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ABSTRACT	  OF	  THE	  DISSERTATION	  

DNA Damage Responses Regulate Macrophage Function  

During Innate Immune Responses 

by 

Abigail Rodriguez Morales 

Doctor of Philosophy in Biology and Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2015 

Professor Barry P. Sleckman, Chair 

 

Activated macrophages produce genotoxins such as reactive oxygen and nitrogen intermediates 

that are critical for the eradication of pathogens.  Here we show that one of these agents, nitric 

oxide (NO), damages macrophage genomic DNA, resulting in the activation of DNA damage 

responses (DDR).  The DDR is primarily initiated through DNA double-strand break (DSB) 

intermediates and depends on the PI3-like kinases ATM and DNA-PKcs.  In response to Listeria 

monocytogenes infection, ATM and DNA-PKcs regulate a tissue-specific genetic program that 

includes the expression of inflammatory cytokines, chemokines and cell surface receptors, 

several of which are critical for cell migration during immune responses to bacterial infection.  

These kinases also regulate inflammasome activation and production of the inflammatory 

cytokines IL-1β and IL-18.  Due to the near-complete block in IL-18 production by DNA-PKcs- 

deficient macrophages, these cells are unable to optimally stimulate NK cells to produce IFN-γ, 

which is important for controlling early L. monocytogenes infection.  These findings establish 



 x 

DNA damage, and the initiation of DDR by this damage, as important signaling intermediates in 

the innate immune responses mediated by macrophages. 
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Chapter 1:  Introduction and Background 
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The information that is required to build a cell or organism is contained in its genes, 

which are hereditary units that control identifiable traits of an organism.  A genome is composed 

of an organism’s complete set of genes, which are encoded in stable molecular units called 

deoxyribonucleic acids, or DNA.  The faithful transmission of genetic information from a parent 

cell to a daughter cell is critical for the generation and maintenance of multicellular organisms.  

Within a species, the exact duplication of this information from one generation to the next 

ensures genetic continuity within that species.   

 

Cells must be able to accurately replicate their DNA before passing it along to their 

daughter cells.  Errors in this process can result in alterations in genetic information, which will 

be transmitted to daughter cells as mutations.  Mutations can also arise from spontaneous 

chemical changes in DNA constituents, or can be introduced by environmental agents that inflict 

damage upon the DNA.  In some cases, the mutation is innocuous or may even be beneficial to 

the cell or organism.  Mutations that improve cellular fitness are, in fact, critical for the evolution 

of the species.  However, mutations can also render the cell unresponsive to cues that normally 

would keep the cell from undergoing cell division or would initiate a programmed cell death.  

These abnormally-growing cells make up a neoplasia, which can form a mass called a tumor.  

Many tumors are malignant, meaning they are not self-limiting in their growth.  These tumors 

are usually characterized by genome instability, and thus they are able to rapidly accumulate 

additional mutations that are then selected for by the tumor to favor rapidly-growing cells that 

out-compete other cells for space and nutrients.      
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One of the biggest challenges to genome stability arises from DNA damaging agents.  

These agents can be exogenous (i.e. they are derived from the environment) or they can be 

formed during normal physiologic processes that all or some cell types undergo.  In order to 

maintain genome stability, cells must initiate a rapid response to DNA damage, which is 

orchestrated by a complex signal transduction network known as the DNA damage response.  

The de facto response is generally to repair the damage, which generally involves repair or 

removal of the specific lesion.  In cases where the extent of damage overwhelms the survival 

response machinery, however, a programmed cell death is initiated.  The mechanisms underlying 

the choice between repair and cell death are not entirely clear.  Indeed, these choices are likely 

governed by the integration of complex cellular and environmental cues.  However, as a single 

genomic alteration can contribute to the onset of malignancy, a more complete understanding of 

how cells sense and respond to DNA damage is critical for the future prevention and treatment of 

cancer.          
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1.1) Exogenous and endogenous agents induce DNA damage. 

Genomic DNA damage can be induced by environmental agents and as byproducts of 

normal physiologic processes that cells undergo, such as transcription and DNA replication.  

Environmental DNA damage can be introduced by genotoxins such as ionizing radiation (IR) or 

ultraviolet (UV) light.  IR induces oxidation of DNA bases and generates both single-strand and 

double-strand DNA breaks (SSBs and DSBs), while UV light generates pyrimidine dimers and 

photoproducts (Ciccia and Elledge 2010).  Cancer therapeutic agents can also induce a variety of 

different DNA lesions.  Chemical agents such as camptothecin (CPT) and etoposide induce SSBs 

and DSBs via covalent complex formation with DNA and topoisomerase I and II, respectively.  

Agents such as cisplatin or mitomycin C introduce covalent links between bases of DNA strands.  

Finally, alkylating agents such as methyl methanesulfonate (MMS) attach alkyl groups to DNA 

bases (Ciccia and Elledge 2010).  Other damage lesions can be generated spontaneously during 

metabolic processes, such as mismatched DNA base pairs introduced during DNA replication 

(Jackson and Bartek 2009).  Moreover, reactive oxygen species and reactive nitrogen 

intermediates (ROS and RNI, respectively) generated during both the immune response to 

infection and during metabolic processes oxidize DNA bases and induce DNA breaks (Lindahl 

and Barnes 2000, Kawanishi, Hiraku et al. 2006, Nathan and Cunningham-Bussel 2013).     

 

Given that DNA damaging agents generate a wide range of lesions, many different repair 

mechanisms have evolved to resolve each type of damage.  Chemical DNA base alterations are 

excised by base excision repair (BER), whereas mismatch repair (MMR) inserts correct DNA 

bases in place of mispairings.  Complex lesions such as intrastrand crosslinks and pyrimidine 
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dimers are corrected by nucleotide excision repair (NER) through removal of a small 

oligonucleotide containing the lesion.  Single-strand DNA breaks are repaired by single-strand 

break repair (SSBR), while DSBs can be processed either by the non-homologous end joining 

pathway (NHEJ) or homologous recombination (HR) (Caldecott 2008, Ciccia and Elledge 2010).  

NHEJ is the predominant repair pathway in G1-phase cells, whereas HR is primarily active in 

post-replicative stages of the cell cycle.  Unlike NHEJ, which can join two unrelated DNA ends, 

HR restores the genomic sequence of the broken DNA by using sister chromatids as a repair 

template (Chapman, Taylor et al. 2012).      

 

If incorrectly repaired, DNA DSBs can lead to chromosomal rearrangements and 

genomic instability, making them a particularly dangerous lesion (Jackson and Bartek 2009).  In 

addition to the sources mentioned previously, DNA DSBs are introduced by the RAG 

endonuclease as essential intermediates in lymphoid cells undergoing V(D)J recombination, the 

process by which developing lymphocytes rearrange their antigen receptor loci to generate 

functional antigen receptor genes (Helmink and Sleckman 2012).  In this somatic recombination 

process, RAG introduces DSBs at specific recognition sequences flanking the DNA segments to 

be joined.  The programmed DSBs are subsequently resolved by NHEJ (Fugmann, Lee et al. 

2000, Rooney, Chaudhuri et al. 2004).  In contrast to RAG expression, which is confined mainly 

to cells of lymphoid origin, NHEJ proteins are expressed in most tissues, as they function in 

general DSB repair (Rooney, Chaudhuri et al. 2004, Lieber 2010).  Site-specific DNA DSBs are 

also introduced in activated B cells undergoing class switch recombination (CSR).  These breaks 

are introduced in switch (S)-region repeat elements by a series of enzymes including the cytidine 
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deaminase AID, uracil glycosylase, and apyrimidic/apurinic (AP)-endonucleases and are 

subsequently repaired by NHEJ factors (Chaudhuri and Alt 2004).  

 

1.2) The canonical response to DNA DSBs. 

Regardless of the source of the damage, all DNA breaks activate the DNA damage 

response (DDR), a complex signal transduction network that senses the damage and orchestrates 

an appropriate response (Jackson and Bartek 2009).  This response can include the activation of 

DNA repair pathways, cell cycle checkpoints, senescence, and cell death pathways (Shiloh 2003, 

Ciccia and Elledge 2010).  The DDR is primarily initiated by proteins of the PI3-like kinase 

family, which include the ataxia telangiectasia mutated (ATM) kinase, the DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs) and the ATM- and Rad3-related (ATR) kinase.  

These serine-threonine kinases activate target proteins via phosphorylation of SQ/TQ (serine or 

threonine residues followed by a glutamine) motifs.  ATM and DNA-PKcs are activated by 

DSBs and can phosphorylate downstream targets in all stages of the cell cycle.  In contrast, ATR 

is activated following recruitment to ssDNA regions that are generated at stalled replication 

forks, and thus is generally active in post-replicative cell cycle stages.  ATR is also recruited to 

ssDNA generated via DSB processing; however, optimal ATR activation in response to IR-

induced DSBs requires ATM (Myers and Cortez 2006, Ciccia and Elledge 2010).   

 

One of the major DDR substrates is the histone H2A variant H2AX.  Immediately 

following a DNA double- strand break, H2AX is phosphorylated at an SQ motif (serine 139) in 

its C- terminal tail by ATM, ATR, or DNA-PKcs.  This modification, known as γ-H2AX, creates 
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a binding site for the adaptor MDC1, which propagates the spread of γ-H2AX in chromatin for 

up to 500 kilobases surrounding the DSB (Stucki, Clapperton et al. 2005).  This chromatin-based 

platform thereby allows for DNA repair factors to aggregate around the DNA break, forming 

repair foci that can be visualized by immunofluorescence (Paull, Rogakou et al. 2000, Savic, Yin 

et al. 2009).  Another established DDR substrate is the transcriptional repressor KAP-1, which is 

transiently recruited to DNA breaks induced by ionizing radiation or laser-induced micro-

irradiation and induces genome-wide chromatin relaxation after ATM phosphorylates serine 824 

in its C-terminus (Ziv, Bielopolski et al. 2006).  Though neither substrate has any known role in 

macrophage function specifically, the DDR-specific activation of both H2AX and KAP-1 can be 

readily detected using phospho-specific antibodies, allowing the activation of DDR to be reliably 

read out after a cell has been exposed to DNA damaging agents.  

 

In response to IR-induced genotoxic stress, ATM and ATR were found to phosphorylate 

a broad network of over 700 proteins that they participate in diverse biological processes, 

including (but not limited to) DNA replication and recombination, DNA repair, cellular assembly 

and morphology, nucleic acid metabolism, cellular growth and proliferation, cell cycle, and cell 

death (Matsuoka, Ballif et al. 2007).  To date, the full range of targets activated by DNA-PKcs is 

not as well-characterized.  However, it shares at least a subset of targets with ATM.  One of the 

ways in which both ATM and DNA-PKcs modulate downstream DNA damage responses is via 

activation of CHK2, a serine-threonine kinase that amplifies the damage response via activation 

of a broad set of targets.  Phosphorylation of threonine 68 in the SQ cluster domain (SCD) 

promotes the dimerization and activation of CHK2 monomers.  Catalytically active CHK2 

promotes the ubiquitin-mediated proteasomal degradation of Cdc25a, preventing G1-phase cells 
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from transitioning into S phase.  In response to DNA damage, CHK2 also regulates the 

transcription factor p53, which in turn activates downstream targets that influence the overall 

response (Zhou and Elledge 2000).  p53 induces cell-cycle arrest or senescence in cells that have 

sustained DNA damage via the transcriptional regulation of CDK inhibitor p21, which enforces 

the G1-S checkpoint.  In some contexts, p53 initiates a cell death program in response to DNA 

damage through the transcriptional up-regulation of target genes Bax (Bcl2-associated X 

protein), Fas ligand Puma (p53-up-regulated modulator of apoptosis), and Noxa (Ciccia and 

Elledge 2010).  ATM and DNA-PKcs also activate p53 directly via phosphorylation at serine 15.  

Following DSB induction, p53 expression is cyclically activated and shut off by the E3 ubiquitin 

ligase MDM2 and the WIP1 phosphatase, which inactivate p53 and ATM, respectively.  This 

mechanism likely allows the cell to periodically assess its DNA damage status.  If substantial 

DNA damage persists unrepaired over time, p53 will initiate apoptosis via transcriptional up-

regulation of targets BAX, NOXA, and PUMA (Ciccia and Elledge 2010).            

 

1.3) Recruitment of ATM and DNA-PKcs to DNA DSBs. 

ATM is present in the cell in inactive dimeric form.  It is rapidly recruited to DNA DSBs 

by the MRE11-NBS1-RAD50 (MRN) complex through a direct interaction with NBS1 .  Once 

present at the break site, it is converted from inactive dimers to active monomers through an 

autophosphorylation step (Bakkenist and Kastan 2003, Lee and Paull 2004, Lee and Paull 2005).  

A mutant form of ATM that cannot be phosphorylated at this site still activates a subset of 

downstream DDR targets, however, suggesting that there are alternative ways to activate ATM.  
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Indeed, ATM can be activated by hydrogen peroxide via direct oxidation in a DSB- and MRN-

independent manner (Guo, Kozlov et al. 2010).   

 

DNA-PKcs is recruited to DNA DSBs by the ring-shaped Ku70:Ku80 heterodimer.  The 

positioning of the broken DNA ends in this toroidal channel suggests that Ku may play a role in 

proper alignment of the ends prior to joining (Ciccia and Elledge 2010, Helmink and Sleckman 

2012).  After binding the DNA ends, Ku loads and activates the catalytic subunit of DNA-PK 

(DNA-PKcs).  Binding of DNA-PKcs to Ku causes a shift in Ku80, allowing DNA-PKcs to 

contact the broken DNA directly.  Activation of DNA-PKcs’s catalytic activity depends on its 

interaction with both broken DNA and Ku.  Once activated, it phosphorylates a number of 

protein targets involved in the repair of the DNA DSB.  DNA-PKcs also associates with both 

broken DNA and various repair factors in a kinase- independent fashion, suggesting that it may 

serve as a “bridge” linking a DNA DSB to the factors that will process and repair it (DeFazio, 

Stansel et al. 2002, Merkle, Douglas et al. 2002).  Among these repair factors in DNA ligase IV, 

which is required for NHEJ-mediated joining of broken DNA ends.  Ligase IV associates with 

XRCC4, which promotes its stability.  In addition, XRCC4 facilitates the adenylation of lysine 

residues within the catalytic core of ligase IV—this is essential in the formation of the 

phosphodiester bond that will allow the broken DNA ends to be re-ligated (Gellert 2002, 

Helmink and Sleckman 2012).    
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1.4) DNA damage influences cell-type-specific processes 

After DNA damage-induced activation, ATM phosphorylates a broad range of targets 

that are important in shaping an appropriate cellular response.  Importantly, this response is not 

limited to the canonical response to DNA damage, as it also leads to the induction of cell-type-

specific genetic programs (Bredemeyer, Helmink et al. 2008, Sherman, Kuraishy et al. 2010, 

Bednarski, Nickless et al. 2012, Innes, Hesse et al. 2013).  Once activated by DNA DSBs, ATM 

regulates gene expression by modulating the activity of a variety of transcription factors.  As 

previously mentioned, ATM and DNA-PKcs phosphorylate p53, which in turn promotes the 

expression of factors that will promote cell death if the damage persists unrepaired.  However, 

previous studies have shown that in response to genotoxic DSBs, ATM also activates pro-

survival pathways via activation of NF-κB (Wu, Shi et al. 2006).  RAG-induced DSBs in 

developing lymphocytes also activate pro-survival pathways that integrate with p53-dependent 

pro-apoptotic pathways in determining cell fate.  In particular, RAG DSBs activate the classical 

(p50/RelA) NF-κB pathway, which is known to activate a cohort of genes that promote cell 

survival, including Pim2 (Bredemeyer, Helmink et al. 2008, Bednarski, Nickless et al. 2012).  In 

response to DNA damage, ATM phosphorylates NEMO in the nucleus.  After translocating to 

the cytoplasm, it is able to activate NF-κB (Bredemeyer, Helmink et al. 2008).  Notably, the 

transcriptional program that was activated in response to RAG-induced DSBs is not limited to 

pro-survival and pro-apoptotic pathways.  RAG breaks activated over 200 genes in developing 

pre-B cells, many of which were downstream of transcription factors other than NF-κB and p53.  

Approximately half of these genes were dependent on ATM, which suggests that other kinases 

play a role in regulating DSB- dependent transcriptional programs (Bredemeyer, Helmink et al. 

2008, Helmink and Sleckman 2012).  Predictably, many of the identified genes had established 
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roles in the canonical response to DNA damage, such as caspase 9 and Bcl3.  Surprisingly, 

however, a large cohort of the genes had no known function in the DDR and instead participated 

in diverse processes such as lymphocye homing and migration, such as CD62L, CD69, and 

SWAP70 (Bredemeyer, Helmink et al. 2008).  A subset of these genes were also activated by 

genotoxic breaks, suggesting that DNA damage—irrespective of the source—can induce some 

aspects of this genetic program in developing lymphocytes (Bredemeyer, Helmink et al. 2008, 

Innes, Hesse et al. 2013).  Similarly, AID-induced DSBs in activated B cells activate an ATM-

dependent genetic program that is critical for plasma cell differentiation (Sherman, Kuraishy et al. 

2010, Sherman, Bassing et al. 2011).  Taken together, these findings suggest that context-

dependent DNA DSBs introduced either by physiologic processes or genotoxic agents may 

influence cell-type-specific processes.  Notably, some cell types, such as phagocytes, produce 

genotoxic agents as part of their normal physiologic response to pathogenic stimuli.  Thus, we 

are interested in assessing whether genotoxin-induced DNA damage impacts the function of 

activated macrophages in the innate immune response to infection.      

 

1.5) Classically activated macrophages in the immune response.  

Macrophages are a heterogenous population of cells that play a key role in the generation, 

maintenance, and regulation of the immune response.  The macrophages generated during cell-

mediated immune responses have traditionally been designated classically activated 

macrophages (Mosser and Edwards 2008).  Originally, a combination of interferon-γ (IFN-γ) and 

tumor-necrosis factor (TNF) were found to generate a macrophage population that had enhanced 

microbicidal capacity and secreted high levels of pro-inflammatory cytokines (O'Shea and 
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Murray 2008).  Though sustained IFN-γ production is provided by T helper 1 (TH1) lymphocytes 

during an adaptive immune response, NK cells are an important innate source of this cytokine 

early in innate immune responses (Mosser and Edwards 2008).  IFN-γ can prime macrophages to 

secrete pro-inflammatory cytokines and produce reactive oxygen and nitrogen radicals to 

enhance their killing ability (Edelson and Unanue 2000, Dale, Boxer et al. 2008).  TNF, which 

synergizes with IFN-γ to generate a classically activated macrophage, is transcribed downstream 

of Toll-like receptor (TLR) engagement.  However, some TLR ligands can also induce IFN-β 

production in a signaling cascade that depends on the adaptor TRIF and the interferon regulatory 

factor IRF3 (Yamamoto, Sato et al. 2003).  It was discovered that IFN-β can replace the IFN-γ 

that is produced by NK and T cells, synergizing with TNF to generate a fully activated 

macrophage.  Thus, certain TLR agonists can activate macrophages through the production of 

both TNF and IFN-β.  Both IFN-γ and IFN-β signal through the Janus kinase (JAK)-signal 

transducer and activator of transcription (STAT) pathway, leading to the transcription of 

interferon-stimulated genes (ISGs) (Ivashkiv and Donlin 2014).  Thus, TNF and interferon (IFN) 

signaling pathways synergize to dramatically influence the transcriptional profile of the activated 

macrophage.  In addition to producing pro-inflammatory cytokines and reactive oxygen and 

nitrogen intermediates, classically activated macrophages up-regulate co-stimulatory and MHC 

class II molecules (Dale, Boxer et al. 2008).  Thus, in addition to their role in the direct killing of 

microorganisms, they are able to shape the adaptive immune response that is generated 

subsequently.   
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1.6) Production of reactive oxygen and nitrogen intermediates. 

Classically activated macrophages produce a diverse array of reactive oxygen and 

nitrogen intermediates after sensing microbes.  Though ROS can be generated in several ways, 

the main source of ROS in response to bacterial infection is the phagocyte respiratory burst 

oxidase (NADPH oxidase), which is a multi-subunit phagosome- and plasma membrane-

associated enzyme that is assembled by phagocytes upon activation by inflammatory stimuli 

(Nunes, Demaurex et al. 2013).  The catalytic core of NADPH oxidase is composed of two 

integral membrane proteins, p22phox and gp91phox (NOX2).  p22phox is responsible for the 

recruitment of the otherwise-cytoplasmic regulatory phox subunits p40phox, p67phox, and p47phox, 

whereas the gp91phox subunit mediates the transfer of electrons across plasma or phagosomal 

membranes (Nunes, Demaurex et al. 2013).  The active enzyme produces superoxide radicals 

from molecular oxygen, which are subsequently converted to hydrogen peroxide spontaneously 

or through enzymatic dismutation (Fang 2011, Nunes, Demaurex et al. 2013).  One of the main 

targets of ROS within the pathogen is DNA (Imlay and Linn 1988).  Base oxidation can be 

mutagenic and DNA strand breaks are lethal to the pathogen unless effectively repaired.  

Additionally, iron sulfur-cluster-containing proteins are also modified by ROS, which may 

restrict bacterial metabolic pathways even if the damage is not fatal (Imlay 2006, Fang 2011).  

Both phagocytes and many types of bacteria express antioxidant enzymes such as catalases, 

peroxiredoxins, and superoxide dismutases which function to scavenge hydrogen peroxide and 

superoxide (Fang 2011, Nathan and Cunningham-Bussel 2013).  In particular, the intracellular 

bacterium Salmonella enterica expresses three distinct catalases, three peroxiredoxins, and four 

superoxide dismutases as well as repair enzymes that can reverse oxidative DNA lesions within 

the pathogen genome (Imlay 2008, Fang 2011).                                    
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In macrophages, nitric oxide is produced by the inducible nitric oxide synthase (iNOS), 

which is encoded by the Nos2 gene.  Previous studies established that iNOS is synthesized 

downstream of PRR engagement; indeed, the Nos2 promoter contains a binding site for NF-κB 

(Kleinert, Schwarz et al. 2003).  In LPS-treated or pathogen-infected murine cells, full 

transcriptional induction of Nos2 depends on the production of type I interferons and signaling 

through the Janus-kinase (JAK)-STAT pathway (Gao, Filla et al. 1998, Bogdan 2001).  

However, type II interferon (IFN-γ) also augments LPS-induced Nos2 transcription in a manner 

that requires signaling through the interferon-γ receptor (IFNGR) and active STAT1 (Meraz, 

White et al. 1996).  From these data, it is clear that PRR-elicited NF-κB cooperates with IFN-

receptor activated STATs in the full transcriptional induction of Nos2 and the production of NO.  

NOS2 is homodimeric enzyme that converts L-arginine and oxygen into L-citrulline and NO, a 

labile radical that has many reaction partners that mediate its antimicrobial and regulatory 

properties (Bogdan 2015).  NO groups can be covalently added to the thiol groups of cysteine 

residues within proteins or can react with superoxide, giving rise to the reactive peroxynitrite, 

which can also modify proteins and DNA (Anand and Stamler 2012, Radi 2013).  Like ROS, NO 

can modify iron-sulfur clusters, which can regulate the function of many transcription factors or 

enzymes.  Indeed, direct antimicrobial effects of NO include (but are not limited to) modification 

of nucleic acids, replication machinery, and virulence-associated molecules (Bogdan 2015).  

Though reactive oxygen and nitrogen intermediates are required for indirect and direct 

antimicrobial activity, their toxic effects are not restricted to the pathogen and thus pose a 

significant threat to the host cell genome.   
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Given that reactive oxygen and nitrogen intermediates can cause significant damage to 

macrophage DNA, we hypothesize that these intermediates will initiate a DDR in activated 

macrophages.  As was observed previously in other immune cell types (Bredemeyer, Helmink et 

al. 2008, Sherman, Kuraishy et al. 2010), we postulate that this DDR will impact the function of 

the macrophages in the immune response.  Here, we have developed an experimental system to 

assess DDR activation in macrophages that have been exposed to LPS and IFN-γ or the 

intracellular bacterium Listeria monocytogenes.  In the next few sections, we will review the 

signaling cascades and cellular responses that are triggered by these agents.      

 

1.7) Listeria monocytogenes:  an established bacterial infection model. 

L. monocytogenes is a Gram-positive, facultative intracellular bacterium that can survive 

in the environment.  In humans, ingestion of contaminated food causes listeriosis.  Clinical 

symptoms range from gastroenteritis to more severe forms of infection, such as meningo-

encephalitis or sepsis.  After ingestion, the bacteria cross the intestinal epithelium and 

disseminate to deeper tissues via the bloodstream and lymph (Stavru, Archambaud et al. 2011).  

In murine models of infection, L. monocytogenes is typically administered intraperitoneally or 

intravenously, resulting in the rapid infection of the spleen and liver.   

 

Bacterial entry into non-phagocytic cells is mediated by bacterial surface proteins called 

internalins.  Internalin A (InlA) binds the adherens junction protein E-cadherin on an intestinal 

epithelial cell while InlB is a ligand for the receptor tyrosine kinase Met (Mengaud, Ohayon et al. 

1996, Shen, Naujokas et al. 2000).  In addition to mediating pathogen uptake, interactions 
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between internalins and their cognate receptors leads to the activation of P13K, type II PI4-

kinases, and MAPK signaling pathways (Shen, Naujokas et al. 2000).  In contrast, phagocytes 

engulf circulating bacteria, which are taken up into phagosomal compartments.  After uptake, L. 

monocytogenes escapes into the cytoplasm via secretion of the hemolysin listeriolysin O (LLO), 

which destroys phagosomal membranes (Portnoy, Jacks et al. 1988).  Invasion of the cytosol 

triggers innate inflammatory responses and is important for the induction of lasting protective 

immunity (Pamer 2004).  Bacterial mobility within the cytosol is conferred by actin-assembly-

inducing protein (ActA), which enables the formation of actin polymers that propel the bacteria 

through the cytoplasm and into neighboring cells without inducing cell lysis (Stavru, 

Archambaud et al. 2011).  Cell-to-cell spread is critical for the survival of L. monocytogenes, as 

it allows the bacteria to evade extracellular immune recognition.     

 

Innate immune responses are rapidly triggered following L. monocytogenes infection and 

are required for host survival.  The effectiveness of the innate immune system in responding to 

and controlling L. monocytogenes infection was established in severe combined 

immunodeficiency (Scid) and athymic NUDE mice, which lack T cell-mediated and humoral 

immunity (Nickol and Bonventre 1977, Bancroft, Schreiber et al. 1991).  These mice were 

surprisingly resistant to infection in the short-term but were ultimately unable to clear the 

infection.  It is established that lymphocytes are in fact detrimental during the early stages of L. 

monocytogenes infection, as wild type mice displayed enhanced bacterial titers in both spleen 

and liver relative to Scid mice early after infection (Carrero, Calderon et al. 2006).  This is due in 

part to macrophage secretion of anti-inflammatory mediators such as prostaglandin E2 and IL-10 

after sensing massive lymphocyte apoptosis.  Thus, L. monocytogenes establishes an infective 
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niche via the induction of host cell death (Ren, Stuart et al. 2001, Carrero, Calderon et al. 2006, 

Carrero and Unanue 2006).          

 

A variety of innate immune cell types participate in the early eradication of infection.  

Polymorphonuclear neutrophils (PMNs) are among the first responders to arrive at the 

inflammatory site; their migration is directed by chemokine-secreting hepatocyes.  The 

inflammatory cytokine IL-1, produced by resident macrophages at the site of infection, also 

plays an important role in L. monocytogenes-dependent neutrophil migration and activation 

(Rogers, Tripp et al. 1994).  Once neutrophils have arrived at the site of infection, they 

phagocytose bacteria and generate large quantities of antimicrobial reactive oxygen and nitrogen 

species (ROS and NOS).  Given that neutrophils also have a role in amplifying the inflammatory 

response via the secretion of cytokines and chemokines, it is not surprising that neutrophil-

deficient mice are more susceptible to infection and display an increased bacterial burden in both 

liver and spleen (Rogers and Unanue 1993).       

 

Resident macrophages, particularly liver Kupffer cells, play a key and well- established 

role in L. monocytogenes infection.  Upon infection, macrophages secrete TNF and IL-12, which 

triggers IFN-γ production by NK cells.  NK cells begin producing IFN-γ within 24 hours after 

infection and are the predominant source of this cytokine until an adaptive immune response is 

generated several days later (Bancroft, Schreiber et al. 1991, Tripp, Wolf et al. 1993).  In 

addition, it is known that optimal NK cell activation also depends on the inflammatory cytokine 

IL-18, which is processed and released by multimeric complexes known as inflammasomes 
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(Akira 2000, Lamkanfi and Dixit 2014).  IFN-γ is critical in the control of the bacteria, as it 

activates macrophages to produce reactive oxygen and nitrogen species (ROS and NOS), which 

inhibit bacterial escape from vacuoles (Myers, Tsang et al. 2003).  Indeed, several reports 

suggest that IFN-γ also functions in part to accelerate the fusion of phagosomes with lysosomes, 

resulting in the eradication of the bacteria before it is able to access the cytosol (Portnoy, 

Schreiber et al. 1989, Alvarez-Dominguez and Stahl 1998, Via, Fratti et al. 1998).  Both the 

oxidative burst and the production of nitric oxide (NO) are required for pathogen clearance in 

vivo, as iNOS-deficient mice or mice deficient an essential subunit of the NADPH oxidase 

(NOX2) and are more susceptible to infection and mice deficient in both succumb rapidly to 

virulent L. monocytogenes infection (MacMicking, Nathan et al. 1995, North, Dunn et al. 1997, 

Shiloh, MacMicking et al. 1999).  Macrophages also produce chemokines that regulate 

trafficking of other cell types that will be important in combating the infection.  Upon 

internalization of L. monocytogenes, resident macrophages up-regulate CC-chemokine ligand 2 

(CCL2), which initiates the recruitment of circulating monocytes that express CCR2.  Microbial 

products released by these macrophages activate the monocytes via TLRs; these monocytes then 

differentiate into TNF- and iNOS-producing dendritic cells (TipDCs), which are highly 

bacteridical (Pamer 2004).  Though these DCs play a key role in controlling L. monocytogenes 

infection, they are not required for T-cell priming in vivo (Tam and Wick 2004).  Other types of 

DCs, however, are critical for bridging the gap between innate and adaptive immunity via 

antigen presentation to naïve lymphocytes.  They also are important sources of IL-12 and IL-18, 

which activate both NK and T cells to produce IFN-γ (Hsieh, Macatonia et al. 1993, Okamura, 

Tsutsi et al. 1995, Akira 2000).  Unlike macrophages, DCs are able to prime naïve CD8+ 

cytotoxic T cells, enabling them to kill infected cells (Stavru, Archambaud et al. 2011).  
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  Histological analysis of spleens from L. monocytogenes-infected mice demonstrated that 

cells containing live bacteria migrate to the T cell-containing zones of the splenic white pulp 

within 24 hours after infection.  This migration is followed by significant lymphocyte apoptosis 

in the T-cell compartment, though the majority of the T cell casualties are non-pathogen specific 

(Merrick, Edelson et al. 1997).  It has been demonstrated that type I interferon sensitizes 

lymphocytes to LLO-dependent apoptosis, and drives macrophage IL-10 secretion, which 

dampens the inflammatory response (Carrero, Calderon et al. 2006).  Thus, both type I and type 

II interferon play a significant role in shaping the innate and adaptive immune responses to L. 

monocytogenes infection.   

 

Murine infection with L. monocytogenes is a widely used model for studying cell- 

mediated immunity.  Though both CD8+ and CD4+ T cells are involved in the response, a 

specific cytotoxic CD8+ T cell response is required for complete clearance of L. monocytogenes 

(Stavru, Archambaud et al. 2011).  Intracellular bacteria secrete proteins that are loaded onto 

MHC class I molecules for presentation to CD8+ T cells after proteasomal degradation and 

transport through the ER.  Among the most antigenic proteins in activating T cell responses is 

LLO (Villanueva, Sijts et al. 1995).  CD8+ T cells produce perforin and granzymes that lyse L. 

monocytogenes- infected cells, resulting in the release of bacteria for phagocytosis (and 

subsequent destruction) by macrophages and neutrophils.  Both CD8+ and CD4+ T cells secrete 

IFN-γ, which will activate macrophages to full listericidal capacity (Stavru, Archambaud et al. 

2011).  Thus, the interplay between the innate and adaptive immune responses is critical in the 

clearance of L. monocytogenes and the generation of sterilizing immunity.           
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1.8) The role of Toll-like receptor signaling in macrophage activation. 

Macrophages express myriad receptors that allow them to recognize pathogen 

components and endogenous danger signals released from necrotic cells.  Among these are 

germline-encoded pattern recognition receptors (PRR) known as Toll-like receptors (TLRs).  

TLRs are type I transmembrane receptors that are present on the surface of host cells or are 

localized to a variety of intracellular compartments (Akira, Uematsu et al. 2006, Kawai and 

Akira 2010).  To date, 12 TLRs have been identified in mice; these receptors recognize a wide 

variety of pathogen-associated molecular patterns (PAMPs) such as lipoproteins, lipids, nucleic 

acids, and proteins that are derived from bacteria, fungi, and viruses.  TLR1, TLR2, TLR4, 

TLR5, and TLR6 are expressed on the cell surface and primarily recognize components of 

microbial membranes such as lipoproteins and flagellin (Kawai and Akira 2011).  TLR3, TLR7, 

TLR8, and TLR9 are localized within intracellular compartments such as endosomes and 

lysosomes and bind to pathogen-derived DNA and RNA (Blasius and Beutler 2010).  After 

recognizing a specific PAMP, TLRs activate signaling pathways that will elicit specific immune 

responses appropriate for combating the pathogen expressing that PAMP.  The nature of the 

signaling cascade that is triggered by TLR engagement depends on the adaptor molecule with 

which the receptor interacts.   

 

TLR4 forms a complex with MD2 on the cell surface and, in conjunction with CD14, 

binds lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria that can 

potently induce septic shock (Kawai and Akira 2010).  It signals through two pathways with 

distinct kinetics, one involving the adaptor MyD88 and the other involving an adaptor protein 
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known as TRIF.  MyD88, the first adaptor to be identified, interacts with all TLRs except TLR3 

and is also utilized by members of the IL-1 receptor family (Kawai and Akira 2011).  It induces 

inflammatory cytokine production through the activation of both NF-κB and mitogen-activated 

protein kinases (MAPK) (Akira, Uematsu et al. 2006).  The other adaptor, TRIF, is utilized by 

both TLR4 and TLR3 and induces type I interferon and inflammatory cytokine production.  

Thus, TLR4 regulates the production of inflammatory mediators both spatially and temporally.  

In the initial phase, the plasma membrane-localized adaptor TIRAP acts as a bridge that connects 

TLR to MyD88 upon engagement with LPS (Barton and Kagan 2009).  MyD88 subsequently 

recruits IRAKs, TRAF6, and the TAK1 complex, which promote activation of NF-κB and 

MAPK (Kawai and Akira 2011).  In the later phase, TLR4 it is trafficked to intracellular 

compartments where it complexes with adaptors TRAM and TRIF.  TRAF3 is subsequently 

recruited along with the protein kinases TBK1 and IKKi, which initiate IRF3 activation and the 

production of type I interferon (Barton and Kagan 2009).  The TRAM-TRIF complex also 

promotes a “late-phase” activation of NF-κB and MAPK through recruitment of TRAF6 and 

TAK1 (Kawai and Akira 2011).  Thus, detection of LPS leads to the production of inflammatory 

cytokines and ultimately, type I interferon through distinct MyD88-dependent and-independent 

signaling cascades.    

 

TLR2 complexed in a heterodimer with TLR6 is responsible for the recognition of 

another cell wall component, peptidoglycan (PGN), from Gram-positive bacteria such as L. 

monocytogenes (Takeuchi, Hoshino et al. 1999, Dziarski and Gupta 2010).  TLR2 can also be 

stimulated by other potential L. monocytogenes-derived ligands such as lipoteichoic acid (LTA) 

and lipoproteins (Travassos, Girardin et al. 2004, Kawai and Akira 2010).  However, TLR2-
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deficient mice exhibit little to no increased susceptibility as compared with wild type mice upon 

L. monocytogenes infection, suggesting that other TLRs may be important in the response to the 

bacterium (Edelson and Unanue 2002, Torres, Barrier et al. 2004, Janot, Secher et al. 2008).  

Indeed, MyD88-/- mice have a 3-4-log greater bacterial burden in the spleen and liver post-L. 

monocytogenes infection relative to wild type mice and succumb rapidly to the bacterial 

infection (Edelson and Unanue 2000).  Thus, it is evident that MyD88-dependent TLR signaling 

distinct from TLR2 is critical in the innate response to L. monocytogenes.  TLR4 is unlikely to 

contribute to the recognition of L. monocytogenes-derived ligands, as it primarily recognizes 

LPS, which is not present in Gram-positive bacteria (Witte, Archer et al. 2012).  Though L. 

monocytogenes-derived flagellin is recognized by TLR5, this recognition is irrelevant in studies 

with murine macrophages, which do not express TLR5 (Uematsu, Jang et al. 2006).  MyD88-

dependent TLR signaling from vacuolar compartments requires a transmembrane protein known 

as Unc93b, which localizes to TLR-containing endosomal compartments from the ER (Tabeta, 

Hoebe et al. 2006, Barbalat, Ewald et al. 2011).  After exposure to LLO-deficient L. 

monocytogenes, macrophages derived from Unc93b-deficient mice exhibit reduced expression of 

IL-12 and TNF, suggesting that L. monocytogenes-derived nucleic acids contribute to the 

MyD88-dependent response.  Additionally, a lysozyme-sensitive L. monocytogenes mutant is 

rapidly degraded within phagosomes and elicits enhanced MyD88-dependent cytokine 

production as compared to wild type bacteria (Boneca, Dussurget et al. 2007, Rae, Geissler et al. 

2011).  Taken together, these data suggest that TLRs localized to both the cell surface and 

vacuolar compartments recognize multiple L. monocytogenes-derived ligands and contribute to 

the resulting MyD88-dependent production of inflammatory cytokines and chemokines.   
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1.9) Intracellular bacteria activate a cytosolic surveillance pathway. 

   Unmethylated CpG DNA motifs that are derived from many different pathogens 

potently stimulate immune responses via endosomal TLR signaling.  However, pathogen-derived 

B-form DNA as well as single-stranded DNA with distinct structural characteristics can 

stimulate robust immune responses after sensing in the host cytosol (Hemmi, Takeuchi et al. 

2000, Ishii, Coban et al. 2006, Stetson and Medzhitov 2006).  In a variety of bacterial infections, 

the critical signaling molecule in the innate immune response to cytosolic nucleic acid ligands is 

STING (“stimulator of interferon genes”; also known as TMEM173, MPYS, MITA, and ERIS) 

(Ishikawa and Barber 2008, Ishikawa, Ma et al. 2009, de Almeida, Carvalho et al. 2011, Parker, 

Martin et al. 2011, Manzanillo, Shiloh et al. 2012).  STING is anchored in the endoplasmic 

reticulum by four transmembrane domains and is activated by upstream DNA sensing events in a 

manner that is as of yet incompletely defined (Paludan and Bowie 2013).  However, it is 

established that in response to cytosolic dsDNA, STING relocalizes to a perinuclear region of the 

cytosol where it forms complexes with TANK-binding kinase 1 (TBK-1) (Ishikawa, Ma et al. 

2009, Burdette and Vance 2013).  The carboxy-terminal domain (CTD) of STING acts as a 

scaffold to bring TBK-1 in close proximity to IRF-3, thereby facilitating IRF-3 phsophorylation 

(Tanaka and Chen 2012).  Phosphorylated IRF-3 promotes the expression of IFN-β and co-

regulated genes (Leber, Crimmins et al. 2008).   

  

Wild type L. monocytogenes activates the STING-IRF3 cytosolic surveillance pathway 

upon gaining entry to the host cytosol but until recently, the bacterial ligands responsible for this 

activation were unknown.  A forward genetic screen designed to identify bacterial mutants that 
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altered IFN-β expression revealed that multidrug resistance (MDR) transporters are critical for 

IFN-β expression in L. monocytogenes-infected cells.  This finding suggested that MDRs are 

perhaps responsible for the transport of bacterial ligands, likely small nucleic acids, into the host 

cytosol (Witte, Archer et al. 2012).  Indeed, subsequent analyses revealed that cyclic-di-AMP 

and cyclic-di-GMP activate the STING-IRF3 pathway and that induction of IFN-β by either 

dinucleotide depends on STING (McWhirter, Barbalat et al. 2009, Woodward, Iavarone et al. 

2010, Jin, Hill et al. 2011, Sauer, Sotelo-Troha et al. 2011).  Given that STING does not directly 

bind to dsDNA, it remains an open question as to which proteins act upstream of STING to 

detect L. monocytogenes-derived DNA.  However, it is clear that L. monoctyogenes DNA and/or 

cyclic dinucleotides induce the STING-dependent production of type I interferon, which in turn 

regulates the host response to the infection.   

 

1.10) Intracellular bacteria promote inflammasome activation. 

 Inflammasomes make up another cytosolic surveillance pathway, as they sense and 

respond to microbe-derived PAMPs as well as a variety of danger-associated molecular patterns 

(DAMPs) such as ATP, uric acid crystals, or heat-shock proteins that are primarily derived from 

dying or damaged cells (Martinon, Mayor et al. 2009, Lamkanfi and Dixit 2014).  Binding of a 

subset of NOD-like receptors (NLRs) such as NLRP3 and NLRC4 or the PYHIN family member 

absent in melanoma 2 (AIM2) to cognate ligands leads to the recruitment of the inactive cysteine 

protease pro-caspase 1, which associates with the NLR or AIM2 through the adaptor ASC.  

Inflammasome activation results in the proteolytic cleavage of pro-caspase 1 to active caspase 1, 

which subsequently cleaves pro-IL-1β and pro-IL-18 to yield bioactive IL-1β and IL-18, 
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respectively (Lamkanfi 2011).  The involvement of various inflammasomes in the activation of 

caspase 1 during L. monocytogenes infection has proved controversial.  The NLRP3 

inflammasome, which recognizes a diverse array of stimuli including ATP, particulate matter, 

and pore-forming toxins such as LLO, was initially reported to be required for inflammasome 

activation during L. monocytogenes infection (Mariathasan, Weiss et al. 2006).  However, 

subsequent reports suggested that other inflammasomes are involved as well (Franchi, 

Kanneganti et al. 2007, Kim, Bauernfeind et al. 2010).  Indeed, AIM2-deficient macrophages 

exhibit a significant defect in caspase 1 activation and IL-1β production after infection with L. 

monocytogenes (Rathinam, Jiang et al. 2010).  AIM2 is known to be required for caspase 1 

activation in response to dsDNA specifically, as AIM2-deficient macrophages produce wild type 

levels of IL-1β upon treatment with NLRP3 and NLRC4 inflammasome agonists but exhibit a 

near-complete defect in IL-1β production after exposure to B-form dsDNA (Fernandes-Alnemri, 

Yu et al. 2010, Rathinam, Jiang et al. 2010).  Taken together, these data suggest that AIM2 

contributes to inflammasome activation by L. monocytogenes DNA.  Though L. monocytogenes 

was reported to activate caspase 1 through the NLRC4 (Ipaf) inflammasome as well, its 

activation is known to depend on flagellin, which is not expressed by all strains of L. 

monocytogenes at physiologic temperatures (Way, Thompson et al. 2004).  Indeed, variations in 

the expression of various L. monocytogenes factors may influence the mechanism by which 

caspase 1 is activated to induce the processing of pro-inflammatory cytokines IL-1β and IL-18.   
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1.11) Hypothesis 

We hypothesize that genotoxic reactive oxygen and nitrogen intermediates produced by 

activated macrophages may induce DNA damage in the macrophage genome.  As in developing 

and activated B cells, this damage and the resulting DDR may act as potent signaling 

intermediates that impact macrophage function in the innate immune response (Figure 1).  Here, 

we have developed an experimental system to assess whether DDR is activated in macrophages 

that have been exposed to LPS and IFN-γ or the intracellular bacterium Listeria monocytogenes 

and to address the impact of the DDR on macrophage function.     
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Figure 1:  Genotoxic intermediates produced by classically activated macrophages may 

initiate a DDR.   
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Mice.  All mice were bred and maintained under specific pathogen-free conditions at the 

Washington University School of Medicine and were handled in accordance with the guidelines 

set forth by the Division of Comparative Medicine of Washington University.  Atmc/c mice (Zha, 

Sekiguchi et al. 2008) were extensively backcrossed to the C57BL/6 background and were 

monitored by the analysis of microsatellite markers at the Rheumatic Disease Core Center, 

Washington University School of Medicine (St. Louis, MO).  They were then crossed to 

LysMcre/+ mice (Clausen, Burkhardt et al. 1999) and bred onto a Scid (Prkdcscid) background.  

Atm-/- mice were generated through germline Cre-mediated deletion of the aforementioned 

conditionally targeted ATM allele.  Lysmcre/+, Ifnar1-/-, Sting-/-, Myd88-/-, Atm-/-, Scid, Nos2-/- and 

gp91phox-/- mice were all maintained on a C57BL/6 background.  In a subset of experiments, Atm-

/- mice on a mixed genetic background were used with Atm+/+ littermates as controls.  

Mre11ATLD1/ATLD1 have been described previously (Theunissen, Kaplan et al. 2003).  All mice 

were analyzed between 4 and 8 wks. of age.   

 

Bacteria.  Listeria monocytogenes strains used in this study were the wild-type strain EGD and 

the listeriolysin O (LLO) deletion mutant EJL1.  L. monocytogenes was stored as glycerol stocks 

at -80°C.  For all ex vivo experiments with bone marrow-derived macrophages (BMDMs), 

cultures of L. monocytogenes were grown for 12-15 hr. in Brain Heart Infusion (BHI) liquid 

media (Becton Dickinson) at 37°C without agitation.  L. monocytogenes concentration was 

estimated from a standard curve at OD560.  L. monocytogenes was diluted into DMEM 

supplemented with 10% heat-inactivated FBS (HyClone, Thermo Scientific) before infection of 

BMDMs.  Heat-killed L. monocytogenes (hk L. m. strain EGD) was prepared by incubation of 

mid-log bacteria at 70°C for 3 hr. followed by three washes with sterile 1X PBS.   
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Primary Cell Culture.  Bone marrow was harvested and cultured for 6 days in complete 

DMEM containing 10% heat- inactivated FBS, 5% heat- inactivated horse serum (Sigma), and 

20% culture supernatant from L929 fibroblasts as a source of macrophage colony-stimulating 

factor (M-CSF).  On day 6, BMDMs were removed from tissue culture dishes and re-plated in 6-

well plates at a density of 2.5 x 106/well in the media detailed above.  16 hr. later, BMDMs were 

treated with 100 ng/mL LPS (Escherichia coli serotype 055:B5) (Sigma), 100 U/mL murine 

IFN-γ (PBL Interferon Source), or both.  In a subset of experiments, BMDMs were co-treated 

with a specific chemical inhibitor of the inducible nitric oxide synthase (iNOS), aminoguanidine 

hemisulfate (1 mM) (Sigma) or with the cell-permeable superoxide scavenger manganese (III) 

tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP) (100 uM) (Alexis).  In 

experiments in which DNA-PKcs activity was blocked chemically, the specific ATP-competitive 

inhibitor NU7026 was used (20 uM) (Sigma).   

 

In ex vivo L. monocytogenes experiments, BMDMs were re-plated in antibiotic-free complete 

media (containing 20% culture supernatant from L929 fibroblasts) and infected 16 hr. later with 

L. monocytogenes at a multiplicity of infection (MOI) of 5.  In experiments where live L. 

monocytogenes was used, Gentamicin (5 ug/mL) (Gibco) was administered 30 minutes post-

infection to kill extracellular L. monocytogenes.  All ex vivo L. monocytogenes experiments were 

done in the presence or absence of 100 ng/mL murine IFN-γ (R&D Systems).   

 

Primary peritoneal macrophages were generated by harvesting resident peritoneal exudate cells 

from C57BL/6 mice via peritoneal lavage.  Cells were plated in 24-well plates at a density of 1-2 
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x106 cells/well and were incubated at 37°C for 4 hr. in complete DMEM.  At this time, media 

was removed and the remaining adherent macrophages were incubated for 24 hr. in complete 

DMEM containing LPS (100 ng/mL), IFN-γ (100 U/mL), or both.   

 

Bleocin Damage Assay.  Wild type BMDMs and mouse embryonic fibroblasts (MEFs) were 

treated with bleomycin (1 ug/mL) (BleocinTM) (Millipore) for 6 hr. without or with IFN-β (100 

U/mL) (PBL Interferon Source) pre-treatment for 3 hr.     

 

Southern Blot Analysis.  Southern blot analyses were performed on genomic DNA digested 

with restriction enzyme KpnI using the 3’ ATM conditional probe as previously described (Zha, 

Sekiguchi et al. 2008).  The 3’ probe was generated by PCR amplification using the following 

oligonucleotides: 

5’-GGCATCTGCTTGA CTGCAGTAAATCAGGCGG-3′ and  

5′-GGGGTACTGCAGCATAGGGCTGGAAGAGG-3′.   

 

Western Blot Analysis.  BMDMs and MEFs were isolated in RIPA buffer and whole cell 

lysates were generated with LDS sample buffer (Invitrogen) supplemented with dithiothreitol 

(DTT).  For immunoblot analysis of proteins present in culture supernatants, protein was 

precipitated with 7.2% w/v trichloroacetic acid (TCA) (Sigma) followed by two acetone wash 

steps. Standard immunoblotting techniques were used as previously described (Helmink, Tubbs 

et al. 2011).  Primary antibodies used were anti-γ-H2AX (clone JBW301) (Millipore), anti-
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H2AX (Millipore), anti-phospho-KAP-1 (Bethyl Laboratories), anti-KAP-1 (GeneTex), anti-

caspase 1 (p20, Casper-1) (AdipoGen), anti-AIM2 (Cell Signaling Technology), anti-ATM 

(clone 5C2) (GeneTex), anti-DNA-PK (Ab-4, Cocktail) (NeoMarkers), anti-vinculin (Cell 

Signaling Technology), and anti- glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

(Sigma).  Secondary reagents were horseradish peroxidase–conjugated anti–mouse IgG 

(Promega) or horseradish peroxidase–conjugated anti–rabbit IgG (Cell Signaling Technology). 

 

Immunoflurescence.  BMDMs were plated on 12 mm glass coverslips (2.5 x 105 cells/coverslip) 

in 24-well plates and infected with L. monocytogenes as described above. 9 hr. post-infection, the 

cells were fixed with 4% formaldehyde in 1X PBS for 10 min. at room temperature, 

permeabilized in 0.5% Triton X-100 in PBS for 5 min., and then washed with 1X PBS.  

Coimmunostaining with primary and secondary antibodies was performed with a blocking 

solution of 3% bovine serum albumin (BSA) in 1X PBS at 37°C for 30 min., and cells were 

mounted with ProLong Gold Antifade reagent containing 4′,6-diamidino-2-phenylindole (DAPI) 

(Invitrogen).  Antibodies used for staining were anti-γ-H2AX (clone JBW301) (1:2,000 dilution) 

(Millipore) and Difco Listeria O Antiserum Poly Serotypes 1, 4 (1:200 dilution) (BD).  

Antibodies used for secondary staining were Alexa Fluor 488–goat anti-rabbit IgG (1:2,000) 

(Invitrogen), and Alexa Fluor 594–goat anti-mouse IgG (1:2,000) (Invitrogen).  Imaging was 

performed with a microscope (BX-53; Olympus), using an ApoN 60×/1.49-numerical-aperture 

(NA) oil immersion lens and cellSens Dimension software.  
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Gene Arrays.  Wild type BMDMs and mouse embryonic fibroblasts (MEFs) were treated with 

bleomycin (1 ug/mL) (BleocinTM) (Millipore) for 8 hr. without or with IFN-β (100 U/mL) (PBL 

Interferon Source) pre-treatment for 3 hr.  RNA was isolated from two independent BMDM and 

MEF cultures using the RNeasy Mini Kit (Qiagen).  Gene expression profiling was performed 

using Ilumina MouseRef-8 expression microarrays by the Washington University Genome 

Technology Access Center, Washington University School of Medicine (St. Louis, MO) 

according to the manufacturer’s protocols.  Signal intensities were quantile normalized and all 

negative intensities were set to 1.   

     

RNA was isolated as described above from two independent BMDM cultures for each genotype 

(LysMcre/+ and Scid:Atmc/c:LysMcre/+) after no infection or infection with L. monocytogenes for 24 

hrs.  Gene expression profiling was performed using Illumina MouseRef-8 expression 

microarrays by the Washington University Genome Technology Access Center, Washington 

University School of Medicine (St. Louis, MO) according to the manufacturer’s protocols.  As 

with the other gene array, signal intensities were quantile normalized and all negative intensities 

were set to 1.  Fold changes were calculated based on the average of two biological replicates for 

each genotype.  Genes with a ≥ 5-fold change in L. m.-infected versus uninfected LysMcre/+ 

BMDMs were selected.  Of these, a secondary filter identified genes with decreased expression 

(fold change of ≥ 1.5) in Scid:Atmc/c:LysMcre/+ relative to LysMcre/+ BMDMs.  Only these genes 

were considered for further analysis.  
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Quantitative RT-PCR Analysis.  RNA was isolated using the RNeasy Mini Kit (Qiagen) and 

reversed transcribed using a poly-dT primer and SuperScriptII reverse transcriptase (Invitrogen) 

according to the manufacturer’s protocol.  RT-PCR was performed using Brilliant II SYBR 

Green (Agilent Technologies) and acquired on an Mx3000P (Agilent Technologies).  Primer 

sequences are detailed in Table 1.  

 

Cytokine and Nitrite Determinations.  Supernatant IL-1β and IL-18 levels were measured 

using the OptEIA ELISA Set (BD Biosciences) and Mouse IL-18 ELISA Set (MBL), 

respectively.  Both sets were used in accordance with the manufacturer’s instructions.  Nitric 

oxide levels	  were determined in thawed supernatants by measuring the amount of nitrite, a stable 

metabolic product of nitric oxide.  The assay mixture contained supernatant and Griess reagent in 

a 1:1 ratio in a flat-bottom 96-well tissue culture plate, and absorption was measured at 540 nm 

using a microplate reader.  The amount of nitrite was determined by comparison of unknowns to 

a NaNO2 standard curve.   

 

NK-BMDM Co-Culture Assay.  BMDMs were cultured in 12-well plates at a density of 1 x 106 

cells/well and infected with L. monocytogenes as described above.  Splenic NK cells were 

magnetically sorted from whole splenocytes obtained from C57BL/6 mice using CD49b (DX5) 

MicroBeads and MS columns (Miltenyi).  12 hr. post-L. monocytogenes infection of BMDM, 0.5 

x 106 purified splenic NK cells were added to each well in the presence of IL-2 (50 U/mL) 

(PeproTech) to foster NK cell survival with or without murine IL-18 (10 ng/mL) (MBL).  10 hr. 

after adding the purified NK cells to the BMDMs, protein transport was inhibited with GolgiStop 
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(BD Biosciences).  5 hr. later, cells were harvested and nonspecific binding was blocked with 5 

ug/mL of anti-CD16/32 (2.4G2; BD Pharmingen) before cell surfaces were stained with anti-

NK1.1 (PK136; eBioscience), anti- CD11b (M1/70; BD Pharmingen), and anti-F4/80 (BM8; 

BioLegend).  Cells were fixed and permeabilized according to standard protocol and intracellular 

staining for IFN-γ (XMG1.2, eBioscience) was performed.  Data were acquired on a FACSCanto 

II (BD Biosciences) and were analyzed with FlowJo software version 9.6.4 (TreeStar). 

 

Coverslip Assay.  BMDM were plated on 12 mm glass coverslips (2.5 x 105 cells/coverslip) in 

24-well plates and infected with L. monocytogenes as described previously.  At several 

timepoints post-infection, coverslips were washed in warm 1X PBS and then placed into 10 ml 

cold sterile deionized water and vortexed for 30 s. to lyse the BMDMs.  Each condition was 

assayed in triplicate.  Serial dilutions of lysates were plated on BHI-agar plates. Bacterial 

colonies were counted after overnight incubation at 37°C. 

 

LDH Release Assay.  Percent lactate dehydrogenase (LDH) release in culture supernatants was 

determined with the LDH Cytotoxicity Detection Kit (Clontech) in accordance with the 

manufacturer’s recommendations.  Data for Scid:Atmc/c:LysMcre/+ and LysMcre/+ are given as a 

percentage of the LDH released by equivalent cell numbers of each genotype lysed with 1% 

Triton X-100.      
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Statistical analysis.  All P-values were generated via Student’s two-tailed t test using Prism 

Version 5.  P-values below 0.05 were considered statistically significant. 
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 Forward Primer Reverse Primer 

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Cxcl1 CTGGGATTCACCTCAAGAACATC CAGGGTCAAGGCAAGCCTC 

Cxcl10 CCAAGTGCTGCCGTCATTTTC GGCTCGCAGGGATGATTTCAA 

Ccl2 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT 

Ccl3 TTCTCTGTACCATGACACTCTGC CGTGGAATCTTCCGGCTGTAG 

Ccl4 TTCCTGCTGTTTCTCCTCTTACACCT CTGTCTGCCTCTTTTGGTCAG 

Ccl5 GCTGCTTTGCCTACCTCTCC TCGAGTGACAAACACGACTGC 

Marco GCACAGAAGACAGAGCCGATTT GCCACAGCACATCTCTAGCATCT 

Cd69 TGGTGAACTGGAACATTGGA CAGTGGAAGTTTGCCTCACA 

Il1b AGCTTCCTTGTGCAAGTGTCT GACAGCCCAGGTCAAAGGTT 

Il18 TCAAAGTGCCAGTGAACCCC GGTCACAGCCAGTCCTCTTAC 

Aim2 CGGGAAATGCTGTTGTTGAC TGCTCCTGGCAATCTGAAA 

Nlrp3 TCCTGCAGAGCCTACAGTTG ACGCCTACCAGGAAATCTCG 

Il12p40 ACCTGTGACACGCCTGAAGAAGAT TCTTGTGGAGCAGCAGATGTGAGT 

 

Table 1.  Oligonucleotide sequences used in quantitative RT-PCR analysis.    
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Chapter 3: Signaling requirements for the DDR in activated macrophages 
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In response to Toll-like receptor (TLR) engagement coupled with type I or type II 

interferon receptor signaling, macrophages become classically activated.  Activated macrophages 

up-regulate MHC class II and co-stimulatory molecules, have enhanced phagocytic capacity, and 

express a wide variety of inflammatory cytokines and chemokines.  They also produce genotoxic 

reactive oxygen and nitrogen intermediates which function to compromise or eliminate invading 

pathogens (Mosser and Edwards 2008, Nish and Medzhitov 2011).  The primary source of 

reactive oxygen species (ROS) in classically activated macrophages is the NADPH oxidase, 

which is rapidly assembled at plasma and phagosomal membranes upon exposure to 

inflammatory stimuli (Nunes, Demaurex et al. 2013).  Nitric oxide (NO), by contrast, is 

produced by the inducible nitric oxide synthase (iNOS) when signals downstream of pattern 

recognition receptors (PRR) cooperate with type I or II interferon signaling in the full 

transcriptional induction of the Nos2 gene.  ROS such as free radicals or one-electron oxidants 

can react with DNA to form a variety of different lesions, including modified bases, inter- and 

intra-strand crosslinks, and strand breaks (Jena, Anand et al. 2012).  Similarly, reactive nitrogen 

species (RNS) generated by a reaction between NO and oxygen radicals can cause significant 

DNA damage, including base modifications and DNA breaks (Sawa and Ohshima 2006, Bogdan 

2015).  Additionally, both ROS and RNS can alter protein function through the covalent 

modification of key residues within the protein (Finkel 2011, Bogdan 2015).  Given that reactive 

oxygen and nitrogen species are highly genotoxic, we hypothesize that these intermediates may 

damage the macrophage host genome, leading to the initiation of a DNA damage response 

(DDR) in these cells.  In G1-phase cells, this response is initiated through the activation of PI3-

like kinase family members ataxia telangiectasia mutated (ATM) and the DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs) (Shiloh 2003).  Thus, we asked three major 
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questions: (1) Is the DDR initiated in classically activated macrophages?  (2) If so, what 

signaling pathways are required for the response?  (3) Are PI3-like kinases ATM and/or DNA-

PKcs responsible for initiating a DDR in activated macrophages?  

 

3.1) Experimental system to assess DDR in activated macrophages. 

BMDMs were generated from whole bone marrow isolated from the femurs of 4-8-week-

old mice in complete media containing supernatant from L929 fibroblasts as a source of 

macrophage-colony stimulating factor (M-CSF) (Chapter 2) (Figure 2A).  After 6 days in 

culture, adherent cells were removed from culture dishes and re-plated in the same media.  Flow 

cytometric analysis revealed that the resulting cell cultures were overwhelmingly composed of 

murine bone marrow-derived macrophages, as >95% expressed the common myeloid marker 

CD11b and the macrophage marker F4/80 (Figure 2B) (Ho and Springer 1982, McGarry and 

Stewart 1991).  16-20 hours later, the BMDMs were classically activated either with the TLR4 

agonist lipopolysaccharide (LPS) in the presence of murine IFN-γ, or with the intracellular 

bacterium Listeria monocytogenes, which activates a variety of TLRs.   

 

To assess whether the DDR was initiated in activated macrophages, we asked whether 

known DDR substrates were phosphorylated in macrophages after exposure to LPS and IFN-γ or 

L. monocytogenes.  During the canonical response to DNA damage, hundreds of downstream 

target proteins are phosphorylated by PI3-like kinases ATM and DNA-PKcs (Matsuoka, Ballif et 

al. 2007, Helmink and Sleckman 2012).  Specifically, we examined the phosphorylation of the 

chromatin H2A variant H2AX at serine 139 (known as γ-H2AX) or phosphorylation of KAP-1, a 



 41 

soluble protein that is phosphorylated at serine 824 after the induction of DNA damage.  Though 

these proteins do not have any known function in activated macrophages, detection of their 

phosphorylated forms using specific antibodies is a reliable indicator that a DDR has been 

initiated.       

 

3.2) DDR is initiated in classically activated macrophages. 

We found that treatment of BMDMs with LPS in the presence of IFN-γ activated them to 

produce genotoxins, as nitrite was detectable in the cell supernatants 9 hours post-treatment 

when assayed with the Griess reagent (Figure 3A) (Mosser and Zhang 2008).  Treatment of 

BMDMs with LPS and IFN-γ (but with neither agent alone) resulted in the initiation of a robust 

DDR, as evidenced by γ-H2AX formation and KAP-1 phosphorylation (Figure 3B).  To address 

whether DDR is similarly activated in primary macrophages, we isolated exudate from the 

peritoneal cavity of C57BL/6 mice.  After several hours in culture, we removed non-adherent 

cells and treated the remaining adherent macrophages with LPS and IFN-γ.  As with BMDMs, 

we observed γ-H2AX formation and KAP-1 phosphorylation in these cells, indicative of DDR 

activation (Figure 3C).  We conclude that a robust DDR is initiated in peritoneal and bone 

marrow-derived macrophages after exposure to LPS in the presence of type II interferon (IFN-γ). 

     

We next sought to test whether BMDMs activated by a pathogen would likewise induce a 

DDR.  To address this question, we designed an experimental system to assay the DDR in 

BMDMs infected with the intracellular bacterium L. monocytogenes, which activates both TLR 

and cytosolic signaling pathways.  We first asked whether in vitro L. monocytogenes infection 
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activates DDR.  Strikingly, we observed robust γ-H2AX formation and KAP-1 phosphorylation 

in L. monocytogenes-infected macrophages without the addition of IFN-γ (Figure 4A).  In 

contrast to LPS, L. monocytogenes is taken up into phagosomal vesicles upon infection and 

subsequently escapes into the host cytosol in a process that depends on the pore-forming 

hemolysin listeriolysin O (LLO), which destroys phagosomal membranes (Portnoy, Jacks et al. 

1988, Stavru, Archambaud et al. 2011).  Cytosolic invasion of L. monocytogenes occurs rapidly 

after infection and triggers myriad signaling pathways within infected cells (Stavru, Archambaud 

et al. 2011).  Among them is the production of type I interferon downstream of the ER-localized 

sensor STING, which is activated by cyclic dinucleotides produced by L. monocytogenes itself 

(Woodward, Iavarone et al. 2010, Witte, Archer et al. 2012).  We therefore asked whether 

cytosolic entry is required for a L. monocytogenes-elicited DDR.  To address this, wild type 

BMDMs were either treated with heat-killed L. monocytogenes or infected with a LLO-deficient 

strain of live L. monocytogenes (EJL1).  Both activate TLR signaling; however neither can 

initiate signaling pathways in the host cytoplasm (Edelson and Unanue 2002, Stavru, 

Archambaud et al. 2011).  Neither treatment with heat-killed L. monocytogenes nor infection 

with LLO-deficient L. monocytogenes activated the DDR.  However, co-treatment of the L. 

monocytogenes-infected cells with exogenous IFN-γ led to robust γ-H2AX formation in both 

cases (Figure 4B and 4C).  Taken together, we conclude that cytosolic entry is required for the 

initiation of a DDR in L. monocytogenes-infected cells in the absence of type II interferon. 
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3.3) DDR depends on TLR and interferon signaling. 

Classical activation of macrophages depends on the sensing of various microbial 

components by TLRs.  Thus, we asked whether the initiation of the DDR in L. monocytogenes-

infected macrophages similarly requires TLR signaling.  To address this, we infected BMDMs 

deficient in the TLR adaptor protein MyD88 (Myd88-/-) with L. monocytogenes.  We found that 

there was a significant reduction in γ-H2AX formation in infected Myd88-/- BMDMs relative to 

WT BMDMs (Figure 5A).  Thus, initiation of the DDR depends, at least in part, on TLR 

signaling mediated by the adaptor MyD88.  The slight DDR that is detected may be mediated by 

MyD88-independent TLR or NLR signaling pathways.  For example, the cytosolic NOD family 

members Nod1 and Nod2 activate NF-κB in L. monocytogenes-infected macrophages through 

the adaptor RIP2 (Park, Kim et al. 2007).       

 

Given that cytosolic entry of L. monocytogenes is required for the initiation of DDR, we 

hypothesized that this may be due to a requirement for type I interferon production downstream 

of the cytosolic sensor STING (Figure 4B and 4C) (Paludan and Bowie 2013).  Indeed, infection 

of STING-deficient (Sting-/-) BMDMs with L. monocytogenes did not lead to DDR activation 

(Figure 5B).  The DDR also depends on signaling through the type I interferon receptor 

(IFNAR), as we observed a near-complete block in the DDR in L. monocytogenes-infected type I 

interferon receptor-deficient (Ifnar1-/-) BMDMs (Figure 5C).  Taken together, we conclude that 

the activation of macrophages through TLR and interferon receptor signaling leads to the 

initiation of a robust DDR. 
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3.4) ATM and DNA-PKcs kinases initiate DDR in activated macrophages. 

In G1-phase cells, the DDR is initiated through the activation of ATM and DNA-PKcs, 

both members of the PI3-like family of serine-threonine kinases (Shiloh 2003).  Once activated, 

these kinases phosphorylate many downstream targets that mediate diverse responses to DNA 

damage (Matsuoka, Ballif et al. 2007).  In most cell types analyzed to date, ATM is the primary 

kinase responsible for activating DNA damage responses in G1-phase cells, with DNA-PKcs 

able to partially compensate by phosphorylating several known DDR substrates in ATM-

deficient cells (Rouse and Jackson 2002, Callen, Jankovic et al. 2009).  Thus, we wished to 

interrogate the requirements for ATM and DNA-PKcs in the initiation of the DDR in activated 

BMDMs.  To address this experimentally, we generated BMDMs from wild type, ATM-deficient 

(Atm-/-), and Scid mice, which have a point mutation in the DNA-PKcs gene that results in low-

level expression of a truncated, non-functional DNA-PKcs protein (Blunt, Gell et al. 1996).  

Phosphorylation of the known ATM substrate KAP-1 was almost completely abrogated in ATM-

deficient (Atm-/-) BMDMs after infection with L. monocytogenes (Figure 6A).  However, we 

observed robust KAP-1 phosphorylation in L. monocytogenes-infected Scid BMDMs, indicating 

that DNA-PKcs is not required for KAP-1 phosphorylation in L. monocytogenes-infected 

BMDMs (Figure 6A).  Intriguingly, we observed robust γ-H2AX formation in wild type, Atm-/-, 

and Scid BMDMs after infection with L. monocytogenes (Figure 6B).  Taken together, these data 

indicate that though KAP-1 phosphorylation depends on ATM, robust γ-H2AX formation is 

initiated in L. monocytogenes-infected in the absence of either ATM or DNA-PKcs.  To 

determine whether this is due to the activation of both ATM and DNA-PKcs in these cells, we 

wished to generate macrophages deficient in both ATM and DNA-PKcs.  However, mice with 

germline loss of ATM and DNA-PKcs exhibit early embryonic lethality, precluding the 
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generation of BMDMs (Sekiguchi, Ferguson et al. 2001).  Thus, we generated mice that were 

homozygous for both the conditionally targeted ATM allele (Atmc) and for a Cre knock-in at the 

lysozyme M (Lyz2) locus (Atmc/c:LysMcre/cre) (Clausen, Burkhardt et al. 1999, Zha, Sekiguchi et 

al. 2008).  Lysozyme M is expressed in subsets of monocytic lineage cells and thus, the Cre 

knock-in should delete ATM in macrophages and a subset of other myeloid cell types (Clausen, 

Burkhardt et al. 1999).  Indeed, BMDMs from Atmc/c:LysMcre/cre  mice had no detectable ATM 

protein, whereas thymocytes from the same mice did not exhibit any appreciable reduction in 

ATM protein levels (Figure 7A).  We then crossed the Atmc/c:LysMcre/cre mice to the Scid 

background to eliminate both kinases in BMDMs generated from these mice.  The resulting 

Scid:Atmc/c:LysMcre/+ mice were viable and macrophages derived from these mice exhibited 

efficient deletion of the Atmc allele, generating the Atm- allele (Figure 7B).  Thus, we 

successfully generated a mouse model in which myeloid lineage cells, including macrophages, 

are deficient in both ATM and DNA-PKcs.  

 

After infection with L. monocytogenes, we observed a near-complete block in KAP-1 

phosphorylation in ATM-deficient (Atm-/-) BMDMs, but not in wild type and DNA-PKcs (Scid) 

BMDMs (Figure 6A).  In contrast, robust γ-H2AX formation was observed in all three genotypes 

after exposure to L. monocytogenes (Figure 6B).  To determine whether this is due to the 

activation of both ATM and DNA-PKcs during L. monocytogenes infection, we examined γ-

H2AX formation and KAP-1 phosphorylation in L. monocytogenes-infected 

Scid:Atmc/c:LysMcre/+ BMDMs, which are deficient in both ATM and DNA-PKcs.  As was 

observed with wild type BMDMs, LysMcre/+ BMDMs exhibited a robust DDR post-L. 

monocytogenes infection (Figure 8A).  In contrast, ATM- and DNA-PKcs-deficient 
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(Scid:Atmc/c:LysMcre/+) BMDMs exhibited a near-complete abrogation of both γ-H2AX 

formation and KAP-1 phosphorylation upon infection with L. monocytogenes (Figure 8A).  This 

is not due to a rapid clearance of L. monocytogenes infection in ATM- and DNA-PKcs-deficient 

(Scid:Atmc/c:LysMcre/+) BMDMs as compared to LysMcre/+ controls, as the two genotypes 

harbored similar levels of L. monocytogenes throughout the course of infection (Figure 8B).  

Additionally, the near-complete block in the DDR in Scid:Atmc/c:LysMcre/+ BMDMs was not due 

to a general activation defect in these cells, as equivalent levels of nitrite were detected in the 

supernatants of LysMcre/+ and Scid:Atmc/c:LysMcre/+ LysMcre/+ BMDMs after L. monocytogenes 

infection (Figure 8C).  The kinase requirements for DDR activation in LPS- and IFN-γ-activated 

BMDMs were similar to those observed in L. monocytogenes-infected BMDMs.  We observed γ-

H2AX formation in ATM-deficient (Atm-/-) BMDMs and wild type BMDMs that were treated 

with a specific chemical inhibitor of DNA-PKcs, NU7026 (Figure 9A).  KAP-1 phosphorylation, 

however, depended entirely on ATM, as we observed robust KAP-1 phosphorylation in LPS- 

and IFN-γ-treated BMDMs that were co-treated with NU7026, which blocks DNA-PKcs kinase 

activity (Figure 9B).  As was observed in L. monocytogenes-infected BMDMs, LPS- and- IFN-γ-

induced DDR was nearly completely abrogated in ATM-deficient (Atm-/-) BMDMs when DNA-

PKcs kinase activity was also blocked (Figure 9A and 9B).  Taken together, we conclude that 

ATM and DNA-PKcs are both activated and participate in the DDR that is initiated in activated 

macrophages. 
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3.5) Summary and Discussion 

Here we demonstrate that a robust DDR is initiated in macrophages that are activated 

with LPS and IFN-γ or the intracellular pathogen L. monocytogenes.  In L. monocytogenes-

infected macrophages, this response depends on signals downstream of TLRs in combination 

with type I or type II interferon signaling.  γ-H2AX formation is observed in wild type, ATM-

deficient, and DNA-PKcs-deficient macrophages after exposure to L. monocytogenes, but is 

nearly abrogated in macrophages deficient in both kinases, indicating that both ATM and DNA-

PKcs are activated and participate in the DDR that is elicited by L. monocytogenes infection.  

Similarly, γ-H2AX formation is observed after LPS- and IFN-γ-treatment in both ATM-deficient 

macrophages and in macrophages in which DNA-PKcs kinase activity has been blocked.  In 

contrast, KAP-1 phosphorylation depends on ATM in activated macrophages.  Taken together, 

these data suggest that ATM and DNA-PKcs have differential abilities in the phosphorylation of 

H2AX and KAP-1 and thus, have both unique and overlapping functions in the initiation of the 

DDR in activated macrophages.  The differential requirements for ATM and DNA-PKcs in the 

activation of these two substrates may be related to the localization of the substrates within the 

nucleus.  KAP-1 is a diffusible soluble protein, whereas the histone H2A variant H2AX is a key 

component of chromatin and is therefore closely associated with DNA DSB sites.  Indeed, γ-

H2AX spans hundreds of kilobases from the DNA break site, forming a platform for DNA repair 

factors.  As both ATM and DNA-PKcs are specifically recruited to DNA DSBs by the MRN and 

Ku sensors, respectively, it is likely that both kinases will be in close proximity with chromatin 

that is associated with the break.  Macrophages are frequently exposed to a variety of genotoxic 

intermediates that are necessary byproducts of their function in the innate immune response to 

infection.  Thus, these cells may have evolved a complex response to DNA damage that involves 
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the activity of both ATM and DNA-PKcs downstream of the repair platform that is assembled 

after the propagation of γ-H2AX.  It is possible that once activated at the break site, these kinases 

phosphorylate both common and distinct targets to enable the macrophage to cope with extensive 

genotoxic stress.  The requirement for ATM but not DNA-PKcs in the phosphorylation of 

soluble KAP-1 may support this idea.  Unfortunately, a lack of specific antibodies for many of 

the putative downstream targets of ATM and DNA-PKcs precludes a deeper understanding of 

the requirements for each kinase in the DDR that is initiated in activated macrophages.  Thus, it 

is difficult to assess the roles of each kinase in promoting different aspects of the DDR.  

However, we observe that ATM and DNA-PKcs have both distinct and overlapping roles in the 

regulation of the genetic program and inflammasome activation in L. monocytogenes-infected 

macrophages (Chapter 5).  These findings support the notion that both kinases are critical for a 

fully functional DDR in activated macrophages.         
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Figure 2.  Generation and activation of BMDMs.   
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Figure 2 Legend.  Generation and activation of BMDMs.  (A) Schematic outlining the 

isolation of whole bone marrow from the femurs of mice and the generation of BMDMs in M-

CSF-containing media.  BMDMs are subsequently activated with LPS and IFN-γ or L. 

monocytogenes.  (B) Flow cytometric analysis of CD11b and F4/80 surface expression on wild 

type BMDMs generated from whole bone marrow cultured in M-CSF-containing media for 6 

days.   Grey = Isotype control, Blue = CD11b, Red = F4/80.       
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Figure 3.  Classically activated macrophages initiate DDR.   
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Figure 3 Legend.  Classically activated macrophages initiate DDR.  (A) Nitrite concentration 

in culture supernatants collected from wild type BMDMs after no treatment (-) or treatment (+) 

with LPS and IFN-γ for 9 hrs.  Data depict the mean and standard deviation of three independent 

experiments.  (B-C) Western blotting for γ-H2AX, H2AX, phosphorylated KAP-1 (p-KAP-1) 

and KAP-1 in whole cell lysates from (B) WT BMDMs after no treatment (-) or treatment (+) 

with LPS, IFN-γ, or both for 9 hrs. and (C) WT peritoneal macrophages after no treatment (-) or 

treatment (+) with LPS + IFN-γ for 24 hrs.  Data are representative of three or more experiments.           
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Figure 4.  L. monocytogenes induces a DDR that depends on entry into the macrophage 

cytosol.   
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Figure 4 Legend.  L. monocytogenes induces a DDR that depends on entry into the 

macrophage cytosol.   (A) Western blotting for γ-H2AX, H2AX, p-KAP-1, and KAP-1 in whole 

cell lysates from WT BMDMs after no infection (-) or infection (+) with L. monocytogenes (L. 

m.) for 24 hrs.  (B-C) Western blotting for (B) γ-H2AX and H2AX in whole cell lysates from 

WT BMDMs after no treatment (-) or treatment (+) with IFN- γ, heat-killed L. monocytogenes 

(hk L. m.), or both for 9 hrs. or (C) WT BMDMs after no infection (-) or infection (+) with WT 

(LLO+) or LLO-deficient (LLO-) L. m. with (+) or without (-) IFN-γ for 9 hrs.  Data are 

representative of two or more experiments.    
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Figure 5.  The DDR in L. monocytogenes-infected macrophages depends on TLR and 

interferon signaling.   
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Figure 5 Legend.  The DDR in L. monocytogenes-infected macrophages depends on TLR 

and interferon signaling.  (A) Western blotting for γ-H2AX and H2AX in whole cell lysates 

from WT and Myd88-/- BMDMs after no infection (-) or infection (+) with L. m. for 24 hrs.  (B-

C) Western blotting for γ-H2AX, H2AX, p-KAP-1, and KAP-1 in whole cell lysates from WT 

and Sting-/- BMDMs (B) or WT and Ifnar1-/- BMDMs (C) after no infection (-) or infection (+) 

with L. m. for 24 hrs.  Data are representative of two or more experiments.    
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Figure 6.  KAP-1 phosphorylation depends on ATM in L. monocytogenes-infected 

macrophages.   

 

 

 

p-KAP-1 

+ + - - - + 

Atm-/- Scid 

KAP-1 

L. m. 

γ-H2AX 

 H2AX 

WT 

+ + - - - + 

Atm-/- Scid 

L. m. 

WT 

A 

B 



 58 

Figure 6 Legend.  KAP-1 phosphorylation depends on ATM in L. monocytogenes-infected 

macrophages.  (A-B) Western blot analysis of p-KAP-1 and KAP-1 (A) and γ-H2AX and 

H2AX (B) in whole cell lysates from WT, Atm-/-, and Scid BMDMs after no infection (-) or 

infection (+) with L. m. for 24 hrs.  Data are representative of two or more independent 

experiments.     
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Figure 7.  Generation of ATM- and DNA-PKcs-deficient macrophages.   
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Figure 7 Legend.  Generation of ATM- and DNA-PKcs-deficient macrophages.  (A) 

Western blot analysis of ATM, DNA-PKcs, and vinculin in whole cell lysates from WT, Atm-/-, 

and Atmc/c:LysMcre/cre thymocytes and BMDMs.  (B) Southern blot analysis of genomic DNA 

from BMDMs generated from Atmc/c, Atm-/-, and Scid:Atmc/c:LysMcre/+ mice.  DNA was digested 

with the restriction enzyme KpnI and hybridized to the 3’ ATM conditional probe.  Arrows 

indicate the conditional (c) and deleted (-) alleles.  Molecular weight (kb) markers are indicated.      
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Figure 8.  ATM and DNA-PKcs activate the DDR in L. monocytogenes-infected 

macrophages.   
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Figure 8 Legend.  ATM and DNA-PKcs activate the DDR in L. monocytogenes-infected 

macrophages.  (A) Western blotting for γ-H2AX, H2AX, p-KAP-1, and KAP-1 in whole cell 

lysates from LysMcre/+ and Scid:Atmc/c:LysMcre/+ BMDMs after no infection (-) or infection (+) 

with L. m. for 24 hrs.  Data are representative of three independent experiments.  (B) LysMcre/+ 

and Scid:Atmc/c:LysMcre/+ BMDMs were infected with L. m. and colony-forming units (CFU) per 

coverslip were determined at the indicated timepoints post-infection.  Shown are the mean and 

standard deviation of three technical replicates per timepoint.  Data are representative of two 

independent experiments.  (C) Nitrite concentration in culture supernatants collected from 

LysMcre/+ and Scid:Atmc/c:LysMcre/+ BMDMs after no infection (-) or infection (+) with L. m. for 

24 hrs.  Data are a compilation of three independent experiments and represent mean and 

standard deviation.  Blank space in (A) indicates that blot has been cropped.     
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Figure 9.  ATM and DNA-PKcs activate the DDR in classically activated macrophages.   
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Figure 9 Legend.  ATM and DNA-PKcs activate the DDR in classically activated 

macrophages.  (A-B) Western blot analysis of γ-H2AX and H2AX (A) and p-KAP-1 and KAP-

1 (B) in whole cell lysates from WT and Atm-/- BMDMs after no treatment (-) or treatment (+) 

with LPS + IFN-γ for 9 hrs. in the presence (+) or absence (-) of NU7026.  Blank space in (A) 

indicates that blot has been cropped.  Data are representative of two or more experiments.         
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Chapter 4: Mechanisms of DDR initiation in activated macrophages 
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Classically activated macrophages produce reactive oxygen and nitrogen intermediates 

that enable the cell to damage or eliminate invading pathogens.  Indeed, mice deficient in both 

the inducible nitric oxide synthase (iNOS) (Nos2-/-) and a critical subunit of the NADPH oxidase, 

gp91phox-/-, harbor massive abscesses containing enteric bacteria and are unable to kill virulent L. 

monocytogenes (Shiloh, MacMicking et al. 1999).  Though important for the control of both 

commensal and exogenous bacteria, nitric oxide (NO) and reactive oxygen species (ROS) are 

highly genotoxic and have DNA damaging properties (Sawa and Ohshima 2006, Jena, Anand et 

al. 2012, Bogdan 2015).  In addition, several reports suggest that metabolites of these agents may 

impair repair factors by chemically modifying key residues within these proteins (Finkel 2011, 

Bogdan 2015).  Exposure to ROS can induce DNA DSBs, which activate ATM indirectly in a 

process that depends on the recruitment of ATM to the DSB site by the MRE11-RAD50-NBS1 

(MRN) sensor (Lee and Paull 2004, Driessens, Versteyhe et al. 2009).  However, ATM can also 

be directly activated in an MRN-independent fashion by the ROS-mediated modification of a 

specific cysteine residue, enabling ATM to form disulfide-cross-linked dimers (Guo, Kozlov et 

al. 2010).  Thus, we hypothesize that reactive oxygen and nitrogen intermediates may initiate the 

DDR in activated macrophages.  This DDR could be activated by direct oxidation of the DDR 

kinases (ATM and/or DNA-PKcs), or may be activated indirectly through the generation of DNA 

DSBs in macrophage genomic DNA.     

 

4.1) A DDR is initiated by nitric oxide in activated macrophages.   

To address whether reactive oxygen or nitrogen intermediates induce a DDR in activated 

macrophages, we activated BMDMs with LPS and IFN-γ in the presence of a cell-permeable 
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superoxide scavenger (MnTMPyP) or a specific chemical inhibitor of the inducible nitric oxide 

synthase (iNOS), aminoguanidine hemisulfate (AGHS).  Treatment with AGHS, but not 

MnTMPyP, blocked γ-H2AX in activated BMDMs, suggesting that NO but not ROS activates 

the DDR in these cells (Figure 10A).  In agreement with this, we found that LPS- and IFN-γ-

treatment of iNOS-deficient BMDMs results in a near-complete abrogation of γ-H2AX 

formation as compared with wild type BMDMs (Figure 10B).  In contrast, we observed a robust 

DDR in activated NADPH oxidase-deficient (gp91phox-/-) BMDMs (Figure 10B).  Taken together, 

we conclude that the induction of the DDR in LPS- and IFN-γ-activated macrophages depends 

on NO production. 

 

Given that the DDR depends on NO in LPS- and IFN-γ-activated macrophages, we asked 

whether the induction of DDR in BMDMs exposed to L. monocytogenes requires the same 

genotoxic agent.  We assayed BMDMs treated with heat-killed L. monocytogenes in the presence 

of both IFN-γ and AGHS, the specific chemical inhibitor of iNOS.  As with LPS- and IFN-γ-

treated BMDMs, we found that γ-H2AX formation in BMDMs activated with heat-killed L. 

monocytogenes and IFN-γ depends on NO production (Figure 11A).  BMDMs infected with a 

LLO-deficient strain of L. monocytogenes (EJL1) in the presence of IFN-γ also required NO for 

the initiation of a robust DDR, as γ-H2AX formation was markedly reduced in activated iNOS-

deficient (Nos2-/-) BMDMs relative to wild type BMDMs (Figure 11B).  Strikingly, γ-H2AX 

formation was not significantly reduced in Nos2-/- BMDMs infected with live L. monocytogenes 

unless the infected BMDMs were co-treated with IFN-γ (Figure 11C and B).  Similar results 

were observed in AGHS-treated wild type BMDMs infected with wild type or LLO-deficient L. 

monocytogenes in the presence and absence of IFN-γ (data not shown).  Notably, neither heat-
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killed nor LLO-deficient L. monocytogenes are able to activate cytosolic signaling pathways 

(Stavru, Archambaud et al. 2011).  Similarly, a number of reports suggest that IFN-γ promotes 

enhanced phagosome-lysosome fusion, thereby limiting the cytosolic escape of live L. 

monocytogenes (Portnoy, Schreiber et al. 1989, Alvarez-Dominguez and Stahl 1998, Via, Fratti 

et al. 1998).  Taken together, these data suggest that though NO is able to activate a robust DDR 

in L. monocytogenes-infected macrophages, live L. monocytogenes can activate the DDR through 

an additional pathway or pathways.  This activation may occur after the bacteria gains access to 

the host cytosol.  Another non-mutually exclusive possibility is that L. monocytogenes activates 

the DDR through the production of various virulence factors. 

 

4.2) The DDR is activated through DNA DSB intermediates.   

In addition to ATM’s role in the response to DNA DBSs, it is known that ROS can 

activate ATM directly, raising the possibility that NO may also modify key residues within ATM 

that lead to its DSB-independent activation (Guo, Kozlov et al. 2010).  However, several lines of 

evidence indicate that the DDR in activated BMDMs occurs, at least in part, through the 

generation of DSBs in macrophage genomic DNA.  γ-H2AX is generated in chromatin flanking 

DSBs and extends for kilobases, forming discrete nuclear foci that can be detected by 

immunostaining, whereas direct, DSB-independent activation of ATM will lead to diffuse, pan-

nuclear γ-H2AX staining (Rogakou, Boon et al. 1999).  We found that wild type BMDMs 

monocytogenes exhibited discrete γ-H2AX foci after infection with L. monocytogenes, 

suggesting that the DDR has been activated by DNA DSBs (Figure 12A).  Notably, a higher 

percentage of L. monocytogenes-infected BMDMs harbored γ-H2AX foci as compared with 
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uninfected BMDMs (Figure 12B).  In support of these findings, a previous study established that 

the direct activation of ATM by hydrogen peroxide leads to the activation of ATM targets p53 

and CHK2 but does not lead to γ-H2AX formation (Guo, Kozlov et al. 2010).   

 

We then hypothesized that a block in the repair of DNA DSBs should result in an 

amplified DDR if the response is in fact initiated by DSBs.  A deficiency in DNA Ligase IV, 

which is required for DSB repair by non-homologous end joining (NHEJ), leads to late 

embryonic lethality.  However, mice homozygous for a conditionally targeted DNA Ligase IV 

allele and heterozygous for the LysMcre allele (LigIV:LysMcre/+) are viable and have BMDMs 

deficient in DNA Ligase IV.  Thus, if the DDR is initiated by DSBs in activated BMDMs, we 

should observe amplified DDR signaling in LigIV:LysMcre/+ BMDMs, as these cells are unable to 

repair DSBs by NHEJ (Figure 13A).  Indeed, we find that L. monocytogenes infection of 

LigIV:LysMcre/+ BMDMs leads to increased γ-H2AX formation relative to infected LysMcre/+ 

controls (Figure 13B).  Similarly, LPS- and IFN-γ-activated LigIV:LysMcre/cre BMDMs exhibit 

increased phosphorylation of KAP-1 (Figure 13C).   

 

Finally, we reasoned that if the DDR in activated macrophages is initiated through DNA 

DSBs, it should depend on DSB sensing machinery.  The activation of ATM by DSBs depends 

on the recruitment of ATM to the DSB by the MRE11, RAD50 and NBS1 (MRN) complex once 

it binds to the broken DNA end (Lee and Paull 2005).  In contrast, the DSB-independent 

activation of ATM by ROS does not require the MRN complex (Guo, Kozlov et al. 2010).  

Indeed, BMDMs that express a hypomorphic Mre11 allele (Mre11ATLD1/ATLD1) with severely 
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compromised MRN activity exhibit a near-complete block in γ-H2AX formation when DNA-

PKcs kinase activity is inhibited with NU7026 (Figure 14A) (Theunissen, Kaplan et al. 2003).  

Additionally, KAP-1 phosphorylation, which depends on ATM in activated BMDMs, is 

significantly reduced in LPS- and IFN-γ- activated Mre11ATLD1/ATLD1 macrophages (Figures 9B 

and 14B).  Taken together, we conclude that DNA DSBs are generated in the genome of 

activated macrophages and that these DSBs initiate a DDR.          

 

4.3) Sustained DDR requires type I interferon signaling.   

In Chapter 3, we established that the activation of DDR in L. monocytogenes-infected 

BMDMs depends on type I interferon (Ifnar1-/-) signaling (Figure 5C).  This signaling is required 

for NO production, as Ifnar1-/- BMDMs do not produce NO after infection with L. 

monocytogenes (Figure 15A) (Farlik, Reutterer et al. 2010).  Addition of IFN-γ to L. 

monocytogenes-infected Ifnar1-/- BMDMs restored NO production in these cells (Figure 15A).  

This was not unexpected, given that IFN response region of the murine Nos2 promoter contains 

binding sites for STAT1 dimer (GAS) and interferon regulatory factors (IRF), both of which are 

assembled downstream of IFN-γ signaling (Xie, Whisnant et al. 1993, Kamijo, Harada et al. 

1994, Meraz, White et al. 1996, Spink and Evans 1997).  Though robust NO production was 

detected in IFN-γ-treated Ifnar1-/- BMDMs 24 hours after L. monocytogenes infection, the DDR 

was nearly undetectable, despite the fact that a DDR was observed in IFN-γ-treated Ifnar1-/- 

BMDMs 12 hours post-infection (Figure 15A and 15B and data not shown).  Taken together, 

these data suggest that type I interferon signaling is required to maintain the DDR in L. 

monocytogenes-infected macrophages, and that this requirement extends beyond the role of type 
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I interferon signaling in promoting NO production.  We conclude that in BMDMs, sustained 

activation of the DDR depends on type I interferon signaling.        

 

4.4) Type I interferon is required for optimal DDR activation in macrophages.   

  We find that an optimal DDR in L. monocytogenes-infected BMDMs depends on type I 

interferon signaling even in the presence of the DNA damaging agent NO.  Thus, we asked 

whether the DDR is generally augmented by type I interferon signaling in macrophages.  To 

address this, we treated BMDMs and mouse embryonic fibroblasts (MEFs) with the 

chemotherapeutic agent bleomycin, which induces DNA DSBs, in the presence or absence of 

IFN-β.  We found that treatment of MEFs with bleomycin elicited robust phosphorylation of 

KAP-1 that was not further augmented by the addition of IFN-β (Figure 16).  In contrast, 

bleomycin treatment of BMDMs led to KAP-1 phosphorylation that was barely detectable unless 

IFN-β was also administered (Figure 16).  Given that type I interferon receptor signaling results 

in the activation of several distinct transcription factors (Ivashkiv and Donlin 2014), we reasoned 

that type I interferon may promote DDR in macrophages by altering the genetic program of the 

cell.  To address whether type I interferon signaling regulates the transcriptional profile of 

macrophages that have been exposed to DNA damaging agents, we carried out gene expression 

profiling in BMDMs and MEFs after bleomycin treatment in the presence or absence of IFN-β.  

Notably, treatment of BMDMs with bleomycin did not alter the transcriptional profile of the cell, 

whereas 69 genes were up-regulated by bleomycin in MEFs (Table 2).  Addition of type I 

interferon (IFN-β) to bleomycin-treated BMDMs induced the expression of more than 1000 

genes; however IFN-β treatment alone also dramatically altered the transcriptional profile of 
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BMDMs (Table 2).  Thus, we asked how many genes in BMDMs were induced after treatment 

with bleomycin and IFN-β but not IFN-β alone.  Of the genes that were not regulated by IFN-β, 

we found that 148 were up-regulated (≥ 2-fold) after treatment with both bleomycin and IFN-β.  

These findings suggest that bleomycin-induced DDR signaling synergizes with type I interferon 

signaling to activate a transcriptional program in BMDMs.   

 

Previously, we found that MEFs exhibit IFN-independent DDR signaling in response to 

bleomycin, whereas the bleomycin-induced DDR in BMDMs depends on type I interferon 

(Figure 16).  Thus, we hypothesized that a subset of the genes that are regulated by IFN-β in 

BMDMs but not in MEFs may have a role in promoting DDR in macrophages.  Indeed, we 

found that a variety of the genes that are differentially up-regulated by IFN-β in BMDMs have a 

putative role in the DDR (Table 3).  Notably, type I interferon regulates the gene expression of 

several factors that are involved in regulating cell cycle progression, such as the CDK inhibitor 

p21 and the myeloid differentiation factor Ifi204 (Table 3).  ATM itself is also transcriptionally 

regulated by IFN-β in BMDMs, as is the nuclease Artemis (Dclre1c) and the H2AX 

deubiquitinase Brcc3 (Table 3).  Though IFN-β induces a transcriptional program in BMDMs 

that includes genes with established functions in the DDR, it is also possible that type I 

interferon signaling regulates DDR factors post-translationally.  Taken together, we conclude 

that optimal induction of the DDR in macrophages depends on type I interferon signaling.     
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4.5) Summary and Discussion 

Here we show that the genotoxic intermediate NO can initiate a robust DDR in activated 

macrophages, and that this DDR is initiated, at least in part, through the generation of DNA 

DSBs.  Intriguingly, we find that the DDR is activated in macrophages that are deficient in NO 

production after infection with wild type L. monocytogenes, suggesting that live Listeria is 

capable of activating the DDR through an alternate pathway or pathways.  Notably, the DDR 

depends on NO in IFN-γ–treated macrophages that are infected with phagosomally-confined 

(LLO-deficient) bacteria, suggesting that L. monocytogenes may activate the DDR after gaining 

access to the host cytosol.  In support of this idea, the DDR also primarily depends on NO in L. 

monocytogenes-infected macrophages that have been treated with IFN-γ, which functions to limit 

the cytosolic escape of L. monocytogenes by promoting enhanced phagosome-lysosome fusion 

(Portnoy, Schreiber et al. 1989, Alvarez-Dominguez and Stahl 1998, Via, Fratti et al. 1998).  

Thus, it is tempting to speculate that IFN-γ inhibits the L. monocytogenes-mediated activation of 

DDR by preventing the bacteria from activating cytosolic signaling pathways.  Another non-

mutually exclusive possibility is that IFN-γ treatment may inhibit a L. monocytogenes-induced 

agent that can, in the absence of IFN-γ, activate the DDR.   

 

 We established that in the late phase of L. moncytogenes infection, a sustained DDR 

depends specifically on type I interferon receptor signaling.  This is not due to a requirement for 

type I interferon to promote NO production, as addition of type II interferon results in robust NO 

production in Ifnar1-/- macrophages but not a DDR.  Signaling through both the type I and type II 

interferon receptors results in the activation of the latent cytosolic transcription factor signal 
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transducer and activator of transcription 1 (STAT1).  STAT1 homodimers translocate to the 

nucleus, where they bind a consensus site known as a gamma-activated sequence (GAS) 

(Ivashkiv and Donlin 2014).  Given that both signaling pathways activate the transcription factor 

STAT1, it is intriguing that type I interferon signaling is specifically required to sustain the DDR 

in L. monocytogenes-infected macrophages.  This could be due to the fact that signaling 

downstream of the type I interferon also activates the transcription factor STAT2.  STAT1-

STAT2 dimers translocate to the nucleus, where they assemble with interferon-regulatory factor 

9 (IRF9) to form a complex known as IFN-stimulated gene factor 3 (ISGF3).  ISGF3 specifically 

binds to a consensus sequence known as interferon-stimulated response element (ISRE) 

(Ivashkiv and Donlin 2014).  Though some reports indicate that type II interferon signaling can 

lead to a low-level of ISGF3 complex formation, ISGF3 is predominantly activated downstream 

of type I interferon signaling (Schroder, Hertzog et al. 2004).  Thus, it is possible that type I 

interferon signaling regulates the expression of factors that are critical for an optimal DDR 

through ISGF3-mediated transcription of IRSE-driven interferon-stimulated genes (ISGs).  

Indeed we find that in macrophages, type I interferon induces the expression of several genes 

with a putative role in the DDR.  Whether there is a role for type I interferon signaling in the 

post-translational modification of various DDR factors remains an open question worthy of 

investigation.   
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Figure 10.  Nitric oxide activates the DDR in activated macrophages.   
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Figure 10 Legend.  Nitric oxide activates the DDR in activated macrophages.  Western blot 

analysis of γ-H2AX and H2AX in whole cell lysates from (A) WT BMDMs after no stimulation 

(-) or stimulation (+) with LPS, IFN-γ, or LPS + IFN-γ for 9 hrs. in the presence or absence of 

MnTMPyP or AGHS.  (B) WT, iNOS-deficient (Nos2-/-), or NADPH oxidase-deficient (gp91phox-

/-) BMDMs after no stimulation (-) or stimulation (+) with LPS, IFN-γ, or LPS + IFN-γ for 9 hrs.  

Blank space in (B) indicates that blot has been cropped.  Data are representative of two 

independent experiments.          
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Figure 11.  Nitric oxide can activate DDR in L. monocytogenes-infected macrophages.   
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Figure 11 Legend.  Nitric oxide can activate DDR in L. monocytogenes-infected 

macrophages.  Western blot analysis of γ-H2AX and H2AX in whole cell lysates from (A) WT 

BMDMs after no stimulation (-) or stimulation (+) with heat-killed L. monocytogenes (hk L. m.) 

+ IFN-γ for 9 hrs. in the presence or absence of AGHS.  (B) WT and Nos2-/- BMDMs after no 

infection (-) or infection (+) with L. m. for 9 hrs.  (C) WT and Nos2-/- BMDMs after no infection 

(-) or infection (+) with WT (LLO+) or LLO-deficient (LLO-) L. m. in the presence (+) or 

absence (-) of IFN-γ for 9 hrs.  Results are representative of two or more independent 

experiments.        
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Figure 12.  L. monocytogenes infection induces discrete γ-H2AX foci in macrophages.   
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Figure 12 Legend.  L. monocytogenes infection induces discrete γ-H2AX foci in 

macrophages.  (A) Immunofluorescence for L. m. (green) and γ-H2AX (red) in WT BMDMs 9 

hrs. post-infection.  Nuclei are revealed by DAPI (blue).  (B) Quantitation of γ-H2AX foci in L. 

m.-positive (+) BMDMs and L. m.-negative (-) BMDMs 9 hrs. after infection (left).  A 

representative cross-section of the immunofluorescence used for quantitation (right).  Data are a 

compilation of 3 independent biological experiments and represent mean and standard deviation.  

*, P = 0.0150.       
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Figure 13.  The DDR is amplified in DNA Ligase IV-deficient activated macrophages.   
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Figure 13 Legend.  The DDR is amplified in DNA Ligase IV-deficient activated 

macrophages.  (A) Schematic outlining the persistence of DDR signaling in the absence of 

DNA Ligase IV.  (B) Western blot analysis of γ-H2AX and H2AX in whole cell lysates from 

LysMcre/+ and LigIVc/c:LysMcre/+ BMDMs after no infection (-) or infection (+) with L. m. for 24 

hrs.  (C) Western blotting for p-KAP-1 and KAP-1 in LysMcre/cre and LigIVc/c:LysMcre/cre 

BMDMs after no treatment (-) or treatment (+) with LPS + IFN-γ for 9 hrs.  Blank spaces in (B) 

and (C) indicate that blots have been cropped.  Data are representative of two or more 

independent experiments.   
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Figure 14.  DDR initiation in activated macrophages depends on the MRN sensor.   
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Figure 14 Legend.  DDR initiation in activated macrophages depends on the MRN sensor.    

(A) Western blot analysis for γ-H2AX and H2AX in whole cell lysates from WT, Atm-/-, and 

Mre11A/A BMDMs after no treatment (-) or treatment (+) with LPS + IFN-γ in the presence (+) or 

absence (-) of NU7026 for 9 hrs.  (B) Western blotting for p-KAP-1 and KAP-1 in WT and 

Mre11A/A BMDMs after no treatment (-) or treatment (+) with LPS + IFN-γ for 9 hrs.  Blank 

space in (A) indicates that blot has been cropped.  Data are representative of two independent 

experiments.   
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Figure 15.  A sustained DDR depends on type I interferon signaling in L. monocytogenes-

infected macrophages.   
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Figure 15 Legend.  A sustained DDR depends on type I interferon signaling in L. 

monocytogenes-infected macrophages.  (A) Nitrite concentration in culture supernatants 

collected from WT and Ifnar1-/- BMDMs after no infection (-) or infection (+) with L. m. for 24 

hrs.  Data are a compilation of three independent experiments and depict mean and standard 

deviation.  (B) Western blot analysis of p-KAP-1, KAP-1, γ-H2AX, and H2AX in whole cell 

lysates from WT and Ifnar1-/- BMDMs after no infection (-) or infection (+) with L. m. for 24 

hrs.  Data are representative of three independent experiments.          
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Figure 16.  Optimal DDR depends on type I interferon in macrophages.   
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Figure 16 Legend.  Optimal DDR depends on type I interferon in macrophages.    Western 

blot analysis of WT mouse embryonic fibroblasts (MEFs) or BMDMs after no stimulation (-) or 

stimulation (+) with bleomycin, IFN-β, or bleomycin + IFN-β for 6 hrs.  Data are representative 

of three independent experiments.   
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Table 2.  Treatment with bleomycin and type I interferon regulates gene expression in 

macrophages and fibroblasts.   

 

 

 

 

 

 

Cell$type$
Treatment!

BMDM! MEF!

Bleomycin$ 0$ 69$

IFN7β$ 1110$ 257$

Bleomycin$+$$IFN7β$ 1080$ 292$
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Table 2 Legend.  Treatment with bleomycin and type I interferon regulates gene expression 

in macrophages and fibroblasts.  Number of genes up-regulated (≥ 2-fold) after treatment with 

bleomycin, IFN-β, or bleomycin + IFN-β for 8 hrs in BMDMs and MEFs.     

 

Putzer Hung contributed to this work. 
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Table 3.  Genes that are regulated by type I interferon in macrophages.     

 

 

 

 

 

 

Gene Symbol Function BMDM 
Exp 1         Exp 2 

MEF 
Exp 1         Exp 2 

Brcc3 Deubiquitinase that recognizes K63-polyubiquitinated 
H2AX at DSBs, forms part of the BRCA1/2 complex 

3.7 4.5 1.07 1.33 

Dclre1c (Artemis) Opens hairpin-sealed ends at RAG breaks, required for 
DSB repair in heterochromatin 

3.9 4.4 ns ns 

Eya3 Dephosphorylates Y142 on H2AX, promoting recruitment 
of MDC1 to DSBs 

2.8 2.6 0.90 1.45 

Atm 
 

PI3-like kinase 2.34 2.92 ns ns 

Ccnd1 Cyclin D1, binds to RAD51 and recruited to DSBs in a 
BRCA2-dependent fashion to promote HR  

7.4 6.4 1.25 1.33 

Ifi204 Inhibits cell cycle progression in response to DNA 
damage, implicated in myeloid differentiation 

25 31 ns ns 

Cdkn1a (p21) CDK inhibitor, G1/S checkpoint 
 

3.5 
 

3.4 
 

0.97 
 

0.94 
 

Pttg1 
 

Securin, proto-oncogene that inhibits NHEJ (possibly 
through its interaction with Ku70), down-regulated by p53 
in response to DNA damaging agents 

7.1 11 ns ns 

Nupr1 Transcription factor that promotes a “resistance program” 
in response to environmental stress (e.g. DNA damage), 
binds to MORF4L1 (HDAC) 

4.1 4.6 1.10 1.25 

Nono 
 

May promote NHEJ by stabilizing free DNA ends 
 

2.9 
 

2.1 
 

0.86 
 

0.96 
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Table 3 Legend.  Genes that are regulated by type I interferon in macrophages.  A subset of 

genes with a putative role in the DDR that are regulated by IFN-β in BMDMs but not in MEFs.  

Fold-change over untreated is given for two biological replicates for each cell type.  ns = not 

significant (probe did not meet intensity cut-off).       

 

Putzer Hung contributed to this work. 
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Chapter 5: DDR activation impacts macrophage function in immune responses 
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In addition to canonical responses, the DDR can also regulate cellular processes unrelated 

to the repair of damaged DNA.  Several studies have established that DNA DSBs and the DDR 

they elicit are important signaling intermediates that can impact cell-type-specific processes.  

DSBs introduced by the RAG endonuclease in pre-B cells rearranging their antigen receptor loci 

activate a broad transcriptional program in these cells, a significant part of which depends on 

ATM.  Notably, a cohort of the ATM-regulated genetic program involves genes involved in pre-

B cell development, survival, and migration (Bredemeyer, Helmink et al. 2008, Bednarski, 

Nickless et al. 2012).  RAG activity in lymphocyte and NK progenitors can also influence 

mature T and NK cell function, including their survival following virus-driven proliferative 

bursts.  These capabilities are presumably endowed through the generation of DSBs in the 

progenitors themselves (Karo, Schatz et al. 2014).  Finally, AID-induced DNA DSBs in mature 

B cells activate an ATM-dependent transcriptional program that impacts plasma cell 

differentiation in germinal centers (Sherman, Kuraishy et al. 2010).  Notably, many of the ATM-

dependent gene expression changes elicited by RAG breaks in developing pre-B cells also occur 

in lymphocytes treated with genotoxic DNA damaging agents such as ionizing radiation 

(Bredemeyer, Helmink et al. 2008, Innes, Hesse et al. 2013).  As we have established that 

genotoxins can induce an ATM- and DNA-PKcs-dependent DDR in macrophages, we asked 

whether this DDR impacts the transcriptional profile of L. monocytogenes-infected macrophages.  

We also assessed the effect of DDR-deficiency on macrophage innate immune responses that are 

not generally regulated at the level of transcription, such as the processing and release of pro-

inflammatory cytokines IL-1β and IL-18 by the inflammasome.  Taken together, we establish L. 

monocytogenes-elicited DSBs and the resulting DDR as important signaling intermediates that 

impact macrophage function in the innate immune response to bacterial infection. 
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5.1) DDR regulates the genetic program of activated macrophages.     

To address whether the DDR regulates the genetic program that is activated in BMDMs 

after exposure to L. monocytogenes, we compared the gene expression profiles of ATM- and 

DNA-PKcs-deficient (Scid:Atmc/c:LysMcre/+) and wild type (LysMcre/+) BMDMs with and without 

L. monocytogenes infection (Figure 17).  There were 435 genes that exhibited a ≥ 5-fold 

induction in expression in wild type (LysMcre/+) BMDMs after infection with L. monocytogenes 

(Figure 17).  Of these, 138 exhibited a ≥ 1.5-fold reduction in expression in ATM- and DNA-

PKcs-deficient (Scid:Atmc/c:LysMcre/+) as compared with wild type (LysMcre/+) BMDMs (Figure 

17).  Thus, approximately one-third of the genes that are up-regulated by 5-fold or more during 

L. monocytogenes infection are positively regulated by ATM and/or DNA-PKcs, as the 

expression of these genes is diminished in the absence of one or both kinases.  These genes 

include many with an established role in the immune response to infection, including a variety of 

chemokines, cytokines, and cell surface molecules (Figure 17).   

 

We validated a number of the gene expression changes with known relevance to 

macrophage immune function.   Expression of the gene encoding the class A scavenger receptor 

MARCO, which has a role in the phagocytosis of bacteria, exhibits a strong dependence on DDR 

signaling (Figure 18A) (Kraal, van der Laan et al. 2000).  Optimal gene expression of CD69, 

which functions in cell localization and migration, also depends on ATM and DNA-PKcs (Figure 

18A) (Schwab and Cyster 2007).  Notably, the DDR regulates the gene expression of a variety of 

chemokines that are key mediators of leukocyte migration during acute inflammation (Kuziel, 

Morgan et al. 1997, Griffith, Sokol et al. 2014).  The gene expression of CXCL1, which 
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regulates neutrophil migration, is reduced in Scid:Atmc/c:LysMcre/+ relative to LysMcre/+ controls 

(Figure 18B) (Griffith, Sokol et al. 2014).  CXCL10 is DDR-regulated at the level of gene 

expression, as are CCL2, CCL3 (MIP-1α), and CCL4 (MIP-1β), all of which are secreted after 

exposure to bacterial endotoxins and function to recruit immune cells such as monocytes, 

macrophages, and NK cells to the site of infection (Figure 18B) (Griffith, Sokol et al. 2014).  

Expression of Ccl5, which encodes the chemokine RANTES, is DDR-independent, suggesting 

that the transcriptional regulation imposed by ATM and/or DNA-PKcs is limited to a subset of 

chemokine genes (Figure 18B).  Thus, DDR-deficient BMDMs do not exhibit a global defect in 

chemokine gene expression after L. monocytogenes infection.  Taken together, we conclude that 

the DDR influences the transcriptional profile of macrophages infected with L. monocytogenes. 

 

 Previous analyses revealed that ATM and DNA-PKcs have distinct functions in 

regulating DNA damage responses in activated macrophages (Chapter 3).  Thus, we asked 

whether the two kinases also have distinct roles in regulating the genetic program that is induced 

upon infection with L. monocytogenes.  The analysis of BMDMs deficient in ATM (Atm-/-) and 

DNA-PKcs (Scid) revealed that ATM and DNA-PKcs compensate for one another in the 

regulation of some genes, such as Ccl2 (Figure 19A).  However, the expression of Marco and 

Cxcl10 depends on both ATM and DNA-PKcs, as expression of both genes is reduced in L. 

monocytogenes-infected Atm-/- and Scid BMDMs relative to wild type controls (Figure 19B).  

Thus, after the induction of a DDR by DNA DSBs, ATM and DNA-PKcs both have a role in the 

regulation of the L. monocytogenes-induced genetic program in macrophages.     
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5.2) DDR regulates IL-1β production in activated macrophages. 

   During infection with viral and bacterial pathogens, macrophages produce a variety of 

inflammatory cytokines and chemokines, the majority of which are induced transcriptionally 

upon macrophage activation.  However, two key inflammatory cytokines, IL-1β and IL-18, are 

regulated post-translationally, as they are converted to their biologically active forms by a multi-

protein complex known as the inflammasome.  This process is initiated when cytosolic sensors 

of bacterial products complex with the adaptor ASC, which binds to the inactive protease pro-

caspase 1(Lamkanfi 2011, von Moltke, Ayres et al. 2013, Lamkanfi and Dixit 2014).  

Inflammasome activation results in the cleavage of pro-caspase 1 to active caspase 1, which then 

cleaves and activates pro-IL-1β and pro-IL-18 (Lamkanfi 2011, von Moltke, Ayres et al. 2013, 

Lamkanfi and Dixit 2014).   

 

As previously discussed, L. monocytogenes activates a variety of signaling pathways 

when it escapes phagosomal vesicles and enters the host cytoplasm.  Bacteriolysis in the cytosol 

is thought to activate absent-in melanoma 2 (AIM2), a cytosolic receptor that mediates activation 

of the inflammasome (Sauer, Witte et al. 2010, Warren, Armstrong et al. 2010, Witte, Archer et 

al. 2012).  A number of reports have also implicated the cytosolic sensor NLRP3, which 

recognizes a wide range of endogenous and bacterial ligands, in L. monocytogenes-elicited 

inflammasome activation (Mariathasan, Weiss et al. 2006, Kim, Bauernfeind et al. 2010, Wu, 

Fernandes-Alnemri et al. 2010).  Strikingly, we find that ATM- and DNA-PKcs-deficient 

(Scid:Atmc/c:LysMcre/+) BMDMs produce significantly less IL-1β than wild type  (LysMcre/+) 

BMDMs after infection with L. monocytogenes (Figure 20A).  This is not due to an inability of 
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ATM- and DNA-PKcs- deficient (Scid:Atmc/c:LysMcre/+) BMDMs to promote pro-IL-1β gene 

expression, as Il1b transcripts are equivalent in wild type (LysMcre/+) and ATM- and DNA-PKcs-

deficient (Scid:Atmc/c:LysMcre/+) BMDMs (Figure 20B).  Indeed, ATM and DNA-PKcs are also 

not required to promote the gene expression of inflammasome components pro-caspase 1, ASC, 

NLRP3, or AIM2 (Figure 21A-D).  Active caspase 1 can promote cell death by pyroptosis, an 

event thought to be mediated by AIM2 upon infrequent bacteriolysis in the host cytosol 

(Bergsbaken, Fink et al. 2009, Miao, Leaf et al. 2010, Sauer, Witte et al. 2010).  However, the 

observed differences in IL-1β production between the two genotypes are not due to differences in 

cell viability, as ATM- and DNA-PKcs-deficient (Scid:Atmc/c:LysMcre/+) and wild type 

(LysMcre/+) BMDMs exhibit similar LDH release after L. monocytogenes infection (Figure 22).  

Rather, after infection with L. monocytogenes, ATM- and DNA-PKcs-deficient 

(Scid:Atmc/c:LysMcre/+) BMDMs produce nearly undetectable levels of active caspase 1 as 

compared with wild type (LysMcre/+) BMDMs, whereas expression levels of pro-caspase 1 and 

AIM2 are equivalent between the two genotypes (Figure 23A and B).  These findings indicate 

that in L. monocytogenes-infected BMDMs, the DDR is required for efficient conversion of pro-

caspase 1 to its active form.  Notably, conversion of pro-caspase 1 to active caspase 1 is not 

impaired in ATM- and DNA-PKcs-deficient (Scid:Atmc/c:LysMcre/+) BMDMs in response to all 

inflammasome-activating stimuli.  When LPS-primed BMDMs are treated with ATP, robust 

inflammasome activation and IL-1β release occurs.  We find that ATM- and DNA-PKcs-

deficient (Scid:Atmc/c:LysMcre/+) and wild type (LysMcre/+) BMDMs produce equivalent amounts 

of IL-1β after LPS- and ATP-treatment (Figure 24A).  Consistent with this finding, we observe 

no defect in the conversion of pro-caspase 1 to its active form in ATM- and DNA-PKcs-deficient 

(Scid:Atmc/c:LysMcre/+) BMDMs after treatment with LPS- and ATP (Figure 24B).  Taken 



 99 

together, we conclude that ATM- and DNA-PKcs-deficient macrophages have a defect in IL-1β 

production after exposure to L. monocytogenes, and this defect is due to an inability of these cells 

to efficiently convert pro-caspase 1 to active caspase 1.              

 

5.3) ATM and DNA-PKcs have distinct roles in cytokine production. 

 Given that both ATM and DNA-PKcs are activated in L. monocytogenes-infected 

BMDMs and both kinases have a role in regulating the expression of a variety of genes, we 

asked whether both ATM and DNA-PKcs were similarly required to promote IL-1β production 

in L. monocytogenes-infected BMDMs.  Indeed, we find that ATM-deficient (Atm-/-) and DNA-

PKcs-deficient (Scid) BMDMs each have a defect in IL-1β production after infection with L. 

monocytogenes (Figure 25A).  Inflammasome activation also leads to the processing and release 

of related cytokine IL-18 (von Moltke, Ayres et al. 2013, Lamkanfi and Dixit 2014).  Strikingly, 

IL-18 production in L. monocytogenes-infected BMDMs requires DNA-PKcs but not ATM, as L. 

monocytogenes-infected Atm-/- BMDMs produce IL-18 at a slightly elevated level relative to 

wild type BMDMs (Figure 25B).  This is not due to a requirement for DNA-PKcs to promote 

pro-IL-18 gene expression, as Il18 transcripts are equivalent in wild type and Scid BMDMs post-

infection with L. monocytogenes (Figure 25C).  Taken together, we conclude that while both 

ATM and DNA-PKcs regulate IL-1β production in L. monocytogenes-infected BMDMs, IL-18 

production is regulated by DNA-PKcs.   
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5.4) DNA-PKcs promotes IFN-γ production by NK cells. 

 IL-12 and IL-18 are key cytokines that stimulate both T cells and NK cells to produce 

IFN-γ early in immune responses (Hsieh, Macatonia et al. 1993, Okamura, Tsutsi et al. 1995, 

Akira 2000).  IFN-γ production by NK cells is known to be critical for the activation of 

macrophages during the response to L. monocytogenes infection in mice lacking B and T 

lymphocytes (Bancroft, Schreiber et al. 1991).  Given that DNA-PKcs-deficient (Scid) BMDMs 

have a defect in IL-18 production after infection with L. monocytogenes, we asked whether these 

cells are able to effectively activate naïve NK cells to produce IFN-γ.  DNA-PKcs-deficient 

(Scid) and wild type BMDMs, either uninfected or infected with L. monocytogenes, were 

cultured with purified splenic NK cells, and the percentage of NK cells producing IFN-γ was 

assessed by flow cytometry (Figure 26A).  Wild type and DNA-PKcs-deficient (Scid) BMDMs 

exhibited equivalent induction of IL-12 p40 gene expression upon infection with L. 

monocytogenes (Figure 26B).  Moreover, the addition of exogenous IL-18 to wild type and Scid 

BMDM-wild type NK co-cultures led to equivalent percentages of IFN-γ-producing NK cells 

(Figure 27A).  Taken together, we conclude that in L. monocytogenes-infected macrophages, 

DNA-PKcs signaling is required for optimal IFN-γ production in NK cells, due to the role of 

DNA-PKcs in promoting IL-18 production by macrophages.   

 

5.5) Summary and Discussion 

Here we show that the DDR regulates the genetic program induced in macrophages after 

infection with L. monocytogenes, including the expression of a number of chemokines.  NF-κB is 

a critical transcription factor that regulates chemokine gene expression downstream of pattern 
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recognition receptors as well as TNF and IL-1 receptors (Amiri and Richmond 2003).  DNA 

damage can also lead to the ATM-dependent activation of NF-κB (Huang, Wuerzberger-Davis et 

al. 2003, Wu, Shi et al. 2006).  Thus, it is possible that the DDR in activated macrophages 

regulates chemokine gene expression by augmenting NF-κB activation.  Many chemokines are 

transcriptionally regulated by NF-κB in combination with other factors.  For example, Cxcl1 

expression is regulated by NF-κB and poly(ADP-ribose) polymerase (PARP)-1, which is 

activated by DNA damage and has a broad range of functions in the DDR (Nirodi, NagDas et al. 

2001, Amiri and Richmond 2003, Rouleau, Patel et al. 2010).  Thus, in activated macrophages, 

the initiation of a DDR may regulate gene expression through multiple pathways.  Intriguingly, 

ATM and DNA-PKcs are not able to compensate for one another in the regulation of a number 

of genes, suggesting that they may activate distinct signaling pathways leading to the 

transcription of these genes.  Another non-mutually exclusive possibility is that in some cases, 

they are both required for optimal activation of the same pathway.   

 

RAG-induced DSBs regulate the expression of a number of genes that have established 

functions in lymphocyte homing and migration, such as CD62L, SWAP70, and CD69 

(Bredemeyer, Helmink et al. 2008).  Notably, CD69 expression is also regulated by the DDR in 

L. monocytogenes-infected macrophages, suggesting that in both lymphoid and myeloid cells, 

context-specific DSBs activate a DDR that modulates the trafficking of immune cells.  CD69 

down-regulates the expression of the receptor for sphingosine 1 phosphate (S1P), limiting the 

egress of immune cells from a particular niche (Schwab and Cyster 2007).  Thus, it is tempting 

to speculate that in macrophages, the DDR may promote the retention of macrophages in 

infectious foci by maintaining the expression of CD69.      
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The mechanism by which the DDR regulates inflammasome function in L. 

monocytogenes-infected macrophages remains unclear.  We established that DDR signaling is 

required for efficient conversion of pro-caspase 1 to active caspase 1 during infection with L. 

monocytogenes but not in response to LPS and ATP, suggesting that there is not a cell-intrinsic 

requirement of the DDR in the activation of caspase 1.  Thus, is it possible that the DDR 

regulates the sensing of bacterial ligands upstream of caspase 1 activation.  Though we have 

ruled out a role for the DDR in the transcriptional regulation of key inflammasome components 

(AIM2, NLRP3, ASC, and Caspase 1), it is possible that the DDR kinases (ATM and/or DNA-

PKcs) regulate one of the inflammasome components through phosphorylation at SQ/TQ motifs.  

Indeed, ATM in particular is known to phosphorylate hundreds of proteins in response to DNA 

damage at these motifs specifically (Matsuoka, Ballif et al. 2007). 

 

It is not yet clear whether both ATM and DNA-PKcs are required for optimal processing 

of caspase 1 in L. monocytogenes infection.  The requirement for DNA-PKcs and not ATM in 

the production of IL-18 suggests that ATM is dispensable for the activation and processing of 

pro-caspase-1, as IL-18 production is unaffected by a deficiency in ATM.  The kinase 

requirements for this conversion and the mechanism by which it occurs will be areas of further 

exploration. 
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Figure 17.  DDR influences the transcriptional profile of L. monocytogenes-infected 

macrophages.   
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Figure 17 Legend.  DDR influences the transcriptional profile of L. monocytogenes-infected 

macrophages.  Heat map showing genes that are up-regulated ≥ 5-fold in L. m.-infected 

LysMcre/+ BMDMs relative to no infection.  Expression of the same set of genes in L. m.-infected 

Scid:Atmc/c:LysMcre/+ BMDMs is indicated.  Red indicates relatively higher expression; blue 

indicates relatively lower expression.  Genes with decreased expression (≥ 1.5-fold) in L. m.-

infected Scid:Atmc/c:LysMcre/+ relative to L. m.-infected LysMcre/+ controls are clustered in the 

upper right corner of the heat map.  Some of the genes in this group are indicated.  Shown are 

two biological replicates (1 and 2) for each condition and genotype.           
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Figure 18.  The DDR regulates the expression of immune-related genes.   
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Figure 18 Legend.  The DDR regulates the expression of immune-related genes. (A,B) 

Quantitative real-time PCR (RT-PCR) analysis of gene expression in Scid:Atmc/c:LysMcre/+ and 

LysMcre/+ BMDMs after no infection (-) or infection (+) with L. m. for 24 hrs.  Data are a 

compilation of three or more independent experiments and depict the mean and standard 

deviation.  *, P < 0.05, **, P < 0.01, ns = not significant.   
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Figure 19.  ATM and DNA-PKcs have distinct roles in the regulation of a subset of L. 

monocytogenes-induced genes.   
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Figure 19 Legend.  ATM and DNA-PKcs have distinct roles in the regulation of a subset of 

L. monocytogenes-induced genes.  (A,B) Quantitative real-time PCR (RT-PCR) of gene 

expression in WT, Atm-/-, and Scid BMDMs after no infection (-) or infection (+) with L. m. for 

24 hrs.  Data are a compilation of three or more independent experiments and represent the mean 

and standard deviation.  *, P < 0.05, **, P < 0.01, ns = not significant.   
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Figure 20.  The DDR regulates IL-1β production in L. monocytogenes-infected 

macrophages.   
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Figure 20 Legend.  The DDR regulates IL-1β production in L. monocytogenes-infected 

macrophages.  (A) IL-1β protein concentration as determined by ELISA in supernatants from 

uninfected (-) and L. m.-infected Scid:Atmc/c:LysMcre/+ and LysMcre/+ BMDMs 12 and 24 hrs. 

post-infection.  (B) Quantitative RT-PCR analysis of Il1b expression in Scid:Atmc/c:LysMcre/+ and 

LysMcre/+ BMDMs after no infection (-) or infection (+) with L.  m.  Data are representative of 

four independent experiments (A) or a compilation of three independent experiments (B) and 

depict mean and standard deviation.  ***, P < 0.0001, ns = not significant.     
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Figure 21.  The DDR does not regulate the gene expression of inflammasome components.   
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Figure 21 Legend.  The DDR does not regulate the gene expression of inflammasome 

components.  (A-C) Quantitative RT-PCR analysis of Casp1, Asc, Nlrp3, and Aim2 gene in 

Scid:Atmc/c:LysMcre/+ and LysMcre/+ BMDMs after no infection (-) or infection (+) with L. m.  

Data are a compilation of three independent experiments and depict mean and standard 

deviation.  ns = not significant.   
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Figure 22.  Deficiency in DDR does not affect cell viability in L. monocytogenes-infected 

macrophages.   
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Figure 22 Legend.  Deficiency in DDR does not affect cell viability in L. monocytogenes-

infected macrophages.   Lactate dehydrogenase (LDH) activity of cell-free supernatants 

collected from BMDMs 24 hrs. post-infection with L. m.  Data for Scid:Atmc/c:LysMcre/+ and 

LysMcre/+ are given as a percentage of the LDH released by equivalent cell numbers of each 

genotype lysed with 1% Triton X-100.  Data are representative of three independent experiments 

and depict the mean and standard deviation.  
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Figure 23.  Conversion of pro-caspase 1 to active caspase-1 is impaired in DDR-deficient L. 

monocytogenes-infected macrophages.   
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Figure 23 Legend.  Conversion of pro-caspase 1 to active caspase-1 is impaired in DDR-

deficient L. monocytogenes-infected macrophages.  Western blotting analysis of (A) pro-

caspase 1 in whole cell lysates (WCL) and active caspase 1 (p20) in supernatants (Sup) and (B) 

AIM2 in whole cell lysates from LysMcre/+ and Scid:Atmc/c:LysMcre/+ BMDMs 12 and 24 hrs. 

post-L. m. infection.  GAPDH in (B) serves as a protein loading control.  Data are representative 

of two independent experiments. 

 

 

 

 

 

 



 117 

 

 

Figure 24.  ATM- and DNAPKcs-deficiency does not impact inflammasome function in 

LPS- and ATP-treated macrophages.   
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Figure 24 Legend.  ATM- and DNAPKcs-deficiency does not impact inflammasome 

function in LPS- and ATP-treated macrophages.    (A) IL-1β protein concentration as 

determined by ELISA in supernatants from Scid:Atmc/c:LysMcre/+ and LysMcre/+ BMDMs after no 

treatment (-) or treatment with LPS for 4 hrs. and co-treated with ATP for the last 30 min.  Data 

are representative of three independent experiments and depict the mean and standard deviation.  

ns = not significant.  (B) Western blotting analysis of pro-caspase 1 in whole cell lysates (WCL) 

and active caspase 1 (p20) in supernatants (Sup) from Scid:Atmc/c:LysMcre/+ and LysMcre/+ 

BMDMs after no treatment (-) or treatment with LPS for 4 hrs. and co-treatment with ATP for 

the last 30 min.           
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Figure 25.  ATM and DNA-PKcs have distinct roles in the production of IL-1β and IL-18.   

no in
fe

ct
io

n

12
 h

rs

24
 h

rs
0

400

800

1200
WT
ATMd/d 
SCID

A 

IL
-1
β 

C
on

ce
nt

ra
tio

n 
(p

g 
m

L-
1 )

 

*** 

*** 

B 

no in
fe

ct
io

n

12
 h

rs

24
 h

rs
0

50

100

150

*** 

*** 

IL
-1

8 
C

on
ce

nt
ra

tio
n 

(p
g 

m
L-

1 )
 

* 

*** 

12 hr 24 hr - L. m. 

12 hr 24 hr - L. m. 

C 

no in
fe

ct
io

n

24
 h

ours
0

5

10

15

20

WT
Scid

no in
fe

ct
io

n

24
 h

ours
0

5

10

15

20

WT
Scid

- + L. m. 

R
el

at
iv

e 
E

xp
re

ss
io

n 

ns 

WT 

Atm-/- 

Scid 

no in
fe

ct
io

n

24
 h

ours
0

30

60

90

120 WT
ATM-/-

SCID

WT 

Scid 

no in
fe

ct
io

n

24
 h

ours
0

30

60

90

120 WT
ATM-/-

SCID

Pro-Il18 

WT 

Atm-/- 

Scid 



 120 

Figure 25 Legend.  ATM and DNA-PKcs have distinct roles in the production of IL-1β and 

IL-18.  (A) IL-1β protein concentration and (B) Il-18 protein concentration as determined by 

ELISA in supernatants from uninfected (-) and L. m.-infected WT, Atm-/-, and Scid BMDMs 12 

and 24 hrs. post-infection.  (C) RT PCR analysis of Il18 expression in WT and Scid BMDMs 

after no infection (-) or infection (+) with L. m.  Data are representative of three or more 

experiments (A,B) or a compilation of three independent experiments (C) and depict mean and 

standard deviation.  *, P = 0.0160, **, P ≤ 0.0002, ns = not significant.       
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Figure 26.  DNA-PKcs-deficient L. monocytogenes-infected macrophages cannot optimally 

stimulate NK cells to produce IFN-γ.   
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Figure 26 Legend.  DNA-PKcs-deficient L. monocytogenes-infected macrophages cannot 

optimally stimulate NK cells to produce IFN-γ. (A) Flow cytometric analysis of intracellular 

IFN-γ production by WT splenic NK cells co-cultured with uninfected (-) or L. m.-infected (+) 

WT or Scid BMDMs with (+) or without (-) the addition of IL-18 for 15 hrs.  (B) Quantitative 

RT-PCR analysis of Il12 p40 gene expression in WT and Scid BMDMs uninfected (-) or infected 

(+) with L. m.  Data are representative of four independent experiments (A) or a compilation of 

three independent experiments and depict mean and standard deviation (B).  ns = not significant.   
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Chapter 6:  Conclusions and Discussion 
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Upon exposure to infectious agents, phagocytes produce reactive oxygen and nitrogen 

intermediates that are highly microbicidal.  Though critical for damaging or eradicating 

microbes, these agents pose a significant threat to the host genome.  In this study, we show that 

activated macrophages produce genotoxic bactericidal agents that damage host cell genomic 

DNA (Figure 27).  This DNA damage, primarily DNA DSBs, activates a robust DDR that 

depends on ATM and DNA-PKcs (Figure 27).  In addition to promoting canonical DDR, ATM 

and DNA-PKcs regulate inflammasome activation and the genetic program of activated 

macrophages (Figure 27).  These findings establish the generation of DNA DSBs and the 

initiation of DDR as important signaling events in innate immune responses mediated by 

macrophages.   

 

6.1) Cell-type-specific DDRs regulate diverse cellular processes.  

Developing lymphocytes activate the RAG endonuclease, which generates DSBs at 

precise genomic locations during antigen receptor gene assembly.  Similarly, AID is induced in 

activated B cells and generates DNA DSBs at immunoglobulin loci to initiate class switch 

recombination.  Through the activation of DDR, RAG- and AID-induced DSBs influence 

lymphocyte development and plasma cell differentiation, respectively.  In macrophages, we find 

that a genotoxic agent produced upon macrophage activation, NO, can be responsible for the 

generation of DSBs and the initiation of the DDR.  Unlike the site-specific DSBs generated by 

RAG and AID, these DSBs are likely generated at random locations throughout the genome 

(Fugmann, Lee et al. 2000, Chaudhuri and Alt 2004, Helmink and Sleckman 2012).  

Nevertheless, these DSBs and the DDR that they initiate are important signaling intermediates 
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that regulate macrophage function in the innate immune response to infection.  Thus, in all three 

very different contexts, site-specific or random DNA DSBs and the DDR they elicit act as 

critical signaling intermediates that impact tissue-specific functions.   

 

Notably, infection with a variety of different pathogens can activate the DDR 

(Nougayrede, Homburg et al. 2006, Cuevas-Ramos, Petit et al. 2010, Toller, Neelsen et al. 2011, 

Bergounioux, Elisee et al. 2012, Vielfort, Soderholm et al. 2012, Chumduri, Gurumurthy et al. 

2013, Elsen, Collin-Faure et al. 2013, Leitao, Costa et al. 2014, Samba-Louaka, Pereira et al. 

2014).  However, the pathways affected and the impact on cellular function varies with both the 

pathogen and the cell type.  L. monocytogenes infection of HeLa cells leads to the inhibition of 

ATM-mediated DDR(Samba-Louaka, Pereira et al. 2014).  In contrast, we find that ATM is 

activated in murine macrophages after L. monocytogenes infection and that it mediates key 

functions in the macrophage immune response.  Thus, cell-type-specific pathways may have 

evolved to allow the DDR to regulate a variety of functions in immune cells specifically.   

 

6.2) DDRs in activated macrophages require several signaling pathways. 

Although we examined DDR in macrophages activated by either LPS and IFN-γ or 

infection with L. monocytogenes, all bacteria activate NF-κB downstream of recognition by 

TLRs and NLRs which, in the presence of type I or II IFN receptor signaling, will lead to NO 

production (Farlik, Reutterer et al. 2010).  Thus, we speculate that DDR will be activated in 

macrophages after infection with a broad variety of bacterial pathogens.  It is clear that during L. 

monocytogenes infection, agents other than NO are capable of activating the DDR in its absence.  
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Why might there be more than one mechanism by which L. monocytogenes activates the DDR?  

It is conceivable that the way in which the DDR is activated in L. monocytogenes-infected cells 

depends on the location of the bacteria within the macrophage.  Upon infection, L. 

monocytogenes activates TLR signaling pathways at the cell surface and possibly within 

phagosomal vesicles after uptake (Kagan and Iwasaki 2012, Witte, Archer et al. 2012).  L. 

monocytogenes subsequently escapes from the mildly acidic phagosome to the host cytosol, 

where it adapts its metabolism to the cytosolic environment to promote effective replication 

(Stavru, Archambaud et al. 2011).  Our data support the notion that L. monocytogenes activates 

the DDR through NO-dependent mechanism while confined to phagosomal vesicles, as both 

heat-killed and LLO-deficient L. monocytogenes fail to elicit a response in macrophages that are 

deficient in NO production.  In contrast, live L. monocytogenes that is capable of cytosolic 

escape activates a robust DDR in the absence of NO signaling.  Thus, it is tempting to speculate 

that L. monocytogenes elicits the production of DNA damaging agents once it gains access to the 

host cytosol.  These agents could potentially be generated by the activated macrophage, or may 

be produced by the bacterium itself.  It is possible, for example, that virulence factors produced 

by L. monocytogenes could activate the DDR either directly or indirectly.  Indeed, we observe 

robust DDR after infection with wild type L. monocytogenes but not upon infection with bacteria 

that is deficient in the virulence factor LLO, suggesting that LLO may be capable of activating a 

DDR in infected macrophages.  Though we find that the genotoxic agent ROS does not activate 

the DDR in LPS- and IFN-γ-treated macrophages, we cannot rule out a role for ROS in L. 

monocytogenes infection.  Perhaps L. monocytogenes stimulates production of genotoxic ROS 

upon entering the host cytoplasm.  It is known that L. monoctoygenes secretes a superoxide 

dismutase that is post-translationally controlled within macrophages (Archambaud, Nahori et al. 
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2006).  Notably, it is down-regulated by phosphorylation at serine and threonine residues after 

the bacterium enters the cytoplasm, suggesting that perhaps ROS may potentially be present at 

sufficient concentrations to induce a DDR at this time.  Thus, it is possible that the host is able to 

control the L. monocytgenes-elicited production of genotoxic ROS through the post-translational 

modification of bacterial virulence factors.               

 

The relative importance of ROS in the initiation of DDR may also be cell-type-specific.  

A recent study established that the infection of epithelial cells with Chlamydia trachomatis leads 

to the generation of DNA DSBs through the production of ROS (Chumduri, Gurumurthy et al. 

2013).  Whether Chlamydia-elicited ROS similarly induces DNA damage in macrophages is not 

known; however, it is established that macrophages express high levels of proteins that rapidly 

inactivate ROS, such as superoxide dismutase and catalase (Nathan and Cunningham-Bussel 

2013).  Perhaps, then, these enzymes prevent DDR activation by ROS in macrophages 

specifically.  As already alluded to, another source of ROS-inactivating enzymes can be the 

pathogen itself, as L. monocytogenes expresses the ROS-inactivating enzyme superoxide 

dismutase.  This is not unique to L. monocytogenes, as the Gram-negative bacterium Salmonella 

enterica expresses three distinct catalases, three peroxiredoxins, and four superoxide dismutases 

(Fang 2011).  The expression of ROS-inactivating enzymes by some bacteria clearly confers a 

survival advantage upon the pathogen, as these agents are highly mutagenic and microbicidal.  It 

is tempting to speculate, however, that pathogens expressing enzymes that inactivate genotoxic 

species such as ROS and NO may additionally benefit from eliminating a key signaling 

intermediate, genotoxin-induced host DNA DSBs, that will modulate the host cell’s handling of 

the infection.     
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6.3) DDR activation is temporally regulated. 

The generation of DSBs by NO in activated macrophages has important implications for 

the temporal activation of the DDR.  NO is produced only after TLR signaling synergizes with 

IFN receptor signaling, leading to full transcriptional induction of the Nos2 gene and iNOS 

expression.  Thus, the production of NO, the resulting DDR, and its effect on macrophage 

physiologic processes will be delayed for several hours after infection.  This delay in DDR 

activation may provide an important checkpoint for the macrophage, ensuring that a DDR is not 

activated in macrophages that are only transiently exposed to microbial stimuli.  Instead, 

multiple pathways downstream of pathogen sensing, including interferon production, must be 

activated in order for the DDR to be initiated.  Indeed, we find that a sustained DDR in L. 

monocytogenes-infected macrophages specifically depends on type I interferon receptor 

signaling.  This suggests that once signaling through the type I interferon receptor is terminated, 

perhaps by resolution of the infection, the DDR will also cease.  Thus, type I interferon signaling 

regulates the DDR in L. monocytogenes-infected cells in at least two distinct ways.  First, by 

promoting NO production, which can damage host DNA and initiate a DDR.  And second, by 

sustaining the DDR while an inflammatory response is ongoing.   

 

Why would a sustained DDR in activated macrophages be important?  We find that the 

DDR regulates the expression of a variety of genes that have an established role in both the 

response to L. monocytogenes infection and in macrophage innate immune responses generally.  

Likely, some genes are transcriptionally up-regulated early after infection, while others are 

induced later on.  Thus, the DDR may be involved in regulating different aspects of the L. 
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monocytogenes-elicited genetic program at at various times during infection.  DDR activation 

also regulates activation of the inflammasome, which is critical for the processing and release of 

pro-inflammatory cytokines IL-1β and IL-18 (von Moltke, Ayres et al. 2013).  Thus, a sustained 

DDR in macrophages may be important for fine-tuning macrophage function at various times 

after exposure to L. monocytogenes.   

 

6.4) Cell-type-specific requirements for optimal DDR. 

DNA damage has been linked to the production of type I IFNs, which can occur after 

exposure to genotoxic agents or through the activation of STING by genomic DNA fragments 

generated as a byproduct of defects in DSB repair (Brzostek-Racine, Gordon et al. 2011, 

Hartlova, Erttmann et al. 2015).  In some settings, type I interferon has been implicated in 

augmenting the DDR, resulting in cellular senescence (Yu, Katlinskaya et al. 2015).  In addition 

to a requirement for type I interferon signaling to sustain L. monocytogenes-induced DDR, we 

find that type I interferon is also required for optimal DDR activation in macrophages that have 

been treated with the DSB-inducing chemotherapeutic agent bleomycin.  This finding suggests 

that the requirement for type I interferon receptor signaling is not specific to a pathogen-induced 

DDR.  Notably, optimal DDR does not depend on type I interferon in all cell types, as mouse 

embryonic fibroblasts (MEFs) exhibit a robust bleomycin-induced DDR that is not further 

augmented by type I interferon.  Indeed, gene expression profiling revealed that though 

bleomycin treatment induces the expression of many genes in MEFs, treating macrophages with 

bleomycin does not alter their gene expression profile unless the cells are simultaneously treated 

with type I interferon.  Though many of these genes are also induced by type I interferon alone, 
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we were able to identify a subset of genes that were not type I interferon-regulated but were 

specifically induced by bleomycin in conjunction with type I interferon signaling.  Additionally, 

we identified a cohort of genes that were specifically up-regulated by type I interferon in 

macrophages but not in fibroblasts, a subset of which have established functions in the DDR.  

The PI3-like kinase ATM itself was transcriptionally up-regulated by type I interferon in 

macrophages but not fibroblasts, as was the nuclease Artemis, which has an established role in 

the processing of DNA ends.  Notably, Artemis activity is required for the repair of a subset of 

genotoxic DSBs and therefore may be required to process broken DNA ends with complex 

structures that would otherwise prevent repair by non-homologous end joining (NHEJ) (Riballo, 

Kuhne et al. 2004, Helmink and Sleckman 2012).  Intriguingly, we find that the phosphatase 

EYA3 is also up-regulated transcriptionally by type I interferon in macrophages.  In addition to 

the DNA damage-induced phosphorylation of H2AX at serine 139 (S139), H2AX is 

constitutively phosphorylated at tyrosine 142 (Y142) by the tyrosine kinase Williams syndrome 

transcription factor (WSTF) (Xiao, Li et al. 2009).  A combination of S139 and Y142 

phosphorylation promotes the recruitment of the pro-apoptotic kinase JUN amino-terminal 

kinase 1 (JNK1) and prevents binding of MDC1.  MDC1 binding to H2AX S139 (known as γ-

H2AX) leads to the recruitment of DNA repair factors in a focus that surrounds the break.  The 

phosphatases EY1 and EY3 promote the dephosphorylation of Y142, allowing binding of MDC1 

and thus guiding DSB signaling pathways toward repair instead of apoptosis (Panier and 

Durocher 2013).  Thus in macrophages but not in fibroblasts, type I interferon promotes the gene 

expression of several factors that are known to regulate the processing of broken DNA ends or 

the repair of those ends.  Further work will focus on the importance of these factors in the DDR 

initiated by both genotoxic and pathogen-induced DSBs in macrophages specifically.  
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Additionally, it is possible that type I interferon signaling regulates the DDR in macrophages by 

promoting the post-translational modification of DDR factors.    

 

6.5) ATM and DNA-PKcs have distinct and overlapping roles in the DDR. 

In most cell types analyzed to date, ATM is the predominant kinase that activates a DDR 

in G1-phase cells, though DNA-PKcs is able to phosphorylate a subset of the same downstream 

targets (Rouse and Jackson 2002, Callen, Jankovic et al. 2009).  In activated macrophages, ATM 

and DNA-PKcs have both distinct and overlapping functions in the activation of a DDR.  We 

find that both ATM and DNA-PKcs are able to robustly phosphorylate the histone H2A variant 

H2AX (forming γ-H2AX), whereas phosphorylation of the transcriptional repressor KAP-1 

depends on ATM.  It is unclear why both kinases function in γ-H2AX formation but only ATM 

is required for KAP-1 phosphorylation.  The differential requirements for the two kinases could 

be due to differences in the way each kinase responds upon activation by DNA DSBs.  ATM 

exists as an inactive homodimer that is recruited to the site of DNA DSBs by the MRE11-

RAD50-NBS1 (MRN) complex through a specific interaction with NBS1.  Once bound to MRN, 

ATM is activated by an autophosphorylation step that converts ATM to active monomers 

(Helmink and Sleckman 2012).  Once activated, ATM can diffuse throughout the nucleus and 

phosphorylate hundreds of downstream target proteins with diverse functions in the DDR 

(Matsuoka, Ballif et al. 2007).  Some of these targets, such chromatin-containing histone H2AX, 

are directly associated with the DNA break, whereas other targets, such as the transcription 

factor p53, are not associated with regions of DNA damage.  ATM can also be activated by ROS 

in a DSB- and MRN-independent manner that results in the phosphorylation of targets 
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throughout the nucleus (Guo, Kozlov et al. 2010).  Like ATM, DNA-PKcs is recruited to DNA 

DSB sites, though its recruitment is mediated by the Ku70:Ku80 heterodimer.  DNA-PKcs 

kinase activity depends on its association with both Ku and the broken DNA end.  Once 

activated, DNA-PKcs can phosphorylate a number of targets associated with the DNA DSB, 

such as H2AX.  However, there is no evidence that it phosphorylates downstream target proteins 

that are not associated with the DNA break.  This could explain why DNA-PKcs can 

phosphorylate H2AX but not KAP-1, while ATM phosphorylates both targets.      

 

6.6) DDRs regulate the genetic program of activated macrophages. 

In addition to their role in DDR activation, both ATM and DNA-PKcs are involved in 

regulating gene expression in L. monocytogenes-infected macrophages.  ATM and DNA-PKcs 

have unique functions required for the expression of some genes and overlapping roles in the 

regulation of others.  Both kinases are required for optimal expression of Marco and Cxcl10, as 

expression of both genes is markedly reduced in macrophages deficient in either kinase.  In 

contrast, ATM and DNA-PKcs can compensate for one another in the regulation of Ccl2.  How 

do the DDR kinases regulate chemokine gene expression?  NF-κB is known to regulate 

chemokine gene expression downstream of PRRs and notably, DNA damage also leads to the 

ATM-dependent activation of NF-κB (Amiri and Richmond 2003, Huang, Wuerzberger-Davis et 

al. 2003, Wu, Shi et al. 2006).  Thus, it is possible that the L. monocytogenes-induced DRR 

regulates chemokine gene expression in macrophages by enhancing NF-κB activation.  Some 

chemokines are transcriptionally regulated by several pathways, such as Cxcl1, which is co-

regulated by NF-κB and the known DDR factor poly (ADP-ribose) polymerase 1 (PARP-1) 
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(Nirodi, NagDas et al. 2001, Amiri and Richmond 2003, Rouleau, Patel et al. 2010).  Thus, in 

activated macrophages, DDR initiation may regulate gene expression through multiple pathways.  

Whether ATM and DNA-PKcs have distinct or overlapping targets in regulating the L. 

monocytogenes-induced genetic program remains to be determined.    

 

Intriguingly, the genetic programs induced in both developing pre-B cells and activated 

macrophages include a variety of factors that are important in the migration of immune cells 

during lymphocyte development and inflammation, respectively.  The DDR regulates expression 

of SWAP70 and L selectin (CD62L) in developing pre-B cells and the expression of a variety of 

chemokine genes in activated macrophages.  Notably, Cd69 expression is regulated by the DDR 

in both developing pre-B cells and activated macrophages.  CD69 down-regulates the expression 

of the receptor for sphingosine 1 phosphate (S1P), limiting the egress of immune cells from a 

particular niche (Schwab and Cyster 2007).  Thus, it is tempting to speculate that in activated 

macrophages, the DDR is required for optimal expression of CD69, which will in turn promote 

the retention of macrophages in lymphoid organs by rendering them unresponsive to S1P.  The 

L. monocytogenes-induced DDR also regulates the expression of a large cohort of chemokines 

that are involved in the trafficking of many different immune cell types during an inflammatory 

response, including Ccl2, Ccl3, Ccl4, Cxcl1,and Cxcl10 (Griffith, Sokol et al. 2014).  CXCL1 

has a role in the trafficking of neutrophils during bacterial infection (Griffith, Sokol et al. 2014).  

Neutrophils are key in the immune response to L. monocytogenes infection, as mice in which 

neutrophils have been depleted display increased susceptibility to L. monocytogenes and have an 

increased bacterial burden in both the spleen and the liver (Rogers and Unanue 1993, 

Czuprynski, Brown et al. 1994).  CCL2, CCL3, CCL4, and CXCL10 regulate the migration of 
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other immune cell types, such as macrophages and NK cells (Griffith, Sokol et al. 2014).  

Notably, resident macrophages up-regulate CCL2 during L. monocytogenes infection, which 

allows for the recruitment of CCR2-expressing monocytes.  These monocytes then become 

activated by microbial ligands and differentiate into highly bactericidal TNF- and iNOS-

producing TipDCs (Pamer 2004).  Thus, the L. monocytogenes-induced DDR may promote the 

activity of highly bactericidal monocytes by regulating the gene expression of CCL2.  As was 

previously established in developing lymphocytes, it is clear that in activated macrophages, the 

DDR regulates the gene expression of critical mediators of immune cell trafficking.    

  

6.7) The DDR regulates inflammasome function.   

L. monocytogenes infection results in the triggering of several signaling networks that do 

not require de novo transcription and translation.  Among these networks is the multi-protein 

complex known as the inflammasome.  Inflammasome activation results in the processing and 

release of the pro-inflammatory cytokines IL-1β and IL-18.  We find that in L. monocytogenes-

infected macrophages, IL-1β production depends on both ATM and DNA-PKcs, as IL-1β levels 

are significantly reduced in the absence of both kinases or in the absence of either kinase 

individually.  Notably, this is not due to a role for the kinases in promoting pro-IL-β gene or 

protein expression.  Our findings suggest that the DDR is involved in the processing of the 

enzyme caspase-1 to its proteolytically active form, as active caspase 1 is significantly reduced 

in DDR-deficient macrophages during L. monocytogenes infection.  L. monocytogenes is 

reported to activate caspase 1 through the AIM2, NLRP3, and NLRC4 inflammasomes 

(Mariathasan, Weiss et al. 2006, Franchi, Kanneganti et al. 2007, Franchi and Nunez 2010, Kim, 
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Bauernfeind et al. 2010, Warren, Armstrong et al. 2010, Wu, Fernandes-Alnemri et al. 2010).  

NLRP3 recognizes a wide variety of bacterial-derived ligands and endogenous danger signals, 

known as DAMPs, while AIM2 recognizes bacterial dsDNA (Eitel, Suttorp et al. 2010).  NLCR4 

specifically recognizes flagellin; however, the strain of L. monocytogenes used in this study does 

not express flagellin at physiologic temperatures, rendering the NLRC4 inflammasome an 

unlikely contributor to caspase 1 activation in our experimental system (Way, Thompson et al. 

2004, Eitel, Suttorp et al. 2010).  Given that ATP-mediated inflammasome activation requires 

NLRP3, it is also unlikely that the DDR regulates this inflammasome, as we see no defect in 

caspase 1 proccessing or IL-β production in DDR-deficient macrophages after ATP stimulation.  

Thus, it is tempting to speculate that the DDR is specifically involved in regulating the AIM2 

inflammasome, though we have established that this regulation is not at the level of AIM2 gene 

or protein expression.  In the response to DNA DSBs, the DDR kinases activate hundreds of 

substrates through phosphorylation of SQ/TQ motifs.  Thus, it is possible that ATM and/or 

DNA-PKcs phosphorylate one or more inflammasome components, thus promoting their activity 

through post-translational modification.   

 

Intriguingly, production of the cytokine IL-18, which also produced downstream of 

inflammasome-dependent caspase 1 activation, depends on DNA-PKcs but not ATM.  This 

finding suggests that ATM and DNA-PKcs may regulate the inflammasome in distinct ways, 

though the mechanism of this remains elusive and will be an area of further investigation.  

Notably, the defect in IL-18 production in L. monocytogenes-infected DNA-PKcs-deficient 

macrophages renders the cells unable to optimally stimulate purified splenic NK cells to produce 

IFN-γ.  NK cells are an important source of IFN-γ early in the innate immune response to 
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infection (Bancroft, Schreiber et al. 1991, Unanue 1997, Edelson and Unanue 2000).  Previous 

work in lymphocyte-deficient mice established that during L. monocytogenes infection, 

macrophages produce IL-12 and TNF, which activate NK cells to produce IFN-γ (Tripp, Wolf et 

al. 1993).  The NK-derived IFN-γ then acts in synergy with TNF to initiate full macrophage 

activation, including the up-regulation of MHC class II molecules and production of 

microbicidal intermediates (Edelson and Unanue 2000).  Thus, DNA-PKcs may contribute to the 

full activation of macrophages by positively regulating IL-18 production, thus promoting optimal 

IFN-γ production by NK cells.       

 

6.8) Conclusions and Future Directions  

 Here we show that activated macrophages initiate a robust DDR that depends on the 

kinases ATM and DNA-PKcs.  The genotoxic agent NO can activate this response and does so 

primarily through DNA DSB intermediates.  Notably, an optimal DDR in macrophages depends 

on type I interferon signaling in response to both pathogen-induced DSBs and DSBs elicited by 

the chemotherapeutic agent bleomycin.  Finally, ATM and DNA-PKcs have both distinct and 

overlapping functions in regulating the genetic program and inflammasome activation in L. 

monocytogenes-infected macrophages, suggesting that the DDR is important for fine-tuning the 

innate immune response of macrophages during L. monocytogenes infection.  In the future, we 

plan to investigate the role of type I interferon signaling in promoting DDR in macrophages 

specifically.  We also plan to interrogate the mechanism by which the DDR regulates 

inflammasome activation in macrophages that have been infected with bacterial pathogens.           
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Figure 27: Regulation of macrophage functions by DDR. 
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