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Abstract of the dissertation 

Neural Coding and Organization Principles in the Drosophila Olfactory System 

by 

Haoyang Rong 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2020 

Professor Barani Raman, Chair 

 

Sensory systems receive and process external stimuli to allow an organism to perceive and react 

to the environment. How is sensory information subsequently represented, transformed, and 

interpreted in the neural system? In this dissertation, I have investigated this fundamental 

question using the fruit fly (Drosophila melanogaster) olfactory system. 

Chemical cues are transduced into neural signals in the insect antenna by the olfactory receptor 

neurons (ORNs). The ORNs send their axons to the antennal lobe (AL), with each ORN type 

innervating a specific neuropil (glomerulus), where they synapse onto excitatory and inhibitory 

projection neurons (ePNs and iPNs). The ePNs project their axons to the 3rd order stages, the 

calyx (CL) and lateral horn (LH). On the other hand, the iPNs only innervate the LH. 

In this dissertation, I first examined how well the peripheral neural activities evoked by an 

odorant could predict the final behavioral output. As the stimulus intensity increases, a fly’s 

preference for some odorants switch from attraction to aversion. Behavior assay suggested this 

phenomenon may help the fly evade harmful environment. Our results indicate that at the level 

of ORNs, increases in stimulus intensity could result in oscillatory extracellular field potentials 
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that arise entirely due to abrupt changes in cell excitability. Notably, combining the activity of a 

few ORNs was sufficient to predict intensity-dependent preference changes with odor intensity. 

How is the sensory input organized in the downstream neural circuit, the insect antennal lobe? 

Odor-evoked signals from sensory neurons (ORNs) triggered neural responses that were 

patterned over space and time in cholinergic ePNs and GABAergic iPNs within the antennal 

lobe. The dendritic-axonal (I/O) response mapping was complex and diverse, and the axonal 

organization was region-specific (mushroom body vs. lateral horn). In the lateral horn, feed-

forward excitatory and inhibitory axonal projections matched ‘odor tuning’ in a stereotyped, 

dorsal-lateral locus, but mismatched in most other locations. In the temporal dimension, ORN, 

ePN, and iPN odor-evoked responses had similar encoding features, such as information 

refinement over time and divergent ON and OFF responses. Notably, analogous spatial and 

temporal coding principles were observed in all flies, and the latter emerged from idiosyncratic 

neural processing approaches. 

In sum, these results provide key insights necessary for understanding how sensory information 

is organized along spatial and temporal dimensions. 
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Chapter 1: Introduction 

1.1 Overview: the road to “know thyself” 

Since the birth of modern science, we human beings have made enormous progress in 

understanding the physical world we live in, from the atoms to the galaxies. However, we still 

lack understanding of the little galaxy sitting in our head, the brain, where science originates. 

We are still far from answering what exactly the high-level cognitive processes such as attention, 

learning, memory, and emotion, are. Let alone the “free will” or consciousness. The human brain 

is estimated to have 86 billion neurons (Azevedo et al., 2009), within the same order of 

magnitude as the number of stars in the Milky Way. Even the brain of a fruit fly, at the size of a 

needlepoint, has 100,000 neurons (Simpson, 2009; Zheng et al., 2018). In addition to the sheer 

number of neurons, the numerous connections make the system even more complex (when 

oversimplified, the neural system can be viewed as a gigantic directed graph, where nodes being 

neurons, directed edges being dendrites/axons.). Moreover, the neural systems are highly 

dynamic and are endowed with the capability of constantly “updating” itself, in response to the 

changes in the environment or inside the animal itself. 

To understand the brain, a vital part is to study the neural coding principles. Namely, how 

information is represented (encoding), transformed, and interpreted (decoding) in the neural 

system. This requires knowledge of the input information, the recordings of the neural activities, 

and ideally the relevant behavioral output. Therefore, the sensory systems, including vision, 

hearing, touch, smell, taste, etc., are good starting points in our journey to “know thyself”, 

whereas the high level cognitive processes often lack one or more of these attributes. For 

example, in an animal model of depression, it’s impractical to control the exact degree of 
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depression. On the other hand, a sensory system, being a “black box” at first, can be probed by 

carefully designed inputs. The input information such as visual cues, sound tones, mechanical 

stimuli, and so on, can be artificially generated and quantitatively manipulated. The neuronal 

populations in the early stages are often accessible to electrodes or microscopes. The behavioral 

output, for instance, how fast a monkey can react to a visual cue, can be measured. 

 

1.2 The olfactory system: a unique signal processing system 

It’s been reported that humans can recognize a great number of olfactory stimuli (Bushdid et al., 

2014; Gottfried et al., 2006). Olfaction plays a role in the regulation of human emotion and 

social interactions (Hutmacher, 2019; Sarafoleanu et al., 2009). For insects, the olfactory system 

is even more important for its survival. Many insect species rely on olfactory cues to navigate, 

seek food, and reproduce (Buehlmann et al., 2015; Hansson and Stensmyr, 2011; Sachse and 

Krieger, 2011; Wright and Schiestl, 2009).  

Though being powerful, the olfactory system is “shallow”: the olfactory information only needs 

to pass two stages before reaching centers responsible for behavior output (Wilson and Mainen, 

2006) This simplicity alleviates the difficulty in tracking what happens along the path, from 

input to output. What also makes the olfactory system unique is that, distinct from visual and 

auditory stimuli, which can be simply characterized by a couple of continuous quantities, e.g. 

wavelength/frequency and intensity, the olfactory stimuli do not reside in a well-defined input 

space. There’s no such a small set of quantities that can lay out the olfactory stimuli on a 

continuous spectrum (Hettinger, 2011). That being said, the dimensionality of the olfactory input 
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space, if to be defined, can be almost arbitrarily large. Therefore, it’s of particular interest to 

study how this compact system manages to process the intricate input information efficiently. 

 

1.3 The anatomy of the olfactory system: the hardware 

implementation 

The anatomical organization of the olfactory system is hierarchical. In mammals, the sensory 

neurons in the epithelium of the nasal cavity transduce chemical cues into neural signals and 

such signals are transmitted to projection neurons, e.g. mitral cells and tuft cells, in the olfactory 

bulb, where a process called “lateral inhibition” takes place to reformat the signals (Lledo et al., 

2005). Interneurons and granule cells are believed to perform feedback inhibition on mitral cells, 

which enhances odor discrimination. The reformatted signals are projected to multiple target 

regions, such as the amygdala, responsible for associative learning, and the hippocampus, in 

charge of memory and learning. 

The general organization of the insect olfactory system resembles its mammalian counterpart 

(Wilson and Mainen, 2006). The insects have two primary olfactory organs: the antennae and the 

maxillary pulps (Carey and Carlson, 2011). The 1st order neurons, the olfactory receptor neurons 

(ORNs), housed in hair-like structures called sensillum, connect with projection neurons (PNs) in 

the antennal lobes (ALs), the insect equivalent of olfactory bulbs. The signals are then relayed to 

the mushroom body, associated with memory and learning (Akalal et al., 2006; McGuire et al., 

2001; Menzel and Muller, 1996; Mizunami et al., 1998), and lateral horn for innate behavioral 

response (Gupta and Stopfer, 2012; Schultzhaus et al., 2017).  
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In Drosophila, the model organism used in this study, an ORN’s type is defined by the unique 

olfactory receptor it expresses (Fishilevich and Vosshall, 2005; Hallem et al., 2004; Vosshall et 

al., 1999). The OR along with a universal co-receptor Or83b (Orco) (Larsson et al., 2004), gives 

the ORN its unique response characteristics (Dobritsa et al., 2003; Hallem et al., 2004). 

Typically, each sensillum contains 2 distinct ORNs. On the antenna surface, more precisely, the 

third antennal segment (funiculus), there are 3 major morphological sensillum classes: basiconic, 

trichoid, and coeloconic, with the basiconic being the major type (de Bruyne et al., 2001; 

Venkatesh and Naresh Singh, 1984). In exposure to a stimulus, odor molecules enter the 

sensillum through the pores on the surface, bind to the ORs on the ORN dendrites, trigger 

cellular events, and produce odor-evoked action potentials or inhibition (de Bruyne et al., 2001; 

Hallem and Carlson, 2006a; Stocker, 1994). 

ORNs are bipolar neurons, with dendrites extending to the sensilla and axons projecting to the 

ALs. Notably, in most of the cases, ORNs of the same type, though may be distributed on the 

antennal surface, project their axons bilaterally to the same glomerulus, a spherical neuropil, in 

each AL. Likewise, the current dogma is that each AL glomerulus only receives input from one 

ORN type (Hallem and Carlson, 2004; Stocker, 1994). A smaller portion of OSNs express 

ionotropic receptors (IR) (Benton et al., 2009; Rytz et al., 2013). OSNs in maxillary palps are 

more specialized, with each type only responding to a small set of compounds (Dweck et al., 

2016). Maxillary palps have just one sensillum type and 120 ORNs (de Bruyne et al., 1999). 

Post-synaptic to the ORNs are the 2nd order principal neurons of the AL, also called the 

projection neurons (PNs). Excitatory projection neurons (ePNs), one of the major PN 

populations, are uni-glomerular, e.g. each ePN innervating only one glomerulus, such that an 

ePN only receives input from one type of ORNs. On the other hand, a glomerulus may be 



5 
 

innervated by several (2-6) ePNs (homotypic PNs or sister PNs). These sister ePNs exhibit 

correlated spontaneous activities. Such synchrony increases even more in response to odor 

stimulus, because 1. sister PNs sample largely overlapping sets of ORNs in the same glomerulus 

2. Mixed electrical/chemical synapses between the sister PNs. Interestingly, sister PNs have the 

same innervation pattern in the LH, but they differ in the MB (Kazama and Wilson, 2009). This 

mechanism is thought to implement coincidence detection in the LH (Jeanne and Wilson, 2015). 

Another lesser-known group of inhibitory projection neurons (iPNs), which releases GABA, 

form a parallel pathway in addition to the ePNs. The ePNs convey signals to MB and LH via the 

medial antennal lobe tract (mALT), whereas iPNs only project to the LH via the 

mediolateral antennal lobe tract (mlALT), bypassing the MB(Shimizu and Stopfer, 2017). iPNs 

can be both uni-glomerular or multi-glomerular, even pan-glomerular(Lai et al., 2008).  

Similar to PNs, another important group of players in the AL, the local interneurons (LNs), have 

two major functional categories, the inhibitory LNs (iLNs) and excitatory LNs (eLNs), crucial to 

the reformatting of signals. The recruitment of iLNs is not odor specific. Even the activation of a 

single glomerulus can trigger global lateral inhibition from GABAergic LNs. But the degree of 

inhibition that each glomerulus receives can vary owing to the glomeruli’s varying sensitivities 

to GABA (Hong and Wilson, 2015). However, eLNs can both depolarize and hyperpolarize PNs, 

primarily through electrical synapses. Meanwhile, eLNs and iLNs are interconnected via mixed 

synapses (Yaksi and Wilson, 2010a). 

The MB has around 2000 intrinsic neurons, the Kenyon cells (KCs, 3rd order), in each 

hemisphere. It serves as an “expansion layer” by significantly increasing the dimension from 

∼50 to ∼2000. The representation of odor stimulus in the MB is sparse (Honegger et al., 2011).  
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Each KC extends several “claws” to connect with boutons of distinct PNs, with one “claw” only 

sampling from one PN. However, a PN bouton can synapse with “claws” from several KCs, 

forming a microneuropil (Caron et al., 2013). 

Apart from the basic characterizations, the general consensus on the MB is probably the 

ubiquitous existence of disagreements. Contradictory results have been reported regarding the 

organization and coding principles of the MB. It remained controversial whether individuality or 

stereotypy dominates the circuit. 

An early functional imaging study suggests the KCs’ odor-evoked activities are stereotyped in 

both the soma layer and the calyx (Wang et al., 2004). Each PN type’s innervation patterns in the 

calyx and LH are conserved among individuals. What’s more, the KC innervations in the calyx 

are also stereotyped (Lin et al., 2007; Zheng et al., 2018). On the contrary, some other studies 

suggest the KC-PN connections are random (Caron et al., 2013; Murthy et al., 2008). At the 

single cell level, a KC’s input glomeruli don’t follow any rules in terms of odor tuning, 

anatomical features, etc. At the population level, no KC class exhibits preference over any 

specific glomeruli combination. 

The KCs project axons to one of the three lobes of the MB, where they synapse onto the 

mushroom body output neurons (MBON, 4th order). The MBON population is small. Despite the 

randomness in the KC layer, MBONs’ responses are stereotyped, possibly because each MBON 

integrates signals from a large subset of KCs (Mittal et al., 2020). However, this seems to defeat 

the purpose of sparse coding in the KC layer.  Another study reported MBONs’ tunings are 

individual dependent, and this variability is shown to be related to learning. The mutant lacking a 

learning-related gene showed a decrease in the MBON tuning variability. (Hige et al., 2015) 
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In the lateral horn, a confocal imaging study suggested that the projection of pheromone-specific 

and general purpose fruit odor responsive PNs are spatially segregated (Jefferis et al., 2007). The 

LHNs are diverse in morphology, though there’s no apparent mapping between specific groups 

of glomeruli and LHNs of a specific morphology type. Even LHNs within the same 

morphological category can receive input from different glomeruli combinations (Jeanne et al., 

2018). Some glomeruli combinations are over-represented, with members having diverse odor 

specificity. 

 

1.4 Neural coding: the “data structures and algorithms” 

The early discoveries regarding neural coding date back to the late 1950s. Works on cat primary 

visual cortex revealed a group of neurons responded most strongly to slits of light at specific 

orientations (optimal stimulus), the response strength varied according to the similarity between 

the present stimulus and the optimal stimulus, thereby encoding the orientation of the visual 

stimulus (Hubel and Wiesel, 1959; Marin et al., 2002). Since then, a wide range of coding 

schemes have been proposed. 

A single action potential (a “spike”), which takes place at the scale of milliseconds, is usually 

regarded as the basic information unit in the neural system, analogous to a “bit” in a computer 

system.  

1.4.1 Rate coding 

Rate coding is one of the most basic coding schemes. The rate of the spiking activities is defined 

as the average spike count during the course of a trial or stimulus. The value of the neuron’s 
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firing rate encodes the information concerning the stimulus. Hence, the aforementioned 

orientation-specific neuron’s tuning is a classic example of rate codes. 

1.4.2 Labeled line coding 

Another connection-based coding scheme, e.g. the “labeled line” or place coding, is also fairly 

intuitive. It states the activation of one information channel exclusively triggers the 

corresponding response in the downstream channel it directly connects to. Just like flipping the 

light switch (sending information through a dedicated channel) will turn on the light (a 

downstream responder). 

1.4.3 Temporal coding 

The structures in a spike train to be exploited for coding is rich. Among them, the temporal 

information regarding the spikes sometimes plays an important role (temporal coding). In 

contrast to rate coding, in which only the mean firing rate during a unit time window matters, the 

temporal coding scheme utilizes fine-grained temporal features such as first-spike latency, 

oscillation phases, and spike intervals. For instance, neural oscillations, characterized as periodic 

neural activities, is a prevalent form of temporal coding among phyla of the kingdom 

Animalia(Kay, 2015). Various types of neural oscillations are proposed to be closely associated 

with multiple neural functions(Kay et al., 2009; Kay and Stopfer, 2006), such as representing the 

sensorimotor act of sniffing/breathing(Bhalla and Bower, 1997; Kay, 2005), and indicating 

movement preparation(Zhang et al., 2008). Albeit oscillations are found to play an important role 

in some insect olfactory systems(Laurent, 2002; Stopfer et al., 1997) by enhancing odor 

discriminability, they are less prominent in flies(Tanaka et al., 2009; Wilson, 2013). 
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1.4.4 Population coding 

Neurons are noisy. Randomness is a fundamental aspect of any neural system. Even presented 

with the exact same stimuli, a given neuron will almost never produce two identical spike trains. 

Considering a neuron’s response can be so variable, estimating the information solely based on 

one neuron is unreliable. This problem can be mitigated by combining signals from a population 

of neurons. Imagine a neuron is repeatedly presented with a stimulus, it will ultimately yield a 

distribution of firing rates given this stimulus (conditional probability. Note the difference from a 

tuning curve.). When the stimulus is altered, the neuron will have a corresponding response 

distribution. Likewise, every neuron in the population has its own firing rate distributions 

conditioned on varying stimuli. Therefore, the decoder, when given the responses from a group 

of such neurons, can more robustly estimate the stimulus through the maximum likelihood 

estimation approach, e.g. finding the parameter/stimulus that maximizes the probability of 

observing the current responses generated by this neuron group. Such a coding scheme is 

especially suitable for stimuli that can be described by continuous quantities, such as bar 

orientations, but less straightforward to be applied to the olfactory system, as the olfactory input 

space is so fragmented. 

1.4.5 Spatiotemporal coding 

This dissertation adopted a spatiotemporal scheme demonstrated to be effective in the olfactory 

system, that combines both the population and temporal aspect of the population’s response. The 

neural ensemble’s response at a time instance (as a short time window) is represented by a high-

dimensional vector, with each dimension being a functional unit’s activity (firing rate or 

normalized Calcium signal change). Loosely speaking, the overall response strength determines 

the length of the vector. The stronger the responses are, the farther away the point is from the 
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origin. The relative strength across the functional units (the ensemble pattern) determines the 

direction of the vector. The evolution of ensemble dynamics as time elapses thus can be 

concisely described by the trajectory of the response vector. For visualization, the trajectory can 

be mapped to a 2 or 3D space using dimensionality reduction techniques (Saha et al., 2013; Saha 

et al., 2015; Stopfer et al., 2003). 

In the locust, a PN’s response to a lengthy stimulus can typically be divided into three phases. 

The on-transient phase, where the PN’s firing rate rises rapidly from the baseline level upon the 

onset of the stimulus. Then it enters the 2nd phase, the steady state, where the firing rate 

stabilizes. When the stimulus terminates, the firing rises again (off-transient phase) before 

returning to the baseline. 

From the view of spatiotemporal codes, the ensemble PN response can be depicted as follows. 

Before the stimulus, the ensemble trajectory randomly “fluctuate?” around the origin, since the 

spontaneous activities are low and largely random. As soon as the stimulus onsets, the high-

dimensional neural response trajectory deviates from the origin along a certain direction. The 

trajectory moves closer to the origin, and loops around in a small region (a “fixed point”) as if 

the system’s state had been “attracted” to a stable point in the state space. Once the stimulus 

terminates, the trajectory again picks up speed and enters another region before finally returns to 

the origin (Saha et al., 2013).  

Consequently, the trajectory can be viewed as moving on a manifold (loosely speaking, a lower-

dimensional structure embedded in a high dimensional space). Varying concentrations of the 

same chemical produce trajectories on the same manifold. But the trajectories of high 

concentration stimuli form larger “loops” on the manifold (the ensemble patterns remain similar, 
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but scaled differently). It also takes longer for the trajectories of high concentration stimuli to 

return to the origin. Thus, the stimulus intensity can be resolved. When given different odors, the 

trajectories of each odor lie in a unique manifold (the ensemble patterns are different). Thus the 

stimulus identity can be resolved. (Stopfer et al., 2003) 

1.4.6 Neural coding in Drosophila 

In Drosophila, comprehensive descriptions of the ensemble spatiotemporal dynamics in the fly 

olfactory system have been very scarce, let alone the simultaneous monitoring of several 

populations/stages.  

The “labeled line” hypothesis has gained popularity, possibly due to the relative ease of testing 

causal relationships in flies by knocking out a specific neuronal population and observe the 

physiological or behavioral consequences. However, the coding capacity of the labeled line is 

limited, which only scales linearly with the number of neurons. Though possibly deployed in the 

fly brain, the encoding of diverse odorants requires a combinatorial coding strategy, whose 

coding capacity can scale exponentially with the neuron number. 

 

1.5 Idiosyncrasy: what makes me ME? 

It’s said that “no two leaves are alike”. How about the neural systems and the behaviors driven 

by the neural systems? 

In behavioral tests, the variability among individual behaviors is usually treated as noise that 

hinders the discovery of the underlying “true behavior”, thus the common strategy of taking the 

average value across individuals. Likewise, the inter-individual variation in neural responses is 

often regarded as noise. However, individuals in the population are often diverse in one or more 
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aspects like genotypes, development, and experience. Different genotypes commonly lead to 

different phenotypes (Alberch, 1991; Pigliucci, 2010). Even if two individuals are genetically 

identical, numerous epigenetic mechanisms, such as DNA methylation and histone modification, 

will still have varying impacts on the development of the individuals (Cedar and Bergman, 

2009). Therefore, the variability in both neural systems and behavior should be expected as a 

result. But rather than meaningless noises, such variabilities may actually carry key information 

that can give us more insights.  

Consider a hypothetical scene. There’re 100 guests at a banquet being asked whether he/she likes 

a chief’s-special spicy dish. Half of the people answer they do, while the others don’t. Now 

suppose these guests are placed in a T-maze assay one by one. The results will appear highly 

random/noisy. As the usual way of interpreting T-maze results, we may conclude the spicy flavor 

has no influence on human being’s gustatory preference. However, as human beings ourselves, 

we know each guest probably has a good reason for his/her unique preference. For instance, 

maybe people who grow up in a family that cooks spicy food frequently are more likely to 

appreciate the dish. Subsequently, whether a person’s childhood environment affects his food 

preference becomes a meaningful hypothesis to test, and it will help to unveil the mechanisms 

behind the food preference. This example illustrates how neglecting idiosyncrasy can hinder the 

true understanding and even lead to a false conclusion. 

Thankfully, some works have already started to reveal the existence and mechanisms of 

idiosyncrasy in multiple neural systems, from animals at distinct branches of the evolutionary 

tree. Here I briefly discuss examples from 3 species: C.elegans (Nematoda), Drosophila 

(Arthropoda), and mice (Vertebrata). 
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In C. elegans, some individuals’ spontaneous behavior parameters, such as the fraction of 

roaming and locomotion speed consistently deviate from the population mean, in spite of the 

developmental stages, even though the test subjects are isogenic worms raised individually under 

the same environmental conditions. And neuromodulation is found to regulate the level of 

individuality (Stern et al., 2017). 

Highly inbred Drosophila individuals showed different types of stimulus-tracking behaviors, in a 

visual behavior paradigm (Buridan’s paradigm) (Colomb et al., 2012; Gotz, 1980). These 

tracking styles were demonstrated to be inherent to individuals, notwithstanding the stage of 

development. This individuality was further traced to the variation in neuron wirings, thanks to 

the difference in molecular signaling events during the development (Linneweber et al., 2020).  

In the fly antennal lobe, a comprehensive study including >1500 LNs revealed “an unexpected 

degree of” inter-individual variability in the LN innervation patterns. The inter-individual 

variability is especially prominent in a class of “patchy LNs”, with no pair of patchy LNs, among 

the 161 patchy LNs being investigated, innervating the same set of glomeruli (Chou et al., 2010). 

Steroid-responsive vomeronasal sensory neurons (VSNs) in mice exhibit idiosyncrasy in terms 

of the number of each identified neuron type among individuals. What’s more, the variabilities in 

VSN numbers are cell type dependent (Xu et al., 2016).  

 

1.6 Recording Techniques: tools to crack the neural circuits 

Undoubtedly, the progression of scientific research is tightly coupled with the development of 

new experimental techniques. Despite the advantages, the extremely small brain size of the flies 

impeded the attempts to crack the neural codes. The classical approach of inserting a sharp 
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electrode into the neuropil does not work for fly neurons, since the neurites are very small. The 

constantly moving brain also prevented stable recordings (Wilson, 2011). As a result, the neural 

activities of the fly olfactory circuits beyond the periphery level remained inaccessible to 

researchers until the whole-cell patch-clamp technique was adopted for neural recordings 

(Wilson et al., 2004). In contrast, sensillum recordings were successfully conducted earlier, 

owing to the easier access to the ORNs (Clyne et al., 1997). 

Electrophysiology is the most direct manner of measuring neural activities. Capable of detecting 

subthreshold events, it offers excellent sensitivity and temporal resolution. But it comes with a 

downside, too: the number of neurons it can accurately record from at a time is limited. One 

typical approach to tackle the problem is to assemble a “pseudo-subject”, in which neural 

recordings from multiple animals are combined into one data set. The variation between 

individuals, impossible to quantify in this case, is intrinsically embedded in the combined 

dataset, which confounds the statistical relationship between the variables (Averbeck et al., 

2006). Hence, a method to monitor a broader population of neurons is needed, and the imaging 

techniques come to the rescue. Calcium imaging, the monitoring of the fluctuation in calcium 

concentration in the biological structures through a light-emitting indicator that changes its 

fluorescence level according to the calcium concentration. 

Calcium is heavily involved in cell signaling and neural activities. The generation of an action 

potential often accompanies the influx of Ca2+ through voltage-gated calcium channels(Katz and 

Miledi, 1968; Rusakov, 2006). Is also important for triggering the release of neurotransmitters 

(Neher and Sakaba, 2008). Therefore, calcium imaging is suitable for the monitoring of neural 

activities. There are two major types of calcium indicators: Synthetic indicators and fluorescent 

protein based indicators. Considering the fluorescent proteins can be genetically encoded, this 
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approach is especially advantageous when combined with the abundant genetic tools of 

Drosophila. 

First attempts to perform calcium imaging on the fly brains also took place in the late 1990s’ 

(Karunanithi et al., 1997). However, genetically encoded calcium indicators in early times were 

not sensitive enough to detect sparse spikes (Jayaraman and Laurent, 2007; Mao et al., 2008), 

making them inadequate for studying the temporal dynamics. Through protein engineering, new 

generations of GCamp proteins have been emerging. Prior to the launch of the imaging project in 

this dissertation, a new family of GCamp proteins, the GCamp6, capable of detecting a single 

spike (Note it’s still impractical to resolve single spikes from fluorescence signals when the 

firing rate is high.), had become available (Chen et al., 2013). The GCamp6f was chosen for this 

study because, despite weaker signal strength, it has the fastest kinetics better suited for 

monitoring fast neural dynamics. 

Functional calcium imaging studies have been mostly conducted with confocal microscopy and 

two-photon microscopy. Both are very limited in acquisition speed, owing to the point-scanning 

nature of their operation. The spinning-disc technique may offer higher speed since it can project 

multiple laser beams on the sample simultaneously, but the improvement is not so significant. On 

the other hand, the lightsheet imaging, an emerging imaging modality mostly used for 

developmental studies, has started to see its humongous potential in functional imaging as well 

(Ahrens et al., 2013; Chen et al., 2018; Greer and Holy, 2019; Xu et al., 2016).  
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1.7 Dissertation Outline: 

This dissertation focuses on uncovering the neural coding and functional organization of the fly 

olfactory system. Chapter 2 describes the study relating peripheral neural response to behavior 

outcome, where I combine electrophysiology, neural manipulation, numerical modeling, and 

behavior assays. A novel behavior paradigm is presented. Next, I look into the olfactory circuits 

in the brain comprehensively using data collected from a new generation lightsheet imaging 

system. In Chapter 3, I discuss the functional organization/interaction across the circuits. This 

study, to the author’s knowledge, provides not only a much more comprehensive 4D (volumetric 

+ temporal) characterization of multiple Drosophila olfactory neuronal populations/regions, but 

also the first simultaneous recordings on different PN compartments in brain regions that are 

anatomically far apart. A novel technique mapping the circuits’ functional attributes to the 

anatomical space is presented. Next, I investigate the temporal evolution of the ensemble neural 

coding during and after the stimulation. The idiosyncrasy in both the spatial and temporal aspects 

studied above are also discussed. 

  



17 
 

1.8 References 

Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., and Keller, P.J. (2013). Whole-brain 

functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10, 413-+. 

Akalal, D.B., Wilson, C.F., Zong, L., Tanaka, N.K., Ito, K., and Davis, R.L. (2006). Roles for 

Drosophila mushroom body neurons in olfactory learning and memory. Learn Mem 13, 659-668. 

Alberch, P. (1991). From genes to phenotype: dynamical systems and evolvability. Genetica 84, 

5-11. 

Averbeck, B.B., Latham, P.E., and Pouget, A. (2006). Neural correlations, population coding and 

computation. Nature Reviews Neuroscience 7, 358-366. 

Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L., Leite, R.E.P., 

Jacob, W., Lent, R., and Herculano-Houzel, S. (2009). Equal Numbers of Neuronal and 

Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain. J Comp 

Neurol 513, 532-541. 

Benton, R., Vannice, K.S., Gomez-Diaz, C., and Vosshall, L.B. (2009). Variant Ionotropic 

Glutamate Receptors as Chemosensory Receptors in Drosophila. Cell 136, 149-162. 

Bhalla, U.S., and Bower, J.M. (1997). Multiday recordings from olfactory bulb neurons in awake 

freely moving rats: Spatially and temporally organized variability in odorant response properties. 

J Comput Neurosci 4, 221-256. 

Buehlmann, C., Graham, P., Hansson, B.S., and Knaden, M. (2015). Desert ants use olfactory 

scenes for navigation. Anim Behav 106, 99-105. 

Bushdid, C., Magnasco, M.O., Vosshall, L.B., and Keller, A. (2014). Humans Can Discriminate 

More than 1 Trillion Olfactory Stimuli. Science 343, 1370-1372. 

Carey, A.F., and Carlson, J.R. (2011). Insect olfaction from model systems to disease control. 

Proc Natl Acad Sci U S A 108, 12987-12995. 

Caron, S.J., Ruta, V., Abbott, L.F., and Axel, R. (2013). Random convergence of olfactory inputs 

in the Drosophila mushroom body. Nature 497, 113-117. 

Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: 

patterns and paradigms. Nat Rev Genet 10, 295-304. 

Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., 

Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for 

imaging neuronal activity. Nature 499, 295-300. 

Chen, X., Mu, Y., Hu, Y., Kuan, A.T., Nikitchenko, M., Randlett, O., Chen, A.B., Gavornik, 

J.P., Sompolinsky, H., Engert, F., and Ahrens, M.B. (2018). Brain-wide Organization of 

Neuronal Activity and Convergent Sensorimotor Transformations in Larval Zebrafish. Neuron 

100, 876-890 e875. 

Clyne, P., Grant, A., O'Connell, R., and Carlson, J.R. (1997). Odorant response of individual 

sensilla on the Drosophila antenna. Invert Neurosci 3, 127-135. 

Colomb, J., Reiter, L., Blaszkiewicz, J., Wessnitzer, J., and Brembs, B. (2012). Open Source 

Tracking and Analysis of Adult Drosophila Locomotion in Buridan's Paradigm with and without 

Visual Targets. Plos One 7. 

de Bruyne, M., Clyne, P.J., and Carlson, J.R. (1999). Odor Coding in a Model Olfactory Organ: 

The<em>Drosophila</em> Maxillary Palp. The Journal of Neuroscience 19, 4520-4532. 

de Bruyne, M., Foster, K., and Carlson, J.R. (2001). Odor coding in the Drosophila antenna. 

Neuron 30, 537-552. 



18 
 

Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A., and Carlson, J.R. 

(2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. 

Neuron 37, 827-841. 

Dweck, H.K., Ebrahim, S.A., Khallaf, M.A., Koenig, C., Farhan, A., Stieber, R., Weissflog, J., 

Svatos, A., Grosse-Wilde, E., Knaden, M., and Hansson, B.S. (2016). Olfactory channels 

associated with the Drosophila maxillary palp mediate short- and long-range attraction. Elife 5. 

Fishilevich, E., and Vosshall, L.B. (2005). Genetic and Functional Subdivision of the Drosophila 

Antennal Lobe. Current Biology 15, 1548-1553. 

Gottfried, J., Hummel, T., and Welge-Lüssen, A. (2006). Taste and smell: An update. Chap 

Smell: Central nervous processing, Vol 63, pp 44–69) Hummel, T and Welge-Lüssen, A doi 10, 

000093750. 

Gotz, K.G. (1980). Visual guidance in Drosophila. Basic Life Sci 16, 391-407. 

Greer, C.J., and Holy, T.E. (2019). Fast objective coupled planar illumination microscopy. Nat 

Commun 10. 

Gupta, N., and Stopfer, M. (2012). Functional Analysis of a Higher Olfactory Center, the Lateral 

Horn. J Neurosci 32, 8138-8148. 

Hallem, E.A., and Carlson, J.R. (2004). The odor coding system of Drosophila. Trends Genet 20, 

453-459. 

Hallem, E.A., and Carlson, J.R. (2006). Coding of odors by a receptor repertoire. Cell 125, 143-

160. 

Hallem, E.A., Ho, M.G., and Carlson, J.R. (2004). The molecular basis of odor coding in the 

drosophila antenna. Cell 117, 965-979. 

Hansson, B.S., and Stensmyr, M.C. (2011). Evolution of insect olfaction. Neuron 72, 698-711. 

Hettinger, T.P. (2011). Olfaction is a chemical sense, not a spectral sense. P Natl Acad Sci USA 

108, E349-E350. 

Hige, T., Aso, Y., Rubin, G.M., and Turner, G.C. (2015). Plasticity-driven individualization of 

olfactory coding in mushroom body output neurons. Nature 526, 258-262. 

Honegger, K.S., Campbell, R.A., and Turner, G.C. (2011). Cellular-resolution population 

imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31, 11772-

11785. 

Hong, E.J., and Wilson, R.I. (2015). Simultaneous encoding of odors by channels with diverse 

sensitivity to inhibition. Neuron 85, 573-589. 

Hubel, D.H., and Wiesel, T.N. (1959). Receptive fields of single neurones in the cat's striate 

cortex. J Physiol 148, 574-591. 

Hutmacher, F. (2019). Why Is There So Much More Research on Vision Than on Any Other 

Sensory Modality? Front Psychol 10, 2246-2246. 

Jayaraman, V., and Laurent, G. (2007). Evaluating a genetically encoded optical sensor of neural 

activity using electrophysiology in intact adult fruit flies. Frontiers in Neural Circuits 1. 

Jeanne, J.M., Fisek, M., and Wilson, R.I. (2018). The Organization of Projections from Olfactory 

Glomeruli onto Higher-Order Neurons. Neuron 98, 1198-1213 e1196. 

Jeanne, J.M., and Wilson, R.I. (2015). Convergence, Divergence, and Reconvergence in a 

Feedforward Network Improves Neural Speed and Accuracy. Neuron 88. 

Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. 

(2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit 

and pheromone representation. Cell 128, 1187-1203. 



19 
 

Karunanithi, S., Georgiou, J., Charlton, M.P., and Atwood, H.L. (1997). Imaging of calcium in 

Drosophila larval motor nerve terminals. J Neurophysiol 78, 3465-3467. 

Katz, B., and Miledi, R. (1968). The role of calcium in neuromuscular facilitation. J Physiol 195, 

481-492. 

Kay, L.M. (2005). Theta oscillations and sensorimotor performance. P Natl Acad Sci USA 102, 

3863-3868. 

Kay, L.M. (2015). Olfactory system oscillations across phyla. Curr Opin Neurobiol 31, 141-147. 

Kay, L.M., Beshel, J., Brea, J., Martin, C., Rojas-Libano, D., and Kopell, N. (2009). Olfactory 

oscillations: the what, how and what for. Trends in Neurosciences 32, 207-214. 

Kay, L.M., and Stopfer, M. (2006). Information processing in the olfactory systems of insects 

and vertebrates. Semin Cell Dev Biol 17, 433-442. 

Kazama, H., and Wilson, R.I. (2009). Origins of correlated activity in an olfactory circuit. Nat 

Neurosci 12, 1136-1144. 

Lai, S.L., Awasaki, T., Ito, K., and Lee, T. (2008). Clonal analysis of Drosophila antennal lobe 

neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135, 2883-

2893. 

Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H., and Vosshall, L.B. 

(2004). Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila 

Olfaction. Neuron 43, 703-714. 

Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nat 

Rev Neurosci 3, 884-895. 

Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory 

representation in the Drosophila mushroom body. Cell 128, 1205-1217. 

Linneweber, G.A., Andriatsilavo, M., Dutta, S.B., Bengochea, M., Hellbruegge, L., Liu, G., 

Ejsmont, R.K., Straw, A.D., Wernet, M., Hiesinger, P.R., and Hassan, B.A. (2020). A 

neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 

367, 1112-1119. 

Lledo, P.M., Gheusi, G., and Vincent, J.D. (2005). Information processing in the mammalian 

olfactory system. Physiol Rev 85, 281-317. 

Mao, T., O'Connor, D.H., Scheuss, V., Nakai, J., and Svoboda, K. (2008). Characterization and 

subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3, 

e1796. 

Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., and Luo, L. (2002). Representation of the 

glomerular olfactory map in the Drosophila brain. Cell 109, 243-255. 

McGuire, S.E., Le, P.T., and Davis, R.L. (2001). The role of Drosophila mushroom body 

signaling in olfactory memory. Science 293, 1330-1333. 

Menzel, R., and Muller, U. (1996). Learning and memory in honeybees: from behavior to neural 

substrates. Annu Rev Neurosci 19, 379-404. 

Mittal, A.M., Gupta, D., Singh, A., Lin, A.C., and Gupta, N. (2020). Multiple network properties 

overcome random connectivity to enable stereotypic sensory responses. Nat Commun 11, 1023. 

Mizunami, M., Weibrecht, J.M., and Strausfeld, N.J. (1998). Mushroom bodies of the cockroach: 

Their participation in place memory. J Comp Neurol 402, 520-537. 

Murthy, M., Fiete, I., and Laurent, G. (2008). Testing odor response stereotypy in the Drosophila 

mushroom body. Neuron 59, 1009-1023. 

Neher, E., and Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of 

neurotransmitter release. Neuron 59, 861-872. 



20 
 

Pigliucci, M. (2010). Genotype-phenotype mapping and the end of the 'genes as blueprint' 

metaphor. Philos T R Soc B 365, 557-566. 

Rusakov, D.A. (2006). Ca2+-dependent mechanisms of presynaptic control at central synapses. 

Neuroscientist 12, 317-326. 

Rytz, R., Croset, V., and Benton, R. (2013). Ionotropic receptors (IRs): chemosensory ionotropic 

glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol 43, 888-897. 

Sachse, S., and Krieger, J. (2011). Olfaction in insects. e-Neuroforum 2, 49. 

Saha, D., Leong, K., Li, C., Peterson, S., Siegel, G., and Raman, B. (2013). A spatiotemporal 

coding mechanism for background-invariant odor recognition. Nat Neurosci 16, 1830-1839. 

Saha, D., Li, C., Peterson, S., Padovano, W., Katta, N., and Raman, B. (2015). Behavioural 

correlates of combinatorial versus temporal features of odour codes. Nat Commun 6, 6953. 

Sarafoleanu, C., Mella, C., Georgescu, M., and Perederco, C. (2009). The importance of the 

olfactory sense in the human behavior and evolution. J Med Life 2, 196-198. 

Schultzhaus, J.N., Saleem, S., Iftikhar, H., and Carney, G.E. (2017). The role of the Drosophila 

lateral horn in olfactory information processing and behavioral response. J Insect Physiol 98, 29-

37. 

Shimizu, K., and Stopfer, M. (2017). A Population of Projection Neurons that Inhibits the Lateral 

Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila. Frontiers in 

Neural Circuits 11. 

Simpson, J.H. (2009). Mapping and Manipulating Neural Circuits in the Fly Brain. Adv Genet 

65, 79-143. 

Stern, S., Kirst, C., and Bargmann, C.I. (2017). Neuromodulatory Control of Long-Term 

Behavioral Patterns and Individuality across Development. Cell 171, 1649-1662 e1610. 

Stocker, R.F. (1994). The organization of the chemosensory system in Drosophila melanogaster: 

a rewiew. Cell and Tissue Research 275, 3-26. 

Stopfer, M., Bhagavan, S., Smith, B.H., and Laurent, G. (1997). Impaired odour discrimination 

on desynchronization of odour-encoding neural assemblies. Nature 390, 70-74. 

Stopfer, M., Jayaraman, V., and Laurent, G. (2003). Intensity versus identity coding in an 

olfactory system. Neuron 39, 991-1004. 

Tanaka, N.K., Ito, K., and Stopfer, M. (2009). Odor-evoked neural oscillations in Drosophila are 

mediated by widely branching interneurons. J Neurosci 29, 8595-8603. 

Venkatesh, S., and Naresh Singh, R. (1984). Sensilla on the third antennal segment of Drosophila 

melanogaster meigen (Diptera : Drosophilidae). International Journal of Insect Morphology and 

Embryology 13, 51-63. 

Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R. (1999). A spatial map of 

olfactory receptor expression in the Drosophila antenna. Cell 96, 725-736. 

Wang, Y., Guo, H.F., Pologruto, T.A., Hannan, F., Hakker, I., Svoboda, K., and Zhong, Y. 

(2004). Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green 

fluorescent protein-based Ca2+ imaging. J Neurosci 24, 6507-6514. 

Wilson, R.I. (2011). Understanding the functional consequences of synaptic specialization: 

insight from the Drosophila antennal lobe. Curr Opin Neurobiol 21, 254-260. 

Wilson, R.I. (2013). Early olfactory processing in Drosophila: mechanisms and principles. Annu 

Rev Neurosci 36, 217-241. 

Wilson, R.I., and Mainen, Z.F. (2006). Early events in olfactory processing. Annu Rev Neurosci 

29, 163-201. 



21 
 

Wilson, R.I., Turner, G.C., and Laurent, G. (2004). Transformation of olfactory representations 

in the Drosophila antennal lobe. Science 303, 366-370. 

Wright, G.A., and Schiestl, F.P. (2009). The evolution of floral scent: the influence of olfactory 

learning by insect pollinators on the honest signalling of floral rewards. Functional Ecology 23, 

841-851. 

Xu, P.S., Lee, D., and Holy, T.E. (2016). Experience-Dependent Plasticity Drives Individual 

Differences in Pheromone-Sensing Neurons. Neuron 91, 878-892. 

Yaksi, E., and Wilson, R.I. (2010). Electrical Coupling between Olfactory Glomeruli. Neuron 

67, 1034-1047. 

Zhang, Y., Chen, Y., Bressler, S.L., and Ding, M. (2008). Response preparation and inhibition: 

the role of the cortical sensorimotor beta rhythm. Neuroscience 156, 238-246. 

Zheng, Z.H., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., Torrens, O., 

Price, J., Fisher, C.B., Sharifi, N., et al. (2018). A Complete Electron Microscopy Volume of the 

Brain of Adult Drosophila melanogaster. Cell 174, 730-+. 

 

  



22 
 

Chapter 2: Relating peripheral odor-evoked responses 

to behavior output 

2.1 Summary 

The olfactory system is uniquely positioned to warn an organism of environmental threats. 

Whether and how it encodes such information is not understood. Here, we examined this issue in 

the fruit fly Drosophila melanogaster. We found that intensity-dependent repulsion to chemicals 

safeguarded flies from harmful, high-intensity vapor exposures. To understand how sensory 

input changed as the odor valence switched from innocuous to threatening, we recorded from 

olfactory receptor neurons (ORNs) in the fly antenna. Primarily, we observed two response non-

linearities: recruitment of non-active ORNs at higher intensities, and abrupt transitions in neural 

excitability from regular spiking to high-firing oscillatory regime. Although non-linearities 

observed in any single ORN was not a good indicator, a simple linear combination of firing 

events from multiple neurons provided robust recognition of threating/repulsive olfactory 

stimuli. In sum, our results reveal how information necessary to avoid environmental threats may 

also be encoded in the insect antenna.  

 

2.2 Introduction 

Animals exhibit various degrees of behavioral preference to olfactory cues. They are attracted by 

food odors and pheromone, as a way to guarantee their survival and reproduction(Aron, 1979; 

Bronson, 1979; Reinhard et al., 2004; Wyatt, 2003). On the other hand, odorants produced by 

toxic substances that signal potential environmental danger lead to aversion(Stensmyr et al.; 

Zhang et al., 2005). While, odorants tend to maintain their overall odor valence over a wide 
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range of concentrations, most drastically alter the polarity of odor valence as the concentration 

increases, i.e. the behavior preference switches from attraction to aversion(Stensmyr et al., 

2003). What determines whether an odorant’s valence remains constant or changes with 

intensity?  

  The early olfactory circuits of Drosophila have been well studied both from an 

anatomical(Couto et al., 2005a) and functional perspective(Hallem and Carlson, 2006b). 

However, the rules that govern how sensory stimuli get translated to behavioral outcomes 

remains poorly understood. For example, changing the intensity of a stimulus is arguably the 

smallest manipulation to the sensory input possible as only the number of molecules is varied not 

its identity or other chemical features. Yet, existing behavioral data reveals that for many 

odorants the overall preference can switch as stimulus intensity is increased beyond a threshold 

value. This mismatch between the degree of variation in the sensory input and behavioral output 

raises the following important fundamental question: when and why do the same stimuli repel 

flies when delivered at higher intensities? And, how is this information encoded? 

The repulsion to high intensity chemical vapors has been observed in many species(Poucher, 

1974; Stensmyr et al., 2003; Yoshida et al., 2012), although, its significance is yet to be 

understood. Such a response is particularly confounding considering that many of these stimuli 

may otherwise not evoke any innate response, or even be attractive to them at lower intensities. 

How then are such stimuli represented in the olfactory system and what aspects of neural 

responses change abruptly with intensity? Electrophysiological and imaging studies have shown 

that increasing odor intensity activates additional olfactory receptor neurons that are not 

responding at a lower concentration(Duchamp-Viret et al., 2000; Knaden et al., 2012a; Rubin 

and Katz, 1999; Semmelhack and Wang, 2009). Previous works have proposed that this 
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recruitment of additional activity might be sufficient to explain both invariance in neural 

encoding(Asahina et al., 2009) and changes in behavioral response (i.e. ‘the recruitment 

hypothesis’)(Suh et al., 2004). If this recruitment hypothesis is indeed true, then behavioral 

variance with intensity may simply arise as a result of recruiting exclusive sensory channels or 

‘labelled lines’ that mediate aversion(Knaden et al., 2012a; Semmelhack and Wang, 2009). 

Whether such recruitment of additional activity at higher intensities happens for all or a subset of 

odorants is not clear. Furthermore, it is unclear whether the spiking activity in these additionally 

activated receptor neurons alone determines the odor intensity at which the behavioral preference 

to this stimulus switches from attraction to repulsion. 

Here, we explored this issue in the Drosophila olfactory system. We found that flies were 

repelled by odorants at intensities beyond which the vapors were harmful to them. Exposure of 

flies to such high-intensity vapors anesthetized them. To understand how the information 

regarding odorants was encoded as their intensities were altered from innocuous to threatening, 

we recorded from olfactory receptor neurons on the antenna. Our results indicate that in addition 

to recruitment of receptor neurons at higher concentrations, abrupt transitions in neural 

excitability also occur as stimulus intensity is increased. Furthermore, our data reveals that while 

activity recruitment or excitability changes in receptor neurons may correlate with behavioral 

preference changes for some select odorants, they do not provide a general rule for translating 

sensory input to behavior. Notably, our results indicate that total spiking activity in a select few 

receptor neurons may serve as a robust indicator of changes in behavioral preference with 

intensity and thereby may act as a neural basis for an early warning signal.  
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2.3 Methods 

2.3.1 Fly Stocks 

Flies (Canton-S) were raised on cornmeal medium at 25 ± 1°C under 12:12 light-dark cycle. For 

experiments with transgenic flies (Figure 2. 4), ORNs were selectively ablated by crossing UAS-

DTI flies with Or59b-Gal4 or Or85a-Gal4 lines.  

 

2.3.2 Odor Stimuli 

7 odorants were used in both electrophysiology and behavior experiments: 2,3-butanedione 

(97%, Sigma-Aldrich Co. LLC.), ethyl acetate (99.8%, Sigma-Aldrich Co. LLC.), ethyl butyrate 

(99%, Sigma-Aldrich Co. LLC.), ethyl-3-hydroxybutyrate (≥97%, SAFC, Sigma-Aldrich Co. 

LLC.), hexanol (≥98%, SAFC, Sigma-Aldrich Co. LLC.), methyl acetate (≥99%, SAFC, Sigma-

Aldrich Co. LLC.), and methyl hexanoate (≥99%, SAFC, Sigma-Aldrich Co. LLC.). Except pure 

odors, all dilutions were made by dissolving pure odor solutions in paraffin oil (J.T.Baker). 

 

2.3.3 Single-Sensillum Recordings 

Female flies aged from 5-8 days after eclosion were used. To perform extracellular recordings 

from receptor neurons we followed a previously published procedure(Dobritsa et al., 2003). The 

fly antenna was extended and fixed using a glass capillary on a coverslip. To acquire action 

potentials, a glass electrode filled with saline (impedance ~40MΩ) was inserted into the middle 

portion of a sensillum. Another reference glass electrode was inserted into the contralateral eye. 

The signals were amplified (gain =10; Axon 900A, Molecular Devices) and filtered with a high-
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pass filter set to DC and a low-pass filter set at 10kHz. A custom Labview software was used to 

acquire samples at 15 kHz. No more than two sensilla from the same fly were recorded. 

 For each of the 7 odors described above, we tested 5 concentrations: undiluted, 10-2, 10-

4, 10-6, and 10-8dilutions. 

 For each trial, 50μL odor dilution was added to a filter paper strip and placed in a Pasteur 

pipette(Dobritsa et al., 2003). A humidified, carrier air stream at a flowrate of 2000 sccm was 

directed at the fly antenna throughout the experiment. To present an odor stimulus, a 200 sccm 

air puff was passed through the filter paper strip containing the odor solution and into the carrier 

airstream. 

 Each trial lasted 60s with an intertrial interval > 30s, and the stimulus was delivered from 

the 10th second to the 11th second of the trial. Odors were presented in pseudo-random blocks 

based on odor identity. Different concentrations of a single odorant were also presented in a 

random order, except for the undiluted stimuli which was always presented as the last stimulus in 

each block. 

 

2.3.4 T-maze Behavior Assay 

We used 5 – 8 day old male and female flies. To be consistent with electrophysiology 

experiments, flies used in our behavioral experiments were also unstarved. 

 We tested the same 7 odors used in our electrophysiology experiments. Each odorant was 

presented at the following concentrations: 10-1, 10-2, 10-4, 10-6, and 10-8 v/v. 

One piece of folded filter paper was placed at the end of each of the two plastic test tubes 

(17mm×100mm, 14mL Round-Bottom Polypropylene Tubes, Falcon). After adding 50μL odor 
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dilution and paraffin oil to the filter papers in each of the two test tubes, they were sealed with 

Paraflim (Bemis Company, Inc.). To allow sufficient evaporation of odorants, test tubes were left 

undisturbed for ~10mins before further use. For each trial, 150~200 flies were placed into the T-

maze fly chamber. Assays were conducted in a dark room to prevent interference from any visual 

cues. Before testing, flies were given 1 min acclimatization time. Then, the fly chamber was 

lowered to allow the flies to access the two test tube arms. The flies were given 1 min to make 

their decision. The preference index was calculated using the following formula: 

𝑥 =
𝑛𝑢𝑚𝑏𝑒𝑟 of flies in test tube − number of flies in control tube

total number of flies
 

 

2.3.5 Geotaxis Behavior Assay 

Unstarved flies aged between 5-9 days were used. 8-12 flies were placed in test tubes 

(17mm×100mm, 14mL Round-Bottom Polypropylene Tubes, Falcon). To prevent flies from 

escaping the test tube, a piece of metal mesh was attached to cover the open end of the test tube. 

The tube was inverted and kept perpendicular to the table, so the flies could climb toward the top 

of the tube. Another test tube was cut off about 1.7 cm from the opening, and one end sealed 

using a round glass cover-slip (12-546-2, Fisherbrand) to form a manifold for a filter paper 

containing the odor solution. Right before the experiment, 50μL of odor dilution or paraffin oil 

was added to the filter paper and placed in this manifold. The test tube with flies was inverted on 

top of the odor manifold. The connection between the tubes was sealed with dental wax 

(Surgident, Heraeus Kulzer Inc.). The assembly was then placed in front of a red LED panel. Fly 

movements on the test tube walls were recorded using a camera (C920, Logitech) at 30 frames/s. 
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 Movies were analyzed using OpenCV 3.0.0 in Python 2.7.10. Region of interest (ROI) 

was manually picked to track the fly movement. The starting time for each trial was manually set 

to be the frame at which the assembly was stably placed in front of the background light panel 

and the camera self-adjusted to a stable setting. Only signals from the blue channel were used, so 

the frames became gray-scale with each pixel value ranging from 0 to 255. Every frame was 

thresholded to separate shadows created by flies from those of the test tube itself. Number of 

pixels with a value below a threshold value (set to 100) was regarded as the total shaded area. To 

obtain the fly occupancy area (FOA) in each frame, the tube shaded area was subtracted from the 

total shade area. To compute the tube shaded area, we averaged across all 20000 frames from 

each movie to obtain the average frame. In the average frame, the shade created by the tube itself 

was much easier to be differentiated from the ones created by flies. Plot shown in Figure 2.1c 

was generated by passing area occupied by flies across frames through a 30-point moving 

average filter and normalized to the maximum of that curve. 

 

2.3.6 Pharmacology 

Tetrodotoxin (Sigma-Aldrich Co. LLC.) was dissolved in Ringer solution to a concentration of 

50µM/L. The extracellular recording electrode was filled with the diluted TTX solution and 

inserted into the sensillum. About 10~15 min was given to allow the perfusion of TTX and 

abolish sodium spikes. The recording was not performed until spontaneous spikes were no longer 

observable, which was visually checked on an oscilloscope. 
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2.3.7 Current injection 

Positive current 0.8nA was injected into the sensillum through saline filled glass electrode. ORN 

activities were recorded for current injection, a low concentration of ethyl acetate, and a 

combined stimulus of current (0.8nA) and odorant (ethyl acetate) presented simultaneously to the 

antenna. The current injection and odor delivery were 1s in duration.  

 

2.3.8 Determination of response onset  

 We observed that since the odor puff had to travel a distance before reaching the antenna, 

ORN response onsets occurred after varying delays following stimulus onset across experiments. 

Therefore, to precisely determine the ORN response onset, we used a metric based on changes in 

field potential recorded from the sensillum. More precisely, we computed the first derivative of 

the band-pass filtered baseline (2nd order Butterworth band-pass filter, 0.1~5 Hz). The first time 

point after stimulus onset when the field potential’s derivative exceeds a chosen threshold was 

treated as the time of ORN response onset. 

 For most traces, their response onset was directly decided by its baseline drop. For traces 

without a detectable baseline drop at low odor intensities, their response onset was determined 

by the average response onsets of the same odor at higher concentrations (pure, 10-2). 

 

Firing event detection 

Firing events were detected by a custom routine which in principle detected voltage peaks above 

a preset threshold (usually 4.5 times the pre-stimulus baseline s.d.). 
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 When ORN responses enter high-activity levels (typically > 200 Hz), low-amplitude 

oscillatiory waveforms (LAOs) were observed. Therefore LAOs were extremely difficult to 

detect using the thresholding method. To address this issue, we developed a template-matching 

algorithm. In this algorithm, signal segments were binned in a short moving window that was 

compared with an oscillation waveform template. If the signal segment in a particular moving 

window was similar enough to the template, then the signal segment was counted as an LAO. 

 To create a template for oscillation waveform, a trace segment with typical, consistent 

oscillations was manually selected. In this segment, each oscillatory event could be robustly 

detected due to their large amplitudes. These oscillatory events were peak aligned and binned so 

that each bin solely contained the complete waveform of only one oscillatory event. Binned 

waveforms were each normalized by subtracting the mean and dividing by the standard deviation 

of signals of each time bin. The normalized waveforms were then averaged over 1875 such 

normalized oscillatory events to generate a oscillation waveform template. 

 To clean up the original trace for template matching, detectable supra-threshold firing 

events, including spikes and oscillations, were first removed. The remaining trace was 

concatenated and binned into 50 ms non-overlapping time segments. Power was computed for 

each 50 ms time segment. Consecutive segments with power larger than a preselected threshold 

were considered to contain LAOs. These LAOs-containing bins were again concatenated and 

pattern matched with the oscillation waveform template. Signals in the moving window were 

normalized as described above. The angular distance between the windowed signal (Vs) and 

template (Vt) was calculated to quantify their similarity. Because the window moved by one data 

point every step, we could obtain a trace of angular distance with high temporal resolution. The 

local peaks in the angular distance trace with a value > 0.7 were considered to indicate LAOs. 
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𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = cos−1
Vt ∙ Vs

|Vt||Vs|
 

𝑃𝑜𝑤𝑒𝑟 =
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

 

where 𝑥𝑖 is the extracellular voltage recorded at time point  𝑖, and n is the total number of time 

points within a time bin.  

 

2.3.9 Classification analysis 

We used a linear, optimal margin classifier- support vector machine (SVM) to predict the 

behavioral outcome (repulsion or non-repulsion based on T-maze results) given the spike counts 

from a combination of receptor neurons (present in ab2 or ab3 or both). The length of the 

window used to compute odor-evoked spike counts was systematically varied to quantify 

performance for different integration length (50 ms to 20 s). A soft margin version of SVM was 

used to make it more resistant to outliers. A leave-one-out cross-validation scheme (neural and 

behavioral data for one odorant at one intensity was left out; 34 odor-intensity combinations for 

training and 1 odorant-intensity for testing) to quantify our results.  

Note since flies passed out before they could make a decision when exposed to pure odorants, 

they were regarded repulsive for the purposes of this analysis.  

 When only considering spike counts from the two neurons housed in a single sensillum 

type (i.e. ab2 alone or ab3 alone), we made predictions based on thresholding the input (i.e. if the 

input is above the threshold, the odor to be repulsive). The threshold value that resulted in the 



32 
 

lowest training error was used. If multiple thresholds generated similar training errors, then the 

threshold that divides the data more evenly was picked.  

 We further tested our hypothesis using a published dataset(Hallem and Carlson, 2006b), 

which contained mean firing rate of 24 types of ORNs to ten odors at four concentrations (10-2, 

10-4, 10-6, and 10-8). We found four odors which are also in our research: ethyl acetate, hexanol, 

ethyl butyrate and 2,3-butanedione. The calculation of success rate was formulated as an “n 

choose k” problem, where n denotes the total number of ORN types available, and k denotes the 

number of pooled ORNs. Within each combination, we summed the firing rates of all k pooled 

ORNs and threshold the sums. If there existed a threshold that could correctly predict the odor 

valence, we counted it as a “success”. If the total number of combinations and “successes” in a 

given “n choose k” problem was A and S, respectively. we calculated success rate as S/A. 

 

2.3.10 Modeling of Spikes and Oscillation 

We simulated regular spikes and oscillation using a reduced two dimensional Hodgkin-Huxley 

model (HH model) derived from the standard HH model. 

 The standard HH model describes the membrane potential of a neuron with a set of four 

ordinary differential equations (ODEs): 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼 − 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾) − 𝑔𝑁𝑎𝑚3 ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐿(𝑉 − 𝐸𝐿) 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥(1 − 𝑥) − 𝛽𝑥𝑥,  

, where 𝑥 can be replaced by n, m, and h. V stands for membrane potential. m, n, and h are gating 

variables with values in the [0,1] range. C is the membrane capacitance. 𝑔𝐾, 𝑔𝑁𝑎, and 𝑔𝐿 are the 
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maximum conductance of potassium, sodium and leak channels, respectively. 𝐸𝑥 represents 

reversal potentials of corresponding channels (ENa = 55 mV, Ek = -77 mV and EL = -61 mV). 

 Dimensionality reduced HH model: h can be replaced by a linear function of n, since n+h 

is almost a constant. m can be approximated by a simple polynomial equation. Thus, the standard 

HH model can be effectively approximated by a two-dimensional version of the model:  

 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼 − 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾) − 𝑔𝑁𝑎𝑚∞

3 (0.89 − 1.1𝑛)(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐿(𝑉 − 𝐸𝐿) 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝑚∞ =∝𝑚 𝜏𝑚 

We set constant value for 𝐼 to make it a constant stimulus. The membrane potential changes 

caused by a certain amplitude of input can be obtained by solving the ODEs. To simulate regular 

spiking activities and oscillations, we set 𝐼 to equal 10 μA and 175 μA, and obtained firing rates 

of ~90 Hz and ~340 Hz respectively. 

 

2.3.11 Statistical Tests 

No statistical method was used to predetermine the sample size.  

 Paired-sample t-test was performed to compare firing rates of the same sensillum when 

exposed to odor at different concentrations. The comparison was only performed between 

neighboring concentrations. Significance levels (0.05) were Bonferroni-corrected for multiple 

comparisons. 
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 We performed one-sample t-test on behavioral data to identify concentrations with a 

mean behavior preference index significantly different from 0 (significance level = 0.05). 

We tested the normality of data using the Jarque-Bera test.  

 

 

2.4 Results 

2.4.1 Behavioral switch to repulsion at high odor intensities 

To identify general trends in dose-dependent behavioral preference changes, we used a stimulus 

set comprising of seven different odorants. Each stimulus was delivered over a wide 

concentration range (over seven log-units of magnitude) in order to include innocuous and 

threatening olfactory valences. It is worth noting that the stimulus set included many fruit-related 

odorants(Laissue and Vosshall, 2008) such as ethyl acetate, methyl acetate, ethyl butyrate, 

methyl hexanoate and ethyl-3-hydroxy butyrate. In addition, we included odorants such as 2,3-

butanedione and 1-hexanol that are known to inhibit innate avoidance response due to 

CO2(Turner and Ray, 2009). We examined the behavioral preference of unstarved flies to each 

odorant on the panel using a standard T-Maze assay. We found that all seven odorants examined 

were non-repulsive at lower intensities, but the behavioral preference switched to strong aversion 

at higher intensities. The threshold concentration at which the preference switched varied a little 

between two subsets of odorants: 10-2 v/v or 10-1 v/v (Figure 2. 1a). Nevertheless, our 

behavioral data suggests that the switch in overall behavioral preference with intensity may be a 

common feature in this sensory modality. 
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 Next, we sought to understand the need for repulsion at higher odor intensities. We found 

that most flies exposed to odorants beyond the repulsion intensities were anesthetized before 

they could make a decision to enter a T-maze arm. To quantitatively illustrate this, we used 

another behavioral assay where flies performing geotaxis were exposed to high-intensity vapors 

of ethyl acetate. We found such high-intensity vapor exposures were unsuitable to flies, and 

those performing geotaxis were anesthetized and fell from the walls of the climbing tubes. 

Whereas, control exposures to paraffin oil had no such effect on flies and they managed to hang 

onto the walls for the entire duration of the experiment. 

We tracked the area of the climbing tube that was occupied by the flies as a function of time. As 

can be expected, this metric remained stable for flies exposed to the paraffin oil, but reduced to 

zero for high-intensity ethyl acetate exposures (Figure 2. 1b, c)). This effect of high-intensity 

ethyl acetate vapors on flies was not observed during low intensity exposures (10-4 v/v and 10-2 

v/v) of the same odorant. It might be worth to note that 10-2 v/v was the threshold intensity when 

the overall behavioral preference switched to repulsion for this odorant. Taken together, these 

results indicate that repulsive response of flies to high-intensity chemical vapors is a protective 

mechanism that allows them to avoid exposures to harmful chemicals. 
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Figure 2.1: Dose-dependent behavioral responses to odorants 

a, Behavior preferences of fruit flies to different odor-intensity combinations were assayed using 

a T-maze assay and shown. Positive and negative preference index values represents attraction 

and repulsion respectively. Mean ± s.e.m is shown for all concentrations (N = 10 for all 

concentrations but 10-1 concentrations for which N=5). Asterisks indicate significant increase or 

decrease in behavioral preference values at p<0.05.  

b, Representative results from a geotaxis assay are shown. Note that while the flies clung onto 

the test tube walls they were also exposed to either paraffin oil vapors (control; top panel) or 

ethyl acetate vapors (bottom panel). Both original and the thresholded image highlighting the 

position of flies (in white) on the test tube walls are shown for three different time points. Note 

that the number of flies stuck to the walls reduced over time when they were exposed to high-

intensity ethyl acetate vapors. 

c, The area of test tube wall occupied by flies (y-axis) was tracked as a function of time and 

plotted for four different conditions: paraffin oil (PO; blue traces in the top panel; n =3), 

undiluted ethyl acetate vapors (EA; red traces in the top panel; n=3), ethyl acetate at 10-2 

(magenta traces in the bottom panel; n=3), and 10-4 ethyl acetate vapors (green traces in the 

bottom panel; n=3). Each curve was normalized by its maximum to facilitate comparison across 

experiments. Note that the area occupied by flies on the tube walls dropped to zero only for all 

pure ethyl acetate cases. 
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2.4.2 Olfactory receptor neurons’ response non-linearities 

Given the drastic change in the behavioral response for all odorants tested, we examined how the 

sensory input from ORNs change with odor intensity. First, we performed extracellular 

recordings from fruit fly ORNs in the ab3 sensillum when the antenna was puffed with ethyl 

acetate vapors at different concentrations (schematically shown in Figure 2. 2a). We found that 

both neurons in the ab3 sensillum were not activated at low intensities of ethyl acetate exposure 

but became activated at a threshold concentration of 10-2 v/v (Figure 2. 2b). Since the ab3 

neurons were recruited at a certain threshold intensity of the odorant, we examined if this 

recruitment correlated with the behavioral preference switch. As can be noted, the increase in 

neural activity in this sensory channel reflects when flies were repelled by ethyl acetate in the T-

Maze assay (Figure 2. 2c). Therefore, these neural and behavioral data taken together suggest 

that recruitment of spiking activities in additional receptor neurons may correlate with intensity-

dependent behavioral response switch for ethyl acetate. 

 Next, we examined how neural activities in other receptor neurons that were strongly 

activated by ethyl acetate (Or59b expressing ORN housed in the ab2 sensillum) were altered as a 

function of stimulus intensity (Figure 2. 2a). Consistent with existing data(Hallem and Carlson, 

2006b), we found that at lower intensities the spiking activity increased beyond the baseline 

levels particularly for the ab2A neuron expressing Or59b receptor (Figure 2. 2d). However, as 

the odor intensity was increased beyond a threshold concentration (10-2 for ethyl acetate) the 

spiking activity transitioned from clearly distinguishable spikes to a response regime where 

individual action potentials were no longer resolvable (Figure 2. 2d). Rather, it appeared that 

spikes collided with each other and generated oscillatory field potential activity with increased 

power in the high-gamma band (~ 200 Hz; Figure 2. 2f). This oscillatory extracellular activity 
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was detected in all our ab2 sensilla extracellular recordings following exposures to high 

concentrations of this odorant (n=12). Notably, both the frequency content of the field potential 

activity and its amplitude varied as a function of ethyl acetate intensity (Figure 2. 2d). 

Since we were unable to resolve individual spikes at high intensities, to characterize the dose-

response curve, we counted the total number of firing events during any single ethyl acetate 

exposure and plotted it as a function of odor intensity (Figure 2. 2e; see Methods). The mean 

dose-response curve was sigmoidal with the number of firing events making an abrupt increase 

right when the extracellular activity transitioned from spiking to oscillatory field potentials. 

Interestingly, a qualitatively similar dose-response curve could also be generated by examining 

the total change in oscillator power in the high-gamma range (Figure 2. 2f,g). More importantly, 

the switch in behavioral preference for ethyl acetate occurred right at the threshold intensity 

when the neural activity in the ab2 neurons switched.  

These results, taken together suggest that both recruitment of additional receptor neurons’ 

activities and an abrupt switch in receptor neuron firing pattern (from low to high) may both 

correspond to the switch in the overall behavioral preference for ethyl acetate at higher 

intensities.  
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Figure 2.2: Recruitment vs. abrupt transitions in receptor neuron spiking  

a. A schematic of ab2 and ab3 sensillum recordings is shown.  

b. Representative extracellular recording traces acquired from a ab3 sensillum are shown. 

Raw traces were high-pass filtered at 55 Hz to remove the DC-component. Responses 

elicited by ethyl acetate vapors delivered at 10-4, 10-2 and undiluted intensities are shown. 

The green bar above the voltage traces indicate the 1 s time window when the stimulus 

was presented. A small 150 ms segment (red boxes) of the recording was magnified and 

shown underneath each raw trace for clarity. 
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c. The total spiking activity of neurons housed in the ab3 sensillum is plotted as a function 

of stimulus concentrations (blue, mean±s.e.m.). The dotted line (at the bottom of plot) 

indicates the spiking activities elicited by paraffin oil exposures. Asterisks indicate 

significant increase of firing rate compared with the neighboring lower concentration 

(p<0.05, paired t-tests, n=10 trials). For comparison, the behavioral preference index 

(cyan, mean±s.e.m.) observed in the T-maze assay for various intensities of ethyl acetate 

exposures is also shown. Note that the behavioral preference switched to repulsion at 10-2 

ethyl acetate exposures. 

d. Same as 2b, but showing responses of ab2 neurons to ethyl acetate at various intensities. 

Note that ethyl acetate exposures clearly elicit a detectable response at 10-4 dilution. 

However, note that at higher ethyl acetate intensities only oscillatory field potentials of 

varying amplitudes are observed. 

e. Similar comparison as in panel c, but comparision between firing rates of neurons in ab2 

sensilla (blue, mean±s.e.m.) with the behavioral preference (cyan, mean±s.e.m.) is shown 

for ethyl acetate presented at various  concentrations. 

f. A moving window power spectra of a representative extracellular trace recorded from 

ab2 sensillum is shown. Power in the high gamma band frequencies (>150Hz) can be 

observed during 10-2 and undiluted ethyl acetate exposures.  

g. Similar comparison as in panel c, but comparison between the total power of signals from 

ab2 sensilla (blue, mean±s.e.m.) and the behavioral preference (cyan, mean±s.e.m.) is 

shown for ethyl acetate presented at various concentrations. 

 

 

2.4.3 Field potential oscillations in olfactory sensillum 

 How are the receptor neuron oscillations generated? To understand this issue, we added 

Na+ channel antagonist tetrodotoxin (TTX) to recording glass pipettes(Nagel and Wilson, 2011). 

This pharmacological manipulation resulted in elimination of all ORN spiking activity and also 

abolished field potential oscillations observed at high intensities (Figure 2. 3a). However, note 
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that the DC-component of the sensilla local field potential caused by transduction currents 

remained unaffected. These results confirm that the field potential oscillations are not an artifact 

of our extracellular recording approach as they can be abolished using Na+ channel blocker. 

Furthermore, note that the DC component of the signal is monotonic with odor intensity (Figure 

2. 3a). In sum these results suggest that the oscillatory potentials must originate downstream of 

the transduction machinery possibly due to collision of spikes. 

To test the spike collision hypothesis, we examined whether this transition from low firing 

spiking regime to a high-firing one could be controlled by pairing odor stimulation with 

electrical stimulation. As noted previously, ethyl acetate at 10-4 dilution elicited clearly 

resolvable spikes. Similarly, a weak current injection (0.8 nA) alone generated modest increase 

in spiking activity in the receptor neurons housed in ab2 sensillum. However, when the odor 

stimulation was combined with the current injection, we found that the extracellular activity 

transitioned to the oscillatory field potential very similar to those observed at high odor 

intensities (Figure 2. 3b). These results taken together with the pharmacological manipulation 

findings confirm that the non-linear switch to a high firing oscillatory field potential regime in 

ab2 receptor neurons is due to modulation of excitability in these neurons.  

Could the recently identified non-synaptic interactions between receptor neurons(Su et al., 2012) 

influence encoding of stimulus intensity? To examine this issue, we generated transgenic flies 

with only one functional receptor neuron in the ab2 sensilla. We examined the responses of these 

transgenic flies to ethyl acetate and compared the same with those obtained from wild-type flies 

(Figure 2. 4a). Note that transgenic flies with genetically ablated Or85a or Or59b expressing 

receptor neuron still reveal similar transitions in spiking activity with increase in stimulus 

intensity (Figure 2. 4a, b). Hence, we conclude that interactions between these receptor neurons 
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are not necessary to mediate the observed modulation in their excitability.
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Figure 2.3: Mechanism underlying field potential oscillations in olfactory sensillum 

a, Extracellular recordings obtained from an ab2 sensillum with a glass pipette filled with saline 

and tetrodotoxin (TTX) is shown (see methods). TTX blocked all sodium spikes but the 

transduction potential due to activation of olfactory receptors by ethyl acetate (left) of hexanol 

(right) was still observed. The amplitudes of the transduction potential (i.e. magnitude of the DC 

component) increased monotonically with the concentration for both odorants.  Note that neither 

spikes nor oscillatory field potentials can be observed. Bottom panel: average amplitude of the 

DC component from 6 trials plotted as a function of stimulus intensities is shown for both ethyl 

acetate and hexanol. 

b, Extracellular recordings obtained from an ab2 sensillum are shown for three different cases: 

(top row) exposure to 10-4 ethyl acetate (second row), direct current injection (0.8 nA) into the 

sensillum, and (third row) a simultaneous presentation of both ethyl acetate at 10-4and current 

injection (0.8 nA). The color bars at the bottom of the trace indicate when the odor puff and/or 

current injections were delivered. Black arrows indicate stimulation artifacts at the onset and 

offset of current injection. Note that neither odor stimulation (EA at 10-4), nor current injection 

alone could generate oscillatory extracellular field potentials. However, when they were 

presented together, oscillations could be observed.  

c. Bar plot quantifying the ab2 firing rates observed during the three conditions presented in 

panel b.  
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Figure 2.4: Individual receptor neurons can generate oscillatory field potentials  

a, Sensillum recording obtained from transgenic flies with either the B neuron (Or85a) or A 

neuron (Or59b) in the ab2 sensillum ablated are shown. Top: Schematics showing ORN ablation 

and actual extracellular trace obtained from such genetically modified sensillum are shown. Note 

only spikes of single amplitude are observed after ablation of one receptor neuron. Bottom 

panels: Representative extracellular recording traces showing responses elicited by ethyl acetate 

at different intensities are shown. Note that oscillatory field potentials could still be observed at 

high ethyl acetate intensities when only A neuron or B neuron remained.  

b, EA and Hex Dose-response curves for ab2A and ab2B neurons are shown. Asterisks indicate 

significant increase of firing rate compared with the neighboring lower concentration (p<0.05, 

paired t-tests). 

 

 

2.4.4 Oscillatory dynamics in a Hodgkin-Huxley type neuron  

To understand how the same neuron can create firing events of varying shapes, we performed a 

phase plane analysis of neural excitability for a Hodgkin-Huxley type neuron model (HH model). 

To perform this 2-d analysis, we reduced the HH model from a system of four ordinary 

differential equations to two by making two assumptions (see Methods). First, we assumed that 

the sodium channel activation gating variable ‘m’ reaches its asymptotic value instantaneously to 

eliminate one variable. Second, by expressing the sodium channel inactivation gating variable ‘h’ 

as a linear function of the potassium channel activation gating variable ‘n’ we eliminated the 

second variable. 
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 We found that this reduced HH model could generate spiking activities of different 

shapes depending on the amplitude of the input current. For depolarizing input up to a certain 

threshold value, we were able to observe clearly resolvable tri-phasic individual action potential 

waveforms (Figure 2. 5). Beyond the threshold value, we found the action potential waveform 

shapes became considerably narrower with smaller peak to trough amplitudes. The spikes 

produced appeared qualitatively similar to the oscillatory extracellular potentials observed in 

ORNs during high-intensity odor exposures.  

We found that this change in action potential shape was mainly due to the alterations in the 

dynamics of the fast variable (corresponds to the membrane potential of the neurons, ‘V’ in the 

HH model). Note that the shape of the fast variable null cline (the curve along which the 

membrane potential is held constant) changed depending on the magnitude of the depolarizing 

current input. This resulted in the shape of the period events changed drastically (i.e. limit cycle 

in dynamical systems jargon, or, action potentials fired by the neuron model, its biological 

interpretation). Therefore, these results further support our interpretation that the changes in the 

spiking activity observed in our receptor neuron recordings could arise due to the changes in 

ORN excitability.  
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Figure 2.5: Modulation of limit cycle size and shapes in a Hodgkin-Huxley model 

Simulated spikes of different amplitudes are shown from a 2-dimensional reduction of Hodgkin-

Huxley model are shown (see Methods). All parameters in the model were kept constant for both 

cases but the amplitude of injected current was substantially increased from 10 μA (left panel) to 

175 μA (right panel). Phase-plane analysis: The fast variable (membrane potential; x-axis) is 

plotted against slow variable (potassium gating variable) for the two different spiking conditions 

shown above. The fast and slow variable null clines (curves along which the derivatives are 

zeros) are shown in green and purple, respectively. Gray arrows indicate the direction the system 

would evolve in the locality of a specific region. The red trace illustrates the simulated firing 

evolved in the phase plane. Notice that the shape of cubic v-nullcline changes substantially for 

high current injections thereby making the limit cycle almost bi-phasic.  
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2.4.5 Rules for predicting behavioral preference changes 

Finally, we examined how well spiking activities in receptor neurons (Figure 2. 6.1) correlated 

with the behavioral preference switch for all odorants in the panel. Our results indicate that 

spiking activities in ab2 or ab3 receptor neurons when considered individually correlated with 

the behavioral preference switch in only a select few odorants (Figure 2. 6a). This result was 

confirmed by plotting the ab2 and ab3 neural spiking response versus behavioral preference for a 

given odorant at a particular intensity (Figure 2. 6a). A single threshold that separates non-

repulsive stimuli from repellent odor-intensity combinations could not be found. However, when 

we linearly combined the contribution of both these sensory channels, we found that the total 

activity in these two sensory channels could robustly identify which odorants at what 

concentrations evoked an attractive or a repulsive response (Figure 2. 6b).  

The analyses presented so far examined the segregation of behavioral preferences based on spike 

counts from two sensory channels but within a specific time window (500 ms from odor onset). 

How robust are these results when this assumption regarding the spike integration window is 

removed? To examine this, we compared the prediction performance of an optimal classifier 

(linear SVM) when the classifier was trained using information obtained from either a single 

channel (ab2 or ab3; 1-d problem), or from both channels (ab2 and ab3; 2-D problem). We 

characterized the prediction error for these three cases as a function of spike integration window 

length (Figure 2. 6c).  

We found that the total spiking activities in the ab3 sensory hair alone could provide low 

prediction error when the integration window was set to a specific value (250 ms). However, 

beyond this value, the prediction error increased significantly. On the other hand, the total spikes 

from ab2 sensory hair supported predictions with higher error rates for a wide range of 
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integration window durations. Neither of these two sensory channels, when considered in 

isolation could support rapid decision making (< 100 ms) with low prediction error. However, 

the prediction error when spiking responses from both ab2 and ab3 channels were 

simultaneously considered, the prediction error became less sensitive to the integration window 

length. Furthermore, as can be expected, the combinatorial approach could achieve the lowest 

prediction error among all three cases within the first 50 ms after response onset. Since flies are 

capable of making decisions rapidly (within 100 ms)(Bhandawat et al., 2010; Steck et al., 2012), 

as might be needed for an escape response, these results further support the need for a readout 

scheme based on spiking information from multiple sensory channels. 

Taken together, our result suggests that a perceptron-like “summation and thresholding” model, 

in which a linear combination of information from multiple ORN types can robustly explain the 

behavioral response.  
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Figure 2.6: Predicting behavioral preference from receptor neuron responses 

a, Behavioral preference for each odorant at each intensity (y-axis) is plotted against cumulative 

spike counts (500 ms integration window since response onset) is shown for both ab2 (left panel) 

and ab3 (right panel) sensillum. The mean±s.e.m for spiking activity and the behavioral 

preference values for each stimulus used in the study are shown. The size, fill and color of the 

marker uniquely identify odor identity – intensity combination. In both panels, note that a single 

threshold firing rate that reliably separated repulsive odors from non-repulsive ones did not exist. 

b, Behavioral preference plotted against the sum of cumulative firing (500ms) from both ab2 and 

ab3 sensilla are shown. Note that stimuli that evoke less than 110 cumulative spikes/s in these 

two channels were non-repulsive, whereas those odor-intensity combinations that evoked more 

than this threshold repelled flies strongly. 

c, Performance characterization of an optimal linear classifier is shown for three different cases: 

(i) using spiking information from ab2 sensilum alone (green) (ii) using spiking information 

from ab3 sensillim alone (blue), and (iii) using information from both these channels (red). The 

prediction error is shown for different values of the integration window used to summate the 

spikes. A leave-one-odor-out cross-validation scheme was used to quantify performance in this 

plot. 
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Figure 2.6.1: Dose response curves for both ab2 (red) and ab3 (blue) sensillum is shown for all 

six odorants used in this study. Asterisks indicate significant increase in firing rate compared 

with the neighboring lower concentration (p<0.05, paired t-tests). The dashed line indicates 

firing rate when presenting paraffin oil alone (i.e. the solvent used for diluting the odorants). 
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2.5 Discussion 

The volatile nature of chemosensory cues transduced by the olfactory system indicates that it is 

well suited to serve as a first responder capable of informing an organism about potential 

environmental hazards. However, to generate an early warning signal two additional requirement 

need to be considered. First, given that the set of chemical stimuli that are harmful to an 

organism may be broad, a more general encoding strategy (many inputs–to–one behavioral 

outcome) may be required. Second, the sensory cues must be mapped onto a behavioral response 

that will help avoid such threats (i.e. repulsion). Our results indicate that the Drosophila olfactory 

system does indeed use a general strategy based on total spikes from multiple sensory channels 

to encode such information. Furthermore, dose-dependent odor-evoked repulsion observed in 

many organisms including fruit flies may help avoid such environmental threats. 

We found that exposures to most volatile organic chemicals beyond a certain threshold intensity 

repelled fruit flies. This was true even for those considered to be food odorants(Laissue and 

Vosshall, 2008; Stensmyr et al., 2003). Exposures beyond this threshold were unviable to flies, 

and those performing geotaxis during such exposures were anesthetized and fell from the walls 

of the climbing tubes. To understand how the information regarding odorants were encoded as 

their intensities was altered from innocuous to threatening for flies, we recorded from olfactory 

receptor neurons housed in large basiconic sensory hairs on the antenna. Our results indicate that 

when information from select few receptor neurons in ab2 and ab3 sensillum were combined, we 

could robustly predict which odorant at what intensity became repellant and therefore not 

suitable for flies.  

To test the robustness of our results and conclusions, we performed a similar classification 

analyses but using another published dataset(Hallem and Carlson, 2006b). We compared the 
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performances of three different integration strategies to predict the behavioral outcome: (i) 

combine inputs from all receptor neurons irrespective of which type of sensory hair they are 

housed in (Figure 2. 6.2a), (ii) integrating spiking responses of all antennal basiconic type ORNs 

(Figure 2. 6.2b), and (iii) combining signals from select neurons in ab2 and ab3 sensillum 

(Figure 2. 6.2c; similar to the analysis presented in Figure 2. 6). As a general rule, we found that 

the classification performance increased monotonically with the number of pooled ORN types 

(Figure 2. 6.2). However, when the antennal basiconic neurons were exclusively combined 

classification performance increased much faster and reached higher asymptotic success rates 

than the ‘all ORN strategy’ (Figure 2. 6.2b vs. Figure 2. 6.2a). Alternately, when select neurons 

in ab2 and ab3 sensilla were integrated, again good discrimination between innocuous and 

repulsive cues were observed. These results further provide an independent corroboration of our 

findings and suggest that either integration from a sub-type of receptor neurons (i.e. all housed in 

basiconic type sensory hairs), or from a select few sensory channels provide effective approaches 

to translate sensory inputs into behavioral outputs. 

Previous work on odor-evoked repulsion in flies either using stress-related odorants(Suh et al., 

2004) or unsuitable food sources(Stensmyr et al.) suggested a labelled line approach for the 

transformation of sensory input onto an avoidance response. In this work, our results suggest a 

combinatorial approach for generating the same motor response. Although these results may 

potentially be seen at odds with each other, it is quite possible that multiple mapping schemes 

from stimulus space to behavior could co-exist. Alternately, the combinatorial input from 

receptor neurons may be transformed to activate labelled lines in the downstream neural circuits 

that could then evoke repulsion.  
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These sensory-motor transformations could alternately be viewed from the perspective of 

metabolic costs. Since spiking is metabolically expensive(Laughlin et al., 1998), the increase in 

total spiking activities indicate an expensive operation. A previous study using Drosophila larvae 

found that odorants that evoked more inhibition were also more likely to be repulsive(Kreher et 

al., 2008). Therefore, a sigmoidal sensory-motor transformation that maps too much or too few 

spiking (extremes of metabolic costs) onto repulsion seems to account for results reported here 

by us and elsewhere by others(Kreher et al., 2008). Whether this result is merely correlational or 

is metabolic costs an important variable that can shape behavioral outcomes needs to be 

systematically determined.  

 Finally, we found that at extremely high stimulus intensities, the clearly resolvable 

spiking activity in individual neurons transformed into oscillatory field potential activity with 

power in the high-gamma frequencies. We found that this abrupt transition in spiking behavior is 

largely due to changes in neural excitability and can be abolished with TTX or induced with 

current injections. Further, such oscillatory activities can be observed when multiple cues, which 

by themselves do not generate such a response, are combined. Indeed, we found that olfactory 

mixtures reported in another pioneering study on non-synaptic inhibition between co-housed 

receptor neurons did indeed evoke oscillatory field potentials of varying amplitudes similar to 

those reported here. Therefore, we conclude that complex changes in spiking behavior of 

receptor neurons can simply be induced due neural excitability modulations and without any 

coupling between them.  

What then might be the need for such high activity regimes, given the strong synapses between 

the receptor neurons and their downstream targets in the antennal lobe(Wilson, 2013), and the 

recent report that behavioral response can be generated with modest number of spikes(Bell and 
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Wilson, 2016)? It is possible that such responses may be an unavoidable consequence of having 

high sensitivity to food-related odorants. While responses to extremely low concentrations may 

guarantee sustenance, a compensatory mechanism might be needed to avoid the same odorants 
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when they become unsuitable.

 

Figure 2.6.2: Independent validatiion of our results using a published dataset 
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a, Similar plots as in Figure 2. 6 but plotting the behavioral preference indices obtained in our T-

maze experiments against cumulative spike counts of 24 different types of receptor neurons 

published in Hallem and Calrson (2006). Right panel reveals that monotonic increase in 

performance (i.e. correct recognition of the repulsive stimuli) as the number of neurons pooled 

for the analysis was systematically increased. Mean performance across different combinations 

of realizing a particular number of ORNs is shown along with SEM (i.e. 24 choose ‘n’ for any n 

ORN combination). 

b. Similar plot as in panel a, but revealing prediction performance when selectively combining 

spiking activities of all ORNs housed in antennal basiconic type sensilla is shown. 

c. Repeat of analysis in Figure 2. 6b but using Hallem and Carlson (2006) data. Note that the 

analysis was limited to four odorants used in both our work and in the previous study. 
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Chapter 3: Functional Organization of the Olfactory 

Circuits and the Temporal Evolution of Stimulus 

Encoding 

3.1 Introduction 

Most neuronal networks consist of many sub-types of neurons that interact through different 

microcircuits and actively reorganize the information they receive. To fully understand the 

information processing carried out, at a bare minimum three pieces of information are essential. 

First, it is necessary to understand the input received by the network. Second, to understand what 

computations arise from which microcircuit, it is necessary to follow this input signal as it 

propagates from one processing compartment to the next. And, third, it is necessary to 

understand how different neuronal sub-types that are present in these circuits contribute to the 

information processing. An additional layer of investigation could be added by comparing how 

information is represented by equivalent circuits in different individuals. This would allow us to 

understand what are the generic rules of signal processing and information transformation, and 

help identify any idiosyncratic features that may be utilized in different individuals. 

Understanding such idiosyncrasies in neural encoding can arguably help us better understand a 

source of variance in behavioral outcomes observed across individuals. Here, we dissect how 

odor signals are organized and processed as it propagates through the fruit fly (Drosophila 

melanogaster) antennal lobe neural network. 

In the fruit fly olfactory system, vapors from volatile chemicals are transduced into neural 

responses by olfactory receptor neurons (ORN) present in the antenna that then transmit this 

information to a region called the antennal lobe (analogous to the mammalian olfactory bulb). 
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The ORNs of the same type, i.e. expressing the same receptor–co-receptor gene combination, 

send their axons to either one or two spherical structure of neuropil called glomeruli in the 

antennal lobe(Couto et al., 2005b; Fishilevich and Vosshall, 2005). The ORN activity drives 

responses in three major types of neurons in the antennal lobe: GABAergic local neurons (LNs), 

cholinergic projection neurons (excitatory PNs or ePNs) and GABAergic projection neurons 

(inhibitory PNs or iPNs). The local neurons are diverse(Chou et al., 2010), and play important 

roles in how sensory signals are processed within the antennal lobe(Olsen and Wilson, 2008; 

Yaksi and Wilson, 2010b) . However, LNs do not send their processes outside the antennal lobe, 

and thus only the activity ePNs and iPNs constitute the outputs from this olfactory neuronal 

network.  

Notably, the ePNs and iPNs differ in how they receive inputs and transmit their output. The ePN 

dendrites innervate a single glomerulus and therefore receive input from a single ORN 

type(Couto et al., 2005b). The ePNs project their axons onto both mushroom body (a center 

associated with learning and memory(Debelle and Heisenberg, 1994; Heisenberg et al., 1985) ) 

and lateral horn (a region with putative role in driving innate behavior(Gupta and Stopfer, 2012; 

Heimbeck et al., 2001). In contrast, iPNs dendrites are multi-glomerular and therefore integrate 

information distributed across several different ORN types. The iPN axons are also exclusively 

sent to the lateral horns. The ePNs and iPNs can influence each other’s activity through chemical 

synapses(Shimizu and Stopfer, 2017). While the importance of the ePN and iPN activity for odor 

recognition is well established(Ahsan et al., 2017; Parnas et al., 2013; Strutz et al., 2014) , how 

the ePN and iPN activities are spatially organized and patterned over time to facilitate odor 

recognition remains poorly understood.   
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In this study, we used an in vivo, light-sheet, volumetric, calcium-imaging technique to examine 

this issue with high spatial and temporal resolution. We monitored the odor-evoked signals at the 

ORN axons entering the antennal lobe (input), the responses they drive in ePNs dendrites located 

within the antennal lobe, and ePN and iPNs axons (output) entering mushroom body calyx and 

lateral horn (iPNs only project to the latter). Using this approach, we examined how odorants-

evoked responses are patterned over space and time in each of these neural population. We 

examined the functional mapping between dendritic and axonal compartments to understand the 

antennal lobe input-output relationships, and how feed-forward excitation and feed-forward 

inhibition converge onto lateral horn. Lastly, comparison across flies helped understand generic 

odor coding principles and how they might arise from idiosyncratic processing mechanisms 

utilized within the antennal lobe network. 

 

 

3.2 Methods 

3.2.1 Fly strains and culture conditions/Fly stocks 

Flies were raised on a standard cornmeal diet. Vials were kept at 25℃ with 12h:12h light-dark 

cycle. Females 2~6 days after eclosion were used for experiments.  

 

The following fly genotypes were used:  

A series of crosses were conducted among  

w[1118]; P{y[+t7.7] w[+mC]=20XUAS-IVS-GCaMP6f}attP40 
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T(2;3)ap[Xa]/CyO; TM6, Sb 

 w[*]; P{w[+mC]=UAS-mCD8::GFP.L}LL5/CyO; P{w[+mW.hs]=Orco-RFP.K}10D 

and their hybrid progenies to obtain UAS-GCamp6f; Orco-RFP flies, which were used for 

crosses with the olfactory neuron tagging GAL4 lines respectively: 

w[*]; P{w[+mC]=Orco-GAL4.W}11.17; TM2/TM6B, Tb[1] (Orco-GAL4) 

y[1] w[1118]; P{w[+mW.hs]=GawB}GH146 (GH146-GAL4) 

Pin/CyO;GAL4-MZ699/TM6B (Mz699-GAL4) 

The resulting progenies expressed GCamp6f under the control of neuronal-population-specific 

drivers (Orco for ORNs, GH146 for ePNs, Mz699 for iPNs) along with RFP expressed in Orco 

neurons. 

 

3.2.2 Dissection procedure 

The fly was cold-anaesthetized and tethered onto a custom made plexiglass block modified from 

an earlier work(Silbering et al., 2012). The antennae were kept underneath the tape film, exposed 

to the air flow, while the dorsal side of the fly head was immersed in external saline containing 

(in mM): 103 NaCl, 3 KCl, 5 N-tris(hydroxymethyl) methyl-2- aminoethane-sulfonic acid, 8 

trehalose, 10 glucose, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2, and 4 MgCl2 (osmolarity adjusted to 

270-275 mOsm) (Badel et al., 2016; Jeanne et al., 2018).  Dorsal cuticle was removed. Trachea 

and stray tissue were cleaned with 5sf forceps (Fine Science Tools). Muscle 16 was cut to 

stabilize the brain.  
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3.2.3 Odor Stimulation 

Chemicals were diluted in paraffin oil. In each odor bottle, 20 ml of diluted odor solution 

(vol/vol) was added. Each batch of odor stimulus was used for no more than 10 days.  Stimuli 

were delivered via a custom-made 16-channel olfactometer. Control signals to the solenoid 

valves were coupled with microscope control signals. For all experiments carried out in this 

study, the odor stimulus was 4 s in duration. The onset of an odor stimulus was aligned with the 

onset of an image stack acquisition. The main air tube was directed at the fly, about 2 cm from 

the fly. A funnel connected to a vacuum line was placed about 5 cm from the fly block to remove 

odor residuals.  

Stimuli were presented in blocks. The first block comprised of 2~5 trials, during which only 

spontaneous activities were recorded. To minimize the adaptation and stimulus history related 

interference that arose due to high neural activities, the odor panel at the lower dilution (10-4 v/v) 

stimuli were pseudorandomized and presented first. Inter-block interval was a minimum of three 

minutes. Subsequently, a block of odor presentations where each stimulus was delivered at the 

higher concentration (10-2 v/v). The odorants were delivered in the same sequence in both low 

and high concentration blocks. Then, we again alternated between the low and high 

concentration blocks at least once more in each fly. Typically, the inter-trial interval within in 

block was 1 minute. However, for few odorants like 1o30, larger ITI (~1.5 – 2.5 min) were given 

after stimuli to minimize their interference on the subsequent trial.  
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3.2.4 In vivo light-sheet imaging 

A custom-made light sheet microscope(Greer and Holy, 2019) was used to record imaging data. 

The microscope has two channels, which we used for recording GCaMP6f and RFP signals 

simultaneously.  

We imaged at ×20 magnification, which provided sufficient resolution for reliable identification 

of the target neural structures. The typical image size was 1260 × 60pixels, with pixel size being 

0.325μm × 0.325μm. The centers of neighboring planes are about 8 μm apart on average. Note 

each “plane” is in fact a thin volume, as the light sheet kept sweeping through the tissue during 

the short camera exposure. At most 1 μm (upper bound) may be missed between two optical 

planes, which is smaller than the neural structures of interest.  

Each brain volume was sampled at 4 Hz. For ePN and iPN recordings, a volume of ~190 μm 

thickness were scanned through along the axis of piezo movement (z-axis) to cover both the 

antennal lobe and calyx/lateral horn as these regions reside in different optical planes.  The data 

from iPN dendrites were discarded from subsequent analysis due to the extremely low GCamp6f 

signal in the region. Calcium signals from a volume of ~80 μm thickness was recorded for 

monitoring responses at the ORN axonal terminals in the antennal lobe.  

488 nm and 561 nm lasers were used to excite both the GCamp6f and RFP, respectively. The 

timings of the two lasers were synchronized to ensure the RFP images were acquired at the same 

time instances as GCamp signals. The lasers were only turned on during the camera exposure to 

reduce photobleaching.  

During imaging experiments, external saline oxygenated with 95%O2/5%CO2 (Airgas), was 

perfused at 2mL/min. Only flies that showed some change in calcium signals during a paraffin 
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oil puff or 10-4 odor test pulse were chosen for formal recording. Data acquisition began at least 

5 min after the end of the test pulse. 

 

3.2.5 Motion correction 

We pre-processed the imaging data to correct for motion artifacts during acquisition. As the 

functional imaging movies generally contain flashing activities of neural response, it’s difficult 

to obtain static reference template. We found that most of the motion artifacts, if present, in our 

datasets were due to translational displacements. To remove these artefacts, we used two 

different strategies to account for motion artifacts in the antennal lobe and in the lateral horn. In 

antennal lobe, we first corrected the motion using simultaneously acquired anatomical imaging 

data (RFP labeled ORN axons). Using the anatomical dataset, we found the translation correction 

matrix that maximized the correlation value between the target frame and template frame. Then 

we used this translation matrix to function recordings in the antennal lobe and obtained motion 

corrected imaging data. In the lateral horn, we learned the translation matrix by focusing on the 

less responsive regions (neural tracts). The obtained translation matrix was used to correct for the 

overall motion artifacts in the whole image. 

 

3.2.6 Identifying response regions of calcium imaging data 

We identified regions of interest (ROIs) by applying a constrained nonnegative matrix 

factorization (Pnevmatikakis et al., 2016). The spatiotemporal calcium activity can be expressed 

as a product of a spatial basis matrix A and a temporal matrix C.  

      𝑌 = 𝐴𝐶 + 𝐸           (1) 
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Y represents spatiotemporal calcium responses, where each column represents vectorized 

calcium image in a time frame and each row represents a pixel value across time frames, and E 

indicates the observation noise. The factorization procedure is similar to regular nonnegative 

matrix factorization, requiring spatial matrix A and temporal matrix C being nonnegative. 

Moreover, the spatial component matrix is endowed with additional sparsity constraint to extract 

more compact and regularized spatial response regions as ROI masks. The problem can be 

succinctly summarized as the following optimization problem:   

                  min 
𝐴,𝐶

‖𝑌 − 𝐴𝐶‖        (2) 

            s. t.     A, C  ≥ 0 

         ‖𝐴‖1 ≤ 𝜖 

We optimized the spatial component and temporal component by alternating such that a new 

estimate of A is obtained by use of the last estimate of C and vice versa. As both subproblems are 

convex, there exists a variety of methods to solve it. We solved the spatial subproblem by a 

nonnegative least-angle regression (LARS) algorithm and temporal subproblem by nonnegative 

least squares. We used different degrees of spatial constraints (𝜖) to account for various 

responses statistics in antennal lobe and lateral horn. Similar to(Pnevmatikakis et al., 2016), at 

the end of each iteration, we merged overlapping components with high temporal correlation and 

removed components with low signal-to-noise ratio. 

 

3.2.7 Initialization of CNMF using local correlation map 

Even though the individual sub-problems are convex, the overall optimization problem listed 

above is non-convex. The quality of solution is highly sensitive to the initialization. Exploration 
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of initialization methods is time consuming and computationally expensive. Additionally, often 

requires a preset number of spatial components need to be identified during initialization (i.e. 

number of columns of matrix A). In this study, we used a local correlation map based approach 

to initialize the response regions (i.e. matrix A). The correlation value in each pixel is obtained 

by computing correlation coefficients between the temporal trace of that pixel and the mean 

temporal trace of surrounding four pixels (i.e. one above, one left, one right and one down). 

After we obtain the local correlation map, we apply a median filter and morphological closing to 

obtain the initial response regions (columns of matrix A). Compared to other initialization 

methods, this approach was computationally more efficient and the number of spatial 

components required for factorization was automatically determined based on the imaging 

dataset. 

 

3.2.8 Correction of exponential signal drifts within each trial and calculation 

of ΔF/F 

First, the camera bias, a constant value, was subtracted from all signals acquired. A robust 

estimation of the baseline F at each time instance is essential to the reliable calculation of ΔF/F. 

However, three common phenomena made this task challenging: 1. Intra-trial baseline drift, an 

approximately exponential decay within each trial (intra-trial drift), possibly due to 

photobleaching. 2. inter-trial baseline drift, the baseline may drift between trials, possibly due to 

some slower cellular processes. 3. Noisy spontaneous signals, instead of a “real baseline”, the 

observable signals are the results of random fluctuations or spontaneous activities being 

superimposed on the underlying baseline.  
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To tackle these problems, we devised an approach to model the spontaneous fluorescence signals 

based on two basic assumptions: 1. The “true baseline” underlying the observed signals is a 

constant value for a given trial. Meanwhile, given the inter-trial baseline drift, the “true baseline” 

is trial dependent. 2. The observed signals are a result of superimposing an exponential decay on 

top of the “true baseline”, and the rate of this exponential decay for a given ROI is fixed. 

Hence, the observed spontaneous signal 𝐹𝑡′ at time instance t in a trial can be described by 

formula 

 𝐹𝑡
′ = 𝐹 + 𝑎 ⋅ 𝑒𝑏⋅𝑡       (1),  

where F is the “true baseline” of the given ROI in that trial, and 𝑎 ⋅ 𝑒𝑏⋅𝑡 is the exponential term 

describing the intra-trial signal decay. To remove the contribution of uncorrelated noise observed 

in different trials, the exponential term was modeled as the “mean” exponential decay of all the 

trials for a given ROI.  

 To obtain the data for exponential term estimation, for each ROI, we pooled the pre-

stimulus signals (first 2.5 s excluded) and the very last 1 s from each trial, which resulted in a 

m×n matrix, with ‘m’ indicating the total number of trials and ‘n’ indicating the total number of 

sampled time points. We computed the standard deviation of each column. Values out of the 

±1.5 std range in the column are discarded as outliers. Then we parameterized the formula 

F′ = a ⋅ ebx +  𝑐  

by fitting it to the remaining data points within the pool while minimizing the mean squared error 

(MSE). Note, at this step, our goal was to obtain the mean intra-trial exponential decay term. 

Constant c describes some sort of the ROI’s “mean baseline” across trials. Now for a given trial 

we have the “true baseline” 
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 𝐹̃  =  𝐹𝑡′ –  𝑎 ∙  𝑒{𝑏 ∙ 𝑡 },       

where the exponential term is already known. Next, to obtain a trial’s F, we simply parameterize  

𝐹̃ by minimizing the MSE between formula (1) and that trial’s spontaneous signals. 

The baseline correction approach resulted in a small fraction of ROIs having near zero or even 

negative baselines values. Since this could result in unrealistically large ΔF/F, we dealt with this 

issue in the following fashion.   

 To minimize the amount of baseline correction, these ROIs also had to meet a set of 

criteria to ensure it’s ΔF and ΔF/F are indeed outliers of the population and the baseline value 

must be under an empirically determined threshold. For such an ROI, we substituted its baseline 

with the mean baseline across all other ROIs on the same plane. Note that in cases where the 

corrected baseline was smaller than the original baseline 𝐹𝑖, the original baseline was retained. 

 

3.2.9 ROI cleaning 

The ROI masks were projected back to the raw image movies. ROIs that does not belong to the 

target structures were removed after visual inspection. 

Given some ROIs in the antennal lobe can span more than one planes and possible errors made 

by the detection algorithm, we sought to remove the duplicates. Candidate duplicate ROIs were 

identified by running a hierarchical clustering analysis on following response features:  

 cosine distance between high-dimensional vectors of calcium signals recorded during this 

whole trial [34.5 s total: -9.5 s before odor onset to 25 s after odor onset; ~ 138 

dimensional vectors]  

 cosine distance between calcium signals recorded during a 15 s post-stimulus period [10 s 

after stimulus onset to +25 s after odor onset; ~ 60 dimensional vectors]  
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 Euclidean distance between a 15 s post-stimulus time periods across different trials [10 s 

after stimulus onsest to +25 s after odor onset; ~60 dimensional vectors].  

The resulting candidate set was the intersection of the candidate sets generated by the 

independent hierarchical clustering. 

Finally, the candidates were mapped back to the anatomical space, and re-examined through 

visual inspection. A candidate ROI was labeled as duplicate, only if it were clustered together 

with another ROI and was anatomically juxtaposed to it. 

 

3.2.10 Quantification of ROI functional distance 

An ROI’s response to a stimulus was represented by its mean ΔF/F observed during the odor 

presentation window. Therefore, for a given ROI, its tuning was represented by a 12-dimensional 

vector, since the odor panel used in the study included six odorants each delivered at two 

different intensities [i.e. 12 stimuli]. The functional distance between an arbitrary pair of ROIs 

(ROI A, ROI B) was defined as the cosine similarity, defined as: 

cosine similiarity(A, B) =
A ⋅ B

||A|| × ||B||
 

between their 12-D tuning vectors. The spatial distance between two ROI’s was calculated as the 

Euclidean distance between their centroids in the physical space.  

The functional and spatial distances between pairs of ROIs were calculated and pooled across 

individual flies. The relationship between the two distances was determined using a linear 

regression. The degree of “linearity” between these two parameters was quantified using the R-

squared value of the best-fit linear model, e.g. the amount of variance that can be explained by 

the model.  
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3.2.11 Functional embedding and the projection onto anatomical space 

To visualize the relationship between the ROI “tuning” and the spatial organization, one intuitive 

approach is to represent an ROI as a point using its centroid coordinates in the 3D anatomical 

space, and assign similar colors to these points that have similar stimulus preference or tuning. 

Namely, for an arbitrary pair of ROIs, if their functional distance is small (i.e. similar tuning), 

colors that represent them should be close to each other in the RGB color space as well.  Given 

that the RGB color space is essentially a 3D space, we used multidimensional scaling (MDS) to 

translate the pairwise functional distance into Euclidean distance in the 3D RGB color space. 

The pairwise functional distances of all ROI pairs were precomputed as a “dissimilarity” matrix 

and fed into the parametric MDS algorithm. The resulting 3D coordinates of the ROIs were 

normalized to unit scale by the following procedure: 

Let 𝑋 be the set of all x-axis values of the MDS output. Let 𝑋𝑐𝑒𝑖𝑙 be the 95% quantile value of 𝑋 

and 𝑋𝑓𝑙𝑜𝑜𝑟 be the 5% quantile value. 

We have the normalized value 𝑥′ =
𝑥−𝑋𝑓𝑙𝑜𝑜𝑟

𝑋𝑐𝑒𝑖𝑙−𝑋𝑓𝑙𝑜𝑜𝑟
. If 𝑥′ is out of the range [0,1], it was clipped to 

either 0 or 1, whichever was closer. This procedure was repeated on values corresponding to the 

other two MDS axes. 

Note the max and min values were defined as the values at the 95% and 5% quantiles, 

respectively, for robustness. Then the normalized coordinate values were used as RGB values. 

In addition, several landmark tuning vectors were artificially constructed and added to the dataset 

to facilitate interpretation. Sharing the same 12-dimensional format as the real ROI tuning 
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vectors, these landmark tuning vectors had 1s indicating excitation, 0s indicating no response, 

and -1s indicating inhibition instead.  

To avoid numerical stability issues, ROIs that were barely activated by any of the odorants in the 

panel were not considered for this analysis. Less than 1% of the ROIs were neglected due to this 

criterion. 

 

3.2.12 Regression Analysis of ePN input and output relation 

We regarded the AL spatiotemporal response as the input to the regression model, which was a 

t × n matrix 𝑋, where n is the number of AL ROIs and t is the total number of time points (note 

that responses between 0 to +12s in different trials were concatenated to form a super long 

column vector). The CL and LH responses from the recording were regarded as the target matrix. 

Thus, the target matrix 𝑌 was a t × m matrix, where m is the total number of CL and LH ROIs. 

We have the generic form of linear regression:  

Y =  XW +  𝛆, 

where W is the n × m weight matrix that transforms AL response into CL/LH response, while 

minimizing the error 𝛆. Since direct least-squares regression to determine W was not feasible, we 

used a multi-task lasso regression (MTLR). Optimal W was obtained by minimizing a slightly 

modified objective function: 

1

2t
||Y − XW||

F

2
+ 𝛌 ∑ √∑ wij

2m
j=1

n
i=1 , 
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where ||Y − XW||
F

2
 is the Frobenius norm of the residual matrix with ||a||

F

2
= √∑ ∑ |aij|2m

j=1
n
i=1  , 

e.g. the square root of the residual sum of squares of each element. Note the regularization term 

is essentially a 𝑙1-norm of 𝑙2-norms, scaled by the hyper-parameter λ. 

To determine the optimal hyper-parameter, we performed a grid search, adopting a K-fold cross-

validation scheme that leaves one stimulus group (both concentrations of the same odorant) out 

each time.  

 

3.2.13 Analysis of temporal coding 

To quantify the pattern similarity between a stimulus pair as a function of time (Fig. 6), we first 

aligned trials with respect to stimulus onset. Then we computed the cosine similarity between the 

two population response vectors at the same reference time point (i.e.cosine (at,bt) where at and 

bt are the at time t following introduction of stimulus a or b, respectively). By computing the 

similarity at different points in time after odor onset, we characterized how similarity between 

pairs of odorants evolve as a function of time.  

Since the odor panel comprised of six odorants each delivered at two concentrations, we 

calculated similarity between 66 unique stimulus pairs in total. 

For the visualization of cosine similarity distributions, kernel density estimation was performed 

using a Gaussian kernel with the bandwidth determined by the Scott rule(Scott, 17 August 1992). 
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3.2.14 Analysis of ON-OFF response 

The neural activities during the 4 s stimulus presentation period was defined as the “ON 

response,” whereas activities during a 4 s time window after the stimulus termination were taken 

as the “OFF response”. The one second period immediately following the termination of the 

odorant was excluded as it included both ON and OFF responses. 

 We used a MDS dimensionality approach to visualize the ON or OFF response vectors 

(Fig. 4.1). The MDS analysis was done independently for data collected from each individual fly.  

To quantify the diversity of the ON and OFF response patterns, principal component analysis 

was performed on the same data. The number of principal components (PCs) needed to account 

for at least 90% of the variance in activity patterns was used to measure the pattern diversity, as 

more diverse patterns would require more PCs to capture the majority of the data variance, and 

vice versa (Fig. 8D).  

To compute the mean angle between the ON and OFF activity patterns, for each stimulus, mean 

activity pattern vectors were computed for the ON and OFF time windows. For a given stimulus 

pair, the angles between the ON and OFF activities were calculated and averaged across 

individual flies (Fig. 8C). 
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3.3 Results 

3.3.1 Light-sheeting imaging of odor evoked neural activity 

We used a custom-built light-sheet imaging setup (Greer and Holy, 2019) to monitor calcium 

signals (GCamp6f) from olfactory sensory neurons expressing the orco co-receptor (ORNs), and 

their two downstream targets excitatory GH146 projection neurons (ePNs) and inhibitory Mz699 

projection neurons (iPNs) (Figure 3.1A - C). In each fly, one of these three neural population 

was labeled, and neural responses from all optical planes was near-simultaneously recorded (see 

Methods; Figure 1D). While the axonal outputs alone were monitored for ORNs and iPNs (as 

GCamp6f expression levels were weak in the antennal lobe for the Mz699 line), both dendritic 

and axonal calcium signals were monitored for ePNs (GH146 line). This approach allowed us to 

relate the dendritic inputs in the antennal lobe with the functional signals reaching the two 

downstream targets: mushroom body calyces and lateral horns.  

 We probed the responses of ORNs, ePNs and iPNs to a panel of six odorants, each 

delivered at two concentrations. The odor panel was chosen to ensure diversity in functional 

groups, behavioral valence, activation patterns and concentrations(Badel et al., 2016; Knaden et 

al., 2012b; Strutz et al., 2014) . For example, benzaldehyde (Bzald) was reported to be 

repulsive(Ahsan et al., 2017; Strutz et al., 2014) and activate ventral glomeruli strongly 

compared with other stimuli(Badel et al., 2016) , whereas ethyl acetate (EA) is regarded as an 

attractive cue that generates strong input to dorso-medial glomeruli(Ahsan et al., 2017). The 

light-sheet images acquired were segmented using an unsupervised non-negative matrix 

factorization method(Pnevmatikakis et al., 2016)  (see Methods for details). Note that the ROIs 

corresponded to glomeruli for Orco-ORN axons and ePN dendrites (Figure 3.2A; top row), and 
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ePN and iPN axonal boutons in calyx (CX) and lateral horn (LH) (Figure 3.2A; bottom row). A 

quick summary of the number of ROIs extracted from each fly is listed in Figure 1C (also refer 

Figures 1.1-1.5 for ROI masks that were extracted for each plane and in each fly).   
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Figure 3.1: Light-sheet imaging for volumetric in vivo characterization of odor-evoked responses 

at the input and outputs of the antennal circuitry. 

(A) A schematic of the experimental setup. The fly is mounted on a custom mounting block with 

its antennae exposed to air stream and brain immersed in saline. At each scanning step, a whole 

brain plane is illuminated by a light-sheet with two wavelengths (488 nm and 561 nm). The 

fluorescent signals are collected by the objective and the downstream optical components. 

(B) Fly lines labeling any one of the following three distinct neural populations were used in our 

experiments: cholinergic ORNs expressing Orco co-receptor (ORNs), cholinergic projection 

neurons (ePNs) and GABAergic projection neurons (iPNs).  For ORNs and iPNs, axonal activity 

alone was monitored. For ePN both dendritic responses in the antennal lobe and axonal 

responses transmitted onto mushroom body calyx and lateral horns were near simultaneously 

monitored.  

(C) The number of region of interest(ROI) extracted by a constrained non-negative matrix 

factorization algorithm is shown for different regions. Both the median and the interquartile 

ranges (IQR, 50%) are shown. Whisker lengths are 1.5 IQR past the low and high quartiles. 

Points out of this range were regarded as outliers. 

(D) Maximum responses observed during the Bzald0202 presentation window are shown for 

each optical plane. Each row shows changes in calcium activity from a labeled neural population 

at an anatomical location. Each column shows responses monitored at one depth of imaging 

stacks.  

(E) Similar plots as shown in panel D but now showing responses to EB02. 
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Figure 3.1.1: ROI masks extracted to segment axonal responses in flies expressing calcium 

indicators in ORN axons. 

ROI masks extracted for each plane and in each Orco labeled fly are shown. Each row shows 

ROIs across different planes for an individual fly. Left most panel shows ROI masks in dorsal 

regions and right most panel shows ROIs in more ventral regions. In each plane, different ROIs 

are labelled using different colors. In total, ROI masks for all six flies used in the study are 

shown in different rows.  
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Figure 3.1.2: ROI masks extracted that segment ePN dendritic activity in the antennal lobe. 

Similar to Figure 3.1.1, but ROI masks for GH146 flies with ePNs labeled with GCamp6f. ROI 

masks extracted are shown for each plane and in each fly antennal lobe i.e. to segment dendritic 

responses.  
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Figure 3.1.3: ROI masks extracted to segment ePN axonal responses in the mushroom body 

calyx. 

Similar to Figure 3.1.1, but ROI masks to segment ePN axonal responses that are transmitted to 

the mushroom body calyx are shown for each plane and in each fly.  

 



85 
 

 

Figure 3.1.4: ROI masks extracted to segment ePN axonal responses in the lateral horn. 

Similar to Figure 3.1.1, but ROI masks extracted to segment GH146 ePNs axonal responses in 

the lateral horn are shown for each plane and in each fly.  
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Figure 3.1.5: ROI masks extracted to segment iPN axonal responses in the lateral horn. 

Similar to Figure 3.1.1, but ROI masks extracted to segment Mz699 iPNs axonsal responses in 

the lateral horn extracted are shown for each plane and in each fly.  

 

 

 In addition to large spatial coverage, we also acquired images rapidly (4 Hz sampling 

rate) to characterize odor-evoked, spatiotemporal response dynamics across the entire population 

of a specific type of olfactory neuron (Figure 3.2). Consistent with earlier reports(de Bruyne et 

al., 2001), we found that each odorant activated a unique combination of ORNs. For most ORNs, 

the sensory input lasted the duration of the odor response, and for certain odorant-ORN 

combinations, the unabated response persisted and outlasted the stimulus duration (Figure 3.2B; 



87 
 

for example, 1o3ol04 and Acet04). In a few ORNs, substantial reduction in calcium signals were 

also evident during the odor presentation (ethyl acetate (EA) and ethyl butyrate (EB), Figure 

2.1). Prolonged excitatory responses, and inhibition that persisted after stimulus termination were 

pronounced at higher intensities (MH02; see Figure 2.2). As the intensity was increased, 

additional ORNs were recruited for all odorants (Figure 3.2.2).  

 In the downstream antennal lobe level, ePN dendrites showed richer response dynamics 

for all odorants (Figure 3.2c). Increase in calcium signals after stimulus termination (i.e. ‘OFF 

responses’) were observed in many glomeruli. Consistent with prior results(Bhandawat et al., 

2007), we also observed that odorants that evoked weak ORN inputs had amplified responses at 

the level of ePN dendrites (e.g. Bzald04). We also found the ePN signals attenuated more 

rapidly. More importantly, the mean response overlap between pairs of odorants did not increase 

as signals propagated downstream but appeared to remain consistent in all five fly-lines/regions 

examined (Figure 3.2.3). Increasing odor intensity, recruited activity in additional glomeruli, and 

resulted in more complex changes in the response timing (Figure 3.2.2).  

 As noted earlier, ePNs send axons to both the mushroom calyces and lateral horns, 

whereas iPNs project only to lateral horns. We found that activation patterns of ePN and iPN 

axons entering these higher centers were broadly distributed across several boutons. The ePN 

and iPN axonal responses tended to be more transient than even those observed at the level of 

ePN dendrites (Figure 3.2.1). In most flies, the ordering of odorants based on strength of 

activation differed between the ePN dendritic and axonal compartments (Figure 3.2.4, 2.5).  

Together, these results suggest that active signal transformation occurs between input and output 

compartments of these neurons. The activation became stronger for all odorants at higher 
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intensity, but nevertheless remained highly transient and attenuated rapidly (Figure 3.2.2). These 

observations remained consistent when data from across the flies were compared.  

Note that these observations indicate that the light sheet imaging data allowed us to probe the 

spatial and temporal aspects of olfactory processing with greater resolution. Primarily, we sought 

to understand how sensory signals are represented and transformed at the input and output of the 
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antennal lobe. 
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Figure 3.2: Extraction of spatial and temporal patterns of odor-evoked neural activity. 

(A) Region-of-interest (ROI) masks extracted by an unsupervised non-negative matrix 

factoriztion method are overlaid on top of raw calcium signals recorded from ePN dendrites in 

the antennal lobe (top panel) and ePN axons entering the lateral horn (bottom panel). Three 

panels are shown characterizing odor-evoked responses and ROI masks extracted at three 

different depths. Note the mask contours match the anatomical structures (glomeruli and axonal 

boutons) in both regions very well. 

(B through F) Representative responses to a panel of six odorants are shown as a data matrix. 

Calcium signals from individual ROIs extracted in each fly line/region  are shown: olfactory 

receptor neurons in the antennal lobe (B); excitatory projection neuron dendrites in the antennal 

lobe (C); excitatory projection neurons axons in the mushroom body calyx (D); excitatory 

projection neuron axons in the lateral horn (E); inhibitory projection neuron axons in the lateral 

horn (F). Warmer color indicates stronger excitation, whereas cooler colors indicates inhibition. 

In each panel, each row represents temporal response of one ROI arranged in the order from 

dorsal to ventral. All the ROIs across different depths were pooled together and shown in the plot 

(from dorsal at the top to ventral planes at the bottom of each data matrix). Y-axis indicates the 

ROI numbers. White arrows annotate the typical response dynamics (see text for details). 
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Figure 3.2.1: Odor-evoked temporal response dynamics. 

The response distribution showing the activity levels of ROIs relative to their peak responses at 

the end of the odor pulse (i.e. prior to termination; 3.75 s after odor onset). To account for 

excitatory and inhibitory responses, the absolute values of the signals were used for this analysis. 
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The peak response is defined as the maximum absolute value during the odor presentation 

window. Each row is one fly line/region. The x-axis indicates the fraction of ROIs showing a 

particular level of activity and y-axis indicates the density. 
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Figure 3.2.2: Temporal responses in higher concentrations. 
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(A to E) Similar to Figure 2 (B to F) Representative responses to the same six stimuli but 

delivered at a higher concentration are shown.  
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Figure 3.2.3: Pair-wise odor response similarities. 

(A) Representative heatmaps showing similarity between odor-evoked responsese evoked by all 

stimulus pairs. Each row is a fly line/region and different columns correspond to different 

individual flies. In each heatmap, each grid is the cosine similarity between a pair of stimuli 

indicated by the corresponding labels. To calculate the similarity between a stimulus pair, every 

ROI’s response was represented by its mean response during odor presentation, and the 

responses across all ROIs were regarded as a high-dimensional vector. The cosine distance 

between these two response vectors evoked by the two odorants were computed and plotted as a 

heatmap. Warmer color means higher similarity.  

(B) Mean pairwise similarities between odorants was computed for each fly line/region and 

summarized as a box plot. The y-axis indicates the mean cosine similarity between a pair of 

odorants. 
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Figure 3.2.4: PSTHs characterizing overall responses evoked by the odor panel at lower 

concentration. 
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(A) Mean firing rates across all ORN axon ROIs are shown for four representative flies. In each 

panel, responses to 6 different stimuli delivered at their lower concentrations are shown. Red 

color are used to indicate PSTHs evoked by putative repulsive odorants and blue colors label 

PSTHs evoked by attractive ones. The 4-s odor stimulation period is shown as a black bar along 

the x axis. 

(B) Similar as panel (A), but mean firing rates across all ePN dendritic ROIs in the antennal lobe 

are shown. 

(C) Similar as panel (A), but mean firing rates across all ePN axonal ROIs in the calyx are 

shown. 

(D) Similar as panel (A), but mean firing rates across all ePN axonal ROIs in the lateral horn are 

shown. 

(E) Similar as panel (A), but mean firing rates across all iPN axonal ROIs in the lateral horn are 

shown. 
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Figure 3.2.5: PSTHs characterizing overall responses evoked by the odor panel at lower 

concentration. 

Similar as Figure 3.2.4, but mean firing rates for the same panel of odorants delivered at a higher 

concentration are shown. 

 

3.3.2 Spatial organization of neural processes within the antennal lobe, calyx 

and lateral horn 

How are functional units (ROIs) organized within each processing stage? Do ROIs that are 

spatially closer respond to odorants in a similar fashion? To examine this, we represented the 

response tuning of each ROI using a 12-dimensional vector, with each vector-component being 

the ROI’s mean response to an odorant (Figure 3.3A). Next, for every pair of ROIs, we 

computed response similarity (i.e. cosine of the angle between their 12-D tuning vectors) and 

plotted it as a function of spatial distance between them (i.e. distance between the two ROI’s 

centroids; Figure 3A). Note that a response similarity of 1 indicates that the two ROIs have very 

similar odor-evoked responses, whereas negative values indicate response tunings that are 

opposite.  

 Our results indicate that for all three neural populations examined (ORNs, ePNs and 

iPNs), there was a weak but general trend that spatially near-by ROIs were similar in their odor 

tuning (Figure 3.3B). Notably, the ‘space vs. tuning’ distributions were different between ORN 

axons and ePN dendrites in the antennal lobe, and between ePN and iPN axons innervating the 

lateral horn. The former result indicates active transformation of sensory signals as it propagates 

through the glomerular microcircuits in the antennal lobe, while the later observation suggests 

that ePN and iPN innervations in the lateral horn follow different organization principles. 
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However, in all flies examined, there was barely linear spatial organization in the calyx (Figure 

3.3B 3rd column).  

Taken together, these results indicate that, similar to results in the mouse olfactory bulb(Ma et 

al., 2012), the spatial organization of odor representation in fly antennal lobe is weak. Notably, 

this organizational feature was present in all flies examined (Figure 3.3C-D).   

 

3.3.3 Characterizing spatial organization of odor tuning across neural 

populations and across flies 

 To better understand the spatial organization of ROIs in different regions, we positioned 

each ROI based on its XYZ co-ordinates in the fly brain and colored it based on its odor response 

tuning. As mentioned earlier, the specificity or tuning of each ROI was defined using a 12-D 

vector (each vector component to indicate the response elicited by each of the twelve stimuli 

used; Figure 4A). The 12-D ROI tuning vectors were dimensionality reduced to a 3D space 

using multiscale scaling (MDS) algorithm (Figure 3.4a). Each 3-D MDS vector was then 

assigned a color using a 3-D RGB color scale (see Methods). Note that ROI’s with similar 

tuning profiles were assigned similar colors. Furthermore, to create suitable points of reference 

or ‘tuning landmarks’, a few artificial templates were generated, and the colors that each one of 

these templates was assigned is also shown (Figure 3.4B; Figure 4.1 shows colors that were 

assigned to a more elaborate set of reference vectors/templates).  

 Using this odor tuning-based coloring approach, we visualized each ROI and compared 

their stimulus specificities (Figure 3.4C). Note that red through dark purple/dark blue colors 

identify ROIs that were strongly activated by attractive odorants (EA04, EB04 and MH04; 
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Figure 4B), where the green through yellow colors identify ROIs that responded to the repulsive 

ones (Bzald04, 1o3o04, Acet04; Figure 4B).  

In orco-labeled flies (Figure 3.4C; first row), we found that dorso-medial and ventro-medial 

glomeruli were activated strongly by attractive odorants (EA04, EB04 and MH04; blue/purple 

colored ROIs). Whereas glomeruli in ventro-lateral regions tended to respond more to the 

repulsive odorants (green ROIs). It is worth noting that the attractive odorants evoked strong 

responses and activated more glomeruli at the level of sensory neuron axons.  

In comparison, at the level of ePN dendrites (Figure 3.4C; second row), the odor tuning maps 

changed. First, the extent of activation of the attractive odorants was restricted to fewer 

glomeruli located in the dorso-medial and ventro-medial regions. Response to the repulsive 

odorants, that were weaker at the level of Orco sensory neuron axons, became stronger and 

spread to more glomeruli in the ventro-lateral regions (note that the response amplification to 

Bzald, Acet and 1o3o is also evident in ePN PSTH’s shown in Figure 2.4, 2.5).  

 In the calyx, we found that the ROIs in the core region differed in tuning from the ROIs 

that bordered them and formed the outer-rim. Attractive odorants strongly activated the outer-

rim, whereas ePN axons entering the core strongly responded to repulsive odorants. These results 

are again consistent with pure anatomical studies that have examined how a few glomeruli in the 

dorso-medial region of the antennal lobe innervate the calyx(Tanaka et al., 2004).   

 Finally, in the lateral horn too we found that both ePN and iPN axons were spatially 

organized based on their odor tuning. While all repulsive odorants evoked strong responses at the 

level of ePN axons in the lateral horns, iPN axons only weakly responded to some of those 

odorants (for example iPN axonal responses to Acet04 were weaker in all flies; refer Figure 2.4, 
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2.5). Intriguingly, a stereotyped region in the dorso-lateral lateral horn received ePN and iPN 

axons that matched in their response selectivity (blue-purple region indicating response to 

attractive odorants). While in the rest of the lateral horn, the ePN and iPN differed in their 

response tuning. This suggests that matched feed-forward excitation and inhibition may compete 

in the lateral horn regions receiving inputs regarding attractive odorants, while interactions 
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between mismatched excitatory and inhibitory inputs may occur in other regions. 
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Figure 3.3: Functional distance vs. spatial distance. 

(A) A schematic illustrating how functional distances (left) and spatial distances right) were 

calculated. For each ROI, its tuning vector consists of twelve elements. Each vector component 

represents its mean response (over time) to one odor stimulus. Functional distance was calculated 

as the cosine similarity between two ROI’s response vectors. Spatial distance between a pair of 

ROIs was calculated as the Euclidean distance between two ROIs spatial location as shown in 

the right panel. 

(B) A scatter plot showing relationship between functional distance (y-axis) vs. spatial distance 

(x-axis) for all ROI pairs. Each column indicates an anatomical region. Results from three 

representative flies are show for each line (three rows). For all three lines, there was a weak but 

general trend that spatially near-by ROIs have higher correlation between their odor-tuning 

vectors.  

(C) The linearity of functional vs spatial distance relationship was quantified (coefficient of 

determination or r2) and shown. Each bar indicates the r2 value of a linear regression model, with 

spatial distance as independent variable and functional distance as dependent variable for one 

region and from one fly. Colors correspond to different regions matching the color scheme 

shown in panel b).  

(D) Same as panel c, but coefficient of determination summarized as box plots.  
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Figure 3.4: Spatial organization of extracted ROIs. 

(A) An ROI’s tuning profile is again summarized as a 12-dimension vector as in Figure 3a. To 

obtain the 3D color space, we used multidimensional scaling (MDS) to map the pairwise 12-D 

functional distance in the tuning space onto a 3D color space. Then the color of each ROI was 

assigned based on the coordinates in the 3D color space where each axis corresponded to 

red/green/blue colors (Methods).  

(B) The correspondence between tuning profiles and colors are shown. Color bar on the left 

indicates the color correspondence of the ‘artificial landmark’ tuning profiles shown on the right 

(same row). Green/Yellow colors indicate ROIs that are more responsive to aversive odorants 

(1o3o, Acet and Bzald). On the contrary, Red/magenta colors show ROIs tuning preference to 

attractive odors (EA, EB and MH). 

(C) ROIs are shown in their actual 3D spatial locations across different regions/fly lines (4 

representative flies are shown for each region). Each ROI is also labeled by the color obtained 

from MDS analysis indicating tuning properties.  
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Figure 3.4.1: A more elaborate set of reference vectors/templates. 
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(A) The mapping between tuning vectors onto the 3D color space is illustrated with a more 

elaborate set of reference vectors/templates. Each row corresponds to a mapping between a 

reference template and the color assgined.  

(B) Similar to Figure 4(B), ROIs are shown in actual spatial locations across different regions 

but for two additional flies in each line/region. 

 

 

3.3.4 Relating dendritic ePN inputs with their axonal outputs to higher centers 

Next, we investigated the relationship between the ePN responses in the antennal lobe (dendrites) 

and those transmitted to mushroom body calyx and lateral horn (axons). Previous connectomic 

studies had shown that each ePN project its axonal terminals to a limited number of locations in 

the calyx and lateral horn (Zheng et al., 2018). This wiring pattern would suggest that each ePN 

may simply send its output to a spatially restricted region downstream, and may have only a 

minimal influence on functional signals reaching the other spatial loci. Since we acquired data 

from ePN dendrites and axons near simultaneously from each fly, we examined if this was 

indeed the case.  

We performed a regression analysis to understand the functional relationship between ePN input 

and output compartments (see Methods; Figure 5A). In this approach, we used linear 

combination of ePN dendritic responses to predict the responses at each individual axonal 

bouton. Note that each row of the regression weights matrix (Figure 3.5B) indicates how the 

regression weights from multiple antennal lobe ROIs were linearly combined to map onto each 

calyx or lateral horn ROI. Alternately, each column of the weight matrix show in Figure 5B, can 
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be interpreted as the contribution each antennal lobe ROI makes in generating axonal responses 

in the two downstream regions.  

Contrary to our expectations, each ePN dendritic activity showed a more global contribution 

downstream (Figure 3.5C, D). As can be noted, most columns have both hot (positive influence) 

and cool (negative influence) colored vector components indicating that majority of antennal 

lobe ROIs had a mixed influence in calyx and lateral horns axonal responses (i.e. positive 

influence in some regions and negative influence in others). Only a few antennal lobe ROIs had 

predominantly positive or negative influences on the downstream regions. Note that, for some 

antennal lobe ROIs, the ratio of positive to negative influence also varied between calyx and 

lateral horn (Figure 3.5C; 3rd column).  This observation implies that the input from the antennal 

lobe is restructured differently between the two downstream targets.  

To understand the spatial distribution of how each antennal lobe ROI contributed to downstream 

activity, we mapped the vector of regression weights onto the spatial locations of each axonal 

bouton (Figure 3.5C). The antennal lobe ROIs had diverse functional relationships with the ePN 

axonal responses observed in the calyx and lateral horn. Nevertheless, the regression weights 

from a single antennal lobe ROI appeared to be spatially organized, with regions of positive and 

negative influences occurring in spatially contiguous regions juxtaposed next to each other. This 

spatial arrangement was much clearer in the lateral horns and to a lesser extent also observed in 

the calyx. Interestingly, antennal lobe ROIs that were spatially close to one another had 

functional innervation patterns that were markedly different from one another (Figure 3.5C; 

columns 1 vs column 5 shows functional mapping of inputs from two ROIs in the dorso-medial 

antennal lobe) 
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 To quantitatively compare the influence different antennal lobe ROIs had on the two 

downstream regions, for each ROI, we plotted the fraction of positive influence/weights versus 

the fraction of negative influence/weights (see Methods; Figure 5D). Note that ROIs that were 

close to the two axes had predominantly either positive (closer to y-axis) or negative (closer to 

the x-axis) influence. Most ROIs had a mixed influence and were positioned away from both 

these individual axes in these plots. Notably, a similar distribution of ePN antennal lobe ROI 

weights were observed in both calyx and lateral horns, and across different flies. In sum these 

results indicate that the functional relationships between responses observed in the dendritic and 

axonal ePN compartments are complex, and diverse.  
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Figure 3.5: Linking dendritic inputs of ePNs with their axonal outputs (I/O mapping). 

(A) The schematic shows how linear regression was performed to obtain the coefficients relating 

responses in two regions (input – antennal lobe; output – calyx/lateral horn). Responses over 

time of each axonal bouton/ROI in the lateral horn/calyx regions were predicted using a linear 

combination of ePN dendritic responses. Regression weights were learned using a multi-task 

lasso regression (see methods).  

(B) The regression coefficients learned from a representative fly are shown. Each column 

corresponding one ROI in AL as regressors.  Each row shows the weights that were assigned to 

different ePN dendritic ROIs used to predict response a single ROI in the LH/CL. Only non-zero 

columns are shown here. Warmer color indicates stronger positive influences and cooler color 

shows stronger negative influences. 

(C) 3D scatter plots showing single antennal lobe ROI’s functional influence on the ePN axonal 

responses observed in the calyx and lateral horn.  The first row shows the spatial location of the 

specific ROIs in the antennal lobe (ROI labeled in red). Rows two (calyx) and three (lateral horn) 

show ROIs in these locations colored using the regression coefficients obtained. Each column 

identifies the AL ROI (first row) and its influence in calyx and lateral horn (rows two and three, 

respectively). The orientations of each imaged region are indicated on the left panel. 

(D) The percentage of significant positive (Y-axis) and negative coefficients (X-axis) assigned 

for each antennal lobe ROI are plotted against each other. Color encodes the net difference 

between the positive/negative coefficient percentages; for instance, warmer colors represent that 

the antennal lobe ROI had more positive coefficients than the negative ones. Results from 6 

experiments/flies are shown in different columns. Top row shows regression weight distribution 

in the mushroom body calyx, and the bottom row reveals similar results but in the lateral horn.  
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3.3.5 Temporal patterning of odor-evoked responses  

So far, we have examined how odor-evoked responses are spatially distributed at the level of 

ORN axons and how these responses map onto the two downstream neural populations (ePNs 

and iPNs). Next, we sought to examine how these odor-evoked responses are patterned over 

time. Our results indicate that spatial patterns of activity in the antennal lobe, both at the level of 

Orco axons (Figure 3.6.1) and ePN dendrites (Figure 3.6A), were highly similar immediately 

after the onset of the odorants. However, over time these spatial patterns of neural activity 

evolved to become more distinct.  

To quantify this observation, we computed the cosine similarity between responses evoked by 

different odorants at specific time point during stimulus presentation (Figure 3.6B; see 

Methods). As can be observed, the responses evoked by different odorants at all five neural 

processes (Orco axons, ePN dendrites, ePN axons entering calyx and lateral horn, iPN axons 

entering lateral horn) had high correlation immediately after the onset of stimulus. However, 

over time these correlations reduced and responses evoked by different odorants became more 

distinct from each other (i.e. lower correlations/similarity).   

These observations were further corroborated when pairwise similarities between odorants across 

flies were examined (Figure 3.6C). Note that pairwise similarities between most odorants 

immediately after onset were high in all three lines examined (tick marks shown below the 

probability density functions in Figure 6C). The pre-stimulus activity before onset of any two 

stimuli showed wide dispersion of cosine similarity values with a mode near zero indicating 
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randomness in signals recorded during this time period. Immediate after odor onset, the 

distributed shifted right indicating an increase in odor similarity across pairs of odorants and 

observed in all flies examined. With progression of time, the distribution of pairwise cosine 

similarities shifted leftwards (i.e. towards lower values) indicating decorrelation of odor-evoked 

responses.  

The evolution of mean pair-wise correlation across odorants over time showed variable reduction 

rates in each individual fly examined (Figure 3.6D). As can be expected, in all three neural 

populations, low concentration stimuli decorrelated faster and more than responses to the same 

set of stimuli evoked at a higher concentration (Figure 3.6E). Interestingly, only in the ePN 

axonal projections the speed of response decorrelation was comparable at both low and high 

concentrations. This result directly suggests that some additional modification of response 

patterns occurred in this neural population to rapidly make the neural activity evoked by each 

odor more distinct from others (Figure 3.6E).  

Taken together, these results indicate that the odor-evoked response patterns and the 

discriminatory information needed for selective recognition evolve over time in the early fly 

olfactory circuits. Consistent with findings from other model systems(Friedrich and Laurent, 

2001; Gschwend et al., 2015; Raman et al., 2010), the observed temporal patterning made odor-

evoked response patterns to become different from the initial stimulus-evoked activity but also 
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more distinct when compare to other odorants. 
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Figure 3.6: Odor-evoked responses decorrelate over time 

(A) Change in fluorescence signals (ΔF/F) for a few representative ROIs on single optical plane 

in the antennal lobe are shown as a function of time since odor onset (shown at the top of the 

panel).  Each row reveals responses evoked by an odorant. Right panel show evolution of odor-

evoked responses in the antennal lobe ePN dendrites observed in another fly. 

(B) Pattern similarity matrices for a representative fly for each labeled fly line/region are shown. 

Each element in the matrix is the cosine similarity value between a pair of odorants. Hot colors 

indicate stronger similarity, and cooler colors indicate weaker similarity. Each row reveals how 

pairwise odor similarities evolve over time. Again, time since odor onset is indicated at the top of 

the panel. In total, pairwise similarity matrices at eleven time points are shown. Odor stimulus 

was presented from 0.0 sec to 4.0 sec. Note that similarity matrices with higher pattern 

similarities (cooler/blue colors) at the start of response and gradually decorrelate over time 

(hotter/yellow colors). This can be observed in all five rows corresponding to responses observed 

in ORNs, ePN dendrites, ePN axons in the calyx, ePN axons in the lateral horn and iPN axons in 

the lateral horn. 

(C) Distributions of pairwise pattern similarity (cosine distance) obtained using kernel density 

estimation (see Methods) are shown. Each curve shows pairwise pattern similarity distribution at 

one time point. In each panel, response similarity distributions are shown for five different time 

points before and during stimulus presentation. Tick marks shown below the distributions 

represent pairwise similarity between every pair of odorants and across flies. Ticks are color 

coded following the same scheme used for the distributions shown on the top.  

(D) Mean pair-wise cosine similarity in each region is shown as a function of time. Each trace 

shows the mean cosine similarity value across all odor pairs for each individual fly. Color bar 
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indicates the 4 s duration when the odorant was presented. Five panels are shown to illustrate 

results from the three fly lines used in the study.  

(E) Mean pair-wise cosine similarity as a function of time is shown. Two traces, corresponding 

to the two concentrations of odorants used, are shown tracking changes in mean cosine similarity 

across odorants/flies.  

 

Figure 3.6.1: Time evolution of spatial responses in ORNs and ePN axons 
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(A to C) Similar plot as shown in Figure 6(A), but showing spatial distribution of activity at the 

level of ORN axons in the antennal lobe, and ePN axons entering the calyx and the lateral horns. 

Time since odor onset is shown at the top of each panel: 0 s indicates start of odor stimulus and 

stimulus lasts for 4 seconds.  Response to three representative odorants are shown in the three 

rows.  

 

 

3.3.6 Idiosyncratic processing underlies how odorants are segregated over 

time 

Given that the initial olfactory circuits have been reported to be stereotyped across 

flies(Fishilevich and Vosshall, 2005; Jefferis et al., 2007; Vosshall et al., 2000; Vosshall, 2008), 

it would be reasonable to expect the variability across flies in these peripheral neural circuits to 

be low. However, our results (Figure 3.6D) indicate that decorrelation of odor-evoked responses 

occur at different rates in different flies.  To further examine this issue, we compared how 

similarity between pairs of odorants evolved over time in different flies (Figure 3.7A). Note that 

the hot colors indicate high correlations/similarity and cool colors indicate negative correlations. 

Also, clearly observable in the correlation plots shown for the two representative flies is the 

initial vertical band of high correlation immediately after odor onset. However, note that 

correlation between different stimulus pairs transformed rapidly. Bands of highly-correlated 

responses observed immediately after odor onset (show using hotter colors) transitioned to 

dissimilar responses (less hot colors) at varying points in time. More importantly, the pairwise 

odor correlation patterns differed between flies indicating that although the odor responses 
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became more distinct, which pairs of odorants became separable at which point in time depended 

not only on the odorants but also varied from one fly to another. 

 To further quantify this result, we computed and plotted the standard deviation in 

pairwise odor response correlations across flies (Figure 3.7B). High standard deviation would 

identify pairs of odorants that were decorrelated differently in different flies. Our results indicate 

that some odor pairs were indeed processed in a relatively conserved manner across flies 

(identified using arrowheads), whereas many differed starting from the activity they evoked at 

the level of ORN axons. The standard deviation between flies were relatively less at the level of 

ePN axons compared to their dendritic activity, whereas the multiglomerular iPNs had the higher 

levels of variability even though they integrated inputs from multiple different ORNs. These 

results indicate that while odor-evoked response patterns decorrelated to become more distinct 

over time in all flies, this computation was performed in an idiosyncratic fashion.   

To illustrate the variability across flies, for each stimulus pair we plotted the median response 

similarity (Figure 3.7C; median over time and each row shows variance across flies for each 

odor-pair). Our results indicate that the attractive odorants (indicated using arrowheads at the 

bottom of the panel) were more reliably represented across flies and evoked less variable 

responses in ORNs and ePNs. Overall, the variability was reduced at the level of ePN axonal 

responses in calyx and lateral horns. In sum, these results indicate that odor-evoked responses, 
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even in the early olfactory circuits are not stereotyped for most odorants. 
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Figure 3.7: Pairwise odor similarities vary across flies 

(A) Pairwise cosine similarities of ePN dendritic responses and how they evolve as a function of 

time are shown as a heatmap. Each row tracks response similarity between one odor pair, and 

each column represents one time point. The identity of each stimulus pair tracked in a given row 

is indicated using a color bar on the left of the heatmap. The four second window when the 

odorant was presented in indicated using black vertical lines. Hotter colors indicate more 

similarity and cooler colors indicate less similarity. Panel of the right, shows evolution of 

pairwise cosine similarity for the same pairs of odorants (ordered as shown on the left panel) but 

in a different fly. 

(B) For each odor-pair, the standard deviation in pairwise odor similarity across individuals were 

calculated and plotted as a function of time. Hot regions in the heatmap show the standard 

deviation of the cosine similarity across individual fly was greater (i.e. more variability across 

flies). Similar plots, but characterizing variation in pairwise odor similarity in the five fly 

line/regions studied are shown.  The color bar on the left identifies the odor pair tracked in each 

row. Note that the rows are sorted in descending order based on standard deviation values 

observed in the ORN level. 

(C) The median cosine similarity during the 4s stimulation period for each stimulus pair, and for 

each fly, is shown as a scatter plot (bottom). Therefore, each marker represents median pairwise 

odor similarity observed in a single fly, and each row tracks variation across flies. The identity of 

the odor pairs corresponding to each row is indicated using the color bar on the left. Tighter 

packing of individual markers along a single row indicates responses observed across individual 

flies were highly reliable. The overall distribution across odor pairs and flies is shown on the top. 
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3.3.7 Stimulus evoked ON and OFF responses 

Finally, we examined how stimulus-evoked responses were patterned after the stimulus 

termination (i.e. the stimulus-evoked OFF responses). We found that at the level of ORNs two 

types of responses were observed after stimulus termination: continuation of the ON response 

and inhibition in new ROIs that did not have an ON response. Excitatory responses only during 

the OFF period were seldom observed at the level of sensory neuron responses (Figure 3.8A).  

 In comparison, the OFF responses observed at the level of ePN dendrites and ePN/iPN 

axons showed response patterns that were more orthogonal with respect to the ON responses 

(Figure 3.8A; Figure 8.1). ROIs that were active during ON period returned to baseline activity 

levels or even below baseline level responses (i.e. inhibition) in many ROIs. Whereas, ROIs that 

were not activated by stimulus exposure or even inhibited during the ON periods, tended to have 

a strong OFF response.  

 To understand how dissimilar were the neural responses observed during and after 

stimulus termination, we performed a cross-correlation analysis. A snapshot of activity across all 

ROIs was regarded as a high-dimensional vector. The similarity between each response vector 

with every other response vector that was observed over time was computed and shown 

succinctly as a correlation matrix (Figure 3.8B). Hot colors were used to indicate high 

correlation/similarity and cool colors to indicate negative correlation/dissimilarity. Note that 

while response vector observed during odor presentations (i.e. the ON responses) were well 

correlated amongst themselves, the responses observed after odor termination (i.e. the OFF 
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responses) poorly correlated with these ON responses (arrow head). This relationship between 

the ON and the OFF responses was observed in all three neural populations and in every fly 

studied. 

To quantify how much the OFF patterns deviated from the ON patterns, we computed the angles 

between the mean population vectors during the ON and OFF periods (Figure 3.8C). Consistent 

with interpretation of the correlation plots, for most odorants, the ON and OFF response vectors 

evoked by the same odorant had an angular similarity in the 60– 100range (closer to 0 

indicates similar responses and 90 indicates orthogonal responses).  

Finally, we examined whether the response patterns evoked after odor termination are as diverse 

as those observed during stimulus presence. To compare pattern diversity, we used the number of 

principal components that were required to capture 90% of the total variance of the data (can also 

be thought of as a measure of intrinsic dimensionality of the dataset; Figure 8D). Surprisingly, 

compared to the ON responses, our results indicate that the OFF patterns were more diverse and 

needed more principal component to capture the same amount of variance in the response 

patterns observed.  

In sum, our results indicate that for most odorants, another round of diverse response patterns 

were observed following stimulus termination. More importantly, these response patterns were 

dissimilar to the odor-evoked ON responses, and were a common encoding feature in all three 

neural response populations and all flies studied. 
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Figure 3.8: Odor evoked ON vs. OFF responses 

(A) The top and bottom 5% of traces sorted by the mean amplitude during stimulus are shown, 

with the top 5% in red, and the bottom 5% in blue. The ON and OFF response windows are 

schematic schematically identified in the plot. Responses evoked by two representative odorants 

in each of the five fly line/region combinations are shown. 

(B) Evolution of correlation between neural activity before, during and after odor exposure are 

shown as a heatmap. The black bar on the left and top indicates the time period when the 

stimulus was delivered. Hot colors indicate high similarity and cool colors indicate low 

similarity. Note that each non-diagonal pixel represents similarity between ensemble ROI 

activities in one time bin versus those in another time bin. One row or column represents the 

correlation between one ensemble ROI activity vector with all other ensemble ROI vectors. 

Correlation heatmaps for two representative stimuli are shown for all three fly lines and five 

locations imaged.  

(C) Angle between mean ON and OFF response patterns evoked by each odorant is shown. 

Different colors represent different stimuli and the line style represents the two concentration 

levels. 

(D) The number of principal components needed to account for 90% of the data variance during 

ON and OFF response periods are plotted as a pair of points for each fly line/regions. Colors 

indicate individual flies.  
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Figure 3.8.1: Odor evoked ON vs. OFF responses. 

(A) The average responses across all ROIs during the ON and OFF response periods are stacked 

next to each other and shown as a color bar. In each panel, left column indicates ON responses 

(peak activity during 4s ON window) and right column shows the OFF responses (peak activity 

during 4s window after termination of the stimulus). Each row represents one ROI.  

(B) ON vs OFF response pattern comparison following visualization using a multi-dimensional 

scaling (MDS) approach. The ensemble responses at each time point during the ON and OFF 

period were regarded as high-dimensional vectors, and were plotted in a 3D plot after MDS 

dimensionality reduction. Response vectors evoked when odorants were presented are labeled in 

red and the response vectors during the after stimulus termination are shown in cyan. Results 

from three representative flies for each line/region is shown. 

 

 

3.4 Discussion 

We sought to understand how sensory input from olfactory receptor neurons are spatially and 

temporally reformatted by two different downstream neural populations: ePNs and iPNs. While 

ePNs are cholinergic and receive input from a single glomerulus (Couto et al., 2005b) , iPNs are 

mostly GABAergic and multiglomerular (Wang et al., 2014). Further, while ePNs project to both 

calyx and lateral horn, iPN axons only innervate the lateral horns (Strutz et al., 2014). So, given 

the differences in the nature of input received (from one vs. many types of ORNs), and the 

downstream centers they feed onto, it is reasonable to expect that the ePNs and iPNs use 

different transformations to reformat sensory information received. However, our data reveal that 
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several spatial and temporal aspects of odor-evoked responses were strikingly similar in both 

these neural populations.  

 

3.4.1 Spatial Organization of ePN and iPN processes 

 Our results indicate that both ePN and iPN axons were organized in the lateral horns such 

that nearby spatial regions had similar odor tuning. Though this relationship was weak, it was 

still significantly higher than the spatial organization of ePN axons in the calyx. More 

importantly, our results indicated that in lateral horn, ePNs and iPNs axons with similar stimulus 

tuning spatially overlapped. Since the iPN axons in different regions of lateral horn were 

differentially tuned to different odorants, our results indicate that this neural population may 

provide feed-forward inhibition in an odor specific manner.  

In the antennal lobe, the ePN dendrites again showed a weak correlation between odor tuning 

and spatial location. Notably, the tuning vs distance relationship varied between flies. The weak 

spatial organization of antennal lobe neural activity in flies are qualitatively similar to results 

reported in the mice olfactory bulb(Ma et al., 2012). In the calyx, the ePN axons were organized 

such that the attractive odorants strongly activated the periphery, whereas the repulsive odorants 

were driving responses in the core regions. This organizational structure was found in all the 

flies, and is consistent with anatomical studies that revealed that dorso-medial glomeruli 

innervate the outer rim of the calyx and the ventral glomeruli send processes to the inner core 

regions(Tanaka et al., 2004). Note that this organization of ePN axons in the calyx is indeed non-

linear, and therefore was not picked up in the linear correlation measures we used to quantify the 

relationship between ROI location and tuning. Taken together, these results indicate that the 

observed differences in the organizational logic between dendritic and axonal compartments of 
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ePNs was observed in all flies examined, arguably may indicate that different computations 

(global vs. local) that may be performed in these centers.  

We also examined whether a single antennal lobe region had a one-to-one, local or global 

influence on the downstream centers. Note that the activity observed in the axonal boutons 

entering calyx and lateral horns incorporates the feedforward input from the antennal lobe ePNs 

and any recurrent pre-synaptic inhibition that is recruited in the target region. Although our 

results were obtained from a linear statistical analysis with a sparsity constraint, it indicates that 

each antennal lobe ROI contributes globally. Furthermore, most ROIs appeared to have both 

positive and negative influence in the downstream regions indicating that ePN activity is further 

transformed as it reaches calyx and lateral horns. These results were again replicated in different 

flies indicating that this is a generic organizing principle in the fly olfactory system. 

In the lateral horn, a sterotyped, dorso-lateral region that was activated by all putative attractive 

odorants were detected. A prior study had identified a similar region in the lateral horn for the 

iPN axons(Strutz et al., 2014). Our results reveal that this lateral horn region is not only 

innervated by feed-forward inhibition (i.e. iPN axons), but also by feed-forward excitatory inputs 

(i.e. ePN axons) from the antennal lobe as well. Such overlapping odor tunings for ePN and iPN 

inputs suggest possible counter-balancing interactions that could theoretically implement a high-

pass filter(Parnas et al., 2013) in this local region (when ePN input > iPN input). However, in 

other lateral horn regions, the iPN and ePN odor response tuning mismatched. Understanding 

how such mismatched feed-forward excitation and inhibition interact and to carry out what 

computations would need further examination. 
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3.4.2 Temporal organization of ePN and iPN responses 

In addition to the spatial reorganization of activity, our results indicate that the odor-evoked 

responses were dynamic and evolved over time at the level of sensory neurons and in both ePNs 

and iPNs. The initial responses immediately after the stimulus onset were strong but did not have 

much discriminatory information. Over time, neural activity patterns evoked by different stimuli 

became more odor-specific. This decorrelation of odor-evoked responses over time was observed 

in all three neural populations examined. However, the trends observed (which odor pair became 

distinct when) observed varied even between the dendritic and axonal compartments of the same 

neural populations, and between flies. This result indicates that a generic computational function 

can be achieved in an idiosyncratic fashion in flies, and that the information transmitted to the 

calyx and lateral horns may be qualitatively different. 

The decorrelation result is strikingly similar to what has been reported in other model organisms, 

particularly in zebra fish(Friedrich and Laurent, 2001), with one caveat. We found that 

decorrelation already happens at the ORN level and gets accelerated downstream. 

 However, it is in stark contrast with a recent hypothesis put-forth for odor recognition that 

suggests initial responses carry information odor identity(Wilson et al., 2017). One possible 

explanation for the lack of odor-specificity at the stimulus onset could be that the neural activity 

immediately following stimulus presentation indicates stimulus presence and help with 

localization. Such localization signals have been reported in many other sensory 

systems(Bekesy, 2017). We note that the responses immediately following this localization 

signal may still be extremely important for the fly to recognize the odorant.  

Extraction of odor specific information may happen in two different ways. First, the information 

may be refined in a systematic manner, such that the initial responses recognize odor groups and 



132 
 

additional features are extracted to allow precise recognition (Odor present -> fruity -> tropical -

> pineapple; analogous to a decision tree). In this case, a snapshot of activity during later time 

point is sufficient to recognize the stimulus, while the initial responses may be utilized for other 

sensory computations. The second possibility is that features are extracted in a serial fashion but 

the later responses need not be the most unique features. This latter scenario is analogous to 

serial parsing of words (r·e·a·d· vs. r·e·e·l· vs. r·a·i·l· vs. m·e·e·t·). While the initial letters are 

still important for word recognition, the subsequent letters extracted are necessary but in 

isolation are not sufficient to allow precise recognition. In this case, an integration of all the 

features extracted might be necessary for stimulus recognition. Our results indicate that temporal 

patterning observed in the fly antennal lobe may be more analogous first scenario (i.e. pairwise 

similarity smoothly reducing over time), but achieved in an idiosyncratic fashion, indicating 

multiple different solutions may exist to this problem.  

It would important to point out that variations across different individuals could arise trivially 

due to unaccounted differences in experimental conditions between different experiments. 

However, our results reveal that not all results we observed varied across individual flies. First, 

as highlighted earlier, gross spatial features matched across individual flies (Figure 3.4). Further, 

even in the temporal dimension, certain pairs of odorants evoked responses that were highly 

consistent (Figure 3.7). Such robustness in spatial and temporal features, at least for a subset of 

odorants, indicate that the variations observed in our dataset cannot be attributed solely to trivial 

differences in experimental conditions. It would be worth pointing out that such variations in 

neural responses could underlie differences in behavioral preferences in individual 

flies(Honegger et al., 2020). What variations are important and therefore gets translated to 
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mediate idiosyncratic differences in odor preferences, and what variations are squashed to 

underlie robust recognition needs further examination. 

Finally, our results indicate that the stimulus-evoked responses do not stop after stimulus 

termination. At the level of sensory neurons, these are persistence of activity, in some cases 

excitation and other inhibition, that was observed during the stimulus. However, in the ePN and 

iPN dendrites and axons, the responses often switched from one ensemble to another. Therefore, 

stimulus ON and OFF responses were orthogonal to each other, and was observed in all flies. 

These results are consistent with those reported in other sensory systems, and in particular the 

locust olfactory system(Nizampatnam et al., 2018). 

What is the purpose of these elaborate OFF responses? In cockroaches, such responses were 

observed directly at the level of sensory neurons and were thought to indicate reduction in 

stimulus concentrations(Burgstaller and Tichy, 2011). Such dedicated ON and OFF neurons 

were not found in flies. A single ROI in any region was able to respond during either ON or OFF 

periods depending on the odor. In a different study, it was reported that these OFF responses may 

indicate ‘unsensing’ of a stimulus (analogous to a pause after a tone or space after word), and 

were found to be better predictors of termination of behavioral responses(Saha et al., 2017). 

Furthermore, our results here indicate that the response patterns observed after stimulus 

termination were stimulus specific and more diverse than those observed during the stimulus 

presence period. Further, when odorants are encountered in sequences, the OFF response of the 

first stimulus was found to contrast enhance the neural activity evoked by the second stimulus. 

While these results are similar to the findings observed in locusts, causal relationship between 

OFF responses and their behavioral contributions remains to be determined.   
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Chapter 4: Concluding Remarks 

4.1 Relating ORN responses to intensity-induced behavior 

change 

Studies in Chapter 2 present an alternative mechanism to link the early-stage neural activities to 

odor valence. Odor valence, the extent to which odor being attractive or repulsive to the animal, 

is thought to be encoded by the recruitment of “attractive/aversive channels” in flies. Flies 

exhibit varying preferences for different odors (odor identity). It’s also known the preference for 

the same odorant can change as a function of its concentration (odor intensity), or even reverse 

when the concentration crosses a certain threshold. Considering the change in odor intensity does 

not usually lead to drastic changes in neural activation patterns as compared to the change in the 

odor identity, this phenomenon provides a unique perspective to study odor valence encoding. 

To understand the ecological significance of the intensity-induced valence switch, I developed a 

novel video-tracked behavior paradigm, monitoring the flies’ spontaneous activities in exposure 

to odors at different concentrations. The repulsion induced by high concentrations seems to be a 

protective mechanism, as flies were able to cling onto the test tube’s inner wall at lower 

concentrations but fell when exposed to pure odorants.  

Electrophysiology recordings from ORNs showed the regular spiking activities can transition 

into oscillatory waveforms at high concentrations, which coincided with the flip in odor valence 

revealed by T-maze assays. Considering oscillations is found to play a role in neural coding in 

many organisms (Bhalla and Bower, 1997; Kay, 2005; Kay et al., 2009; Kay and Stopfer, 2006; 
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Laurent, 2002; Zhang et al., 2008), these oscillatory signals can potentially indicate a major 

change in the firing mode of the ORNs as well as the form of signals the AL may receive. 

In flies, oscillatory waveforms in the sensillum recording are believed to be a result of ephaptic 

coupling between the two ORNs housed in the same sensillum. However, contrary to the 

ephaptic coupling hypothesis, the existence of a second ORN in the sensillum is not essential to 

produce the oscillatory waveforms. The “oscillations” can be produced by a single ORN after 

knocking out its counterpart in the same sensillum. Further, numerical modeling suggests that the 

phenomenological observations of “oscillations” can be directly explained by the ORNs entering 

a high firing regime without invoking any special mechanisms. The manipulation of cell 

membrane excitability by current injection can reproduce the oscillatory waveforms with 

stimulus at a lower concentration whose presentation alone does not evoke the “oscillations”. 

Meanwhile, this phenomenon is not a result of synchronized ensemble ORN spiking on the 

antenna. Abolishing the spiking activities in a specific sensillum abolished the oscillations but 

the slow LFP component remained intact, suggesting the “oscillations” are indigenous to the 

sensillum rather than a global effect. Further our results indicate that valence switches are not 

necessarily accompanied by the presence of oscillatory signals. Instead, the valence switch can 

simply be predicted by the summed responses of two major sensillum types. Once the summed 

activity crosses a certain threshold, the valence switch can happen.  
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4.2 Spatial and temporal Features of the olfactory neuronal 

ensembles 

Despite a large body of literature looking into the anatomy and neural activities in the early 

stages of the fly olfactory system, a more comprehensive depiction of the functional organization 

and how the neural activities evolve dynamically in theses neural ensembles has been lacking, 

largely due to the limitations from the neural recording techniques. 

In Chapter 3, I sought to address these issues by in vivo Calcium imaging, taking advantage of a 

novel lightsheet imaging system(Greer and Holy, 2019) that allowed exhaustive monitoring of 

the neural ensembles. I monitored 3 neuronal populations: ORNs (axonal terminals in the AL), 

the downstream iPNs (axonal terminals in the LH) and ePNs, among which ePNs had one input 

region and two output regions monitored near simultaneously.  

4.2.1 The functional organization 

To explore the organization principles of the functional units in the anatomical space, I examined 

the relationship between each ROI pair’s functional distance and spatial distance. In general, the 

pairwise functional distance is to some extent linearly correlated with the spatial distance, 

indicating the change in the ROI tuning is more or less gradual in the anatomical space, with one 

exception being the ePN axonal terminals in the calyx, which exhibited a peripheral-versus-core 

organization. 

To further examine the fine-grained functional-anatomical relationships, I devised a novel MDS-

based visualization technique so that an ROI’s functional feature, here the odor tuning profiles, 

can be directly mapped to its anatomical coordinates.   Between ePNs and ORNs in the AL, the 

lateral regions’ tunings are more conserved, whereas the medial regions are more variable in 
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tunings. The two higher order regions, the CL and LH, that the ePNs project to, mostly preserve 

the tuning types found in the AL. How would ePNs’ and iPNs’ projections interact in the LH, 

where the axonal terminals of the two populations converge, in response to various stimuli? My 

results suggest that, in the dorsal-lateral area, ePNs and iPNs have similar response strengths to 

all stimuli used in this study. Instead, the response strengths are more likely to differ in the 

remaining regions, depending on the stimulus. Interestingly, regions showing more inter-

population variability also tend to be more variable among individuals for the same neuronal 

population. 

Next, I asked how activities in the dendritic compartments (input) of the same neuronal 

population (ePN) can functionally influence the axonal terminals’ (output) activities. As 

suggested by the overall shortening of response duration from the AL to CL/LH, some form of 

transformation may take place amid the signal propagation. This functional relationship was 

quantitatively modeled by the regression analyses, incorporating the fine temporal dynamics. 

Indeed, the results suggest the signals in the CL/LH are not direct replicates of those in the AL. 

The majority of AL ROIs have both positive (Its excitation imposes excitatory effect 

downstream) and negative (Its excitation imposes inhibitory effect downstream, while its 

inhibition has excitatory effect downstream) influences on the CL and LH ROIs, with a small 

fraction dominantly projecting either positive or negative influences. Most of the time, an AL 

ROI’s positive and negative influences form spatially separate clusters in the CL and LH. 

4.2.2 The temporal features and information encoding 

As mentioned, the responses are dynamic rather than being static. How would these dynamics 

impact the encoding of stimuli? It’s found that, for all populations/regions recorded, the initial 

response patterns (during the first 500ms of stimulation) evoked by various stimuli are highly 
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similar, and become more distinct, e.g. stimulus-specific, over the rest time course of the 

stimulus. Therefore, the fly olfactory circuits can respond to the appearance of a stimulus 

promptly, but the fly, knowing it’s encountering an odor, may not be able to differentiate the 

stimulus at the very beginning. Taking a little extra time, the fly may gain a better sense of which 

exactly the stimulus is. Furthermore, this decorrelation process among response patterns 

accelerates as the signals traveling towards higher order centers.  

Although the divergence from a common initial pattern is ubiquitous, how the pattern similarity 

between specific stimulus pairs evolves is individual dependent. Interestingly, the stimulus pairs 

exhibiting high inter-individual variability in ORNs become more and more consistent following 

along the path from ePN-AL, to ePN-CL and finally ePN-LH, indicating the odor pair 

relationship is getting stabilized along the ePN pathway, which may be potentially helpful to the 

preservation of some innate behaviors across individuals in the population (for instance, to 

differentiate an attractive odor from an aversive odor), regardless of the variation in the odor 

encoding at earlier stages. However, this reduction in inter-individual variability is not as 

apparent in the iPN axonal terminals.  

In flies, Little attention has been paid to the ensemble dynamics after the stimulus termination. 

Results in this dissertation showed in lieu of simply diminishing activities as usually expected, 

new responses can emerge in a structural manner. Generally speaking, when responses in ROIs 

activated during stimulation are reducing, responses in another set of ROIs may arise. This 

results in response patterns that are nearly orthogonal, sometimes anti-correlated, to the patterns 

during stimulation. Furthermore, the OFF-responses seem to carry more unique information 

regarding the stimulus, as the OFF-patterns are more divergent in the coding space compared to 

the ON-patterns. 
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4.3 Methodological advancements 

Lightsheet microscopy was previously applied for functional imaging on mice olfactory tissue 

(Xu et al., 2016) and the transparent zebrafish larvae(Ahrens et al., 2013; Chen et al., 2018; 

Greer and Holy, 2019; Xu et al., 2016). In this dissertation, I developed a full imaging procedure 

that realizes in vivo functional light-sheet imaging on Drosophila brains, including the brain 

dissection procedures, as well as the full automation of the recording process through a series of 

custom written scripts allowing low-level control of the components. This work offers solutions 

to two common hurdles in imaging data processing, that have been hindering the reliable 

extraction and interpretation of the relevant signals: 1. motion of the neural tissue, and 2. the 

ever-changing signal baseline, an inevitable side effect of calcium imaging. Another problem 

that may be unique to volumetric imaging data is the redundant sampling of the same functional 

unit across multiple planes, which I tackled with a hierarchical clustering based method that 

requires minimal prior knowledge about the neural anatomy (see methods in Chapter 4). 

 

4.4 Future directions 

To take the functional mapping one step further, it’s possible to register the recorded regions into 

a common reference brain, as a post hoc staining process on the fly brain can be performed after 

the functional recordings. Then, algorithms such as ICA (Jefferis et al., 2007) can be applied to 

the registered functional data across individuals to provide a more quantitative investigation into 

the conservative/variable features, at the level of sub-regions. However, it’s probably infeasible 

to perform one-to-one ROI matching in the MB and LH. The bouton-wise interaction between 
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ePNs and iPNs in the LH is better to be studied by imaging the two populations simultaneously 

from the same animal. 

This study aims to capture the complete temporal dynamics with relatively long stimuli. But it 

would be interesting to ask how dynamic patterning happens in response to a brief stimulus. 

Consider the natural environment a fly lives in, the stimuli may present constantly, as well as in 

the form of “discrete” successive plumes, in which case the olfactory system does not have 

enough time to converge onto a stimulus-specific response pattern during the stimulus 

presentation. Does the dynamic patterning continue after stimulus termination? How the 

continual dynamic patterning may differ from the case of persistent stimulation? These questions 

may be answered by tests with brief stimuli, especially ones with a duration of less than 500ms. 

What is the neural basis for pattern decorrelation? Surprisingly, my results suggest the 

decorrelation may start from the peripheral level, ORNs, where no local network regulates the 

inter-neuron activities. However, considering the ORN responses were recorded at the axonal 

terminals, which may be subject to feedback regulations from LNs, whether the decorrelation is 

an actual property of the ORNs or rather a result of feedback regulation needs further 

examination. Large scale imaging on the ORNs in the antenna is ideal but highly challenging. 

The antenna will be both a site to receive airborne molecules and to be probably immersed in 

saline for imaging, as most Calcium imaging techniques rely on water immersion objectives. A 

roundabout is to perform the same type of recording with the connections between LNs and 

ORNs blocked pharmacologically.  
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All in all, this dissertation presents new possibilities for the study of systems neuroscience in 

flies. Large scale neural recording is essential for cracking the complex neural systems. 

However, the progress in large scale recording also calls for a rethink on the research paradigms.  

Facing a complex system, the concept of “causality” can become vague. For example, the classic 

paradigm to prove a set of neurons are responsible for a certain behavior is to perturb those 

neurons by knocking them out/blocking their communication to others, and observe whether the 

same behavior persists (such as aversion vs attraction). Now let’s consider a simple case using 

artificial neural networks, as these models are decent analogies to the neural systems. Suppose 

we have a deep neural network with a small number of nodes at each layer, which is trained to 

classify images of dogs and cats. Dropping several nodes from a layer, analogous to knocking 

out some neurons, is possible to misclassify most of the dog images as cat images when given a 

relatively small test sample (just like the sample size from experiments is usually limited). Can 

we conclude these nodes are “cat-preferred” or “dog-antagonistic”? Or we should take an 

alternative view- the nodes are a subset of the feature extractors without a preference for the final 

output? 

Along with the rapid growth in data dimension, “the curse of dimensionality” may also pose a 

real threat to the correct interpretation of experimental results. The representativeness of the 

samples may become dubious, as the amount of data required for achieving statistical 

significance can scale exponentially with the dimension. What’s more, a working theory 

proposed to explain the data may be prone to the problem of “overfitting”. 

To address these issues, new methodological/theoretical tools are desired. Finally, the continual 

emergence of new research tools, both instrumental and theoretical, will allow for a major 

paradigm shift to bring the research to another level. 
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