
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2011 

Ultra-high-Q Microresonator with Applications towards Single Ultra-high-Q Microresonator with Applications towards Single 

Nanoparticle Sensing Nanoparticle Sensing 

Jiangang Zhu 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Zhu, Jiangang, "Ultra-high-Q Microresonator with Applications towards Single Nanoparticle Sensing" 
(2011). All Theses and Dissertations (ETDs). 676. 
https://openscholarship.wustl.edu/etd/676 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F676&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/676?utm_source=openscholarship.wustl.edu%2Fetd%2F676&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical and Systems Engineering

Dissertation Examination Committee:
Lan Yang, Chair
Stephen Arnold
Da-Ren Chen
Arye Nehorai

Jung-Tsung Shen
Barry Spielman
Frank Vollmer

Ultra-high-Q Microresonator with Applications towards Single Nanoparticle Sensing

by

Jiangang Zhu

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2011
Saint Louis, Missouri



copyright by

Jiangang Zhu

2011



ABSTRACT OF THE DISSERTATION

Ultra-high-Q Microresonator with Applications towards Single Nanoparticle Sensing

by

Jiangang Zhu

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2011

Research Advisor: Professor Lan Yang

Whispering-gallery mode microcavities confines light and enables enhanced light-

matter interaction. They are great platforms for enhanced light-matter interactions.

Using ultra-high-Q microtoroids and focusing on a phenomenon called mode splitting,

we demonstrate the theory and experiments for real-time and label-free detection and

size measurement of individual nanoparticles and viruses, with a theoretical size limit

of R < 10 nm. It enables us to cover a large range of virus and nanoparticle sizes of

great interest for biomedicine, nanotechnology, and environmental science. Moreover,

this approach allows to identify the components of homogenous mixtures of particles.

It exceeds the capabilities of existing schemes with its unique single particle resolu-

tion and ability for quantitative size measurement of individual nanoparticles. The

techniques described here also pave the way for using active lasing microresonators

as particle sensors, in which mode splitting serves as the origin of the radio frequency

beatnote in the laser which indicates the binding of nanoparticles. It also lays a

solid ground for using microresonators for bio-molecule detection. In addition, two

non-spectrogram gased nanoparticle detection techniques: fiber taper detection and

ii



resonator reflection mode detection are demonstrated and future implementation on

bimolecular detections are discussed.
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Chapter 1

Introduction

1.1 Dissertation Outline

Nanoparticle detection and characterization techniques have been widely sought as

the awareness of the potential benefits and risks of the continuously generated by-

product or massively synthesized nanoparticles are increasing (Colvin 2003, Hoet,

Bruske-Hohlfeld and Salata 2004). Nanoparticles of special interests range from bio-

logical agents and virions to specially synthesized semiconductor, metal and polymer

nanoparticles. While the detection of the former is important for bio-defense and

early detection of pandemic outbreaks, detection and characterization of the latter

group of nanoparticles are indispensable for their broad range of applications in nan-

otechnology.

In addition to conventional microscopic techniques which, despite their high sensi-

tivity and resolution, are not suitable for field measurements due to their expensive

and bulky constructions, long processing times and the necessity of pre-treatment

(labeling with fluorescent dyes, etc.) of the particles, there exist many variations

of optical particle counters (Gucker and Rose 1954, Heringa et. al. 2005) which

rely on light scattering measurements, allow field measurements, detect and count

individual or ensemble of particles. These counters require off-axis detectors for the

collection of the scattered light, have bulky configurations and require sophisticated

signal processing.
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Recently, there is a growing interest for nanoparticle detection using nano- and micro-

scale sensors, which, with their unprecedented sensitivity, have the potential for in-

situ sensing. The nano/micro-mechanical sensors (Burg et.al. 2007, Naik et.al. 2009)

detect particles by monitoring the resonance frequency changes caused by the ad-

ditional effective mass of the binding particles, while resonator-based micro/nano-

optical resonator sensors rely on the resonance frequency shift (Vollmer and Arnold

2008, White, Oveys and Fan 2006) due to the change in the effective polarizability

of the resonator-environment system upon particle binding. Detecting and counting

individual nanoparticles as small as radius R=12.5 nm (Lu et. al. 2010) and single

molecules (A. M. Armani et.al. 2007) has been reported (There is question on the

validity of Armani’s results, see discussions by Arnold, Shopova and Holler 2010).

This high sensitivity is attributed to the resonance enhanced interaction between the

particle and the evanescent tail of the light field due to tight light confinement and

extended interaction time provided by the high quality factor (Q) resonance.

Silica microtorid (D. K. Armani et.al. 2003) with its ultra-high quality factor (> 108)

and very small mode volume (< 200µm3 for a microtoroid with major diameter

< 40µm), is a very good candidate for sensor. Its properties make it easier to evoke a

phenomenon call mode splitting (Weiss et.al. 1995, Kippenberg, Spillane and Vahala

2002, Mazzei et. al. 2007). In this dissertation we utilized this phenomenon and

found that it not only allows us to detect single naoparticles but also to gives us the

capability to measure them. We hence developed the techniques of detecting and

sizing consecutively adsorbed nanoparticles using microtoroid.

1.2 Chapter Overview and Collaborative Work

Chapter 2 is an introduction to optical microresonators. Different aspects of the

microresonators, such as their geometry, quality factor and coupling methods are

introduced. The main device for this dissertation is microtoroid, on which the fab-

rication and measurement techniques are discussed. Its physical properties are also

analyzed. Microtoroid is a excellent platform for sensor. A few applications such as

temperature and humidity sensing are studied in this chapter.
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Chapter 3 focuses on the application of single nanoparticle detection and sizing using

mode splitting phenomenon in microtorid. A detailed theoretical and experimental

analysis is presented and it’s advantage and limitations are analyzed. The particle

delivery system used in this dissertation is developed by our collaborator Da-Ren

Chen, Lin Li and Qisheng Ou.

Chapter 4 solves the problems on interaction between multiple particles and a res-

onator. Through the developed theory a new experiment procedure is developed to

measure each consecutively adsorbed particles on the resonator surface. It enables

detecting and sizing individual virions and inorganic particles, as well as discriminat-

ing the modality in particle mixtures. A detailed analysis section is included to study

the efficiency and performance of this measurement scheme.

Chapter 5 demonstrates two non-spectrogram based single nanoparticle detection

scheme. The first one utilizes particle induced back scattering in a resonator-taper

system. Theory and experiments are presented and accordingly, unprecedented sen-

sitivity is projected. The second scheme bases on a simple tapered fiber. Theory and

experiments are presented to show that with its exposed guided optical mode, the

tapered fiber is a convenient and cost effective sensor to detect nanoparticles.

Chapter 6 is a conclusion chapter and it also briefly talks about the successive work

on nanoparticle detection, including nanoparticle detection with microcavity lasers

and detection of nanoparticles in water. It includes the collaborative efforts with

Lina He and Woosung Kim for their effort on microcavity lasers detection (He et.al.

2011) and particle detection in water (Kim et.al. 2010).
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Chapter 2

Whispering Gallery

Microresonators

Whispering gallery mode (WGM) optical microresonators with ultra-high quality fac-

tors and microscale mode volumes are of interest for a variety of scientific disciplines

ranging from fundamental to applied physics. Significantly enhanced light-matter

interactions (Vahala 2003) make WGM resonators remarkably sensitive transducers

for detecting perturbations in and around the resonator, e.g., virus/nanoparticle de-

tection at single particle resolution (Vollmer and Arnold 2008, White, Oveys and Fan

2006, Zhu, et.al. 2010) and ultrasensitive detection of micromechnical displacement

(Kippenberg et.al. 2005). Moreover, the mutual coupling of optical and mechanical

modes mediated by enhanced radiation pressure within the microresonator provides

a superb platform to study parametric oscillation instabilities and radiation pressure

induced cooling of mechanical modes (Kippenberg and Vahala 2007). In addition,

WGM microresonators with asymmetry (e.g., induced by structural deformations

etc.) have been useful for investigating the correspondence between quasieigenstates

and associated classical dynamics in mesoscopic systems (Lee et.al. 2009). Level

crossing have been demonstrated in microtoroids by tuning the microtoroid aspect

ratio (Carmon et.al. 2008).
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2.1 Characterization of Microresonators

In this section the important aspects of microresonator and its characterization tech-

niques are discussed. The theoretical equations describe the light field in the resonator

is presented and simulations are discussed.

2.1.1 Types of Microresonators

In as WGM resonator, light field circulates around the circular periphery of a structure

with near-ideal total internal reflection which enables extreme confinement of the field

(Vahala 2003). WGM resonators come in various sizes and geometries with a common

feature that there exists a curved boundary which refocuses the propagating field.

The propagation of the resonant light field in a WGM resonator can be intuitively

understood using the arguments of geometrical optics in which the rays of light reflects

off the inner surface (Fig. 2.1a). Here we have considered a cylindrical resonator of

radius R and refractive index n surrounded by an environment of refractive index 1.

If the path taken by the WGM during a roundtrip within the resonator is a multiple

of the wavelength λ of the WGM light field then a resonance occurs. Simply put,

the resonance condition is given by 2πRneff = mλ where m is an integer mode

number. neff is the effective mode index which is a value between n and 1. this

is because in electromagnetic wave presentation of WGM, part of the propagating

wave is outside of the resonator exposed in the medium (evanescent tail). Using finite

element simulation, the mode profile is clearly revealed (Fig. 2.1b).

There exist a variety of WGM microresonators. They are generally categorized by

their geometries Fig. 2.2. For example, the most popular microresonator is probably

microspheres (Braginsky, Gorodetsky and Ilchenko 1989, Vahala 2003). They can

be easily fabricated by melting the tip of a tapered fiber. A silica sphere is formed

naturally by surface tension of the melted glass material. In recent years we have

witnessed the invention of many new WGM microresonators. Micro-cylinder (White,

Oveys and Fan 2006) and micro-bottle (Sumetsky 2004, Kipp et.al. 2006) can be

fabricated by heating and pulling glass tubes while inflate the softened material with

inert gas. Microring(Xu, Fattal and Beausoleil 2008), microdisk (Little and Chu
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a b

Figure 2.1: Illustration of WGM in a microresonator. a, Ray optics view. The light
ray undergoes total internal reflections as it travels along the periphery of the res-
onator. b, Electromagnetic wave view. The WGM is distributed along the periphery
in the resonator while part of the guided wave is outside the resonator consisting the
evanescent tail.

1994) and microtoroid (D. K. Armani et.al. 2003) are fabricated on silicon chip by

standard micro fabrication techniques, thus can be mass-produced. Crystalline WGM

microresonator is fabricated by polishing crystal materials (e.g. CaF2) (Grudinin,

Ilchenko and Maleki 2006).

2.1.2 Quality Factor

The most important figure of merit for a WGM resonator is its quality factor (Q

factor). It quantifies the resonator’s optical quality and describes the its ability to

confine light. The Q factor is defined as the ratio of energy stored in the resonator

to the amount of dissipated energy per optical cycle:

Q = 2π
EnergyStored

EnergyDissipatedPerCycle
(2.1)

Another derivative definition is:

Q =
ω

δω
=

λ

δλ
(2.2)
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a b c

d e f

Figure 2.2: Illustrations of different WGM optical resonator genometries. a, waveg-
uide coupled micro-ring, b, microdisk, c, microtoroid, d, microsphere, e, micro-
cylinder, and f, bottle.

where δω is an angular bandwidth of the resonance and δλ is the bandwidth express

in wavelength. For example, microspheres commonly have Q factors from 108 to 109,

at a wavelength of λ = 1.55µm, the linewidth will be 15.5 fm when Q = 108. It also

means a photon life time of τ = 82 ns. Such a long photon life time allows light to

circulate the resonator over 105 times before dissipated into the environment.

2.1.3 Fiber Taper

There are a number of methods to evanescently couple light into and out of these

microresonators. For example, prism coupling (Otto 1968) and tapered fiber coupling

(Knight 1997) are the two most studied method. Fiber taper, because of its high

coupling efficiency, easy fabrication process and compactness, has gained popularity

among researchers. A fiber taper is usually fabricated by thinning an commercial fiber

down to a diameter of 1-3 µm. Techniques such as heating and pulling using hydrogen

flame or CO2 laser, buffer HF etching are used to reduce the taper thickness. Near

100% transmission can be obtained in a taper if fabricated carefully. Coupling to a

microresonator is achieved by bringing the taper mode close to the WGM, evanescent
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tails of the two optical modes overlaps and the energy in the taper is transferred

into the WGM, and vice versa, the WGM can be coupled back to the taper allowing

observing the resonance at the output end. The mode index of the taper mode and

WGM mode has to be as close as possible, in other words, phase matching condition

has to be maintained for efficient coupling.

2.1.4 Rate Equation

Denoting the taper mode as ain and WGM as a, we can write the taper-resonator

coupling equation:

da

dt
= −(iωc +

κ0 + κ1

2
)a−√κ1ain (2.3)

where ωc is the cavity resonance angular frequency, κ0 is the intrinsic resonator damp-

ing rate and κ1 is the mutual coupling rate between the fiber taper and the resonator.

At steady state, the transmission of the taper-resonator system is given by:

T =
|ain +

√
κ1a|2

|ain|2 = 1− κ0κ1

(∆ω)2 + (κ0+κ1

2
)2

(2.4)

where ∆ω is the laser-cavity detuning. From Eq. 2.4 we can see that the resonance

curve is in Lorentzian shape and the linewidth is given by κ0 + κ1. So that we can

define the intrinsic and external Q factor as:

Q0 =
ωc

κ0

, Qext =
ωc

κ1

(2.5)

Critical coupling is defined when κ1 = κ0. At this point, the transmission diminishes

at the resonance point (∆ω = 0), as seen in Eq. 2.4. In experiments, the transmission

spectra of a resonator-taper system is acquired by sweeping a tunable laser across a

resonance, while capture the transmitted power by a photo-detector.

8



10 µm

Figure 2.3: SEM pictures of a microtorid (left). The right panel shows the crosssection
of a microtoroid and its optical mode.

2.2 Microtoroid

The microresonator we use in this dissertation is microtorid (Fig. 2.3. It is fabricated

using standard photolithography, XeF2 etching and CO2 laser reflow (D. K. Armani

et.al. 2003). These on-chip resonators have very high Q factor > 108 and a small mode

(volume < 200µm3 for a 40 µm diameter microtoroid). This enables one of strongest

light-matter interactions among all types of microresonator. As a result, microtorid

has been used to studied various non-linear phenomena including simulated Raman

scattering, parametric oscillation, four-wave-mixing and frequency up-conversion. It

has also been used to create microcavity lasers (rare-earth ion doped or Raman)(Yang

et.al. 2005, Kippenberg et.al. 2005). Recently it is found that it is relatively easy

to excite the mechanical modes through radiation pressure in microtoroids, which

makes it an ideal platform to study meso-scale opto-mechanics (Kippenberg et.al.

2005). Microtoroid is also a great sensor, thanks to its Q factor and small size.

2.3 Opto-Thermal Properties of Microtorid

Because of its high Q factor, the circulating optical power insider a microtorid is

usually very strong. The minor absorption coefficient of silica material cannot be

neglected. During strong pumping on resonance, the cavity will be heated and hence

its resonance wavelength is shifted (Carmon, Yang and Vahala 2004). Temperature

of the cavity mode volume can rise over tens of degrees Celsius with a few mW of
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Figure 2.4: Changes in the resonance wavelengths of different WGMs in a microtoroid
as a function of temperature changes. Lines are linear fits.

power input. Fig. 2.4 gives an example showing the change of resonance wavelength

when the cavity temperature is raised. For different modes, since they have different

spatial distribution, the percentage of the mode volume that is in silica and in air are

different. This in turn gives different modes different effective mode index. Therefore

they may have different response on resonance shift upon temperature change (Fig.

2.4).

The on-resonance optical heating is also greatly affected by the geometry of the mi-

crotoroid. This is due to the change of heat dissipation ability for different disk and

pillar sizes. Much more heat is dissipated through the disk structure and the support-

ing silicon pillar then through air convection. Thus if the toroid ring is closer to the

pillar, heat can be conducted faster. This principle is verified by the measurements

in Fig 2.5. By tailoring the geometries of microtorids, one can enhance or reduce the

opto-thermal effects. For example when observing the transmission spectrum of a

microtoroid, a relatively larger pillar is preferred to minimize the resonance lineshape

deformation caused by opto-thermal heating.
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Figure 2.6: Finite element simulations showing 1th to 4th order flapping mode in a
microtoroid. False color shows the mechanical displacement.
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Figure 2.7: Finite element simulations showing 1th to 4th order flapping mode in a
microtoroid. False color shows the mechanical displacement.

2.4 Mechanical Properties of Microtoroid

Although Silica is a rigid material in macroscale, under strong on-resonance pumping,

the radiation force exerted on the toroid ring may cause the 2µm thin disk structure

to deform. As a result various mechanical modes can be excited through photon-

phonon energy transfer (Kippenberg and Vahala 2007). These mechanical modes

typically have frequency ranging from a few MHz to hundreds of MHz. Figure 2.6

shows examples of mechanical modes in a microtoroid.

On the transmission spectra, mechanical modes manifest themselves as high frequency

noise (Fig. 2.7) whose frequency coincides with the frequency of mechanical vibration.
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The triangular shape in Fig. 2.7 is due to opto-thermal heating induced wavelength

red-shift (Carmon, Yang and Vahala 2004).

2.5 Microtoroid as Environmental Sensors

Enhanced light-matter interaction make microtoroids excellent sensors. The reso-

nance condition is very sensitive to environmental perturbations such as temperature,

refractive index and scattering centers. Sensing signal is usually extracted from res-

onance wavelength shift or linewdith change. In this section we show a few simple

examples.

2.5.1 Temperature Sensor

In the last section we have shown that the resonance wavelength shifts upon temper-

ature change. This mechanism can be used to make extremely sensitive temperature

sensor. From Fig. 2.4 we know that the temperature response is about 5× 10−6K−1

for ∆λ/λ. Given a resonator with Q factor of 108 and considering a resonance shift

of 1/20 of its linewidth detectable, it will have a minimal temperature sensitivity of:

∆T =
1

108 × 20
× 1

5× 10−6
= 10−4K (2.6)

Considering the small size of a microtoroid, it has the potential to precisely measure

local temperature changes.

2.5.2 Humidity Sensor

Normally silica material is not very sensitive to humidity changes. For microtoroid,

its Q factor can stays around 108 until 90% relative humidity and its resonance

wavelength is not sensitive to humidity change, either. Therefore to measure humidity
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Figure 2.8: Relations of sugar particle size growth factor measured on a microtoroid
with respect to relative humidity change. The blue and red data points are taken
when humidity is increasing and decreasing, respectively.

below 90%, the microtoroid has to be modified with humidity sensitive material. For

example, one can coat the resonator with humidity sensitive polymer whose refractive

index changes with humidity. By monitoring the resonance wavelength shift one can

effectively map it to humidity change.

In our initial test, we took a different approach. We deposited sugar nanoparticles on

a microtoroid. Sugar particle is known to have deliquescence properties which makes

their sizes gradually increase when humidity rises. Using the particle size measure-

ment techniques describing in Chapter 3 and 4, by measuring the size change of sugar

particles, we can monitor the humidity changes. Fig. 2.8 shows the measured sugar

particle size factor versus relative humidity. With sugar particle, we can effectively

measure humidity above 70%. To cover the range below 70%, one may use other salt

particle materials which have transitions at a lower relative humidity.
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2.5.3 Refractive Index Sensor

Refractometric sensor can be made from microresonators by simply immersing the

resonator into the liquid of interest. Due to the evanescent tail exposed in the sur-

rounding medium, the WGM index changes with the refractive index of the medium

and hence the resonance wavelength shifts which can be monitored. The WGM ex-

tends outside the resonator further in liquid than in air because the reduced refractive

index contrast between the resonator and medium materials. The sensitivity of this

scheme can reach 10−8 RIU for ultra-high-Q microresonators (Hanumegowda et.al.

2005). It can be used to detect tiny amount of chemicals in liquid (e.g. alcohol in

water). The main difficulty for these sensors is to maintain the high Q factor in the

aqueous solutions, as micro-sized particulate contaminations can easily decreases the

Q factor to below 104.
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Chapter 3

Single Scatterer Induced Mode

Splitting

1Mode splitting phenomenon has been constantly observed in ultra-high-Q microres-

onators. A single resonance mode splits into doublet in the presence of coupling be-

tween the clockwise (CW) and conter-clockwise (CCW) travelling-wave modes (Weiss

et.al. 1995, Kippenberg, Spillane and Vahala 2002, Mazzei et. al. 2007). This cou-

pling lifts the natural 2-fold degeneracy in circular resonators. Scattering centers in

the mode volume has the ability to scatter a fraction of energy into the opposite

direction propagating mode, and therefore creating the coupling between CW and

CCW modes.

In this Chapter, single nanoparticles are used as the agent to induce mode splitting.

Their ability to scatter light is directly captured in the subsequent mode splitting

spectrum. This study reveals that the polarizability of a nanoparticle can be calcu-

lated from the mode splitting spectrum (Mazzei et. al. 2007), and the particle size

can be estimated if it’s refractive index is known, or vice versa (Zhu et. al. 2010).

1Part of this section has appeared in ”On-chip single nanoparticle detection and sizing by mode
splitting in an ultrahigh-Q microresonator”, Nature Photonics, vol. 4, pp. 46-49, 2010.
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3.1 Back-scattering and Mode Splitting

Ideally modal coupling does not exist in pure circular silica microresonators, however

due to minor contaminations on the resonator surface, structure defects or mate-

rial inhomogeneity, back-scattering can be created in a resonator. This category of

mode splitting is normally called intrinsic splitting (Weiss et.al. 1995, Gorodetsky,

Pryamikov and Ilchenko 2000). It is more frequently observable in the microtoroids

with smaller major and minor diameters and Q factors above 100 million (Kippen-

berg, Spillane and Vahala 2002). The signature of this type of mode splitting is that

the split modes have very similar linewidth and the separation between them is rela-

tively large comparing with their linewidths (usually > 10). But overall the intrinsic

splitting is small and normally does not exceed 2/107 of laser frequency.

We are more interested in another type of mode splitting, in which the modal cou-

pling is induced by a single Rayleigh Scatterer. This Scatterer can be a subwavelength

particle or a fiber tip. To simplify the study of the scatterer’s light scattering proper-

ties, we prefer to choose microtoroid modes without observable intrinsic splitting (the

resonance mode appears as a single peak). However, we believe there is always some

amount of intrinsic splitting in a resonance, since scattering from the silica material

or the surrounding medium is inevitable. But this tiny amount of splitting may not

be visible if the amount of splitting is much smaller than linewidth of the resonance.

In this case we can neglect it.

3.1.1 Single Rayleigh Scatterer

The mechanism responsible for single-particle induced mode splitting can be intu-

itively explained as follows. A Rayleigh (Radius R ¿ λ) nanoparticle in the evanes-

cent field of WGMs acts as a scatterer. A portion of the scattered light is lost to the

environment creating an additional damping channel (with coefficient ΓR), while the

rest (with coefficient g) couples back into the opposite propagating mode and induces

coupling between the counter-propagating WGMs (Fig. 3.1), whose 2-fold degeneracy

is lifted consequently (Mazzei et. al. 2007, Arnold et. al. 2003).
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Figure 3.1: Illustration of the coupled nanoparticle-microtoroid system. κ1:
microtoroid-taper coupling rate, κ0: intrinsic damping rate (material and radiation
losses), g: coupling coefficients of the light scattered into the resonator, and ΓR:
additional damping rate due to scattering loss.

The superposition of CW and CCW modes give rise to two standing-wave-modes

(SWMs) (or Eigen modes) that are split in frequency as manifested by the doublet

in transmission spectrum (Fig 3.2). The SWMs redistribute themselves according

to the scatterer’s location: The symmetric mode (SM) locates the particle at the

anti-node (mode maxima) while the asymmetric mode (ASM) locates it at the node

(mode minnima). The underlying physical mechanism can be intuitively understood

from the Fermat’s principal, which states that rays of light traverse the path of

stationary (could be maximal or minimal) time (Zhu et.al. 2010). Since the system is

rotational symmetric except for the symmetry breaking particle, when the SWMs try

to arrange (rotate) themselves in the system, the particle is the only strong reference.

SM takes the maximal (when the refractive index of particle is larger than that of

surroundings) and ASM takes the minimal. Consequently, SM experiences significant

frequency shift due to the refractive index difference between the particle and the

surroundings and linewidth broadening due to the additional damping channel by

the particle scattering.

Finite element simulations are used to study this phenomenon. Two Dimensional

resonator model is created in Comsol Multiphysics. The resonator area is set to

have a refractive index of 1.45 and the surroundings to have refractive index of 1.
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Figure 3.3: Field distribution of symmetric (SM) and asymmetric modes (ASM)
relative to the position of the nanoparticle using finite-element-method simulation.
Insets show the mode along the periphery of the resonator.
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Eigen modes are searched around a resonance wavelength and their wavelength and

linewidth can be calculated precisely in the software. In the model a subwavelength

particle with refractive index of 1.5 is added on the surface of the resonator, and pairs

of Eigen modes are found in the solutions. As expected, the pairs of Eigen modes

represent the doublet in mode splitting (SM and ASM), and they distribute according

to the location of the particle. The SM and ASM distributions are depicted in Fig.

3.3.

The particle induced frequency shift and linewidth damping on the SM is also stud-

ied in the simulation. The particle size is varied and the corresponding resonance

frequency and linewidth of SM and ASM is plotted in Fig. 3.4 and 3.5.

The frequency and linewith of the SM is found to vary significant when the size of

particle is changed. As seen in Fig. 3.4, linear relation exists between the frequency

shift of the SM and particle size square (R2). In addition, Fig. 3.5 shows the linewidth

broadening of the SM changes proportionally with the particle size to the power of 4

(R4).

3.1.2 Rate Equations

A perfect azimuthally symmetric microresonator supports two counter-propagating

WGMs (CW and CCW) with the degenerate resonant angular frequency ωc and the

same normalized field distribution function f(r), where r denotes any point in the

mode volume (can be inside microtoroid or outside in the evanescent field).

In the presence of a scatterer, one of the modes, e.g., CW, couples to the scatterer.

The scattered light couples back to either the CW or the CCW mode. The same

is true when the CCW couples to the scatterer. We assume the coefficient g for all

of these coupling processes. For a Rayleigh scatterer, the interaction between the

WGM and the scatterer can be modeled using the dipole approximation (Jackson

1962) where a dipole is induced in the scatterer by the electric field of the coupled

WGM. The coupling coefficients are given as (Mazzei et. al. 2007):
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Figure 3.4: Finite element simulation results of the frequency of split modes versus
the particle size square (R2). It shows a linear relation between the frequency shift of
the symmetric mode and R2, while the frequency of the asymmetric mode does not
change significantly.
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Figure 3.5: Finite element simulation results of the linewidth of split modes versus the
particle size to the power of 4 (R4). It shows the linear relation between the linewidth
of the symmetric mode and R4, while the linewidth of the asymmetric mode does not
change significantly.
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g = −αf 2(r)ωc

2V
(3.1)

where f 2(r) accounts for the cavity mode functions of the CW and CCW modes

and V denotes the normalized mode volumes of the WGM. α is the polarizability

of the scatterer which for a spherical scatterer of radius R can be expressed as α =

4πR3(εp−εm)/(εp +2εm) where εp and εm denote electric permittivities of the particle

(scatterer) and the surrounding medium, respectively. Damping rates due to coupling

to the reservoir via Rayleigh scattering can be derived as (Mazzei et. al. 2007):

ΓR =
α2f 2(r)ω4

c

6πν3V
(3.2)

where ν = c/
√

εm, and c is the speed of light in vacuum. Then the rate equations of

the fiber coupled microresonator-scatterer system can be written as:

daCW

dt
= −[i(ωc + g) +

ΓR + κ0 + κ1

2
]aCW − (ig +

ΓR

2
)aCCW −√κ1a

in
CW (3.3)

daCCW

dt
= −[i(ωc + g) +

ΓR + κ0 + κ1

2
]aCCW − (ig +

ΓR

2
)aCW −√κ1a

in
CCW (3.4)

where κ0 = ωc/Q0 denotes the intrinsic damping due to material and radiation losses,

and κ1 = ωc/Qext is the fibre taper-resonator coupling rates with Q0 and Qext being

the intrinsic and external quality factors, respectively. Defining the normal modes

of the resonator as a± = (aCW ± aCCW )/
√

2 and that of the input modes as ain
± =

(ain
CW±ain

CCW )/
√

2, we find that in steady-state regime normal modes can be expressed

as:

(−i(∆− 2g) +
κ0 + κ1 + 2ΓR

2
)a+ +

√
κ1a

in
+ = 0 (3.5)
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(−i∆ +
κ0 + κ1

2
]a− +

√
κ1a

in
− = 0 (3.6)

where ∆ = ω − ωc denotes the lase-cavity detuning. It is clear that the symmetric

SWM (+) has a detuning of 2g from the degenerate WGM, and its damping rate is

given as κ0 + κ1 + 2ΓR. The asymmetric SWM (−) is not affected by the Rayleigh

scatterer. In the absence of CCW input, i.e., ain
CCW = 0, we can write the transmission

and reflection coefficient of the coupled system as:

t = 1− κ1β

β2 − (ig + ΓR/2)2
(3.7)

r =
κ1(ig + ΓR/2)

β2 − (ig + ΓR/2)2
(3.8)

where β = −i∆ + ig + (κ0 + κ1 + 2ΓR)/2, and the input output relation of the fiber

taper coupled resonator system is given as aout
CW = ain

CW +
√

κ1aCW .

Note that the finite-element simulation results in the previous subsection agrees well

with the theory there. In 2 dimensional case, the polarizability of a particle is pro-

portional to R2. Therefore, the frequency shift of SM scales with R2 and linewidth

broadening scales with R4.

3.1.3 Nanoparticle Size Estimation

The mode splitting observed in the transmission spectrum can be utilized to estimate

the size of Rayleigh scatterer. Assuming that the surrounding medium is air, from

Eqs. 3.1 and 3.2 we find ΓR/g = 8π2α/3λ3 where λ is the resonance wavelength

before splitting. Then α = 3(ΓR/g)λ3/(8π2), which implies that polarizability of

the particle can be calculated from the measured values of g and ΓR. Subsequently,

nanoparticle size can be accurately estimated provided that its refractive index is

known. Figure 3.2 shows a typical transmission spectrum with a double Lorentzian

resonance captured by an oscilloscope. We extract g and ΓR by fitting a double

Lorentzian function expressed as:
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f(ω) = 1− A1γ
2
1/4

(ω − ω1)2 + γ2
1/4

− A2γ
2
2/4

(ω − ω2)2 + γ2
2/4

(3.9)

to the acquired transmission spectrum. In Eq. 3.9, ω1, and ω2 denote the locations

of resonance dips, γ1 and γ2 designate the linewidths of these resonances, and A1 and

A2 correspond to the relative depths of the resonances.

During the fitting process, the parameters in Eq. 3.9 are varied until the best fit

is obtained by minimizing mean square error. The amount of splitting is calculated

from δ = |ω1−ω2| and equated to the coupling coefficient as 2g = δ. The values of γ1

and γ2 are used to obtain additional damping parameter using 2ΓR = γ1 − γ2. Then

we find

α = 4πR3n2
p − 1

n2
p + 2

=
3λ3

8π2

γ1 − γ2

δ
(3.10)

where np denotes the refractive index of the particle. Consequently the particle radius

R is given by

R = [
(3λ3/8π2)(γ1 − γ2)/δ

4π(n2
p − 1)/(n2

p + 2)
]
1
3 (3.11)

3.2 Single Nanoparticle Detection and Sizing

In principle, one can use different resonance modes of a microtoroid resonator to

estimate the size of deposited particle. In our single particle sizing experiments,

we observed that although splitting for different resonance modes in a microtoroid

were different, there was no significant difference in (γ1 − γ2)/δ which is used to

determine the particle size. This is, indeed, a proof that sizing can be done without

the information of particle-mode overlap f(r). Due to this observation, we used
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Figure 3.6: Schematic of the experimental set-up for particle detection. The ex-
perimental set-up consists of a differential mobility analyzer (DMA) system for size
classification of nanoparticles, a nozzle for depositing nanoparticles onto the micro-
toroid, and a taper-fibre coupled resonator system. PLC: Polarization controller, PD:
Photodetector, SD: Silica gel desiccant dryer, DMA: Differential mobility analyzer.

the transmission spectrum of one resonance to estimate the particle size. Moreover,

real-time measurement benefits from focusing on one resonance mode.

A schematic illustration of our apparatus for the generation of monodisperse nanopar-

ticles and their deposition on the microtoroid resonator is presented in Fig. 3.6.

In order to couple light from a tunable laser into and out of the microtoroid resonators,

taper-fibres (Cai, Painter and Vahala 2000, Spillane et.al. 2003) were fabricated by

pulling single mode fibres heated by a hydrogen (H2) flame. Position of the micro-

toroid is finely controlled by a piezo stage to adjust the air gap between the taper and

microtoroid. During the experiments, two tunable lasers in the 670 nm and 1450 nm

wavelength bands were used. Their wavelengths were linearly scanned around the

resonance wavelength of the microtoroid. The real-time transmission spectra were

obtained by a photodetector followed by an oscilloscope. This enabled a real time

monitoring of the transmission spectra on the oscilloscope. In order to eliminate the
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observable effects of thermal nonlinearity (Carmon, Yang and Vahala 2004, Schmidt

et.al. 2008) on the ultra-high-Q microtoroid due to heat build-up in the resonator,

wavelength scanning speeds and powers of both tunable lasers were optimized. Typ-

ical operating conditions for scanning speed and laser power were 40 nm/s and 15

µW , respectively.

3.2.1 Nanoparticle Delivery

We used potassium chloride (KCl) and polystyrene (PS) microspheres (Thermo Sci-

entific, 3000 series, radii range 30-175 nm) in mode splitting and subsequent particle

detection and sizing experiments. Polydisperse droplets are carried out by compressed

air using a Collison atomizer. The solvent in droplets is then evaporated in the dryer

with the silica gel desiccant. Solid particles are further neutralized by a Po210 radioac-

tive source such that they have a well-defined charge distribution. Particles are sent

to a DMA where they are classified according to their electrical mobility (Liu and Pui

1974) (Fig. 3.6). Thus, particles within a narrow range of mobility can exit through

the output slit of the DMA. The flow rate is controlled and the ratio of particle flow

rate to the sheath flow (particle-free air flow) rate was set to 1:10. The resulting

monodisperse particle flow has a concentration of about 105/cm3 and a geometrical

standard size deviation of approximately 5% (Knutson and Whitby 1975).

A stainless steel nozzle with a tip inner diameter of 80 µm was placed at about

200 µm above the microtoroid to deliver nanoparticles to its mode volume (Figs.

3.7 and 3.8). In later experiments, a different nozzle fabricated by pulling glass

capillary above a hydrogen flame is also used. The flow rate at the nozzle was 0.02

cm3/s. In order to force the particle’s trajectory towards the microtoroid, a metal

sheet connected to a -400V source was placed under the silicon chip to exert an

electrical field on the particle. But later we found that this is not necessary. When

a particle reaches the microtoroid and adsorbed on its surface, the interaction of

the WGM with the particle and re-distribution of the resonator field due to the

scattering from the particle leads to a mode splitting which could be observed in the

transmission spectrum. Under the operation conditions given above, we observed one

mode splitting corresponding to one particle binding event in every 5s, on average.

Thus the overall capture efficiency of particles to the sensing area of our system is
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Figure 3.7: Camera image showing the microtoroid and the stainless steel nozzle used
to deposit nanoparticles. The inner diameter of the nozzle is about 80 µm, while the
outter shape of the nozzle is conical and is much larger. In later experiments, a
different nozzle fabricated by pulling glass capillary above a hydrogen flame is also
used.

Figure 3.8: Microscopic image showing the microtoroid and the nozzle used to deposit
nanoparticles.
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estimated as 105cm−3× 0.02cm3/s× 0.2s−1 = 0.01% This low efficiency is due to the

fact that most particles bounce off the smooth resonator surface. It could be improved

by a better design of the nozzle system for controlling particle dynamics. The particle-

microtoroid binding events are described by a Poisson process. In these experiments,

the particle concentration was very low so that the average time interval between

two events was longer than 10-15 seconds. This allowed us to shut off the aerosol

flow immediately after a mode splitting was observed in the transmission spectrum

and ensures that one and only one particle is adsorbed in the mode volume of the

microtoroid. The particles deposited outside the mode volume on the microtoroid do

not affect the WGM, so they have no effect on the resonance spectrum. To investigate

the bonding between the nanoparticle and microtoroid, we kept the microtoroids with

adsorbed nanoparticles in a gel-box for two weeks and didn’t see any noticeable change

in the resonance spectrum. This suggests that particle attachment to the microtoroid

is stable under room conditions.

To utilize the particle sensing strategy carried out in this study, the microtoroid cavity

needs to be cleaned upon the completion of detecting a single particle. To remove

submicron particles from semiconductor surfaces, several cleaning techniques, which

can also be used to remove particles from microtoroid surface, have been developed.

Hydrophilic or water (solvent)-soluble particles can be removed by simply condensing

water vapor on the surface of microtoroids and then by drying the surface with dry air

or nitrogen. This is the technique we used in our study to remove KCl particles from

the microtoroid surface. The cleaning step took less than a second. The microcavity

can be reused immediately after the cleaning.

For hydrophobic or insoluble particles several cleaning techniques (or their combina-

tion) have been developed: (1) Steam laser cleaning (Heroux et.al. 1996, Leiderer

et.al. 2000): The technique makes use of a thin liquid film which is condensed onto

the surface (by vapor condensation) before a laser pulse is fired. The laser rapidly

heat up the liquid film to create bubble nucleation at the solid/liquid interface and the

subsequent explosive vaporization of the liquid removes particles. One can also use

alternative heating sources such as focused white light. (2) The cleaning technique

by a high-speed mixture of steam and purified water droplets has been utilized to re-

move sub-micrometer particles from semiconductor surfaces (Watanabe et.al. 2009).
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This technique removes fine particles without using any chemicals. We can apply this

cleaning technique to remove submicron particles from our micro-cavity surfaces by

injecting the mixture through micro-jet nozzles. (3) High velocity aerosol cleaning

using ultrapure water or dilute aqueous solutions (e.g. dilute ammonia) is also very

common in semiconductor IC fabrication. The combination of droplet impact forces

with continuous liquid flow improves the cleaning efficiency for sub-100nm particles.

(4) Particle cleaning can be accomplished by impinging solid argon or nitrogen aerosol

(or CO2 aerosol) upon the surface to be cleaned (McDermott et.al. 1994, Banerjee

and Campbell 2005). The evaporated aerosol is removed by venting along with the

particles dislodged. (5) Dry laser cleaning process has also been used to remove sub-

micron particles from semiconductor surfaces (Leiderer et.al. 2000, Lu et.al. 1997,

Song et.al. 2002). The technique removes particles by irradiating the surface with

a short laser pulse. The strong acceleration at the surface due to thermal expansion

leads to inertia forces strong enough to overcome the particle-surface adhesion force.

3.2.2 Single Particle Detection and Sizing

Before particle attachment, the transmission of a microtoroid shows a single Lorentzian

resonance. After the first nanoparticle is deposited, SWMs are formed and the 2-fold

degeneracy is lifted, which is confirmed by the double resonances in the spectra. Con-

secutive particle depositions lead to changes in both the splitting and the linewidths

of the resonances. Fig. 3.9 shows the corresponding resonance spectra change when

particles are deposited. The optical image of the microtoroid also confirms the num-

ber of particles. The changes in spectra are discrete, indicating the adsorption of

particle to silica resonator surface is instantaneous (< 0.1s which is the frame capture

time of the spectra).

Fig. 3.10 shows the amount of mode splitting changes with the number of particles

adsorbed onto the microtoroid. Note that in these data, different microtoroids are

used, but they are on the same chip and having very similar sizes and resonance

characteristics. As seen in fig. 3.10, larger particles lead to more significant changes

in the amount of splitting, which is expected since they have stronger light scattering

ability (or polarizability). Given enough data, one could use the statistics of splitting

change to estimate the average size of particle ensemble.
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Figure 3.9: Transmission spectra and the amount of splitting versus number of de-
posited particles. Series of normalized transmission spectra taken at 1550 nm wave-
length band and the corresponding optical images (particle scattering visible, assisted
by a visible light laser) recorded for four consecutive depositions of KCl nanoparticles.
The spectra are vertically shifted for clarity.
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Figure 3.10: Normalized splitting 2g/ωc versus particle number for KCl nanoparticles
of different sizes. Each discrete step (lines are drawn for eye guide) corresponds
to a single nanoparticle binding event. The inset shows the an enlarged plot for
nanoparticles of R=40 nm. 2g: splitting frequency, and ωc: resonance frequency.

32



30

50

70

90

110

130

150

170

30 50 70 90 110 130 150 170

W
G

M
-M

S
 M

e
a

s
u

re
d

 R
a

d
iu

s
 (

n
m

)

SEM Measured Raidus (nm)

KCl particles

Figure 3.11: Single KCl particle sizing using mode splitting in a microtoroid resonator.
Estimated sizes of particles as a function of their actual sizes are shown. Error bars
denote the standard deviations of size distributions.

Equation 3.11 indicate that we can calculate the size of the first particle adsorbed onto

the resonator, from the mode splitting spectra. We tested this method using particles

of different sizes and materials, including KCl and PS microspheres. Note that Eq.

3.11 applies to spherical particles. The shape of KCl particles are irregular (between

cubic and spherical). Eq. 3.11 is still a good approximation for KCl particles.

Figure 3.11 and 3.12 give the particle size measurement results. The nominal KCl

particle sizes are taken by measuring over 100 particles under SEM for each size

and we use the nominal PS particle sizes provided by the manufacturer. For both

materials, the average measured sizes using mode splitting method agrees very well

with the nominal values. KCl particles sizing yield much larger standard deviations

than PS. It is mostly attributed to the their non-spherical shapes.
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Figure 3.12: Single PS particle sizing using mode splitting in a microtoroid resonator.
Estimated sizes of particles as a function of their actual sizes are shown. Error bars
denote the standard deviations of size distributions.

3.2.3 Limitations

A nanoparticle is detectable if the splitting can be resolved in the transmission spec-

trum. This requires that the amount of splitting quantified as |2g| should be greater

than the sum of the frequency linewidth ωc/Q of the WGM and the additional damp-

ing rate ΓR. The lower detection limit can be derived from

|2g| = αf 2(r)ωc

V
>

ωc

Q
+ ΓR (3.12)

where κ0 + κ1 = ωc/Q. Here, we define splitting quality as Qsp = |2g|/(ωc/Q + ΓR),

or the ratio of splitting over average linewidth. As long as Qsp > 1 is satisfied, mode

splitting can be clearly observed. In the cavity absorption limited regime (ωc/Q >>

2ΓR) (Ozdemir et.al. 2011), the linewidths of the doublet are determined by the cavity

linewidth, thus particle size information cannot be extracted. However, beyond this
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regime, particle induced linewidth broadening becomes observable implying that the

cavity linewidth is no longer the dominant factor. For the range of particles in our

experiments, 2ΓR/(ωc/Q) > 5% is always satisfied. This means that particle induced

linewidth broadening is measurable and size information can be extracted accurately

as shown in Fig. 3.11 and 3.12.

For small nanoparticles, we have ΓR ¿ ωc/Q. Linewidth information cannot be

accurately extracted in this case. But if |2g| > ωc/Q the particle is still detectable,

and it gives the lower detection limit of our scheme:

α >
1

f 2(r)Q/V
(3.13)

Consequently the lower limit of detectable particle radius is found as

Rmin =
λ

2πn
[

3(n2
p + 2)

2F (n2
p − 1)

]
1
3 (3.14)

where F = (3λ3Q)/(4π2n3V ) is the Purcell factor and n is the effective refractive

index of the resonance mode.

The highest Q achieved for microtoroid is around 4×108, and the microtoroid should

not be smaller than 30µm in major diameter (Fig. 3.13a) to maintain this value,

because further decrease of radius will increase radiation loss as well as surface scat-

tering and surface contaminant related absorption (Kippenberg, Spillane and Vahala

2004). Such a microtoroid yields a mode volume of about V = 1.5× 10−16m3 which

is calculated by numerical simulation using finite-element method. Figures 3.13b and

3.13c show the simulated WGM field distribution in the cross-section of the toroid

ring quantified as f(r) around 670 nm wavelength. On the surface of this microtoroid,

the maximum value of f(r) is 0.36. Inserting the values of V , Q and f(r) in Eq. 3.14,

we calculate the lower limit as R=9.2 nm and R=8.7 nm for KCl (np=1.49) and PS

(np=1.59).
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Figure 3.13: Field distribution of the whispering gallery mode for the microtoroid used
in the experiments. a, Illustration of a toroid showing size notations. b, Normalized
WGM field distribution in the cross-section of a microtoroid (Major diameter: 30µm,
and minor diameter: 5µm) obtained by simulation for light wavelength of 670 nm.
c, The normalized field distribution f(r) along the outer surface of the microtoroid
cross-section shown in b. The inset shows the trajectory of data points.
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a b

Figure 3.14: Transmission spectra obtained at two different wavelengths for a single
PS nanoparticle of R=110 nm. a, For visible light at 670 nm band, symmetric mode
cannot be clearly observed. b, For near-infrared light at 1450 nm band, the symmetric
mode is seen due to the decreased damping at this wavelength band.

The upper detection limit, on the other hand, can be estimated from the conditions

of Rayleigh scattering and dipole approximation which assume that R ¿ λ. In our

experiments, KCl and PS nanoparticles up to 100 nm in radius are detectable in 670

nm band, and the spectrum agrees well with the theoretical prediction derived using

dipole approximation. For particles above this size, we see a large additional damping

as ΓR ∼ R6 (see Eq.3.2), consequently the Q-factor of the symmetric mode (SM) could

become very low. The big difference in Q-factors of SM and ASM resonances makes

it very difficult to monitor them simultaneously (Fig. 3.14a). However, when the

wavelength is switched to near-infrared band (1450 nm) both resonances become clear

(Fig. 3.14b) as the damping rate, which scales as ΓR ∼ 1/λ4 decreases significantly.

It is worth noting here that although the theoretical model developed above states

that there is no change in the linewidth of the high-Q mode (ASM), in the experiments

we observed that for KCl particles of large size (R ≥ 180 nm) the linewidth of ASM

is also perturbed. Note that this size just exceeds the Rayleigh scattering regime

and the theory in this chapter will not be accurate for this size. Table 3.1 shows the

change in the linewidth of the ASM (high-Q mode) for KCl particles of different sizes

for a single binding event. Although the table shows an 18% change in the linewidth

of the high-Q mode for R =180 nm, we see that this does not lead to a significant

error in size estimation.

37



Table 3.1: Changes in the linewidth of the high-Q mode (ASM) for KCl particles
of various sizes. Linewidth of the High-Q mode is calculated using the curve fitting
technique described above. The high-Q mode linewidth increases noticeably for large
particles.

Intrinsic Nominal Particle Change in High-Q Measured Particle
Q factor Radius (nm) mode linewidth Radius (nm)

1.16× 108 75 1.97% 72.49± 7.14
1.60× 107 135 2.49% 131.03± 5.25
5.79× 106 160 2.98% 160.27± 3.13
4.60× 106 180 18.01% 178.78± 4.17

3.3 Regime for split and non-split mode nanopar-

ticle measurement

The amount of frequency splitting and linewidth broadening between the split modes

for the case of a single nanoparticle is given as 2g = −αf 2(r)ωc/V and 2ΓR =

(α2f 2(r)ω4
c )/(3πν3V ). We have introduced a dimensionless parameter Qsp (Ozdemir

et.al. 2011) to quantify how well the splitting can be observed in the transmission

spectrum of a scatterer-coupled WGM resonator. The splitting quality is given as:

Qsp =
2g

ωc

Q
+ ΓR

(3.15)

that is the ratio of the frequency splitting over the average linewidth of the split modes

(see Fig. 3.15). In order to identify mode splitting, Qsp > 1 should be satisfied, as it

is seen in Fig. 3.15 When 0.6 < Qsp < 1, although one cannot observe very clear split

modes, the effect of the interaction between resonator and nanoparticle reflects itself

as a ”flat-top” feature. For 0 < Qsp < 0.6, one can observe only one resonance, i.e.,

mode splitting cannot be observed, and there is a single peak feature where the light-

particle interaction is reflected as the change in resonant frequency and linewidth

while keeping the lorentzian shape.
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Figure 3.15: The effect of splitting quality Qsp on the transmission spectrum of a
WGM resonator. Qsp is changes from 0 to 1.2 with increments of 0.2.

These observations suggest, with a conservative estimation, that the presence of a

nanoparticle within the resonator mode volume will not lead to mode splitting if Qsp <

0.6 is satisfied; and in order to observe a good mode splitting with well separated

Lorentzian peaks which enables a good size estimation for the nanoparticle, Qsp has

to satisfy Qsp > 1.2. Denoting the desired mode splitting quality as η, we can

find a theoretical bound on Q such that there is no observable mode splitting in

the transmission spectrum (η < 0.6) or well separated splitting (η > 1.2). It is

straightforward to show that this bound can be derived from the condition Qsp < (>)η

as

Q < (>)
ωc

αf2(r)ωc

ηV
− α2f2(r)ω4

c

6πν3V

(3.16)

which relates Q-factor to the particle polarizability α (or size if refractive index is

known).

The accuracy of size measurement depends on how well one can measure the fre-

quency and linewidth of the split modes. In practice noise has a significant effect on

whether the change induced by a particle can be observed in the transmission spec-

trum or not. It also affects how accurately the size measurement can be achieved.
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For the size range of particles tested in our experiments, |2g|/ΓR is always satisfied,

i.e. the amount of mode splitting or spectral shift is much larger than the amount of

linewidth broadening induced by a single particle. Therefore, in our experiments it is

always easier to measure the amounts of mode splitting or the spectral shift than to

measure the linewidth broadening because any amount of measurement noise affects

the estimation of linewidth broadening more than the estimation of mode splitting

or spectral shift, i.e., in our experiments the signal-to-noise-ratio (SNR) of spectral

shift measurement is much better than the SNR of linewidth measurement. There-

fore, when considering whether a particle can be sized, linewidth measurement is the

limiting factor with the present instrumentation systems.

In our experiments, the linewidth of the resonance is measured by curve-fitting of

the frequency spectrum acquired by fine scan of the laser wavelength. Linewidth

measurement noise arises due to laser noise, fiber-taper-toroid air gap fluctuation,

other environmental noise in or around the microtoroid resonator (e.g. temperature

fluctuations), and curve-fitting error. Linewidth measurement noise is relatively more

significant when Q-factor of the resonance mode is high. To accurately measure a

change in the linewidth, it is crucial that the change is larger than the noise level. In

order to quantify the noise level in linewidth estimation, we acquired the transmis-

sion spectra over a course of 10 seconds corresponding to 100 frames during which

the microtoroid was kept at normal experimental conditions without nanoparticle de-

position (Fig. 3.16). By curve fitting to the resonances in each of these frames, we

calculated the standard deviation of the measured linewidth which is an indication

of the noise in linewidth measurement.

Figures. 3.17 and 3.18 summarize the relations between the standard deviation of

measured linewidth (σΓ) vs. mean linewidth (ωc/Q), and measured linewidth coeffi-

cient of variance CV (ratio of standard deviation over mean value σΓ/µΓ) vs. Q-factor.

We observed that the linewidth noise becomes smaller when linewidth is smaller (or

Q is larger), while the linewidth CV increases as linewidth goes smaller (or Q goes

larger). From Fig. 3.18, we conclude that in our experiments σΓ is larger than 1/40

of the linewidth when Q > 107, and σΓ is larger than 1/20 of the linewidth when

Q > 108. Thus, linewidth measurement noise plays a significant role especially in the

size measurement of smaller nanoparticles using ultra-high-Q-factor resonance modes.

40



94 96 98 100 102 104 106
0

5

10

15

20

25

Linewidth (MHz)

C
o

u
n

ts

N=153

2 4 6 8 10 12 14
90

95

100

105

110

Time (s)

L
in

e
w

id
th

 (
M

H
z

)

a

b

Figure 3.16: Measured linewidths vs. time showing the fluctuations in linewidth
measurement. a, time signal. b, histogram of the measured linewidth
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Figure 3.17: Measured linewidth standard deviation (σΓ) v.s. linewidth with the
fitting curve given in red.
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the fitting curve given in red.
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As we have mentioned above, accurate size measurement of a nanoparticle requires

that the linewidth change (or broadening) induced by the particle is greater than the

noise level of linewidth measurement, or linewidth standard deviation σΓ measured

above. Imposing this, we find the relation:

Q >
σΓωc

µΓΓR

(3.17)

which gives a lower bound for the Q factor for accurate size measurement. In Eq.

3.17, ΓR is the linewidth broadening induced by a single mode, or average change

of linewidth for split modes, ωc/Q is the pre-scatterer linewidth of the single mode,

or average linewidth of split modes before particle arrival. The value of σΓ/µΓ is

dependent on Q and is given in Fig. 3.18. By curve fitting to the experimentally

obtained data of Fig. 3.18, we find σΓ/µΓ ≈ 0.00013Q0.3317. Substituting this into

Eq. 3.17, we arrive at

Q > (0.00013
ωc

ΓR

)1.496 (3.18)

In the multiparticle case in the next chapter, this bound is also valid for sizing an

individual particle arriving at the resonator. In this case, the average Q-factor of the

split modes before each particle deposition has to satisfy Eq. 3.18.

From the above discussions, it is clear that depending on the noise level, Q of the

resonator and particle size, a WGM-resonator-based nanoparticle detection and mea-

surement scheme operates either in a single mode or a split mode regime. In the

single mode regime, no mode splitting is observed in the transmission spectra and

measurement is based on detecting the spectral shift and linewidth broadening of

a single resonance mode (Ren et.al. 2007). In the split mode regime on the other

hand, the size measurement is based on detecting the total change in the frequencies

and linewidths of the split modes. Combining the above equation sets we derive the

boundaries of these two regimes as a function of particle size and Q of the resonator.
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Figure 3.19: Regimes for single mode and split mode particle measurement at λ =
1550nm.

The results are shown in Figs. 3.19 and 3.20 considering PS nanoparticles (refrac-

tive index: 1.59) for the 1550nm and 670nm wavelength bands, respectively. The

red curves in these figures denote the linewidth noise constraint (Eq. 3.18) and blue

line is the boundary separating different operation regimes (Eq. 3.16). The upper

limit for particle size in the plots are chosen to be the Rayleigh limits (R=180nm for

1550nm band and R=80nm for 670nm). Other parameters used in the simulations

are f(r) = 0.36 and V = 200µm3.

In Figs. 3.19 and 3.20, the regions colored in blue correspond to the single mode

regimes whereas the red colored regions are the split mode regimes. It is clear that the

operation is single mode for lower Q and larger particle sizes (closer to Rayleigh limit).

In this regime, one can measure the frequency shift and linewidth broadening of a

single mode accurately and then calculate the polarizability (or size if refractive index

is known) of the nanoparticle. In a system where Q-factor of a WGM resonator is low

(< 106), it is likely that the measurement scheme will be in the single mode regime

and size of a large nanoparticle can be estimated from the measurement of frequency
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shift and linewidth broadening. For higher Q factors, split mode operation becomes

possible. These figures suggest that with ultra-high- Q microtoroids (Q > 107),

resonator-based measurement scheme will operate in split-mode regime.

Microtoroid resonators used in our experiments have Q values larger than 107 in air,

therefore our measurement system almost always operated in the split mode regime

(see Figs. 3.19 and 3.20). Working in the split mode regimes has two advantages:

a) With higher Q-factor (or smaller mode linewidth), absolute standard deviation

of linewidth measurement is smaller (Fig. 3.17). Thus, linewidth measurement is

more precise. Consequently, size estimation is more accurate. b) Detection and

measurement of much smaller particles are possible due to the higher Q-factor it

utilizes.

Performance of both the single and split mode regimes is limited by the error in

linewidth measurement. For example, if we could reduce the noise measured in our

experiments by a factor of 10 (see Fig. 3.20, red dashed line), the areas of both single

and split mode regimes will increase, thus smaller particles can be measured. In this

case, the smallest measurable size for split mode regime would improve from R=30nm

to 22nm (limited by the highest Q-factor obtainable 2× 108) and that of single mode

regime would improve from R=51nm to about 31nm.

During the particle deposition process, it may occur that 0.6 < Qsp < 1.2, and the

transmission may appear as a ”flat-top” Gaussian shape. In this case the linewidth

measurement cannot be accurately performed because curve fitting error is relatively

large. This problem is usually solved when more consecutive particles are deposited

and Qsp becomes larger than 1 again.

3.4 Summary

Mode splitting as a new scheme to detect and size nanoparticles have many advan-

tages. First, the detection is based on the change of splitting frequency, which is

naturally self-referenced. The split resonance may be affected by environmental per-

turbations and experience spectral shift. But the amount of splitting is not affected

and only depend on the scattering signature of the nanoparticle. Second, the use
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of both frequency and linewidth information gives this scheme its unique ability to

quantify the nanoparticle adsorbed, without regard to the particle’s location on the

resonator and the Q factor and mode volume of the resonance. As the results show,

this method is quite accurate considering this is only the prototype demonstration.

One big limitation of this method is that the sensitivity is bounded by the Q factor

of the resonator and the sizing only applies to the first adsorbed particle. While

the former restriction seems difficult to overcome for passive resonators, the latter

limitation is solved in the next chapter, where new theory is developed to consider

multiple scatterers in the system and allows real-time sizing of each consecutively

deposited particles.
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Chapter 4

Multiple Scatterers induced Mode

Splitting

2In this chapter, we solve the problem of interaction between multiple Rayleigh scat-

ters and resonator. The developed theory directly gives a method to allow consecutive

detecting and sizing of incoming particles. It makes the microresonator a more real-

istic candidate for nanoparticle measurement applications since one can continuously

measure each particle in the binding sequence. We start with the most simple case

of two scatterers, where the theory is verified both in simulations and experiments.

Then the theory is extended to multiple scatterers and applied to measure different

types of nanoparticles and Influenza Virions.

4.1 Two Rayleigh Scatterers

When there is only one scatterer on the resonator, the two standing wave modes

(SWMs) distribute according to the position of the scatterer (Mazzei et.al. 2007). The

symmetric mode (SM) places its anti-node at the particle location and the asymmetric

mode (ASM) places its node at the particle locations. In the case of two scatterers,

situations are complex because the particle is no longer at the node or anti-node

of a SWM (except for some specially cases). Both SWMs are perturbed by the

2Part of this chapter has appeared in ”Controlled manipulation of mode splitting in an optical
microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535-23543 (2010), and ”Single virus
and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19,
16195-16206 (2011).
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scatterers, and the back-scattering from each scatterer will interfere and possibly

enhance or decrease each other (Chantada et.al. 2008). Hence the coefficients we

used to denote the coupling between the CW and CCW modes have to be modified.

The damping effect, on the other hand, describe the dissipation of scattered light into

the environment. For a traveling wave mode (TWM) the scattering loss from two

scatterers are the same as the sum of the scatterers when they act independently.

Because of this we know that the overall damping or linewidth broadening of the

two SWMs should be just the summation of the two damping channel of the two

scatterers according to the formulation in the last chapter.

4.1.1 Rate Equations

Instead deriving from the TWMs, we start from the SWMs to build the model and

denote the the frequency of the too SWMs as (ω−) and (ω+). A single Rayleigh

scatterer with polarizability α1 located at r1 in the resonator mode volume V leads

to a mode splitting quantified with the coupling strength 2g1 = −α1f
2(r1)ω0/V and

the additional linewidth broadening 2Γ1 = α2
1f

2(r1)ω
4
0/3πc3V where c is the speed

of light, ω0 is the resonance frequency before splitting, and f 2(r1) is the normalized

spatial variation of the intensity of the initial WGM. The resulting two SWMs have

periodic (sinusoidal) spatial distributions. A single scatterer locates itself at the anti-

node (node) of ω− (ω+) with φ = 0 (π/2) where φ denotes the spatial phase difference

between the first scatterer and the anti-node of −mode. If a second Rayleigh scatterer

with polarizability α2 is introduced at location r2 with a spatial phase difference of β

from the first scatterer, the already established SWMs redistribute themselves, and

the amount of disturbance experienced by split modes depends on their overlap with

the two scatterers (Fig. 4.1). Subsequently, the frequency shift (∆ω− = ω− − ω0)

and the linewidth broadening (∆γ− = γ− − γ0) of ω− mode with respect to the

pre-scatterer resonance frequency ω0 and linewidth γ0 become

∆ω− = 2g1 cos2(φ) + 2g2 cos2(φ− β) (4.1)

∆γ− = 2Γ1 cos2(φ) + 2Γ2 cos2(φ− β) (4.2)
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φ

β

Figure 4.1: Field distribution of a standing wave mode (SWM) obtained from finite-
element simulation and the definitions of φ and β. Black circles represent the position
of two scatterers in the mode.

where subscripts (1,2) represents the first and second scatterers. The cos2(·) terms

scale the interaction strength depending on the position of the scatterer on SWMs.

Similar expressions for ∆ω+ and ∆γ+ are obtained by replacing cos(·) with sin(·)
since the two SWMs are always spatially orthogonal. Although Eq. 4.1 focuses on

two-scatterer case, one can see that the model can be extended to arbitrary number

N of scatterers by adding the terms 2gi cos2(φ−βi) and 2Γi cos2(φ−βi), respectively,

for each of the 3 ≤ i ≤ N scatterer.

To determine the distribution of the SWMs, we again use the Fermat’s principal,

which states that rays of light traverse the path of stationary (could be maximal or

minimal) time. With the positions of the two scatterers fixed, the established SWMs

are distributed in such a way that one SWM has the maximal round-trip optical path

and the other one has the minimal (Chantada et.al. 2008, Zhu et.al. 2010). It in turn

leads to maximal amount of splitting when one tries to adjust φ. In other words, the

coupling rate between the two counter-propagating modes is maximized. By setting

d∆ω−/dφ = 0 or d∆ω+/dφ = 0, we arrive at:

tan(2φ) =
g2 sin(2β)

g1 + g2 cos(2β)
=

sin(2β)

χξ2 + cos(2β)
(4.3)
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Figure 4.2: The relation between φ and β. Solid curve is calculated from Eq. (4.3)
and ∗ represent the values calculated using finite-element simulations for χ = 0.5 and
ξ = 1.

where ξ = f(r1)/f(r2) and χ = α1/α2 are positive real numbers. The two solutions

of φ have π/2 phase difference and correspond to the two orthogonal SWMs.

4.1.2 Finite Element Simulation

Verification of Eq. (4.3) is done by extensive finite-element simulations, and one

example is presented in Fig. 4.2.

In this simulation for two particles. The first particle radius is R1 = 40/
√

2 nm, the

second has radius R2 = 40 nm. Therefore, χ = α1/α2 = 0.5. The two particles are

placed the same distances away from the resonator surface, so that ξ = f(r1)/f(r2) =

1. By fixing the two particle sizes and change the position of 2nd particle, simulations

give the relationship between the distribution of SWMs (φ) and β, as depicted in Fig.

4.2. The finite-element simulation results match very well with the calculated values

from Eq. (4.3).
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4.1.3 Controlled Experiments

Advances in microresonator science, particularly in cavity opto-mechanics, have re-

vealed the need for tunable multi-mode resonators where multiple optical resonator

modes interact with each other and with multiple external dipoles (e.g., emitters,

particles or scatterers), lead to mechanical modes that cannot be excited in a sin-

gle mode resonator, and are used to reach the standard quantum limit for cooling

of mechanical modes with lower power budgets. Recently, tunable excitation and

cooling of mechanical modes as well as phonon laser action have been demonstrated

in a two-mode compound cavity (Grudinin et.al. 2010). Effect of a multi-mode

cavity on cooling of mechanical modes has also been demonstrated in long optical

cavities formed by two mirrors with tuning achieved by a heating element within

the cavity (Zhao et.al. 2009). Thus, it is natural to ask whether there is a way to

achieve similar tasks in a single microresonator. Controlled coupling of multiple opti-

cal modes in a single microresonator and their simultaneous or individual tunability

without introducing significant damping will not only find immediate use in cavity

opto-mechanics but also will facilitate applications such as filters, delays, tunable

dual-wavelength lasers for terahertz radiation generation, as well as measurement of

nanoparticles/molecules.

In this section we show that by tuning the coupling strength using nanoprobes or sub-

wavelength scatterers, the split modes can be manipulated individually or together

forming a tunable two-mode microcavity. We demonstrate that the modes can be

tuned to cross or anti-cross in frequency and linewidth. Particularly interesting ex-

perimental observation is the tunable transition between standing wave mode (SWM)

to travelling wave mode (TWM) and vice versa. Results of the calculation based on

Eq. 4.1-4.3 explains and confirms the experimental observations as well as suggests a

rather surprising dynamics, i.e., the two split modes can be made to cross each other

twice in linewidth with frequencies undergoing anticrossing in one of the linewidth

crossing region.

Figure 4.3 depicts the schematics of our experimental scheme which is composed of a

WGM silica microtoroid resonator coupled to two nanoprobes prepared by heat-and-

pull of optical fibers on a hydrogen flame followed by buffered HF etching. To couple

light in and out of the resonator, a fiber taper is used. Positions of the nanoprobes
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Figure 4.3: Setup of the controlled experiments with two scatterers. a, Schematics
of the experiment showing a fiber taper coupled to a microtoroid, and two nano-fiber
tips introduced into the mode volume. Transmission spectra are captured by a photo
detector (PD). b, SEM image of a microtoroid. c, SEM image of a fiber tip. Inset
shows the enlarged image of the tip. d, Cross-section of a microtoroid ring showing
the position of a fiber tip in the field of a WGM.

and the fiber taper are finely controlled by 3D translational stages. We place the first

nanoprobe in the resonator mode volume and fix its position when mode splitting is

observed. We denote individual resonances of the doublet as ω−(lower freuqency) and

ω+(higher frequency) modes with corresponding linewidths γ− and γ+ (γ− > γ+),

respectively. Then the second probe is introduced. This probe bends down and slides

along the surface vertically as it contacts the rim of the microtoroid. Due to the

cone shape of the tip, vertical movement gradually increases its diameter allowing to

simulate a scatterer of increasing size within mode volume without changing lateral

position. This does not cause any observable damage to the microtoroid as witnessed

by no change in the value of Q factor. As the second nano-tip size increases, it starts

disturbing the already established SWMs. According to the Eq. 4.3, the evolution of

SWMs and the amount of disturbance applied to ω∓ and γ∓ depend on the size and

location of the second probe relative to the first.

Figure 4.4 shows intensity graphs and transmission spectra recorded while the size

of the second probe is increased. The second probe is used to tune the splitting

between the modes and their linewidths. Crossing (Fig. 4.4b), anti-crossing (Fig.
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4.4c) and shifting (Fig. 4.4d) of linewidths and resonance frequencies at different

lateral positions(azimuthal direction, or β) of the second probe are observed.

In Fig. 4.4b, the initial ω+ mode experiences red shift and linewidth broadening with

increasing size of the second probe, while the ω− mode is not perturbed much. At a

specific size both modes coincide, i.e., ω− = ω+ and γ− = γ+. Thus, a single resonance

is seen in transmission spectrum. With further increase of the second scatterer’s size,

the modes become separated with ω− mode now having a larger linewidth than ω+

whose linewidth equals to the initial γ−. This suggests that both frequency and

linewidth crossings have occurred. At the crossing point, back-scattering into the

resonator vanishes as the back-scattered fields from the two scatterers have the same

strength but π-phase shift. Thus the vanishing of backward reflection coupled to the

taper suggests a transition from SWM to TWM. The conditions for these to take

place will become clear in the later discussion. This observation implies that SWM,

which limits nonclassical features of coherent matter-cavity field interaction due to

the position dependence of the coupling strength, can be eliminated using external

tuning with nanoprobes. This is particularly crucial in ultra-high-Q microresonators

because SWMs are usually formed due to mode splitting caused by structural defects

and material inhomogenety.

In Fig. 4.4(c), the second probe first disturbs ω+ mode with no significant disturbance

to ω−. Thus ω+ experiences linewidth broadening and red shift gradually approaching

to ω−. At a specific scatterer size, the frequency difference between the modes reduces

from its initial value of 19.6 MHz to 7 MHz, and the linewidths become very close

to each other. At this point, modes are strongly coupled to the scatterer and to

each other. With further increase in size, ω− strongly couples to the scatterer, and

the modes start to repel each other leading to increased splitting. This suggests

avoided-crossing of frequency and linewidth.

In Fig. 4.4(d), the second probe affects both ω− and ω+ and induces frequency

shift and linewidth broadening. The rate of change in ω− is higher than that in ω+

suggesting that the scatterer has a greater overlap with ω−.

To explain these experimental phenomena, we define δ = ∆ω+−∆ω− = ω+−ω− and

% = ∆γ− − ∆γ+ as the frequency and linewidth differences of the resonance modes

ω− and ω+, we find
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Figure 4.4: Experiment results with two nanoprobes showing different dynamics of
the split modes. a, Intensity graphs of mode- crossing (top), anti-crossing (middle)
and shift (bottom). b-d, Transmission spectra corresponding to the intensity graphs
from top to bottom in a. Increasing time corresponds to increasing size of the second
nanotip.
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δ =
2|g1|
χξ2

[χ2ξ4 + 2χξ2 cos(2β) + 1]
1
2 (4.4)

and

% =
4Γ1|g1|
δχ3ξ4

[χ3ξ4 + χ(1 + χ)ξ2 cos(2β) + 1] (4.5)

from which frequency and linewidth crossings of the resonance modes can be calcu-

lated by setting δ = 0 and % = 0, respectively.

Behavior of the frequencies of the resonance modes. Conditions to observe

frequency crossing is found by setting δ = 0 which implies χ2ξ4+2χξ2 cos(2β)+1 = 0.

It is satisfied only when cos(2β) = −1 or β = π/2. In the following discussions we

only consider 0 ≤ β ≤ π/2, as cos(2β) is an even function and has period of π.

Results of numerical simulations calculated from the model are shown in Fig.4.5,

which coincide very well with experimental observations in Fig.4.4. Following are

detailed discussions:

(i) β = 0. We find tan(2φ) = 0, i.e., φ = 0, implying that both particles locate at the

anti-node of ω−, and ∆γ− is maximized. This leads to δ = 2|g1|(1 + χ−1ξ−2). Thus

decreasing χ increases δ by pushing ω− further away from ω+ (Fig. 4.5b). Note that

if the size of the second scatterer reaches above Rayleigh limit (Knollenberg 1989), it

may start disturbing ω+, too.

(ii) β = π/2. The second particle stays at the anti-node of ω+, thus increasing its

size significantly affects the frequency and the linewidth of ω+ while its effect on ω−

is minimal. Then we find δ = 2|g1|(1 − χ−1ξ−2). This implies only one frequency

crossing which occurs at χ = ξ−2, i.e., g1 = g2. For ξ = 1, frequency crossing occurs

at χ = 1 (Figs. 4.5a).

(iii) 0 < β ≤ π/4. We have 0 ≤ cos 2β < 1 (i.e., cosine is positive in the first quadrant

of the unit circle) which implies that for a fixed β in this interval, δ is always greater

than zero (δ > 0) and it increases with decreasing χ, that is with increasing α2.

Physically, this is understood as follows. The second scatterer affects both SWMs

with strengths depending on its overlap with each mode. In this interval of β, the
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Figure 4.5: Numerical simulations showing three unique patterns of doublet evolution
for increasing size of the second nanotip at a, β = π/2, b, β = 0, c, β = 0.44π for
ξ = 1, d, Resonance frequency and linewidth trajectories of the doublets with the
exceptional point when ξ, χ and β are varied. Dashed and solid lines correspond to
the two SWMs.
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overlap of the second scatterer with ω− mode is always larger than that with ω+.

Consequently, as α2 increases, ω− mode is further red-shifted increasing δ.

(iv) π/4 < β < π/2. We have −1 ≤ cos 2β < 0 (i.e., cosine is negative in the second

quadrant of the unit circle) implying that for a fixed β in this interval, δ is always

greater than zero (δ > 0); however, contrary to the case (iii) δ has a minimum at

χξ2 = 1/| cos(2β)| > 1 with δmin = 2|g1|(1 − χ−2ξ−4)1/2 > 0. The physical process

is explained as follows. In this case, too, the second scatterer affects both SWMs

with strengths depending on its overlap with each mode. When the size of the second

scatterer is small, ω+ feels it strongly and undergoes frequency shift coming closer to

ω− as χ decreases. This changes φ and increases the overlap of the second scatterer

with ω− leading to their stronger interaction which consequently, red-shifts ω− and

helps avoid crossing ω+ (Fig. 4.5c). With a sufficiently large α2, φ > π/4 will be

achieved which means ω− will have larger overlap with the second scatterer than the

first one.

Behavior of the linewidths of the resonance modes. Setting % = 0 in Eq.

(4.5), we find the condition for linewidth crossing as 1+ξ4χ3 +χ(1+χ)ξ2 cos(2β) = 0

which can be satisfied only when cos(2β) < 0 or π/4 < β ≤ π/2, because both ξ and

χ are positive real numbers.

(i) β = π/2. We have φ = 0 and the two scatterers locate themselves at the anti-nodes

of the each SWMs, i.e., 1st scatterer at ω− and 2nd scatterer at ω+. Thus scatterers

independently affect the two SWMs. We find that a linewidth crossing takes place at

χ2ξ2 = 1, which means Γ1 = Γ2. In this case if we also have χ = ξ = 1, which gives

g1 = g2 and Γ1 = Γ2 implying the two SWMs have identical frequency and linewidth,

but have orthogonal spatial distributions. The two SWMs merge to a TWM in the

direction of the initial WGM. The other directional TWM vanishes as witnessed in

experiments by vanishing of backward reflection in the fiber.

(ii) π/4 < β < π/2. The roots of % = 0 can be found by setting χ3ξ4 + χ(1 +

χ)ξ2 cos(2β) + 1 = 0. This is a transcendental third-order polynominal equation

whose roots are too lengthy to give here. Given π/4 < β < π/2, either none or two

positive real roots can be found for χ at specific values of β and χ. This suggests

that two linewidth crossing points may be observed. Indeed the double crossing

patterns are seen in the calculated patterns shown in Fig. 4.6a,b. In both cases, one
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Figure 4.6: Calculated frequency shift, linewidth broadening of the doublet and SWM
position φ as a function of the ratio of second scatterer size over the first one, for a
β = 0.44π, ξ = 1/4, and b β = 0.44π, ξ = 4. Dotted and solid lines correspond to the
two SWMs. c,d Experimental observations corresponding to a and b, respectively.
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”symmetric” linewidth crossing (indicated by arrows in Fig. 4.6a,b) coincides with

a frequency anti-crossing. From the plot of mode position φ, we see that the two

SWMs ”switch” distributions (φ shifts by π/2) around this point. This switching

takes place around χξ2 = 1 and is the source of the symmetry of linewidth crossing.

The other linewidth crossing takes place around χ2ξ2 = 1, where the linewidth of

one SWM changes significantly faster than that of the other one. This indicates that

mode (red line in Fig. 4.6(a) and blue line in Fig. 4.6(b)) has much larger overlap

with the second scatterer at this crossing point. Depending on whether ξ > 1 or

ξ < 1, the ”symmetric” linewidth crossing is observed before or after the other one.

In experiments both scenarios were observed (Fig. 4.6c,d).

Moreover, in the case that no positive real roots are found for % = 0, there is no

linewidth crossing although one can always find χ for specific ξ and β which minimize

%. On either side of this minimum, % increases implying linewidth anti-crossing. This

can be explained in a similar way as the frequency anti-crossing when π/4 < β < π/2.

(iii) 0 ≤ β ≤ π/4. In this case % 6= 0 and similar to δ in this regime, % increases as α2

increases. Neither crossing nor anti-crossing can be observed.

In summary, this section discussed the interactions of a microresonator with two

scatterers. The theory and method described here provide guidelines for manipulating

the coupling of two SWMs and probing the mode splitting related phenomena.It

also paves the ground for the discussions on detection of consecutively introduced

nanoparticles using microresonators in the next section.

4.2 Multiple Scatterers

When multiple scatterers are in the mode volume, with each new scatterer entering the

resonator mode volume, the already established WGMs are redistributed to maximize

mode splitting (Fermat’s principal). Subsequently, the location of individual scatterer

with respect to the nodes and anti-nodes of the SWMs are modified. Assuming

N -scatterers in the mode volume with φN denoting the distance between the first

scatterer and the antinode of the ω−N mode, and βi corresponding to the spatial
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distance between the first and the i-th scatterer, we can write the frequency shift and

the linewidth broadening that will be experienced by the split modes as

∆ω−N =
N∑

i=1

2gi cos2(ψNi), ∆ω+
N =

N∑

i=1

2gi sin
2(ψNi) (4.6)

∆γ−N =
N∑

i=1

2Γi cos2(ψNi), ∆γ+
N =

N∑

i=1

2Γi sin
2(ψNi) (4.7)

where ψNi = φN − βi and the cos2(. . .) and sin2(. . .) terms scale the interaction

strength depending on the positions of the scatterers, and 2gi and 2Γi correspond

to the coupling strength and the additional linewidth broadening experienced by the

WGM if the i-th scatterer is the only adsorbed scatterer. Imposing the condition that

the modes distribute themselves to maximize mode splitting, we find that φN should

satisfy

tan(2φN) =

∑N
i=1 gi sin(2βi)∑N
i=1 gi cos(2βi)

. (4.8)

Then using the expressions in Eqs. 4.6-4.7, we find

δ−N = 2
N∑

i=1

gi cos(2ψNi), δ+
N = 2

N∑

i=1

gi (4.9)

%−N = 2
N∑

i=1

Γi cos(2ψNi), %+
N = 2

N∑

i=1

Γi (4.10)

In practical realizations, it is not possible to know the exact values of ψNi, hence δ−N
and %−N , to extract useful information on the deposited scatterers. However, one can

use δ+
N and %+

N because these depend only on gi and Γi which are directly related to

the polarizability of the i-th scatterer. Consequently, we can write the polarizability

of the N -th particle αN as
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αN = −ΓN

gN

3λ3

8π2
= −3λ3

8π2

%+
N − %+

N−1

δ+
N − δ+

N−1

= −3λ3

8π2

(γ+
N + γ−N)− (γ+

N−1 + γ−N−1)

(ω+
N + ω−N)− (ω+

N−1 + ω−N−1)
(4.11)

which states that by comparing the total frequencies and linewidths of the split modes

before and after the deposition of the N -th scatterer, one can find the polarizability

of the N-th scatterer from which the radius RN is calculated as

RN =

[
αN

4π

εp + 2

εp − 1

]1/3

. (4.12)

4.3 Consecutive Single Nanoparticle Measurements

Equations 4.11 and 4.12 show how to measure consecutively adsorbed nanoparticles on

the microtoroid. In this section we perform the experiments to apply the developed

theory. The experimental setup is essentially the same as the one used in single

nanoparticle experiments. A labview program is used to capture the resonance spectra

at a rate of 10 frames/s. Meanwhile the program also does curve fitting to the

spectra to determine the frequency and linewidth of the split modes. When there is

nanoparticle binds to the microtoroid surface, discrete changes in the frequencies or

linewidths are observable indicating the binding event.

4.3.1 Influenza Virions

Purified and inactivated Influenza virus X-31 A/AICHI/68 was purchased in 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) buffer from Charles River Lab-

oratories. The virus sample was passed through a 0.2 µm nylon membrane filter to

remove aggregates. The virions are delivered to the microtoroid surface using the
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Figure 4.7: A SEM image of Influenza A virions deposited on the surface of a micro-
toroid resonator

method described in Chapter 3. The deposition results are confirmed by optical mi-

croscopy imaging via visible light scattering and further confirmed by SEM images

(Fig. 4.7).

Figure 4.8 shows the mode splitting spectra induced by InfA virions entering the

resonator mode volume one-by-one. With the arrival of the first virion, the single res-

onance splits into two. The subsequent single virion adsorptions lead to redistribution

of the existing SWMs leading to abrupt changes in the splitting spectra (Fig. 4.8a).

The amount of change in the frequency and linewidth of the resonance modes with

each adsorption event depends on the positions of the virions in the mode volume.

The mode splitting resonance frequencies and linewidths extracted from the spectra

in Fig. 4.8a shows sudden changes corresponding to each individual virion adsorption

event (Fig. 4.8b,c). Processing this data allows to extract the polarizability and hence

the size of each virion (Fig. 4.8g). Note that particles deposited outside the mode

volume do not affect the WGM, so they have no effect on the resonance spectrum.

Extracted frequencies and linewidths of the split resonances from the experimental

data shown in Fig. 4.8a are depicted in Figs. 4.8b,c. This information is subsequently

used to calculate δ+
N and %+

N (Fig. 4.8d,e). Single virion adsorption events are clearly

visible as discrete jumps in 4.8d,e. Although the height of each discrete jump depends

63



50

100

150

200

250

F
re

q
u

e
n

cy
 (

M
H

z)

5

10

15

L
in

e
w

id
th

s 
(M

H
z)

0 10 20 30 40
0

5

10

15

Time (s)

Q
s

p

−150

−100

−50

0

T
o

ta
l F

re
q

u
e

n
cy

 (
M

H
z)

12

14

16

18

20

T
o

ta
l L

in
e

w
id

th
s 

(M
H

z)

0 10 20 30

80

85

90

95

100

105

Time (s)

M
e

a
su

re
d

 D
ia

m
te

r 
(n

m
)

a

b

e

d

c

gf

Figure 4.8: Real-time records of single InfA virion adsorption events using mode
splitting phenomenon in a microtoroid optical resonator. a, Evolution of transmission
spectra as the single virions are adsorbed onto the resonator mode volume. The single
resonance splits into a doublet with the first virion binding event. The subsequent
binding events lead to abrupt changes in the mode splitting spectra. Each abrupt
change corresponds to detection of a single virion, and the amount of change depends
on the polarizability and the position of the adsorbed virion in the mode volume (see
Eqs. 4.6 and 4.7). b, Frequencies and c, linewidths of the two split modes extracted
from the data in a by curve fitting. d, Sum of the frequency shifts of the two split
modes with respect to frequency of the initial single mode resonance mode, δ+

N , and
e, sum of the linewidths of the split modes, ρ+

N +2γ0. f, Evolution of splitting quality
Qsp = 2δ−N/(%+

N +2γ0) as a function of time. Note that mode splitting is observable in
the transmission spectrum if Qsp > 1. g, Size of each adsorbed single virion calculated
from the data in d and e using Eqs. 4.11 and 4.12. The horizontal line designates
the average size. In d and g, the ’*’ signs mark the point of single virus adsorption
events, and circles mark the events from which accurate size information could be
extracted.
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on the position of each virion within the resonator mode volume, we can accurately

measure the size regardless of the virion position. Using Eqs. 4.11 and 4.12, we

estimated the polarizability from which the size of the adsorbed virions was derived

and presented in Fig. 4.8g. Assuming a refractive index of 1.48 for virions (Wang

et.al. 2010), we calculated the radii of the five adsorbed virions to be in the range

46−55nm. As seen in Fig. 4.8e, the change in total linewidth %+
N for the fourth virion

adsorption event is within the noise level of our system. Although the estimated size

for this virion differs from the expected nominal size, this does not prevent detecting

this virion thanks to the distinct change in total frequency δ+
N (Fig. 4.8d).

Polarizability and size distributions of InfA virions are depicted in Fig. 4.9a and 4.9b,

respectively. Measured radius R = 53.2±5.5nm for InfA virions agrees very well with

the values reported in the literature (Vollmer, Arnold and Keng 2008, Wang et.al.

2010).

4.3.2 Inorganic Particles

We also used the same method to deliver Gold (Au) and PS nanoparticles one-by-one

to the microtoroid surface, and measured their polarizability and size distributions.

The deposition results are also confirmed by optical microscopy imaging via visible

light scattering and further examined by SEM images (Figs. 4.10 and 4.11). The

laser wavelength used for R = 50 nm gold particles is in 670 nm band and the one

for R = 100 nm gold particles is in 1550 nm band. The refractive index used for

gold nanoparticle is taken as n = 0.55 + 11.5i at 1550 nm, and n = 0.163 + 3.46i

at 670nm (Palik, http://refractiveindex.info). In both cases, the pump frequency is

away from the plasmon resonance frequency of the gold particles and in experiments

no plasmonic effect is observed.

According to our observations the inorganic particles have much less probability to

be adsorbed onto the silica resonator surface than InfA virions upon collision. Also

PS particles are a little easier to bind than gold ones. The binding rate is determined

by comparing the particle concentration in the carrier flow and the detecting rate of

the resonator system.
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Figure 4.9: Single virus/nanoparticle spectrometry using mode splitting in a micro-
toroid resonator. Polarizabilities and sizes are calculated from transmission spectra
according to Eqs. 4.11 and 4.12. a, Measured polarizability distributions of InfA viri-
ons and 50 nm Au nanoparticles. b, Measured size distribution of InfA virions with
average radius at 53.2 nm. c, Measured polarizability distributions of 50 nm and 100
nm Au particles. d, Measured size distrbutions of 100 nm and 135 nm polystyrene
(PS) particles. Red curves are Gaussian fits to the experimentally obtained distribu-
tions.

66



Figure 4.10: SEM image of PS particles with diameter of 100 nm deposited on a
microtoroid resonator.

Figure 4.11: SEM image of gold particles with diameter of 100 nm deposited on a
microtoroid resonator.
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For comparison, we show in Fig. 4.9a,c the experimentally obtained polarizability dis-

tributions of Au nanoparticles with R = 50nm and R = 100nm. Figure 4.9d depicts

the distribution of estimated sizes for PS particles of R = 100nm and R = 135nm.

The measured distributions of the tested nanoparticles are significantly different cor-

relating with their sizes and material properties.

For PS particles with nominal radius of R = 100±1.7 nm and R = 135±2.1 nm, our

size estimation yielded R = 101.2±9.05nm and R = 135.9±9.96nm nm, respectively.

The standard deviations of measured polarizability distributions (Fig. 4.9a,c) for Au

particles are 32% and 31%, respectively for R = 50nm and R = 100nm. These

are slightly larger than the 24% polarizability deviation estimated from the 8% size

deviation claimed by the manufacturer.

The standard deviation of the estimated particle sizes and polarizabilities using our

technique have four main contributions: (i) Standard deviation of the particles, (ii)

detection noise and the laser frequency fluctuations, (iii) curve fitting noise in extract-

ing the resonance frequencies and linewidths of the split modes, and (iv) fluctuations

in the taper-resonator gap. We performed all experiments in normal laboratory envi-

ronment with no active control of the conditions. Thus, we believe that the reported

results can be improved by proper conditioning and control of laser phase and inten-

sity noise as well as taper-resonator gap.

4.3.3 Spectrometry of Nanoparticle Mixtures

We also examined our system’s response to a mixture of PS and gold nanoparticles

with the same radii R = 50 nm. The two kinds of particles are simultaneously

present in the air flow being blown onto the microtoroid. The measured polarizability

distributions are shown in Fig. 4.12. The two maxima are easily seen and the two

distributions have small overlap suggesting that our method can be reliably used to

detect multiple components of a homogenously mixed ensemble of particles and to

decide whether the given composition of particle ensemble is mono or poly-modal.

This result is attributed to the ability of measuring particles one-by-one and it poses

a significant advantage over other method, since in the schemes based on the spectral

shift of a single resonance mode (in optical resonators or mechanical cantilevers), the
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Figure 4.12: Measured polarizability distributions of a homogenous mixture of PS and
Au particles with radii 50 nm. Bimodality of the mixture is accurately determined
from the processing of mode splitting spectra. Red curves are the Gaussian fits to
the experimentally obtained distributions.

distribution of frequency shifts induced by smaller particles could be buried within

the distribution of larger ones, making it difficult to resolve the modality.

4.3.4 Experiment Procedures

Here we summarize the procedures of the consecutive particle measurements (see also

Fig. 4.13):

1. Choose a microtoroid resonance mode with high Q-factor. The mode may or may

not have initial mode splitting.

2. Start nanoparticle deposition using the DMA system accompanied with the nozzle

and monitor the transmission spectrum continuously at a rate of > 10 frames per

second. The particle concentration and flow speed are adjusted such that the chances

that two particles coming out of the nozzle and landing on the resonator mode volume

within one frame are negligible.

3. A particle binding event is signaled by splitting of a single resonance into two

if there was no initial mode splitting, or by a sudden change in the mode splitting

spectrum (frequency or linewidth change or both) if there existed mode splitting.

Curve fitting is used to estimate the frequency and linewidth of split modes from

each transmission spectrum.
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Figure 4.13: Transmission spectra (intensity graph) obtained during continuous depo-
sition of PS particles with radius of 100 nm. Only the first 5 binding events are shown
here. The right panel shows the total frequency shift and change of total linewidth
from the split modes.

4. Once a particle is detected with a measurable change in both the total linewidth

and the total frequency of the split modes in the two frames right before and right after

the particle binding, calculate the ratio of total linewidth change to total frequency

change and extract the polarizability of the particle according to Eq. 4.11.

5. If the refractive index of the particle is known, estimate the size using the relation

between polarizability, refractive index and size of the particle assuming the particle

is spherical. This assumption is largely validated as we have used reference PS and

gold nanoparticles. For the case of InfA virions, our measurement yields the size

equivalent to a spherical nanoparticle with refractive index 1.5 (reported value of

refractive index for InfA virions).

6. Repeat the particle detection and measurement steps until the Q-factor of the

resonance is too low to accurately measure the upcoming particle induced changes.

4.4 Analysis

In this section we present several simulations and discussions on the experiment results

and the theoretical model.
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4.4.1 Detection and Sizing Limit

Theoretical detection limit of our scheme is mainly dependent on Q/V of the resonator

and the wavelength of the resonance. For a dielectric nanoparticle of refractive index

1.5, detection limit is around R = 10nm with an ultra-high-Q resonance in 670nm

wavelength band. In our experiments using microtoroids with Q ≥ 108, the smallest

detected PS particles were of radii R = 20nm, and the smallest PS particles detected

and accurately measured were of radii R = 30nm.

4.4.2 Performance Comparison

In this subsection, we compare the performance of size estimation using mode splitting

in a WGM optical resonator with those using Scanning mobility particle sizer (SMPS),

dynamic light scattering (DLS), SEM and the manufacturer provided data. In this

study we used Gold and PS nanoparticles and Influenza A virions. The gold and PS

nanoparticles of radii R=100nm are certified reference materials provided by British

Biocell International Limited and Duke Scientific, respectively. The manufacturer

data sheet claims that measurements using transmission electron microscopy (TEM)

yield an average radius of R=98.5 nm with a standard deviation of 7.9% for the gold

particles, and an average radius of R= 101.5nm with a standard deviation of 2.3%

for the PS nanoparticles. The published data in the literature reports that the InfA

virions have radius in the range of 40-70nm.

Scanning Mobility Particle Sizer (SMPS) measurement of PS and gold

particles. We measured the size distribution of the particles exiting the DMA used

in our experiments by using a scanning mobility particle sizer (SMPS). The particles

exiting the output of the first DMA used in our experiments were fed into the SMPS

which is a second DMA whose central rod voltage is exponentially scanned to obtain

the full particle size distribution at its output. Note that in our experiments, the par-

ticles at the output of the first DMA are deposited onto the toroidal resonators. Thus,

in these measurements SMPS replaces our resonator-based measurement scheme. In

the measurements, particle flow rates were set as 1.5 liter/minute for both DMAs,

and sheath flow rate was set at 15 liter/minute for the first DMA and 10 liter/minute

for the second one. Obtained size distributions for R=100 nm gold and PS particles
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Figure 4.14: Measured size distribution for 100 nm PS and Gold nanoparticles using
SMPS. The side peaks are due to multiply charged particles in the DMAs.

are given in Fig. 4.14 Two small side peaks around the major peak are due to the

multiply charged particles in either first or second DMA, which results in different

electrical mobility for the particles of the same size. Multiple-charge correction algo-

rithm has been applied to the size distributions. The correction reduces the height

of the side peaks but cannot eliminate them entirely. Gaussian fit is applied to both

distributions to extract the mean size and standard deviation.

Dynamic Light Scattering (DLS) measurement of PS, gold particles and

InfA virions. We used a DLS system (Malvern Zetasizer Nano) to measure the PS

and gold nanoparticles and InfA virions used in our experiments. In DLS, particles

are in a suspension undergoing Brownian motion. When illuminated with a laser,

the intensity of the scattered light fluctuates at a rate depending on the sizes of the

particles, i.e., smaller particles move more rapidly. The velocities of the Brownian

motion of the particles are extracted from intensity fluctuations of the scattered light

and then the particle size is estimated using the Stokes-Einstein relationship. In a

DLS measurement, what is measured is the hydrodynamic size of the particle. In

other words, size obtained by DLS is that of a spherical particle having the same

translational diffusion coefficient as the particle under test. It is to be noted that be-

sides the particle’s size, the diffusion coefficient depends on the surface structure, the

concentration and type of ions in the measurement medium. Thus, the size obtained

by DLS can be larger than the size measured by SEM, TEM, SMPS or our resonator-

based method where the particles are removed from their aquatic environment. The
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Figure 4.15: DLS measurement of gold, PS nanoparticles with radius of 100nm and
Influenza A virions. The DLS data provided by the manufacturer (British Biocell
International) for gold nanoparticles with 100nm radius is shown in top right panel.

size distributions we get from our DLS measurement of PS, gold and InfA virions are

given in Fig. 4.15. We also give the DLS measurement provided by the manufacturer

(Fig. 4.15, top right panel).

Scanning Electron Microscopy (SEM) measurement of PS, gold particles

and InfA virions. The particles at the output of the DMA used in our mode-

splitting experiments were deposited onto the resonators. The resonators are then

examined using a SEM (JEOL 7001LVF FE-SEM). By processing the acquired im-

ages, we measured the size of the particles on the resonators. For each particle type,

we measured about 100 particles deposited on the resonator surface and calculated

a mean size and a standard deviation. Samples of SEM images taken during these

measurements for PS and gold nanoparticles and InfA virions are given in Figs. 4.7,

4.10 and 4.11.
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Performance comparison. In Table 4.1, we list the results of size measurements

performed by various techniques discussed above. It is worth noting here once more

that DLS provides hydrodynamic sizes of particles while all the other methods (SEM,

TEM, SMPS and Mode-splitting in resonator) provide the dry sizes. Size estimation

in SEM and TEM relies on image processing techniques, in SMPS it relies on electric

mobility of particles, and in our resonator based scheme it relies on polarizability esti-

mation from mode splitting spectra. In table 4.1, we also list the TEM measurement

data provided by the manufacturers. All the measurement results yield mean values

close to each other. However, the standard deviations vary among the measurement

techniques. Our SEM measurement results are very close both in mean and standard

deviation to those reported by the TEM measurements of the manufacturers. The

manufacturer has provided the DLS measurements of R=100nm Gold nanoparticle

batch as 93.5nm (31.4%), whereas our DLS measurements yielded 96.0(35.2%) for

the same batch. The discrepancy can be attributed to the measurement conditions

(e.g., viscosity and ionic properties of the dispersant, temperature, etc.) which affect

the hydrodynamic size of the particles.

The particles used in our SEM, SMPS and mode splitting measurements were all

deposited using a DMA which selects and output particles of electric mobility falling

in a narrow distribution with standard deviation of 5% provided that the particle has

spherical shape. Thus, a direct comparison between them is possible. For manufac-

turer provided PS particles, labeled as 100 nm (Note: manufacturer provided TEM

data reports an average radius of 101.5 nm with 2.3% standard deviation for this

sample), we obtain mean radii of 100.6 nm, 101.4 nm and 101.2 nm, respectively,

using SEM, SMPS and our mode-splitting based measurements. This confirms that

our technique has the ability to provide the accurate mean size value. Standard

deviations in these measurements were 3.07%, 4.7% and 8.96%, respectively, which

are larger than the manufacturer’s data. We believe that there is room to improve

the standard deviation results obtained by our technique, for example by better con-

trol of the experimental conditions (such as fluctuations in the fiber-resonator gap,

mechanical fluctuations, etc) and by reducing electrical and curve-fitting noises.

Contrary to DLS which is an ensemble measurement, our technique allows single

particle detection and measurement. The state-of-the-art DLS technology has reached

to a detection limit of 1 nm (ensemble). Our technique in this early stage can detect
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and count particles with size down to 20 nm (single), and can measure the size

for particles down to 30nm (single). The theoretical studies have confirmed that our

technique can reach a detection limit of a few nanometers. The DLS measurements are

significantly biased towards larger size or higher scattering particles due to ensemble

measurement feature, thus the resulting intensity weighted average can be misleading

when the sample under test is polydisperse (e.g., heterogeneous mixture of the same

particle type but different size or different type of particles with the same size). In

order to extract polydisperse features accurately, prior information on the mixture is

crucial. In our technique, on the other hand, each particle is measured one-by-one,

and no averaging or weighing function is used. Thus, provided that the components of

the mixture have sufficient polarizability difference, the polydispersity of the samples

can be verified.

Table 4.1: Performance comparison of different nanoparticle measurement schemes

Radius Manu- SEM DLS SMPS Mode
(CV) -facturer Splitting
PS 101.5 (2.3%)a 100.6 (3.07%) 107.4 (23.0%) 101.4 (4.7%) 101.2 (8.96%)

100 nm
Gold 49.4 (< 8%)a 49.7 (7.8%) 54.0 (35.7%) 50.8 (4.6%) 49.0 (10.8%)
50 nm

45-55b

InfA 54.5 (11.9%)c 41.4-71.0 91.2 (39.2%) — d 53.2 (10.3%)
40-60e

a Manufacturer provided TEM data. b Reported data from SEM measurement

(Vollmer, Arnold and Keng 2008). c Reported data from plasmon imaging (Wang

et. al. 2010). d Since only one DMA system is available to us for measurement

of viral particles, we could not perform SMPS measurements for InfA virions (Note:

SMPS requires two DMAs). e The Universal database of the International Committee

on Taxonomy of viruses (ICTVdB, http://www.ictvdb.org/ICTVdB/index.htm).

In Fig. 4.12 of the main text of the manuscript, we present the result of polydis-

persity test applied to our mode splitting technique using a mixture of gold and PS

nanoparticles having average radii 50 nm. It is clearly seen that our single particle

detection and measurement technique has the ability to extract the bi-modal feature

of the mixture. We applied a similar test to our DLS system using (1) a mixture of
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Figure 4.16: DLS measurement of a mixture of PS particles with radii 50 nm and
100nm. Refer to Table 4.2 for the measurement settings of records 1-4.

PS and gold nanoparticles having radii 50 nm and (2) a mixture of 50 nm and 100 nm

PS particles. Since the size measurement algorithm used in the DLS measurement

relies on the solution of an inverse-problem, it is clear that one should be careful in

the data processing not to induce artificial errors. This heterogeneous mixture should

appear as a distribution with two distinct peaks. For the test (1) DLS could not re-

solve separate peaks regardless of the parameter settings available in our system. The

result of test (2) is depicted in Fig. 4.16 for various settings of the data processing

algorithm. In the default setting of the system, only a large distribution with a single

peak appeared. Changing the settings from default to default multi-narrow mode did

not change the single peak feature. Then using the customized settings and changing

the number of size classes and the size limits, we could observe distributions with

two peaks. This, as has been stated in the manual of the DLS system, implies that

to get the correct distributions for heterogeneous mixtures, one needs to have priori

information on the type of the mixture.

It is generally accepted that DLS has a resolution ratio of 1:4, that is the larger

particle in the mixed population should have 4 times bigger size than the smaller

particle, i.e., DLS will have problem in resolving a mixture of 50 nm and 100 nm

but will resolve a population of 50 nm and 200 nm particles. Our mode-splitting

based measurement technique, indeed have performed better than the DLS system by

discriminating mixture of 50 nm Gold and PS particle just by sorting them according
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Table 4.2: Settings used in Fig. 4.16 for DLS measurement

Record 1 Record 2 Record 3 Record 4
Settings Default Default Multi Customized Customized

general Narrow Modes
Resolution Normal High High High

# size classes 70 70 70 300
Lower size limit 0.4 0.4 10 10
Upper size limit 10000 10000 1000 1000
Peak1 (width) 91.6(28.1) 92.4(32.9) 110.4(19.16) 113.1(6.12)
Peak2 (width) - - 66.95(9.375) 62.8(2.92)

to their polarizability without the need for apriori information about the mixture. A

straightforward calculation shows that 50nm spherical Gold nanoparticles have about

the same polarizability as 75 nm PS particles. This indicates that our mode splitting

based measurement system should be able to resolve 50 nm and 75 nm PS particle

mixtures, which is impossible for DLS.

The sizes of InfA virions given in Table 4.1 correspond to the size of spherical particles

having the similar equivalent values of hydrodynamic mobility, polarizability or SEM

image dimensions depending on the measurement method used. Here, too, results

of DLS measurement stand differently from those of the other methods, since it

measures the hydrodynamics size of virions. The result of the mode splitting based

measurement on InfA is consistent with that of the SEM measurements and those

reported in the literature.

4.4.3 Detection and Sizing Efficiency

In Fig. 4.17, we present the simulation results for frequency splitting, changes in

the frequencies and linewidths of the split modes and the splitting quality (ratio of

frequency splitting over average linewidth of the split modes) for random depositions

of PS particles of R = 50 nm, using the multi-scatterer model proposed above. The

frequency and linewidth of the split modes are continuously changed by the attached

nanoparticles, so do the frequency splitting and splitting quality. It is seen that the

arriving particle may lead to an increase or decrease in the amount of splitting as well
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Figure 4.17: Simulation results using the multi-scatterer theoretical model. PS
nanoparticles with diameters of 100 nm are continuously and randomly deposited
onto a microtoroid with V = 600µm3 and 0.05 < f(r) < 0.36. Initial Q factor is 108

as in the linewidth difference of the split modes. This reflects the position dependence

of the amount of mode splitting and linewidth broadening as denoted by Eqs. 4.9

and 4.10 where the term cos(2ψNi) depends on the azimuthal locations of particles,

and gi and Γi depend on the polar locations of particles. Since particle locations are

random, fluctuations appear in frequency and linewidth.

It is also clear that both the linewidth broadening and the amount of splitting have

an increasing trend as the total number of particles in the mode volume of the res-

onator increases (see Eqs. 4.9 and 4.10). To probe the fundamental relation between

splitting amount and particle number, we eliminate the randomness in splitting by

averaging the results of 500 simulations, as shown in Fig. 4.18. It is seen that the

splitting amount increases with particle number whereas the splitting quality first in-

creases and then starts decreasing with increasing particle number. These simulations
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Figure 4.18: Simulation results showing the average value of frequency splitting and
splitting quality for 500 times of simulations. In each round of simulation, 100 PS
nanoparticle (with diameters of 100 nm) are randomly deposited onto a microtoroid
with V = 600µm3 and 0.05 ≤ f(r) ≤ 0.36. Initial Q factor is 108

only consider scarce coverage situation (i.e. particle number ¿ number of particles

required to fully cover the surface of the resonator).

Number of particles that can be detected/sized We performed numerical sim-

ulations by placing 1000 PS particles of R = 50 nm at random locations in the mode

volume of a microtoroid with Q = 108, V = 200µm3 and uniform distribution for

0 ≤ f(r) ≤ 0.36. We consider a particle detectable when the average shift induced by

the particle is larger than 2% of the average linewidth of split modes, and a particle is

measurable (sizable) when the particle induced change in both the average frequency

and linewidth of split modes is more than 2% (1/50 of the average linewidth). Im-

posing these criteria, our simulations yielded a detection rate 70%, i.e., 700 particles

were detected, and > 40 particles were measured. The undetected particles land in

the insensitive area of the resonator mode volume where f(r) value is too small. These

numbers are valid only for the scenario considered in our numerical simulations. In

practice, they may vary with the properties of the particles and resonators used as

well as the specific particle deposition technique. Results of this numerical study are

given in Fig. 4.19 which shows that each particle detection event leads to fluctua-

tions in both the frequency splitting and the splitting quality. It is also seen in Fig.

4.19 that as the number of detected particles increases, the splitting quality shows a

decreasing tendency and at some critical value of the particle number its value drops

79



Figure 4.19: Splitting and splitting quality as a function of the number of detected
particles. 1000 PS nanoparticles with diameters of 100 nm are continuously and
randomly deposited onto a microtoroid with V = 200µm3 and f(r) ≤ 0.36. Initial Q
factor is 108

below one, implying that the mode splitting is not resolvable anymore. This puts a

limitation on the number of measurable particle number.

We further probed this issue by performing numerical simulations for various values

of Q factor and particle sizes. Simulations were performed by depositing 100 or 1000

particles. The results are given in Fig. 4.20. It is clear that both the number of

detected and the number of accurately measured particles increases with increasing

Q-factor. The number of particles deposited (100 or 1000) does not cause a significant

change in the number of measurable particles. A closer look at the simulations reveals

that the majority of the accurately measured particles are those within the first 100

deposited particles. It is also seen in Fig. 4.20 that increasing the Q-factor beyond a

threshold value, which depends on the particle size, does not lead to significant change

in the number of detectable particles. For example, in Fig. S10, this threshold Q value

is 107 for R = 60 nm, and 108 for R = 40 nm.

Detecting smaller particles requires higher Q values. For example, in the left top

panel, we see that the number of detected particles with smaller R is lower than

that for larger R when Q = 106. However, this trend reverses as Q increases; the

detectable particle number becomes higher for smaller particles with Q = 108. This

can be understood with the fact that smaller particles induce less Q degradation

which helps to detect more particles. Since larger particles induce larger changes in

the frequency splitting and linewidths, it is easier to measure their sizes. For example,
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Figure 4.20: Simulated number of particles that are detected and sized, as a function
of Q factor and particle sizes. Each date point represents an average value from
100 simulations with the same parameters. In the top two panels, 100 particles are
deposited, and in the lower two panels, 1000 particles are deposited.
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as seen in Fig. 4.20 right panels, Q values as small as 107 is sufficient to accurately

measure particles of R = 50 nm. However, measuring particles of R = 30 nm requires

Q values around 108.

In this scheme, detection of a particle requires an observable change in the frequency

or the linewidth of one or both of the split modes. Size measurement, on the other

hand, requires accurate measurement of both the linewidth and frequency changes of

both split modes, thus size measurement is a more difficult task. Hence, the number

of particles detected and the number of particles detected and accurately measured

are different, the latter being smaller than the first. The higher the Q, the higher

the number of particles that can be detected and measured with a single resonator.

These simulation results are in agreement with our experimental observations. In

experiments, we can measure as many as 40-50 particles with a single resonator,

while hundreds of particles can be detected, without cleaning of the resonator.

4.4.4 Ensemble Measurement

If all the particles deposited on a resonator are the same (having the same or very

similar polarizability α), we have

Γi

gi

≈ Γj

gj

,∀i, j ≤ N (4.13)

Subsitituting it into Eq. 4.9 and 4.10 gives us:

%−N
δ−N

= −Γi

gi

(4.14)

Therefore

αeff =
%−N
δ−N

3λ3

8π2
(4.15)

This means that one can use the ratio of linewidth difference over splitting to calculate

the ”average” (or effective) size of particles deposited on the resonator, if all particles

have the same polarizability. To evaluate the robustness of this ensemble measurement
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method, we performed simulations by depositing 100 PS particles with mean radius R

= 50 nm and coefficient of variation (c.v., ratio of standard deviation to mean value)

of 3%, 5% and 10%. After each particle deposition, Eq. 4.15 is applied to calculate

the effective size. The results are given in Fig. 4.21 The effective size fluctuates

around the mean radius of 50 nm in all three cases, and as expected the fluctuations

are larger for the particle ensembles with larger CV.

Indeed, during a continuous deposition of nanoparticles, mode splitting spectra at any

instant is related to the effective polarizability of already deposited nanoparticles. If

we assume that N -particles are deposited to the mode volume of the resonator and the

history of the mode splitting spectra is not available, then we can assign an effective

polarizability αeff felt by the resonator using

αeff = −3λ3

8π2

%−N
δ−N

= −3λ3

8π2

(γ+
N − γ−N)

(ω+
N − ω−N)

(4.16)

If all the deposited particles are the same, αeff of Eq. 4.16 corresponds to the po-

larizability of a single particle. For verification, we used the data presented in Fig.

4.8 for InfA virions. The calculated size using Eq. 4.16 is given in Fig. 4.22. The

result coincides well with the sizes of single virions acquired in Fig. 4.8g. Notice

that the noise level decreases as the splitting quality Qsp increases (Fig. 4.8f). This

method of size estimation requires that all the particles on the resonator have very

similar sizes and materials, and the mode splitting has decent quality. For example,

the effective polarizability of a virus ensemble coated onto a resonator pre-treated

with specific antibody receptors can be measured using this approach. Selectivity of

virus-antibody binding will greatly influence the accuracy of this scheme.

It is worth noting here that δ−N > %+
N/2 + γ0 should be satisfied in order to observe

the mode splitting after the deposition of the N-th scatterer. Since each additional

scatterer increases the linewidths, at some point the mode splitting quality Qsp =

δ−N/(%+
N/2 + γ0) may become less than one (with larger particles, fewer particles are

needed to reach this point). Consequently, mode splitting cannot be resolved. On

the other hand, in some situations the initial Q-factor is too low to observe splitting.

However, even in such cases, one may still be able to extract useful information

if we assume that mode splitting is much smaller than the individual linewidths

ω+
N − ω−N ¿ γ−N , γ+

N , and the two resonances have similar linewidth γ−N ≈ γ+
N . In
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Figure 4.21: Simulations of measurement of effective radius for mean radius R=50
nm PS particle ensembles with coefficient of variations (ratio of standard deviation
to mean value) of 3% (top panel), 5% (middle panel) and 10% (bottom panel).
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Figure 4.22: Estimation of the size of InfA virions by applying Eq. 4.16 on the data
in Fig. 4.8. The fluctuations in size estimation decreases as the splitting quality Qsp

increases (Fig. 4.8f)

such a case, the transmission spectrum will show a single lorentzian peak with a

linewidth of γN =
√

γ−Nγ+
N ≈ (γ−N + γ+

N)/2 and a resonance at ωN ≈ (ω−N + ω+
N)/2.

This expression then can be used with Eq. 4.11 to calculate the polarizability of the

N-th particle, given that the linewidth change can be measured for a single resonance

peak. Please also see chapter 3 for the discussion of the possibility using non-split

mode for particle polarizability (size) measurement.

4.4.5 Summary

We have shown that adsorption of individual viruses and nanoparticles leads to dis-

crete changes in the mode splitting spectra of a WGM microcavity. We developed an

accurate and efficient method to detect and measure individual nanospecies one-by-

one as they are adsorbed in the mode volume of a microresonator and experimentally

verified it using InfA virions, PS and Au nanoparticles of various sizes. We achieved

this by developing a theoretical model and measurement strategy which take into ac-

count the effect of multiple scatterers deposited on an optical WGM resonator. This

approach works equally well regardless of whether there is intrinsic mode splitting

or whether a particle is deposited in the resonator mode volume before the actual

measurement starts. The particles are characterized accurately regardless of their
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positions in the mode volume without the need for complicated processes such as

stochastic analysis or excitation and tracking of multiple resonant modes. Moreover,

this method is capable of identifying the modality of mixtures of nanoparticle en-

sembles. Thus, the proposed single nanoparticle measurement technique provides a

suitable platform for real-time and highly sensitive detection and sizing of individual

nano-sized particles and larege biological particles.

Since nanoparticle induced mode splitting has been demonstrated in water (Kim

et.al. 2010), the techniques developed here could be effectively extended to aqueous

environment and incorporated into microfluidic or lab-on-chip devices which will pave

the way for detecting and sorting of single bio- molecules/particles based on their

polarizability or size. Further improvements in detection and size measurement limits

could be made by improving the fiber taper stability, using frequency noise reduction

methods (e.g. Lu et.al. 2011), as well as employing gain-media doped microresonators

(He et.al. 2011).
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Chapter 5

Non-Spectrogram Based Single

Nanoparticle Detection

The methods described in the last two paragraph are based on monitoring the changes

in spectra of the resonator-particle system. A tunable laser is required to achieve the

real-time operation. At the data rate of 10 frames per second, it also require the

data capturing system to have enough capability to transfer a large amount of data

in given time. Although very high sensitivity and particle sizing ability is achieved.

These requirements place significant hinderance on making the sensor compact and

cost effective. We developed two techniques that are based on power measurements,

which in principle do not require a tunable laser. The first technique is based on the

back reflection induced by nanoparticles in a microresonator. Note that this idea has

been previously reported in literatures through the configuration of add-drop filter

(Koch et.al. 2009, Haddadpour and Yi 2010). Although in the prototype experiment

we still used a tunable laser, method are available to replace it with a laser diode

which can be thermally locked to a resonance (McRae et.al. 2009), which is sufficient

to conduct the reflection power measurements. The second technique is based on the

drop of transmission of a tapered fiber upon particle binding in the taper waist region.

This scheme is very simple and easy to implement, but provides good sensitivity.
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Figure 5.1: The experiment setup for back-reflection based nanoparticle detection.
The particle delivery system has been described in Chapter 3.

5.1 Reflection Based Nanoparticle Detection in Mi-

croresonators

Nanoparticles can induce mode splitting in a microresonators. It effectively couples

the two counter-propagating modes. Therefore the power in the original forward

propagating direction is coupled into the backward direction. It allows us to receive

light in the back-reflection port. Fig. 5.1 describes the experiment setup. Initially

when there is no particles on the microtoroid, only counter clock-wise (CCW) mode

exist and PD2 receives no light. When particles are adsorbed onto the surfaces of the

microtoroid, they induced mode splitting and clock-wise (CW) mode is excited and

coupled back to the fiber taper in the back-reflection direction. This process can be

monitored by PD2 in real-time.

5.1.1 Nanaoparticle Induced Back Reflection

According to the formulation in Chapter 3 and 4 and defining the eigenmodes (or

standing wave modes) of the resonator as a±, we find that in steady-state regime the

two eigenmodes can be expressed as:
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(−i(∆− 2g+) +
κ0 + κ1 + 2Γ+

2
)a+ +

√
κ1a

in
+ = 0 (5.1)

(−i(∆− 2g−) +
κ0 + κ1 + 2Γ−

2
]a− +

√
κ1a

in
− = 0 (5.2)

where ∆ = ω − ωc denotes the lase-cavity detuning. 2g± and 2Γ± are given as:

2g− =
N∑

i=1

2gi cos2(ψNi), 2g+ =
N∑

i=1

2gi sin
2(ψNi) (5.3)

2Γ− =
N∑

i=1

2Γi cos2(ψNi), 2Γ+ =
N∑

i=1

2Γi sin
2(ψNi) (5.4)

where ψNi = φN − βi. They are the frequency shift and linewidth broadening of the

a± modes. From Eq. 5.1 and 5.2 we can write the rate equations for CW an CCW

modes:

daCW

dt
= −[i(ωc + g− + g+) +

Γ− + Γ+ + κ0 + κ1

2
]aCW

−(i(g− − g+) +
Γ− − Γ++

2
)aCCW −√κ1a

in
CW (5.5)

daCCW

dt
= −[i(ωc + g− + g+) +

Γ− + Γ+ + κ0 + κ1

2
]aCCW

−(i(g− − g+) +
Γ− − Γ++

2
)aCW −√κ1a

in
CCW (5.6)

Substituting Eqs. 5.3 and 5.4 into Eqs. 5.5 and 5.6 we have:

daCW

dt
= −[i(ωc +

N∑

i=1

2gi) +

∑N
i=1 Γi + κ0 + κ1

2
]aCW

−(i
N∑

i=1

2gi cos(2ψNi) +

∑N
i=1 Γi cos(2ψNi)

2
)aCCW −√κ1a

in
CW (5.7)
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daCCW

dt
= −[i(ωc +

N∑

i=1

2gi) +

∑N
i=1 Γi + κ0 + κ1

2
]aCCW

−(i
N∑

i=1

2gi cos(2ψNi) +

∑N
i=1 Γi cos(2ψNi)

2
)aCW −√κ1a

in
CCW (5.8)

With input light only in ain
CW , at steady state, the field amplitude of back-reflection

collected in the fiber can be can be calculated by
√

κ1aCCW , as

aref =
Bκ1a

in
CW

B2 − A2
(5.9)

where

A = −[i(ωc +
N∑

i=1

2gi) +

∑N
i=1 Γi + κ0 + κ1

2
] (5.10)

B = −(i
N∑

i=1

2gi cos(2ψNi) +

∑N
i=1 Γi cos(2ψNi)

2
) (5.11)

5.1.2 Sensitivity

It is worth noting that backscattering in the system does not guarantee that mode

splitting is observable. To observe mode splitting, the splitting amount has to be

comparable or larger than the average linewidth of the two eigenmodes. Therefore it

could be easier to observe back reflection in the fiber than to see particle induced mode

splitting. On the other hand, an microresonator free of any contaminations should

give no or very little back reflection before particle binding. This essentially creates

a background free situation to observe particle induced reflection, whose detection

limit is constrained by the noise of laser and sensitivity of the photo-detector.

Figures 5.2 and 5.3 present the calculated transmission and reflection spectra for two

particle radii R = 40 nm and R = 5 nm, respectively. In the former case, mode

splitting is observable the reflected power is 250 µW with 1 mW of input power. In
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Figure 5.2: Calculated transmission and reflection spectra for 1 mW of power coupled
into a resonator. Simulated Q factor is 108 and mode volume is 200µm3. The particle
radius is R = 40 nm and its refractive index is 1.59.

the latter case, no mode splitting is visible and the reflected power is much less than

the transmission. At 1 mW input about 30 nW of power is reflected, which is large

enough for a photo-detector to measure.

From the above examples one can easily see the potential of this scheme, in theory,

with a large input power (amplified before sending into the resonator), a shot-noise

limited photo-detector and an ultra-high-Q, small mode volume resonator, this scheme

can detect a much smaller particles than all the available optical methods. For ex-

ample if we consider an input power of 10 mW and a photo-detector sensitivity of 1

nW, one can detect a PS particle as small as R = 1.6 nm, with a microtoroid with

Q = 2× 108.
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Figure 5.3: Calculated transmission and reflection spectra for 1 mW of power coupled
into a resonator. Simulated Q factor is 108 and mode volume is 200µm3. The particle
radius is R = 5 nm and its refractive index is 1.59.
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Figure 5.4: Transmission and reflection spectra at time 50 s (blue curve) and 100 s
(red curve) after particle deposition started. The triangular shape of the spectra is
due to opto-thermal heating of the microresonator during wavelength up-scanning.

5.1.3 Experiments

Using the setup described in 5.1, we first conduct the experiments with PS particles

of R = 50 nm. The microtoroid we used in this test has Q factor of about 5 × 106.

The input power is about 5 mW. Due to the strong on-resonance pumping, the

spectra exhibits a triangular shape due to the heating of silica material and red-shift

of resonance during wavelength up-scanning (Carmon et.al. 2004). We measured the

transmission and reflection mode is at PD1 and PD2, respectively.

Figure 5.5 depicts the captured reflection spectra during the first 150 seconds after

particle delivery starts. Four discrete changes are seen in the reflection spectra, sig-

nalling four particle biding events. Note that in this specific test, the microtoroid has
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Figure 5.5: Calculated transmission and reflection spectra for 1 mW of power coupled
into a resonator. Simulated Q factor is 108 and mode volume is 200µm3. The particle
radius is R = 5 nm and its refractive index is 1.59.

initial mode splitting and the reflection before the particle binding is clearly observ-

able. The consecutively deposited particles may increase or decrease the refelection

amplitude as indicated by Eq. 5.9, depending on the particle location.

For a clearer presentation we plot the reflection amplitude against time in Fig. 5.6,

where the four discrete changes are shown clearly. To further test the sensitivity

of the scheme, we tested with R = 20 nm Sodium Chloride (NaCl) nanoparticles

(n ≈ 1.52). The results are shown in Fig. 5.7. The Q factor of the microtorid in this

test is about 2× 107.

In these experiments, the major noise source came from the fluctuation of taper-

resonator air-gap. It can be induced by mechanical vibration and airflow around the

microtoroid and can change the coupling condition of taper and resonator, hence give

the reflection amplitude bad fluctuations as seen in Fig. 5.6. To eliminate this noise,

one may increase the stability of the coupling by isolating the system or let the taper

and resonator to be in contact with each other.
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Figure 5.6: Reflection amplitude change showing detection of R = 50 nm PS particles.
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Figure 5.7: Reflection amplitude change showing detection of R = 20 nm NaCl
particles.

As suggested in both calculations and experiments, the reflection amplitude is max-

imized when the resonator is at critical or slightly over-coupled conditions (if mode

splitting is observable). This scheme is especially suitable for small particles R < 20

nm, as mode splitting cannot be easily observed for this particle size range.

In summary, we present the theory and experiments for detecting nanoparticles using

the reflection mode in a microresonator. Unprecedented sensitivity could be achieved

using this scheme, as indicated by both calculations and the signal-noise-ratio in the

initial tests (5.7). Since this scheme is based on power detection, tunable laser is

not necessary which will greatly reduce the complexity and cost of the whole sensor

system. By further optimizing the experimental conditions, size range below 5 nm

will be within reach.
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5.2 Fiber Taper Based Nanoparticle Detection

3With the progress in nanotechnology, there is an urgent need to develop compact,

sensitive and cost-effective sensors for detecting single nano-scale objects, especially

for artificial nanoparticles and biological objects in the submicron range. In the past

few decades, much effort has been devoted to developing fiber optic evanescent field-

based sensors using tapered optical fibers. These sensors have been shown to be very

sensitive to changes of the surrounding medium providing a compact, inexpensive and

in-line sensing platform for measuring physical parameters such as temperature and

refractive index, as well as for quantitatively detecting the concentration of chemical

compounds (Brambilla 2009, Villatoro and Monzon-Hernandez 2005).

In this chapter we discuss a sensor consist of a submicron tapered fiber. Detection and

ensemble measurement of single R=120 nm and 175 nm polystyrene (PS) nanopar-

ticles are demonstrated in the 1550 nm wavelength band. The detection mechanism

relies on the extra scattering loss induced by a single nanoparticle adsorbed on the

tapered fiber. According to calculation, lower detection limit down to R = 50 nm can

be easily achieved with light source in the visible wavelength band. This will cover

the range of many important biological agents such as Influenza viruses. Compared

with micro-resonator based nanoparticle detection scheme or other light scattering

particle measurement schemes, this method has the advantage of extreme simplicity

and good sensitivity. Large scale integration may be achieved by arraying tapered

fibers.

5.2.1 Theory

The underlying principle of the proposed sensing mechanism is based on optical

scattering of the evanescent field of a tapered optical fiber when a sub-wavelength

(Rayleigh) scatterer enters the mode volume. In a single mode fiber, the light prop-

agates as a core mode, i.e., most of the energy is confined within the core. However,

as the fiber is tapered down, the core area becomes smaller and light spreads out into

the cladding and consequently the core mode adiabatically transforms into a cladding

3This section has appeared in ”Optical Detection of Single Nanoparticles With a Subwavelength
Fiber-Taper”, Photonics Technology Letters, IEEE, 23, 1346 - 1348 (2011).
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mode leading to a highly-confined field at the cladding-medium interface with an

evanescent portion in the surrounding medium. This cladding mode is then adiabati-

cally converted back to the propagating core mode after the tapered region. Thus, the

tapered region facilitates access to the evanescent field, allowing it to interact with

the surrounding medium. Subsequently, making the tapered region susceptible to any

perturbations (e.g., changes in refractive index, temperature, humidity, absorbtion,

scattering, etc) in the medium.

When a sub-wavelength spherical particle of radius R and permittivity εp is placed

in the evanescent field E0 of the tapered region, it will induce a scattering loss

which can be described by the field of an induced dipole moment p = αεmE0 where

α = 4πR3(εp − εm)/(εp + 2εm) is the polarizability of the scatterer and εm is the

permittivity of the surrounding medium. This scattering loss to the environment

will then lead to decrease in the transmitted power at the output port of the fiber.

Since the polarizability α is a function of the shape and the size of the particle, and

the permittivity (i.e, refractive index) contrast of the particle and the surrounding

medium, the loss in the transmission should contain information on these properties

of the particle. Thus, monitoring the changes in the transmission, one will be able to

detect and quantify the polarizability of the particles entering the evanescent field.

The amount of Rayleigh scattering for a beam of light is dependent on the size of

the particles as well as the wavelength of the light. Specifically, the intensity of the

scattered light varies as the sixth power of the particle size and varies inversely with

the fourth power of the wavelength. The corss-section of a particle in the Rayleigh

regime is described by:

σs =
2π5

3

d6

λ4
(
n2 − 1

n2 + 2
) (5.12)

where d is the diameter of of the particle and n is the refractive index of the particle.

Here air is considered as the medium. For a group of Rayleigh particles, in the case

of incoherent scattering the scattered power add arithmetically, while for coherent

scattering (such as very closely placed particles), interference takes place and the

scattered field add arithmetically. The aspect coherent scattering adds complexity
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a

b

Figure 5.8: Results of numerical simulations performed using COMSOL showing the
pattern of the electrical field of the light scattered by a nanoparticle adsorbed on a
nano-taper. a, Without particle. b, With particle. The nano-taper has a thickness of
0.8µm and refractive index of 1.45, light wavelength is 1550 nm and the nanoparticle
has refractive index of 1.59 and a radius of 150 nm.
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to the analysis for the fiber taper sensor. But for a long fiber taper and scarcely

distributed particles on the taper, one may choose to neglect the coherent scattering.

As the scattered power decrease with the 2nd power of distance, given enough space

between two scatterer, the interference is negligible.

Numerical simulations of electric field around a taper in the presence of a subwave-

length nanoparticle clearly show the particle-induced disturbance and the consequent

scattering (Fig. 5.8). For different sizes of subwavelength fiber taper, although they

all support only a single mode, but the mode index decreases with taper size, and

more light is guided outside the silica material. At λ = 1.5µm, when taper diameter

D reduces to below 800 nm, the mode pattern starts to polarize. Figure 5.9 clearly

shows this transition. The mode index for the three sizes of taper is 1.26, 1.09, 1.024

for the D = 1µm, D = 800 nm and D = 600 nm, respectively.

Note that Eq. 5.12 considers the case when the particle is in a uniform medium.

When a particle is on the interface between silica and air, its scattering profile will

change. In the case of very low fiber mode index (e.g. 1.09 for D = 800 nm taper)

and relatively particles with relatively high index (e.g. PS particles), Eq. 5.12 is still

a very good approximation.

5.2.2 Experiments

A schematics of the set-up used in our experiments is given in Fig.5.10. The tapered

fibers were prepared by heating and pulling a standard communication single-mode

fiber (Rcore = 4µm and Rclad = 62.5µm) above a hydrogen flame. The thickness

and length of the waist of the fabricated taper was estimated to be 0.8µm and 3mm,

respectively. Light was provided by an unmodulated continuous wave (CW) laser

diode with fixed power around P = 2mW at wavelength of λ = 1.55µm. The trans-

mitted light power was measured with a photodetector (PD; bandwidth: 125MHz)

whose output was then acquired to a computer. Polystyrene (PS) nanoparticles of

refractive index ns =
√

εs = 1.59 of mean radii R = 120nm and R = 175nm were

used to test the performance of the nano-taper sensor for detecting nanoparticles at

single particle resolution.
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b

c

Figure 5.9: Results of numerical simulations performed using COMSOL showing the
optical mode pattern of the electrical field of the light inside a subwavelength fiber
taper. a, Fiber diameter D = 1µm. b, D = 800 nm. c, D = 600 nm. The taper has
refractive index of 1.45, light wavelength is 1550 nm.

101



Tunable laser

Fiber Taper

Photodetector

Nozzle

Figure 5.10: Experimental setup for fiber taper nanoparticle detection. A nozzle is
used to deliver single particles consecutively onto a tapered fiber.

PS nanoparticles were deposited onto the taper using a set-up which consists of an

atomizer, a differential mobility analyzer (DMA) and a nozzle with an inner tip di-

ameter of 80µm. The particles are carried out by compressed air using a collision

atomizer and then neutralized by a radioactive source such that they have a narrow

charge distribution. The DMA classifies particles according to their electrical mo-

bility, resulting in a narrow size distribution. The filted particles exit through the

output slit and are subsequently channeled to the taper waist with a micro-nozzle.

The concentration and flow rate of the particle flow is optimized so at the time of

detection the average number of particles arriving at the sensing area in 1 second is

less than 1.

Figure 5.11 shows the changes in the transmission as a function of time as PS nanopar-

ticles are deposited onto the taper waist section. Each discrete downward jump in

Fig. 5.11 signals the binding of a single nanoparticle. Thus, by counting the num-

ber of these jumps, one can count the number of particles entering the field of the

taper. Height of the jumps, which reflect the effective scattering loss, varies with the

1), position of the particles along the taper waist and 2), their distance from each

other. The first is attributed to the slight non-uniformity of the waist diameter which

leads to varying local field intensities along the taper. The latter is due to multi-

particle coherent scattering and the modification of the local field distribution due to

deposited particles. Another important factor worth considering is the dipolization
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Figure 5.11: The change in the transmission as polystyrene nanoparticles bind to a
taper. a, R = 120 ∓ 3nm, and b, R = 175 ∓ 4nm. ’*’ signs denote the detected
particle binding events.

103



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

5

10

15

20

E
v

e
n

t 
P

ro
b

a
b

il
it

y
 %

Size signal (a.u.)

120 nm Polystyrene

N = 142 

175 nm Polystyrene

N = 243

Figure 5.12: Measured size signal (h1/6) distributions for polystyrene nanoparticles
of R=120±3 nm (left peak) and R=175±4 nm (right peak). N denotes the number
of particles detected during the experiments.

of the mode pattern (Fig. 5.9b,c), which causes the intensity differences around the

surface of taper. It should be noted that the particles falling out of tapered region

do not interact with the evanescent field and thus cannot be detected.

It is pointed out that the scattering cross-section and hence the effective scattering

loss induced by a sub-wavelength Rayleigh scatterer is proportional to the 6th power

of particle size or R6. Thus, the heights of the jumps in the power transmission carry

the information on the particle cross-section or the particle size, despite the other

factors causing varying scattering losses. To confirm this, we use h1/6 to indicate the

particle size where h denotes the height of each discrete jump in the transmission

signal. Figure 5.12 shows the recorded distribution of h1/6 measured for PS particles

of two different sizes. The clear separation of the peaks and the small overlap between

the tails of the distributions suggest that the two sizes of particles are well resolved.

The standard deviations of the distributions are larger than the nominal deviation

provided by the manufacturers mainly due to the reasons mentioned in the last para-

graph. The laser power noise and detector noise also contribute to this deviation,

especially for the R=120 nm case, when particle induced signals are closer to the

noise level.
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Figure 5.13: The change in the transmission as PS nanoparticles bind to a taper with
diameter of about 400 nm. ’*’ signs denote the detected particle binding events. The
gradual drift of transmitted power is due to the movement of fiber taper. The x-axis
is the number of data points. The data capturing rate is 10 points/second

One interesting phenomenon in the experiments is that when the taper is thinned

much below the wavelength (e.g. D = 400 nm at 1550 nm wavelength), the trans-

mission can be considerably lower (e.g. 50%) than the original fiber transmission due

to the loss induced by the tapering process. In simulations for a 400 nm taper, the

mode is highly dipolized and the evanescent tail extends significantly outside the ta-

per. When using such a taper for particle detection, we actually see the transmission

increases upon particle binding (Fig. 5.13). Our explanation for this phenomenon is

that the attached PS particles (refractive index 1.59) enhances the taper’s ability to

guide light within itself, which reduces radiation loss. However a taper of this size

does not enhances the detection sensitivity as its mode volume is much larger than a

taper around 1 µm, hence it is more difficult to be perturbed.

In summary, we demonstrated real-time detection and counting of single PS nanopar-

ticles using a tapered-fiber with sub-micron taper waist. The proposed scheme does
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not need tunable lasers and offers single-nanoparticle resolution, ease of fabrication,

low-cost and versatility. Thus, it provides an alternative and competitive platform to

existing technologies with comparable sensitivities. We should note here that since

the scattering loss scales as λ−4, and taper field cross-section scales as λ2 (for the

same mode index), the sensitivity of the scheme for detecting particles with much

smaller size are within reach by replacing the infrared laser source with shorter wave-

length lasers, i.e., visible or UV. Moreover, a number of tapered fibers can be fixed

together to form an array which will increase the sensing area thus improving particle

capturing efficiency.

This detection scheme can be easily applied to planar waveguide structures. In aque-

ous medium, our method combined with recently developed waveguide particle trap-

ping and transporting techniques (Brambilla et.al. 2007, Schmidt et.al. 2007, Senthil

Murugan et. al. 2008, Sheu et.al. 2010) can form a complete nanoparticle detection

and sorting platform on a chip. This technology is not limited to the detection of di-

electric nanoparticles, but it can be used for the detection of metal nanoparticles and

large bio-particles, as well. The selectivity can be achieved by applying recognition

coatings on the tapered region.
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Chapter 6

Future Work and Conclusions

6.1 Microcavity Lasers and Nanoparticle Detec-

tion

With its high quality factor small mode volume, microtoroid is a great device to make

low threshold lasers. By incorporating gain medium into the microtoroid, high quality

lasers can be generated at threshold as low as a few micro-watts. A general method

of incorporating gain medium into silica material is by doping with rare-earth ions,

such as Erbium(Er) and Ytterbium (Yb). A very flexible way to dope these ions into

silica matrix is by the sol-gel method (Yang et.al. 2005). For Er laser, threshold

power less than 1 µW is obtainable.

On the other hand, Raman scattering in silica provides amplification at the stokes

band. If an ultra-high-Q microtoroid is pumped with sufficient power, Raman laser

can be generated. In silica the maximum Raman gain takes place at a frequency

offset of 13.2 THz from the pump. Generally pump power of a few hundred µW is

needed to observe Raman laser in microtoroid (Kippenberg et.al. 2004).

Figure 6.1 shows the measured pump and laser output power for a microtoroid Raman

laser using an optical spectrum analyzer. The pump wavelength is 1535 nm and

Raman laser appears at 1640 nm. Because the raman gain band in silica is over 20

THz wide, it is possible to excite multiple Raman lasers in a microtoroid. If pump

power is sufficiently strong, cascaded Raman lasing can occur. This mechanism has

been used to generate lasers at a much longer wavelength. To have single mode
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Figure 6.1: Measured Raman laser output power (right peak) and pump power (left
peak) for a microtoroid.

operation, one can decrease the pumping power appropriately and tune the taper-

resonator coupling condition to maximize the coupling efficiency of one of the lasing

mode.

In the presence of mode splitting, the lasing mode splits into two closely spaced mode.

Because mode splitting frequency is usually less than 1 GHz, the lasing conditions for

the split lasing modes are so close that they always appear in pairs. These two lasers

interferes and generate a radio frequency beatnote that has the same frequency as the

splitting. Figure 6.2 shows the measured beatnote pattern and measured spectrum for

the beatnote signal. The beatnote spectrum clearly shows a peak which corresponds

to the splitting frequency.

To quantify the noise level of the splitting frequency over time, we measured the

beatnote frequency for a period of time (Fig. 6.3). As seen in Fig. 6.3, the experiment

noise is generally smaller than ±0.1 MHz.

As discussed in Chapter 3 and 4, if the amount of mode splitting can be precisely

monitored, nanoparticle detection can be achieved. With a noise level of 0.1 MHz,

using the beatnote as the detection method for splitting and nanoparticle adsorption
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Figure 6.4: Measured beatnote frequency changes when gold nanoparticles of R = 25
nm are consecutively deposited. Each step change signals the detection of a particle.

will be very sensitive. Gold nanoparticles as small as R = 10 nm has been detected

using Erbium laser (He et.al. 2011). Figure 6.4 shows the beatnote change when gold

nanoparticles of radii 25 nm are deposited. Each step change in the frequency signals

a change in the amount of splitting, hence signals the detection of a nanoparticle. The

size information of each particle cannot be measured because the linewidth informa-

tion can not be extracted from the lasing beatnotes. However if enough number of

data points are gathered, one can use the distribution of changes in splitting amount

to estimate the average sizes of a particle ensemble.

In theory, the ultimate detection limit is set by the laser linewidth, which is much

narrower than the resonance linewidth of any passive resonator. This means that mi-

crolaser sensors have the potential to detect objects that are too small to be detected

by passive resonator sensors.
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Figure 6.5: Measured mode splitting changes when microtoroid is placed in solutions
of PS particle with radii 75 nm. Each discrete change signals a nanoparticle binding
event.

6.2 Bio-molecule Detection

The techniques developed in this dissertation are very effective in detecting nanopar-

ticles with sizes from R=10 nm to R=175 nm, which covers the size range of many

important biological particles such as protein and viruses. Further improvement in

experimental implications will allow tapping into the range of a few nm, which ap-

proaches the single bio-molecule level.

One problem associated with bio-molecules is that they are usually in aqueous solu-

tions (water). To bring them to the resonator surface, one has to either submerge the

resonator into solution or bring the molecules into dry environment. For the former

approach one has to first guarantee that the quality factor of the resonator does not

drop significantly in aqueous environment. This requires to use ultra pure water and

purified and diluted samples. On the other hand, because water has a refractive in-

dex of 1.3, the index contrast between silica microtoroid and the environment is much

reduced than in air. To keep similar quality factor it requires to use slightly larger

resonator size to decrease radiation loss, which decreases the sensitively of the sen-

sor. The index contrast between the bio-molecules in water is also much smaller than

when they are in air. These all place obstacles for using microtoroid as bio-sensor.

Progress has been made recently on detecting nanoparticles in water. Q factors above

107 has been achieved for microtoroid and mode splitting has been observed and used

to detect nanoparticles (Fig. 6.5).
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The particle binding kinetics in water is very different with that in air. Flow, electro-

static force, Van Der Waal force, Brownian motion and optical radiation force (Arnold

et.al. 2009) dominate the movement of particles. There is a fairly small probability

that the particle binds on to the silica surface upon collision and there is higher

probability that a particle gets removed from resonator surface in water. Modification

of the surface is needed to ensure efficient capture of target nanoparticle or molecules.

But additional steps of surface functionalization may again decrease the quality factor

thus decrease the sensitivity.

The second approach of bringing the molecules to the resonator is by extracting

molecules from water. Ionization (sample preparation process in Mass spectrometry)

or electro-spraying the biological samples followed by drying them in air flow are the

possible methods. The measurements can be done in air of vacuum, thus the high-

sensitivity of microresonator will be maintained. The disadvantage of the approach

is that it is not an in vivo method.

In order to increase sensitivity, fabrication have been improved to achieve resonators

with smaller mode volumes and higher quality factors. Meanwhile, there is a great

demand in performing measurements with ultra low samples concentrations at single

particle/molecule resolutions. Therefore, transporting trace amount of molecules or

particles in a solution to nano- or micro-scale sensing area within a reasonable time

have emerged as a problem for practical applications of these sensors. Thus, efficient

ways of sample collection and delivery are in urgent need to improve the detection

capabilities of these sensors in various environments (Sheehan and Whitman 2005,

Zhu, Ozdemir and Yang 2011).

6.3 Conclusions

We have reported the theory and experiments of several schemes utilizing mode split-

ting phenomena for detection and measurement of nanoparticles. These techniques

are still in development stage. However, they have shown great potential for detecting

nanoscale objects at single particle level. In order to achieve selectivity and specificity

in sensing, various surface functionalization techniques have been developed and affec-

tively used in photopic crystal and WGM resonators employing spectral shift method
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(Soria et.al. 2011). Although detection and measurement of individual nanoparticles

and virions have been achieved using mode splitting in WGM resonators, there has

been no report whether surface functionalized resonators could undergo mode split-

ting and enable the detection of specific nanomaterials. This should be investigated

and realized to make use of the full potential of mode splitting technique. Currently,

WGM resonators are generally fabricated from silica or silicon with a small number

of reports on chalcogenide glass based resonators (Hu et.al. 2008). Investigating and

developing new materials for WGM resonators will immensely help for the progress

of WGM sensing field.

In conclusion, WGM microresonators have been demonstrated to be a great tool for

studying single nanoparticle and its dynamics, they also have the potential to detect

trace amount of disease markers, screening of drugs and studying protein folding, etc.

Developing tools to integrate WGM resonators with microfluidic platforms without

sacrificing the quality factors and mode volumes of the resonators would greatly

contribute to biomolecular and biochemical sensing.
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