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ABSTRACT OF THE DISSERTATION 

Bioinformatics for High-throughput Virus Detection and Discovery 

by 

Adam Forrest Allred 

 

Pathogen detection is a challenging problem given that any given specimen may contain 

one or more of many different microbes. Additionally, a specimen may contain microbes 

that have yet to be discovered. Traditional diagnostics are ill-equipped to address these 

challenges because they are focused on the detection of a single agent or panel of agents. 

 I have developed three innovative computational approaches for analyzing high-

throughput genomic assays capable of detecting many microbes in a parallel and 

unbiased fashion. The first is a metagenomic sequence analysis pipeline that was initially 

applied to 12 pediatric diarrhea specimens in order to give the first ever look at the 

diarrhea virome. Metagenomic sequencing and subsequent analysis revealed a spectrum 

of viruses in these specimens including known and highly divergent viruses. This 

metagenomic survey serves as a basis for future investigations about the possible role of 

these viruses in disease. 

 The second tool I developed is a novel algorithm for diagnostic microarray 

analysis called VIPR (Viral Identification with a PRobabilistic algorithm). The main 

advantage of VIPR relative to other published methods for diagnostic microarray analysis 

is that it relies on a training set of empirical hybridizations of known viruses to guide 

future predictions. VIPR uses a Bayesian statistical framework in order to accomplish 

this. A set of hemorrhagic fever viruses and their relatives were hybridized to a total of 
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110 microarrays in order to test the performance of VIPR. VIPR achieved an accuracy of 

94% and outperformed existing approaches for this dataset. 

 The third tool I developed for pathogen detection is called VIPR HMM. VIPR 

HMM expands upon VIPR’s previous implementation by incorporating a hidden Markov 

model (HMM) in order to detect recombinant viruses. VIPR HMM correctly identified 

95% of inter-species breakpoints for a set of recombinant alphaviruses and flaviviruses 

 Mass sequencing and diagnostic microarrays require robust computational tools in 

order to make predictions regarding the presence of microbes in specimens of interest. 

High-throughput diagnostic assays coupled with powerful analysis tools have the 

potential to increase the efficacy with which we detect pathogens and treat disease as 

these technologies play more prominent roles in clinical laboratories. 
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The need for high-throughput assays for pathogen detection 

Identifying the pathogenic agent or agents in a clinical specimen from the vast diversity 

of microbial agents known to cause disease presents a significant challenge for diagnostic 

microbiology. While a particular disease phenotype may implicate certain microbes over 

others, identifying microbes associated with poly-etiologic disease still requires testing 

for the presence of many potential agents. For example, in the case of encephalitis, there 

are at least 75 viruses that are known to cause disease [1, 2]. 

Another challenge to pathogen detection is the possibility that any given specimen 

may contain novel microbes. The fact that, for some disease syndromes, there are 

specimens for which no etiologic agent can be found suggests that there may be some 

microbial pathogens that have yet to be discovered. This appears to be a distinct 

possibility in the case of diarrhea, for which no etiologic agent can be detected in as 

many as 40% of cases [3-7]. 

 Traditional diagnostics suffer from several limitations and are ill-equipped to 

address these challenges. Both PCR and antigen detection-based methods such as ELISA 

are dependent upon the availability of specialized reagents (primers and antibodies, 

respectively) which must be applied serially in separate assays in order to test for the 

presence of multiple agents. Multiplex PCR can test for the presence of a handful of 

agents simultaneously, but sensitivity is hindered with the inclusion of additional primers. 

Without an assay that is capable of detecting many potential agents in parallel, exhaustive 

testing of all microbial agents associated with a poly-etiologic disease such as 

encephalitis is not feasible. 
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 Another limitation of traditional diagnostics is that they are focused on the 

detection of a single locus or protein in a candidate agent. The presence of the entire 

microbial genome is then inferred from this isolated result. This diagnostic paradigm 

does not accommodate the detection of recombination in candidate microbes. Unless 

other genomic loci or protein components are specifically assayed, recombination in 

target microbes would go undetected. There is a great need in diagnostic microbiology 

for high-throughput assays capable of detecting multiple loci from many agents in 

parallel and in an unbiased fashion. Metagenomic sequencing and microarrays offer 

significant advantages over traditional diagnostics in this regard. 

 

Metagenomic sequencing 

The vast majority of microbial species cannot be readily cultured [8]. Thus, our ability to 

characterize the makeup of microbial communities using cultivation-dependent methods 

is severely limited. Metagenomic sequencing was developed as a way to circumvent the 

need to culture microbes in order to explore the structure of microbial communities.  

While traditional sequencing approaches are designed to characterize genomes of 

a single species of interest, metagenomic approaches transcend species boundaries in 

order to explore the makeup of communities of microorganisms [9]. The first culture-

independent investigations of environmental sequences were performed in the mid-1980s 

and involved direct sequencing of 5S and 16S rRNA sequences to identify microbial 

species [10]. Later, environmental sequence was cloned into vector libraries for 

sequencing [11]. Among the earliest metagenomes studied using this methodology were 

those found in seawater samples [12]. Since that time, metagnomic sequencing has been 
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used to explore the structure of communities in many different environments including 

soil, acid mine drainage, and public restroom surfaces [13-15].  

The fact that the microbial cells that inhabit the human body outnumber human 

cells ten to one gives credence to the classification of human beings as walking 

ecosystems or “superorganisms” and offers ample motivation for applying metagenomic 

sequencing to understanding microbial colonization and infection of humans. Among the 

first human-derived microbial communities to be studied were those present in stool [16, 

17]. The ongoing Human Microbiome Project began in 2008 and has as its goal the 

characterization of microorganisms from many different sites on the human body.  

 

Metagenomic sequencing of viruses 

Metagenomic sequencing of viral communities presents a unique challenge because of 

the lack of a universal 16S rRNA available for phylotyping of sequenced species [8]. In 

fact, there is no single gene common to all virus genomes. Analyses of viral 

metagenomes must take into account the incredible functional diversity among virus 

species. Because of this, viral metagnomics typically involves sequence-independent 

amplification of extracted nucleic acids followed by sequencing and in silico similarity 

searches against databases containing known virus sequences [18]. One way in which 

metagenomic sequencing of viruses can be applied is to interrogate the community 

structure of virus populations. Several studies have focused on the analysis of phage for 

this purpose [16, 19-21]. 

Another way in which metagenomic sequencing is incredibly useful is in the 

discovery of novel virus species [22]. Novel viruses which were discovered through 
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sequence-independent amplification and mass sequencing include human bocavirus, WU 

polyomavirus, KI polyomavirus, Merkel cell polyomavirus and seal picornavirus 1 [23-

27]. Sanger sequencing and more recently 454 pyrosequencing yield long reads which are 

desirable for phylotyping of potentially highly divergent sequences. In order to identify 

novel species from metagenomic sequence, high-quality sequences must be identified. In 

addition, it is helpful to identify a set of non-redundant sequences prior to similarity 

search and taxonomic assignment. Short-read platforms such Solexa (Illumina) and 

SOLiD have been developed more recently and yield more sequence than previous 

platforms, increasing the sensitivity with which viruses present in low concentrations can 

be detected, but require assembly of small reads prior to phylotyping in order to 

accurately assess species origin, and the assembly of short reads in a metagenomic 

context has proven difficult. I have performed an analysis of Sanger sequencing data in 

order to get a first-ever look at the diarrhea virome. Diarrhea offers a promising 

opportunity to apply metagenomic sequencing for virus detection and discovery since an 

etiologic agent cannot be identified in as many as 40% of cases of diarrhea [3-7].  

 

DNA microarrays as a diagnostic tool 

DNA microarrays were developed in the mid-1990s as a powerful tool for the global 

quantification of gene expression. The inherently parallel nature of microarrays lends 

itself well to multi-locus interrogation of a single agent as well as simultaneous detection 

of numerous pathogens [22]. The first microarray for virus detection, called the 

ViroChip, was developed in 2002 and included 1600 70-mer oligonucleotide probes 

representing 140 different virus species [28]. The inclusion of both conserved as well as 
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virus-specific probes on the microarray made it useful for the detection of unknown 

viruses with similarity to sequenced viruses as well as for the detection known viruses. 

Since the development of the ViroChip, a handful of diagnostic microarray designs have 

been proposed [28-37]. Diagnostic microarrays have proven to be effective tools in 

detecting known viruses in clinical specimens with high sensitivity and specificity [38]. 

In addition, several viruses have been discovered using pan-viral microarrays, perhaps 

the most notable of which is SARS coronavirus [29]. Other viruses discovered through 

the use of diagnostic microarrays include the cardiovirus HTC-UC1 [39], a beluga whale 

coronavirus [40], an avian bornavirus [41] and a gammaretrovirus (XMRV) [42] which 

was identified in patients with prostate cancer. 

 

Diagnostic microarray analysis 

Early analyses of diagnostic microarray data were based on visual inspection and the use 

of standard microarray analysis tools such as hierarchical clustering [22]. However, 

analyzing the many hybridizations generated from screening clinical specimens 

necessitated the development of robust computational strategies for diagnostic microarray 

analysis. Regardeless of the chosen platform or probe design strategy, an objective 

algorithm is required to make use of the wealth of data that comes from each 

hybridization in order to score and rank potential candidates and to identify infecting 

viruses. Such an algorithm must account for challenges traditionally associated with 

microarray analysis including cross-hybridization, probe saturation and sample variation.  

The first algorithm expressly designed for interpretation of viral microarrays is E-

Predict [43]. E-Predict uses a theoretical energy matrix to compute correlations between 
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experimental hybridizations and genome-derived energy vectors. Free energies are 

determined using BLAST to identify significant alignments between probes and viral 

genomes, followed by a free energy calculation using a nearest-neighbor approach. E-

Predict offers different options for normalization of hybridization and intensity vectors 

including sum, unit-vector and quadratic normalizations. In addition, several options are 

available for the correlation metric. These include Pearson correlation, Spearman rank 

correlation and Euclidean distance. One advantage of E-Predict is that it offers an 

iterative option for detecting multiple viruses. One disadvantage is that accurate p-value 

calculations are dependent on the accumulation of many previous hybridizations in order 

to define a null distribution of scores. 

DetectiV is a software package for diagnostic microarray analysis that enables 

visualization, normalization and significance testing for microbial detection [44]. It was 

developed in and is executed using the R programming environment. Significance testing 

in DetectiV is based on the comparison of the probe intensities from an experimental 

hybridization to a user-selected control which can be one of three things: an array’s 

median value for all probes, the mean value of a set of designated control probes, or a 

control array. Advantages of DetectiV include its accommodation of several different 

control types and its visualization capabilities. One disadvantage is that DetectiV does 

not readily deal with the issue of cross-hybridization of probes to similar species. 

PhyloDetect is an algorithm that groups candidate targets into a nested hierarchy 

based on probe-to-genome binding predictions [45]. Predictions are binary such that ‘1’ 

indicates predicted binding of probe to target and ‘0’ indicates predicted lack of binding. 

For analysis of an array, hybridization intensities are also made binary. PhyloDetect 
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computes a likelihood-based test statistic that reflects the number of probes that have ‘0’ 

indicators for a given group in the hierarchy as well as a user-selected false positive rate 

parameter. Phylodetect uses the resulting statistic to test whether an organism in the 

group is present (the null hypothesis), or whether no organism in the group is present (the 

alternative hypothesis). An advantage of PhyloDetect is its explicit recognition of target 

similarity by collapsing similar profiles [46]. A possible disadvantage is information loss 

is its reduction of intensities to binary values. 

 CLiMax, which stands for Composite Likelihood Maximization, is based on a 

biophysical model of probe-target hybridization [46]. One feature of CLiMax is that it 

seeks to identify a set of targets that best explains the observed intensities, explicitly 

accounting for the possibility of co-infection. It does this using a greedy method to 

identify a locally optimal set of targets. Probe intensities are modeled with a logisitic 

regression. Individual probes contribute additively to a likelihood score which is possible 

under the assumption of independence between probes. One advantage of CLiMax is that 

it uses probe sequence to identify low-complexity probes which may be less specific and 

more prone to cross-hybridization. Although CLiMax is capable of recognizing multiple 

infection, predictions of additional viruses can be suspect [46]. 

 

A probabilistic approach for diagnostic microarray analysis 

None of the previously published algorithms for analyzing diagnostic microarrays 

accommodates the use of training data for learning probe-specific behaviors. Training 

data are empirical observations that can be used to leverage future predictions. The 

incorporation of training data is a hallmark of machine learning approaches, of which 
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probabilistic inference is one important example. Probabilistic approaches rely on 

probabilities which factor into the calculation of statistics and govern the 

parameterization of a predictive model. Bayesian statistics provide a powerful framework 

for dealing with parameter uncertainty within a probabilistic model. In a Bayesian 

approach, what is desired is a posterior probability i.e. P(Model|Data) but what in fact 

what is available is the inverse of that i.e. P(Data|Model). Bayes’ rule is the formula that 

allows a posterior probability to be computed from the available conditional probability. 

In addition, Bayes’ rule involves marginalizing over uncertain parameters. Bayesian 

inference relies on the use of a prior which defines the pre-existing distribution associated 

with a given model before any data are observed. 

Hidden Markov models (HMMs) allow probabilities to be multiplied together to 

calculate a probability score for a particular series of events. These events and their 

associated probabilities are strung together using states connected by transitions. The 

probabilities associated with each state are called emission probabilities, while the 

probabilities associated with moving from one state to another are called transition 

probabilities. HMM state emissions can be derived either from a discrete distribution, as 

is the case for HMMs whose states emit nucleotides, or they can be derived from a 

continuous distribution, as would be the case for an HMM whose states emit 

hybridization intensities. A first-order HMM is one in which the next state in a path is 

dependent only on the current state. 

Dynamic programming algorithms are a class of algorithms that go hand-in-hand 

with HMMs as an efficient means of fishing out optimal “hidden” paths from the many 

possible paths defined by an HMM. Dynamic programming algorithms accomplish this 
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through the use of a matrix in which cumulative probabilities representing various 

possible paths through an HMM are stored. The four steps in the classic implementation 

of a dynamic programming algorithm are: 1. Initialization (fills in the first column of the 

matrix), 2. Iteration (fills in all the remaining columns but the last), 3. Termination (fills 

in the last column) and 4. Traceback (reconstructs the most likely path). 

 Probabilistic modeling has had a major impact in numerous applications in 

sequence analysis including gene finding, profile searches, multiple sequence alignment 

and regulatory site identification [47]. Applications of probabilistic models to array data 

include identification of differential gene expression, detection of copy number variation 

and motif discovery [48-50]. No probabilistic model has been described for the analysis 

of microarray data for microbial detection. I have developed a Bayesian probabilistic 

model, VIPR, for analyzing diagnostic microarrays that accommodates the use of training 

data in the form of hybridizations of known viruses in order to learn probe-specific 

behaviors and improve detection. I have applied VIPR to a set of hybridizations of 

hemorrhagic fever viruses in order to assess performance. Moreover, I have adapted 

VIPR to the detection of recombinant microbes by developing a hidden Markov model. 

This algorithm, VIPR HMM, was tested using a set of viral encephalitis vaccine strains 

and represents the first diagnostic microarray analysis tool capable of detecting 

recombinants. 

 

 

 

 



11 

 

CHAPTER 2: 

 

Metagenomic Analysis of Human Diarrhea: 

Viral Detection and Discovery 
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ABSTRACT 

Worldwide, approximately 1.8 million children die from diarrhea annually, and millions 

more suffer multiple episodes of nonfatal diarrhea. On average, in up to 40% of cases, no 

etiologic agent can be identified. The advent of metagenomic sequencing has enabled 

systematic and unbiased characterization of microbial populations; thus, metagenomic 

approaches have the potential to define the spectrum of viruses, including novel viruses, 

present in stool during episodes of acute diarrhea. The detection of novel or unexpected 

viruses would then enable investigations to assess whether these agents play a causal role 

in human diarrhea. In this study, we characterized the eukaryotic viral communities 

present in diarrhea specimens from 12 children by employing a strategy of ‘micro-mass 

sequencing’ that entails minimal starting sample quantity (<100 mg stool), minimal 

sample purification and limited sequencing (384 reads per sample). Using this 

methodology we detected known enteric viruses as well as multiple sequences from 

putatively novel viruses with only limited sequence similarity to viruses in Genbank.  

 

INTRODUCTION 

While traditional sequencing approaches are designed to characterize genomes of a single 

species of interest, metagenomic approaches, such as mass sequencing, transcend species 

boundaries allowing one to explore the makeup of microbial communities. Such methods 

provide a holistic look at microbial diversity within a given sample, completely 

bypassing the need for culturing [21, 51-54]. Previous efforts in this field have explored 

the structure of virus communities in ecosystems as diverse as the ocean [21, 55] and the 

human gut [16, 17]. To date, the reported metagenomic studies of human stool have been 
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limited to analysis of 4 specimens collected from 3 healthy patients [16, 17]. To our 

knowledge, no metagenomic investigation of the viral diversity found in human diarrhea 

has previously been described. Human diarrhea is the third leading cause of infectious 

deaths worldwide and is responsible for ~ 1.8 million deaths in children under age five 

each year [56]. Bacteria, protozoa and viruses have all been implicated as causal agents. 

Chief among the known etiologic agents are rotaviruses, noroviruses, astroviruses, and 

adenoviruses [57]. However, it is estimated that on average up to 40% of diarrhea cases 

are of unknown etiology, suggesting that unrecognized infectious agents, including 

viruses, remain to be discovered [3-7]. Mass sequencing affords an opportunity to explore 

the viral diversity (including both known and novel viruses) present in stool during acute 

episodes of diarrhea in a systematic and unbiased fashion, thereby laying the foundation 

for future studies aimed at assessing whether any novel or unexpected viruses detected 

play a causal role in human diarrhea.  

In this study, mass sequencing was applied to explore specifically the viral 

communities present in pediatric patients suffering from diarrhea. We anticipated that the 

viral communities would vary significantly from specimen to specimen and that it would 

be desirable to sample broadly from multiple patients to obtain an overall perspective on 

the diversity of viruses that might be present. Toward this end, a simple yet robust 

experimental strategy was developed that circumvented certain technical and economic 

limitations of conventional mass sequencing. In both previous viral metagenomic studies 

of the human gut, large quantities of fecal matter (~500g) were collected from adults and 

then extensively purified to enrich for viral particles [16, 17]. In contrast, pediatric 

samples provide considerably smaller volumes of stool; therefore, our strategy was 
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designed to minimize the number of physical purification steps so that as little as 30 mg 

of archived fecal matter could be analyzed. Here we present data generated by 

performing what we refer to as ‘micro-mass sequencing’ of several hundred sequence 

reads per sample from 12 different patients with acute diarrhea. This analysis provides 

evidence for the detection of known enteric viruses, viral co-infections, and novel 

viruses.  

  

RESULTS 

Aggregate library analysis 

Metagenomic analysis was carried out on fecal samples collected from 12 distinct 

pediatric patients suffering from acute diarrhea. Patient characteristics are shown in Table 

2.1. A sequence independent PCR strategy was employed to amplify the extracted nucleic 

acids from each sample [29]. 384 clones were sequenced for each sample library. 

Because the goal of this project was to define the diversity of viruses present in the 

clinical specimens regardless of their relative abundance, nearly identical sequence reads 

were clustered to generate a set of non-redundant sequence reads. Unique, high quality 

sequence reads were then classified into broad taxonomic groups based on the taxonomy 

of the most frequent top scoring BLAST matches for each sequence. A total of 4,608 

sequences were generated, of which 3,169 passed through a quality filter and 2,013 of 

those contained unique sequence information. Of the unique sequences passing through 

the filter, 1,457 (72%) could be identified by similarity to sequences in the Genbank nr 

database based on tBLASTx (E-value ≤10
-5

) alignments. The remaining 556 (28%) 

sequences had no significant similarity to any sequences in the nr database and were  
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therefore categorized as being of ‘unknown’ origin. The 1,457 identifiable sequences 

were further classified into categories based on their proposed origin (Fig. 2.1). 519 

(35.6%) were most similar to eukaryotic viruses, 25 (1.7%) to phage, 857 (58.8%) to 

bacteria, 3 (0.2%) to fungi, and 20 (1.4%) to human sequences. The remaining 33 (2.3%) 

were most similar to sequences that did not fall into the other previous categories and 

were consequently labeled as ‘other’. For example, some of the sequences had significant 

hits to mouse, fish, and plant genomes. 

 

Individual library statistics 

384 clones were sequenced for each individual sample. The proportion of high quality 

sequences for each sample varied between 40% and 95% of the total clones (Table 2.1). 

The percentages of unique sequences per sample ranged from 41% to 97% of the high 

quality reads (Table 2.1). The average length of the unique, high quality sequences 

ranged from 255 to 626 bp. Viral sequences constituted between 0-100% of the reads in 

Table 2.1. Sample Information 

Sample Year Collected Age of Patient 

# of high 
quality 

sequence 
reads 

# of 
unique 
reads 

Average 
unique 

read length 
(bp) 

D01 2005 14 mo 365 166 526 

D02 1998 10 mo 193 87 536 

D03 1984 NA 302 281 506 

D04 1984 4 mo 311 154 626 

D05 1980 NA 243 168 563 

D06 2003 11 mo 153 132 393 

D07 1999 23 mo 352 186 617 

D08 1999 35 mo 302 167 255 

D09 1981 NA 302 294 491 

D10 1983 20 mo 195 146 447 

D11 1978 NA 253 103 367 

D12 2005 8 mo 198 129 300 
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each library (Fig. 2.2). Some libraries (e.g., D01 and D05) were predominantly composed 

of viral sequences (64% and 95% respectively), whereas others consisted largely of 

bacterial (e.g., D08 and D12) or unassigned (e.g., D03 and D07) sequences. Based on the 

initial BLAST classification criteria, sequences with similarity to viruses from 7 different 

viral families and three unclassified genera (picobirnavirus, anellovirus and mimivirus) 

were detected in the 12 different samples (Fig. 2.2). Five of the samples (D03, D05, D06, 

D08, and D12) contained sequences from at least two different virus families known to 

infect humans. 

 

Detection of known viruses 

The first specimen analyzed was a positive control stool specimen that had tested positive 

for rotavirus (D01) by enzyme immunoassay. It was our expectation that this sample 

would yield sequences derived from the infecting rotavirus. In this library, 107 non-

redundant sequence reads were identified as viral in origin, almost all of which possessed 

≥ 90% amino acid (aa) BLAST identity to known rotavirus sequences in Genbank. The  

Fig. 2.1. Compositie analysis of 
all sequences. Sequences from 
all 12 libraries were categorized 
based on the best tBLASTX 
scores (E-value: <10

-5
) as viral, 

phage, bacterial, human, fungal, 
other, or unassigned. Numbers 
in parenthesis represent the 
number of sequences in each 
category.  
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Fig. 2.2. Categorization of sequence reads based on best tBLASTX scores (E-value: <10
-5

). 
Pies on the left side of each box depict the categorization of sequences from individual 
samples by phylotype: viral (V); phage (P); bacterial (B); human (H); fungal (F); other (O); and 
unassigned (U). Pies on the right side of each box depict further characterization of viral 
sequences by viral families/taxa: Reoviridae (Reo); Caliciviridae (Calici); Astroviridae (Astro); 
anellovirus (Anello); picobirnavirus (Picobirna); Picornaviridae (Picorna); mimivirus (Mimi); 
Nodaviridae (Noda); Adenoviridae (Adeno); Parvoviridae (Parvo). Numbers in parentheses 
indicate the number of sequence reads in each category. 
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sequence data included cloned fragments from all 11 RNA segments of the rotavirus 

genome.  

An additional 11 stool specimens were then selected that had tested negative in 

conventional PCR and enzyme immunoassays for the known diarrhea viruses 

(rotaviruses, caliciviruses, astroviruses, and adenoviruses). Despite such screening, 

sequences derived from the canonical enteric viruses were detected in a number of 

samples. For example, calicivirus sequences were detected in D02 and D06, astrovirus 

sequences in D04, and adenoviruses were detected in D05 and D12. Almost all individual 

sequence reads in these cases possessed >90% aa identity to existing viral sequences in 

Genbank. 

Adeno-associated virus (AAV), a member of the Parvoviridae family, was 

detected in two samples, D11 and D12. These viruses are known to infect the 

gastrointestinal tract, but are not thought to be enteric pathogens. For productive 

infections or reactivation from a latent state, AAV requires co-infection with a helper 

virus that is most commonly an adenovirus or less typically, a herpesvirus [58]. In D12, 

adenovirus sequences were detected. No additional viruses were detected in D11. 

 

Detection of novel virus sequences 

In many of the libraries, individual sequence reads were detected that possessed ≤ 90% aa 

identity to their highest scoring BLAST hit (representative sequences are listed in Table 

2.2) suggesting that these sequences might be derived from novel viruses. In part because 

BLAST alignments are based on local sequence comparisons, BLAST is not an optimal 

method for making taxonomic assignments. In order to more accurately and precisely  
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assess the relationship of these sequences to known viruses, we generated phylogenetic 

trees using the maximum parsimony method [59]. In cases where more than one sequence 

read hit the same region of a genome, only one representative sequence read is listed in 

Table 2.2 and phylogenetic trees are shown for only these representative sequences (Fig. 

2.3-2.4 and Fig. 2.S1-2.S4). Phylogenetic analysis revealed that many of the sequences 

were divergent from known sequences on the order that approximated a distinct subtype 

or genotype (Fig. 2.S1-2.S4). This included two libraries with picobirnaviruses (D03, 

D10) (Fig. 2.S1), two with picornaviruses (D03, D06) (Fig. 2.S2), two with anelloviruses 

(D06, D08) (Fig. 2.S3), and one with a norovirus (D06) (Fig. 2.S4). 

In several instances, much more highly divergent sequences were detected that 

suggested that novel virus species might be present. The library generated for sample 

D08 included 7 unique sequence reads derived from two loci that displayed 52-67% aa 

identity to human astroviruses. Phylogenetic analysis of the individual sequence reads 

suggested that a novel astrovirus was present in D08 (Fig. 2.3). These sequence reads 

were assembled into two contigs, one of ~800 bp that mapped to ORF1a and one of ~500 

bp that mapped to ORF1b. RT-PCR and subsequent sequencing of the amplicon 

Table 2.2. Selected sequence reads with limited BLAST identity to known viruses 

Sample 
Sequence Read 

Accession # 
Identity to 

top hit Top Hit (Accession #) Virus Family/Taxa 

D03 ET065742 78% Human picobirnavirus strain 1-CHN-97 (AF246939) Picobirnavirus 

D03 ET065743 90% Human coxsackievirus A19 (AF499641) Picornaviridae 

D06 ET067042 74% Human enterovirus 91 (AY697476) Picornaviridae 

D06 ET067045 66% TTV-like mini virus (AB026931) Anellovirus 

D06 ET067040 79% Snow Mountain virus (AY134748.1) Caliciviridae 

D06 ET067041 88% Norovirus C14 (AY845056.1) Caliciviridae 

D08 ET065575 57% Human astrovirus 4 (AY720891) Astroviridae 

D08 ET065582 67% Human astrovirus 5 (DQ028633) Astroviridae 

D08 ET065578 45% TT virus (AB041963) Anellovirus 

D09 ET066010 35% 
Epinephelus septemfasciatus nervous necrosis virus 
(AM085331) Nodaviridae 

D10 ET066456 81% Human picobirnavirus 2-GA-91 (AF245701) Picobirnavirus 
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confirmed the presence of the contigs in the original RNA extract as well as the contig 

assemblies (data not shown). Phylogenetic analysis of the two contigs yielded trees 

essentially identical to those generated from the individual sequence reads (data not 

shown).  

In sample D09, we detected one sequence read which exhibited limited similarity 

to viruses in the family Nodaviridae (Table 2.2). RT-PCR of this sample using primers 

designed from the sequence read confirmed the presence of a 229 bp fragment in the 

original RNA extract (data not shown). Phylogenetic analysis of the sequence of the RT-

PCR product demonstrated that the nodavirus in sample D09 was highly divergent from 

other known nodaviruses (Fig. 2.4). 

Finally, one sample, D03, contained five sequence reads that, based on the top 

tBLASTX hits, contained 47% to 52% aa identity to endonuclease genes in the amoeba-

Fig. 2.3. Phylogenetic analysis of highly divergent astrovirus-like sequence reads. Maximum 
parsimony phylogenetic trees were generated by comparing the translated amino acid 
sequence of individual sequence reads to the corresponding sequences from known 
astroviruses.  1,000 replicates were generated with bootstrap values over 700 shown. A) 
Representative sequence read mapping to astrovirus serine protease ORF (Accession number 
ET065575); B) Representative sequence read mapping to astrovirus RNA polymerase 
(Accession number ET065582). 
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infecting virus Acanthamoeba polyphaga mimivirus. These sequences also possessed 

approximately similar levels of sequence identity to a number of bacterial genomes and 

phage genomes containing putative endonuclease proteins. Phylogenetic analysis 

comparing the sequence reads to the top scoring BLAST hits (Fig. 2.S5) did not 

conclusively clarify the origin of these sequences. Further experimentation will be 

required to unambiguously determine if these sequences are derived from a mimi-like 

virus, phage, or a bacterial species. 

 

Unassigned sequences 

Some sequences in the libraries had no significant hits to any sequences in the Genbank 

nr database. Samples D03 and D07 had a large abundance of these ‘unassigned’ reads. 

Relaxing E-value thresholds for designating various sequence categories resulted in the 

ability to classify a greater number of these unassigned sequences; however, many of 

Fig. 2.4. Phylogenetic analysis of a highly divergent nodavirus-like sequence read. Maximum 
parsimony phylogenetic trees were generated by comparing the translated amino acid sequence 
of one sequence read (Accession number ET066010) to the corresponding RNA polymerase 
sequences of nodaviruses. 1,000 replicates were generated with bootstrap values over 700 
shown.  
 

http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/00.110.0.01.001.htm
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these classifications likely represent artifactual alignments. Viral assignments remained 

largely unaffected, even when E-value thresholds as permissive as 10 were applied. 

 

DISCUSSION  

We examined the diversity of viral communities in stools from 12 children with diarrhea 

using a strategy we describe as ‘micro-mass sequencing’. This strategy, which entails 

crude purification of fecal suspensions, nucleic acid purification, random PCR 

amplification, and cloning and sequencing of several hundred colonies, effectively 

detected known enteric viruses, viral co-infections, and novel viruses. In most traditional 

metagenomic studies, large sample volumes are subjected to multiple stages of filtration 

and purification before sequencing. For example, in previous metagenomic studies of the 

gut, 500 g of fecal samples were initially collected for the analyses. Because clinical 

pediatric diarrhea specimens are much more limited in volume, we chose to both 

minimally purify the samples and to employ a random PCR amplification strategy. These 

combined steps enabled us to rapidly generate sequencing libraries from small quantities 

of archived stools (30-100 mg). Furthermore, we wished to sample broadly from multiple 

patients because of the large number of viruses known or suspected to be associated with 

diarrhea. Therefore, rather than sequence few specimens in great depth as has been done 

previously (10,000 sequences per sample) [17], we focused on sequencing fewer clones 

(384 per sample) from more samples (12 specimens).  

Our analysis detected viruses, bacteria, host, phage and other sequences (Fig. 2.1). 

The presence of non-viral sequences in the libraries was not surprising as only minimal 

efforts were made to enrich for viral sequences. In fact, the goal of this strategy was to 
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manipulate the specimens as little as possible in the interest of simplicity. Even so, in a 

few libraries, 100% of the sequence reads were of viral origin. Additional processing, 

such as treating the specimens with DNase, reduced the background signal and increased 

the percentage of viral reads in some instances (data not shown).  

Viral sequences were detected in all but one sample. Interestingly, a number of 

DNA viruses (bacteriophages, adenoviruses, and adeno-associated viruses) were detected 

in our analysis, despite our use of a methodology focused on purification of RNA. While 

it is possible that RNA transcripts from these viruses were purified [60], it is more likely 

that viral DNA was co-purified with RNA, as is common in other RNA purification 

methods [61]. PCR analysis of samples D05 and D11 in the absence of reverse 

transcription, yielded positive results for adenovirus and adeno-associated virus, 

respectively, indicating that viral DNA was present in the RNA preparations (data not 

shown).  

Analysis of this initial cohort of 12 specimens yielded a wealth of original 

findings. In contrast to previous metagenomic studies of stool [17], a number of known 

human viruses were detected in these clinical specimens. These included common enteric 

pathogens such as rotavirus, adenovirus, calicivirus, and astrovirus. In addition, 

putatively benign adeno-associated viruses (AAV) were also detected which are not 

generally associated with human diarrhea. Aside from one sample known to contain 

rotavirus, we intended to analyze the viral communities present in samples that were not 

infected by known enteric pathogens in order to identify viruses that might be responsible 

for the unexplained cases of diarrhea. The fact that micro-mass sequencing detected these 
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canonical viruses in some of the specimens, despite conventional diagnostic testing by 

EIA and PCR, underscores the sensitivity limits of conventional diagnostics.  

 

Detection of novel viruses 

Sequences were detected in this study from at least 9 putatively novel viruses. For 7 of 

these sequences, the degree of divergence observed based on phylogenetic analysis 

suggested that they might represent novel virus subtypes or genotypes of picobirnavirus, 

enterovirus, TT virus and norovirus (Fig. 2.S1-2.S4). Picobirnaviruses belong to an 

unclassified genus of double stranded RNA viruses and have been detected in fecal 

matter from human and other animals both with and without diarrhea [62]. Only a limited 

number of picobirnavirus sequences have been previously described in the literature and 

thus the identification of two novel picobirnaviruses significantly expands the known 

diversity of this taxonomic group, underscoring the unrecognized viral diversity 

inhabiting the human body.  

Sequences representing a divergent norovirus were detected in sample D06 (Fig. 

2.S4). Phylogenetic analysis of individual sequence reads that mapped to the RNA 

polymerase and the NS4 regions of human norovirus suggested that these sequences were 

derived from a novel or unsequenced member of norovirus genogroup 2. In the initial 

screening by conventional PCR, this sample tested negative for norovirus. Upon closer 

examination, four mutations were observed in one of the PCR primer binding sites, which 

plausibly hindered the PCR screening assay [7].  

In two samples, much more highly divergent sequences were detected. In D08, 

phylogenetic analysis of 7 unique sequence reads strongly suggested that a novel 
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astrovirus species was present (Fig. 2.3). The observed sequence variation between these 

sequence reads and the known astrovirus genomes greatly exceeds the variation that 

exists between the 8 known serotypes of human astrovirus, suggesting that this virus is 

not simply another serotype of the known astroviruses. Astroviruses are non-enveloped, 

single stranded, positive sense RNA viruses that account for up to 10% of sporadic 

diarrhea cases [63]. Infections with astroviruses most frequently cause watery diarrhea 

lasting 2-4 days, and, less commonly vomiting, headache, fever, abdominal pain, and 

anorexia in children under the age of 2, the elderly, and immunocompromised individuals 

[64]. The detection of this genetically distinct astrovirus raises the question as to whether 

or not this is an authentic human virus, and if so, whether or not it is a causal agent of 

human diarrhea.  

Another novel sequence detected appeared by phylogenetic analysis to belong to 

the family Nodaviridae. Nodaviruses are small single-stranded, positive sense, bipartite 

RNA viruses, divided into two genera, the alphanodaviruses (insect viruses) and the 

betanodaviruses (fish viruses). Currently, none of the established family members are 

known to naturally infect mammals although experimental manipulation of the viral 

genome has enabled viral replication in a wide array of organisms including mammals 

[65]. While it is tempting to speculate that this might represent the first instance of human 

infection with a nodavirus, further experimentation such as serological analysis is 

required to definitively answer this question. Another plausible explanation is that the 

virus may be present simply as a result of consumption of fish infected by the virus. A 

prior report describing the presence of plant virus RNAs in human stool has similarly 

been attributed to dietary exposure [17]. Incidentally, some fish genomic sequences were 
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detected in this particular sequence library (D09 “other” bin) supporting the possibility of 

dietary exposure. However, the potential piscine origin of this virus would not necessarily 

preclude its role as an etiologic agent of human disease.  

The micro-mass sequencing approach, like any other experimental methodology 

capable of detecting novel viruses (such as culture or degenerate PCR), cannot of course 

by itself determine whether the newly detected agent is pathogenic. However, this 

strategy can generate novel, testable hypotheses such as “Are these novel viruses 

involved in the etiology of human diarrhea?” and “What is the true host of these 

viruses?” that could not be asked in the absence of the knowledge that these viruses 

existed.  

 

Unassigned reads 

556 out of the 2013 (28%) unique high quality sequences were binned as unassigned by 

the BLAST criteria. Of these, 23 were identified as containing repetitive elements or low-

complexity sequence by RepeatMasker [66, 67] thus explaining the lack of meaningful 

BLAST alignments. The origin of the remaining 533 sequences that were unassigned is 

uncertain, but they could be derived from unannotated host genome, novel or 

unsequenced microbes, or dietary sources which have not been sequenced. However, it is 

also possible that some of these sequences could represent viruses that have no 

appreciable similarity to sequences of currently known viruses. Extracting more telling 

information from these sequences is a challenging problem that will require the 

development of new computational measures capable of detecting more distant 

evolutionary relationships than is possible with existing methods. In addition, as more 
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genome sequences from diverse organisms and other genomic/metagenomic projects 

become available, sequence similarity based methods may identify a greater fraction of 

these currently unassigned sequences. 

 

Diagnostic Applications and Implications 

Our data suggest that micro-mass sequencing might be of great diagnostic utility for a 

number of reasons. First, viruses escaping detection in conventional assays were detected 

by micro-mass sequencing. In theory, the sensitivity of this strategy is limited only by the 

depth of sequencing. As demonstrated here, even shallow sequencing performed better 

than conventional diagnostics in some instances. In addition, the unbiased nature of the 

method enabled detection of viruses not conventionally tested for. Moreover, co-

infections were detected in multiple samples. Furthermore, for multi-segmented viruses 

such as rotaviruses, reassortment of segments between species is a major mechanism of 

viral evolution that can lead to the emergence of more virulent strains [68]. Complete 

genome sequencing of all segments simultaneously would yield completely unambiguous 

identification of the viral genotype. In contrast to typical PCR or antibody based assays 

that target a single segment or protein, micro mass sequencing detected all 11 genomic 

RNA segments of rotavirus. In terms of technical practicality, samples were only 

minimally manipulated relative to traditional metagenomic sequencing [17, 21, 52, 55], 

thereby avoiding the time, labor, and use of specialized equipment required to 

concentrate the specimens, rendering this methodology potentially amenable to use in 

diagnostic laboratories. As sequencing costs diminish and efficiencies improve, mass 

sequencing could become a powerful diagnostic tool. 
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CONCLUSIONS 

We have shown that micro-mass sequencing can define the diversity of viral communities 

found in fecal samples from diarrhea patients. Both known viruses and novel viruses 

were detected by sequencing only a few hundred colonies from each sample library. 

These studies will serve as the springboard for further interrogations of the roles of these 

diverse viruses in the gastrointestinal tract. Finally, our detection of multiple novel 

viruses in this initial, limited exploration of a dozen samples suggests that broader 

sampling of patient specimens is likely to be highly fruitful in terms of identification of 

additional novel viruses. 

 

MATERIALS AND METHODS 

Clinical Archived Stool Specimens 

Melbourne cohort: Stool samples were collected from children under the age of 5 who 

were admitted to the Royal Children’s Hospital, Melbourne, Victoria, Australia with 

acute diarrhea between 1978 and 1999. 

 

Seattle cohort: Stool samples were collected between 2003-2005 at the Emergency 

Department of the Children’s Hospital and Regional Medical Center in Seattle, 

Washington, USA as part of a prospective study attempting to discern the cause of 

unexplained pediatric diarrhea. 

 

Diagnostic testing of stool specimens for known microbial diarrheagenic agents 



29 

 

Melbourne cohort: Specimens were tested by routine enzyme immunoassays (EIA) and 

culture assays for rotaviruses, adenoviruses, and common bacterial and parasitic 

pathogens as previously described [7]. RT-PCR assays were used to screen specimens for 

the presence of caliciviruses and astroviruses [7, 69] .  

 

Seattle cohort: Specimens were tested for the presence of a number of bacterial species 

(Campylobacter jejuni, Escherichia coli O157:H7 and non-O157:H7 Shiga toxin-

producing E. coli, Salmonella, Shigella, and Yersinia) following standard culture assays, 

Clostridium difficile toxin by a cytotoxicity assay, parasites by microscopy and antigen 

testing [70]. Additionally, samples were tested by EIA for rotaviruses, adenoviruses, 

noroviruses 1 & 2, and astroviruses (Meridian Biosciences, DAKO). This study was 

approved by the institutional review boards of the CHRMC and of Washington 

University. 

 

Library construction and mass sequencing 

Chips of frozen archived fecal specimens (~30-150mg) were resuspended in 6 volumes of 

PBS. A subset of the archived specimens had been previously diluted and were further 

diluted 1:1in PBS. The stool suspensions were centrifuged (9,700 x g, 10 minutes) and 

supernatants were harvested and then passed through 0.45μm filters. RNA was extracted 

from 100μL of the filtrates using RNA-Bee (Tel Test, Inc., Friendswood, Texas) 

according to manufacturer’s instructions. Approximately, 100-300 nanograms of RNA 

from each sample was randomly amplified following the Round AB protocol as 

previously described [29]. The amplified nucleic acid was cloned into pCR4 using the 
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TOPO cloning kit (Invitrogen, Carlsbad, CA), and transformed into Top10 bacteria. 

Positive colonies were subcloned into 384 well plates, DNA was purified using magnetic 

bead isolation, and followed by sequencing using standard Big Dye terminator (v3.1) 

sequencing chemistry and the universal primer M13 reverse. Reactions were ethanol 

precipitated and resuspended in 25uL of water prior to loading onto the ABI 3730xl 

sequencer.  

 

Analysis of sequence reads 

Sequence traces were subjected to quality assessment and base-calling using Phred [71, 

72]. Lucy [73] was used to trim vector and low quality sequences. Default parameters 

were used except that high quality sequences identified by Lucy were allowed to be as 

short as 75 nucleotides. To define the set of reads with unique sequence content in each 

library, sequences that passed the quality filter were clustered using BLASTClust from 

the 2.2.15 version of NCBI BLAST to eliminate redundancy. Sequences were clustered 

based on 98% identity over 98% sequence length, and the longest sequence from each 

cluster was aligned to the NCBI nr database using the tBLASTx algorithm [74]. An E-

value cutoff of 1e-5 was applied. Sequences were phylotyped as human, bacterial, phage, 

viral, or other based on the identity of the best BLAST hit. Sequences without any hits 

having an E-value of 1e-5 or better were placed in the “Unassigned” category. All 

eukaryotic viral sequences were further classified into viral families in similar fashion. 

Trimmed, high quality sequences that were not found by RepeatMasker to contain 

repetitive or low-complexity sequence have been deposited in Genbank (Accession 

numbers ET065304 through ET067293). 
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Phylogenetic analysis 

ClustalX (1.83) was used to perform multiple sequence alignments of the protein 

sequences associated with select sequence reads. Available nucleotide or protein 

sequences from known viruses were obtained from Genbank for inclusion in the 

phylogenetic trees. Selected sequences from Genbank included those with the greatest 

similarity to the sequence read in question based on the BLAST alignments as well as 

representative sequences from all major taxa within the relevant virus family. The protein 

alignments created by ClustalX were input into PAUP [59], and maximum parsimony 

analysis was performed using the default settings with 1,000 replicates.  

 

Astrovirus trees: Human astrovirus 1 (NC_001943); Human astrovirus 2 (L13745); 

Human astrovirus 3 (AAD17224); Human astrovirus 4 (DQ070852); Human astrovirus 5 

(DQ028633); Human astrovirus 6 (CAA86616); Human astrovirus 7 (AAK31913); 

Human astrovirus 8 (AF260508); Turkey astrovirus 1 (Y15936); Turkey astrovirus 2 

(NC_005790); Turkey astrovirus 3 (AY769616); Chicken astrovirus (NC_003790); 

Ovine astrovirus (NC_002469); and Mink astrovirus (NC_004579).  

 

Nodavirus tree: Striped Jack Nervous Necrosis virus (Q9QAZ8); Macrobrachium 

rosenbergii nodavirus (Q6XNL5); Black Beetle virus (YP_053043.1); Flockhouse virus 

(NP_689444.1); Epinephelus tauvina nervous necrosis virus (NC_004136.1); Nodamura 

virus (NC_002691.1); Boolarra virus (NC_004145.1); Pariacoto virus (NC_003692.1); 

and Redspotted grouper nervous necrosis virus (NC_008041.1). 

 

Picornavirus trees: Human coxsackievirus A1 (AAQ02675.1), Human coxsackievirus 

A18 (AAQ04836.1), Human coxsackievirus A19 (AAQ02681.1), Human coxsackievirus 

A21 (AAQ04838.1), Human coxsackievirus A24 (ABD97876.1), Human poliovirus 1 

(CAD23059.1), Human coxsackievirus A2 (AAR38840.1), Human coxsackievirus A4 

(AAR38842.1), Human coxsackievirus A5 (AAR38843.1), Human coxsackievirus A16 

(AAV70120.1), Human enterovirus 89 (AAW30683.1), Human enterovirus 91 

(AAW30700.1), Human enterovirus 90 (BAD95475.1), Human enterovirus 71 

(CAL36654.1), Echovirus 1 strain Farouk (AAC63944.2), Human coxsackievirus B2 

(AAD19874.1), Human enterovirus 86 (AAX47040.1), Human coxsackievirus B5 

(AAF21971.1), Human echovirus 29 (AAQ73089.1), Human enterovirus 68 

(AAR98503.1), Human enterovirus 70 (BAA18891.1), Bovine enterovirus 
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(NP_045756.1), Porcine enterovirus A (NP_653145.1), Porcine enterovirus B 

(NP_758520.1), Simian enterovirus A (NP_653149.1), Human rhinovirus A 

(ABF51203.1), Human rhinovirus B (NP_041009.1). 

 

Picobirnavirus trees: Human picobirnavirus strain 1-CHN-97 (AF246939.1), Human 

picobirnavirus strain 4-GA-91 (AF246940.1), Human picobirnavirus strain Hy005102 

(NC_007027.1), Human picobirnavirus strain 2-GA-91 (AF245701.1), Human 

picobirnavirus strain 1-GA-91 (AF246612.1), Porcine picobirnavirus 2 (EU104360.1). 

 

Anellovirus trees: TGP96 Torque teno virus (AB041962), Pt-TTV8-II Torque teno virus 

(AB041963), CBD231 TTV-like mini virus (AB026930), Mf-TTV9 Torque teno virus 

(AB041959), Mf-TTV3 Torque teno virus (AB041958), KC009/G4 Torque teno virus 

(AB038621), TA278/G1 Torque teno virus (AB008394), Pt-TTV6 Torque teno virus 

(AB041957), TUS01/G3 Torque teno virus (AB017613), PMV/G2 Torque teno virus 

(AF261761), JT33F/G5 Torque teno virus (AB064606), MD1-073 Torque teno midi 

virus (AB290918), MD2-013 Torque teno midi virus (AB290919), Tbc-TTV14 Torque 

teno virus (AB057358), Sd-TTV31 Torque teno virus (AB076001), Fc-TTV4 Torque 

teno virus (AB076003), Cf-TTV10 Torque teno virus (AB076002), So-TTV2 Torque 

teno virus (AB041960), At-TTV3 Torque teno virus (AB041961). 

 

Calicivirus trees: Camberwell (AAD33960.1), MD-2004 (ABG49508.1), 

Carlow(ABD73935.1), Snow Mountain virus (AAN08111.1), Mc37 (AAS47823.1), 

Hawaii(AAB97767.2), Norwalk(AAB50465.1), Southampton (AAA92983.1), 

Chiba(BAB18266.1), Hesse(AAC64602.1), BoJena-DEU-98 (CAA09480.1), Murine 

(AAO63098.2), SU17(BAC11827.1), Dumfries (AAM95184.2), SU25-

JPN(BAC11830.1), SU1-JPN(BAC11815.1), Desert Shield (AAA16284.1), Melksham 

(CAA57461.1), Toronto-24 (AAA18929.1), Sw918 (BAB83515.1), OH-QW101 

(AAX32876.1). 

 

Endonuclease-like sequences for D03 tree (mimvirus-like sequences): Bacteroides 

caccae (ZP_01959575.1), Acanthamoeba mimivirus (YP_142599.1), Eubacterium 

dolichum (ZP_02077753.1), Staphylococcus phage K (YP_024462.1), Lactobacillus 

phage LP65 (YP_164778.1), Lactococcus phage bIL170 (NP_047162.1), Lactococcus 

phage r1t (NP_695069.1), Burkholderia vietnamiensis G4 (YP_001119011.1), 

Streptococcus pyogenes (NP_607538.1), Tetrahymena thermophila (XP_001029162.1), 

Bacteroides vulgatus (YP_001300673.1) 
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Fig. 2.S1. Phylogenetic analysis of picobirnavirus-like sequence reads. Phylogenetic trees 
were generated by comparing the translated amino acid sequence of individual sequence 
reads to members of the unclassified taxa picobirnavirus. The trees were created using the 
maximum parsimony method with 1,000 replicates. Bootstrap values over 700 are shown.  
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Fig. 2.S2. Phylogenetic analysis of Picornaviridae-like sequence reads. Phylogenetic 
trees were generated by comparing the translated amino acid sequence of individual 
sequence reads to members of the Picornaviridae family. The trees were created using 
the maximum parsimony method with 1,000 replicates. Bootstrap values over 700 are 
shown. CVA=Coxsakievirus A, CVB=Coxsackievirus B, BEV=Bovine Enterovirus, 
EV=Enterovirus, HRVA=Human Rhinovirus A, HRVB=Human Rhinovirus B, 
PEV=Porcine Enterovirus, PV=Poliovirus, SEVA=Simian Enterovirus A. 
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Fig. 2.S3. Phylogenetic analysis of anellovirus-like sequence reads. Phylogenetic trees 
were generated by comparing the translated amino acid sequence of individual sequence 
reads to anelloviruses. The trees were created using the maximum parsimony method 
with 1,000 replicates. Bootstrap values over 700 are shown.  
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Fig. 2.S4. Phylogenetic analysis of Caliciviridae-like sequence reads. Phylogenetic trees 
were generated by comparing the translated amino acid sequence of individual sequence 
reads to the A)  NS4 (3A-like) protein or B) NS7 (RNAP) protein of caliciviruses. The trees 
were created using the maximum parsimony method with 1,000 replicates. Bootstrap 
values over 700 are shown.  
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Fig. 2.S5. Phylogenetic analysis of endonuclease-like sequence reads. Phylogenetic trees 
were generated by comparing the translated amino acid sequence of two individual sequence 
reads to endonuclease sequences derived from mimivirus, phage, and bacterial species 
representing some of the top scoring BLAST hits.  The trees were created using the maximum 
parsimony method with 1,000 replicates. Bootstrap values over 700 are shown.  
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CHAPTER 3: 

 

VIPR: A Probabilistic Algorithm for Analysis of 

Microbial Detection Microarrays 
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ABSTRACT 

All infectious disease oriented clinical diagnostic assays in use today focus on detecting 

the presence of a single, well defined target agent or a set of agents. In recent years, 

microarray-based diagnostics have been developed that greatly facilitate the highly 

parallel detection of multiple microbes that may be present in a given clinical specimen. 

While several algorithms have been described for interpretation of diagnostic 

microarrays, none of the existing approaches is capable of incorporating training data 

generated from positive control samples to improve performance. To specifically address 

this issue we have developed a novel interpretive algorithm, VIPR (Viral Identification 

using a PRobabilistic algorithm), which uses Bayesian inference to capitalize on 

empirical training data to optimize detection sensitivity. To illustrate this approach, we 

have focused on the detection of viruses that cause hemorrhagic fever (HF) using a 

custom HF-virus microarray. VIPR was used to analyze 110 empirical microarray 

hybridizations generated from 33 distinct virus species. An accuracy of 94% was 

achieved as measured by leave-one-out cross validation. VIPR outperformed previously 

described algorithms for this dataset. The VIPR algorithm has potential to be broadly 

applicable to clinical diagnostic settings, wherein positive controls are typically readily 

available for generation of training data. 

 

INTRODUCTION 

The field of viral diagnostics, which has traditionally followed a “one virus-one assay” 

paradigm, has been revolutionized by the introduction of diagnostic microarrays [28-37]. 

It is now possible to test for the presence of thousands of viruses simultaneously in a 
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single assay. A microarray-based approach is particularly effective for viral diagnosis of 

diseases that have a common phenotype, but may be caused by any of a number of 

different viruses. For example, acute respiratory disease, encephalitis and hemorrhagic 

fever are all disease syndromes known to be caused by a spectrum of viral pathogens. 

Microarrays specifically focused on the diagnosis of respiratory disease [38, 75-77] and 

encephalitis [30-32] have been described, as have much broader pan-viral microarrays 

[28, 29, 35]. A wide range of probe design strategies and microarray platforms can be 

used for diagnostic microarrays. Independent of the probe design strategy or platform, a 

key component that is absolutely essential for all diagnostic microarrays is an objective 

method for interpreting the raw hybridization patterns. While many diagnostic 

microarrays have been described, there are only three published algorithms, E-Predict 

[43], DetectiV [44] and PhyloDetect [45], with downloadable or web-accessible software 

that are available for analyzing data from diagnostic microarrays. 

The typical goal of diagnostic virology assays is to determine the presence or 

absence of one or more viruses from a finite, defined list of candidate viruses known to 

cause the disease in question. In clinical laboratories, samples of each candidate virus to 

be detected are typically readily available and can be used as positive controls. Our goal 

was to develop an interpretive algorithm for diagnostic microarrays that could take 

advantage of the existence of such positive controls to generate a training data set to 

guide subsequent analyses. 

Toward this end, we developed a probabilistic algorithm for the purpose of 

analyzing diagnostic microarrays. This class of algorithms has been applied to numerous 

problems in biology. For example, hidden Markov models (HMMs) and the more 
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youthful conditional random fields (CRFs) have allowed researchers to make important 

inferences about sequence structure and function [47, 78]. Bayesian inference in a 

probabilistic framework offers a distinct advantage of capitalizing on empirical data to 

guide future predictions as compared with methods that are based solely on 

computational prediction of genome-to-probe binding. In addition, the power of utilizing 

probabilities as opposed to discretizing a host of parameters when considering possible 

solutions means that global calculations are less likely to be influenced by poor choices 

made locally. To date, no Bayesian algorithm for diagnostic microarrays has been 

described. 

In this paper, we describe a novel probabilistic algorithm that relies on Bayesian 

inference for analysis of diagnostic microarrays. To validate this approach, we focused on 

analysis of the set of viruses known to cause hemorrhagic fever. HF symptoms include 

severe vascular damage, hemorrhage, high fever, and shock and can frequently lead to 

death [79, 80]. HF viruses belong to four virus families: Arenaviridae, Bunyaviridae, 

Flaviviridae and Filoviridae. A custom microarray was designed to detect all known HF 

viruses and many of their close relatives. Specimens representing virtually every virus 

species known to cause HF were procured and hybridized to microarrays for the purpose 

of validating our algorithm. Furthermore, we compared VIPR’s performance to that of 

the existing interpretive algorithms that are not capable of utilizing training data in this 

fashion. 
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MATERIALS AND METHODS 

Microarray design 

14,864 oligonucleotide probes were designed using a taxonomy-based approach as 

described previously [81] except that the Agilent® 8 x 15K platform was used and probes 

were 35, 45 or 60 nucleotides in length. The probes were designed to bind to viral 

genomes from the four families that contain all viruses known to cause HF: Arenaviridae, 

Bunyaviridae, Filoviridae, and Flaviviridae. Probes of different lengths were designed to 

account for different levels of conservation between viral taxa. For example, longer 

probes were included to represent regions of strong conservation, while shorter probes 

were included to distinguish closely related virus species in order to increase specificity. 

 

Hybridization of HF viruses to microarray 

A total of 51 strains of 33 distinct virus species (see Table 3.1) obtained from the World 

Reference Center for Emerging Viruses and Arboviruses were grown in either Vero cells 

or C6/36 cells. RNA was extracted using standard Trizol® protocols and was randomly 

amplified as previously described [29]. The resulting amplified material was then coupled 

to a fluorescent dye and hybridized to the HF microarray. Raw data measurements were 

collected using GenePix Pro® software. In total, 110 hybridizations were performed (102 

positive controls + 4 Vero negative controls + 4 C6/36 negative controls). All raw 

microarray data are available in NCBI GEO (accession GSM534862 through 

GSM534971). These 110 hybridizations constituted a set of positive and negative 

controls used for validation, a subset of which was used in training our algorithm. 
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Table 3.1. Viruses hybridized to the diagnostic microarray 

Virus Family 
Causes 

HF 
# of strains 
hybridized 

Amapari virus Arenaviridae No 1 

Guanarito virus Arenaviridae Yes 4 

Ippy virus Arenaviridae No 1 

Junin virus Arenaviridae Yes 1 

Lassa virus Arenaviridae Yes 2 

Lymphocytic choriomeningitis virus Arenaviridae No 1 

Machupo virus Arenaviridae Yes 1 

Mobala virus Arenaviridae No 1 

Mopeia virus Arenaviridae No 1 

Sabia virus Arenaviridae Yes 1 

Tacaribe virus Arenaviridae No 1 

California encephalitis virus Bunyaviridae No 1 

Crimean-Congo hemorrhagic fever virus Bunyaviridae Yes 4 

Hantaan virus Bunyaviridae Yes 1 

La Crosse virus Bunyaviridae No 1 

Ngari virus Bunyaviridae Yes 1 

Puumala virus Bunyaviridae Yes 1 

Rift Valley fever virus Bunyaviridae Yes 3 

Seoul virus Bunyaviridae Yes 1 

Toscana virus Bunyaviridae No 1 

Angola marburgvirus Filoviridae Yes 1 

Reston ebolavirus Filoviridae No 1 

Sudan ebolavirus Filoviridae Yes 1 

Zaire ebolavirus Filoviridae Yes 1 

Gabon ebolavirus Filoviridae Yes 1 

Dengue virus 1 Flaviviridae Yes 2 

Dengue virus 2 Flaviviridae Yes 2 

Dengue virus 3 Flaviviridae Yes 2 

Dengue virus 4 Flaviviridae Yes 2 

Kyasanur Forest disease virus Flaviviridae Yes 2 

Omsk hemorrhagic fever virus Flaviviridae Yes 4 

Rocio virus Flaviviridae No 1 

Yellow fever virus Flaviviridae Yes 2 

 

VIPR normalization and transformation (Figure 3.1A) 

For each sample in the training set, a unit-vector normalization was applied as shown, 

where xi represents the i
th

 intensity for a given hybridization. Then, each normalized 

intensity was loge transformed. As given in Equation (1), xi
NT

 is the normalized, 

transformed value for that intensity. Normalization was performed to account for 
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variation in reagent concentrations or fluorescence across the microarray. Log 

transformation of the data was desirable for the estimation of normal distributions. 

(1) 2
logNT i

i

i

x
x

x

 
 
 
 

  

Note that in the following calculations, all intensities have been normalized and 

transformed although the superscript NT does not appear. 

 

VIPR prediction of On and Off states (Figure 3.1B) 

Candidate genomes to be scored in the VIPR algorithm were limited to all complete 

genomes in the NCBI virus RefSeq database as of 6/20/2008. The entire set of 

oligonucleotide probes on the microarray was aligned using BLASTN against each of the 

RefSeq viral genomes. Theoretical free energies of hybridization were then calculated 

from the aligned sequences using code included with OligoArraySelector [82]. If the free 

energy associated with binding of a given viral genome/oligonucleotide pair was 

computed to be less than -30 kcal/mol, the probe was assigned the On state for that 

genome; otherwise, the probe was assigned the Off state. The choice of -30 kcal/mol was 

based on the observation that this threshold represents the weakest binding reported for 

long-oligo broad specificity microarrays [82]. A given viral genome was included in the 

list of potentially detectable candidate viral genomes if at least three oligonucleotide 

probes were expected to bind to that genome (i.e. were expected to be On). A total of 101 

candidate genomes met these criteria. 

 

VIPR calculation of posteriors (Figure 3.1A) 
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Posterior probabilities were calculated for each probe i according to Bayes’ rule, (2) and 

(3). Yi and xi represent a random variable and an observed intensity, respectively. 

 

(2) 

,

( | ) ( )
( | )

( | ) ( )

i i marg

i i

i i margOn Off

P Y x On P On
P On Y x

P Y x state P state


 


 

(3) ( | ) 1 ( | )i i i iP Off Y x P On Y x     

 

Likelihoods for each probe were determined using normal distributions derived from two 

sets of normalized loge transformed intensities: those corresponding to the On states for a 

given probe (4), and those corresponding to the Off states (5). 

 

(4) 
2

, ,( | ) ~ ( , )i i on i onP Y On N    

(5) 
2

, ,( | ) ~ ( , )i i off i offP Y Off N    

 

The probe-specific On and Off distributions are derived from the training set where the 

probe On/Off states are defined by the identity of the virus in each hybridization. 

 

VIPR priors 

Priors were calculated (6,7) in a probe-specific manner and were designed to incorporate 

two calculations derived from the composition of the microarray as well as the 

composition of the set of candidate viruses under evaluation: (a) the percentage of probes 

predicted to be On for the candidate virus under consideration, represented as P(On)pred; 

(b) the number of candidate viruses that share that probe’s On/Off prediction (i.e. if four 
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candidate viruses, including viruss, are predicted to be On for a given probe, then 

P(viruss|On) = ¼ for that probe). Marginalizing over the possibility of an On or an Off 

prediction calls for a second invocation of Bayes’ rule: 

 

(6) 

,

( | ) ( )
( )

( | ) ( )

s pred

marg

s predOn Off

P virus On P On
P On

P virus state P state



 

(7) ( ) 1 ( )marg margP Off P On   

 

VIPR calculation of hybridization likelihoods (Figure 3.1C) 

Because of the possibility of underflow, all likelihood calculations were made in log 

space, though they are expressed here in probability space. The likelihood (8) of the 

observed hybridization vector, x, was calculated for each of n viral genomes. The 

posteriors included in the product were chosen so as to reflect the expected state of a 

particular probe for viruss. On states for viruss are indexed from i=1 to a while Off states 

are indexed from j=1 to b as shown in formulas (9) and (10), respectively. 

 

(8) 1 2( | )sL virus L L x  

(9) 1

1

( | )
a

i i

i

L P On Y x


   

(10) 2

1

( | )
b

j j

j

L P Off Y x


   

 

Calculating significance of VIPR results 
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To determine the significance of the results obtained, we computed a p-value for each 

candidate virus by permuting the set of priors for the candidate over the set of likelihoods 

P(Off |Yi=xi ) so as to estimate a null distribution of scores (n=100 permutations) against 

which the actual score for that candidate could be compared. From the 100 null scores for 

each candidate virus, a mean and standard deviation were calculated. The resulting p-

value reflects the percentage of the null distribution that is greater than or equal to the 

actual score. When assessing the significance of a given candidate, a Bonferroni 

correction was applied so that 0.05, a generally accepted level of significance, was 

divided by the total number of candidate viruses (101) i.e. a candidate was considered 

significant if its p-value was less than 5x10
-4

. 

 

Assessing the accuracy of VIPR 

From the total 110 empirical hybridizations, 108 were chosen as suitable for training on 

the basis of percentage of well-behaved probes among those predicted to be On. Two 

hybridizations of Ippy virus to the array were excluded from training because the 

percentage of probes designed to bind to Ippy virus that evinced a sufficient separation 

(p<0.001 by student’s t-test) between the On and Off distributions was less than ten 

percent. For the initial cross-validation, the subset of 108 arrays was divided into a 

training set consisting of 107 arrays and a validation set consisting of a single array. This 

was done 108 times, leaving out a different array each time. The two arrays that did not 

meet the criterion for inclusion in the training set were tested using all 108 selected arrays 

for training. For each array, the best prediction was determined by sorting significant 

candidate viruses (p<5x10
-4

) by p-value and then by likelihood. In the case where no 
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virus was significant, the array was considered negative. Algorithm accuracy was 

computed using the formula, Accuracy = (TP + TN)/(TP + TN + FP + FN), where TP is 

the number of true positives, TN is the number of true negatives, FP is the number of 

false positives, and FN is the total number of false negatives. In the case where the fully 

sequenced genome of a viral subspecies was not available, an accurate prediction on the 

species level constituted a true positive. There was also one case where the genome of a 

subspecies (La Crosse virus) was used as a substitute for a hybridized species (California 

encephalitis virus) because the complete sequence of California encephalitis virus was 

not available. These designations of species and subspecies are according to NCBI 

taxonomy. 

 

Exploring alternative priors 

In a separate analysis, VIPR’s accuracy was assessed over a space of arbitrary priors 

rather than deliberately specifying priors using Equations (6) and (7). Thus, the 

marginalized priors P(On)marg and P(Off)marg in Equation (2) were replaced with priors 

that ranged iteratively from 0.1 to 0.9. For each iteration, one prior pair i.e. P(On), P(Off) 

where P(Off)=1- P(On) was chosen for all On probes, while a separate pair was chosen 

for all Off probes. Thus, while the prior pair between the On and the Off probes could 

differ, the prior pair between any two On probes or between any two Off probes was the 

same. Hence, the space explored represents successive iterations of independently 

varying the On prior pair and the Off prior pair with variations made at a step size of 0.1. 

As before, p-values were calculated to assess the significance of VIPR results, except that 

20 permutations were run for each candidate virus instead of 100. 
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Exclusion of replicate hybridizations 

Four independent strains of each of the following viruses, Crimean-Congo hemorrhagic 

fever, Guanarito virus and Omsk hemorrhagic fever virus were cultured in Vero cells. 

These viruses represent three of the four HF virus families. As with the other viruses in 

the positive control dataset, these viruses were hybridized in duplicate (3 viruses x 4 

strains per virus x 2 hybridizations for each strain = 24 hybridizations). These 24 

hybridizations were used to assess the effect that leaving out both replicates of a strain 

would have on cross-validation. VIPR predictions were made as described for the leave-

one-out cross validation except that replicate hybridizations were excluded from training 

for the subset of 24 arrays. The number of accurate predictions made by VIPR out of the 

total 24 hybridizations was calculated. 

 

Comparison to existing diagnosis algorithms 

Three algorithms, E-Predict, DetectiV and PhyloDetect, were available for comparison to 

VIPR. E-Predict [43] was used to calculate Uncentered Pearson correlations. A custom E-

matrix for the HF dataset was prepared as described by Urisman et al. A given viral 

genome was included in the list of potentially detectable candidate viral genomes if at 

least three oligonucleotide probes were expected to bind to that genome. Default 

normalizations (‘Sum’ for the intensity vector and ‘Quadratic’ for the E-matrix) were 

applied. 110 correlations were used to estimate each null distribution of correlations from 

the set of HF arrays. These distributions were fit using the Shapiro-Wilk normality test as 

described [43]. The same significance threshold that was applied to VIPR predictions 
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(p<5x10
-4

) was also applied to E-Predict. Background-corrected intensities were loaded 

into DetectiV [44] and normalized in two independent ways: first using the median 

option, and second, against a Vero or C6/36 array serving as a negative control. The 

filtered results (mean log ratio>1) for each array were then sorted by p-value to determine 

the top-scoring virus. The same significance threshold that was applied to VIPR 

predictions (p<5x10
-4

) was also applied to DetectiV. Hybridization intensities were 

inputted to PhyloDetect [45] as binary vectors where a probe was considered ‘present’ if 

its intensity was greater than the median background signal plus twice the background 

standard deviation. The E-matrix constructed for E-Predict was converted to binary 

values (xi ≤ -60 kcal/mol1; otherwise0). The fnr parameter was set to 0.10. Results 

were sorted first by likelihood and then by number of present probes to determine the top 

candidate. A likelihood above the threshold 0.05 constituted a positive prediction. The 

same formula to calculate accuracy for VIPR was used to calculate accuracies for E-

Predict, DetectiV and PhyloDetect. 

 

RESULTS 

RNA was purified from cell cultures that were infected with each of the viruses shown in 

Table 3.1. These viruses were selected to include almost all of the viruses known to cause 

HF; only a few very recently identified HF viruses, such as Chapare virus [83] and Lujo 

virus [84], were not included. To assess whether these viruses could be distinguished 

from close relatives that are not associated with HF, additional viruses were also selected 

from the same families for testing. For each of the 51 virus cultures, following random 

amplification and fluorescent labeling, two microarrays were hybridized generating a 
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total of 102 empirical hybridizations using virally infected samples. In addition, eight 

negative control hybridizations (four from uninfected Vero cells and four from uninfected 

C6/36 cells) were performed. 

We developed VIPR as an objective approach for analyzing diagnostic microarray 

data (VIPR is available for download from http://ibridgenetwork.org/wustl/vipr). VIPR 

incorporates both sequence data from GenBank as well as empirical array data to classify 

microarray hybridizations of samples with unknown viral infections (Figure 3.1). From 

these data, normal distributions corresponding to On and Off states for each probe were 

estimated.  

Empirical distributions and their normal approximations for two representative 

probes are shown in Figure 3.2. Figure 3.2A depicts a highly informative probe since 

there is effectively no overlap between the On and Off distributions for that probe. In 

contrast, the distributions in Figure 3.2B overlap substantially. Gradations between these  

Fig. 3.2. Examples of On and Off distributions for two probes. A) One representative probe with 
highly resolved On and Off distributions based on the training set data. B) One representative 
probe where the On and Off distributions overlap.  Empirical distributions (blue=Off, red=On) 
and estimated distributions (cyan=Off, pink=On) are shown. 
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Table 3.2. Five highest scoring candidates for a Dengue 3 hybridization 

Rank Virus Family log(L) p-value 

1 Dengue virus 3 Flaviviridae -352 0 

2 Dengue virus 4 Flaviviridae -391 0 

3 Dengue virus 2 Flaviviridae -539 0 

4 Dengue virus 1 Flaviviridae -599 0 

5 Psittacid herpesvirus 1 Bunyaviridae -433 1.0 

 

two extremes constitute probes of intermediate informative value. Posterior probabilities 

were calculated via Bayes’ rule for each probe given the observed intensity from an 

unclassified array. These posterior probabilities were multiplied to obtain likelihoods for 

each candidate virus. 

For identification of HF viruses, the algorithm was trained using a subset of the 

total 110 hybridizations. To select a suitable subset for training purposes, we identified 

108 hybridizations for which at least 10% of the probes predicted to be On had intensities 

that differed significantly (p<0.001) from that probe’s Off distribution. To assess VIPR’s 

performance on the 108 selected arrays, we performed leave-one-out cross validation so 

that the selected arrays were divided into a training set (n=107) and a validation set 

(n=1). The remaining two arrays (not included in the training set) were tested using the 

entire set of selected arrays (n=108) for training. 

An example of VIPR’s output for a representative Dengue virus 3 hybridization is 

shown in Table 3.2. Likelihood scores for all candidate viruses for each microarray are 

available in the supporting material. We measured the accuracy with which we could 

make predictions for the virally infected and negative control arrays. VIPR made accurate 

predictions for 104 out the total 110 arrays. There were five false negatives and one false-

positive, corresponding to an accuracy of 94%. The misclassified arrays are shown in 

Table 3.3. 
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Table 3.3. The six arrays that were misclassified by VIPR 

False positives   

Chip# Hybridized virus Top scoring virus (p<5e-4) 

207 Dengue virus 3 Dengue virus 4 

False negatives 

Chip# Hybridized virus Top scoring virus (p<5e-4) 

462 Kyasanur Forest disease virus none 

463 Kyasanur Forest disease virus none 

464 Kyasanur Forest disease virus none 

221 Ippy virus none 

245 Ippy virus none 

 

For all Bayesian methods, one question that must be addressed is how to choose 

appropriate priors. From many possible choices, we selected priors in this study based 

upon the composition of the probes in the microarray as well as the makeup of the 

candidate genomes under evaluation. In order to define the dependency of our 

algorithm’s accuracy on the choice of priors, VIPR’s accuracy was assessed over a range 

of possible prior pairs, independently varying the pair used for probes expected to be On 

versus the pair used for those expected to be Off. Hence, the space explored represents 

different combinations of prior pairs whose values lie between 0.1 and 0.9 with variations 

made at step size of 0.1, and with the sum of P(On) and P(Off) defined as 1.0 for each 

prior pair. 20 permutations were run for each candidate virus to compute p-values. 

Results are shown in Figure 3.3. Accuracy varied depending of the choice of priors, but 

remained fairly stable (between 85% and 97%) over a wide range of prior pairs, 

suggesting that the method is relatively insensitive to the choice of priors. 

For the 24 hybridizations representing four strains from each of three species 

(Crimean-Congo hemorrhagic fever, Guanarito virus, Omsk hemorrhagic fever virus), a 

second cross-validation was performed in which both replicates corresponding to a 

particular strain were excluded from training when making VIPR predictions for those 
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arrays. Leaving out both replicates for these particular strains was possible because there 

remained three other positive control strains of the same species in the training set. This 

could not be done in the case where only one strain of a species was present among the 

positive controls because it would render the training set devoid of any representatives of 

that species. VIPR analysis of the subset of arrays that represent viruses where multiple 

strains are present in the training set demonstrated robust prediction (24/24 arrays 

accurately predicted). 

We compared the performance of VIPR to that of existing algorithms for 

analyzing diagnostic microarrays. E-Predict [43], the first algorithm expressly designed 

Fig. 3.3. Cross-validation results for different combinations of prior pairs. 
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for interpretation of viral microarrays, uses a theoretical energy matrix to compute 

correlations between experimental hybridizations and genome-derived energy vectors 

[43]. As shown in Table 3.4, VIPR (94% accuracy) outperformed E-Predict (61% 

accuracy) for the same set of positive and negative control arrays. One possible 

explanation for E-Predict’s low performance for this set of arrays is the lack of sufficient 

data to estimate accurate null distributions of scores by the Shapiro-Wilk criterion to be 

used to calculate p-values. For this dataset only 110 arrays were available for the 

estimation of null distributions for E-Predict, whereas over one thousand arrays were 

used by Urisman et al. [43] to calculate these distributions. This is supported by the fact 

that the virus with the highest raw score as determined by E-Predict is the true virus for 

84 of the 102 positive control arrays. 

DetectiV [44] is an R-based method for significance testing for microbial 

detection microarrays. Significance testing involves data normalization against one of the 

following: an array’s median value for all probes, the mean value of a set of designated 

control probes, or a control array. No designated control probes, in the sense described by 

the DetectiV algorithm, were included in our design; therefore, the median and control 

array normalization options were used to analyze our data. After performing significance 

testing, the results were filtered to exclude groups whose mean log ratio was less than or 

equal to one. Sorting the filtered results by p-value then revealed a best prediction for 

each array. An accuracy of 69% was achieved using the median normalization method. 

Higher accuracies were achieved using the negative arrays with the control array 

normalization option. These accuracies ranged from 76% to 83% depending on which of 

the eight uninfected samples in our dataset was used as the control array. 
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Table 3.4. Accuracy of VIPR compared 
to other methods for this dataset 

Algorithm Accuracy (%) 

VIPR 94 

DetectiV 76-83 

E-Predict 61 

PhyloDetect 49 

 

PhyloDetect has previously been applied to viral diagnostic microarrays by 

increasing its ‘false negative rate’ parameter [45]. PhyloDetect, unlike VIPR, E-Predict 

and DetectiV, requires its hybridization inputs to be binary. To achieve this, we created a 

binary vector for each array where a probe was given a value of ‘1’ if its intensity was 

greater than the median background signal plus twice the background standard deviation, 

and ‘0’ otherwise. The theoretical microbial candidate profiles required for PhyloDetect 

are also binary. While the authors of PhyloDetect applied a stringent predicted binding 

energy threshold (-80 kcal/mol or less) to make binary present/absent predictions, our 

probe set, which included probes ranging in length from 35 to 60 nucleotides, could not 

tolerate such a stringent cutoff without resulting in some candidates having zero probes 

predicted as ‘present.’ Thus, we predicted a present probe when the corresponding 

binding energy was calculated to be -60 kcal/mol or less. After analysis of our data, we 

computed an accuracy of 49% for PhyloDetect. 

 

DISCUSSION 

The inherently parallel nature of DNA microarrays lends itself well to diagnostic 

applications seeking to simultaneously test for many microbial agents. While many 

diagnostic microarrays have been described [28-37] there is a relative lack of methods to 

objectively interpret these microarrays. 
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One key feature of a true diagnostic microarray is that the targets to be detected 

are typically well defined. Thus, specimens infected with these targets should be 

available for use as positive controls. In this study, we developed a novel interpretive 

algorithm for analysis of diagnostic microarrays that takes advantage of the existence of 

positive controls that can serve as a training set. VIPR performed with high accuracy 

(94%) as measured by leave-one-out cross validation. Since VIPR outperformed E-

Predict, DetectiV and PhyloDetect for this dataset, this underscores the utility of using a 

set of known viruses together with a probabilistic algorithm to diagnose viral disease. 

Though we have not applied our algorithm to other diseases, we anticipate that this 

strategy would similarly be preferable to a non-Bayesian approach for diagnosis of other 

diseases of multiple etiologies whose microbial spectrum is well defined and for which 

positive and negative control specimens are available.  

Only one false positive resulted from the cross-validation, which was a Dengue 

virus 3 sample being classified as Dengue virus 4. Dengue virus 3 was the second best 

prediction for this array, with both Dengue virus 4 and Dengue virus 3 achieving a p-

value of 0.0. The other five microarrays that were misclassified by VIPR, all of which 

were called as virus negative, were derived from three virus cultures. None of these 

samples was accurately classified by E-Predict, DetectiV, or PhyloDetect. Given that 

these samples evaded accurate classification by all three algorithms, one possibility for 

the lack or detection of virus in these samples is the samples used as positive controls 

may have been present in abundance below the sensitivity limit of the microarrays. 

Another plausible explanation is that all or most of the probes designed to detect these 

viruses do not behave as predicted. In this case, redesigning the probes for these viruses 
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would be the best way to improve the accuracy of the platform. Comparing the On and 

Off distributions for probes designed to bind to these viruses reveals that among those 

viruses that were hybridized to the array, Ippy virus and Kyasanur Forest disease virus 

exhibited the highest percentage of On probes that displayed no significant difference 

(p<0.001) in intensity between the On and Off distributions (94% and 85% respectively). 

However, since VIPR’s accuracy is inherently limited by the performance of the probe 

set, and the response of the probe set is determined by the identity and abundance of the 

target microbes, we are unable to distinguish between the possibilities of low-titer virus 

and misbehaving probes. 

Other potential caveats related to our method include a limited ability to estimate 

the true intensity distribution of On states for a probe because of the small number of 

intensities in the training set that correspond to an On state. Hence, one way to improve 

the accuracy of estimation of these distributions would be to increase the number of 

positive control arrays in the training set. Depending on the degree of sequence 

divergence among the known strains of a given virus, it may also be important to 

represent the known diversity of related strains in the training set. However, we 

emphasize that even with the limited number of microarray hybridizations performed in 

this study, 94% accuracy was achieved.  

The choice of prior probabilities could also be problematic in some 

circumstances. We found that prior estimation based on predicted binding of probes to 

viral genomes resulted in robust virus prediction. Moreover, accuracy remained fairly 

stable (between 85% and 97%) over a wide range of prior combinations. Another 

potential caveat with the VIPR algorithm is that the distribution of the loge of the 
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intensities was assumed to be normally distributed. Gross violations of this assumption 

could have pejorative effects on prediction. 

One limitation of a leave-one-out cross-validation in our case is that there is a 

possibility of overfitting due to the presence of replicate hybridizations in the training set. 

However, an analysis of a subset of arrays that represented several different strains of 

viruses (Crimean-Congo hemorrhagic fever virus, Guanarito virus and Omsk 

hemorrhagic fever virus) demonstrated that removing both replicate hybridizations for a 

given strain from the training set while retaining those from the other strains resulted in 

accurate prediction in every case. This subset of viruses represented three of the four 

families of HF viruses. While this analysis does not completely rule out the possibility of 

overfitting, it clearly demonstrates that VIPR can make accurate predictions even when 

replicate arrays are removed from training, as long as hybridizations representing strains 

from the same species are present. Additionally, VIPR outperformed the other three 

algorithms for this subset. E-Predict, DetectiV and PhyloDetect accurately classified 14, 

16, and 8 of the 24 arrays, respectively. 

While the results of our study represent a proof of principle using carefully 

controlled positive and negative controls for validation, it is anticipated that a 

probabilistic algorithm will be useful in clinical laboratory settings to analyze 

microarrays like the one described. Testing VIPR using clinical datasets will be the focus 

of future studies. In the case of diseases for which samples representing in vivo human 

infections are available, such would be the desired dataset for training. In the case of HF, 

however, clinical specimens from human infections are not generally available; therefore, 

it will be necessary to investigate the use of different kinds of specimens as training data 
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for the probabilistic algorithm. These datasets could include specimens from infected 

animals or viruses harvested from culture and spiked into human sera. 

As currently implemented, VIPR only looks for single virus effects. Possible 

improvements to the software might include the addition of functionality to detect the 

presence of co-infections and reassortant viruses. This could be accomplished by 

including among the list of candidates for which likelihoods are computed theoretical 

combinations of sets of On posteriors from different viruses. Equations (11) through (14) 

extend the single-virus likelihood calculation implemented by VIPR to the case where 

two viruses, s and t are present. 
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CONCLUSIONS 

We developed a probabilistic algorithm that relies on a training set of empirical 

hybridizations that accounts for probe-specific behaviors. Application of this algorithm to 

a dataset of cultured viruses that cause HF resulted in high accuracy virus identification. 

Though we report the application of VIPR only in the context of diagnosis of HF, our 

method of detection is theoretically applicable to any microbial detection problem in 
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which a set of positive and negative control hybridizations is available. Our 

implementation of a probabilistic algorithm demonstrates the power of a Bayesian 

approach for discerning important hybridization signals from a complex mixture of 

nucleic acids. This, in turn, should prove to be of great value as microarray-based 

diagnostics play more prominent roles in clinical and public health laboratories. 
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CHAPTER 4: 

 

VIPR HMM: A Hidden Markov Model for Detecting 

Recombination with Microbial Detection Microarrays 
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ABSTRACT 

Current methods in diagnostic microbiology typically focus on the detection of a single 

genomic locus or protein in a candidate agent. The presence of the entire microbe is then 

inferred from this isolated result. Problematically, the presence of recombination in 

microbial genomes would go undetected unless other genomic loci or protein components 

were specifically assayed. Microarrays lend themselves well to the detection of multiple 

loci from a given microbe; furthermore, the inherent nature of microarrays facilitates 

highly parallel interrogation of multiple microbes. However, none of the existing 

methods for analyzing diagnostic microarray data has the capacity to specifically identify 

recombinant microbes. In previous work, we developed a novel algorithm, VIPR, for 

analyzing diagnostic microarray data using a training set of empirical hybridizations of 

infected and uninfected samples. We have expanded upon our previous implementation 

of VIPR by incorporating a hidden Markov model (HMM) to detect recombinant 

genomes. We trained our HMM on a set of nonrecombinant parental viruses and applied 

our method to 11 recombinant alphaviruses and 4 recombinant flaviviruses hybridized to 

a diagnostic microarray in order to evaluate performance of the HMM. VIPR HMM 

correctly identified 95% of the 62 inter-species recombination breakpoints in the 

validation set and only two false positive breakpoints were predicted. This study 

represents the first description and validation of an algorithm capable of detecting 

recombinant viruses based on diagnostic microarray hybridization patterns. VIPR HMM 

could enhance our ability to rapidly identify novel recombinant viruses arising naturally 

or engineered as biological weapons. 
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INTRODUCTION 

Recombination constitutes an important source of genetic variation among viruses. As an 

evolutionary mechanism, recombination leads to new viral genotypes with potentially 

novel biological properties and/or clinical manifestations. Vaccine-derived poliovirus is 

one example of a virus for which recombination may play an important role in the 

progression of disease. Recombination between vaccine-derived poliovirus and coxsackie 

virus has been shown to increase neurovirulence of recombinant progeny and may be 

responsible for the emergence of pathogenic vaccine-derived poliovirus [85]. In addition, 

H1N1 influenza and Ngari viruses provide examples in which novel genotypes consisting 

of genomic segments derived from multiple different parental viruses have led to disease 

outbreaks. H1N1, the influenza virus responsible for the 2009 outbreak of pandemic flu, 

is thought to have arisen from the successive reassortment of four different strains of 

influenza A [86]. Ngari virus, a hemorrhagic fever-causing bunyavirus, is thought to have 

resulted from the natural reassortment of two viruses, Bunyamwera and Batai viruses, 

neither of which is known to cause hemorrhagic fever [87, 88]. Given that recombination 

and reassortment can play important roles in producing novel variations that are 

implicated in pathological outcomes, the ability for clinicians to identify novel 

recombinant and reassortant viruses in diagnostic laboratories is highly desirable. 

In addition to occurring naturally through evolution, recombinant and reassortant 

viruses can also be deliberately created in the laboratory. In vitro recombination has 

proven to be a useful tool for engineering novel viruses with properties desirable for the 

development of vaccines [89, 90]. However, this also means that recombination and 

reassortment have the potential to be used maliciously to develop novel agents of 
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bioterrorism. Such agents could be engineered as highly pathogenic new viral genotypes 

consisting of the components of previously described viruses including non-pathogenic 

viruses. Anticipating the possible use of recombinant/reassortant-based bioweapons 

should guide our efforts in preparing to respond to such attacks. In such cases, the ability 

to detect novel agents quickly and accurately would be critical. Thus, it is imperative that 

any assay used to detect agents of bioterrorism include novel recombinants and 

reassortants as possible outcomes. 

Microarrays are well suited to detecting recombination and reassortment and have 

an important advantage over traditional diagnostic methods because they allow for the 

interrogation of multiple loci from multiple viruses in parallel. Traditional methods for 

microbial detection, such as PCR and antibody based methods, are generally limited to 

detecting only one genome segment or one protein per assay. The inference is then made 

that the entire genome is present given that a small part of the genome (or proteome) was 

detected. Unless other loci are specifically assayed, this diagnostic paradigm does not 

account for the possibility that a recombinant or reassortant virus is present. There have 

been many reports of the efficacy of microarrays as a tool for viral diagnosis and 

discovery [28-37, 91]. While many different probe design strategies and platforms have 

been proposed for diagnostic microarrays, all approaches require an objective method for 

interpreting the raw hybridization patterns.  

The method must be able to make diagnostic calls in the presence of technical 

noise, biological noise (i.e. cross-hybridization to host) and probe saturation. Published 

examples of such methods with downloadable or web-accessible software include E-

Predict [43], DetectiV [44], PhyloDetect [45], CLiMax [91] and VIPR [92]. While these 
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methods have been shown to perform with high accuracy, none of them was designed to 

be able to identify novel recombinant or reassortant viruses from a hybridization pattern. 

One feature of VIPR, which stands for Viral Identification with a PRobabilistic 

algorithm, is that it relies on an empirical training set of positive and negative control 

hybridizations to leverage diagnostic predictions. In this paper, we describe the expansion 

of VIPR to accommodate the possibility of recombination between candidate viruses 

Fig. 4.1. Overall strategy for using an HMM to identify recombinant and nonrecombinant viruses 
hybridized to a microarray. Probe intensities indicative of binding can implicate the presence of 
a single virus (left) or the presence of different viruses for different loci (right). This pattern of 
intensities can be used to identify an optimal path through an HMM whose states represent 
binding or non-binding events between probes (columns) and virus genomes (rows). 
Nonrecombinant paths, such as the one on the left, involve transitions only between states in 
the same row, while paths that move from one row to another are indicative of recombination 
(as exemplified in the path on the right). 
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included in the training set. We accomplished this by incorporating a hidden Markov 

model (HMM) into our method in order to define recombinant paths when calculating 

probabilities for candidate viruses (Figure 4.1). Figure 4.2 shows the details of 

constructing the HMM. The Viterbi algorithm was used to determine the optimal path 

from which recombination breakpoints could be inferred. As with VIPR, our HMM 

allows us to take advantage of training data consisting of hybridizations of known viruses 

to a microarray to make predictions for unknown infections. The incorporation of an 

HMM into VIPR now provides a probabilistic framework for assessing the presence of 

recombination between candidate parental viruses. To validate our approach, we applied 

Fig. 4.2. Structure of the HMM used to detect recombinant and nonrecombinant viruses. First, 
candidate virus genomes are aligned. Probes are then mapped to their respective positions in 
the multiple alignment based on predicted free energy of binding in order to achieve a universal 
ordering of probes. A state is created for each probe:genome combination (representing either a 
predicted binding or non-binding event). The HMM is subsequently parameterized with emission 
distributions and transition probabilities based on probe intensity distributions from the training 
data and a user-defined probability of recombination parameter P(Recomb), respectively. 
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our HMM to a set of 15 recombinant viruses consisting of members of the Alphavirus 

and Flavivirus genera, each of which was hybridized in duplicate to a custom microarray. 

A set of microarrays to which nonrecombinant alphaviruses and flaviviruses were 

hybridized constituted the training data for the HMM. While our test focused on the 

validation of a set of recombinant alphaviruses and flaviviruses, the strategy should be 

generalizable to detecting recombination among members of a given viral family. 

 

RESULTS 

RNA was purified from cell cultures that were infected with each of the viruses shown in 

Table 4.1 and Table 4.2. Purified RNA was subsequently randomly amplified and 

hybridized to a custom diagnostic microarray. 65 hybridizations (60 representing 

nonrecombinant alphavirus and flavivirus parental viruses + 5 representing uninfected 

Vero cells) were performed in order to obtain a training set for the HMM. For validation 

of our algorithm, 49 hybridizations (30 representing alphavirus and flavivirus 

recombinants + 15 representing alphavirus and flavivirus nonrecombinants + 4 

representing uninfected Vero cells) were performed. 

In order to build the HMM, we first needed to establish a framework to define 

possible recombinant and nonrecombinant paths based on positional information inherent 

to each probe. The microarray probes were ordered by their position from 5’ to 3’ in the 

global alignment of candidate virus genomes (Figure 4.2). This was accomplished by 

mapping the set of oligonucleotide probes via local alignment (megablast) to each 

candidate virus genome, identifying probes for which the theoretical free energy 

associated with its probe:genome local alignment was ≤ -30 kcal/mol (indicative of  
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Table 4.1. Alphavirus and flavivirus parental viruses grown in culture and 
hybridized to the diagnostic microarray. 

Genus Species Strain Genbank 

VIPR HMM 
strain 

designation 

Alphavirus CHIKV LR 116047549  

Alphavirus EEEV BeAr436087 119633049 1 

Alphavirus EEEV FL93-939 119633046 2 

Alphavirus SINV AR339 9790313  

Alphavirus VEEV 68U201 1144527 1 

Alphavirus VEEV TC-83 323714 2 

Alphavirus VEEV TRD 323714 2† 

Alphavirus VEEV ZPC738 4689187 3 

Alphavirus WEEV CO92-1356 254595918*  

Alphavirus WEEV McMillan 254595918  

Flavivirus DENV-4 1228 12659201*  

Flavivirus JEV SA14-14-2 12964700  

Flavivirus SLEV CorAn9124 344221822*  

Flavivirus WNV NY99 158516887  

Flavivirus YFV 17D 9627244  

 
*Genbank ID represents a closely related strain since the sequence of the 
exact strain was not available 
 
†Since VEEV TRD and VEEV TC-83 genomes differ by only 11 nucleotides, 
they were considered to be the same strain (VEEV strain 2) 
 

 

binding using previously explained criteria [92]), and converting the midpoint of the 

probe:genome local alignment for each of those probes to its corresponding position in 

the global alignment [93] of candidate virus genomes. Probes that mapped to multiple 

genomes at similar positions but were offset relative to each other by 30 nucleotides or 

fewer were consolidated to a single position in the global alignment. Probes were then 

sorted by their positions in the global alignment of candidate virus genomes. 

Once the probes were ordered, they were assigned On and Off states for each 

genome. These assignments were based on the same theoretical free energy of binding 

calculated in the mapping step. On and Off states emit normalized and loge transformed 

intensities according to normal distributions estimated from training data as previously  
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Table 4.2. Recombinant alphaviruses and flaviviruses hybridized to the diagnostic 
microarray for validation of the HMM. 

Virus Type of recombinant Parents 
Coordinates in parental 

genomes 

R01 Double EEEV BeAr436087 
CHIKV LR 

1-7499;11291-11638 
7504-11313 

R02 Double SINV AR339 
VEEV TC-83 

1-7601;11394-11703 
7536-11382 

R03 Double SINV AR339 
CHIKV LR 

1-7601;11383-11703 
7502-11313 

R04 Double SINV AR339 
WEEV CO92-1356 

1-7602;11385-11703 
7466-11210† 

R05 Double SINV AR339 
EEEV BeAr436087 

1-7601;11312-11703 
7498-11291 

R06 Double SINV AR339 
VEEV TRD 

1-7601;11394-11703 
7536-11382† 

R07 Double VEEV TC-83 
CHIKV LR 

1-7533;11328-11446 
7500-11313 

R08 Double YFV 17D 
DENV-4 1228 

1-481;2453-10862 
441-2423† 

R09 Double YFV 17D 
JEV SA14-14-2 

1-481;2453-10862 
477-2477 

R10 Double YFV 17D 
SLEV CorAn9124 

1-481;2453-10862 
456-2465† 

R11 Double YFV 17D 
WNV NY99 

1-481;2453-10862 
466-2469 

R12 Double* SINV AR339 
VEEV TC-83 
VEEV 68U201 

1-7601;11394-11703 
7536-8286 
8298-11398 

R13 Double* SINV AR339 
EEEV BeAr436087 
EEEV FL93-939 

1-7601;11312-11703 
7498-7640(7641-7675)‡ 
(7673-7707)7708-11323 

R14 Double* SINV AR339 
VEEV TC-83 
VEEV ZPC738 

1-7601;11394-11703 
7536-8353(8354-8406) 
(8331-8383)8384-11359 

R15 Triple* SINV AR339 
EEEV BeAr436087 
EEEV FL93-939 
WEEV McMillan 

1-7601;11385-11703 
7498-7640(7641-7675) 
(7673-7707)7708-7902 
7802-11210 

 
Coordinates corresponding to the parental genomes listed in Table 4.1 are given. For 
the recombinant alphaviruses, a short cloning sequence (between three and ten 
nucleotides) is present at the 3’-most recombination breakpoint. 
 
*additional intra-species breakpoints present 
 
†coordinates derived from closely related strain listed in Table 4.1 
 
‡parentheses represent regions of overlap between two parents sharing identical 
sequence 
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described [92]. Thus, all emission probabilities e(state, intensity) were derived from 

distributions estimated in a manner identical to the estimation of probe-specific On and 

Off distributions in VIPR except in the case where there were fewer than 8 intensities 

available in the training set for a given probe. In that case, the mean of the distribution 

was calculated from the available intensities, but the standard deviation was derived from 

the average standard deviation over all probes with a similar On or Off prediction. In 

addition to the candidate virus genomes, a null genome was included which represented a 

none-of-the-above genome prediction and was assigned an Off state for each probe. 

Finally, the states in the HMM were connected via transitions t(state, state) as 

depicted in Figure 4.2. As with HMMs that have been developed to detect recombination 

in sequence, probabilities representing recombination transitions could not be estimated 

directly from the training data as could the other HMM parameters [94]. Thus, a user-

specified probability of recombination parameter P(Recomb) was introduced to compute 

transition probabilities. Transitions connecting states within the same genome i.e. 

t(stateVirus_A, stateVirus_A) represented non-recombination events and had the associated 

probability 1-P(Recomb). Transitions between genomes i.e. t(stateVirus_A, stateVirus_B) 

represented recombination events and had the associated probability P(Recomb)/(n-1) 

where n is the number of candidate virus genomes (including the ‘null’ genome). In some 

cases, multiple probes mapped to the same position in the global alignment of candidate 

virus genomes. Transitions between states whose probes mapped to the same position 

were only allowed if those states correspond to the same genome and were assigned a 

probability of 1.0, such that recombination events were not permitted between such 

states. Because the next state in the model is dependent only on the current state, and 
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because states in the model emit from continuous intensity distributions, the model is a 

first-order continuous HMM. 

Two models were built and were used to analyze the alphaviruses and the 

flaviviruses, respectively. In order to experimentally define a suitable P(Recomb) for 

computing transition probabilities, we evaluated the performance of VIPR HMM on a 

subset of the parental viruses, varying P(Recomb) over a range of values. We selected the 

maximum value of P(Recomb) that resulted in zero false positive recombination 

breakpoints when Viterbi was applied to the parental alphaviruses. This value, 

P(Recomb) = 10
-25

, was subsequently used when applying VIPR HMM to the parental 

flaviviruses as well as to the alphavirus and flavivirus recombinants. The Viterbi results 

were compared to expected results based on the known sequences of the recombinant 

constructs. When applied to the 5 flavivirus nonrecombinants, VIPR HMM classified 

each as the correct species. Additionally, the four uninfected Vero samples were 

accurately classified as null. VIPR HMM detected no recombination breakpoints for 

these samples except for one false positive breakpoint at the 3’ end of the dengue virus 4 

genome, which bypassed the final 254 nucleotides of the genome in favor of null states. 

VIPR HMM results for the nonrecombinant alphaviruses and flaviviruses are shown in 

Figure 4.S1. 

A total of 30 hybridizations of recombinant viruses was analyzed by VIPR HMM. 

Figures 4.S2-4.S5 shows results for all recombinant alphaviruses and flaviviruses 

analyzed by VIPR HMM. Of the 30 hybridizations, 28 represented double recombinants 

between two parent viruses of distinct species and two represented triple recombinants 

composed of three distinct parental species. Thus, the total number of expected inter-
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species recombination breakpoints was (28 x 2) + (2 x 3) = 62. VIPR HMM correctly 

identified breakpoints and the identity of the parental species for 59 of the 62 total 

breakpoints. VIPR HMM results for a subset of the recombinant viruses that were 

identified unambiguously are shown in Figure 4.3A. In the remaining three instances, 

VIPR HMM yielded false negatives. Of all the recombinant and nonrecombinant samples 

analyzed by VIPR HMM, only two false positive breakpoints were predicted (one in a 

nonrecombinant virus and one in a double recombinant virus). 

In some cases, the recombinant viruses we used included intra-species 

recombination breakpoints. Of the 8 intra-species breakpoints, 2 were identified by VIPR 

Fig. 4.3. VIPR HMM results for a subset of recombinants tested. A) VIPR HMM results for three 
recombinants that gave expected results. For each recombinant, the expected output based on 
sequence is shown, followed by the VIPR HMM output for the two hybridizations performed. B) 
VIPR HMM results for three recombinants that gave unexpected results. R06 is a double 
recombinant for which an additional false positive recombination breakpoint was identified at the 
3’ end in one hybridization, and for which a 3’ inter-species recombination breakpoint was not 
identified in the other hybridization. R14 is a double recombinant for which a 3’ inter-species 
recombination breakpoint was identified in one of the hybridizations, but not the other. 
Additionally, an intra-species recombination breakpoint was not identified in either hybridization. 
R15 is a triple recombinant for which all three inter-species recombination breakpoints were 
identified in both hybridizations, but for which an intra-species recombination breakpoint was not 
identified in either. 
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HMM. For those 2 breakpoints, the correct viruses 5’ and 3’ of the breakpoint were 

identified (both species and strain). VIPR HMM results for a subset of the recombinant 

viruses that gave unexpected results are shown in Figure 4.3B. 

VIPR HMM was used to estimate the nucleotide positions of each breakpoint in 

each parental genome. The nucleotide positions associated with recombination 

breakpoints were estimated based on the position in the alignment of the probes 

associated with the recombinant transition in the Viterbi path. For each such probe, its 

position in the alignment was correlated with a position in the Viterbi-specified parental 

virus genome to estimate the nucleotide position of the recombination breakpoint in that 

genome. The differences between the nucleotide positions estimated by VIPR and the 

actual sequence positions ranged from 0 to 90 nucleotides. 

 

DISCUSSION 

The ability of DNA microarrays to simultaneously assess the presence of multiple loci in 

microbial genomes is highly advantageous for detecting recombination between virus 

species in a diagnostic setting. Despite this, none of the existing methods for analyzing 

diagnostic microarrays is designed to accommodate the detection of recombinant viruses. 

In previous work, we developed VIPR, a method for objectively interpreting diagnostic 

microarrays. One of the advantages of VIPR relative to other methods is that it relies on a 

training set of empirical hybridizations of virally infected and uninfected samples to 

leverage diagnostic predictions. We anticipated that relying on a training set of 

hybridizations from known viral infections would also help us predict recombination 

between virus species. In this study, we developed a hidden Markov Model (HMM) 
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parameterized with VIPR probability distributions to detect recombination in unknown 

infections. 

VIPR HMM performed with high accuracy when identifying recombination 

breakpoints between viral species (59/62 such breakpoints were identified and the correct 

virus species 5’ and 3’ to the breakpoint were identified in each case). Of the 8 intra-

species breakpoints in our data set, two were identified by VIPR HMM. Given that a 

much higher percentage of inter-species breakpoints were detected than were intra-

species breakpoints (95% versus 25%), these results demonstrate that VIPR HMM is 

more effective at detecting recombination between species than between strains 

belonging to the same species. The ability of VIPR HMM to distinguish between strains 

of the same species involved in recombination is likely influenced by the degree of 

sequence divergence between the two strains. VIPR HMM correctly identified the intra-

species breakpoint in both hybridizations of R12 (Figure 4.3). The two strains comprising 

the intra-species breakpoint for R12 are 23% divergent on the nucleotide level. However, 

VIPR HMM was not able to identify the intra-species breakpoint in either hybridization 

of R14 (Figure 4.3), whose recombinant regions 5’ and 3’ to the intra-species breakpoint 

were similar in size to those of R12, but whose strains comprising the intra-species 

breakpoint are only 4% divergent on the nucleotide level. The ability of VIPR HMM to 

distinguish between strains of the same species may also be influenced by the size of the 

recombinant segment. The four other intra-species breakpoints that VIPR HMM failed to 

detect had greater dissimilarity between flanking strains (25%) but were proximal to 

other breakpoints (within 200 nt). Given the cost in probability associated with following 
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a recombinant transition in the HMM, our results suggest that Viterbi may opt to bypass 

small recombinant regions. 

Since microarray probes are mapped to their position in an alignment of candidate 

genomes, VIPR HMM can use the probes located at the boundary of a predicted 

recombination event to estimate nucleotide positions of recombination breakpoints. 

Although it was not expected that using a microarray tiling scheme wherein probes were 

non-overlapping and spaced 63 nucleotides apart would give the precise nucleotide 

positions of recombination breakpoints, we compared the estimates given by VIPR HMM 

to the nucleotide positions known from sequence. For the 61 correctly identified 

breakpoints (59 inter-species, 2 intra-species), the differences between microarray 

estimates and actual positions ranged from 0 to 90 nucleotides. Therefore, the maximum 

distance observed falls within the span of about a two probe tiling (i.e. 90 < 60mer + 3 nt 

spacing + 60mer). We expect that using higher density tiling strategies would result in 

higher resolution mapping of the breakpoints. 

Only two false positive recombination breakpoints were predicted by VIPR 

HMM, both near the 3’ ends of their respective genomes. One bypassed the final 254 

nucleotides of dengue virus 4 in favor of null states. The other bypassed the final 191 

nucleotides of Sindbis virus in favor of VEEV states. From analysis of the training data, 

it was observed that the mean of the On distributions approach the mean of the Off 

distributions for probes near the 3’ end of each genome, due to lower intensities for On 

probes in the training set for that region. This trend was observed in the training data 

universally for all genomes. The tendency for On probes to give lower intensities when 

approaching the 3’ end may be attributable to the fact that random PCR amplification, 



79 

 

which was used in the preparation of each sample for hybridization, is less efficient at the 

ends of a linear genome. This could also explain why VIPR failed to detect three inter-

species recombination breakpoints, all of which are localized near the 3’ end of a 

genome. A similar pattern of lower intensities was also observed for On probes 

approaching the 5’ end, although there appeared to be more probes in those regions that 

behaved as expected based on ΔG compared to the 3’ end. Despite the observed decrease 

in hybridization intensity proximal to the 3’ and 5’ termini, VIPR HMM was still able to 

make accurate predictions in those regions in most cases. 

Although we did not specifically validate VIPR HMM for reassortant viruses, we 

anticipate that viral reassortants would be readily detected. Reassortment can occur 

during co-infection when virus progeny inherit genome segments from two or more 

parental viruses with multi-segmented genomes. The resulting chimeric genotypes 

associated with reassortment are similar to those generated though recombination except 

that the exchange of genetic material occurs at discrete, predictable points in the genome 

i.e. at the boundary between genome segments. 

VIPR HMM relies on a multiple alignment of candidate viral genomes to order 

microarray probes. One limitation of this approach is that only recombination between 

members of the same family will be considered as candidates since it is not generally 

feasible to globally align members of different families. In addition, because paths 

through the HMM follow a specific 5’ to 3’ ordering, only recombination at homologous 

sites is detectible by VIPR HMM as currently implemented. In future versions of VIPR, 

recombinants composed of viruses from different families could be detected by running 

multiple iterations of Viterbi, one for each HMM representing a different virus family. 
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For a hypothetical recombinant between members of two different virus families, we 

anticipate that the HMM for each family would predict the presence of only a portion of 

the viral genome from its family (with the rest of the prediction being the null genome). 

One challenge in building an HMM for detecting recombination is finding an 

appropriate value for P(Recomb), a user-inputted probability of recombination parameter 

used to calculate different transition probabilities in the model. Our choice of P(Recomb) 

was based on minimizing false positive recombinations in nonrecombinant samples. 

However, in some cases, it may be advantageous to increase P(Recomb) in order to 

increase detection sensitivity. 

 

CONCLUSIONS 

We developed a hidden Markov model (HMM) to identify recombination in viruses that 

have been hybridized to a microbial detection microarray. This model builds on previous 

work in which empirical hybridizations of cultured viruses were used as training to 

classify unknown infections (VIPR). Applying the HMM in conjunction with VIPR 

enabled the detection of inter-species recombination breakpoints with high accuracy in 

two different families of viruses. This is the first report of a method for analyzing 

diagnostic microarrays that includes recombination as a possible diagnostic outcome. Our 

method is theoretically applicable to detecting homologous recombination or 

reassortment between members of any family of viruses for which a set of 

nonrecombinant parental viruses is available for training and for which genome 

sequences are available. The inherently parallel nature of diagnostic microarrays coupled 

with powerful methods for analysis enhance our ability to rapidly and accurately identify 
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novel recombinant viruses responsible for disease outbreaks, either due to emergence by 

natural means or by engineered recombinant viruses. 

 

MATERIALS AND METHODS 

Design of the diagnostic microarray 

60mer oligonucleotide probes were designed from sequences representing three virus 

families (Bunyaviridae, Flaviridae and Togaviridae) using a tiling strategy. 145 RefSeq 

genomes and genome segments from the aforementioned virus families were obtained 

from Genbank. To the RefSeq set we added from Genbank as many complete genome 

sequences as were available of the parental viruses of the 11 recombinant alphaviruses. 

Partial genome sequences for the parental alphaviruses were added if complete genomes 

were not available. Additionally, complete genome sequences of alphaviruses that did not 

represent parents of the recombinant viruses were added until there were in the set at least 

three complete genomes of each of EEEV, VEEV, WEEV, Chikungunya and Sindbis 

viruses. The final set of Genbank records totaled 193, of which 175 were complete or 

nearly complete genomes or genome segments. Probes were selected as 60 nucleotide 

windows tiled over all 193 sequences with a spacing of three nucleotides between the 3’ 

end of one probe and the 5’ end of the following probe. The reverse complement of each 

60mer was also included in the microarray. The resulting set of probes including reverse 

complements totaled 43414 and the Agilent® 4 x 44 K platform was used (GEO 

accession GSE34490). 
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Hybridization of alphavirus and flavivirus parental and recombinant viruses to the 

diagnostic microarray 

21 alphaviruses (11 recombinants + 10 parental viruses) and 9 flaviviruses (4 

recombinants + 5 parental viruses) which have been previously described [89, 95-99] 

were obtained from the World Reference Center for Emerging Viruses and Arboviruses 

and were grown in Vero cells. RNA was extracted using standard Trizol® protocols and 

was reverse transcribed and randomly amplified as previously described [29]. For each 

recombinant, two independent amplifications were performed, while five independent 

amplifications were performed for each parental virus. The resulting amplified material 

was then coupled to a fluorescent dye and hybridized to the tiling microarray. Raw data 

measurements were collected using GenePix Pro® software. In total, 114 hybridizations 

were performed (30 recombinant + 75 parental + 9 uninfected Vero cells). All raw 

microarray data are available in NCBI GEO (accession GSE34490). The training set for 

our HMM consisted of 60 parental hybridizations + 5 Vero negative control 

hybridizations, while the test set for validating the algorithm consisted of the 30 

recombinant hybridizations + 15 parental hybridizations + 4 Vero negative control 

hybridizations. 

 

Viterbi algorithm for finding the optimal path 

By multiplying emission probabilities e(state, intensity) and transition probabilities 

t(state, state) across a series of states, it is possible to obtain a probability for an entire 

path through an HMM. For our HMM, the set of emission and transition parameters is 
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abbreviated as θ. The probability of a particular path (π) and a given hybridization (x) of 

length L can be expressed as a joint probability: 

1 1

1

( , | , ) (0, ) ( , ) ( , )
L

i i i i

i

P HMM t t e x     



 x

 

The Viterbi algorithm falls into a class of algorithms called dynamic programming 

algorithms that are commonly used in conjunction with HMMs. Using the Viterbi 

algorithm allows us to identify the most probable series of states (π’) through our HMM 

where 

argmax ( , | , )P HMM    x
 

Points of recombination can be inferred from places in the path where a transition 

between states of different genomes has occurred. As with other dynamic programming 

algorithms, the Viterbi algorithm consists of an initialization step, an iteration step and a 

termination step. Once the dynamic programming matrix (V) is populated, the optimal 

path is traced back through a shadow matrix (τ) of stored pointers. Except for the begin 

and end states sbegin and send and states in a given path (πi), all other states (sg,i) are 

indexed by genome (g) and probe-column (i). The V matrix and τ matrix are similarly 

indexed. Calculations are performed in log space although they are shown here in 

probability space. The Viterbi algorithm adapted from [47] is as follows: 

 

Initialization (g = 1 to n) 

 
,1 ,1 ,1 1( , ) ( , )g begin g gV t s s e s x

  

Iteration (i = 2 to L; g = 1 to n) 
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, 1 , 1 , 1 ,argmax ( , )n

g i j j i j i g iτ V t s s  
     

Termination 

 
1 , ,max ( , )n

j j L j L endP( , | HMM, ) V t s s  
    x

 

 
1 , ,argmax ( , )n

L j j L j L endV t s s 
    

 

Traceback (i = L to 2) 

 1 ( , )i i i  
 

 

 

Traceback reveals the optimal path through the HMM. If the path includes states 

representing only one genome, the optimal path is a nonrecombinant path. If the optimal 

path includes transitions between states of different genomes, the path is recombinant, 

and the global alignment positions corresponding to the probes associated with the states 

involved in each transition are referenced. These global alignment positions are then 

back-converted to genomic positions in the predicted virus parents in order to define the 

recombinant breakpoints between virus genomes on the nucleotide level. 

 

Availability 

VIPR HMM is freely available for academic use and can be downloaded from 

http://ibridgenetwork.org/wustl/vipr 
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Supplemental Figures 

 

 

 

Fig. 4.S1. VIPR HMM output for nonrecombinants (alphaviruses and flaviviruses) and 
uninfected Vero samples. 
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Fig. 4.S2. VIPR HMM output for recombinant samples R01-R04 
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Fig. 4.S3. VIPR HMM output for recombinant samples R05-R08 



89 

 

 

 
Fig. 4.S4. VIPR HMM output for recombinant samples R09-R12 
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Fig. 4.S5. VIPR HMM output for recombinant samples R13-R15 
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CHAPTER 5: 

 

Conclusions 
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Given the limitations of traditional assays for pathogen detection, there is a great need in 

diagnostic microbiology for high-throughput assays capable of detecting many agents in 

parallel and in an unbiased fashion. Metagenomic sequencing and microarray technology 

are powerful tools which can help circumvent the challenges associated with the 

detection of uncultured microbes. Such data-intensive approaches require robust 

computational tools to process raw measurements, make predictions in the presence of 

technical and other sources of noise, capitalize upon experimental design, and facilitate 

interpretation. 

Metagenomic sequencing provides an unprecedented opportunity to explore the 

makeup of microbial communities in environmental as well as human-derived specimens. 

Moreover, metagenomic surveys of clinical specimens can provide a basis for further 

investigations regarding the role of microbial communities in disease. As demonstrated 

by this work, such surveys can lead to the identification of both known and novel 

microbial species. Prior to this work, nothing was known about the diarrhea virome since 

only stool specimens from asymptomatic patients had been sequenced previously. Using 

a unique sequencing strategy designed specifically for pediatric diarrhea specimens 

coupled with a robust sequence analysis pipeline, viruses were detected in all but one 

specimen. Additionally, many sequences were identified which had only limited 

similarity to known viruses. A particularly exciting result that came from this study was 

evidence for the presence of multiple novel viruses. Sequences were detected from at 

least nine putatively novel viruses in these specimens. For two of these putative viruses, 

the sequence divergence from known viruses was especially pronounced, suggesting the 

possibility that these sequences represent novel virus species. Following analysis and 
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taxonomic binning of sequences in one specimen, seven unique sequences were revealed 

which had limited similarity to known astroviruses. Astroviruses are implicated in up to 

10% of cases of sporadic diarrhea [63]. Phylogenetic analysis confirmed marked 

divergence of this virus relative to other known human astroviruses. Following up on this 

result, Finkbeiner et al. later sequenced the entire genome of this virus which is now 

known as astrovirus MLB1 [100]. This demonstrates the efficacy of metagenomic 

approaches which can be used as a springboard for further characterization of novel 

viruses such as astrovirus MLB1, including investigation of the possible role of such 

viruses in diarrheal disease. Future applications of similar metagenomic methodologies to 

other diseases or specimen types for the purpose of microbial detection and discovery 

also appear bright. 

While the metagenomic sequence pipeline I developed was applied exclusively to 

Sanger sequencing reads, it later served as a prototype for the development a pipeline 

designed to process 454 pyrosequencing reads (Zhao et al., unpublished). While 

platforms featuring longer reads (i.e. Sanger, 454) are preferable for the taxonomic 

classification of sequences with only limited similarity to known microbes, the 

development of assembly tools which can join short reads in a metagenomic context for 

downstream taxonomic assignment may help make these platforms more amenable to 

discovery of divergent microbes in the future. 

 One challenge associated with metagenomic sequencing analysis is the 

preponderance of sequence reads which cannot be reliably assigned to any taxonomic 

category. For the diarrhea study, 26% of unique sequences were unable to be classified. 

Since all of these sequences were determined to be high-quality, it is not likely that 
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altering the experimental procedure used for processing and sequencing of specimens 

would have had any effect on the ability to reliably classify such reads. Rather, future 

studies devoted to the development of computational tools capable of detecting more 

distant evolutionary relationships could help to identify the species of origin for currently 

unclassifiable reads. The identification of the origin of such reads will also be facilitated 

as genetic databases accumulate more sequences to be used in similarity searches. 

 Microarrays have also garnered attention in recent years as a rapid way to carry 

out detection of many microbes in parallel. Considering the data-rich nature of a 

diagnostic microarray experiment wherein thousands of probe intensities can factor into a 

prediction and where there are many potential virus candidates, each of which is likely to 

share some degree of sequence similarity with others of the candidates, it is imperative 

that an objective software tool be available for the interpretation of such data. 

 While several tools had been developed previously for the interpretation of 

diagnostic microarrays, none of them capitalized on training data as part of a machine 

learning approach to virus prediction. I developed a computational tool, VIPR, which 

relies on hybridizations of known viruses to diagnostic microarrays as a training set in 

order to gauge probe-specific behaviors and improve future predictions. VIPR 

accomplishes this using a probabilistic approach wherein probe probabilities are 

multiplied together under the assumption of independence. 

 VIPR performed with high accuracy (94%) when applied to a set of hemorrhagic 

fever viruses and their relatives. VIPR outperformed previously published methods for 

this data set. While the choice of prior can potentially be problematic for Bayesian 

approaches, VIPR predictions were found to be robust to changes in this parameter. VIPR 
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is theoretically applicable to any diagnostic scenario where positive control specimens 

are available for use as training data. 

 Traditional diagnostics fail to detect recombination since they are focused on the 

detection of a single locus in candidate microbes. In order to accommodate the detection 

of recombinant viruses, I developed a hidden Markov model which expands upon VIPR’s 

original probabilistic implementation. VIPR HMM was parameterized with emissions 

derived from probe intensity distributions and transition probabilities derived from a 

user-selected probability of recombination parameter. Applying VIPR HMM to a 

recombinant set of viral encephalitis vaccines resulted in accurate detection of 95% of 

inter-species breakpoints. Additionally, VIPR HMM was able to identify intra-species 

breakpoints in some cases. The ability of VIPR HMM to detect intra-species breakpoints 

may be dependent upon the degree of sequence divergence between recombining strains. 

Using the probes located at the boundary of a predicted recombination breakpoint, VIPR 

HMM can estimate nucleotide positions of breakpoints. All predicted breakpoints fell 

within 90 nucleotides of their actual positions (i.e. within a two-probe tiling since probes 

were tiled 63 nucleotides apart). 

 While VIPR HMM was designed to detect homologous recombination between 

members of the same family, future studies could be devoted to adding functionality to 

detect recombination between members of different families or recombination at non-

homologous sites. In fact, the incorporation of a “null” genome makes it possible to 

identify portions of a virus that are present while allowing for a null prediction for 

portions of the genome which are absent. Running multiple iterations of Viterbi using 

models for different families could allow for identification of these portions in other 
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families. Next generation sequencing could also prove a valuable tool for detection of 

recombination. Reads whose full sequence could be mapped to one particular genome 

would serve to identify parental species, while the remaining reads could be screened for 

potential breakpoint-scanning sequences for fine resolution of breakpoints. 

 High-throughput genomic approaches such as metagenomic sequencing and 

microarray technology offer highly parallel and unbiased detection of viruses in clinical 

specimens. Due to the data-intensive nature of these technologies, robust bioinformatics 

tools are required for objective analysis. As the cost associated with high-throughput 

approaches decreases, their use in clinical and public health laboratory settings will 

become more salient, enhancing our ability to rapidly and accurately detect pathogens 

and to respond to infectious disease. 
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