
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2011 

Quantitative Analysis Demonstrates Most Transcription Factors Quantitative Analysis Demonstrates Most Transcription Factors 

Require only Simple Models of Specificity Require only Simple Models of Specificity 

Yue Zhao 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Zhao, Yue, "Quantitative Analysis Demonstrates Most Transcription Factors Require only Simple Models 
of Specificity" (2011). All Theses and Dissertations (ETDs). 675. 
https://openscholarship.wustl.edu/etd/675 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/675?utm_source=openscholarship.wustl.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS 
Division of Biology and Biomedical Sciences 

Program in Computational Biology 
 

Thesis Examination Committee: 
Gary D. Stormo, Chair 

Michael R. Brent 
Barak A. Cohen 
Joseph C. Corbo 

James J. Havranek 
Ting Wang 

 

 

Quantitative Analysis Demonstrates Most Transcription Factors 

Require only Simple Models of Specificity 

 
by 

Yue Zhao 

 

A dissertation presented to the  
Graduate School of Arts and Sciences 

of Washington University  
in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

 

 

August 2011 
Saint Louis, Missouri 



 

   

 

ii 

ABSTRACT OF THE DISSERTATION 

 

Quantitative Analysis Demonstrates Most Transcription Factors 

Require only Simple Models of Specificity 

by 

Yue Zhao 

Doctor of Philosophy in Biology and Biomedical Sciences 

Washington University in St. Louis, 2011 

Professor Gary D. Stormo, Chair 

 

Organisms must control their gene expression to properly respond to 

developmental, stress or other environmental cues. A key part of this process is 

transcriptional regulation, which is largely accomplished by a complex network of 

transcription factor proteins (TFs) interact with their specific binding sites in the genome. 

Understanding how TFs select correct binding sites out of the vast number of potential 

binding sites in the genome is a key challenge in molecular biology. Recently, unprecedented 

amount of quantitative binding data have become available as results of developments in 

high-throughput experimental techniques. However, interpretation of high-throughput 

binding data has proved to be controversial, largely due to the lack of physically principled 

data analysis methods.  
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An important question in the analysis of binding data is the complexity of the 

specificity model needed. This has important implications for both the characterization of 

specificity and for the prediction of the consequences of mutations. Structurally, TF-DNA 

interactions are complex with a wide variety of interactions between the protein and DNA 

making a simple recognition code impossible. Energetically, however, the situation may be 

much simpler. Detailed studies of a handful of TFs have shown that individual base pairs 

often contribute independently to the total binding energy. This view of simplicity has been 

challenged by data from high-throughput binding experiments, although the extent to which 

the sample model breaks down is uncertain due to lack of rigorous analysis methods.  

The goal of this thesis is to assess the complexity of model required to accurately 

represent TF specificity. To this end, I have developed a new statistical analysis method 

BEEML (Binding Energy Estimation by Maximum Likelihood) that parameterizes models 

of TF specificity from high-throughput quantitative binding data, using a realistic biophysical 

model. Employing the BEEML method, I show that the energetics of most TF-DNA 

interactions are simple, with bases in the binding site contribute approximately 

independently to the total binding energy. Further, I show that interactions in the binding 

site occur mostly between adjacent positions.  
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CHAPTER 1 
INTRODUCTION 

 

Proteins, such as many transcription factors, that bind to specific DNA sequences are 

essential for the regulation of gene expression. Identifying the specific sequences that each 

factor binds can help us map out transcriptional regulatory networks within cells as well as 

identify how genetic variation can cause disruption of normal gene expression, which is 

often associated with disease.  

For many years scientists have been measuring the binding affinity of TFs to specific 

DNA sequences, but these experiments are low throughput, each experiment determining 

the affinity of the TF to a single DNA sequence. Moreover, in vivo the affinity of the TF is 

not as crucial as its specificity. Inside a bacterial cell or a eukaryotic nucleus, the 

concentration of potential binding sites is so high (typically in the millimolar range) that TFs 

will essentially always be bound to DNA, even if there are no high-affinity sites. Binding to 

their regulatory sites requires the TFs to pick out the target sites from the vast number of 

potential binding sites in the genome. The information required for understanding and 

modeling the regulatory network is not the affinity to the preferred binding sites but the 

differences in binding affinity for all of the potential binding sites, which is referred to as 

specificity of the TF. Because the length of a typical binding site is usually about 6–10 base 

pairs (and can be much longer for some TFs that bind as dimers), it is usually not possible to 

directly measure the affinity to all potential binding sites, of which there are 4L for an L-long 

site. When direct measurement is not possible, recently developed high-throughput 
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experimental methods (Bulyk et al., 2001; Meng et al. 2005; Berger et al., 2006; Maerkl & 

Quake, 2007; Zhao et al., 2009; Zykovich et al., 2009) can provide enough data for models 

of specificity to be construtured.  

Models are desirable even when the binding site is short enough that direct affinity 

measurements of all possible binding sites can be made. First, complexity of the model 

required for a good fit to the data can provide insight into the recognition mechanism. 

Second, the model parameters are averaged over many independent measurements and can 

reduce the uncertainty for any particular sequence compared to the raw data, which tend to 

be noisier. Third, simple models lend themselves to predicting the effects of variants, both in 

the binding sites and also in the protein itself, and can facilitate the design of proteins with 

novel specificity. Fourth, a simple model provides an easy method for scanning a genome 

and predicting the most likely binding sites as well as the effects of genetic variations.  

Structurally, TF-DNA interactions are complex, with a wide variety of interactions 

between the protein and DNA. As many have pointed out, a simple TF-DNA recognition 

code does not exist (Matthews, 1988; Mandel-Gutfreund et al., 1995; Pabo & Nekludova, 

2000; Luscombe & Thornton, 2002). However, the energetics of the situation appears to be 

simple, with individual base pairs often contributing approximately independently to the 

total binding energy. Although deviations from strict independence are common, the non-

independent contributions tend to be of smaller magnitude compared to the independent 

contributions. This allows for simple models of interactions, such as position weight 

matrices (PWM, Stormo, 2000), to be good approximations to the true binding energies. The 

physical intuition is that TF-DNA recognition is primarily based on complementarity 
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between the sequence dependent positioning of hydrogen bond donors and acceptors in the 

grooves of the double helix and those on surface of the amino acid side chains of the TF. 

Since most mutations change the shape of this network of hydrogen bond donors and 

acceptors locally, their effects are also local. 

Historically, this view of simplicity was supported by detailed studies of a handful of 

TFs (Betz et al., 1986; Sarai & Takeda, 1989; Takeda et al., 1989; Fields et al., 1997). Recent 

advances in high-through analysis of protein-DNA interactions have greatly expanded the 

knowledge of the specificity of individual TFs (Stormo & Zhao, 2010). The Protein Binding 

Microarrays (PBM, Bulyk et al., 2001; Berger et al., 2006) approach, in particular, has been 

used to generate binding data for hundreds of TFs.  

Recently, a large scale PBM study of mouse TFs (Badis et al., 2009) concluded that 

TF-DNA recognition is highly diverse and complex: 41 out of the 104 TFs studied had clear 

secondary binding preferences not captured by a single PWM and 89 out of 104 TFs can be 

better represented by a linear combination of multiple PWMs. However, the authors did not 

take into account the expected improvement in fit from the additional parameters required 

for more complex models. Further more, they used three different methods to obtain PWMs 

and each method was superior to the others on some datasets, indicating that none of the 

methods can be optimal at determining the PWM parameters. It is possible that the 

insufficiency of PWMs observed is not due to the complexity of TF-DNA recognition, but 

rather the algorithms used for parameter estimation.  

The goal of this thesis is to assess the complexity of model required to accurately 

represent TF specificity. To this end, I have developed a new statistical analysis method 
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BEEML (Binding Energy Estimation by Maximum Likelihood) that parameterizes models 

of TF specificity from high-throughput quantitative binding data using on a realistic 

biophysical model. Employing the BEEML method, I show that the energetics of most TF-

DNA interactions are simple, with each base in the binding site contributes approximately 

independently to the total binding energy. Further, I show that pairwise interactions not 

captured by the PWM occur mostly between adjacent positions in the binding site. This 

simplicity has important implications for our understanding of the molecular basis of TF 

specificity and demonstrates the importance of the analysis method in the interpretation of 

high-throughput data.  
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1.1 Biochemistry of TF Binding Specificity 

Our understanding of the detailed mechanisms of TFs specificity has mostly come from the 

study of crystal structures. As of April 2011, there are more than 1600 high-resolution (< 

3Å) structures of protein-DNA complexes in the Protein Data Bank (Rose et al., 2011). 

These structures have shown us that TFs use a variety of folds to recognize specific DNA 

sequences. A number of classification schemes have been used to categorize the different 

folds (Harrison, 1991; Luscombe et al., 2000), the most recent of which identified more than 

30 different families of DNA binding folds in TFs. Analysis of genomes have shown that 

some folds, such as C2H2 zinc finger or homeodomain, are very common while other folds 

occur very rarely or only in a restricted sets of organisms (Garvie & Wolberger, 2001). Figure 

1.1 shows the structures of some representative DNA binding domains. 
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Figure 1.1 Structures of DNA binding folds demonstrating the mechanisms of TF specificity, 

obtained from (Garvie & Wolberger, 2001). Structural family of the TFs are: A) bacterial helix-turn-

helix B) homeodomain C) winged helix-turn-helix, ETS domain D) helix-turn-helix E) unclassified F) 

basic leucine zipper G) basic helix-loop-helix H) LacI I) zinc finger J) zinc domain, GAL4 type K) β  

sheet recognition L) TATA binding protein M) Rel homology domain 

 

The α helix is the most common protein structural element used for base 

recognition, typically through contacts in the major groove. Early analysis based on model 

building (Church et al., 1977) showed that proportions of the α helix were ideal for 

presenting amino acid side chains for interaction with bases in the major groove of B-DNA. 

However, many TFs contain flexible N- or C-terminal tails that are unstructured in the 

absence of the DNA but bind in one of the DNA grooves. For example, λ repressor has an 

N-terminal arm that contacts bases in the major groove (Jordan & Pabo, 1988) and 

homeodomain proteins have N-terminal arms that dock in the minor groove (Gehring et al., 

1994). Examples of TFs using β sheets or loops also exist, although their use is not nearly as 

prevalent as the use of α helixes.  

In addition to sequence-specific interactions mediated by hydrogen bonding between 

DNA bases and protein side chains, electrostatics driven non-specific interactions between 

phosphate backbone of DNA and positively charged amino acids of the protein are also 

crucial for the proper functioning of the transcriptional regulatory system (von Hippel, 

2007). For example, non-specific binding to the genome decreases the amount of TF that is 

free in solution and thus is directly available to support the specific binding equilibrium. 



 

   

 

8 

Non-specific binding is also important for the kinetics of specific binding. In 1970, Riggs et 

al. (Riggs et al., 1970) reported that lac repressor is able to find its target site at a rate much 

faster than predicted by 3D-diffusion. This implies non-specific binding to the genome 

increases the rate of target site location by the repressor.  In a series of papers, Berg, Winter 

and von Hippel (Berg et al., 1981; Winter et al., 1981; Winter & von Hippel, 1981) proposed 

three mechanisms for how lac repressor locates its operator that all depended on the 

“facilitated transfer” of TF to target site by one dimensional diffusion while in the non-

specifically complexed state: sliding, intersegment transfer, and hopping. All three 

mechanisms were later observed to contribute to the kinetics of specific target site location. 

Sliding mechanism is dominant at low salt concentration on naked DNA. However, hopping 

and intersegmental transfer becomes more important as DNA is covered by proteins, as is 

likely the case in vivo. 

While structural studies have provided us with many insights into the mechanism of 

TF-DNA interaction, it is currently not possible to accurately predict TF binding specificity 

based on this knowledge. For practical tasks such as predicting the regulatory targets of TFs 

or predicting the consequence of mutations in the binding site, statistical models based on 

thermodynamics properties of specific TF-DNA recognition must be used.  
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The bimolecular interaction between TF and a particular DNA binding sequence, Si, 

is governed by two rate constants, kon for the formation of the complex, and koff for the 

dissociation:  

!""#"$%!&%#':!" + !!
!!"   !" ∙ !! 

!"##$%"&'"$(:!" ∙ !! !!""
  !" + !! 

The equilibrium binding constant Ki of the TF to the site Si is: 

!! =   
!!"
!!""

=   
!" ∙ !
!" !  

where square brackets indicate concentration. At a specific instant, Si can be in two 

possible states, bound or free (denoted by s = 1 or s = 0). The probability of TF binding to 

sequence Si is: 

!(! = 1  |  !!   ) =
!" ∙ !!

!" ∙ !! + !!
=   

1

1+ 1
!! !"

=
1

1+ !!!!!   

   (1.1) 

where !! ≡ − ln!! is the Gibbs free energy of binding (often referred to as ΔGi), in units of 

RT (R is the gas constant and T the temperature in Kelvin) and ! = ln !"   is the chemical 

potential. 

Experimentally, the value of Ei can be determined by measuring the fractional 

occupancy of Si at several different TF concentrations, then use curve fitting algorithms to 

determine to the value of Ei that best fit the data according to equation 1.1. An example of 

this is shown in figure 1.2. Common approaches used to measure binding probabilities are 



 

   

 

10 

Electrophoresis mobility shift assay (EMSA, Fried & Crothers, 1981; Garner & Revzin, 

1981) and DNase footprinting assay (Galas & Schmitz, 1978). These types of experiments 

are slow and laborious since TF affinity for each sequence must be measured separately. 

Attempts have been made to use in vitro affinity data to predict in vivo TF binding patterns 

(Liu & Clarke, 2002). However, accuracy of the analysis was limited by the fact that only 44 

affinity measurements could be made due to the use of low-throughput EMSA method. 



 

   

 

11 

 
Figure 1.2 Affinity of TF for a particular sequence can be determined from isothermal binding 

curve, taken from (Stormo & Zhao, 2010) 



 

   

 

12 

Binding affinity for a particular sequence is useful if one wishes to determine if TF 

will be bond or free at a particular concentration. However, in vivo TF is exposed to the 

entire genome’s worth of potential binding sites, the question is not so much whether the TF 

will be bound or free but which site on the genome it will be bond to. We are interested in 

the specificity of the TF, or the affinities for all potential binding sites. Experimentally, the 

major difficulty is one of scale. Direct measurement of TF specificity requires measurement 

of 4L affinities for an L long binding site. For example, more than a million measurements 

must be made to characterize the specificity of a TF that recognizes a 10-long binding site. 

Even with high-throughput techniques, direct measurement of affinity for all sites is not 

practical. Instead, recently developed methods can measure binding probabilities of all 

sequences at a fixed TF concentration. This is illustrated in Figure 1.3: each line parallel to 

the [TF] axis is equivalent to the plot in figure 1.2. Instead of measuring 4L binding curves, 

binding probabilities of TF for all sequences at a fixed [TF] can be measured in a single 

experiment. This is displayed as a line parallel to the binding energy axis. Appropriate data 

analysis methods can then be used to build a quantitative model that allows prediction of 

binding energies for all sequences (Zhao et al., 2009; Zhao & Stormo, 2011).  
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Figure 1.3 TF specificity. Each solid line is an isothermal binding curve (as in figure 1.2). 

Curves for sequences with different binding energies are plotted together in three dimensions. Lines 

parallel to the binding energy axis represent the type of data from high-throughput experiments. 

Taken from (Stormo & Zhao, 2010).  
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1.2 High-throughput Binding Experiments 

Recent advances in microarray and sequencing technologies have made large-scale 

measurement of TF-DNA interaction possible. The following techniques are currently in 

use: 

Microfluidics.  

Mechanically induced trapping of molecular interactions (MITOMI) is a method that 

uses microfluidic devices to determine binding specificities in a relatively high-throughput 

manner (figure 1.4A), obtaining the binding affinities of a TF to a few hundred different 

DNA sites per device (Maerkl & Quake, 2007). TFs are synthesized in vitro inside 

microfluidic chambers, which are lined with antibodies to attach the TF to its surface. The 

chambers are also seeded with a specific DNA binding site at a specific concentration and 

with a fluorescent tag. Overall, the device contains hundreds of different DNA binding site 

sequences, each at multiple different concentrations. The total DNA binding site 

concentration in each chamber is determined by its fluorescent signal, and any DNA that is 

not bound to the TF that is attached to the surface is then flushed out. The amount of 

protein is determined by its fluorescent signal, and the amount of DNA bound to the TF is 

determined by the remaining DNA signal. By determining the fraction of DNA that is 

bound at several different DNA concentrations, the relative affinities of each different 

sequence can be determined. This does not, by itself, determine the absolute dissociation 

constant (Kd, inverse of Ki) between the TF and the binding site, but comparison to a 
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reference with known Kd allows determination of the absolute Kd for each binding site 

sequence. 

Protein-binding microarrays.  

Protein-binding microarrays (PBMs) are a technology developed in the last 10 years 

that has greatly increased the throughput for assessing the binding specificities of TFs (Bulyk 

et al., 2001; Mukherjee et al., 2004; Berger et al., 2006). As with microarrays for gene 

expression, this technology has made possible large-scale, high-throughput analyses to 

collect information that previously must be acquired on a gene-by-gene basis (Philippakis et 

al., 2008; Berger & Bulyk, 2009). The current version of PBM (figure 1.4B) uses arrays that 

contain 44,000 spots designed such that all possible ten-base-long DNA binding sites once 

on each array. This means that every eight-base-long sequence occurs 32 times, taking both 

orientations into account. A TF, either purified from cells or synthesized in vitro, is added to 

the array, which is then washed to remove nonspecific binding. The amount of protein 

binding to any specific DNA spot is determined with a fluorescent antibody to the protein. 

Cognate Site Identifier.  

Cognate Site Identifier (CSI) also uses arrayed DNA sequences to measure relative 

binding by TFs (Warren et al., 2006; Puckett et al., 2007). The major difference between 

PBMs and CSIs is that in CSIs, single-stranded DNAs are synthesized that fold back to form 

dsDNA binding sites, thereby eliminating the need for primer directed DNA synthesis to 
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generate dsDNA, which is required for PBMs (figure 1.4B). Current CSI arrays also include 

all possible ten-base-long sequences.  

In v i t ro  Selection  

Using purified proteins to select high-affinity binding sites from random libraries in 

vitro is a very powerful technique. Although invented independently multiple times, the term 

SELEXX seems to be the most commonly used name (Oliphant et al., 1989; Blackwell & 

Weintraub, 1990; Tuerk & Gold, 1990; Wright et al., 1991). The general strategy is to create a 

library of potential binding sites, which may be from randomly synthesized DNA or created 

from genomic sequences. Both ends of the library sequences can have primer binding sites 

so that they can be amplified by PCR. Purified TF is added to the library of DNA sites and 

the bound and unbound sequences are separated by various means, such as gel filtration, 

filter binding or binding to immobilized protein (figure. 1.4C). Although higher affinity sites 

have a higher probability of being bound by the TF, after a single selection most of the 

bound sequences are still low affinity because they greatly exceed the number of high-affinity 

sequences. To increase the fraction of high-affinity sites, the bound fraction can be amplified 

and rebound and those steps repeated as many times as needed. Typically, after several 

rounds, the selected sites would be cloned and sequenced, often obtaining fewer than 100 

independent sites (Fields et al., 1997). These methods are capable of determining important 

aspects of the binding specificity, including the consensus sequence and the relative 

variability in affinity for different bases at different positions within the binding sites.  
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Utilizing second generation sequencing technologies it is now possible to derive 

binding energy profiles from SELEX data efficiently using a method called high-throughput 

SELEX (Zhao et al., 2009) or bind-and-seq (Zykovich et al., 2009). An advantage of this 

approach is that the output (the number of counts observed for each sequence) is digital and 

there is a very large dynamic range. From a total set of hundreds of thousands or millions of 

individual sequences there will be many nonspecific sites, but they usually only occur once, 

whereas the highest affinity sites may occur thousands of times. From millions of reads one 

can estimate the binding model as well as nonspecific binding energies and the free-TF 

concentration after a single round of selection (Zhao et al., 2009). Performing additional 

rounds of selection may provide more information about specific segments of the energy 

distribution and may give more accurate models, particularly for low-specificity TFs or those 

with large non-independent contributions.  

A recent publication (Jolma et al., 2010) has pushed this approach much further. 

Using tagged proteins the authors performed HT-SELEX from cell extracts (rather than 

purifying the TF) and by barcoding individual experiments they collected binding sites for 

several TFs in parallel. In total they obtained binding site data for 19 different TFs, many of 

which have low specificity and required multiple rounds of selection. This demonstrated that 

HT-SELEX could have very high throughput and generate enormous amounts of specificity 

data quite rapidly.  
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Bacterial one-hybrid selections 

Bacterial one-hybrid (B1H) selections are not in vitro assays (unlike the methods 

described above) and can be used for any TF that can be cloned and expressed in Escherichia 

coli; this method has the advantage that the TF need not be purified or synthesized in vitro 

(Meng et al., 2005; Meng & Wolfe, 2006; Noyes et al., 2008). The approach uses a library of 

randomized binding sites upstream of a weak promoter that drives the expression of a 

selectable gene, typically the yeast HIS3 (which encodes a component of the histidine 

biosynthesis pathway; the E. coli strain lacks the bacterial homologue) (figure. 1.4D). When 

the cells are grown in medium lacking histidine, expression of the HIS3 gene is required for 

growth and the stringency of the selection can be modulated by the addition of 3-amino-

1,2,4-triazole (3AT), an inhibitor of the HIS3 enzyme. The TF is fused to the non-essential 

ω subunit of RNA polymerase, so that TF binding recruits RNA polymerase and increases 

promoter activity. 

In earlier works, the binding sites from selected colonies were sequenced 

individually, typically obtaining about 50 sequences for each selection. Recently, high-

throughput sequencing methods allows one to collect all of the cells on the plate and 

sequence them all en masse, obtaining millions of binding sites for each experiment 

(Christensen et al., 2011). The high-affinity sites lead to more HIS3 expression and so allow 

the cells with those sites to grow the fastest, resulting in a higher number of sequence reads. 

Therefore, coupling B1H to high-throughput sequencing provides a digital read-out with a 

very large dynamic range, the highest affinity sites occurring hundreds to thousands of times 
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and the lowest affinity sites typically occurring only once or not at all. It can also be 

multiplexed so that the data from several experiments, for different TFs or under different 

selection stringencies can be obtained in parallel. 

 

Figure 1.4 A) overview of MITOMI method B) overview of PBM method C) overview of 

High-throughput SELEX method D) overview of B1H method. Taken from (Stormo & Zhao, 2010) 
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1.3 Computational Modeling of Specificity 

The binding of a TF to its binding site goes hand in hand with a favorable change in 

the free energy of the system (figure 2.1).  The simplest model to represent the specificity of 

a TF is its consensus sequence: the DNA sequence with the highest affinity for the TF. 

However, it is not a good model of TF specificity since TFs, unlike restriction enzymes, 

recognize a set of sequences with varying affinity rather than just a single sequence (Stormo, 

2000). A simple generalization of the consensus is the position weight matrix (PWM). In this 

model there is a score assigned to each possible base at each position in the binding site. The 

sum of the elements that correspond to a specific sequence gives a total score for that 

sequence. This allows the model to provide a score to all possible binding sites for the 

protein. The PWM scores can be interpreted statistically (Stormo & Hartzell, 1989; Lawrence 

& Reilly, 1990) or biophysically (Stormo et al., 1986; Berg & von Hippel, 1987; Heumann et 

al., 1994). Since I am mostly concerned with analysis of experimental data, this thesis will 

focus on the biophysical interpretation, although the statistical view is also very powerful, 

especially when the amount of data is small as it is able to incorporate phylogenetic 

conservation (Wang & Stormo, 2003; Sinha et al., 2004; Siddharthan et al., 2005). 

In a classic paper (Berg & von Hippel, 1987), Berg and von Hippel introduced a 

theoretical framework for inferring a model of specificity from a set of functional TF 

binding sites. This framework has two aspects: 1) the thermodynamics of TF-DNA 

interaction and 2) a model of evolutionary selection. The central assumption is the existence 

of a critical energy Ec. Sites that bind weakly, Es > Ec are assumed to be nonfunctional while 
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all sites whose energy is less than Ec are assumed to be equally suited to be regulatory sites 

and therefore equally likely to be present in the dataset. Further assuming individual 

positions in a site are independent from each other, i.e., seeing a particular base at position m 

in the site does not affect the probability of observing another base elsewhere, the logics of 

the classical derivation of the Boltzmann distribution in statistical mechanics (Dill & 

Bromberg, 2002) can be used to arrive at the conclusion that frequencies of bases in each 

position of the binding sites follow the Boltzmann distribution. Mathematically, this can be 

written as: 

!!,! = −
1
! !"

!!,!
!!,!

  

  (1.2) 

Where !!,! is the ΔΔG (see figure 2.1), !!,! is the number of times base b is observed in 

position m of the binding site and !!,! is the number of times the consensus base is 

observed in position m. λ is a scaling parameter related to the strength of selection. 

From a biophysical point of view, the invocation of an evolutionary argument is 

unsatisfactory, especially for the interpretation of in vitro binding experiments. Making a 

different assumption, Heumann et al. (Heumann et al., 1994) derived the Boltzmann 

distribution in the limiting case of low TF concentration, but in a purely biophysical 

framework. Methods following the same logic have been developed to infer TF specificity 

from gene expression (Bussemaker et al., 2001) or quantitative in vivo binding data (Foat et 

al., 2006; Tanay, 2006). Another biophysical approach is to assume the low temperature 
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limit, where sites are either unoccupied or saturated (Djordjevic et al., 2003). In this case, the 

inference of TF specificity reduces to the problem of finding a classifier that maximally 

separates bound and unbound sequences. However, the inferred energies can still only be 

determined up to an arbitrary scaling parameter. 

All of the biophysically motivated methods discussed above, as well as the vast 

majority of statistically based motif finding algorithms assume that positions within the 

binding site are mutually independent. Although the independent assumption have been 

repeatedly challenged (Wolfe et al., 2000; Man & Stormo, 2001; Bulyk et al., 2002; Maerkl & 

Quake, 2007; Badis et al., 2009), it is possible that PWM is still a good enough 

approximation of the “true” TF-DNA interaction model (Benos et al., 2002; Stormo & 

Zhao, 2007; Zhao & Stormo, 2011). On the one hand, a more complicated model will fit the 

observed data better. On the other hand, a more complicated model may overfit the data 

and perform poorly on data it has not seen before. Many existing computational methods 

can model position dependencies, using techniques such as Bayesian Networks (Barash et al., 

2003), generalized weight matrix models (Zhou & Liu, 2004), permuted Markov models 

(Zhao et al., 2005) or Markov Networks (Sharon et al., 2008). Although these models are 

very powerful, they are also complex which means the large number of parameters required 

may not be supportable by available data. Zhou and Liu (Zhou & Liu, 2004) conducted a 

statistically rigorous analysis of the known TF binding sites in TRANSFAC database 

(Wingender et al., 2000). They searched for correlated position pairs and found that 25% of 

the data have statistically significant correlated positions.  
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With the availability of high-throughput TF-DNA interaction data, not only can one 

examine the fit of complex specificity models, it is also possible to avoid making any 

assumptions about TF concentration or temperature and estimate TF specificity and 

concentration directly from data. While the framework for analysis exists(Liu & Clarke, 2002; 

Granek & Clarke, 2005; Segal et al., 2008), computational methods that use this framework 

to analyze high-throughput binding data have not been developed. 

In this thesis, I will describe methods appropriate to high-throughput SELEX as well 

as PBM data. I will use these methods to analyze the performance of PWM as well as more 

complex models that consider pairwise interactions to show that PWM is a good 

approximation for most TFs.
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Chapter 2 
Methods 

 

Figure 2.1 Energetics of TF-DNA recognition 

 

The specificity model of a TF can be thought of as a function relating binding energy 

and the sequence: E(Si). I will use the term binding energy to refer to ΔΔG, the difference 

between Gibbs free energy of complex formation for sequence Si and the consensus 

sequence (see figure 2.1): 

E !! = ΔΔ!! =   Δ!! −   Δ!!"#$%#&$ 

Equation 1.1 can be re-written as: 
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! ! = 1  |  !!    =   
1

1+ !! !! !!
  

  (2.1) 

where ! = ln !" +   Δ!!"#$%#$&$ 

This is necessary because absolute binding energies (ΔG’s) cannot be determined from the 

types of experiments analyzed in this thesis. The notation change amounts to defining the 

ground state to be the state where TF is bound to the consensus sequence, instead of the 

conventional ground state where both TF and sites are free (see figure 2.1). 

2.1 Binding Energy Estimation from Aligned Sites 

Model Specification 

The binding energy can be decomposed into two, or more, modes of binding (Gerland et al., 

2002; von Hippel, 2007). In the following analysis we assume two modes, non-specific 

binding that is independent of the sequence, and specific binding that varies with different 

sequences such that 

!!! !! =   !!!!" !! + !!!!"   

  (2.2) 

The specific binding component, Esp(Si), could be a complex function of the 

sequence, perhaps even composed of multiple modes of binding. But for most of the 

analysis in this thesis I assume a simple additive energy function that can be represented as a 
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position weight matrix (PWM). This model requires an energy contribution, !(!,!), for 

each base, b, at position, m, in the binding site such that: 

!!" !! =    !(!,!)!!(!,!)
!

!!!

!

!!!

  

 (2.3) 

where Si(b,m) is an indicator variable with Si(b,m) = 1 if base b occurs at position m of 

sequence Si and Si(b,m)  = 0 otherwise. This model can be easily expanded to accommodate 

pairwise interactions between positions: 

!!" !! =    ! !,! !!(!,!)
!

!!!

!

!!!

+    ! !,!, !,! !!(!,!, !,!)
!

!!!

!

!!!!!

 

(2.4) 

where e(b,m,c,n) is the energy contribution of having base b at position AND base c at 

position n. 

We derived equation (2.1) by considering a simple experiment where only a single 

sequence, Si, is available for binding. It also holds true in the more general case where there 

are many different sequences all competing for binding to the TF. However, the 

interpretation µ is different between the simple and general case. In the simple experiment, 

TF not bound to Si are simply free in solution, so µ=ln[TF]+ΔGconsensus. In the general case, 

TF not bound to Si could be bound to any of the other available sequences, so µ 
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corresponds to a free energy for the collection of all of the states with the TF not bound to 

Si and ΔGconsensus. We present an alternative derivation of equation (2.1) to further illustrate 

this point. Consider that at any given time a particular sequence, Si, can be in one of three 

possible states: bound to the TF in the specific binding mode (s=1sp); bound to the TF in the 

non-specific binding mode (s=1ns); unbound by the TF (s=0). At equilibrium the probability 

of being in each state is determined by the energy of that state according to the Boltzmann 

distribution: 

! ! = 1!" !! =
!!!!"(!!)

!!! + !!!!"(!!) + !!!!"
 

! ! = 1!" !! =
!!!!"

!!! + !!!!"(!!) + !!!!"
 

! ! = 0 !! =
!!!

!!! + !!!!"(!!) + !!!!"
 

(2.5) 

The overall probability of the sequence being bound (s=1) is the sum of the specific and 

non-specific binding probabilities. Using equations (2.2) and (2.5): 

! ! = 1 !! =   
!!!!

!!! + !!!! 

(2.6) 
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which is equivalent to equation (2.1) but now for the general case of many sequences 

competing for the same pool of TF. It is worth noting that equation (2.6) simplifies if the TF 

is at very low concentration (µ→ −∞) then the probability of binding is directly proportional 

to the binding affinity (though the binding probability approaches 0). This simplification is 

the basis of the traditional log-odds model. 

A HT-SELEX experiment can be modeled as a binding reaction with a pool of TF 

molecules and a large pool of different sequences, Si (1 ≤ i ≤ 4L for the list of all possible 

sequences of length L), and with each sequence in proportion P(Si), which can be 

determined with high-throughput sequencing. At equilibrium the TF molecules are extracted 

from the reaction along with the DNA sequences bound to them. The bound DNA 

sequences are subjected to high-throughput sequencing to obtain a large collection of 

binding sites, with the proportion of each sequence being P(Si|s=1), which can be related to 

equation (2.1) using Bayes’ rule: 

! !! ! = 1 =
! ! = 1 !! !(!!)
! ! = 1 !! !(!!)!!

!!!
=

!!!!
!!! + !!!! !(!!)

!!!!
!!! + !!!! !(!!)

!!
!!!

   

(2.7) 

Given a large enough sample of binding sites this experimental procedure could 

provide good estimates of the binding free energy for each sequence in the initial pool. 

However, for typical lengths L and typical differences in binding energy this would require 

an extremely large number of binding sites, more than available even from current high-
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throughput sequencing methods. By employing a model for the binding energy, such as 

equation (2.3), we can infer binding energies for sequences with limited or inaccurate 

measurements. Furthermore, having a model for the sequence dependence of the binding 

energy, instead of just a list of binding energies to different sequences, can be useful in 

understanding the physical interaction of the protein with the DNA and can facilitate the 

prediction of changes in binding energies for variant proteins (Benos et al., 2002). 

Equation (2.1) was used by Djordjevic et al (Djordjevic et al., 2003) as the starting 

point in the development of their QPMEME method. However, QPMEME makes the 

additional assumption that all observed sequences are bound with probability close to 1 (the 

zero temperature approximation) which prevents it from making use of the quantitative data 

generated by the HT-SELEX method in which many of the observed sites after one round 

of selection have low, even non-specific, binding affinity. A direct comparison with our 

approach is not possible because QPMEME fails to find a solution on datasets containing 

many low affinity sequences. The TRAP algorithm (Roider et al., 2007) used an equivalent 

model to estimating total occupancy in ChIP-chip experiments. TRAP assumes the specific 

energy model (PWM) is known and only estimated µ from the data, whereas we attempt to 

learn both the energy model and µ simultaneously. 

This completes the description of the model. By substituting equation (2.3 or 2.4) 

into equation (2.2), and that into equation (2.7), we obtain the relationship between the 

statistics of observed binding sites, P(Si|s=1), and the binding energy Ei of each sequence Si.  
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Maximum likelihood parameter estimation 

Given a collection of N bound sequences, we model the relationship between Ni, the 

number of occurrences of each sequence Si in this collection, and Ñi = N P(Si | s=1), the 

number of occurrences of Si predicted by the model, as: 

!! =   !! +   ! 

(2.8) 

where ! is a measurement error due to sequencing error as well as the stochastic nature of 

the sampling. For simplicity we assume ε is a zero-mean Gaussian random variable with 

standard deviation σ, although other error models are possible (Kinney et al., 2007). For any 

set of parameters θ = {PWM, µ, Ens}, the likelihood function, or the probability of the data 

given parameters is: 

! !"#"     !) =   
1
2!!!

!!
!!!!! !
!!!

!

 

(2.9) 

Maximizing the likelihood function (2.9) with respect to θ is equivalent to minimizing the 

negative log of the likelihood function. Dropping terms not dependent on θ, we obtain 

maximum likelihood estimate of θ by minimizing objective function: 

!! − !!
!

!

   

(2.10) 
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This is a non-linear parameter estimation problem and we minimize equation (2.10) 

using the Levenberg-Marquardt algorithm implemented in minpack (More, 1977). A practical 

issue is the calculation of the denominator of equation (2.7), the partition function. For 

longer values of L the naive approach of enumerating over all sequences becomes too 

computationally expensive. We deal with this situation by rewriting equation (2.7) as: 

! !! ! = 1 =
! ! = 1 !! !(!!)
! ! = 1 !! !(!!)!

 

(2.11) 

where Ej is a particular energy level. Instead of summing over all 4L sequences, equation 

(2.11) allows us to sum over a user-defined number of energy levels (default is 16384) with 

some loss of accuracy due to the discretization. This does not solve the problem by itself, 

merely shifts it from enumerating all sequences to the calculation of the energy distribution 

P(Ej). The naive method of calculating P(Ej) is to compute binding energy for all sequences 

and P(Ej) is simply the fraction of sequences having energy level Ej.  

A more efficient method is possible under the PWM energy model by taking 

advantage of its independence structure. Each position in the PWM can represented by a 

probability generating function, possibly with coefficients to account for unequal priors. The 

distribution of energies defined by the entire PWM is obtained by multiplying the generating 

functions for each position (Staden, 1989). This polynomial multiplication can be performed 

very efficiently with a Fast Fourier Transform (FFT) (Cormen et al., 1990). By default, I use 

FFT approximation when length of binding sites is greater than 10. The algorithm described 
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above is implemented in an R (R Core Development Team, 2011) program called BEEML 

(Binding Energy Estimates using Maximum Likelihood). 

2.2 Binding energy estimation from PBMs 

Calculation of binding probability  

Equilibrium binding probability of a site s calculated according to equation (2.1). Since many 

TFs binds to palindromic binding sites, binding probability to a position j of the probe, with 

sequence Si, is calculated as:  

! ! =   ! !! + 1− ! !! !(!!) 

(2.12) 

This accounts for the fact that TF cannot bind to both strands (!! , !!) at the same position 

of the probe at the same time. This is avoids double counting for TFs with palindromic 

binding sites. For computational simplicity we ignore the case of overlapping binding sites 

because for most PWMs, and typical values of µ, it is very unlikely that multiple good 

binding sites occur in an overlapping fashion on the de Bruijn sequence used to generate 

PBM probe sequences. 

Estimation of position effect  

The position of the binding site within a probe significantly influence the signal 

intensity, with binding sites located further away from the glass slides giving stronger signal 
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(figure 2.2). We estimate this position effect empirically using top n (n=25 by default) 8mers 

with highest median intensities. We assume the intensity of probes containing these 8mers 

are entirely due to the presence of these 8mers and variations in the intensities of probes 

containing the same 8mer is due to differences in the distance of 8mer occurrence from the 

glass slide. We find that false positives are usually not a problem if we limit ourselves to the 

top 25 8mers.  

The effect of position j, !!"#(!), is estimated as: 

!!"# ! =   

!!"#(!!,!)
!!"#(!!)
!!"#(!!,!)
!!"#(!!)

!
!!!

 

(2.13)  

where L is the length of variable region on the probe, !!"# !!,!  is the average intensity of 

probes containing sequence Si in position k of the probe and !!"#(!!) is the average intensity 

of all probes containing sequence Si, in any position. The angled brackets denote averaging 

over top n 8mers.  

The position effect for PBM experiment of mouse TF Plagl1 (pleomorphic adenoma 

gene-like 1) as estimated by equation 2.13 is shown in figure 2.2. The pattern shown is 

typical of PBM experiments. The linear loss of signal as binding site location is moved closer 

to the glass slide is probably due to surface effect as well as crowding. There are a number of 

possible explanations for the drastic loss of signal at the top of the probe: it is possible 
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primer extension did not go to completion; thermal fluctuations could fray the double strand 

DNA. The most likely explanation is the loss of non-specific interaction outside the binding 

site required to stabilize TF-DNA complex. 

 

Figure 2.2 Estimated position effect from Plagl1 PBM experiment (Badis et al., 2009), 

according to equation 2.13. Y-axis shows the average intensities of probes containing binding sites at 

the position indicated on the x-axis, normalized such that values on the y-axis sum to 1 
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PBM probe binding probability 

Binding probability to the probe i is calculated as: 

! ! =    ! !   !!"#(!)
!

!!!

 

(2.14)  

where L is length of the variable region on the probe. A more elaborate model of binding 

that takes overlapping binding sites into account can be used, (Rajewsky et al., 2002; Drawid 

et al., 2009) but since the variable region is fairly short (35bp), there is usually only one 

strong binding site per probe and we expect the approximation of equation (2.14) to hold. 

Background effect estimation 

For sequence specific TFs, the intensity of most probes in a PBM experiment is due 

to microarray background rather than TF binding. We estimate the distribution of 

background intensity by symmetrizing the lower half of the observed background peak. 

Probe intensities are binned (200 bins by default), probability that probe intensities in bin i is 

generated by TF binding is given by: 

!! =   
!! − !!
!!

   

(2.15)  
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where !! is the observed number of probes in bin i, !! is the expected number of probes in 

bin i from background distribution. 

Objective function 

Values of free parameters for the PWM ! and ! are determined by minimizing objective 

function: 

! !, ! =    !!    !! − ! − !" ! ! +   ! ! !,! !
!

!!!

!

!!!!

 

(2.16) 

Where Wi is the probability intensity of probe i is due to background fluorescence, !! is z-

transformed intensity of probe i, F(i) is the TF binding probability for the probe, calculated 

as in equation (2.14), ! is the PWM energy model, a and c are parameters used to scale 

model predicted probe occupancy to PBM fluorescence units. The second term in equation 

(2.16) is a regularization term designed to prevent PWM parameters from growing too large, 

with λ controlling the strength of penalization. This form of penalization is equivalent to 

Maximum a Posteriori estimation of parameter values when the prior distributions of 

parameters are zero-mean Gaussians with the same variance (Bishop, 2007). By default λ = 

0.01. 

Minimization is performed using Levenberg-Marquardt algorithm implemented in 

minpack (More, 1977). Since it is a local optimization algorithm, I use 25 sets of random 

initial parameters to seed the optimization and report the result with best fit. 
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Chapter 3 
Results and discussion 

 

3.1 Simulations 

The purpose of the following simulation studies is to compare the biophysical model used 

by BEEML with the low concentration approximation implicit in the log-odds model used 

by practically all motif-finding algorithms. The goal is to identify when the low concentration 

assumption of the log-odds model breaks down and how it affects the estimation of model 

parameters. 

We performed simulation using the half-site of the Mnt protein to test the BEEML 

method. Mnt is a repressor from phage P22 for which the binding affinities to all single base 

variants of the preferred binding sequence have been measured experimentally (Fields et al., 

1997; Stormo & Fields, 1998). We use the convention that the preferred base in each 

position is assigned an energy of 0 and all other values are positive and represent the 

difference in binding free energy, ΔΔG relative to the preferred base, attributed to each of 

the other bases (see figure 2.1). Figure 3.1 demonstrates the selection process, with separate 

panels representing prior distribution, likelihood function and posterior distribution. Figure 

3.1A shows the distribution of binding energies over all 7-long sequences for the half-site 
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energy matrix of Mnt. Figure 3.1B plots the probability of drawing a sequence with a specific 

energy, from equation (2.1), for three different values of µ in which the probability of the 

binding to the preferred sequence (with Ei = 0) is 0.03, 0.3 and 0.9. Figure 3.1C shows the 

posterior distribution of binding energies which is the normalized product of the plots in 

Figures 3.1A and 3.1B, as in equation (2.11). This plot does not use a non-specific binding 

energy but that is employed in some of the simulations described later. Including Ens has the 

effect of essentially truncating the distribution at that point and all of probability density that 

would have been higher accumulates at Ei = Ens. 

 

Figure 3.1. Effect of µ  on binding probabilities. (A) Prior distribution of binding energy for 

Mnt half-site, with equiprobable background frequency. (B) Binding probability as function of 

binding energy, according to equation (2.1). Colors correspond to values of µ , Black: µ  = 23.48, Red: 

µ  = 20.85, Blue: µ  = 2.2. These values were chosen such that binding probabilities of the consensus 

sequence are 0.03, 0.3 and 0.9, respectively. No non-specific binding energy is used. (C) Posterior 

distribution of binding energy, that is, the distribution of energies of the selected sequences. Taken 

from (Zhao et al., 2009) 
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Using various values of µ and Ens and setting P(Si) to be constant (equiprobable 

background distribution) 100,000 sites were drawn for each simulation according to equation 

(2.11). I used BEEML and the standard log-odds model (equation 1.2 with λ= 1) to estimate 

PWMs from the sampled sites. Figure 3.2 shows the performance of BEEML at predicting 

the true binding probabilities in the Mnt simulations for several different values of µ (figure 

3.2A–C) and Ens (figure 3.2D–F). Each graph shows the true probabilities for all sequences 

and the predicted probabilities obtained by BEEML and also using a standard log-odds 

approach where the probabilities of each base at each position are taken directly from the 

observed sites. As expected, both methods give very accurate predictions of binding 

probabilities when µ is low. At higher values of µ, when the highest affinity sites approach 

saturation, the log-odds method is much worse at predicting the binding probabilities. Even 

when the preferred site is bound with p = 0.3 (figure 3.2B), which is less than half saturated, 

there is a substantial difference in accuracy of predicted binding probability. At p = 0.9 for 

the preferred site (figure 3.2C), the predictions from the log-odds method are wrong by 

about a factor of 2, whereas the BEEML predictions are very accurate. Many TF binding 

sites in vivo are likely to function at near saturation, especially those regulated by repressors, 

and inaccurate models for the binding probabilities can lead to very large increases in the 

number of false positive predictions of regulatory sites (Djordjevic et al., 2003; Roider et al., 

2007; Homsi et al., 2009). 



 

 

 

   

 

 

40 

Similar results are obtained for variations of Ens. When Ens=13.8 (which corresponds 

to a 106-fold ratio of non-specific binding affinity compared to the preferred binding site, 

figure 3.2D) both methods give accurate predictions of binding probabilities. But when it is 

reduced to 11.5 (ratio of 105, figure 3.2E) the log-odds method is less accurate, and when it 

is reduced to 9.2 (ratio of 104, figure 3.2F) the log-odds predictions are wrong by about a 

factor of 2, whereas the BEEML predictions are still very accurate because it explicitly 

account for that parameter whereas the log-odds method cannot. 
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Figure 3.2. Examples of Simulation Results. Top Panel (A–C): Effects of m. Non-specific 

energy was set to 30 so as to have negligible effect on binding. (A) µ  = 23.48 (B) µ  = 20.85 (C) µ  = 2.2. 

Bottom Panel (D–F): Effects of Ens at low concentration limit. µ  was set to -100. (D) Ens = 13.82 (E) 

Ens = 11.51 (F) Ens = 9.21. These values were chosen such that the relative Ki of consensus sequence to 

non-specific binding is (D) 1,000,000 (E) 100,000 (F) 10,000. Taken from (Zhao et al., 2009) 
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3.2 Analysis of MITOMI binding data 

Figure 3.3 shows results for BEEML analysis of the basic helix-loop-helix TF MaxA 

binding affinity data measured by Mechanically Induced Trapping of Molecular Interactions 

(Maerkl & Quake, 2007). Figure 3.3A comes directly from quantitative binding data where 

the measured binding energies are plotted against the predictions assuming that multi-

position variants show the additive energy changes of the individual base changes. As Maerkl 

and Quake point out, this additive assumption is not very accurate and the fit between the 

observed and predicted binding energies has only r2 = 0.57. Figure 3.3B plots the predictions 

from BEEML which estimates Ens ≈ 3 (much lower than the values used in the simulations 

of figure 3.2) and finds the best overall additive parameters, which together lead to an 

improved r2 = 0.84. Figure 3.3C goes one step further and estimates maximum likelihood 

parameters for nearest neighbor contributions to the binding energy. Using these adjacent 

di-nucleotide parameters increases the fit to r2 = 0.96, which is essentially within the 

measurement error. 

While affinity measurements of single base variants did not lead to very accurate 

models, including contributions from non-specific binding resulted in a very good fit, 

demonstrating that additivity is a good assumption for the specific component of binding 

energy. The additive model may already be sufficient for many purposes, with the addition 



 

 

 

   

 

 

43 

of nearest neighbor energy contributions; we obtained a model that fit the data almost 

perfectly. If this holds true for more TFs, then the task of measuring TF specificity can be 

greatly simplified. For example, if the binding site is 10 long and all non-additive interactions 

were confined between neighboring positions, then instead of measuring affinity of all 410 = 

1,048,576 possible 10-long sequences, one can obtain the same information by only 

measuring the affinity of 112 sequences (the consensus sequence + 30 single base variants + 

81 interaction parameters), a > 9,000 fold reduction in effort.  

 

 Figure 3.3. BEEML analysis of MITOMI (Maerkl & Quake, 2007) data. (A) Fit of point-

estimate of binding energy as done in the original paper (B) BEEML fit with PWM energy model and 

non-specific energy parameter (C) BEEML fit with position specific di-nucleotide energy model and 

non-specific energy parameter. Taken from (Zhao et al., 2009) 
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3.3 Analysis of HT-SELEX Data 

I next used BEEML to analyze high-throughput sequencing data from a single round 

of selection with C2H2 zinc-finger TF Zif268 (Zhao et al., 2009). The sequences of the 

initial library showed a small bias in the composition on the synthetic strand: A = 24.5%; C 

= 21.0%; G=27.2%; T=27.4%. Prior probabilities of sequences, P(Si), were estimated based 

on the mononucleotide composition. It is possible to measure P(Si) directly by sequencing 

the initial library more deeply, but in these experiments we only obtained about 200,000 

sequences from each library, too few to estimate the frequencies of all 410 (~106) 10-mers. 

Since no significant higher-order biases were observed we expect that the frequencies of all 

10-mers in the initial library to be well approximated based on the mononucleotide 

composition.  

An initial BEEML model based on all of the selected binding sites was used to 

determine the most likely orientation of each site and whether it was entirely within the 10bp 

randomized region or overlapped the fixed sequences. Sites that were determined to overlap 

the fixed regions were eliminated from further analysis and the remaining sequences were 

reanalyzed by BEEML. As expected, because of the slight compositional bias and the G-rich 

consensus for zif268: GCGTGGGCGT (Liu & Stormo, 2005), more sites were selected in 

the ‘‘top’’ orientation than in the reverse. When computing the likelihood we sum over 
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binding in both orientations. Figure 3.4 shows the observed and predicted counts for all of 

the sequences in the selected set based on the BEEML model and also for a model obtained 

using BioProspector (Liu et al., 2001), a motif discovery program designed for this type of 

data. From the total of 259,704 sites, BioProspector built a model based on only 28,046 

(10.8%) sites, but obtained a model that is similar to the known zif268 binding model. While 

BioProspector identifies the known consensus sequence and the PWM it finds is similar to 

previously published ones for zif268 (Liu & Stormo, 2005), its quantitative predictions are 

much worse than those from the BEEML model (r2 = 0.74 for BioProspector, r2 = 0.92 for 

BEEML). Not only are the non-specific and low affinity sites, which are the majority after 

only a single round of selection, better predicted by BEEML, but the high affinity, near-

consensus sites are predicted much more accurately and with very little scatter compared to 

the BioProspector predictions. BEEML also returns estimates of µ=1.98 and Ens=12.37. 

The predicted non-specific binding ratio of ~105 fold less than to the consensus sequence is 

in the range typical for many TFs. The estimate of µ predicts that the consensus sites should 

be about 88% bound which is reasonable because, even though DNA is in 100-fold excess 

over protein in these experiments, most of the DNA sequences will have only non-specific 

affinity. This makes the experiment similar to the simulation depicted in Figure 3.2C and 

highlights the importance of the biophysical model instead of the log-odds approach. 

Because we are estimating only 32 parameters (30 for the PWM, and µ and Ens) and have > 
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105 binding sites, we do not expect any over-fitting but to verify that is the case we 

performed a 10-fold cross-validation where we determined the parameters based on a 

random sample of 90% of the sequences and measured the fit to the remaining 10%. Indeed, 

we find that r2 = 0.91 on those samples. 
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Figure 3.4. Fit of BEEML and BioProspector model to HT-SELEX data. Taken from (Zhao 

et al., 2009) 
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Comparison of BEEML and Other Biophysical Approaches 

Probabilistic models for binding site recognition, such as the fairly standard log-odds 

method, are popular because of their simplicity, intuitive appeal and because they can be 

easily implemented in motif discovery algorithms. But they suffer from over-simplification 

of the underlying model, not just the typical additivity assumption which is known to be an 

approximation, a good one sometimes and other times not (Benos et al., 2002), but also 

because it ignores the non-linear relationship between binding energy and site statistics 

which is especially pronounced when high affinity binding sites approach saturation. A 

biophysical model (Gerland et al., 2002; Djordjevic et al., 2003) captures the non-linear 

dependence of the binding probability on the energy and can easily incorporate multiple 

modes of binding, even beyond the specific and non-specific contributions that we 

employed in this study. It can easily incorporate non-additive, or higher order, contributions 

of the sequence to the binding energy, as we demonstrated on the MaxA data.  

Djordjevic et al (Djordjevic et al., 2003) developed a quadratic programming (QP) 

method to estimate binding energy parameters from example binding sites and demonstrated 

that the resulting model could make many fewer false positive predictions on genome 

sequences. But QP is still limited in the kinds of data for which it works well. It assumes a 

‘‘zero temperature’’ limit for the binding probability so that sites either bind or not, rather 

than have a specific probability of binding. It functions like a support vector machine trained 
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on only positive examples and is very sensitive to any outliers or noisy data. For these 

reasons it works well on collections of high affinity sites but its performance is degraded 

with any background or non-specific binding, and the quality of the model decreases rapidly 

as low quality, or even low affinity, data is added. BEEML doesn’t suffer from those 

limitations because it models the complete distribution including non-specific binding so 

that the more data available the better it works, even if most of the sequences are non-

specific. The algorithm is more complex and slower than QP, but still reasonably fast even 

for long sites when using the FFT to estimate the partition function. 

3.4 Analysis of PBM data 

Protein binding microarray (PBM) is a technique that measures the binding of TFs to 

double-stranded DNA arrays that currently contain all possible 10-long binding sites and so 

provides enormous information about the specificity of the TF (Bulyk et al., 2001; 

Mukherjee et al., 2004; Berger et al., 2006). All of the published data sets from Martha 

Bulyk’s group are available in an online database, UniPROBE (Newburger & Bulyk, 2009; 

Robasky & Bulyk, 2011). UniPROBE currently contains specificities for 404 TFs from 

Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus and Homo sapiens belonging to a 

variety of structural classes. 
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A recent PBM study of mouse TFs (Badis et al., 2009) concluded that the energetics 

of TF-DNA recognition are highly complex: 41 out of the 104 TFs studied had clear 

secondary binding preferences not captured by the primary PWM and 89 out of 104 TFs 

were better represented by a linear combination of multiple PWMs than a single PWM. 

However, three different methods were used to obtain PWMs in this study, each method 

being superior to the others on some datasets, indicating that none of the methods can be 

optimal at determining the PWM parameters. As noted by the authors, it is possible that the 

insufficiency of their PWMs is not due to the complexity of TF-DNA recognition, but rather 

the algorithms used for parameter estimation. Before abandoning the idea that specificity can 

be largely explained with simple models, it is critical to assess the fitness of optimal PWMs. 

Factors confounding analysis of Badis et al (Badis et al., 2009) 

In a PBM experiment, a purified, epitope-tagged TF is applied to a double-strand 

DNA microarray. The degree of binding to each probe on the microarray is quantified by 

the application of a labeled antibody specific to the epitope tag. In theory, signal intensity of 

a probe should be directly proportional to the probability of TF binding to the sequence of 

that probe. In practice, however, the relationship is not so straightforward due to a number 

of factors such as background signal, position effect and influence of flanking sequences. We 
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have found that these factors significantly confound current analysis methods, such as 8mer 

enrichment analysis (Berger et al., 2006). 

A number of factors complicate the relationship between probe sequence and 

intensity in a PBM experiment. One such factor is the background intensity. In a typical 

experiment, the majority of the probes have low background signal while a small subset of 

probes, containing high affinity binding sites, display high signal intensity. An example 

histogram of probe intensities for mouse TF Esrra (Estrogen related receptor, alpha) is 

shown in figure 3.5. The variations in probe intensity observed in the large low intensity 

peak is most likely dominated by background signal rather than differences in specific 

binding by the TF. 
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Figure 3.5 Histogram of probe intensities from PBM measurement of mouse TF Esrra (Badis 

et al., 2009). As a sequence specific TF, Esrra only binds strongly to a small subset of probes on the 

PBM, which shows up as the long right tail in the histogram.  
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Berger et al. (Berger et al., 2006)  identified three other factors that influence the 

observed signal: flanking sequence, position and orientation of the binding site within the 

probe. Flanking sequence is important because the length of the variable region on each 

probe is 35 base pairs, much longer than the length of a typical binding site (6-10 bp). Using 

a series of controls, Berger et al. (Berger et al., 2006) demonstrated that probes containing 

sites farther away from the slide gave higher intensity signals (also see figure 2.2). A smaller 

effect also exists for the orientation of binding sites.  

Currently, the standard method for estimating affinity from noisy probe intensities is 

to use multiple probes and hope the noise will average out (Berger & Bulyk, 2009). Typically, 

analysis is performed at the level of 8-long sequences (8mers): the median intensity of all 

probes containing a particular 8mer is considered as a measure of the TF’s preference for 

that 8mer. Median intensities of 8mers can be standardized as 8mer z-score, which allows 

one to compare specificities of different TFs (Badis et al., 2008; Wei et al., 2010; Lam et al., 

2011). The ranks of median intensities can also be transformed into 8mer enrichment scores 

(E-scores), which is a measure of the ability of an 8mer to function as a classifier to 

distinguish “bound” probes from “unbound” probes. The somewhat arbitrary division of 

probes into bound and unbound sets, as well as the use of rank bases statistics makes E-

score more robust but less sensitive.  
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E-scores were used as proxies for affinities by Badis et al. (Badis et al., 2009) and 

serve as the basis of many of the observations of the non-independence of positions in the 

binding site. The use of E-scores to estimate TF specificity has many drawbacks: First, much 

of the quantitative binding information is lost since only ranks of median intensities are used. 

Second, this analysis attempts to estimate 32,896 parameters (8mer E-scores), each from 

only 32 probe intensities. Given there are only ~44,000 probes on the array, this is a difficult 

task that practically guarantees many of the parameters are not well estimated. 

This difficulty is illustrated in figure 3.6. Badis et al. (Badis et al., 2009) stated, on the 

basis of E-scores, that Esrra has a strong preference for CAAGGTCA or AGGGGTCA, 

but not CGGGGTCA or CAGGGTCA. While the median probe intensities are consistent 

with this conclusion, it is apparent that the intensities of probes containing the same 8mer 

are highly variable. For example, intensities of probes containing the consensus sequence 

CAAGGTCA span the entire range of PBM signal, likely due to the effects of the 

confounding factors discussed above. The high level of variability in probe intensities 

indicates that it is not practical to accurately estimate all 32,896 8mer affinities directly from 

the data. 
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Figure 3.6 Intensities of probes containing particular 8mers in Esrra PBM experiment. Each 

point is the intensity of a probe containing the 8mer listed on x-axis. 
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A more serious problem with E-score analysis is that it is vulnerable to the influence 

of flanking sequences. Low affinity sequences that partially overlap the binding site tend to 

appear on the same probes as high affinity 8mers, often resulting in artificially high E-scores. 

This problem can be demonstrated using yeast TF Pho4 as an example. Pho4 is a well-

studied TF that binds to a core CACGTG motif. The quantitative specificity of Pho4p has 

been measured using two different techniques: PBM (Zhu et al., 2009) and Mechanically 

Induced Trapping Of Molecular Interactions (MITOMI) (Maerkl & Quake, 2007). There are 

136 8mers from Pho4 PBM data in Zhu et al. (Zhu et al., 2009) that would be considered to 

be high-affinity sequences by the criterion of E-score ≥ 0.45 commonly used in PBM 

analysis. Comparison with MITOMI measured binding energies of these 8mers (figure 3.7) 

shows that while the E-score of the majority of 8mers are consistent with MITOMI 

energies, a substantial minority (44 out of 136) of 8mers with high E-scores have high 

binding energies (low affinity) according to MITOMI measurements.  
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Figure 3.7 Comparison of binding energies measured by MITOMI and E-scores of all 8mers 

with E-scores ≥ 0.45 in Pho4 PBM. Blue circles represent high-affinity sequences measured by both 

methods; red triangles represent those sequences with low affinity as measured by MITOMI but high 

affinity according to PBM. 
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There are good reasons to believe that high E-scores of these low affinity 8mers (red 

triangles in figure 3.7) are due to artifacts in the E-score analysis rather than preferential TF 

binding. First, the sequences of these low affinity 8mers do not contain the CACGTG core 

motif, but rather a partial match, CACGT, on one of the strands. Second, comparison of 

MITOMI energies and Z-transformed 8mer median intensities (figure 3.8) demonstrates that 

many of these low affinity 8mers with high E-scores have low Z-scores, suggesting 

enrichment calculation, rather than high signal intensities, is responsible for observed high 

E-scores. Third, MITOMI binding energies can be used in the BEEML framework to 

accurately predict PBM probe intensities (taking binding site position and protein 

concentration have been taken into account). Figure 3.9 shows the 8mer medians of 

predicted probe intensities using MITOMI energies are in good agreement with PBM data, 

with r2 value of 0.70. Further, median probe intensities of all 136 8mers calculated using 

MITOMI energies, which includes the contribution of flanking sequences, are consistent 

with their E-scores (figure 3.10).  Taken together, it is clear that the discrepancies between 

MITOMI and PBM measurements shown in figure 3.7 are due to artifacts introduced in the 

E-score analysis. As figure 3.9 shows, despite the fact that very different techniques were use 

to measure TF specificity, quantitative binding data produced by MITOMI and PBM are in 

good agreement. It is also clear that 8mer enrichment analysis conducted by Badis et al. 
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(Badis et al., 2009) suffers from numerous inaccuracies and their conclusion that the 

energetics of TF-DNA recognition is highly complex must be re-visited. 

 

Figure 3.8 Comparison of binding energies measured by MITOMI and E-scores for the same 

8mer sequences as figure 3.7 
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Figure 3.9 MITOMI measured binding energies can be used to predict PBM probe 

intensities with high accuracy. Probe intensities were calculated using equation 2.14  
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Figure 3.10 Predicted 8mer median probe intensities based on MITOMI binding energies are 

consistent with E-scores. The difference between figure 3.10 and figure 3.7 is that contributions of 

flanking sequences on the probe are included in figure 3.10  



 

 

 

   

 

 

62 

BEEML analysis of PBM data 

The BEEML approach to PBM analysis is to estimate the position and background 

effects from the data first, then perform weighted regression to parameterize a model of 

binding energy, explicitly taking these biases into account. This offers several benefits. First, 

using a model drastically reduces the number of parameters required: a 10- long PWM only 

requires 30 parameters. This represents a 1000 fold reduction over 8mer enrichment analysis, 

which attempts to estimate TF affinity for all 8-long sequences. Second, having a model of 

specificity allows us to test hypotheses about the binding mechanism. For example, if the 

performance of the palindromic model, where the parameters of the half-sites are 

constrained to equal to each other, is comparable to the full model where all parameters are 

allowed to vary then it is likely that the TF binds DNA as a homo-dimer. Third, all of the 

data are used to estimate each parameter, improving accuracy. Finally, by using a model to 

calculate TF binding probability for the entire probe, the influence of flanking sequence that 

confound the current analysis is explicitly included.  

Our algorithm, BEEML-PBM (Binding Energy Estimation by Maximum Likelihood 

for Protein Binding Microarrays) extends the existing algorithm BEEML (Zhao et al., 2009) 

to estimate models of TF specificity by weighted regression on PBM data. PBM signal 

intensity is modeled as a convolution of background effect, position effect and equilibrium 

binding probability to the probe sequence. Using BEEML-PBM, we find that the simple 
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PWM model of specificity performs very well for most transcription factors. This simplicity 

has important implications for our understanding of the molecular basis of TF specificity 

and demonstrates the importance of the analysis method in the interpretation of high-

throughput data.  

An example of model-based analysis of yeast factor Pho4 PBM data (Zhu et al., 

2009) is shown in figures 3.11 – 3.16.  The LOGO representation (Schneider & Stephens, 

1990) of the 10-long PWM fitted by BEEML-PBM is shown in figure 3.11. Since Pho4 is a 

basic helix loop helix TF that is known to dimerize(Shimizu et al., 1997), BEEML-PBM was 

also used to fit a palindromic model, where the parameters of the half-sites are constrained 

to equal to each other. LOGO of the fitted palindromic model is shown in figure 3.12. The 

performances of full and palindromic models are shown in figures 3.13 and 3.14, 

respectively. The fact that the palindromic model fits the data nearly as well as the full model 

(palindromic model has r2 of 0.755 vs. 0.762 for the full model) despite it having only half 

the parameters of the full model provides strong support for the hypothesis that Pho4p 

binds DNA as a homodimer (Shimizu et al., 1997) in PBM experiments.  
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Figure 3.11 LOGO representation of BEEML-PBM fitted full model for Pho4 
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Figure 3.12 LOGO representation of BEEML-PBM fitted palindromic model for Pho4 
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Figure 3.13 Performance of 10-long Pho4 PWM on replicate array, R2 = 0.762 
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Figure 3.14 Performance of palindromic Pho4 PWM on replicate array, r2 = 0.755 
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We next compared binding energies estimated from PBM data (Zhu et al., 2009) with 

those measured by Maerkl and Quake (Maerkl & Quake, 2007) for yeast TFs Pho4 and Cbf1. 

Although measured by completely different experimental techniques, binding energies 

estimated by BEEML-PBM are consistent with MITOMI results, with r2 values of 0.94 and 

0.88 respectively (figures 3.15 and 3.16), further establishing the ability of BEEML-PBM to 

obtain accurate binding energies from PBM data.  

Although Cbf1 PWM parameters estimated by BEEML-PBM are directly 

proportional to those measured in MITOMI experiment, they do not agree at high binding 

energies. MITOMI binding energies saturates at 3 kcal/mol while BEEML-PBM energies go 

up to 6. There are two possible explanations: overfitting by BEEML-PBM or difference in 

dynamic range between MITOMI and PBM techniques. It is not possible to definitively 

determine the cause in the absence of independent data. 

 



 

 

 

   

 

 

69 

 

Figure 3.15 Comparison of binding energies measured by MITOMI and those estimated by 

BEEML-PBM from PBM data for TF Pho4, r2 = 0.94 
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Figure 3.16 Comparison of binding energies measured by MITOMI and those estimated by 

BEEML-PBM from PBM data for TF Cbf1, r2 = 0.88 
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PWMs fitted by BEEML-PBM are also able to capture subtle differences between 

factors with similar specificities. In a survey of mouse homeodomain TF specificities, Berger 

et al. (Berger et al., 2008) found that some factors in the Lhx (LIM homeobox) family: Lhx2, 

Lhx3 and Lhx4 have clear, systematic differences in preferences for moderate and low 

affinity binding sites even though they all bind to the same high affinity sequence TAATTA. 

BEEML-PBM PWMs are able to recapitulate these differences (figure 3.17 and 3.18), 

demonstrating that information contained in Lhx factor 8mer intensities can be compressed 

into the simple PWM model, which is able to capture the important aspects of their 

sequence specificities. 
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Figure 3.17 Comparison of binding energies according to Lhx2 and Lhx4 BEEML-PBM 

PWMs. 8mers containing different 6mer sequences are colored to show the systematic differences 

found by Berger et al. (Berger et al., 2008) is recovered by BEEML-PBM. 
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Figure 3.18 Comparison of binding energies according to Lhx3 and Lhx4 BEEML-PBM 

PWMs. 8mers containing different 6mer sequences are colored to show the systematic differences 

found by Berger et al. (Berger et al., 2008) is recovered by BEEML-PBM. 
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3.5 PWM is a good approximation for most TFs  

PBM experiments are usually performed using two arrays with different probe 

sequences, but both contain all possible 10-long binding sites. We use the PWM trained on 

one array to predict probe intensities on the other array to assess the performance of the 

PWM. This is then compared with experimental reproducibility between the two arrays to 

determine if PWM is a good approximation for TF specificity.  

We use BEEML-PBM to estimate all free parameters (PWM, chemical potential and 

scaling parameters) from the training array and use them to predict probe intensities of the 

test array using equation (2.14). Quality of prediction is measured by r2 between predicted 

and measured 8mer median intensities. PWM performance is calculated as the average r2 of 

training on array 1, test on array 2 and vice versa. Experimental reproducibility is simply the 

r2 between 8mer median intensities measured on array 1 and array 2.  

Although 8mer median intensities are problematic as measures of binding affinity, 

they serve as a useful measure of how much of the observed sequence-dependent binding 

variation is experimentally reproducible. We find that a single BEEML-PBM PWM is usually 

sufficient to provide excellent quantitative descriptions of PBM data. An example of this is 

shown in figure 3.19 for mouse factor Plagl1 (pleomorphic adenoma gene-like 1), where the 

PWM estimated from replicate 1 performs very well on replicate 2 data, r2 = 0.91. By 
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contrast, the primary PWM found by Badis et al. (Badis et al., 2009) is unable to capture 

much of Plagl1 binding specificity, with r2 =0.47 (figure 3.20), leading them to conclude that 

multiple PWMs are required. The BEEML-PBM PWM is qualitatively different from the 

primary PWM identified by Badis et al. (Badis et al., 2009)  (figure 3.21); given the high level 

of performance achieved by a single BEEML-PBM PWM it is likely that the need for 

multiple PWMs identified by Badis et al. (Badis et al., 2009)  is due to suboptimal 

parameterization rather than the complexity of Plagl1 DNA recognition. 
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Figure 3.19 BEEML-PBM PWM trained on Plagl1 replicate 1 predicts replicate 2 8mer 

median intensities well, r2 = 0.91 
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Figure 3.20 UniPROBE PWM for Plagl1 obtained by Badis et. al. (Badis et al., 2009) does not 

fit the data well,  r2 = 0.47 
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Figure 3.21 PWMs obtained by BEEML-PBM and UniPROBE for Plagl1 are qualitatively 

different.  
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Badis et. al. (Badis et al., 2009) identified 41 TFs as having clear secondary binding 

preferences. Figure 3.22 shows that in all but 7 cases, a single PWM explains more than 90% 

of the experimental variability for these factors. In some cases, PWM performances are 

better than experimental reproducibility, likely due to the non-linearity that may be 

introduced if different TF concentrations were used in replicate PBM experiments. Figure 

3.23 demonstrates that for these 41 TFs, a single BEEML-PBM PWM usually performs as 

well as, and sometimes better than, a combination of primary and secondary PWMs in the 

UniPROBE database. Figure 3.24 shows that in all of the 104 PBM datasets of Badis et al. 

(Badis et al., 2009), the PWMs obtained by the BEEML-PBM method fit the replicate data 

better than the UniPROBE primary PWMs, in many cases very much better. Badis et al. 

(Badis et al., 2009)validated binding to secondary motifs of six TFs by electrophoretic 

mobility shift assay (EMSA). We find that the BEEML-PBM PWMs are usually shorter than 

the PWMs found by Badis et al. (Badis et al., 2009), and that our PWMs are often consistent 

with the EMSA results. For example, the consensus sequence of the BEEML PWM for TF 

Foxj3 is AAACA, which can be found on both primary (GTAAACAA) and secondary 

(CAAAACAA) probes. However, there are also a few cases, such as Hnf4a, where the single 

PWM model is clearly insufficient to capture TF binding specificity. 
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Figure 3.22 A single BEEML-PBM PWM explains “secondary motif” phenomenon. In all but 

7 cases, BEEML-PBM PWM captured more than 90% of experimentally reproducible variability of 

the 41 TFs claimed to have secondary binding modes by (Badis et al., 2009). Dashed line marks 90%. 
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Figure 3.23 A single BEEML-PBM PWM usually outperforms a combination of primary and 

secondary PWMs for the 41 TFs claimed to have secondary binding modes by Badis et al. (Badis et 

al., 2009) 
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Figure 3.24 BEEML-PBM PWMs outperforms primary PWMs from Badis et al. (Badis et al., 

2009) for all 105 TFs in that dataset. 
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3.6 Analysis of pair-wise dependencies in binding 

sites 

Although the PWM model is a good approximation for the quantitative specificity of 

many TFs, the true interaction is often more complex. There are many examples in the 

literature of a single amino acid binding to multiple bases simultaneously (Luscombe et al., 

2001), the overwhelming majority of which are neighboring bases. There are also examples 

where the TF backbone is flexible enough such that a single amino acid can be positioned to 

form hydrogen bonds with bases in different positions (Lamoureux & Glover, 2006). These 

types of complex interactions are strongly dependent on the conformation of DNA, which is 

also sequence-dependent. The use of DNA conformation as a recognition mechanism often 

called “indirect readout” or “conformational recognition” (Drew & Travers, 1985; 

Otwinowski et al., 1988). Drastic DNA deformation have been observed in for some TF-

DNA complexes, including catabolite gene activator protein (CAP) and TATA binding 

protein (TBP) (Kim et al., 1993; Schultz et al., 1991). Identity of bases in neighboring 

positions are particularly important for DNA deformation energy through their stacking 

interactions. 

In addition to structural analysis (Dickerson, 1998; Luscombe et al., 2001; Olson et 

al., 1998; Suzuki & Yagi, 1995; Werner et al., 1996), detailed biochemical studies of specific 
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proteins have also shown dependencies between adjacent positions (Bulyk et al., 2002; Man 

& Stormo, 2001). Interactions between non-adjacent bases are possible (Jacobson et al., 

1997), but they appear to be much more rare than interactions between adjacent positions 

(Luscombe et al., 2001). Statistical analyses of collections of known binding sites have also 

offered evidences of correlations between non-adjacent positions (Sharon et al., 2008; Zhou 

& Liu, 2004).  

Pairwise interactions can be easily incorporated into BEEML framework (equation 

2.4). Higher order interactions can also be included, but they are impractical due to the large 

number of parameters required. Even when the model is restricted to pairwise interactions, 

the number of parameters can be large: for a 8-long binding site, there are 28 possible 

distinct pairs of positions, each requiring 9 parameters, for a total of 252 parameters that 

must be estimated in addition to the PWM. Since interactions occur mostly between adjacent 

positions, perhaps it is sufficient to consider only interactions between nearest neighbor 

positions. In this case, 7 pairs of adjacent positions need to be considered for a total of 63 

parameters. 

An example of nearest neighbor BEEML analysis is shown in figures 3.25-27 for C4 

zinc finger TF Hnf4a (Hepatic nuclear factor 4, alpha, also see figure 3.22) from Badis et al. 

dataset (Badis et al., 2009). Figure 3.25 shows that an 8-long PWM trained on array 1 is 

unable to accurately predict 8mer median intensities on the test array (r2 = 0.55). The model 
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including nearest neighbor interactions performed much better, achieving a r2 of 0.78 (figure 

3.26), close to the experimental reproducibility of 0.82 (figure 3.27).  

 

Figure 3.25 PWM is unable to accurately model Hnf4a specificity, r2 = 0.55 
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Figure 3.26 Energy model that include both PWM and nearest neighbor interactions captures 

Hnf4a specificity, r2 = 0.78 
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Figure 3.27 Experimental reproducibility of Hnf4a PBMs. Y-axis is the same as in figures 3.25 

and 3.26, X-axis is the median 8mer intensity of the training array, r2 = 0.82 
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 Figure 3.28 shows that the PWM model is unable to explains more than 90% 

variance for 25 out of 147 TFs in the UniPROBE database (Robasky & Bulyk, 2011) with 

replicate data available. Predictive performance was substantially improved with the addition 

of nearest neighbor interactions (figure 3.29), indicating that the majority of interactions not 

captured by PWM are between adjacent positions.
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Figure 3.28 PWM model performs well for most TFs but insufficient for many 



 

 

 

   

 

 

90 

 

Figure 3.29 most deviations from strict additivity can be accounted for by the addition of 

nearest neighbor interactions 
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For a more global perspective, I compared the fit of PWM with those of nearest 

neighbor and random interaction models for all 401 TFs in the UniPROBE database 

(Robasky & Bulyk, 2011). Random interaction model include PWM as well as interaction 

energies for randomly chosen non-adjacent position pairs in the binding site and its 

performance is calculated as the average of 10 random interaction assignments.  The reason 

for including random interaction model is two fold: first, it allows us to assess the 

importance of nearest neighbor interactions. Second, since replicate data is not available, the 

performance of random interaction model, which has the same number of parameters as 

nearest neighbor model, gives an indication of the extent to which performance gain is 

simply due to these models having more parameters than PWM. 

Figure 3.30 shows the result of this comparison. For most TFs, addition of 

interaction parameters did not substantially improve the fit. Furthermore, nearest neighbor 

model always outperformed random interaction model, demonstrating the importance of 

nearest neighbor interactions. Although nearest neighbor and random interaction models 

have more parameters and therefore should always outperform PWM model, the local 

optimization procedure used by BEEML sometimes fail to find optimal parameter values, 

resulting in some points falling below the main diagonal of figure 3.30.  
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Figure 3.30 Nearest neighbor model outperforms PWM and random interaction model 
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 I next examined nearest neighbor model performances for different TF structural 

classes (Figures 3.31-34). There are 209 helix-turn-helix TFs in the dataset, including 

homeodomain and winged helix-turn-helix such as ETS domain TFs. Addition of interaction 

parameters typically resulted in relative small gains in performance, but there are many cases 

where nearest neighbor interactions are important (Figure 3.31). This pattern holds for true 

for zinc finger class, which has 89 members, including C2H2, C4, C6 and GATA zinc finger 

domains (Figure 3.32). The 25 TFs of zipper class, including basic leucine zipper domain and 

helix-loop-helix domain, appear to have benefitted the most from the inclusion of nearest 

neighbor interactions (figure 3.33). By contrast, none of the 24 HMG (High Mobility Group) 

TFs benefitted substantially from the additional parameters (figure 3.34). 
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Figure 3.31 Comparison of nearest neighbor and random interaction model with PWM fit for 

209 helix-turn-helix TFs (homeodomain, winged helix-turn-helix domains) 
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Figure 3.32 Comparison of nearest neighbor and random interaction model with PWM fit for 

89 zinc finger TFs (C2H2, C4, C6, GATA zinc finger domains) 
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Figure 3.33 Comparison of nearest neighbor and random interaction model with PWM fit for 

25 zipper-type TFs (basic leucine zipper and helix-loop-helix domains) 
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Figure 3.34 Comparison of nearest neighbor and random interaction model with PWM fit for 

24 HMG TFs (High Mobility Group domains, including SOX family TFs) 
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3.7 Conclusion and future directions 

The rapid development of high-throughput experimental techniques has resulted in 

unprecedented amounts of in vitro quantitative binding data. In addition to provide insights 

into TF specificity, this wealth of data has enhanced our understanding of in vivo TF binding 

(Gordân et al., 2009; Wei et al., 2010), transcriptional regulatory networks (Grove et al., 

2009; Rowan et al., 2010) as well as regulatory mutations involved in disease (Alibés et al., 

2010; Hirsch et al., 2010). However, existing ad hoc analysis methods suffers from a number 

of drawbacks, leading to conclusion that TF-DNA recognition is highly complex.  

In this thesis, I developed a statistical analysis method BEEML (Binding Energy 

Estimation by Maximum Likelihood) that is based on sound biophysical principles. BEEML 

energy model is flexible and can be extended to include features important for TF binding, 

such as non-specific binding or interactions between positions. I have shown that BEEML 

method can be used to analyze quantitative binding data from a variety of high-throughput 

experimental methods. Using BEEML, I demonstrated that the PWM is a good model for 

most TF specificities, indicating the energetics of TF-DNA recognition is simple.  

A number of improvements can make BEEML an even better tool for the study of 

TF specificity. First, better statistics. The arbitrary cutoff of 90% variance explained was 

useful to show that simple models performed well, but a more principled approach will be 
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needed to identify which interactions are significant. Statistically, this can be framed as the 

problem of variable selection, a trade off involving goodness of fit on one hand and model 

complexity on the other hand. A variety of existing methods can be used for this task, 

including Akaike Information Criterion (AIC) (Akaike, 1974), Bayesian Information 

Criterion (Schwarz, 1978) (BIC), Bayes factor(Zhou & Liu, 2004) and cross-validation based 

methods. However, the current implementation of BEEML is very computationally 

intensive (it takes ~6 hours to estimate the parameters of a single nearest neighbor model). 

Moreover, the parameter values estimated by BEEML are not guaranteed to optimal, which 

makes model selection difficult. 

Second, more complex motif models need to be developed to model specific 

mechanisms of TF recognition. For example, many TFs bind as dimers, sometimes with 

variable spacing between halfsites. The halfsites themselves can be direct repeats or 

palindromic. There are existing computational methods for handling variable length between 

halfsites (Bi & Rogan, 2004; Cardon & Stormo, 1992), but they need to be adopted to work 

with quantitative data.  

Third, it is possible that modeling DNA conformation explicitly can help us 

understand TF specificity in more detail. Although our understanding of how the three-

dimensional structure of DNA is related to sequence remains incomplete (Peters & Maher, 

2010), existing knowledge of sequence-dependent DNA conformation features can be 
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incorporated into models (O'Flanagan et al., 2005; Steffen et al., 2002). Inclusion of 

sequence-dependent DNA conformation information in BEEML analysis can help to 

explain the indirect readout component of TF specificity.  
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