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Abstract
This paper describes the design of the Axon host-network interface architecture,

and performance factors determining its design. The Axon project is investigating an
integrated design of host architecture, operating systems, and communication protocols
to allow applications to utilise the high bandwidth provided by the next generation of
communications networks. The Axon host architecture and network interface is designed
to provide a path directly between the network and host memory, without any store-
and-forward of data. A pipelined communications processor (CMP) serves as a network
interface with direct access to host memory, capable of delivering bandwidth in excess
of 1 Gbps to applications. This provides the ability to support demanding applications
such as scientific visualisation and imaging.

1. INTRODUCTION

The continuing trends in the computer and communications fields involve increasing
host processor performance along with the desire to use demanding applications such
as scientific visualisation across emerging communication networks which can support
increasingly high data rates (above 100 Mbps). It is becoming generally recognised
that the bottleneck in delivering this bandwidth to applications is in the host-network
interface.

The future generation of internetwork, consisting of high speed subnetworks and fast
packet switches operating at or above 1 Gbps is referred to as the very high speed in-
ternetwork. The VHSI provides access to a number of large mass storage facilities which
contain data and images obtained from computation such as simulations, finite element
analysis, and molecular modeling, as well as from real-time data acquisition such as satel-

$This work is supported in part by Bellcore, BNR, Iialtel SIT, NEC, Southwestern Bell, and NSF
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lite telemetry and medical scanning. The VHSI also provides access to supercomputers
and other specialised processors which run these simulation and modeling programs.

Existing architectures support distributed processing by message passing at the sys-
tem level using a stack of network protocols and mechanisms to treat the network as an
1/0 device. The problems with this approach are the following:

¢ There is a lack of integration of hardware, operating system, and communication
protocols. This results in considerable inefficiency and complexity for several reasons.
The functionality of operating system and communication system modules are not opti-
mised for one another, thus the interaction and interface between them is inefficient and
complex. There is a lack of correspondence between network and host data objects (e.g.
packets and pages), which results in ineficient control and synchronisation between the
network and host {e.g. per packet processing and page fault handling) and unnecessary
control transfer, data buffering, and reformatting.

o The network interface is treated like an 1/0 device, and therefore, per packet pro-
cessing involves servicing interrupts, context switches, and data copying to protocol and
1/0 buffers. Furthermore, since I/O processors and interfaces are designed to handle a
wide diversity of 1/0 devices ranging from character and unit record devices to high speed
mass storage, performance is suboptimal for VHSI rate communication.

¢ There is no way to directly use the shared variables paradigm for IPC across a wide
area network, which leads to performance compromises for applications naturally suited
for data sharing.

¢ Many existing and proposed transport protocols are general purpose, and are not
designed to perform well for various classes of demanding applications. General purpose
error and flow control schemes are complex to implement in hardware and do not exploit
the improved functionality of emerging high speed networks. Flow and congestion control
mechanisms are less able to respond to changing network conditions as data rates increase,
i.e. by the time adjustments are made, the conditions that induced the adjustment may
have drastically changed.

¢ Communication is handled through front end network interface or communication
processors, which are stored-program processors that manipulate packets in a store-and-
forward manner, resulting in latency due to programmed operation and buffering of data.
The network interface must also communicate with the host system using the standard
1/0 interface, which is not optimised for high speed communication (as mentioned above).

A new communication architecture for distributed systems has been proposed called
Axon [14]. The primary goal of the Axon architecture is to support a high performance
data path delivering vHSI bandwidth directly to applications. The significant features of
Axon are: (1) an integrated design of host and network interface architecture, operating
systems, and communication protocols; (2) a network virtual storage facility which in-
cludes support for virtual shared memory on loosely coupled systems [13, 15]; (3) a high
performance, lightweight object transport facility which can be used by both message
passing and shared memory mechanisms [16]; (4) a pipelined network interface which
can provide a high bandwidth low latency path directly between the VHSI and host mem-
ory. Axon may be viewed as a second generation high performance host-network interface
architecture, because of the emphasis on integrated design and the exploitation of the



enhanced performance and functionality provided by the vHsI.

This paper presents a description of the Axon host and network interface architecture.
Other aspects of the Axon architecture are described in [16, 13, 15]. Section 2 provides an
overview of the Axon architecture as background for this paper. Sections 3-5 describe the
host architectures in support of Axon, the host-network interface architecture, and the
design of the communications processor (CMP). Section 6 discusses Axon performance
and the partitioning of function between hardware and software. Section 7 presents
related work and Section 8 gives concluding remarks.

2. THE AXON ARCHITECTURE

This section provides a brief introduction to the Axon architecture, with emphasis on
functionality that must be supported by the Axon network interface. First, IPC (interpro-
cess communication) primitives are discussed within the framework of the VHSI environ-
ment. Then, a brief description is presented for the Axon system level IPC support and
transport protocol. The host architecture, host-network interface, and communications
processor (CMP) are described in subsequent sections.

Host CPU+Memory Host CPU+Memory
process IPC ~  p-ommmmmmr e process {PC
{s,7) |{rw) ! GRPC Istream stream| GRPC | (rw)| {s,7)
NMP NV3 {08) CMP CMP NVS (08) NMP
ALTP-QT ALTP f——-—-—— ALTP ALTP-QT
MCHIP}---—--—-1 MCHIF
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Figure 1: Logical Axon Protocol Hierarchy

2.1 IPC in the Axon architecture

A logical view of the Axon protocol hierarchy is presented in Figure 1. It is impor-
tant to note that this is a logical view of functionality only, and does not imply that
strict layering is adhered to in implementation. IPC is supported with shared variable
read/write and message passing send/receive primitives. Axon supports a general form of
remote procedure call, in which the code and data segments can be located on arbitrary
and independent hosts, with execution specified for an arbitrary host, referred to as gen-
eralised remote procedure call (GRPC). Axon provides mechanisms to transfer segment
streams at high bandwidth with low setup overhead to support the special demands of
high performance visualisation and imaging applications. GRPC and segment streaming
are described in [13, 15].

2.2 System level IPC support and NVS
The system level support for the various application level IPC paradigms is provided
by two components: NVS and NMP. Message passing IPC is supported by the network



message passing (NMP) interface which performs relatively straight-forward transforma-
tions from application level primitives (e.g. send and receive) to corresponding transport
level operations (e.g. send-message and receive-message).

Network virtual storage (NVS) is the system level shared memory interface for shared
variables, GRPC, and segment streaming IPC. NVS extends the typical virtual storage
mechanisms to include systems throughout the VHSI. A segmented programming model
is used, with underlying paging to facilitate storage management, as in the Multics
operating system [2] and descendents. NVS provides the ability to easily use the shared
variables paradigm across the VHSI.

In addition to the desirable functionality provided by NVS, its motivation is based
on the need to avoid the latency associated with the store and forward of packets in
host systems. This means that at the receiving end packets must be placed directly into
memory, and thus the host must be able to map them into the appropriate application
address space to avoid copying the data. The extension of the normal virtual store
mapping mechanisms in NVS provide an efficient and elegant method for deing this.

Segment types. Axon segments are of two types: memory and video. Memory segments
are either code or data subtype and are divided into pages (and may be organised into
segment groups for performance reasons). Video segments are either text or graphics
subtype. Graphics segments are bit-mapped image frames; text segments correspond to
a text window on a workstation. Video graphics segments are divided into scanlines, and
may be organised into multi-frame images (e.g. a color image of R+G+B frames).

Segments have attributes of read, write, execute, indicating the type of access al-
lowed. These access bits in the segment descriptor may differ from the (more restric-
tive) capabilities that individual users possess, or the descriptors of individual processes.
Code segments are assumed to be pure (refreshable), and therefore always have access
attributes of execute-only. Data segments may be readable and/or writable.

Data structures. NVs extensions allow segments to be addressed when resident on a
non-local host. This is accomplished by including a host id field in either the virtual ad-
dress or segment descriptor table (SDT) entry. When a segment fault occurs for a nonlocal
segment (indicated in the segment descriptor), the dynamic address translation facility
invokes the transport level to get a copy of the segment from the appropriate system. As
the segment is returned, corresponding page and segment descriptor presence bits are set
so that program execution can resume with the normal fault recovery mechanisms.

The local storage management data structures are extended to allow the addressing
of segments on other hosts. This is accomplished by adding a host id field to the known
segment table, which holds the symbolic segment bindings. The host id is an index into
the per process known host table, which holds the symbolic host name to address/path
bindings. This binding is resolved by searching the host address table for each host,
which gets its binding by invoking an internet name server, using the host name database.
There are also tables to assist in n-way IPC using multipoint connections. As in the local
environment, the segment id of the virtual address is the index into the segment descriptor
table (SDT). The per process SDT descriptor points to the per system segment descriptor
in the active segment table {AST). Multiple processes share segments by sharing AST
entries. The AST descriptor points to the base of the page descriptor table (PDT) for the



segment, with the page number of the virtual address giving the index to the appropriate
page descriptor. The page descriptor contains the auxiliary storage page slot location and
rea] storage page frame address. The offset portion of the virtual address is added to the
page frame address to obtain the desired real address. Depending on the method used
for network-to-host object mapping, a packet presence bit vector may be in PDT entries.
An associative translation lookaside buffer provides the typical performance benefits in
avoiding table lookup most of the time.

Storage management policies. Nvsin Axon involves extensions and additions to stor-
age management policies. The fetch policy is not affected by NVS, except that demand-
segment implies a degree of anticipatory-page movement across the network (which is
desired to counter end-to-end latency effects). The placement policy is not affected by
NVS at all, since placement is trivial for paged storage management and unaffected by
remote access to segments.

An entirely new policy, the remote placement policy, is used to determine where
remote segments are placed while being used by the local system. These include real
store, auxiliary store, a combination, and frame buffer placement, with a number of sub-
policy options {swappable, nailed, etc). Due to the presence of segments from remote
hosts, the replacement policy is affected. In particular, if real store remote placement
is used, an entire segment’s pages are placed in real store, some of which are likely
not in the process locality set. This can have significant impact on the availability of
real storage, and indicates that the estimation of working sets must consider local and
remote segments differently. Nvs and its storage management policies are described in
more detail in [13, 15].

2.3 VHSI underlying model

It is assumed that the underlying network is quasi-reliable [16], i.e. the probability of
errors is low enough that protocols are success-oriented, designed with errors as the ex-
ceptional case (but they still must be handled). The probability of bit errors is extremely
low due to the reliability of fiber optic links and modern fast packet switches; the prob-
ability of packet loss and mis-sequencing is low due to the connection-oriented substrate
providing resource reservation [10]. These assumptions lead to a number of simplifica-
tions in the transport protocol design and its efficient high performance implementation,
as described in this paper.

2.4 Transport protocol

At the transport level, the VHSI model is best supported by a set of simple application-
oriented lightweight transport protocols for various classes of applications [11, 16]. These
transport protocols can have their critical path functions implemented in the VLSI com-
munications processor (CMP). The critical path consists of the data path and routine per
packet processing allowing data to flow at VHSI rate once an operation has begun.

The transport protocol that is used by Axon is designed to support 1PC by the trans-
fer of objects (especially NVS segments), referred to as application-oriented lightweight
transport protocol for object transfer (ALTP-OT) [16]. ALTP-OT uses rate based flow
control, where the rate specification consists only of parameters important to IPC, and



Table 1
ALTP-0OT Operations

Connection join-ipc join or establish connection

respecify-rate alter rate specification
leave-ipc leave or terminate connection

Receive get-segment obtain segment copy
acquire-segment acquire segment authorisation and locks
get-page obtain page (segment must be acquired)
get-copy obtain permanent segment copy
get-stream receive segment stream
receive-message receive IPC message
retransmit-packets selective retransmission request

Transmit release-segment release segment and return modified pages

release-page release and return modified page
remote-execute initiate remote process execution
send-copy send permanent segment copy
send-stream transmit segment stream
send-message send IPC message

invalidate-segment invalidate remote copies

efficient end-to-end error control, optimised to include only what is necessary for object
transfer. The ALTP-OT requests and operations are listed in Table 1.

Packet structure and format. Information is transferred throughout the VvIISI in
packets. A group of packets corresponding to a single ALTP-OT semantic action is a
super-packet, consisting of an initial control packet {which may also contain data), and
optionally followed by data packets. The data packet format is shown in Figure 2.

Each data packet #; corresponds to a fragment =y, of a page p; of a segment s
(Isx| pages long) of a segment-group ¢ (containing' |g| segments), which are part of the
superpacket o. In the case of a video-graphics segment a page corresponds to a scanline,
a segment to a frame, and a segment group to a complete image. The packet index fields
43k mark the location of the packet in the segment. The limit fields |si||g] provide the
length of each segment in the group and the group size, which is used for local storage
allocation for the returning segments, as well as for bounds validity checking.

Identify each packet as mp;sx € ¢ C o, indicating the " packet of the j* page of
the k*" segment in segment group g, corresponding to superpacket o. The structure of a

super-packet (with & segments in the group) is then:

TopoSo,  |optional control packet]

MT1P151, TaP181, «or TpiP151,
T1P251, TaP2S1, cev Tip|P231,
T1Ps1151:  T2Ps;|S1, - -+ T|p|Pls; |51

T1Pok[Sky  T2P|sk|Sks -+ T|p|Plsi|Sk



field subfield [

MCHIP data
type
ALTP data
type OT
connection id c
request id q
segment /frame  limit lgl
index k
page/scanline [imit [sk|
index j
packet index i
data Ty
checksum z

Figure 2: Data Packet IFormat

Every data packet is sufficiently self-describing (connection id, request id, index, and limit
fields) so that the CMP is able to place them directly into the proper host storage location
regardless of packet arrival sequence and request and connection multiplexing.

In the case of a segment transfer (e.g. to satisfy a remote segment fault), a super-
packet consists of the entire segment. The correspondence between host and network
objects, and the resulting correspondence of control (e.g. segment fault resolution and
super-packet processing) provides substantial performance benefits, in terms of reduced
overhead of data buffering/reformatting and control synchronisation. For example, as-
suming a continuous data rate of 1 Gbps and packets based on ATM cell size of 53 bytes
transporting 32 data bytes each, the transfer of a stream of 1MB segments will involve
the host processing of super-packets every 13.9ms (32K packets/segment), rather than of
packets every 424ns. Additionally, super-packet processing corresponds to segment fault
processing, and therefore requires no additional CPU interrupts and context switches.

Flow control. ALTP-OT uses rate based flow control. When ALTP-OT opens a con-
nection, it specifies attributes of the connection in terms of parameters such as average
and peak bandwidth, and a factor reflecting the burstiness of the transmission. These
parameters are used by all the intermediate systems, including various packet switches
and gateways, as well as the endpoint hosts that the connection goes through, to make
appropriate buffer and resource reservations. The rate specification is negotiated between
ALTP-OT and the internetwork/network layers, to ensure that the requested rate does not
exceed the capacity of internal network nodes (packet switches, gateways, and subnet-
works). Furthermore, any adjustments to the rate specification should be infrequent,
based on long term changes in application demands. It is assumed that the internet level
below has the functionality to support connections with specified bandwidth require-
ments, and furthermore, that the probability of packet loss, errors, and resequencing is
very low, which is referred to as quasi-reliability.



This results in very simple flow control at the host-network interface, involving clock-
ing packets at the specified rate, which can realistically be designed into V1sI hardware.
As long as both ends transmit subject to the rate specification, the probability of packet
loss within the VHSI due to buffer overruns is very low. Since the internet level is respon-
sible for resource allocation, ALTP-OT is not concerned with congestion control, further
simplifying flow control and the network interface. Error control is decoupled from the
rate based flow control, which allows considerable simplification as described below.

Error control. In the VHSI environment error control is performed, as much as possible,
on an end-to-end basis, and is decoupled from flow (rate) control, as described above.
The ALTP error control is as simple as possible, based on application characteristics; the
packet handling is:

¢ duplicate packets are discarded

e corrupted packets are discarded with application based selective retransmission

e missing packets (timer detected) are selectively retransmitted (application based)

e packet sequence is irrelevant (see below): sequence by placement

Note that due to the orientation of ALTP-OT to object transfer, the handling of
duplicate and out-of-sequence packets is considerably simpler and more efficient than
would be the case for a general purpose transport protocol. Since data packets have
sufficient header information to indicate the connection and request, and are placed
directly into the proper location of target store, the overhead of sequence buffering is
eliminated. The simplified error control of ALTP-OT can be efficiently implemented in
VLSI hardware.

Retransmission strategies. Several options exist for the retransmission of packets:
granularity of retransmission and timer values, retransmission fetch policy, and preemp-
tion by the retransmission.

¢ granularity: The granularity of retransmission refers to how many missing packet
events are accumulated before a request for retransmission is made. Due to the knowledge
of the super-packet structure of segment (groups) by ALTP-OT, a rich set of options can
be exploited, that are based on the granularity of the data structure transmitted: packet,
page, segment, and segment group.

e fetch policy: The retransmission strategies can be classified by whether packets are
always requested for retransmission, or only if a page is referenced that contains them.
If all packets corrupted or missing are retransmitted, this corresponds to anticipatory
retransmission thus anticipating the future reference of all missing packets. In this case
the timers indicate when a packet retransmission request should be made. If the only
packets retransmitted are those corrupted or missing which are part of a page actually
referenced, the policy is demand retransmission, and assumes that a number of packets
in the segment will not necessarily ever be referenced. In this case, the timers indicate
how long to wait before a referenced packet is assumed to be missing.

¢ preemption: Since error control is in-band, packets retransmitted use the same
connection and allocated bandwidth as the primary data stream. The alternatives are
to allow all of the original request to flow before any of the retransmission requests are
serviced resulting in a mon-preemptive policy, or to preempt the primary data stream
and immediately retransmit.



The number of possible strategies is the cross-product of these orthogonal sub-policies:
granularity, fetch, and preemption, e.g. a reasonable strategy is to retransmit a page of
packets only when the page is referenced, and preempt the primary data stream.

Lower layer protocols. The underlying internet/network layers of function are pro-
vided by a multipoint congram-oriented high performance internet protocol* (MCHIP)
[9, 10], and network access protocols.

3. AXON HOST ARCHITECTURE

This section describes the Axon host architecture configurations. High performance
computer systems typically consist of one or more central processors (CPU), which com-
municate with memory banks (M) and /O processors (10P) through an interconnection
network (as shown in Figure 3 excluding the dashed-line boxes). In addition, various
caches ($) may be present to utilise fine-grained locality and perform speed-matching of
data rates. Note that CPU blocks may represent special purpose processors or coproces-
sors (such as array processors or simulation engines), as well as general purpose instruc-
tion processors. Additionally, the memory system may consist of a multi-level hierarchy
including extended memory (EM) for high performance backing store. Communication
is typically handled by front-end communications processors or network interfaces (NI),
which use the /0 interface to the host system. The data stream is thus subject to the
delays of both the network interface and 1/0 processor, as well as the additional operat-
ing system instruction path length and context switching overhead for each. In addition,
since the 10Ps are designed to handle a wide diversity of 1/0 devices ranging from slow
unit record and character devices to high speed mass storage, it is likely that 10Ps will
not perform optimally for high VHSI rate communications (if at all).

For Axon to support communications in the VHSI environment, it is necessary to pro-
vide high bandwidth low latency data paths directly to memory, motivating modifications
_ to current host architecture. In particular, the most significant requirement is that the
objects being communicated are moved between host memory without any intervening
store-and-forward hops. This is necessary to avoid extra latency, large amounts of buffer
space, and the complexity of buffer management. Two configurations of host architecture
meet these requirernents.

3.1 Interconnect interface architecture (I1IA)

The first Axon host architecture gives the CMP (communications processor) a relation-
ship to the system similar to that of 10Ps, interfacing directly to the processor-memory
interconnection network. This is referred to as interconnect interface architecture (I1A),
and is presented in Figure 3 (with the inclusion of the dashed box labeled 11A). In ad-
dition, an interconnection between CMPs and I10Ps should be provided to allow direct,
high-speed transfers between the VHSI links and 1/0 controllers (10C) or devices (which

*A congram combines the desirable features of a datagram with those of a (soft) connection. For the
purposes of this paper, it can be thought of a connection with the added attributes of rapid setup and
survivability in the presence of network failures.
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Figure 3: Axon Host Architecture

provides the path to auxiliary backing storage — AS). Note that the interconnection net-
work is depicted as a crossbar for simplicity, but the actual structure will vary based
on the particular host system architecture. Axon only imposes the requirement that the
interconnection be rich enough to allow the added CMP connections, and has enough
performance to sustain the additional VHSI communication traffic without significant
blocking.

3.2 Memory interface architecture (MIA)

The second Axon host architecture interfaces the CMPs to a special multi-ported com-
munications memory module (CMM), similar in concept to VRAM (video-RAM) design.
This is referred to as memory interface architecture (MIA), and is presented in Figure 3
(with the inclusion of the dashed box labeled MI1A). The CMM has a conventional ran-
dom access port which appears like any other memory bank to the processor-memory
interconnect, out of which the CPU may execute code and access data. The other ports
are high speed sequential access interfaces to the cMP (transmit and receive), and must
operate at a rate of the VHSI optical links (= cMP datapath width).

3.3 Comparison of ITA and MIA
This section will discuss some of the tradeoffs affecting the choice of host architecture.

Remote segment placement. In 1IA, the interface is uniform to all memory modules
in the real address space, and to I0Ps giving access to auxiliary storage. Thus, segments
fetched across the network can be easily placed anywhere in real storage, auxiliary storage,
or both (corresponding to the NVs remote segment placement policy).



In MIA, however, all memory modules are not directly available to the CMP. Segments
received are placed in the cMMs connected directly to the CMP that has received them.
Segments to be transmitted must be present in the appropriate CMMs. This creates a
partition of the real address space R = {My,...,Mp; CMMy,...CMM,, } and makes memory
access somewhat more difficult, particularly if there are multiple interleaved CPU memory
modules. Additionally, the fraction of real store devoted to CMM must be determined
based on communication requirements, and remote segments must be clustered in these
memory modules.

Blocking of traffic. In 1A, communication traffic uses the main host interconnect
and is therefore subject to blocking based on congestion due to traffic between memory
(M) and CPUs or I0Ps. Since the CMP does not buffer packets, two approaches may be
taken: blocked packets are dropped or cMP traffic blocks local interconnect traffic. Either
method is acceptable if the blocking probability is sufficiently low, and the latter has the
advantage of requiring fewer packet retransmissions.

In MIA, the CMP-CMM interface is designed such that communication traffic can
proceed at VHSI data rates with no blocking using the sequential CMM ports.

Pragmatics. The IIA dictates a rich, complex host interconnect structure, and may
require some redesign of current host hardware architecture. The interconnect must
support the additional connections and additional traffic for each CMP attached.

The MIA requires little redesign of host architecture, other than dealing with the
physical address configuration of M and CMM for proper real address space partitioning
and memory interleaving. The MIA does, however, require a completely new memory
design, specifically the high performance multi-ported cMM, which must support the two
simultaneous asynchronous sequential ports attached to the cMP, along with a random
access port attached to the processor interconnect. '

Additionally, in MIA the connection between CMPs and IOPs needs to be treated as a
special case. Segments could be staged through the cMM, but this violates the principle
of avoiding store-and-forward of data. The alternative is to cut-through on a CMM bypass
path into the host interconnect. Note that if a cut through is used, the blocking issues
discussed in the context of ITA must be considered.

4. HOST-NETWORK INTERFACE

This section gives a brief description of the organisation of the Axon host-network
interface design for an MIA (memory interface architecture) host.! A block diagram is
presented in Figure 4. The interface is bidirectional, but the functions have been labeled
for communication in the left-to-right direction for clarity.

TNote that this does not imply that MIA is superior to IIA, but rather that MIa is chosen as the
example for this paper.
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Figure 4: Axon Host—Network Interface

4.1 Architecture and organisation

The ALTP-OT critical path, consisting of the data path and per packet (7) processing,
is implemented in the CMP (communications processor). The CMP consists of datapath
(cMP4) and control (CMP,) portions. The cMP datapath interfaces to the VHSI optical
links and the sequential ports of the CMM (communications memory module), and per-
forms such functions as encryption/decryption and format conversion (encode/decode).
The CMP control functions are those directly related to the datapath such as header
build/decode, checksum generate/compare, CMM address generation, rate specification
timing, as well as the per packet congram multiplexing and control.

The CMM is a multiported memory, with sequential ports connected to the CMP
transmitting and receiving data paths, and the random access port available to the host
CPU for program execution.

A high performance microprocessor, the oMp assist processor (CAP), performs func-
tions that are not part of the critical path, but require high performance that would be
inadequately provided by the host cPU and would adversely impact the performance of
other host processes.t The CAP is responsible for building control packets and passing
them to the cMP for transmission and checksumming. Sirnilarly, control packets received
by the CMP are passed to the CAP for full decoding and subsequent action, which may
involve interaction with the host cPU. The CAP is involved in the timer management for
error packet retransmission, and in the packet arrival to page presence mapping (7 — p),
in particular setting page and segment presence and subsequent host notification for fault
recovery.

The host CPU is responsible for link/segment/page fault handling (NVS), and per
congram functions (ALTP-host) directly corresponding to application requests.

tThe cAP was omitted from Fig. 3 for clarity.



4.2 Functional partitioning

A key issue in the implementation of high performance architectures such as Axon
is to determine the proper partitioning of function between the critical and non-critical
path.

Some function, such as the data path from network to memeory and associated per
packet control is clearly part of the critical path and must reside in ¢MP hardware, to
support small packets at high data rates. For example, it is unreasonable to expect a host
CPU to process. incoming and outgoing packets every 424ns (ATM cell size at 1 Gbps),
and to concurrently execute the application needing this bandwidth. It should be noted
that the design of the simple critical path can remain constant even if control functions
need optimisations that affect non-critical path software in the CAP and host CPU.

Other control functions may or may not need to be (fully) part of the critical path,
depending on the data rate and time-space complexity tradeoffs. Examples include
packet retransmission timers and host-network object mapping (packet arrival to page
and segment presence). Parallelism in the data path can be used to provide a speed
advantage, allowing higher data rates for a given CMP clock cycle. In addition, pipeline
delay is used to allow control functions the necessary time to operate at high data rates.

The partitioning of non-critical path functions between the host CPU and CAP is also
important. This is dictated by the desire to avoid lost interaction with the communica-
tion operation that is not directly related to application execution. Thus, it is reasonable
to expect the host to initiate an ALTP-OT segment transfer as a result of a segment
fault; the application process has already been interrupted and a context switch taken
to system state. But the host CPU should not be involved in the protocol processing
until all of the packets in the first addressed page of the segment have arrived and the
suspended process can resume.! The CAP handles all of the asynchronous events that
would otherwise cause the CPU to be interrupted and suspend other processes, reducing
application efficiency.

The determination of critical path control function implementation involves a time-
space complexity tradeoff, and will be discussed in Section 6.

5. COMMUNICATIONS PROCESSOR

This section gives a high level functional description of the cMP (communications
processor) for an MIA host, and an operational example for an ALTP-OT request.

The goals for the design of the CMP include the ability to perform critical path
functions in real time with no packet buffering and to incorporate the necessary function
in VLSI. This may be realised by organising the CMP as a dynamically reconfigurable
pipeline, based on the ALTP type and options for a particular congram. The pipeline
organisation allows packets to be processed at the VHSI data rate.

The cMp (Figure 5) consists of a set of datapath modules and control modules. The
datapath modules perform manipulation and transformation on packets as they pass
between the point-to-point VHSI optical links and the cMM (communications memory

$This is similar to the motivation for relieving the cPU of programmed 1/0 by providing 1ops.
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Figure 5: Communications Processor Block Diagram

module) sequential access ports, without buffering (except for the pipeline delay).

5.1 Congram control
The multiplexing of congrams (which may be considered to be soft connections) is

handled by the congram control logic:

MPX — MULTIPLEXING control logic performs the hardware context switching of the
CMP in response to transmission requests and received congram ids.

CSR — CONGRAM STATE REGISTERS hold all of the state information for each active
congram, to allow rapid control and pipeline configuration changes for multiplexed con-
grams using the CMP. There is a set of CSRs for both the transmitting and receiving side
of the CMP.

5.2 Packet data paths
The transmit data pipe and receive data pipe are the main data paths of the cMPp.

The transmit data pipe modules are:

ECD — ENCODE performs any required transformations to the data to correspond to



internetwork data format standards and accommodate heterogeneous hosts (such as byte
ordering).

ECR ~ ENCRYPT performs data encryption of the data and internal control fields of the
packet as it passes through the data pipeline.

P25 — PARALLEL-TO-SERIAL datapath conversion reduces the w bit wide data path
for transmission on the bit serial network link.

XMT - TRANSMIT performs the line coding and transmission functions for the optical
transmitter.

The receive data pipe modules are:

RCV — RECEIVE takes the bit stream derived from the optical receiver, eliminates line
coding, and derives the clock for the receive data pipeline.

S2P — SERIAL-TO-PARALLEL datapath conversion forms an w wide data path to give
a speed advantage and octet access to packet header/trailer fields for CMP control and

data pipeline manipulation.

DCR — DECRYPT performs data decryption of the data and internal control fields of the
packet as it passes through the data pipeline.

DCD — DECODE performs any required data transformations to the data from internet-
work data format standards to the local host format.

5.3 Per packet control
Associated with the transmit data pipe are control modules:

RCT — RATE CONTROL uses the rate specification »; for each congram ¢ to determine
the timing of data reads from the CMM, and thus the rate at which packets are clocked ouf
of the transmit pipeline for each congram. The »; values for each congram are obtained
from the corresponding CSR.

ADG — ADDRESS GENERATE uses the initial CMM address of each page to form the
addresses for each packet read from the cMM.

CKG — CHECKSUM GENERATE sums the packet data fields as they pass through the
data pipeline. The computed checksum is then inserted in the packet trailer.

HDB — HEADER BUILD uses the congram id and control information from the corre-
sponding CSR to build the header for the packet. All protocol levels of encapsulation
(ALTP, MCHIP, and network) are done at one time. The congram and request ids (¢, ¢)
and packet id (segment id k, page number j, packet number ¢) are inserted into a header

template.

Associated with the receive data pipe are control modules:

HDD — HEADER DECODE determines the congram id for CMP configuration, and deter-
mines whether the packet type is control or data. Control packets are passed to the CAP.
For data packets, HDD determines the packet address in MM from the packet index (z5k)
and the base address of the page from the corresponding CSR. The congram and request
ids {egq) are used by MPX to select the appropriate CSR.



CKC — CHECKSUM COMPARE sums the packet data fields as they pass through the
data pipeline. The computed checksum is then compared with the actual checksum in
the packet trailer. If a mismatch is found, the PPL and PEL (packet presence and error
logic — see below) are notified to indicate that the packet has been discarded after initial
receipt.

ADD — ADDRESS DECODE uses the initial CMM address of each page (from the CSR}),
and the packet index {ijk) to form the MM address for the writing of each packet into
CMM.

The packet control logic is responsible for recording packet arrivals and missing or
corrupted packets.

PPL. — PACKET PRESENCE LOGIC keeps track of packet arrival to allow the CAP and
host to determine the presence of complete pages and segments, so that the appropriate
page descriptor table and segment descriptor table presence bits can be set, and host
CPU application resumed.

PEL — PACKET ERROR LOGIC keeps track of corrupted (from cK¢C) and missing (from
RXT) packets so that retransmission requests can be made, and also invalidates corrupted
packets to the PPL.

The error control logic is responsible for generating the appropriate selective retrans-
mission requests and packet addresses at the receiving end, and retransmitting packets
on the sending end.

RXT — RETRANSMIT TIMERS determine (in conjunction with the CAP) when packet
retransmission requests should be made, based on the retransmission policy. Timer
values are accumulated to the proper granularity (packet, page, segment, or group). The
fetch and preemption options are then used to determine when the retransmit-packets
control packet should be sent, and the PEL is used to construct the retransmit packet bit
map.

RXA — RETRANSMIT ADDRESS generates the (local) cMM addresses for packets to be
retransmitted, using the base address of the corresponding page and the retransmit packet
bit map in the retransmit-packets control packet received.

5.4 Example operation

This section describes the network interface processing to handle a remote segment
fault initiated by NVs, to indicate how the various blocks of the cMP and network interface
interact in an operational manner. A description of a similar process concentrating on
the Nvs and ALTP-OT host level operations is presented in [14] '

When a segment fault occurs, NVs determines if the request is for a local segment.
If not, a copy of the segment must be fetched from a remote host, and an ALTP-OT get-
segment operation is initiated. The host CPU resident ALTP-OT transfers control to the
CAP, passing the segment name, remote host address, and other necessary information.
The CAP then builds a get-segment control packet by inserting this information into an
appropriate template in its local memory. The control packet is then passed to the CMP
which sends it to the VHSI via its serial output link.

At the remote end, the cMP header decode logic determines that it has received a



control packet, and passes it to its CAP. The control packet checksum is computed, and
if a mismatch occurs, the CAP is notified so that the request can be rejected. The CAP
fully decodes the control packet, making the determination that a link fault is required
to locate and authenticate the get-segment request. It passes this information to the host
CPU using an interrupt. The host CPU and operating system use the normal mechanisms
to locate, authenticate, (if necessary) lock, and page the segment into real store. The
CAP is then notified of the segment location in terms of the base page addresses. The CAP
passes these to the CMP, which stores them in the congram state registers (CsR) for the
corresponding request. Using the base page addresses, the CMP reads from the sequential
output port of the CMM in packet quantities. The header build logic inserts the congram
and request id from the CSR, as well as the page and segment id 7k, and increments the
id for each packet 7. The rate control logic is used to clock the packets out of CMM based
on the rate specification for the congram. As the packet passes through the data path,
a checksum is computed, which is inserted into the packet trailer. Furthermore, data
encryption and format conversion are performed if required. After the entire page has
been read from the cMM, under control of the congram multiplexing logic, and subject
to the rate specifications of active congrams, a CMP hardware context switch may take
place to output a page from another congram.

At the local end, storage has been allocated for the returning segment, based on the
estimated segment size. The data packets contain the actual segment size, which will be
used to adjust the allocation if necessary. A segment superpacket consists of a sequence
of data packets, all of which are completely self-describing by congram and request id
(cq), and packet id (ijk). When a packet enters the CMP input from the vHSI link,
the header decode logic uses ¢g to switch to the corresponding csR. This contains the
base address of the pages for CMM, allowing the address decode logic to compute the
appropriate addresses so that the packets can be piped directly into the CMM input port.
The packet presence logic is used to determine when entire pages are present, and signals
the CAP to interrupt the host CPU to set page presence and recover from the page faulf.
Timers and counters in the CAP and CMP are used to determine when a packet is to
be considered missing, and this causes the CAP to build and initiate a retransmit-packets
request to the remote host. The CAP determines when the entire segment has arrived
based on presence of all its pages, and the CSR information corresponding to this request
may be freed for reuse. The CAP then notifies the host system that remote segment fault
recovery is complete.

6. ANALYSIS

This section provides a framework to evaluate the design and performance of the
Axon host-network interface architecture. First, the required performance measures are
described. Then, a criterion for the partitioning of functions between the critical and
non-critical path is discussed. Finally, the performance of Axon in terms of the time to
access remote storage is discussed with respect to the operations involved and functional

partitioning.



6.1 Performance measures

High performance is characterised by high data rate and low latency, with sufficient
predictability. The data rate of a connection R is constrained by the minimum data
rate r; of components along the connection path: R = min(r;). The total end-to-end
latency D is the sum of the delays d; through the various components: D = } d;. The
requirements for a high performance host-network interface will now be considered in
terms of date rate {clock cycle) and latency (delay). These parameters are shown in
Figure 6.

d, dx det+ dy dr
source |transmit receive ol target
memory interface interfacel memory
Thi Tz Tn Tr Thz

Figure 6: Interface Performance Parameters

Network interface clock cycle. Define the maximum data rate for transmission by
R = min(ra1,7s,Tn,Tr, Thz) With components: the source host rate ry;, the rate of the
transmitting network interface ry, the vusI (network) rate r,, the rate of the receiving
network interface r,, and the target host rate rzs.

Assume that the rates of the hosts and VHSI are matched: r = 7, = rp; =rpo. This
means that the network interface must be able to communicate at a data rate r = 1/7
[bit/sec]. Parallelism in the cMP data path provides a speed advantage; for a data
path w bits wide the required major cycle time is 7., = wr. Only the serial ports and
serial /parallel conversion logic is required to operate at the minor cyle 7.

Table 2 shows the required CMP cycle time 7, for various required data rates r and
datapath widths w (which are multiples of 8 to allow octet access to packet fields). Cycle
times on the order of 5ns are reasonable for a single chip VLSI CMP implementation in
emerging CMOS or GaAs technology.

Network interface delay. Define the total end-to-end transmission delay of an object
o by D, = d,+ d+ d.+ d,+ d. with components: the object transmit time d,, the CMP
pipeline delay at the transmitting network interface d,, the speed-of-light latency d., the
subnetwork and gateway queuing delay d,, and the CMP pipeline delay at the receiving
network interface d,. Note that this excludes the latency of retransmitted packets.

The speed of light delay d. is a function of the path length and the velocity of light
in fiber. It is the responsibility of the VHSI to minimise queueing delay d,. It is assumed
that the VHSI provides guarantees on d, through the use of statistical resource reservation
by congramis, and therefore the endpoint hosts need not be concerned with d,.

The object transmission time d, is a function of the object size |o| [bits] and data
rate 1/7. The object transmit time for some example object sizes at 1 Gbps is shown in
Table 3.

Note that the actual page size is dictated by a particular host architecture, and the
segment size by the application; these numbers give an idea of typical cases. The packet



Table 2 Table 3

CumP Cycle Times Object Transmit Times
r w Tw 0 lo| do
1Gbps 8b  8.0ns _ bit b 1b 1ns
1Gbps 16b 16.0ns byte B 8b 8ns
1Gbps 32b 32.0ns packet 7 48+5B  424ns
10Gbps 32b  3.2ns page p 1KB  13.5pus
10Gbps 64b  6.4ns segment s IMB 13.9ms
10Gbps 128b 12.8ns IGB 14.2 s

size s given as ATM cell size to give an extreme lower bound on packet size, and allows
32B of application data and 16B of header in the cell. A particular implementation of
Axon may use a larger packet size, the upper bound being the smallest page size of any
Axon host in the VHSL

The overall goal is to minimise D,, and the Axon architecture must minimise d, =
dz+d,, which are the CMP interface delays between the VHSI boundary and host memory
addressable by the application. Note that as d,, d,, and d, scale downward, d. dominates.
Also note that if |o] scales up with application demands along with host CPU power and
memory size, d, may remain a significant part of the latency.

By assuming a latency component consisting of the queuing delay and speed of light
delay d, = d, + d. as a constant for various kinds of networks (LAN, MAN, WAN, inter-
network), a bound on the acceptable network interface delay can be determined [12]. A
LAN will have the lowest latency, and provides the lower bound. To support a LAN with
latency d.; = 10us, the required host interface latency is then d, < O(10pus).

The number of acceptable stages in the cMP data pipeline can be computed as ng, =
dyr/T,. Assuming an interface with octet wide data paths (w = 8), this allows the
pipeline to be at most 625 stages long at each end, which is far more than will ever be
needed by the cMP. This analysis shows that the Axon CMP can be designed to match
even the low latency of a high performance LAN.

One of the performance targets of the Axon architecture is to support high bandwidth
interprocess communication with low latency, specifically sub-second round trip delay
(including object transmission). An internet will have the highest latency component
deq, on the order of 200ms across an intercontinental internetwork [12], or a round trip
delay of 400ms. The CMP pipeline delay is constrained by LAN latencies to dg = 10us, as
described above. At 1 Gbps, a 1 MB segment will have d, = 13.9ms, from Table 3. This
gives a total D, < 1s, and indicates that given a sufficiently fast cMP and VHSI with highly
reliable transport (requiring few retransmissions) the potential exists for applications to
achieve good interactive performance across long haul networks, even when the transfer
of large objects is involved.

6.2 Functional partitioning
A key issue in the implementation of the Axon architecture is to determine the parti-

tioning of function F between the critical and non-critical path, which involves a time-
space complexity tradeoff.



Time complexity. The impact on time complexity of a control function is the time
taken for a hardware implementation (in CMP clock cycles) vs. the time taken for a
software implementation (in host CPU or CAP instruction cycles).

For the host CPU and CAP, the time that control function C; takes to complete ; is
based on the instruction cycle times tcpy and tcap, and the number of instructions required
on each migpy and micap, as well as extra overhead ml,,, such as context switches
and system calls. Thus in the worst case, with no overlap between the CAP and CPU:
t; = Mycaptoar T+ (miCPU + mgcpg)tcpu

For the cMmP, define the minor cycle 7 to be the inverse of the serial data rate on
VHSI communications links, (e.g. for 1 Gbps, 7= 1ns). Define the CMP major cycle 7,
as the clock cycle internal to the cMP within the parallel data path w bits wide. Thus,
an octet wide data path gives a CMP clock cycle of 7, = 8ns, which is feasible with
current technology, since the operations performed within each CMP pipeline stage are
fairly simple. If a slower clock is desired, the datapath width can be increased, but
this trades against area complexity as described in the next section. Given n; stages of
pipeline delay for a particular control function Cj, the time it takes is ; = n;7,. Thus,
the critical path time savings for C; is CP; = {;—;.

Note that by implementing a control function in the critical path, there may be an
associated cost in increased latency through the CMP 1,An;, due to An; more pipeline
stages required for C;. The discussion in the proceeding section has indicated, however,
that the latency bound on pipeline stages is extremely high, and therefore this is not of
significant concern.

Space complexity. For the host and CAP, space complexity consists of memory used
for software implementation of the function. This will be assumed to be a sufficiently
small fraction of total memory that it will be ignored for the purposes of this paper.

For the CMP, space complexity has two measures: chip area and off-chip interconnect
lines. Define a; as the area required to implement C;. The constraint to be met is that the
sum of all the control and datapath functions implemented on the CMP must not exceed
the available chip area for a given process technology: ¥ ;a; < aeme. The datapath
width w is a significant contribution o acuyp, which limits the achievable speedup factor
mentioned in the context of time complexity.

Note that although power issues are also of concern, for a complementary logic family
power dissipation is related to the clock frequency and transistor count (related to a),
and is therefore indirectly reflected by the area complexity.

The other space complexity measure is the number of off-chip iterconnect lines
(pinout using conventional packaging techniques). Define I; as the number of off-chip
interconnect lines needed to implement control function C; on the cMp. Thus, ; is
constrained by the threshold of available interconnect on a chip using a given packag-
ing technology: ¥;; < lone. The datapath width is also a significant contribution to
lomp, since there will be 2w data lines between the CMP and cMM (read/transmit and
write/receive paths).

Thus, in determining if a function should be in the critical path, the tradeoff is in
time saving CP;, vs. acceptable chip complexity (a;,{;). This criterion is being used to
determine a good functional partitioning in the Axon implementation. Some function,



such as the data path from network to memory and associated per packet control is clearly
part of the critical path and must reside in CMP hardware, to support small packets at
high data rates. Other control functions may or may not need to be (fully) part of
the critical path, depending on these tradeoffs. Examples include packet retransmission
timers and host-network object mapping (packet arrival to page and segment presence).
This analysis is being supplemented by detailed simulation studies.

6.3 Remote storage access

Given that Axon provides a virtual shared memory view of the VHSI, the time to gain
access to remotely referenced objects is of prime concern. The performance metrics of
principal interest to Axon are:

Ts: the time that a process is blocked due to a remote segment fault (which is is
resolved when the local system may begin executing the first page referenced in the
segment).

T,: the time that a process is blocked on subsequent page faults, which will be the
case if a page is referenced before it is present as part of the arriving segment.

These are the cost penalty of non-local NVS object access. The time involved in the
processing of a remote segment fault (and the resulting page faults) is indicated in Fig-
ure 7. Time increases downward; the horizontal position indicates where the processing
is taking place, as labeled on the top of the figure. T and T, are the intervals indicated
by the dashed line under the process address reference trace p.

These delays can be partitioned into three classes: (1) Host dependent delays are
those directly related to the application (such as object size) and host architecture and
operating system (such as the time to perform a context switch). The network interface
latency is excluded from this class. These delays fall in the process, NVS, ALTP-OT/CPU,
and network (for object size) columns of Figure 7. (2) Network dependent delays include
the VHSI queuing and speed-of-light distance latencies, and are incorporated in the net-
work column. (3) Network interface dependent delays are those that are included in the
CMP and CAP processing, and are of primary concern in the following discussion.

The performance metrics are a function of the functional partitioning F and input
performance parameters P, thus 7 = f(F,P). The metrics T; and T, will now be

discussed.

Remote segment fault delay. Define the time a process must wait for a (remote)
segment fault as

Ts = Treq + Dgs + Trem + Dp + T;-esp + Tos

with components:

Tieq = local host request processing time

D, = latency of get-segment request propagation
Trem = remote host request processing time

D, £ latency of returning the first page po

Tresp = local host time in processing page response
T.o = superpacket to segment mapping
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Figure 7: Segment Fault Processing
Each of these time components will be described in greater detail, with particular con-
sideration of implementation options that affect the partitioning among host CPU, CAP,
and CMP.
Treq is the local host request processing time

Treq = tes + tsp -+ tgsl

and consists of a context switch (f), segment fault processing (ts), and get-segment
- local request initiation (fg). Clearly the context switch is a function of the scheduler
and the segment fault a function of NvS on the local host CPU. The request initiation
must occur in coordination with ALTP-OT on the host CPU or CAP and the CMP. Note
that latency involved in a name server request for a symbolic host name binding is not
considered here, because this will only be added with probability that the appropriate
NVS tables do not have this information cached.



Dy, is the end-to-end propagation delay of the get-segment requést between hosts,
and since a single control packet is small, is primarily a function of the latencies d, +
d; + dg + d.. As discussed before, a CMP with a fairly large number of plpelme stages
prov1des acceptably small d.,.

Trem is the remote host request processing time

Trem = tgsr+tcs+t]f V

and consists of remote get-segment request processing (g}, and if this is the first get-
segment for this segment, a context switch (¢s) and link fault (). As indicated before,
the context switch is a function of the remote host scheduler, and the link fault a function
of the remote host NvSs. The remote request processing is an ALTP-OT function that must
be recognised by the CMP, and then passed to the CAP for processing. Thus, the main
consideration here is that the CAP perform control processing reasonably quickly.

- D, is the the end-to-end delay of returning the first page Po in segment s. This
consists of the propagation of each packet in the page.

Dp=dy+de+dy+d + [Ilpll [w]rl
where |74| is the size of the data portion of the packet. Note that this expression assumes
that the stream of packets in each page is contiguous (e.g. not interleaved with other
congram packets), since the CMP transmits pages as bursts of contiguous packets.

Tresp 18 the local host time in processing the page response

Tresp = fp+ tp!—a'r + tdisp + i

and consists of marking packet presence (£x), packet to page mapping (t,r), the process
dispatch (faisp), and a resulting context switch (). The dispatch and context switch
are a function of the local host CPU and operating system.

Recognising the'arrival of packets must clearly take place on a per packet basis, and at

least be initiated by the CMP critical path. The packet to page presence mapping may be
either explicit or implicit. The CMP will place packets directly into the proper locations
of the target page in CMM. In the explicit case, the CMP critical path records packet
‘arrivals, and determines page presence when all of the page’s packets have arrived. One
option is for the CMP to store packet presence state on chip. A full array implementation
involves far too much memory to consider. Since the probability is high that packets will
arrive in sequence, the CMP only needs to track expected packets that are missing, tagged
by congram and request id. Each time the last packet in a page has arrived, (initially
or after retransmission), the page is marked present in the page descriptor table. Note
that explicit mapping allows the CMP or CAP to request retransmission of missing or
corrupted packets based on the best retransmission policy, e.g. whenever the timers fire
for each packet or page.

In the implicit case, when packets arrive, packet presence bits are set in the corre-
sponding host page descriptor table entry. When the host page faults, the packet presence
vector is examined to determine if the whole page is present. Note that while relieving



the cMP of a certain amount of complexity (especially memory for the packet presence
bit vectors), this restricts the ability to request missing or corrupted packets to the times
at which page faults occur, rather than based on CMP or CAP timers. An alternative
implicit scheme uses additional structure in the cMM to tag packet chunks of memory
with presence bits, which are used by the host {or CAP) to set page descriptor table
presence bits.

Ty is the superpacket to segment mapping. In the absence of packet errors (includ-
ing mis-sequence), a single super-packet transmission corresponds exactly to a segment
transfer, and T, , = 0. In the presence of errors, T is the delay waiting for all retrans-
mitted and mis-sequenced packets to arrive for the first referenced page in the segment.
Note that a packet error in the first referenced page roughly doubles the access time 75,
The most complex aspect of the error retransmission involves packet timers. A counter
must be maintained for each active congram request, which is incremented for every ex-
pected packet arrival. If a packet is not yet present once the corresponding value has
been reached, it is a candidate for retransmission. It is reasonable to expect that the
CAP should be involved in this process in cooperation with the cCMP.

Page fault delay. Define the time a process is blocked on a remote page fault {after
remote segment fault and T5) as T),.

Define the host cPU clock cycle as ¢, per word of length w bits, and the normalised
bit time for data without packet header overhead as 74. Assume a sequential program
address reference trace and uniform rate specification. If the packet arrival rate exceeds
the rate at which the program execution proceeds (14 < t,,/w), page faults will not occur
in the segment, and 7, = 0. The advantage of segment granularity object transfer is that
pages are cached based on application structure and the end-to-end latency for each page
fault has been eliminated (after the first).

If the rate of program execution exceeds the packet arrival rate (t,/w < 74), the
process will page fault and be blocked for T, = |p|(74 — tw/w). Thus it is important
for the packet rate to exceed instruction rate if possible. Clearly as program locality
of reference decreases, the probability of blocking for a page increases, unless there is a
corresponding increase in the network data rate.

Note that the same effect of a uniform rate specification can be obtained by allowing
a page length burst at the peak rate, with an inter-page gap (ipg) satisfying the average
rate. This allows for a simple implementation of the CMP rate control, and more efficient
use of the cMM. Multiplexing congrams at the transmitting end then occurs at page
granularity.

7. RELATED WORK

Several recent efforts have been underway to provide high performance host-network
interface architectures. The NAB (network adapter board) [8] is a custom host-interface
designed to support VMTP [3]. The NAB protocol processor is a general purpose micropro-
cessor and uses VRAM for communication, but packets are buffered in a store-and-forward
manner for sequencing, since VMTP requires packet sequence to be maintained.



The Nectar CAB (communication accelerator board) [1] provides a workstation-network
interface of 10 MBps, and avoids a store and forward hop when CAB memory is mapped
into the host address space. The CAB is connected to the host through a VME-bus port.

The protocol engine {PE) is a design using multiple VLSI RISC processors to implement
the streamlined protocol and packet formats of XTP (express transport protocol) [4, 3].

_Other emerging efforts include the HOPS network interface [7], which uses horizontally
organised packet formats to allow multiple layer packet processing in parallel.

The use of time to access remote storage as the primary performance metric is related
to the performance metric in Memnet [6], which also provides a shared-memory view of
the network, but the Axon measure is related to virtual rather than real memory.

Axon is based on underlying assumptions and tradeoffs that are very different than
these other efforts. Specifically, these include the quasi-reliability provided by the under-
lying congram-oriented internet protocol (MCHIP) and subnetworks that make resource
reservations and provide guarantees on delay and packet loss, and the much higher data
rates of the ViSI. Furthermore, there is a greater emphasis on the integrated design of
host architecture, protocols, and operating systems, as well as on the systematic evalua-
tion of the division of functionality between hardware and software. Finally, there is the
provision for increased functionality using the NVS mechanism.

8. CONCLUSIONS

A new host communication architecture for distributed systems has been proposed
called Axon, which can support IPC with high throughput and low latency across the
vHsI. The significant features of Axon are the network virtual storage facility, which in-
cludes support for virtual shared memory on loosely coupled systems, a high performance
object transport facility which can be used by both message passing and shared memory
mechanisms, and a pipelined network interface. The emphasis in the design of Axon
has been to provide a direct data path between communicating applications, using an
integrated design of host architecture, operating systems, and communication protocols.

The design of the Axon architecture has been presented, along with alternatives
and tradeoffs in the host architecture giving the network interface direct access to host
memory without store-and-forward packet buffering. The design of the MIA (memory
interface architecture) host-network interface and CMP (communications processor} has
also been presented.

The bandwidth and latency requirements of a high performance network interface
have been described. In particular, there is reasonable latitude in the interface delay
with respect to the overall end-to-end latency, as long as a sufficiently high data rate is
maintained in the pipeline, and no full packet buffering takes place. It is reasonable to ex-
pect sub-second round trip latency, even across a long distance internetwork transporting
large objects.

Given the appropriate functional partitioning it is reasonable to implement critical
path functions directly in the network interface hardware. The CAP provides a useful
role in the control processing hierarchy, allowing the CMP to only implement critical path
function while relieving the host CPU of much of the overhead of protocol processing.



The methodology for functional partitioning and determination of Axon performance
has been presented. The actions associated with remote memory access in Axon have
been described, and their evaluation is being pursued with detailed simulations to be
followed by implementation as this work continues.
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