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Abstract

Quadratic energy minimization is the essence of certain connectionist models. We define high order
connectionist models to support the minimization of high order energy functions and we prove that
high order energy functions are equivalent to quadratic ones. We show that the standard quadratic
models can minimize high order functions using additional hidden units and we demonstrate trade-
offs of size (number of hidden units), order of the model, and fan-out.

We prove an equivalence between the problem of satisfiability in propositional calculus and the prob-
lem of minimization of energy functions. An energy function describes a Well Formed Formula
(WFF) if the set of solutions to the minimization of the function is equal to the set of models (truth
assignments) that satisfy the WFF. We show that every satisfiable WFF is described by some energy
function and that every energy function describes some WFF. Algorithms are given to transform
any propositional WFF into an energy function that describes it and vice versa.

A connectionist propositional inference engine that features incremental updating of the knowledge
can be implemented using these algorithms. The results have applications in reasoning and AI, and
also give a better understanding of the limitations and the capabilities of connectionist energy minim-
ization models.
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1. Introduction

Certain connectionist models used for parallel constraint satisfaction are based on the minimization of
quadratic energy functions ! [1],[2], [3], [4]. Energy minimization connectionist models are massively
parallel architectures that are composed of a network of simple processing units, each connected to a
subset of the others. Typically each unit asynchronously computes the gradient of the energy func-
tion and adjusts its activation value, so that energy decreases monotonically. The network eventually
reaches either a local or a global minimum and settles in an equilibrium. (Some models use stochastic
techniques to escape from local minima [3], {5]). It has been first demonstrated by Hopfield and Tank
[6], that certain complex problems can be approximated by this kind of networks. Since then, energy
minimization models were used by several researchers in the area of connectionist reasoning and knowl-
edge representation. Foe examples see: a restricted form of unit resolution {7], a production system [8],

a semantic network [9].

The problem of satisfiability in propositional calculus is to decide whether there exists a truth
assignment (a model) for the variables of a given propositional well formed formula (WFF), such that
the formula is evaluated to be true. In many cases it is not enough just to decide whether a WFF
is satisfiable or not. A truth assignment that satisfies is also desired. Many hard problems may be
stated as satisflability problems of appropriate WFFs. It is well known that any of the NP problems
can be mapped to the problem of finding what truth assignments satisfy a certain WFF. In the area of
AT for example, logic is used as a compact way to represent knowledge, and inference mechanisms are
used to draw conclusions from this knowledge. Inferring what must be the truth values of the atomic
propositions for a knowledge base to be consistent let one further decide whether novel, compound

WFET's logically follow from the knowledge base or contradict it.

This report shows that the satisfiability problem in propositional calculus is equivalent to the problem
of finding global minima for a “quadratic binary” function. The equivalence between these two problems
means that in order to decide whether 2 WFF is satisfiable and to find a truth assignment that satisfies
it, we can find global minima to some “quadratic binary ” function such that the values of the variables

of this function when the minimum is reached can be translated to truth values that satisfy the original

1 4Quadratic energy functions” are quadratic functions that admit binary-valued arguments and return a real number.
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that the values of the variables of this function when the minimum is reached can be translated
to truth values that satisfy the original WFF. Also, any quadratic binary function minimization
problem may be described as an equivalent satisfiable WFT that is satisfied for the same truth

assignments that causes the function to reach this minima.

There is a direct translation from quadratic energy functions into connectionist energy minimiza-
tion networks and vice versa. Variables map into units, coeflicients of quadratic terms into weights
and coefficients of one-variable terms into thresholds. Thus, the equivalence shown in this report is
important both to the application of logic reasoning on massively parallel architectures and to the

understanding of the limitations and capabilities of these networks.

We will conclude that

1. Propositional logic can be represented efficiently by energy minimization connectionist net-
works and thus may give us a fast parallel implementation of a propositional inference engine.
Small incremental updates to the knbwledge base is done by small changes to the connectionist

network and with out the need for re-calculating the network .

2. High order connectionist models may be defined to minimize high order functions. There is a
tradeoff between the size of the network and the order of the model we implement. Any WFF
or any boolean function can be implemented in n—order model without any hidden units, but

extra units are needed to implement the same WFF (or function) using a quadratic model.

3. All that can be expressed in propositional logic and nothing more can also be expressed in

energy minimization networks,

In the following sections an algorithm is described for converting a propositional WFF into a
possibly high order energy function. Then a constructive proof is given to show that high order
energy functions are equivalent to quadratic energy functions with hidden variables, and that any
quadratic energy function with hidden variables can be transformed into a higher order energy
function with no hidden variables, This higher order energy function is then shown to be equivalent

to some satisfiable WFF. An algorithm is given for converting a propositional WFF into a quadratic
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energy function with number of hidden variables { “hidden units” in connectionist terminology) linear

in the length of the WFF. Complexity issues are discussed throughout the report.
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2. Logic and energy functions

2.1. Propositional calculus

DEFINITION 2.1 PROPOSITIONAL WELL FORMED FORMULA (WFT)

A propositional WEF over a set V of variable symbols (Atomic propositions) is defined recursively

as follows:

Let ¢ a string of symbols, then ¢ is WIFF if ¢ is either:

e = r; and z; is a variable symbol in V

@ = (1 V 2) and ¢, and @3 are WETs

e © = (1 Ayp2) and ¢, and g, are WEFF's

v = (mp1) and py is a WFF

» = (p1 — @2) and p; and @, are WFFs

Nothing else is a WFF

DEFINITION 2.2 TRUTH ASSIGNMENT

A truth assignment over a set V of variable symbols is defined to be a function §: V — {0,1} .
We define the instantiation Z of a vector X = {z1,...,2zn) under an assignment S, as the vector

= (S(z1),---,5(za)) . ((z1,-..,%n) is a vector of variable symbols}).

The truth assignment function is the interpretation assigned to the atomic propositions (the
variables). “1” means “true” and “0” means “false”. We will sometimes use the notation Z to

denote an instantiation {or model) of the variables by some truth assignment.
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DEFINITION 2.3 CHARACTERISTIC FUNCTION

The characteristic function Hy of a WFF ¢ is defined to be a boolean function: Hy, : 0,1% — {0,1}

such that:

Hz.-(mlz---ixn) =T

H(..go)(ml, corZp) = 1— Hep(zy, ..., Za)

Hpyvipg) (21, corZa) = Ho (21,0 Za)F Hipg(Z1, -0 Tn)—Hopy (21, - -3 Tn) X Hepg (21, -+ -, 2n)

L H(cplf\cpz)(xl,...,ﬂzn) = ngl(z:l,...,a:n) X .H(,gz(xl,...,ﬂzn)

Hp1—p2)(T1y -1 8a) = Hi-gyvipg)( @1, -+ ) Zn)
The characteristic function H evaluates the truth-value of the WFF given a specific instantiation.
Hy is a boolean function on {0,1}" into {0, 1}.
ExampPLE 2.1
Havmepacy =(A+(1~B)-4(1-B)C

=AC+C —-BC - AC+ ABC
=ABC ~-BC4+C

DEFINITION 2.4 Satisfiability of @ WFF

Let # be an instantiation of (21,...,2n} by assignment S.

Then the assignment S satisfies ¢ iff H () =1
If ¢ is satisfied by 3 we write: p(Z) = 1
EXAMPLE 2.2 # = (0,0,1) is an instantiation of (A,B,C)
Hi(av(~Byac)(0,0,1) = (4BC — BC + c¥0,0,1)=0-041=1
The following penalty function gives a penalty to every subexpression of the WFF that is not

satisfied. It looks at the conjunctive terms in the upper level of the WFFs structure. For every term

@; il @1 Apa A ... , it computes the characteristic of the negation of ;.
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DEFINITION 2.5 THE PENALTY FUNCTION

The penalty P, of a WFF @ is a function P, : V* — A, such that:

o Po(zy,...,Tn) = 1=~ Hz(21,...,20)

}D(ﬂtpl)(z].;---:mn) = H@1($1,...,In)

Plpyvpn)(E1s- 1 8n) = Hipr)atpa))(Z1r- - - ¥n)

FPror1apa)(Z1s .-, Zn) = Pyoy(z1,. %) + Ppy (21, ..., Za)

Plpr—p2)(Z15- 45 3n) = P(apyyvipa)(Z1s - -5 )

A more intuitive way to look at the penalty function is to observe that if p = AL, ©; then
m m
Pp=3 (1-Hp)=3 Hqp)
i=1 i=1
Using this definition, a penalty of one is computed for any conjunctive term that is not satisfied.
If all terms are satisfied, Py gets the value zero. Otherwise, the function computes the number of
unsatisfied terms.
ExamPLE 2.3
Pav-Byac) = Plavamy + Fe
= Hy~aywm+1— He
=(1-4A)B+1-C
=—-AB4+B-C+1

P{(AV(—-B))AC)(Oa 1,0) = 2 since both C and {4V (—B))} are evaluated to false.
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DEFINITION 2.6 ENERGY OF A WFF

The energy function Fy equals to the penalty function Py but is expressed in a sum of products

form (normal form).

The process of generating a penalty function from the original WFF using the previous recursive
definition, generates expressions that are nested (like the original WFT'). Conversion of this nested
form into sum of products is done by simplifying the expression. ( using distributive ,associative and
commutative laws plus the boolean idempotent law: X - X = X). We insist on the sum of products
form since it has a direct translation into a connectionist network topology.

ExaMPLE 2.4

PcavBincavey) = Hiavpaavey
= (A+ B~ AB)(A+ C — AC)
= AA 4+ AC — AAC+BA+ BC - ABC — AAB — ABC + ABAC
= A4+ AC - AC+ BA+ BC — ABC — AB— ABC 4+ ABC
= A+ BC — ABC = E(((av B)A(AVC)))

LEMMA 2.1 ¢ IS SATISFIED BY S IFF E, IS MINIMIZED BY 5 AND THE GLOBAL MINIMA IS ZERO.

Proof: By induction on the level (k} of nesting of ¢:
Ifk=0
then Py, =1~ Hy,=1—-2i=0iffzi =1
iff w = z; is satisfed by S.
Step:
—¢ is satisfled by S, iff Hp = 0 iff P~y is minimized to zero.
1 V2 is satisfied by S, iff Hpivpy = 1 T Happyvipr) = 0 I H-gyanpz = 0 iff Pp; vy, is minimized to
zero by S.
1 A 2 is satisfied by S, iff Hpyape = 1 iff Hogpiape) = 0iff Hapyvnpy = 0 iff Hapy 4 Hopy, = 0 I
Pipy s 1s minimized Lo zero by S.

1 — 2 is satisfied iff ~¢1 V 2 is satisfled, iff ~p1 V 2 is satisfied iff Pap)vep, is minimized to zero .

i

We saw that every WFT p has a function Ey that is minimized to zero on instantiation Z iff Z

satisfies @(when ¢ is a contradiction, E¢p > 0).
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Both (—Hy) and E,, have this property. However, we prefer B, since it has a heuristic knowledge
about how ”far” the current instantiation is from the global minima. FEy counts the number of
conjunctive sub-expressions that have not been satisfied yet. This property makes E, attractive
when considering a hill climbing technique for the minimization (like the one connectionist models
use). A direct use of —Hy for hill climbing energy minimization will increase the chances to fall into
a local minimum because the characteristic function does not give any indication to the direction
we have to step when some constraints are not met. E, on the other hand suggests the direction
as to satisfy as many subexpressions as possible. (Note that the heuristic knowledge about the

satisfiability of v is maximized if ¢ is in conjunctive normal form).

2.2. High order energy functions and high order connectionist models

So far, the energy function defined can not be minimized by the “classical” connectionist model
because connectionist models can minimize only quadratic energy functions. We will see now that

all energy functions are equivalent to quadratic ones.
DEFINITION 2.7 K-ORDER ENERGY FUNCTION

A K-order energy function is a function & : {0,1}® — R that can be expressed in a sum of products
forin, and when expressed so, has terms with a product of up to & variables.
‘We will denote the sum of product form of a k-order energy function by:
E¥(z1,...,z,) =
S whameomt D el s oom ot 5wl
1€i<ig< < Sn 1€ < <ik1 S0 1<ign

To denote the coefficients (or weights in connectionist terminology) we will use a k-dimensional

triangular matrix W of (n+ 1)* elements and with an index of 0,1,2,...,7 in each dimension, such

that
= W[0,0,...,0,4y,...,4]

l'1....,l-_-,'

where 0 <i3 <ip<--<ij<nand0<j<k
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Quadratic energy functions {or second order energy functions) are special cases of energy func-

tions in the form :

2 1 0
E wi;EiT; + E wiZ; +w

1gi<j<n i<n

We can extend the quadratic models ([1],{2] ,{3]) to minimize also high order energy functions by
mapping these functions into hyper-graphs. Variables map into processing units and terms map into
hyper arcs. A coeflicient of a k-variable term becomes the weight (with opposite sign) of a hyper
arc that conmects these & variables. Each unit computes

net; = g% = o Z _ Wiy eipay Tir Tip * " Tig,
iy <y <<y

and adjust its activation value according to the specific model that we extend. When a symmetric k-
dimensional matrix of weights is used energy decreases monotonically and eventually an equilibrium

is reached when the network finds a local or a global minimum,.
DEFINITION 2.8 VISIBLE VARIABLES AND HIDDEN VARIABLES

We can arbitrarily divide the variables of an energy function ? into two sets:

1. Visible variables are usually of interest to an observer. Their final values may be the output
of a system that is used to solve a problem stated as an energy minimization problem. An

instantiation to these output variable is considered to be an answer to the problem.

2. Hidden variables are usually not of interest to an external observer. Hidden variables corre-

spond to hidden units in connectionist models terminology.

We will denote sometimes a function with hidden variables as a function E(Z,%) of two vectors,

where # is the vector of visible variables and  is the vector of hidden variables.

An energy function may have n visible variables and j hidden variables. It is of interest to
compare what can be computed by functions of n visible variables but with different number of

hidden variables. In chapter 3 we will see that we can get a quadratic energy function from a high

2Later we'll see that the same distinction between hidden and visible variables can also be applied to the variables
of a WFF,
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order one by adding new hidden variables, and we can get a high order energy function from a lower

order one by eliminating some or more of the hidden variables.
DEFINITION 2.9 THE MINIMIZING SET OF AN ENERGY FUNCTION

The min#mizing set of an energy function E of n visible variables is the set of all instantiations Z such
that E{Z) is minimized. These instantiations are considered to be “solutions” to the minimization
problem. The set of minimizing solutions projected on the visible variables is called “the set of

visible solutions”.

Tormally: The set of visible solutions is:
(2| GDE(,D = ming {5z, D})

ExXAMPLE 2.5 The set of visible solutions of —X + a is {1}, for any real a.

EXAMPLE 2.6 The set of visible solutions of
E=XY-XT-YT+4ZT+29T

is:

{(000}, (001), (010), (0110}, (100), (101)}. When X, Y, Z are visible and T is hidden, since E(X, Y, Z,T)
is evaluated to be:

E(0000) = E(0010) = E(0100) = E(0110) = E(1000) = E(1010) = 0;

E(1100) = £(1110) = 1; £(0001) = E(0111) = E(1011) = E(1111) = 2.9; E(0011) = 3.9;

E(1101) = E(0101) = E(1001) = 1.9;

2.3. Enevgy functions describe WFFs

DEFINITION 2.10 DESCRIBING A WTF BY AN ENERGY FUNCTION
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An energy function F describes a WEF ¢ if the set of models that satisfy ¢ is equal to the set of

visible solations of E.

Formally: E describes ¢ if (Vi){0(Z) = 1 <= () E(Z,1)) = MIN{E(D)}).

THEOREM 2.1 IF ¢ IS SATISFIABLE THEN £, DESCRIBES ¢

Proof: From Definition 2.10 and Lemma 2.1

i

COROLLARY 2.1 ¢ 15 A TAUTOLOGY IFF £, = 0.

Proof: U Ep =0, then for every instantiation Z, E(Z) = 0 and 0 is the global minimum.

Since Eyp describes p, T satisfies ¢ for all 3, and therefore ¢ is a tautology.

If ¢ is 2 tautology then for any Z, »(Z) = 1. But, if p(z) = 1 then Ex(Z) = 0. Therefore, forall  E,(z) = 0.
We now prove by induction that all the coefficients of the sum of products are 0.

By taking 0 (the zero instantiation) all variables becomes zero and we can conclude that the constant (w®)

in the sum of product is zero.

By induction, assume that wsja---.-',' =0 for j < k, we can select an instantiation T that instantiates to zero

all variables except z;,,...,%;, . Since E{Z) = 0 we can conclude that w?l.---,ze,‘ =0
EXAMPLE 2.7

Eqavi~a)y = H=ana)
=(1-A)JA=A—AA=0

COROLLARY 2.2 A CONTRADICTION CAN NOT BE DESCRIBED BY ANY ENERGY FUNCTION

Proof: For every energy function there exists an instantiation that minimizes the function. If £ describes

 then @ is satisfied by this instantiation. Therefore, ¢ is satisfiable.

O
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COROLLARY 2.3 IF ¢{(z1,...,%,) 15 A WFF OF N VARIABLES THEN { IS DESCRIBED BY n-ORDER

ENERGY FUNCTION WITH NO HIDDEN VARIABLES.

Proof: To show that Eyp is in the order of n: Assume that the sum of products form of E, has a term of
7 > n variables that can not further be simplified , then at least one of the variables appears more then

once. But since X; X; = X; the term can be simplified to have less then j variables. Contradiction.

U

ExAMPLE 2.8

Eiav-Bv-c) = Haanpac)
=(1—- A)BC = BC — ABC
COROLLARY 2.4 IF 0 IS A SATISFIABLE CONJUNCTION oF WFFS EACH OF MAXIMUM K VARIABLES,

THEN ¢ IS DESCRIBED BY A k-ORDER ENERGY FUNCTION WITH NO HIDDEN VARIABLES.

Proof: From definition 2.5, the penalty of a conjunction of sub-formulas is equal to the sum of the penalties

of each sub-formulas. Each sub-formula has maximum k variables, so the penalty of it is of order &

i

EXAMPLE 2.9

EanBv(-cy) = Ea+ Eav-o))
= (1~ A)+ Himppno)
=(1—A)+(1-B)C=1-A+C—BC
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3. The equivalence between high and low order energy functions

Infinitely many energy funciions seems to sclve only a single minimization problem. For example
there is only one minimizing set to all the functions of the form E(zy,...,2,)+ o, for all Real o. We
call energy functions that have the same set of visible solutions equivalent, We will show now that
any high order energy function is equivalent to a low order one with additional hidden variables.
An efficient algorithm is given for the conversion of high order energy into low order one. Also,
another algorithm is given for transforming a low order energy function into {possibly) higher one

by elimination of some or all of the hidden variables.
DEerFINITION 3.1 EQUIVALENCE BETWEEN ENERGY FUNCTIONS

Two energy functions E) and E with the same X = {(z1,...,Tn) visible variables and arbitrary
number of hidden variables 7} and 7% respectively are equivalent if the sets of visible solutions of E;
and Eo are equal. We denote the equivalence by By & Bs.

Formally:

By m By iff {7 | (30 E\ (&, 5) = miny{{El(y,i)}} ={z | (3)E=(3,12) = mingt—{Eg(y,f)}}
ExaMmPLE 3.1 aXY + b= aX¥ 4 cfor any a,b or c.

EXAMPLE 3.2 By =58XY -3YZ - XYZ = 5XY -3YZ -2XT-2YT -2ZT + 5T = Fs.
The following table shows the values of E; and £, for all possible instantiations of the variables

XY 2,T:
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[XYZ [ E [ XY2T [ B |

000 0 0000 0
0001 5
001 0 0010 0
0011 3
010 0 0100 0
0101 3
011 -3 0110 -3
0111 -2
100 0 1000 0
1001 3
101 0 1010 0
1011 1
110 5 1100 5
1101 6
111 1 1110 2
1111 1

The set of minimal solutions of E is {(011)}.
The set of minimal solutions of B is {(0110)}.

The set of visible solutions of E5 is {(011)} and is equal to the set of visible solutions of F;.

It is easy to see that the relation is reflexive, symmetric and transitive, therefore it is an equiva-

lence relation.

3.1. Converting high order energy function into a lower order function

High order energy functions can be converted into equivalent lower energy functions using the fol-

lowing constructive theorem:

THEOREM 3.1 EVERY &£ ORDER ENERGY FUNCTION & CAN BE TRANSFORMED INTO AN EQUIVA-
LENT (k — 1) ORDER ENERGY FUNCTION BY ADDING EXTRA HIDDEN VARIABLES. TRANSFORMA-
TION IS DONE BY REPLACING EACH OF THE K-ORDER TERMS IN E BY A (K-1) ORDER EXPRESSION,

WHICH IS DETERMINED BY THE FOLLOWING LEMMA 3.1 AND LEMMA 3.2.

Proof: Using the following lemimas a constructive proof can easily be shown.

C
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LEMMA 3.1 ANY K-ORDER TERM (a[]5_, #;), WITH A NEGATIVE COEFFICIENT o, CAN BE RE-
PLACED BY A SUM OF QUADRATIC TERMS OF THE FORM ! Zle 20 X;T— (2k — 1)oT GENERATING

AN EQUIVALENT ENERGY FUNCTION WITH ONE ADDITIONAL HIDDEN VARIABLE.

Proof: In appendix A.1

U

ExampPLE 3.3

XY -3XYZU m XY - 6XT —6YT — 627 -6UT + 21T

LEMMA 3.2 ANY K-ORDER TERM (o Hf=1 #;), WITH A POSITIVE COEFFICIENT «, CAN BE RE-
PLACED BY A SUM OF TERMS (OF ORDER (k — 1)) OF THE FoRM : a[[io] #; — Yoio; 20T +
20X T + (2k — 3)aT, GENERATING AN EQUIVALENT ENERGY FUNCTION WITH ONE ADDITIONAL

HIDDEN VARIABLE.

Proof: In appendix A.l

i

ExaMmPLE 3.4

-XY+ XYZU XY+ XYZ - 2XT-2YT~ 22T +2UT 45T

—XY + XY —2XT' —-2YT' + 227 + 37" - 2XT —2YT - 22T + 2UT +5T
= —2XT' =2YT"+ 22T+ 37" - 2XT - 2YT - 22T +2UT + 5T

3.2. Eliminating hidden variables

The symmetric transformation, from low order into high order energy by eliminating hidden vari-

ables, is also possible

THECREM 3.2 EVERY k- ORDER ENERGY FUNCTION WITH AT LEAST ONE HIDDEN VARIABLE T,
CAN BE TRANSFORMED INTO AN EQUIVALENT HIGHER ORDER ENERGY FUNCTION THAT DOES NOT

INCLUDE T, USING THE FOLLOWING METHOD.
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Method:Assume T is a hidden variable to be eliminated. We replace: (Z;-zl @; Xi; YT with a new
sum of terms that is generated using the following procedure:
Consider all instantiations = (z;,,...,24), of the variables X;,,... Xy = X such that
I
fBs = z ajzi; <0
i=1

where S is an assignment for just the 1 variables.

For each such instantiation (z;,,..., ;) obtained by assignment S, let the function Lf-g be:
;o X ifs(X;)=1
I i t; i
Ls(X) = { 12X, i£5(Xi) =0
Then, generate the term:
! . "
newterm = Z Bs H LE(X)

S such that 8¢ <0 =1
Note that there are maxirmum 2/ different assignments S for those I variables.

Replace the old term: (Z;':x o X;,)T with “newterm” which does not include T.

Proof: See Appendix A3

O

EXAMPLE 3.5 Let T be the hidden variable to be eliminated, then:
AB+TAC —TA+4+2TB—-T=AB+T(AC—- A+2B~1)

The following assignments for (4, B,C) cause 8 to be less then zero:

Beo0,0 = —1
Boony = —1
B0 = —2

Bon = —1
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The new term equals:
—~(1—A4)(1-B)(1~-C)—{1-A)(1-B)C—24(1-B)(1-C)~A(1-B)C = ~ABC+AB+AC—-A+B-1

Therefore:

AB+TAC ~TA+2TB-T=x= —-ABC+24B+ AC—- A+ B

Note that {{1,0,0)} is the set of visible solutions for both functions.

3.3. The tradeoff between the number of hidden variables, the number of connections

and the order of the energy function

With respect to energy minimization connectionist models, we will analyze the complexity of the
energy function by counting the number of hidden variables (hidden units) and the fan-out of the
variables. The fan-out is counted by the number of different other variables that a variable shares a
term with, and it is equivalent to the number of connections to other units in connectionist models.
The energy function can be viewed as a hyper graph such that its nodes are variables, and its hyper
arcs are terms connecting several variables, The weight of such arc is the coefficient of the term.

The fan-out is the number of different nodes connected to the variable.

We saw that one k-order term can be converted into O(k) terms of lower order with a single
additional hidden variable that has a fan-out of k. In the worst case we need (7) new variables to
transform a k-order function into order of k—1. To convert a k-order function into quadratic one we
need: Y4_,(?) new variables; therefore the worst case to convert n-order function into a quadratic
one uses O2") new variables. There is an obvious tradeoff between the order of the function and the
number of hidden variables. We can reduce the order by adding more variables, and we can eliminate
hidden variables by adding to the order of the function. There is no need for hidden variables at all

if we allow the order of the function to be n.

A tradeoff also exists between the order of the function and the fan-out of the variables. Elimi-
nating a variable with fan-out of & may results in the creation of k-order terms, while reducing the
order of a k-order term results in adding new variables with fan out of k. Later we will see that

in order to implement any boolean mapping or any propositional satisfiability problem, we can find
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an n-order function with a fan-out of O(n), or a quadratic one with hidden variables with fan-out
that is bounded by a constant. Note that the order of the energy function (k) and the fan-out
(1) determine the maximum number of terms (weights) which is another complexity measure. The

maximum number of terms shared by a variable is therefore O(Zf;ll(i))

We saw in section 2 that every WFF ¢ is described by some energy function Fp. In addition
we know that every boolean function & characterizes some WFF ¢ (the boolean implementation of
h with AND , OR and NOT gates, for example). We can therefore implement any boolean function
using an energy minimization model by implementing Eoursp where “out” is the unit where we
expect to find the result of the function. High order models of the type described in section 2.2 can
be used to implement any WFF or any boolean function with no additional hidden variables and
with maximum n(n — 1)/2 connections. In this sense high order models can be used as universal
networks that can implement any function just by changing weights (although an exponential number
of weights may be needed to implement some functions). Quadratic models using the algorithms

described here will need exponential number of units in order to be able to implement any function.
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4. The mapping between satisflability and energy minimization

In previous sections we have shown that for every WFF there exist an energy function (E,) that
describes it. Further, we saw that it is possible to convert any high order energy function into a
quadratic one. However, too many hidden variables are needed (O(2")) when applying the simple
algorithm described in section 3.1. In this section we show that it is possible to convert a satisfiable
WEFF ¢ into a quadratic energy function that describes ¢ by adding only O(length(yp)) hidden
variables. We also show that for any energy function there exists 2 WFF that is described by the
function. The constructions we build are used to show a one to one mapping between classes of

equivalent energy functions and classes of equivalent satisflable WEFF's.

4.1. An economical way to convert a WFF into quadratic energy function

First, we convert the WFF into an equivalent WFF that is composed out of conjunction of triples.
A iriple is a proposition expression that involves up to three variables. Each triple can be described
by a 37¢ order (cubic) energy function; therefore, the penalty function of the conjunction of triples
is a cubic energy function. We then transform the cubic energy function into a quadratic one. This

transformation produces hidden variables in the order of the length of the original WFF.

4.1.1. Equivalence between WFF's ,
DEFINITION 4.1 EQUIVALENCE BETWEEN WFFSs.

We call the set of all instantiations that satisfy the WFF, projected on the visible variables: the set
of visible satisfying models of the WFF.

@1 is equivalent to @ if the set of visible satisfying models of ¢ is equal to the set of visible
satisfying models of ¢2.

Formally: 1 & @1 iff (VE)((TDep1(2,1) = 1 <= (A )e2(&,T) = 1) .

It means that any instantiation # of the visible variables that can cause p; (by some assignment

to the hidden variables of 1) to be true, can also cause 3 to be true {by some assignment to the
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hidden variables of ¢-), and vice versa. It is easy to see that & 1s reflexive transitive and symmetric

therefore it is an equivalence relation.

Next we will see that every WFF ¢ is equivalent to a WFF 3 in a conjunction of triples form

(with additional O(length(t)) hidden variables).

4.1.2. Converting A WFT into an equivalent Conjunction of Triples Form WEFF. A
WFF ¢ is in Conjunction of Tripies Form (CTF) if ¢ = AL, ¢; where ¢; is a sub-formula of

maximum three variables.

Every WFF can be translated into an equivalent WFF in CTF in the following intuitive way: For
every variable or logical connective (Eg: A, V,—) we generate a new hidden variable. We “name” the
variable or the connective using the logical “if and only if” connective («+). We do this operation
bottom up on the parse tree of the original WFF except from the top most connective. Each time
we generate such new sub-formula, we use in it the previously allocated hidden variables. Thus, each

sub-formula has maximum three variables, and the conjunction of these sub-formulas is in CTT.

For example: To convert (AV (=B)} — (CV D) we name each of the variables by allocating new
variables T}, Ts, Ts, Ty and generate ({4 — T1),((—B) ~ T32),(C ~ T3),(D « T4y)).
We name each of binary operations bottom up. (except the top most binary operation:
(Ty v Tp) ~ Tg) for (AV (-B))
(T3 V Ts) = Ty for (C v D)
and finally the top most connective {which we do not “name”) is:
(T5 — T5)
The conjunction of these expressions is in CTF and it is equivalent to the original WFF. For a

similar transformation of an expression in conjunctive normal form see 3-sat problem in [10].

To formally prove this algorithm we use the following attribute grammar:
Syntax directed parsing is done to any input WFF, and an equivalent WEF in CTF is generated
in the “t” attribute of the nonterminal S; . We add a new logic connective {1 —2) which is
equivalent to ((p1 — ®2) A(w2 — 91)). The WFFs that this parser accept, do not contain explicitly

the connective: —. We assume that any subexpressions in the original WF¥ of the form {1 — ¢2)
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were converted into: {(—,) V ;) prior to parsing. The attribute S.val represents the contribution

of the current production, while the attribute 5.t represents the accurnulated conjunction of triples,

not including the current contribution.

S0 — 5
S e L

—+ [(§VS)

—r(S/\S)

— (5)

L —X;
— (_‘X:')

So.t = (5.t As.wal)

Swal := L.val

St:=¢

T: := allocatenew()

Ty = allocatenew()

Sl = (T1 v T3)

St:= (St AS?PH A (S wal & T1)) A(S%val = Ty))
Ty := allocatenew()

T5 = allocatenew()

Swal = (T1 A Th)

S.t:= ((SLEAS L A(Stval & T1)) A (S val — Th))
T := allocatenew()

S.wal i= (-T)

S.t:= (StA(Sval - T))
Lual = X;

Lval = (=Xy)

THEOREM 4.1 THE GRAMMAR % GENERATES A WFF ¢ FROM ¢ SUCH THAT ¢ IS EQUIVALENT TO

3 AND ¢ 1s IN CTF AND conNTaINS O(length(y)) NEW HIDDEN VARIABLES.

Proof: See appendix A.4.

[

ExXAMPLE 4.1 Converting ({A A B) v (-C)) into conjunction of triples generates:

((((A=T) A (B=T2) A((T1 AT2)T3)) A ((C)T)) A (T V Ti))

4.1.3. An algorithm to transform a WFF into a second order energy function .

» Convert into conjunction of triples. ( Base on theorem 4.1)

s Convert conjunction of triples into a cubic energy function that describes it. (Using Definition

2.5 , stmplify it to a sum of products form and use corollary 2.4)

30ther variations of the grammar may generate less hidden variables, but still O(length{)) (for example: hidden
variables may be generated just for binary connectives).
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o Convert third order terms into second order terms. (Using Theorem 3.1)

EXAMPLE 4.2 Converting ((A A B) v (=C)) into conjunction of triples generates:
((Ti=A) A (T2 B) A (Ta{(Ty AT2)) A (Ta(~CNY A (T3 V Ta))

Eliminating <

(=T V AA DLV (CA) A(-T) Y BYA (T (2B) A (RT3 vV T) A((T5) v T‘)) A{(Tav (=T v (T))A
((""'T4) v ( u)) A (T4 v C) A (Ts A\ T4)

Generating the 37¢ order energy function:

T(l—A)+ (1~ T1)A+ T(1— B)+ (1-T2)B + Ta(1 ~ 1) + T5(1 - T3)
+(1 - Ta)T1T2 + CTs+ (1 - T4)(1 - C) +(1- Tg)(l —Ty)

Ty —2ATy + A+ T2 — 2B+ B+ T3 —-NT3 —T2T3+T1Tg —NNT3+20T,+2—C — 2T + 1314

Converting into quadratic function:

Ty — 24T + A+ T, - 2B+ B+ T3 - NIz -3+ N1

Ty — 21T — 2 Ts + 515 + 2CT4 + 2 — C = 273 + 13Ty

4.1.4. Complexity analysis. The algorithm described above transforms 2 WE'F into a quadratic

energy function in time linear in the length of the WFI:
The conversion into conjunction of triples and the conversion into cubic energy function are opera-
tions that parse the nested structure of the WFF in linear time.
Simplifying a 3-variable subexpression takes a constant time, and conversion of all the cubic terms
into quadratic terms is linear in their number { the number of terms is in the order of the number

of binary connectives).

The number of hidden units that are generated is linear in the length of the original WFF":
Conversion into triples generates new variables as the number of connectives in the WFF.
Conversion into quadratic function generates hidden variables in the order of the number of binary

connectives. (Only triples of three variables generate a cubic term).

The fan-out of all these hidden variables is maximum six for those generated by the attribute
grammar and three for those generated by the conversion into quadratic function. The visible

variables may have a fan-out of O(n).
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COROLLARY 4.1 ANY WFF ¢ CAN BE CONVERTED INTO A QUADRATIC ENERGY FUNCTION IN
TIME O(length(y)), AND BY ADDING O{length{yp)) HIDDEN VARIABLES WITH FAN-OUT BOUNDED

BY CONSTANT.

COROLLARY 4.2 ANY BOOLEAN FUNCTION A CAN BE IMPLEMENTED IN A QUADRATIC ENERGY
MINIMIZATION NETWORK OF SIZE THAT 1§ PROPORTIONAL TO THE LENGTH OF THE BOOLEAN

EXPRESSION ¢ THAT IS CHARACTERIZED BY h.

Progf: Converting the WFF: (outerp).

0

4.2, Every energy function describes some satisfiable WKF.

To complete the proof that the satisfiability problem is equivalent to the energy minimization prob-
lern, we need to show that for any energy function E with n visible variables and j hidden variables
there exists a satisfiable WFF ¢, such that F describes . We have proved in section 3.2 that any
energy function ¢ with hidden variables is equivalent to another energy function { that may be of
higher order) with no hidden variables at all. All we need to complete the proof is the following

theorem:

THEOREM 4.2 FOR ANY K-ORDER ENERGY FUNCTION EF WITH NO HIDDEN VARIABLES THERE
EXIST A SATISFIABLE WFF ¢ SUCH THAT £ DESCRIBES . A METHOD FOR CONSTRUCTING ¢ IS

GIVEN BELLOW!:

Method: Given £ and n variables X = {(z1,...,2,), there are [ {0,1}" |= 2" possible instantiations.
Compute E(Z) for all instantiations $(X) = 2¢{0,1}" and find minz{E(Z)} = ming.
Let Hp be a boolean function which will be the characteristic function of ¢:

1 if E(X) = ming
0 otherwise

Hp(X) = {

Build a WFF:

e= V(ALY

gu(s(Xn=1 =}
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Where

i X (X)) =1
Ls = { (~X) £ 50X = 0

¢ is a disjunction of terms. Each term is of the form: t5 = (AL, %)

Proof: We want to show that £ is minimized by instantiation % iff ¢ is satisfied by 2.
But by construction of Hg, E is minimized by z iff £() = ming iff Hz(2)=1.

By lemma 4.1, H(z) = 1 iff (&) = 1. Therefore, E is minimized by instantiation & iff () = 1.

d

LEMMA 4.1 Hi 1S THE CHARACTERISTIC FUNGTION OF g

Proof: See appendix A.5.

a

THEOREM 4.3 EVERY ENERGY FUNCTION DESCRIBES SOME SATISFIABLE WFF

Proof: Using theorem 3.2 and theorem 4.2.

0

ExXAMPLE 4.3

E(X,Y)=-XY + 15X

Trying all instantiations:

E(0,0) = 0
E(0,1)=0
E(I,O) =1.5
E(1,1)=10.5
The characteristic function is:
H(®,0)=1
H(O, 1)=1
H(1,0)=0
H(l, =10

The WFP that is described by £ is therefore:

(-X)ACYY V(X AY))
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4.3. Bquivalence classes

The relation 2 is an equivalence relation for both WFFs and energy functions of n visible variables.
There is a one to one mapping (bijection) between the classes of satisfiable WFFs and the classes
of energy functions. One class of WFF's, the one with empty set of visible satisfying models (“con~
tradictioﬁs”) does not map to any of the energy functions classes. There is also a bijection between
the set of non-zero boolean functions and the classes of energy function (and satisfiable WFT's).
Any non-zero boolean function H characterizes some satisfiable WIFF ¢ which determines an energy
function Eyp: Hp AL {Z] iy [Eiplw. The cardinality of the set of classes of energy functions (of n
visible variables) is therefore 92" _1, The class of tautologies for example map to the class of constant

energy functions and to the boolean function 1 ([B(z1,...,2s) = Oz —~{Truels = f(21,.. ., zn)y=1).
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5. Summary and conclusions

We have shown an equivalence between the problem of satisfiability of propositional calculus and

the problem of minimizing energy functions.

Any propositional WFF can be described by an n order energy function with no hidden variables,
or by a quadratic energy function with additional hidden variables. Any quadratic {or higher order)
energy function with some hidden variables is equivalent to a higher order energy function with
no hidden variables, and any energy function describes some propositional WFF. The algerithm
to convert a WFT into quadratic energy function efficiently generates linearly bounded number of

hidden variables with constant bounded fan-out.

We have extended current quadratic energy minimization models to support high order functions
and have identified procedures to convert high order energy functions into quadratic energy functions
and vice versa. (By adding or eliminating hidden variables). As a result we can implement any WFF
or any boolean function in energy minimization connectionist networks of any order (quadratic or
higher), and we can build a universal n-order network with no hidden units that can implement any

WFT {or boolean function).

As a consequence of the equivalence relations defined on both emergy functions and WFFs we
can show that there is a one-to-one mapping between the set of non zero boolean functions and the
set of equivalence classes of energy functions. A one to one mapping also exists between classes of
satisfiable WE¥Fs and classes of energy functions. There are only 2(2") — 1 different classes of energy

functions {of n visible variables) independently of the order and the number of hidden variables.

A connectionist energy minimization network can be built directly from the energy function,
therefore connectionist networks can be used as inference engine for propositional calculus. {Some
extensions are needed. For example: The use of three value logic to deduce “unknown” when a
variable is instantiated to both “true” and “false” in two satisfying models). A system like this can
deduce which truth assignment the atomic propositions must have for the WFF to be consistent.

Contradiction may be sensed by energy level greater then zero,® and novel WFFs may be checked

+The problem of local minima causes the connectionist system to be uncertain whether a greater than zero energy
is caused by a contradiction or just by a local minimum.
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to see if they follow a certain set of WFFs, contradict it or are consistent with it. This form of
knowledge representation is capable of being incrementally updated. When we add a new fact or
rule to our knowledge base we do not have to re-compute all of the weights. We can find the energy
function that describes the new fact and then take advantage of the fact that the penalty of a
conjunction is the sum of the penalties. All we have to do is add the new function to the old one.
This way only the weights that are affected by the new fact will be updated. (Deleting a fact is done
by subtracting the function). We should note here that in traditional theszem proving (resolution
for example) symbolic algorithms are used to deduce S+ ¢ using sound syntactic rules, while the

connectionist system described here deduces S |= ¢ in the model space.

We may also conclude an imporfant limitation to the kind of problems energy minimization
connectionist networks can solve. The expressive power of systems based on energy minimization
is identical to that of propositional caleulus. Only those problems that can be stated as satisfia-
bility problems of propositional calculus can be stated as energy minimization problems. We can
conclude therefore that certain semi-decidable problems, like the satisflability of predicate caleulus
or even decidable problems like Quantified Boolean Formulas [10], (unless P-space = NP} , cannot

be precisely and efficiently represented in energy minimization networks.
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A. Proofs

A.1l. Proof of lemma: converting high order term with negative coefficient to low order

terms.

To show that when « > 0 then:

&
E(X) = f(X) ~azi, ...,z = f(X) =20y Tei; + (2k — DaT = Eo(X, T)

i=l
Proof:
Let # be an instantiation by assignment S.
We denote: S(z;,) = S(zi,) = -+ = 8(zi,) =1 by E=ziy, ..., T4y
If not all the variables z;,,...,;, are instantiated to be “1” by S then there exists a j such that

S(zi;) =0 . We denote this fact by Z72i,,. .., Ti, -

We prove the lemma by assuming that Z minimizes one of the functions and showing that Z
minimizes the other function. We first prove i) that if # minimizes ) there exists an instantiation
for T such that E(Z,T) is minimized. Then we prove ii) that if £, T minimize Eg, then T also

minimizes F.

In each prove we examine two basic cases: In case 1, we assume that % is instantiated to all ones,
and in case 2 we assume that Z is not all ones.
In each such case we prove that # minimizes the other function by showing that for every § the
function gets a value that is greater or equal to the value it gets on Z. Thus we examine two sub-
cases for each basic case:

In sub-case 1, we assume 7 is all ones, and in sub-case 2, we assume that 7 is not all ones.

i) Assume Ej(Z) = ming, we want to show that (3¢') such that Eo(Z,t) = ming,.
case 1: Assume F=>2;,, ..., Ti,, We want to show that Ea(Z, 1) < Eo(3,1) for all
instantiations § and 1.
sub-case 1.1: Assume §=>zi,,..., T, then:

Es(2,1) = f(2) —a= E(z) < B1(§) = f(5) — a = Ea(3,1) < f() = £(3,0)
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sub-case 1.2: Assume g5 2;,,..., 5, then:
Ey(2,1) = f(28) — a = E(3) < B1(7) = F(7) = E2(3,0) < Eo(5,1)
(Since E3(7,1) = (7)) — 2la+ (2k — Vo = f(§) +ra) where r > 0 and I < k).
Therefore E4(Z,1) < Es(3,1) for any 7 and £.
case 2: Assume T ,...,Ti,, we want to show that E,(Z,0) < Fq(7,1) for all
instantiations § and %.
sub-case 2.1: Assume J=>2;,,..., 2, then:
Es(2,0) = f(3) = Ei(Z) < Ev(§) = F(§) —a= Ex(5,1) < f(7) = E2(3, 0)
sub-case 2.2: Assume J#z;,,..., %, them
Es(2,0) = f(2) = £1(2) < Ei(F) = f(7) = E2(5,0) £ Ea(9,1)
(Since Ea(7,1) = f(7) — 2la + (2k — 1) = f{§) + ra) where r > 0).
Therefore E»(%,0) < Eq(#,1) for any § and 1.
Therefore there exists ¥ such that E(%,7") = ming,
ii} Assume Ey(Z,%) = ming, we want to show that £,(Z) = ming,.
case 1: Assume Z=>xy,, ..., %, we want to show that £y (Z) < Eq(7) for all
instantiations 3.
E3(%,1) < E3(Z,0) therefore Ey can not be a minimum
and therefore E3(Z,1) = ming,.
Subcase 1.1: Assume =&, ..., 2,
Ei(3)= f(z) —a = Ex(2,1) < Ex(7,1) = f(7) — a = Es(F)
Subcase 1.2: Assume §#;,,...,z;, then:
Bi(3) = £(3) — o = Fy(3,1) < Ba(5,0) = £(7) = Ex(9)
Therefore E,{Z) < E\(g) for any §.
case 2: Assume #&z;,, ..., 2;,, we want to show that E,(Z) < Fa(7) for all instantiations .
Ey(%,0) = f(2) < f(Z)— 2ja+ (2k — 1)a = Ey(Z,1) therefore Ex(%,0) = ming,.
Subcase 2.1: Assume F=>z;,...,Z;,
E\(3) = f(2) = B2(5,0) < Ba(5 1) = F() - o = Ex(5)

Subcase 2.2; Assume §#z;,,...,T;, them
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B,(5) = £(2) = Ex(3,0) < E2(3,0) = (5) = Ea()
Therefore Fy(z) < E\(F) for any 7.
Therefore E1(Z) = ming,.
Therefore Ey(Z) = ming, iff (37)E(2,) = ming,.

Therefore £y & Ey.

i

A.2. Proof of lemma: converting high order term with positive coefficient to low order

terms.

To show that when o« > 0 then:

E—1
El(f() = f()?)-!—a:c,—l, ooy T, R j"()z')—i-c:r:t:,-1 ---:c,-,‘_lm2aZTX;J.+2am;,T+(2k—3)aT: Eg(f{, ]
i=1

Proof:
Using a proof technique that is similar to the previous proof we show two directions:
i) If # minimizes £y then it also minimizes E.
ii) If Z minimizes £ then it also minimizes E.
In each direction we consider three cases:
1) Z is instantiated to all ones.
2) z;, ...zi,_, is instantiated to all ones but z;, is instantiated to zero.
3) zi, ..., _, is not instantiated to all ones.
Tn each case we consider three sub-cases:
1) g is instantiated to all ones.
2) Yi, .- Vin_, Is instantiated to all ones but y;, is instantiated to zero.

3) Yi, - - - Yin_, i not instantiated to all ones.

Let # be an instantiation by assignment S.
i) Assume E)(&) = ming, we want to show that (3t) such that E5(%,t) = ming,.

case 1: Assume F=;,, ..., Li,, we want to show that Ea(Z,0) < Eq(,1) for all
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instantiations § and ¥ E1(%) = f(F) + o = Ea(2,0).
sub-case 1.1: Assume y=2;,,...,%;, then:

Ey(2,0) = E1(2) < By(§) = f(B) + o = B2(5,0) < Ea(3, 1)

(since f(7)+a — 2(k — Do+ 2 + (2k — ) = F(F) + 20 = Ex(7,1)).

sub-case 1.2: Assume J=Zi,,..., i, and §Pz;, .
Ea(2,0) = Ei(%) < E1(§) = f(§) = Ea(5, 1)
= f(§) +«—2(k — e+ (2k — 3)a < £2(7,0)
(since Fy(7,0) = F(7) + o).
sub-case 1.3: Assume ¥z ,...,Ti_,
Ex(2,0) = Fr(2) < Ea(3) = F(3) = Bal3,0) < £(5) + & < Ea(5:1).
Therefore Ey(Z,0) < Ea(§, ) for any § and #'.
case 2: Assume F=z;,..., T, _, and THT;,.
(Using similar proof)
Therefore Ey(Z,1} < Eo(g,t') for any § and t'.
case 3: Assume ZH2i,,... ) Ti,_, -
(Using similar proof)
E5(%,0) < Eqo(#, ') for any § and ¢'.
Therefore if Ey(Z) = ming, then (37)Eq(Z,f) = ming,.
ii) Assume E2(%,7) = ming, we want to show that Ey(%) = ming,.
case 1: Assume T=>x;,,..., Ty,
Eq2(2,0) = f(Z) + @ < f(Z) + 2a = Ey(3,1).
Therelore Eq(E,0) = ming,.
sub-case 1.1: Assume ¥=>z;,,...,T; then:
Ey(7) = Ey(2,0) < E2(3,0) = f(7) + o« =51(D)-
sub-case 1.2: Assume J=>&i,,...,Ty_, and §5T4, .
E\(3) = Ea(2,0) < Ea(5,1) = f(7) — Eo(B)-
sub-case 1.3: Assume ¥#2i,.--, i,

Ey(2) = (&) = E2(2,0) £ Ex(5,0) = £(§) = BEv(5)-
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Therefore E1(Z) < E(7) for any 7.
case 2: Assume Z=bz;,,...,T;,_, and ZH @, .
E(Z) = f(F) = Ea(Z,1) < f(T) + o = E3(%,0).
Therefore Eo(Z,1) = ming,.
(Using similar proof)
therefore £,(%) < Ey(g) for any 7.
case 3: Assume ATy, .., Ty,
E\() = £(2) = Ex(5,0) < £(&) + a < Ea(5,1).
Therefore E2(%,0) = ming,.
(Using similar proof)
E\(%) < BEL(y) for any .
Therefore By (%) = ming, iff (F)E(3,1) = ming,.
Therefore Ey = E».

i

A.3. Proof of theorem: eliminating hidden variable by converting terms to possibly

higher order terms.

To show:

k k
Ey(z1y.- 20, T) = f(2) + D (i X)T f(2)+ D, Bs || LH(X,) = Balz1, .., 30)

j=t Bs<o i=l
where:
1
ﬂg = z ajri; < 0
j=1
and

Xi, if S(X;

i = =1
Ls(X)“{ 12 X;, ifS(X:,)=0

Proof: We have generated the expression: HLfS so that:
k

aeen={; fozs

j=t
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Therefore, for every assignment S (and instantiation Z):
If Bs < 0 then Ea(Z) = f{Z) + Bs
If B85 > 0 then ER(2) = f(F).

Like we did in the previous proofs of this appendix, we show now two directions:

1) If # can minimize Fy then it minimizes also .

ii) If T minimize E5 then it can minimize also F;.
In each direction we examine two cases:

case 1: We assume the ¥ causes 85 < 0.

case 2: We assume the 7 causes ffg > 0.
For each of the cases we prove that  minimizes also the other function by showing that
for every # the function gets a value that is greater or equal then the value it get for z.
‘We examine two sub-cases:

sub-case 1: We assume the  causes fs < 0.

sub-case 2: We assume the ¥ causes G5 2 0.

i) Assume Z is an instantiation of an assignment S that minimizes Ey,
case 1: If Bg < 0 then Ey(Z,1) is the minimum,
since E1(%,1) = f(z)+ Bs = E2(Z) < f(2) = E1(%,0).
But then for all instantiations § of assignments S”:
sub-case 1.1 : if B+ < 0 then
E(®,0) = f(Z)+ Bs < B\(§,1) = f(§,1) + Bs: = Ea(F), and
sub-case 1.2 : if B85 > 0 then
Ei(z,1} = f(3) + 85 < BE1(3,0) = f(§) = Ex(7)
Therefore E1(2,1) = E2(2) < Eo(y) for all instantiations ¥.
case 2: If Bs > 0 then E1(Z,0) is the minimum
since £1(Z,0) = f(E) = E2Z) < f(E)+ Bs = E1(%,1).
But then for all instantiations j of assignment 5’ :
sub-case 2.1:if G5+ < 0 then

E1(%,0) = f(2) £ BEu(#: 1) = f(§) + Bs: = Es(§) and
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sub-case 2.2:if 8¢ > 0 then
E1(2,0) = f(3) £ Ev(3,0) = () = E2(D)
Therefore E1(%,1) = E2(2) < E2 (D).

Therefore, T also minimizes E,.

i) Assume Z is an instantiation of S that minimize Ey.
case 1: If B < 0 then Eo(2) = f(Z) + fs = E1(&,1) is a minimum.
Then, for all instantiations ¥ of S":
sub-case 1.1:  If 85/ <0 then
Ey(2) = f(2)+ Bs < Ea(§) = f(§) + Bs: = Ex(5:1) < £(7) = Ea(5,0)
sub-case 1.2:  If Bs: > 0 then
Ey(2) = f(2)+ Bs < E2(9) = £(3) = Ba(5:0) < F(&) + Fs = Fa(3: 1)
Therefore E1(%,1) < Ey(, T') for all § and T"
case 2: If Bs > 0 then Eqo(Z) = f(Z) = E,(%,0) is a minimum.
Then, for all instantiations § of 5”:
sub-case 2.1:  If Bs < G then
Ey(%) = f(2) < E2(9) = £(§) + Bs = Er(5: 1) < f(§) = Ea(5,0)
sub-case 2.2:  If Bsr > O then
Eq(Z) = f(&) < Eo(9) = £(§) = E1(7:0) < f(Z) + Bs = E+(3, 1)
Therefore By (%,0) < Ey(7,T") for all § and T"

Therefore  also minimizes F;.

Therefore Ey(%) is minimized iff there exists an instantiation to T such that E1(Z,T) is mini-

mized.

Therefore the minimizing sets of Ey and By (when T is a hidden variable in E) are equal. and

El ~ Eg.

]
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A.4. Proof of theorem: the atiribute grammar generates an equivalent WFF in a

conjunction of triples form.
To show: The attribute grammar of section 4.1 transforms a WFF ¢ into an equivalent WFF ¢ in
a conjunection of triples form. (With the variables of ¢ as visible variables).

Proof:
By induction on k the depth of the parse tree that is generated by the grammar from ¢, we show
that:

If § = ¢ then: .

1. S.val contains either: var,(~war), (varlVvar2) or (varl Avar2) such that varl and varZ are

visible or hidden variables. We call such an expression a “simple ferm”.

2. S.tis either empty or contains a conjunction of expressions of the form:
(var—T), ({(-wvar)=T),((vary V vary)—T) or ((T1 A T3)—Ts) such that the T’s on the right
are new variables, not introduced before. (This is their first appearance from the left). Eg:

((A=T) A (BoT) A (T V T2)=T5))-

3. p is equivalent to (S.t A S.val)
Base: k=2, when § — L — X; or § — L — (=X;) then

1. Swal = X; or Swal = (~X;)
2. 5.1 is empty

3. (StASwal)=¢p

Step: Assume the Induction Hypothesis (LH.)} is true for k < 7, to show that it is also true for

kE=n.

1. § — (S'Vv5%) S (i) Vy), by induction hypothesis: $'.val, 5*.val are simple terms, S'.¢, $%.¢

are conjunctions of triples.
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By construction 5. is also conjunction of triples and S.val is a simple term.

We need now to show that ¢ is equivalent to (S.t A S.val):

TRUE zlways equivalent to 5.f because the new variables in the right of each triple can get a
truth value equal to the truth value of the simple term on the left of it. Following this method,
hidden variables are instantiated so that the whole conjunction is evaluated to be TRUE.
Assume: @ = (i1 V @2) is instantiated to TRUE, then either ¢, or ¢ is instantiated to TRUE.

Assume ¢, is TRUE, then by LH (S'.t A Sl.var) can be instantiated to be TRUE.

Therefore (5.t A (S!.val—T1)) can be made TRUE by making 77 TRUE.

Therefore (T3 V T») then becomes TRUE and therefore (St A (T1 V T3)) is TRUE.
Therefore: If ¢ is TRUE then (S.t A S.val) can be made TRUE by some instantiation to the
hidden variables.

Assume % = ((S* 1A S%.4) A(StvalTy) A (S?val=Ty)/wedge(Th V T3)) is instantiated to be
TRUE.

Then either T} or 75 must be instantiated to TRUE.

Assume T is true, then S*.val is TRUE.

Therefore ($1.t A St.val) is TRUE . By LH: ¢y & (S*.t A S*.val).

Therefore ¢, is TRUE. Therefore {¢; V 2) = ¢ is TRUE.

Therefore if 4 is TRUE then ¢ is TRUE.

Therefore ¢ = 1,

.S (STASY) D (p1 Awa)

(Similar proof).

LS (=S D

By construction, S.val = (=) is a simple term and S.{ is a conjunction of triples.
We need now to show that ¢ = (5.1 A S.val):
Assume (=) is TRUE by instantiation Z.

Then ¢, is instantiated to FALSE by £ (of the visible variables).

Therefore (S'.tAS'.val) can not be made TRUE by any instantiation to the new variables.
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S' ¢t can always be made TRUE, but for those instantiation that make S !¢ TRUE,
S val is always FALSE.

Therefore ((S*.t A (S*.val=T)) A (—T)) can be made TRUE
by making 5'.f TRUE and T FALSE.

Therefore, for any instantiation # that instantiates ¢ to be TRUE,
(5.t A S.val) can be instantiated also to be TRUE.

Assume ¥ = ((S1.t A (S.wal=T)) A(=T) is instantiated to TRUE by z and T,

then 7 must be FALSE and S.val is also FALSE.

Therefore, (S.t A St.val) is FALSE.

@1 = (S1.t A Slval) so ¢, is FALSE.

Therefore ¢, is FALSE for any instantiation that makes ¢ TRUL.

Therefore, ¢ = () is TRUE for any instantiation that makes ¥ TRUE.

Therefore ¥ = ¢.

[

A.5. Proof of lemma: Hjz is the characteristic function of 4.

To show that Hg(z)=1iff p(2) =1

Where

~_J 1 if E(Z)=ming

Hp(z) = { 0 Otherwise
and
n .
e=\V (AL
Hps(Xp=1 ="

where

Lj _ e if S(X,') =1
57 (=Xg) if S(X;)=0

Proof: We have constructed the term

n
tsg = /\ Lf’g
i=l
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so that {s has the property:
: 1 fs=¢5

(i.e: ts is evaluated to be TRUE only by assignment S}.

Let § be the assignment for instantiation Z. If Hp(2) = 1 then Hg(S(X)) = 1.
Therefore i5 is included in 4.
ts(S(X)) =1 (property of ts).
Therefore ¢(S(X)) = \{’Hg(s'(}z))za ts(S(X)) =1
Therefore Hg(S(X)) = ¢(S(X)) = 1.

If (%) = 1 then at least one of the terms ¢s: is instantiated to TRUR: ts{(S(X)) =1
Therefore § = S’ (Property of ts).
Therefore Hp(S(X)) =1 ( since ¢g is included in g, by the construction of ).
Therefore ¢(S(X)) = 1 = Hp(S(X)) = 1.

Therefore (%) = 1 iff Hg(g) = 1.

‘Therefore Hpg is the characteristic function of ¢.

0
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