter ranged from 0.1 to
1,000 on the log10 scale.

Nearest Shrunken Centroids (NCS) is a prototype model that incorporates
feature selection (450). The tuning parameter, the shrinkage threshold, was
varied over 30 values.

Naive Bayes (NB) is a simple classifier where each predictor variable contributes
to the final class prediction independently (451). The conditional distributions
were computed using a simple Gaussian distribution or using a nonparametric
density estimator.

K-Nearest Neighbors (KNN) is a simple prototype based model (451). Candidate
values for the number of neighbors ranged from 5 to 15.

Flexible Discriminant Analysis (FDA) is a partitioning based model that also
incorporates feature selection (452). The multivariate adaptive spline basis
function was used. Ten candidate values for the number of retained terms were

evaluated.

To determine the values for the tuning parameters and to estimate performance,

resampling methods were used. The entire data set was repeatedly split into training

(80%) and test sets (20%). This process was repeated 200 times. Models were fit on the

training sets and the associated held-out values were used to estimate performance
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(sensitivity, specificity, and the area under the ROC curve). The final estimates of
performance were calculated by averaging the 200 sets of performance values from the

resampling procedure.

Results

Levels of 37 markers are altered in MCl/very mild and mild AD CSF

To identify new candidate biomarkers for AD, multiplexed Luminex-based
immunoassays were used to evaluate the levels of 190 analytes in the CSF of 242
cognitively normal participants (CDR 0), 63 participants with very mild dementia (CDR
0.5), and 28 participants with mild dementia (CDR 1) (participant characteristics at
baseline assessment in Table 6.1). Of the 190 analytes, 65 had >10% of data missing or
below the LDL, and were therefore excluded from analysis, yielding 125 ‘measurable’
analytes. The mean concentrations of 37 CSF analytes were found to differ between
cognitively normal (CDR 0) and very mildly/mildly demented (CDR 0.5 and 1)
participants by age and gender-adjusted analysis of covariance (ANCOVA) (p<.05)
(Table 6.2). Additionally, participants with very mild/mild dementia exhibited the typical
AD CSF biomarker profile characterized by significantly lower mean levels of CSF ApR42

and higher mean levels of CSF tau and CSF p-tau181 (Tables 6.1 and 6.2).

Correlation of RBM analytes with demographic features and other biomarker

values
Because the CDR 0, 0.5, and 1 groups showed somewhat different distributions
with regard to age at LP and gender, levels of the 37 RBM analytes were evaluated for

correlation with these variables. Many analytes were significantly associated with age or
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gender (Table 6.3). Additionally, seeking insight into the potential roles of the analytes in
AD pathology, we evaluated their association with CSF AB42, tau, and p-tau181, and
cortical amyloid burden measured by PIB-PET imaging. Many of the analytes correlated
with CSF tau and CSF p-tau181 (31 and 30, respectively), while fewer correlated with

CSF AB42 or cortical amyloid burden (8 and 5, respectively) (Table 6.3).

Diagnostic utility of candidate biomarkers

To assess the potential of the analytes for identifying very mild/mild dementia
(combined CDR 0.5 and CDR 1), ROC curves and AUCs were calculated for each of the
37 RBM analytes and for traditional AD biomarkers AB42, tau, p-tau181 and the ratios
tau/Ap42 and p-tau181/Ap42 (Table 6.4). Although none of the RBM analytes alone out-
performed the traditional biomarkers, combining traditional biomarkers with RBM
analytes improved upon the AUC of the traditional biomarkers in many cases; e.g.,
AB42: AUC= .7552, combinations ranging from .7553-.8201; tau/AB42: AUC= .8443,
combinations ranging from .8444-.8819; p-tau181/Ap42: AUC= .8065, combinations
ranging from .8065-.8468 (Table 6.4). For these ‘2-marker panels’ of traditional
biomarker plus RBM analyte, combinations with tau/AB42 consistently yielded the
highest AUCs. To investigate whether combinations of three markers could yield a small
panel with improved diagnostic accuracy, we utilized a targeted approach in which the
four 2-marker panels with the highest AUCs (tau/AB42 + cystatin C, tau/AB42 + VEGF,
tau/Ap42 + KIM-1, tau/AB42 + PP) were combined with the 10 RBM analytes with the
highest individual AUCs (indicated in Table 6.4). Because an independent validation
cohort was not available for analysis, bootstrapping resampling with 100 iterations was

performed to obtain relatively unbiased estimates of expected future performance of the
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‘3-marker panels’ in predicting CDR 0 versus CDR>0 (Table 6.5). A number of the 3-
marker panels demonstrated significantly improved AUCs compared to the
corresponding 2-marker panels, with the best achieving AUCs of ~.90 and sensitivities of
~84% at 80% specificity (Table 6.5).

Because AD is a complex, multifactorial disease and likely involves alterations in
multiple biological pathways, it is possible that a larger panel of biomarkers
encompassing various features of AD pathophysiology may be optimal for disease
diagnosis. Thus, we utilized statistical machine learning algorithms, which are more
amenable to potentially large numbers of analyte combinations and can identify highly
complex nonlinear relationships, to discover whether groups of markers are capable of
distinguishing very mildly/mildly demented (CDR 0.5 and 1 combined) from cognitively
normal participants (CDR 0). A multi-pronged analytical approach including RF, PLS,
SPLS, Boosted Tree, FDA, NB, NSC, LR, KNN, and SVM was used, as each approach
has its own strengths and weaknesses. Models were fit with two sets of predictors: 1)
traditional biomarkers, and 2) traditional biomarkers plus RBM analytes; additionally,
age, gender, and ApoE4 allele status were included in all models. Model performance
measures were based on cross-validation, in which the test set results were averaged
from 200 splits of the data between training (80%) and test (20%) (Table 6.6). Using
either traditional biomarkers or traditional biomarkers with RBM analytes, no model
clearly out-performed the others; however, the RBM analytes appeared to contribute
additional specificity to the biomarker panels (traditional: sensitivity 80.6-91.4%,
specificity 42.4-56.6%; traditional+ RBM: sensitivity 79.1-93.2%, specificity 59.6-77.6%).
This improvement is further reflected in the Youden Index, a single statistic that captures

the performance of a diagnostic test and is a function of sensitivity and specificity, which
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was higher on average for the models fitted with traditional plus RBM analytes
(traditional: 0.230-0.438; traditional+RBM: 0.401-0.621). Additionally, models fitted with
traditional plus RBM analytes yielded mostly higher AUCs (traditional: 0.680-0.827;
traditional+RBM: 0.754-0.868). For the four models with a built-in importance statistic
(i.e., Boosted Tree, NSC, RF, and PLS) there was considerable overlap in the top 15
predictors for each model (Table 6.7). Importantly, nearly all of the markers found to best
discriminate CDR 0 from CDR>0 participants in the more targeted ROC analyses (Table
6.5) were also identified as the top predictors in the machine learning models (Table

6.7), reconfirming the potential of these analytes as biomarkers for AD.

Prognostic utility of candidate biomarkers

Identifying individuals with AD neuropathology while they are still in the
preclinical phase will be critically important, as disease-modifying therapies currently in
development are likely to be most effective early in the disease process before
significant synaptic and neuronal loss has occurred. Thus, we used univariate and
multivariate Cox proportional hazards models to evaluate the ability of the analytes to
predict risk of developing cognitive impairment (conversion from CDR 0 to CDR>0). Of
the 215 CDR 0 subjects with at least one follow-up annual clinical assessment, 29
received a CDR>0 at follow-up, and thus were classified as “converters.” Analyte
measurements were converted to standard Z-scores to allow for comparison of hazard
ratios between the different analytes. Variables with p<.15 in the univariate Cox
analyses were considered for inclusion in the multivariate model; variables were retained
in the final model if p<.05. The final multivariate model consisted of calbindin (HR=1.750,

p=0.0063), 1/AB42 (HR=2.454, p<0.0001), and age at LP (HR=1.096, p=0.0002), with an
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overall model HR of 4.704 (Table 6.8). Although calbindin and tau both had p<.05 in the
univariate analysis, the significant correlation between the two (r=0.476, p<0.0001)
prohibited inclusion of both variables in the multivariate model. Therefore, a second
multivariate model consisted of tau (HR=1.467, p=0.0262), 1/AB42 (HR=2.247,
p<0.0001), and age at LP (HR=1.098, p=0.0003), with an overall model HR of 3.619
(Table 6.8). However, the higher HR of calbindin than of tau, and the higher overall

model HR and lower AIC of the first model support it as the better model.

Discussion

Biomarkers that can detect AD in its early stages and, importantly, predict future
dementia will be invaluable for efficient clinical trial design and eventually patient care.
This study identifies novel biomarkers that improve upon the ability of the best identified
biomarkers to date to discriminate very mildly demented from cognitively normal
participants, and identifies a novel biomarker with significant prognostic potential.

Using Luminex technology and a targeted multiplex panel, we identified 37
analytes that are increased or decreased in the CSF of participants with early AD
relative to cognitively normal controls. ROC analysis revealed that small combinations of
a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-
10, MIF, GRO-q, fibrinogen, FAS, and eotaxin-3) can enhance the ability of the best-
performing of the traditional biomarkers, the tau/AB42 ratio, to discriminate CDR 0.5 and
1 from CDR 0 participants. Using alternative statistical strategies that are more
amenable to the analysis of larger combinations of markers, multiple machine learning

algorithms likewise showed that the novel biomarkers improved upon the diagnostic
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performance of the traditional biomarkers (AB42, tau, p-tau181). Importantly, nearly all of
the markers found to best discriminate CDR 0 from CDR 0.5 and 1 participants in the
more targeted ROC analyses were also identified as the top predictors in the machine
learning models that contain a built-in importance statistic (10 of 12 markers). Thus, the
potential of these analytes as biomarkers for AD is supported by alternative statistical
approaches that resulted in a similar output. Further supporting these results is a recent
report of the application of a smaller RBM Discovery MAP panel to a smaller cohort of
AD, MCI, and control subjects (361); this study identified a number of same analytes as
being differentially expressed in AD CSF as compared to control CSF and, although
using different analytical approaches, included VEGF, TRAIL-R3, and eotaxin-3, in
‘combined’ models of novel and traditional biomarkers.

It is important to note that while the models used in our study suggest diagnostic
value of the novel biomarkers, other combinations of these markers may be optimal; it
will be of interest in future studies to validate the results of this discovery study in
additional cohorts and to determine whether alternative combinations of these markers
may demonstrate improved performance. The levels of at least 7 of the novel biomarkers
have been evaluated in AD subjects in other studies: no change was observed in plasma
PAI-1 levels (453); in agreement with our findings, two studies have reported increased
CSF MIF in AD and MCI subjects (454, 455); also consistent with our findings, increased
fibrinogen levels have been observed in AD and MCI CSF (456) and in AD plasma
(457), and increased plasma levels have been associated with an increased risk of
future dementia (458); results have been mixed regarding CSF FAS levels in AD (227,
459); AD plasma/serum VEGF levels have been reported to be unchanged (460, 461),

decreased (462), and increased (463), while CSF levels have been reported to be
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unchanged (464) or increased (465); no change in CSF or serum levels of TNF R2 in AD
has been reported (218); cystatin C findings have been inconsistent, with reports of
serum/plasma levels unchanged (466), increased in AD (467) or in those who later
develop AD (143), and decreased (468) or decreased levels associated with increased
risk of future AD (469), while CSF levels have been reported to be unchanged (466,
470), decreased (390) (Chaper 2 and 3), or increased (243). These inconsistent results
may be due in part to the existence of a truncated form of cystatin C, which was found to
be increased in AD CSF, while the full length protein was decreased (243, 362).

Furthermore, the potential involvement of each marker in AD pathophysiology
necessitates investigation. The candidate biomarkers identified in the ROC and machine
learning portions of this study belong to a wide variety of functional classes and
pathways, including tissue remodeling and angiogenesis (MMP-10, VEGF), regulation of
apoptosis (TRAIL-R3, FAS, MIF), neutrophil, eosinophil, and/or basophil chemotaxis
(GRO-q, eotaxin-3), blood coagulation (Fibrinogen, PAI-1), intravascular volume
homeostasis (NT-proBNP), and gastrointestinal and pancreatic secretions (PP). In
addition, a number of molecules involved in inflammatory pathways were identified in the
machine learning models (IL-7, IL-17E, TNF RII, MCP-2, FASL). The association of
several of the candidate biomarkers with AD pathophysiology has already been probed,
most notably for cystatin C, which appears to play a role in preventing AR
oligomerization and amyloidogenesis (391, 393, 394, 471, 472), and to a lesser extent
for PAI-1 (473-475), MIF (454, 476), fibrinogen (477, 478), FAS and FASL (479-482),
VEGF (483-485), and TNF RII (486-488).

It will be important in future studies to assess each candidate biomarker’s value

in diagnosis in independent sample sets when combined with other existing biomarkers
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or imaging tools. Additionally, to follow up on these biomarker candidates, their ability to
discriminate AD from other causes of dementia needs to be examined; indeed, several
of these markers have already shown promise for distinguishing AD from frontotemporal
lobar degeneration (cystatin C (362), eotaxin-3 (361), and HGF (361)). Incorporation of
such markers into a biomarker panel may improve diagnostic specificity. Beyond their
clinical use, these markers may have great value in the design of and enroliment in trials
of disease-modifying therapies. By enrolling only subjects with lower or higher values of
a particular marker (or panels of markers) indicative of AD, and excluding potential
subjects with intermediate or ‘overlap’ values, one might provide greater diagnostic
certainty than is possible through clinical evaluation alone. This is especially relevant for
the design and evaluation of primary prevention trials in cognitively normal cohorts.
Enriching study populations for subjects displaying certain biomarker levels may result in
studies of greater efficacy, translating to reduced cost.

This study also suggests a novel biomarker, CSF calbindin, that can predict risk
of future dementia in individuals who are still cognitively normal. Previous studies have
shown that AB42, tau, YKL-40 (an astrocyte marker), and the ratios tau/Ap42 and YKL-
40/AB42 can predict subsequent cognitive decline in non-demented cohorts (107, 132)
(and Chapter 3). Using multivariate Cox proportional hazards models to determine the
best combination of biomarkers for prognosis, we show here that a panel of markers
consisting of calbindin, AB42, and age has predictive value comparable to, if not better
than, a second panel consisting of tau, AB42, and age. Tissue culture studies have
shown that increased expression of calbindin, a calcium binding protein present in
central and peripheral nervous system neurons, correlates with increased resistance to

cell death triggered by a variety of causes, including exposure to excitatory amino acids,
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ischemic injury, and AR (489-492). Decreases in calbindin protein and mRNA levels
(493) and number of calbindin-immunopositive neurons (400, 494, 495) have been
observed in AD brains compared to controls. Further suggesting there may be a role for
calbindin in AD pathophysiology is the large body of literature demonstrating that
increased oxidative stress and altered calcium homeostasis appear to be interrelated
mechanisms in AD pathogenesis. Interestingly, although not quite reaching statistical
significance, we found that CSF calbindin levels trended higher in the very mildly/mildly
demented group (p=.0660), suggesting that perhaps degenerating neurons release
calbindin into the CSF. The immunohistochemical findings of a small study of 6 AD
brains suggesting that calbindin-immunopositive neurons are relatively preserved in
cases with moderate amyloid plaque and neurofibrillary content but are lost in more
severe cases (494) prompts the question of whether CSF calbindin levels would be more
significantly elevated in more severely demented individuals. Further studies are needed
to confirm the prognostic potential of CSF calbindin, to determine if other complementary
fluid or imaging biomarkers may improve upon its performance, and to more definitively
elucidate its role in AD pathophysiology. As with the candidate diagnostic biomarkers,
CSF calbindin may have value for clinical trial design by allowing for the selective
enroliment of individuals who are at greater risk of developing cognitive impairment,

resulting in clinical trials of shorter duration and reduced cost.
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Table 6.1. Demographic, clinical, and genotypic characteristics of the 333 study

participants

Characteristic CDR O CDR 0.5 CDR 1

N 242 63 28
Gender (% Female) 65% 52% 50%
APOE genotype, % €4+ 32% 54% 57%
Mean MMSE score (SD) 28.9 (1.3) 26.3 (2.8) 22.5(4.0)
Mean age at LP (SD), yrs 71.6 (7.4) 74.6 (7.3) 76.8 (6.2)
Mean CSF AB42 (SD), pg/mL 607 (234) 436 (233) 355 (119)
Mean CSF tau (SD), pg/mL 315 (169) 547 (278) 557 (266)
Mean CSF p-tau181 (SD), pg/mL 56 (25) 85 (45) 78 (38)

Abbreviations: CDR, Clinical Dementia Rating; APOE, apolipoprotein E; MMSE, Mini-

Mental State Examination; LP, lumbar puncture; SD, standard deviation; CSF,

cerebrospinal fluid; AB-42, amyloid-beta peptide 1-42; p-tau181, tau phosphorylated at

threonine 181.

155




Chapter 6. Use of a Multiplexed Immunoassay Panel for the Identification of Novel CSF

Biomarkers for Alzheimer’s Disease Diagnosis and Prognosis

Table 6.2. Analytes that differ in levels between cognitively normal (CDR 0) and

very mildly/mildly demented (CDR 0.5 and 1) participants

Adjusted | Adjusted Raw Raw
mean mean mean mean
Marker CDRO CDR>0 p CDR O CDR>0
AB42 (pg/mL) 607.45 418.85 | <.0001 606.90 | 411.18
Tau (pg/mL) 315.59 533.60 | <.0001 314.80 | 549.96
p-tau181 (pg/mL) 56.30 81.01 | <.0001 56.32 82.98
Growth-Regulated alpha protein (GRO-
a) (pg/mL) 18.27 22.09 | <.0001 18.30 22.44
Log Matrix Metalloproteinase-10
(MMP-10) (pg/mL) 24.84 31.41 | <.0001 2411 32.61
Log N-terminal pro-brain natriuretic
peptide (NT-proBNP) (pg/mL) 87.00 107.75 | <.0001 87.70 111.12
Log Plasminogen Activator Inhibitor 1
(PAI-1) (ng/mL) 1.05 1.28 | <.0001 1.01 1.34
TNF-Related Apoptosis-Inducing
Ligand Receptor 3 (TRAIL-R3)
(ng/mL) 0.55 0.63 | <.0001 0.55 0.65
Vascular Endothelial Growth Factor
(VEGF) (pg/mL) 441.57 378.30 | <.0001 437.83 | 386.01
Log Pancreatic Polypeptide (PP)
(pg/mL) 0.94 1.30 | 0.0001 0.88 1.41
Log FAS (ng/mL) 0.57 0.65 | 0.0002 0.56 0.67
Log Macrophage Migration Inhibitory
Factor (MIF) (ng/mL) 0.15 0.17 | 0.0004 0.15 0.18
Interleukin-7 (IL-7) (pg/mL) 12.63 9.47 | 0.0006 12.23 9.68
Log Cystatin C (ng/mL) 5613.84 | 4750.89 | 0.0011 | 5551.50 | 4835.30
Thrombopoietin (ng/mL) 0.43 0.37 | 0.0016 0.42 0.37
Sortilin (ng/mL) 6.32 6.92 | 0.0019 6.33 6.96
Monocyte Chemotactic Protein 2
(MCP-2) (pg/mL) 4.03 4.61 | 0.0020 3.97 4.67
Log Fibrinogen (ug/mL) 0.63 0.78 | 0.0024 0.59 0.81
Log Creatine Kinase-MB (CKMB)
(pg/mL) 26.55 20.97 | 0.0030 26.62 20.87
Cortisol (ng/mL) 11.21 12.65 | 0.0034 11.17 12.89
Thymus-Expressed Chemokine
(TECK) (ng/mL) 6.38 6.85 | 0.0039 6.30 6.96
Eotaxin-3 (pg/mL) 56.78 62.09 | 0.0057 55.33 63.68
Interleukin-17E (IL-17E) (pg/mL) 8.63 7.75 | 0.0058 8.60 7.79
Kidney Injury Molecule-1 (KIM-1)
(pg/mL) 78.97 83.46 | 0.0074 79.05 83.08
Log Heparin-binding epidermal growth
factor-like growth factor (HB-EGF) 24.98 28.77 | 0.0077 25.05 28.70
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(pg/mL)

Log Osteopontin (ng/mL) 173.23 197.68 | 0.0078 174.15 202.31
Log a-1-Antitrypsin (ug/mL) 4.87 5.37 | 0.0102 4.73 5.49
Fatty Acid Synthase Ligand (FASL)

(pg/mL) 4.85 5.40 | 0.0109 4.78 5.49
Log Insulin-like Growth Factor-Binding

Protein 2 (IGFBP-2) (ng/mL) 199.58 212.16 | 0.0111 195.93 | 217.47
Log Interleukin-10 (IL-10) (pg/mL) 1.14 1.29 | 0.0131 1.12 1.29
Log Tumor necrosis factor-a receptor 2

(TNF RII) (ng/mL) 0.53 0.59 | 0.0141 0.52 0.62
Log Resistin (pg/mL) 26.28 30.76 | 0.0146 25.20 32.14
Log Fatty Acid Binding Protein (FABP)

(ng/mL) 3.03 3.62 | 0.0209 2.93 3.81
Log Apolipoprotein D (ApoD) (ug/mL) 4.18 4.57 | 0.0318 4.02 4.65
Log Hepatocyte Growth Factor (HGF)

(ng/mL) 1.18 1.28 | 0.0349 1.18 1.30
Log Insulin (ulU/mL) 0.22 0.19 | 0.0359 0.21 0.19
Log Hemofiltrate cysteine-cysteine

chemokine (HCC-4) (pg/mL) 30.25 33.13 | 0.0418 28.98 33.87
Log Interferon gamma Induced Protein

10 (IP-10) (pg/mL) 299.63 341.86 | 0.0432 | 295.14 | 354.74
Log Gamma-Interferon-Induced

Monokine (MIG) (pg/mL) 423.80 493.91 | 0.0452 | 400.16 | 572.75
Thrombomodulin (ng/mL) 0.17 0.18 | 0.0475 0.17 0.19

Table 6.2. Analysis of covariance (ANCOVA) using the General Linear Model (GLM)

procedure in SAS was used to determine analytes that differed in concentration (p<.05)

between CDR 0 and CDR>0 groups while adjusting for the effects of age and gender

("adjusted means"). For markers that were log transformed to approximate a normal

distribution, the resulting Least Squares mean (or estimated marginal mean) was back-

transformed to obtain the adjusted mean shown. Also provided are the raw mean

concentrations for the CDR 0 and CDR>0 groups.
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Table 6.3. Correlations of RBM analytes with age, gender, and other biomarker

values
Cortical
Analyte Gender | Age Ap42 Tau p-tau181 | tau/AB42 | PIB
0.255 0.031 0.117 0.105 0.048 -0.048
alA <.001 (<.0001) | (0.574) | (0.033) | (0.055) (0.386) (0.525)
0.218 0.059 0.222 0.216 0.113 -0.103
ApoD <.001 (<.0001) | (0.280) | (<.0001) | (<.0001) | (0.039) (0.169)
0.196 0.094 0.476 0.500 0.294 0.122
Calbindin 0.001 (<.001) | (0.088) | (<.0001) | (<.0001) | (<.0001) | (0.104)
-0.069 0.008 -0.200 -0.186 -0.148 0.032
CKMB 0.524 (0.211) | (0.877) | (<.001) | (0.001) (0.007) (0.673)
0.252 -0.051 0.187 0.189 0.159 0.012
Cortisol 0.282 (<.0001) | (0.357) | (0.001) | (0.001) (0.004) (0.875)
0.093 0.281 0.536 0.597 0.236 -0.041
Cystatin C 0.461 (0.089) | (<.0001) | (<.0001) | (<.0001) | (<.0001) | (0.587)
0.317 0.058 0.367 0.342 0.217 0.003
Eotaxin-3 <.001 (<.0001) | (0.289) | (<.0001) | (<.0001) | (<.0001) | (0.971)
0.296 0.012 0.727 0.725 0.505 0.159
FABP 0.031 (<.0001) | (0.833) | (<.0001) | (<.0001) | (<.0001) | (0.034)
0.297 0.083 0.491 0.470 0.288 -0.074
FAS <.001 (<.0001) | (0.132) | (<.0001) | (<.0001) | (<.0001) | (0.326)
0.192 -0.060 0.189 0.200 0.129 -0.020
FASL 0.165 (<.001) ](0.274) | (0.001) | (<.001) (0.018) (0.795)
0.284 -0.044 0.192 0.178 0.145 0.034
Fibrinogen <.001 (<.0001) | (0.422) | (<.001) | (0.001) (0.008) (0.652)
0.279 -0.105 0.317 0.329 0.259 0.144
GRO-a 0.178 (<.0001) | (0.056) | (<.0001) | (<.0001) | (<.0001) | (0.054)
0.017 0.079 0.348 0.359 0.202 -0.024
HB-EGF 0.975 (0.751) | (0.151) | (<.0001) | (<.0001) | (<.001) (0.751)
0.240 0.007 0.094 0.037 0.047 -0.095
HCC-4 <.001 (<.0001) | (0.895) | (0.088) | (0.504) (0.388) (0.204)
0.222 0.088 0.619 0.639 0.386 0.004
HGF 0.918 (<.0001) | (0.110) | (<.0001) | (<.0001) | (<.0001) | (0.957)
0.394 0.062 0.462 0.441 0.278 0.031
IGFBP-2 <.001 (<.0001) | (0.262) | (<.0001) | (<.0001) | (<.0001) | (0.685)
0.032 0.017 0.007 0.049 0.019 -0.101
IL-17E 0.386 (0.563) | (0.760) | (0.899) | (0.371) (0.725) (0.180)
0-.002 0.147 -0.003 0.032 -0.091 -0.227
IL-7 0.007 (0.976) | (0.007) | (0.961) | (0.557) (0.096) (0.002)
0.055 -0.026 0.070 0.075 0.053 -0.071
IL-10 <.001 (0.313) | (0.637) | (0.205) | (0.170) (0.337) (0.342)
0.236 0.023 0.249 0.282 0.147 -0.071
IP-10 0.327 (<.0001) | (0.682) | (<.0001) | (<.0001) | (0.007) (0.344)
0.094 0.245 0.213 0.214 0.005 -0.190
Insulin <.001 (0.088) | (<.0001) | (<.0001) | (<.0001) | (0.921) (0.011)
0-.032 -0.057 -0.239 -0.331 -0.154 -0.060
KIM-1 0.636 (0.561) | (0.301) | (<.0001) | (<.0001) | (0.005) (0.427)
0.146 -0.106 0.045 0.059 0.071 -0.011
MCP-2 0.013 (0.007) | (0.053) | (0.408) | (0.282) (0.199) (0.880)
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0.330 |-0.007 [0579 |0.597 0.412 0.084
MIF 0.239 | (<.0001) | (0.901) | (<.0001) | (<.0001) | (<.0001) | (0.264)
0603 |-0017 |0282 |0.289 0.207 -0.053
MIG 0.528 | (<.0001) | (0.762) | (<.0001) | (<.0001) | (<.001) | (0.484)
0325 |-0.116 |0.458 |0.415 0.390 0.086
MMP-10 0.002 | (<.0001) | (0.034) | (<.0001) | (<.0001) | (<.0001) | (0.252)
0273 |0.053 |0331 |0.323 0.188 -0.007
NT-proBNP 0.030 | (<.0001) | (0.338) | (<.0001) | (<.0001) | (0.001) | (0.923)
0.192 | 0.030 |0680 |0.701 0.466 0.162
Osteopontin 0.137 | (<.001) |(0.590) | (<.0001) | (<.0001) | (<.0001) | (0.030)
0374 |-0072 |0226 |0.179 0.192 0.041
PP <001 | (<.0001) | (0.189) | (<.0001) | (0.001) | (<.001) | (0.586)
0429 |-0.064 |0.334 |0.327 0.266 -0.003
PAI-1 <001 | (<.0001) | (0.244) | (<.0001) | (<.0001) | (<.0001) | (0.973)
0.355 | 0.072 |0255 |0.198 0.120 -0.075
Resistin <001 | (<.0001) | (0.189) | (<.0001) | (<.0001) | (0.029) | (0.320)
0135 |0.139 |0515 |0.527 0.273 -0.003
Sortilin 0.881 | (0.014) | (0.011) | (<.0001) | (<.0001) | (<.0001) | (0.972)
0426 | 0.059 |0678 |0.702 0.442 0.002
TNF RII 0.205 | (<.0001) | (0.282) | (<.0001) | (<.0001) | (<.0001) | (0.975)
0413 | -0011 |0509 |0.476 0.356 0.008
TRAIL-R3 0.112 | (<.0001) | (0.837) | (<.0001) | (<.0001) | (<.0001) | (0.914)
0193 | 0.109 |0215 |0.205 0.076 -0.063
Thrombomodulin | <.001 | (<.001) | (0.048) | (<.0001) | (<.001) | (0.168) | (0.4086)
0.034 |0.194 |-0.016 |0.017 0130 | -0.237
Thrombopoietin | 0.015 | (0.531) | (<.001) | (0.768) | (0.758) | (0.017) | (0.001)
0270 |0.047 |0322 |0.312 0.193 0.001
TECK 0.015 | (<.0001) | (0.389) | (<.0001) | (<.0001) | (<.001) | (0.992)
0.101 | 0.357 | 0.470 |0.543 0.154 -0.059
VEGF 0.651 | (0.065) | (<.0001) | (<.0001) | (<.0001) | (0.005) | (0.429)

Table 6.3. Correlations were evaluated using the Spearman rho correlation coefficient

(a=0.05); shown are the r and (p value). Gender differences were evaluated by Mann-

Whitney test.
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Table 6.4. ROC analyses

AUC of Traditional Biomarkers

log AB42 0.7552
log tau 0.7830
| log p-tau181 0.7149
| log tau/AB42 0.8443
| log p-tau181/AB42 | 0.8065

AUC of RBM Biomarkers: alone and in combination with traditional biomarkers

Marker Marker+log tau/AB42 | Marker+log p-tau181/AB42
| log a1A 0.6296 0.8578 0.8234
| log ApoD 0.6136 0.8489 0.8138
| log CKMB 0.6106 0.8475 0.8118
Cortisol 0.6183 0.8510 0.8155
log Cystatin C 0.5965 0.8819 § 0.8468
Eotaxin-3 0.6448 § 0.8516 0.8202
log FABP 0.6163 0.8499 0.8080
| log FAS 0.6689 § 0.8518 0.8209
FASL 0.6134 0.8479 0.8116
| log Fibrinogen 0.6503 § 0.8564 0.8232
GRO-a 0.7024 § 0.8609 0.8305
log HB-EGF 0.5929 0.8445 0.8081
| log HCC-4 0.6172 0.8596 0.8281
| log HGF 0.5972 0.8458 0.8069
| log IGF-BP2 0.6378 0.8462 0.8116
IL-7 0.6029 0.8508 0.8162
log IL-10 0.6075 0.8575 0.8215
IL-17E 0.5969 0.8487 0.8145
log Insulin 0.5406 0.8453 0.8077
| log IP-10 0.5970 0.8460 0.8093
KIM-1 0.5894 0.8668 § 0.8343
MCP-2 0.6264 0.8554 0.8200
| log MIF 0.6651 § 0.8455 0.8117
log MIG 0.6376 0.8544 0.8207
| log MMP-10 0.6929 § 0.8518 0.8232
| log NT-proBNP 0.6753 § 0.8562 0.8248
| log Osteopontin 0.6050 0.8508 0.8100
| log PP 0.6789 § 0.8644 § 0.8356
log PAI-1 0.6814 § 0.8587 0.8273
| log Resistin 0.6218 0.8522 0.8211
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Sortilin 0.6177 0.8444 0.8076
| log TNF RII 0.6319 0.8447 0.8065
TRAIL-R3 0.6851 § 0.8523 0.8212
Thrombomodulin | 0.6004 0.8503 0.8150
Thrombopoietin 0.5898 0.8465 0.8111
TECK 0.6371 0.8525 0.8190
VEGF 0.6146 0.8766 § 0.8441

Table 6.4. To assess the ability of the markers to distinguish CDR>0 from CDR 0, ROC
analyses were performed for each of the traditional biomarkers (AB42, tau, p-tau181 and
the ratios tau/AB42 and p-tau181/AB42) and for the 37 RBM analytes with p<.05 in the
univariate analyses. Each traditional biomarker was then combined with each RBM
analyte to identify ‘2-marker panels’ with improved AUCs. Among the traditional
biomarkers, the ratios tau/AB42 and p-tau181/AB42 demonstrated the highest AUCs;
additionally, combining these ratios with the RBM analytes consistently yielded 2-marker
panels with AUCs higher than combinations of the individual traditional biomarkers
(Ap42, tau, p-tau181) with the RBM analytes. Thus, only the most promising 2-marker
panels (those with tau/AB42 and p-tau181/AB42) are shown here. To determine whether
combinations of three markers could yield a small panel with improved diagnostic
accuracy, the four 2-marker panels with the highest AUCs were combined with the 10

RBM analytes with the highest individual AUCs (indicated by §, results in Table 6.5).
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Table 6.5. ROC analyses of 3-marker panels

Sensitivity

(at 80% P
Marker Panels AUC Stdev | 95% CI specificity) | Stdev | 95% ClI value Stdev | 95% CI
log tau/AB + log Cystatin C + TRAIL-R3 0.9014 | 0.0232 | 0.8969-0.9060 | 0.8367 0.0445 | 0.8280-0.8455 | 0.0299 | 0.0222 | 0.0255-0.0342
log tau/AB + log Cystatin C + log PAI-1 0.9063 | 0.0221 | 0.9020-0.9106 | 0.8470 0.0438 | 0.8384-0.8556 | 0.0283 | 0.0344 | 0.0215-0.0351
log tau/AB + log Cystatin C + log PP 0.9066 | 0.0203 | 0.9026-0.9106 | 0.8471 0.0400 | 0.8393-0.8550 | 0.0245 | 0.0319 | 0.0183-0.0307
log tau/AB + log Cystatin C + NT-proBNP [ 0.9041 | 0.0228 | 0.8996-0.9086 | 0.8422 0.0445 | 0.8335-0.8509 | 0.0287 | 0.0330 | 0.0223-0.0352
log tau/AB + log Cystatin C + log MMP-10 | 0.8987 | 0.0230 | 0.8942-0.9032 | 0.8317 0.0447 | 0.8230-0.8405 | 0.0647 | 0.0582 | 0.0533-0.0761
log tau/AB + log Cystatin C + log MIF 0.8964 | 0.0249 | 0.8915-0.9013 | 0.8272 0.0487 | 0.8177-0.8368 | 0.0699 | 0.0569 | 0.0588-0.0811
log tau/AB + log Cystatin C + GRO-a 0.9071 | 0.0218 | 0.9028-0.9113 | 0.8475 0.0412 | 0.8395-0.8556 | 0.0347 | 0.0410 | 0.0266-0.0427
log tau/AB + log Cystatin C + log
Fibrinogen 0.9033 | 0.0219 | 0.8990-0.9075 | 0.8403 0.0429 | 0.8319-0.8487 | 0.0357 | 0.0502 | 0.0259-0.0455
log tau/AB + log Cystatin C + log FAS 0.9052 | 0.0220 | 0.9009-0.9095 | 0.8440 0.0425 | 0.8356-0.8523 | 0.0248 | 0.0248 | 0.0200-0.0297
log tau/AB + log Cystatin C + Eotaxin-3 0.9051 | 0.0219 | 0.9008-0.9094 | 0.8441 0.0427 | 0.8357-0.8524 | 0.0273 | 0.0350 | 0.0205-0.0342
log tau/AB + VEGF + TRAIL-R3 0.9004 | 0.0226 | 0.8960-0.9049 | 0.8347 0.0437 | 0.8262-0.8433 | 0.0208 | 0.0158 | 0.0177-0.0239
log tau/AB + VEGF + log PAI-1 0.9005 | 0.0225 | 0.8961-0.9049 | 0.8355 0.0445 | 0.8267-0.8442 | 0.0272 | 0.0320 | 0.0210-0.0335
log tau/AB + VEGF + log PP 0.9039 | 0.0215 | 0.8997-0.9081 | 0.8423 0.0422 | 0.8340-0.8506 | 0.0167 | 0.0250 | 0.0118-0.0216
log tau/AB + VEGF + NT-proBNP 0.9028 | 0.0224 | 0.8984-0.9072 | 0.8396 0.0439 | 0.8310-0.8482 | 0.0165 | 0.0207 | 0.0124-0.0205
log tau/AB + VEGF + log MMP-10 0.8947 | 0.0242 | 0.8900-0.8995 | 0.8241 0.0471 | 0.8149-0.8333 | 0.0534 | 0.0519 | 0.0432-0.0636
log tau/AB + VEGF + log MIF 0.8908 | 0.0261 | 0.8857-0.8959 | 0.8164 0.0506 | 0.8065-0.8264 | 0.0703 | 0.0570 | 0.0591-0.0815
log tau/AB + VEGF + GRO-a 0.9003 | 0.0238 | 0.8956-0.9049 | 0.8348 0.0452 | 0.8259-0.8436 | 0.0365 | 0.0371 | 0.0292-0.0437
log tau/AB + VEGF + log Fibrinogen 0.8988 | 0.0231 | 0.8943-0.9033 | 0.8317 0.0449 | 0.8229-0.8405 | 0.0327 | 0.0457 | 0.0237-0.0416
log tau/AB + VEGF + log FAS 0.9012 | 0.0232 | 0.8967-0.9058 | 0.8363 0.0445 | 0.8276-0.8451 | 0.0232 | 0.0248 | 0.0183-0.0281
log tau/AB + VEGF + Eotaxin-3 0.8991 | 0.0227 | 0.8947-0.9036 | 0.8325 0.0441 | 0.8239-0.8411 | 0.0293 | 0.0354 | 0.0224-0.0363
log tau/AB + KIM-1 + TRAIL-R3 0.8810 | 0.0256 | 0.8760-0.8860 | 0.7979 0.0486 | 0.7884-0.8075 | 0.1082 | 0.0747 | 0.0936-0.1229
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log tau/AB + KIM-1 + log PAI-1 0.8866 | 0.0246 | 0.8818-0.8915 | 0.8087 0.0476 | 0.7993-0.8180 | 0.0614 | 0.0607 | 0.0495-0.0733
log tau/AB + KIM-1 + log PP 0.8905 | 0.0239 | 0.8858-0.8952 | 0.8162 0.0467 | 0.8070-0.8253 [ 0.0357 | 0.0452 | 0.0269-0.0445
log tau/AB + KIM-1 + NT-proBNP 0.8821 | 0.0260 | 0.8770-0.8872 [ 0.8001 0.0500 | 0.7903-0.8099 [ 0.0926 | 0.0788 | 0.0772-0.1081
log tau/AB + KIM-1 + log MMP-10 0.8787 | 0.0270 | 0.8734-0.8840 | 0.7940 0.0511 | 0.7840-0.8040 [ 0.1497 | 0.1015 | 0.1298-0.1696
log tau/AB + KIM-1 + log MIF 0.8775 | 0.0276 | 0.8721-0.8829 | 0.7918 0.0518 | 0.7816-0.8019 [ 0.1478 | 0.0941 | 0.1294-0.1663
log tau/AB + KIM-1 + GRO-a 0.8897 | 0.0242 | 0.8850-0.8945 | 0.8153 0.0448 | 0.8065-0.8241 [ 0.0513 | 0.0498 | 0.0416-0.0611
log tau/AB + KIM-1 + log Fibrinogen 0.8821 | 0.0267 | 0.8769-0.8874 | 0.8003 0.0507 | 0.7903-0.8102 [ 0.0927 | 0.0809 | 0.0768-0.1085
log tau/AB + KIM-1 + log FAS 0.8806 | 0.0248 | 0.8757-0.8855 | 0.7973 0.0472 | 0.7881-0.8066 | 0.1157 | 0.0852 | 0.0990-0.1324
log tau/AB + KIM-1 + Eotaxin-3 0.8805 | 0.0264 | 0.8753-0.8857 | 0.7973 0.0498 | 0.7875-0.8071 [ 0.1152 | 0.0943 | 0.0967-0.1337
log tau/AB + log PP + TRAIL-R3 0.8717 | 0.0249 | 0.8668-0.8766 | 0.7790 0.0488 | 0.7695-0.7886 | 0.2225 | 0.1023 | 0.2024-0.2425
log tau/AB + log PP + log PAI-1 0.8715 | 0.0250 | 0.8666-0.8764 | 0.7782 0.0498 | 0.7685-0.7880 | 0.2034 | 0.1052 | 0.1828-0.2240
log tau/AB + log PP + NT-proBNP 0.8723 | 0.0254 | 0.8674-0.8773 | 0.7806 0.0491 | 0.7710-0.7902 | 0.1705 | 0.1051 | 0.1499-0.1912
log tau/AB + log PP + log MMP-10 0.8702 | 0.0256 | 0.8652-0.8753 [ 0.7761 0.0507 | 0.7662-0.7860 | 0.2394 | 0.1204 | 0.2158-0.2630
log tau/AB + log PP + log MIF 0.8685 | 0.0251 | 0.8635-0.8734 | 0.7723 0.0496 | 0.7625-0.7820 | 0.2909 | 0.1014 | 0.2711-0.3108
log tau/AB + log PP + GRO-a 0.8755 | 0.0250 | 0.8706-0.8804 | 0.7875 0.0472 | 0.7783-0.7968 | 0.1329 | 0.0908 | 0.1151-0.1507
log tau/AB + log PP + log Fibrinogen 0.8720 | 0.0255 | 0.8670-0.8769 | 0.7795 0.0498 | 0.7698-0.7893 [ 0.1878 | 0.1160 | 0.1651-0.2106
log tau/AB + log PP + log FAS 0.8701 | 0.0244 | 0.8653-0.8749 | 0.7752 0.0487 | 0.7657-0.7847 | 0.2335 | 0.1091 | 0.2121-0.2548
log tau/AB + log PP + Eotaxin-3 0.8722 | 0.0245 | 0.8674-0.8770 | 0.7795 0.0487 | 0.7699-0.7890 | 0.1813 | 0.1087 | 0.1599-0.2026

Table 6.5. AUC= area under the curve; Stdev= standard deviation; Cl= confidence interval. Receiver operating characteristic (ROC)
analyses assessed the ability of three marker panels to discriminate CDR 0 from CDR>0 participants. Averages of performance
measures were taken over 100 iterations of the bootstrap. “p-value” assesses the difference between the three marker panel and the

corresponding two marker panel (e.g. log tau/AB + log Cystatin C + TRAIL-R3 vs. log tau/AB + log Cystatin C).
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Table 6.6. Performance measures of machine learning algorithms in
discriminating cognitively normal (CDR 0) from very mildly/mildly demented (CDR
0.5 and 1) participants

Traditional Biomarkers Traditional + RBM Biomarkers

Model Sensitivity | Specificity | Youden | AUC Sensitivity | Specificity | Youden | AUC
Index Index

Boosted 0.843 0.525 0.368 0.782 | 0.845 0.776 0.621 0.868
Tree
Flexible 0.882 0.546 0.428 0.827 | 0.827 0.672 0.499 0.808
Discriminant
Analysis
K-Nearest 0.866 0.552 0.418 0.813 | 0.886 0.627 0.513 0.814
Neighbors
Logistic 0.902 0.490 0.392 0.819 | 0.791 0.667 0.458 0.757
Regression
Naive Bayes | 0.898 0.492 0.390 0.799 | 0.802 0.599 0.401 0.754
Partial Least | 0.914 0.457 0.371 0.822 | 0.858 0.693 0.551 0.851
Squares
Sparse 0.914 0.457 0.371 0.822 | 0.858 0.694 0.552 0.851
Partial Least
Squares
Random 0.872 0.566 0.438 0.810 | 0.932 0.596 0.528 0.866
Forests
Nearest 0.882 0.527 0.409 0.805 | 0.833 0.643 0.476 0.802
Shrunken
Centroids
Support 0.806 0.424 0.230 0.680 | 0.929 0.645 0.574 0.868
Vector
Machine

Table 6.6. Ten statistical machine learning algorithms were used to determine groups of
markers capable of distinguishing very mildly/mildly demented (CDR 0.5 and 1
combined) from cognitively normal participants (CDR 0). Models were fit with two sets of
predictors: 1) traditional biomarkers, or 2) traditional biomarkers plus RBM analytes;
additionally, age, gender, and ApoE4 allele status were included in all models. Model
performance measures shown are based on cross-validation, in which the test set

results were averaged from 200 splits of the data between training (80%) and test (20%).
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Table 6.7. Top 15 predictors for machine learning algorithms with a built-in
importance measure

Predictor | Boosted Nearest Shrunken Random Partial Least
Tree Centroids Forests Squares

1 tau tau AB42 tau

2 AB42 AB42 tau AB42

3 VEGF p-tau181 MMP-10 VEGF

4 MMP-10 GRO-a KIM-1 p-tau181

5 PP VEGF VEGF GRO-a

6 KIM-1 Eotaxin-3 IL-7 PP

7 Cystatin C Age IL-17E Cystatin C

8 Calbindin PP PP NT-proBNP

9 NT-proBNP | Cortisol NT-proBNP MMP-10

10 MIF MCP-2 TRAIL-R3 KIM-1

11 IGFBP-2 TECK p-tau181 Apo A1

12 TRAIL-R3 MMP-10 Cystatin C e3¢e4

13 FSH IL-17E MIF IL-7

14 FAS IL-7 GRO-a Insulin

15 TNF RII FASL CKMB Age

Table 6.7. For the four models with a built-in importance statistic (i.e., Boosted Tree,

NSC, RF, and PLS), there is considerable overlap in the top 15 predictors for each

model. Additionally, nearly all of the markers found to best discriminate CDR 0 from

CDR>0 participants in the more targeted ROC analyses (Table 6.5), as shown here,

were also identified as the top predictors in the machine learning models.
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Table 6.8. Cox proportional hazards models for predicting risk of developing
cognitive impairment (conversion from CDR 0 to CDR>0)

A. Marker HR 95% CI p
Log Calbindin 1.736 1.161-2.596 | 0.0072
Log 1/AB42 2.361 1.564-3.564 | <0.0001
Age 1.094 1.043-1.147 | 0.0002
Gender 0.722 0.326-1.599 | 0.4216
B. Marker HR 95% CI p Overall
model HR
Log Calbindin 1.750 1.172-2.613 | 0.0063
Log 1/AB42 2.454 1.637-3.679 | <0.0001 | 4.704
Age 1.096 1.045-1.149 | 0.0002
C. Marker HR 95% CI p
Log Tau 1.462 1.039-2.057 | 0.0294
Log 1/AB42 2.221 1.477-3.339 | 0.0001
Age 1.096 1.041-1.154 | 0.0005
Gender 0.724 0.334-1.566 | 0.4113
D. Marker HR 95% CI p Overall
model HR
Log Tau 1.467 1.046-2.056 | 0.0262
Log 1/AB42 2.247 1.496-3.375 | <0.0001 | 3.610
Age 1.098 1.043-1.156 | 0.0003

Table 6.8. Cox proportional hazards models were used to identify panels of biomarkers
predictive of the risk of developing cognitive impairment (conversion from CDR 0 to
CDR>0). Analyte measurements were converted to standard Z-scores to allow for
comparison of hazard ratios between the different analytes. Variables with p<.15 in the
univariate Cox analyses were considered for inclusion in multivariate models; variables
were retained in the final model if p<.05. Because many of the analytes, including
calbindin, demonstrated age and gender affects, both variables were entered into the
multivariate models. However, as gender did not appear to contribute to the models (A,
C), it was not included in the final panels (B, D). Although calbindin and tau both

demonstrated p<.05 in the univariate analyses, the significant correlation between the
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two (r=0.476, p<0.0001) prohibited inclusion of both variables in the multivariate model.
Therefore, a separate multivariate model that included tau was evaluated (C, D). The
higher HR of calbindin than of tau, and the higher overall model HR (4.704>3.610) and

lower AIC (227.6<230.8) of the first model support it as the better model.
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The number of individuals affected by AD is projected to increase dramatically
over the coming decades, barring the development of successful treatments. Although a
large number of compounds have been tested as potential therapeutics, clinical trials
have been largely unsuccessful, in part, because they have targeted study subjects who
already have dementia. Clinicopathological studies have made it increasingly clear there
exists a ‘preclinical’ or ‘presymptomatic’ stage during which the pathological changes
associated with AD begin ~10-15 years before the synaptic and neuronal loss that
accompany dementia onset. Thus, to prevent neurodegeneration and the resulting
cognitive impairment, disease-modifying treatments will need to be applied early in the
disease process (preclinically). Currently, ‘possible’ or ‘probable’ AD is diagnosed by
clinical examination. However, clinical examination cannot identify preclinical AD, and in
nonspecialized settings, has limited accuracy for mild disease stages. Additionally,
clinical examination cannot identify individuals at risk of developing future cognitive
impairment or predict the rate of cognitive decline. Thus, there is an urgent need for
biomarkers of AD. CSF AB42 and tau are perhaps the two most promising biomarkers
identified to date. We hypothesize that there are additional CSF biomarkers that can
complement AB42 and tau, improving upon their diagnostic and prognostic accuracy.
This thesis reflects my work to identify novel biomarkers for AD that may be useful in
such capacities.

We first utilized an unbiased proteomics approach (2D-DIGE LC-MS/MS) to
identify CSF proteins increased or decreased in mild dementia (CDR 1, N=24) relative to
cognitive normalcy (CDR 0, N=24). From this proteomic analysis, we identified 47
proteins as differing significantly in abundance between CDR 0 and CDR 1 groups. Most
of these 47 candidate biomarkers could be placed into structural and/or functional

categories associated with accepted neuropathophysiological changes in AD,
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suggesting that many of these changes are represented by alterations in the CSF
proteome. Unsupervised clustering analyses of this 2D-DIGE data, performed without
the influence of CSF AB42, tau, p-tau and APOE genotype, suggested that these
biomarker candidates collectively showed utility for discriminating groups with and
without mild dementia. We then went on to validate these findings by measuring a
subset (11) of the identified candidate biomarkers by ELISA in the original discovery
sample set. Six of the candidates (NrCAM, YKL-40, chromogranin A, carnosinase |,
transthyretin, cystatin C) showed differences in mean concentration between the
original AD (CDR 1) and control (CDR 0) groups, and were thus subsequently evaluated
in a larger independent sample set (N=292) that included CDR 0, CDR 0.5 (very mild
dementia), and CDR 1 groups. In this larger independent sample set, CDR 0 and
CDR>0 groups showed significant differences in mean concentrations of YKL-40,
carnosinase |, tau, p-tau181 and AB42; CDR 1 and CDR <1 groups showed differences
in carnosinase |, chromogranin A, NrCAM, tau, p-tau181 and AB42. ROC analyses
using a stepwise logistic regression model yielded optimal biomarker panels to
distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau,
chromogranin A, carnosinase |). These analyses suggested that these four candidate
biomarkers (YKL-40, NrCAM, chromogranin A, carnosinase |) could improve the ability
of tau to classify individuals into CDR 0, CDR 0.5, and CDR 1 groups. Additionally,
drawing on previous work from our lab and from other groups, with these four novel
biomarkers and CSF AB42 and tau, we were able to provide a framework for
categorizing six clinicopathological stages: normal cognition without amyloid plaques,
normal cognition with amyloid plaques (preclinical AD), normal cognition at increased
risk to develop dementia (converters), very mild dementia (CDR 0.5), very mild dementia

at increased risk for progression, and mild dementia (CDR 1). This biomarker-based
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classification of six disease stages ranging from cognitively normal to mild dementia
represents an important contribution to the field, as most studies have focused only on
distinguishing those with AD (and often in the later stages) or those with MCI (analogous
to a CDR 0.5) from cognitively normal individuals. Additionally, this small panel of CSF
biomarkers may be useful to guide enrollment into and maximize the efficiency of clinical
trials by classifying subjects into precise disease stages, identifying those at risk of
progression, and providing study endpoints based on biomarker-defined stage
transitions, rather than measures of cognitive decline.

One of the most promising candidate biomarkers to emerge from this 2D-DIGE
study, in terms of novelty and fold-change, was YKL-40, a secreted glycoprotein of
poorly understood function. Consistent with our 2D-DIGE findings, YKL-40 was
significantly increased by ELISA in CDR 0.5 CSF of the discovery cohort, and CDR 0.5
and CDR 1 CSF of the larger validation cohort. To continue our study of this novel
biomarker, we measured YKL-40 levels in plasma samples of the validation cohort,
along with levels in a small cohort of FTLD and PSP CSF samples. Plasma YKL-40
levels displayed a pattern of elevation in the CDR 0.5 and 1 groups similar to that
observed for CSF, and plasma and CSF levels correlated modestly. CSF YKL-40 levels
trended higher in the FTLD and lower in the PSP groups relative to the AD group. Thus,
this study demonstrated the promise of CSF YKL-40 as a biomarker for very early stage
AD (CDR 0.5) and, although not covering the complete differential diagnosis for mild
dementia, suggested that CSF YKL-40 may be useful in distinguishing AD from some
other forms of neurodegenerative disease. Importantly, this study also demonstrated the
potential utility of YKL-40, coupled with AB42, to predict cognitive decline. The CSF YKL-
40/Ap42 ratio displayed predictive value comparable to that of the best current CSF

measures, tau/AB42 and p-tau181/AB42. This finding is particularly notable because,
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whereas CSF tau is derived principally from neurons, based on our
immunohistochemical analysis of human AD brain, YKL-40 appears to be secreted
predominantly from astrocytes. To our knowledge, YKL-40 is the first astrocyte-derived
marker shown to have such prognostic potential. CSF YKL-40/AB42 also showed
promise in predicting progression of dementia from CDR 0.5 to CDR>0.5; however,
tau/Ap42 and p-tau181/AB42 appear to show greater utility in this regard. Unfortunately,
plasma YKL-40 did not demonstrate similar prognostic utility. The finding of YKL-40
immunoreactivity predominantly within astrocytes surrounding amyloid plaques
suggested a role for YKL-40 in the neuroinflammatory response to A deposition.
Increasing evidence suggests that, in addition to the formation of amyloid plaques and
neurofibrillary tangles, brain inflammation may be considered a third key mechanism
contributing to disease pathogenesis, and consequently, another potential target for
therapeutics. One may speculate that perhaps neuroinflammation in response to amyloid
deposits accelerates the rate of synaptic and neuronal loss or dysfunction. These
different but interrelated processes may respond differently to disease-modifying
therapies. Therefore, a marker of inflammation in the brain such as YKL-40 may be
helpful in monitoring disease progression or response to treatment. The identification of
a biomarker for AD that predicts prognosis and that marks a process different than Ap42
or tau is a novel finding that could benefit the field.

The 2D-DIGE study presented in this work represents an expansion/validation of
a previous similar proteomics experiment utilizing 2D-DIGE on a smaller scale. To follow
up on several candidate biomarkers identified in that study, we evaluated the levels of
ACT, ATIIIl, ZAG, and AGT by ELISA in a larger, independent CSF sample set (N=138).
However, levels of these four proteins were not found to differ between CDR 0 and

CDR>0 groups. In spite of these seemingly negative findings, these proteins may still
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have potential as biomarkers for AD. It is important to note that these four proteins were
first identified as differing significantly in abundance between AD and control groups by
2D-DIGE, a technique sensitive to concentration changes of minor protein isoforms and
post-translational modifications which may not substantially alter global concentrations of
a ‘parent’ protein. As these four proteins are known to have different isoforms, a
thorough evaluation of their potential as biomarkers for AD would appear to require the
design of ELISAs targeting specific post-translational modifications or specific ‘sub-
species’ of interest.

A relatively unexplored source for novel biomarkers of AD is the low molecular
weight components of CSF, or the CSF peptidome. To address this, we developed a
protocol for the extraction and identification of peptides from CSF using Hypercarb
chromatography material in a tip format and LC-MS/MS, and applied it to a CDR 0, CDR
1, and mixed/pooled clinical sample. Quantification of a subset of the peptides detected
in these samples revealed differences in abundance among pooled, CDR 1, and CDR 0
CSF, albeit with a limited sample number. Additionally, recovery of internal standard
BSA peptides was not statistically significantly different between sample runs,
demonstrating the reproducibility of the extraction and LC-MS method. The future
application of this low molecular weight protocol to larger numbers of AD and control
CSF samples may identify many novel candidate biomarkers for AD; moreover, this
protocol for extracting and identifying CSF peptides could be applied to studies of other
neurodegenerative diseases as well.

Finally, to complement the unbiased approaches we used to identify novel
biomarkers for AD, in collaboration with Pfizer we utilized a targeted proteomics
approach. In this study, a large number of CSF samples (N=333) from well-characterized

MCl/very early stage-AD (CDR>0) and cognitively normal (CDR 0) individuals were
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chosen for protein profiling using a commercially available multiplexed immunoassay
platform that measured the levels of 190 proteins belonging to a wide variety of
functional classes. From this analysis, the levels of 37 proteins were found to differ
between CDR 0 and CDR>0 participants by age and gender-adjusted analysis of
covariance. ROC analysis revealed that small combinations of a subset of these markers
(cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-q, fibrinogen,
FAS, and eotaxin-3) could enhance the ability of the best-performing of the traditional
biomarkers, the tau/AB42 ratio, to discriminate CDR 0.5 and 1 from CDR 0 participants.
Using alternative statistical strategies more amenable to the analysis of larger
combinations of markers, multiple machine learning algorithms likewise showed that the
novel biomarkers improved upon the diagnostic performance of the traditional
biomarkers (AB42, tau, p-tau181). Importantly, nearly all of the markers found to best
discriminate CDR 0 from CDR 0.5 and 1 participants in the more targeted ROC analyses
were also identified as the top predictors in the machine learning models that contain a
built-in importance statistic, reconfirming the potential of these proteins as biomarkers for
early-stage AD. We next used Cox proportional hazards models to evaluate the ability of
the analytes to predict risk of developing cognitive impairment (conversion from CDR 0
to CDR>0) and to determine the best combination of biomarkers for use in this regard.
We demonstrated that an optimal panel of markers consisted of calbindin, AB42, and
age, and that this panel had predictive value comparable to, if not better than, a second
panel consisting of tau, AB42, and age (the significant correlation between calbindin and
tau prohibited the inclusion of both variables in the same multivariate model).

These studies have identified a number of novel candidate biomarkers that
improve upon the ability of the best identified biomarkers to date to discriminate very

mildly/mildly demented from cognitively normal participants (NrCAM, chromogranin A,
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carnosinase |, YKL-40, cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10,
MIF, GRO-q, fibrinogen, FAS, and eotaxin-3). These studies have also identified two
novel biomarkers (YKL-40 and calbindin) with significant prognostic potential. Although
the mean concentrations of these candidate biomarkers differed between clinical groups,
as with all biomarkers identified to date, considerable overlap in values was observed
between the groups. This issue of overlapping values suggests that any biomarker alone
will be insufficient for classifying subjects, and that a panel of complementary biomarkers
will be necessary to achieve adequate sensitivity and specificity. Thus, it will be
important in future studies to assess each candidate biomarker’s value in diagnosis in
additional independent sample sets and when combined with other existing biomarkers
or imaging tools. It is worth mentioning, however, that even with overlap between
groups, a biomarker that shows significant differences between groups may have great
value for clinical trial design and enroliment. By enrolling only subjects with lower or
higher values of a particular biomarker and excluding potential subjects with
intermediate or ‘overlap’ values, one might provide greater diagnostic certainty than is
possible through clinical diagnosis alone. Biomarkers panels such as the ones proposed
here may also allow clinical trials to evaluate stage-specific responses to treatment.
Furthermore, as most of these biomarkers reflect underlying pathological changes in real
time, the use of biomarkers as surrogate endpoints in clinical trials may allow for the
monitoring of clinically imperceptible neuropathological changes, potentially decreasing
study duration. The ability of these candidate biomarkers to discriminate AD from other
causes of dementia needs to be examined as well. Indeed, plans are already underway
to obtain CSF from other conditions for such an analysis. Many of these proteins have
not been investigated in relation to AD, and their possible roles in the disease

pathophysiology will be of interest in future studies.
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