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Abstract

A general framework for specifying communication network design problems is given.
We analyze the computational complexity of several specific problems within this
framework. For fixed multirate traflic requirements, we prove that a particular
network analysis problem is NP-complete, although several related network design
problems are either efficiently solvable or have good approximation algorithms. For
the case when we wish the network to operate without blocking any connection
requests, we give efficient algorithms for dimensioning the link capacities of the
network.
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1. Introduction

Much work has been done on the computational problem of designing low-cost commu-
nication networks (see [GN89, GTD*89, GW90, GK90, KXG91, AKR91] and references
therein). The general problem is: given a collection of nodes, a set of node pairs which
are allowed to be connected by links, costs for installing links of various capacities, traffic
requirements between nodes, and possibly other constraints, choose which capacity to in-
stall on each link such that the traffic requirements are satisfied, the “other” constraints
are satisfied, and the total cost is minimized.

Gersht and Weihmayer [GW90] include as part of their “other” constraints a restriction
that the average end-to-end packet delay is below a given threshold. Gavish and Neu-
man [GN89] do not restrict the end-to-end packet delay below a threshold, but they include
it as part of the cost of the network. Their approaches concentrate on mathematical pro-
gramming techniques for formulating and solving the problems. We are not concerned with
modeling or restricting packet delay in this work.

Agrawal, Klein, and Ravi [AKR91] give an algorithm for a network design problem with
fixed point-to-point requirements and link costs equal to a startup cost, independent of
capacity. Their algorithm runs in polynomial time, and is guaranteed to produce a solution
no worse than twice optimal. This result is extended to allow multipoint requests as well
in Section 4.3.

Gavish et al. [GTD*89] give a heuristic for solving a network design problem with fixed
point-to-point requirements and link costs equal to an arbitrary function. It is based on
the simplex method of linear programming. This algorithm is not guaranteed to find good
solutions, but appears to work well in practice.

Kershenbaum et al. [KKG91] give a heuristic for solving a network design problem with
fixed point-to-point requirements and link costs proportional to the capacity, where capacity
is only available in increments which are large relative to the individual traffic requirements.
It is remarkable because of its fast O(n?) running time, where n is the number of nodes in
the network. It is not guaranteed to find good solutions.

Certain highly structured networks, such as Clos and Cantor networks, are nonblocking
when used for circuit switching (if a route uses a link, it uses the entire capacity of the link).
Melen and Turner [MT89] consider using these networks for multirate connection requests,
where each request can use a fraction of a link’s capacity in the range [b, B]. They assign
every external link or “terminal” a bandwidth of 1 and every internal link a bandwidth of
1/8, where 8 < 1, and then proceed to find sufficient conditions for which the network is
nonblocking. These conditions consist of inequalities involving parameters of the networks
and 8. This is essentially dimensioning the internal links large encugh so that the network
is nonblocking. This idea is generalized in Section 5 to networks with arbitrary topology,
terminals with arbitrary bandwidth (called termination capacity there), and a problem in
which the objective is to determine each link capacity independently.

In this work, we place emphasis on network design problems which are appropriate for
designing a campus-wide or metropolitan area network (MAN). These problems are formu-
lated to focus on the central computational issues. We then use the tools of computational



complexity in order to discover which constraints cause the problems to be difficult to solve.
Our desired goal is to find polynomial time algorithms which either find optimum solutions
or solutions guaranteed to be close to optimum. Wherever possible, we allow multipoint
traffic requirements as well as point-to-point.

Section 2 defines a general class of problems, and section 3 defines the restricted problems
examined in this work. Section 4 discusses results on analyzing and designing networks with
fixed traffic requirements, and section 5 examines networks which must be nonblocking.
Ideas for future work are discussed in section 6. '

2. The real-world design problem

Several structures arise when specifying an instance of the nefwork design problem and
when discussing solutions. A physical graph describes physical constraints for where equip-
ment may be placed. Fquipment descriptions specify the types and properties of physical
objects which may be used in constructing the network. A logical graph describes a way
of connecting equipment together to form the network, and an embedding specifies where
to place equipment. Traffic requirernents tell us how we expect to use the network. More
detailed descriptions of these structures are contained in the following subsections.

2.1. Physical graphs

A physical graph represents the constraints placed on the location of equipment by the
location (buildings, walls, etc.) in which the network will be installed. It may certainly
be possible to alter such restrictions (tear down buildings, put up walls, etc.), but for our
purposes, any such changes are considered either impossible or too costly.

A physical graph is an undirected multigraph PHYS = (V,E). Each vertex v € V
represents a place where switching equipment could be installed (e.g. a communication
closet). Each place has several parameters which are important for the design problem:

s Volume available.
o Physical conditions (e.g., humidity, temperature).

There may be other parameters which have been overlooked here.

Each edge e € F represents a link path where one or more transmission links may be
placed, e.g., a duct or chase in a building, a tunnel between buildings. Each link path has
several parameters:

s Length

Cross-sectional area available.

Physical conditions (e.g., electromagnetic interference).
Cost for laying cable on this link path.

An example physical graph is given in Figure 1. Rectangles represent places, and “fat
lines” represent link paths. The items have been drawn with different sizes to suggest their
respective volumes, cross-sectional areas, and lengths.
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Tligure 1: An example physical graph

2.2. Equipment descriptions

When designing a network, one must have in mind what sort of equipment is available for
use, including its cost and performance characteristics. Here we assume that the available
equipment fits into one of the following two classes.

A switchis a device which can have several transmission links attached to it. Information
sent to the switch is routed through internal paths to an appropriate output link, and is
then transmitted to some further destination. For a more detailed description of fast packet

switching, see [Hui90, dP91].

There may be several types of switches available for use. Fach type is parameterized
by:

» Volume occupied.

¢ Total switching capacity.

e Cost, possibly including a startup cost and a continuing maintenance cost.
¢ Number and type of links which may be terminated at the switch.

s Need for a controlled environment.

A link is some type of cable (e.g., twisted pair wire, coaxial or fiber optic cable) which
can transmit information. Each type is parameterized by:

o Cross-sectional area occupied.

e Maximum length over which a signal may be effectively carried.

» Bandwidth measured in bits/sec.

¢ Cost per unit length. :

¢ Termination cost. This is the cost of connecting a cable to a switch, and may depend
on the type of both.

Need for controlled environment.



Figure 2: An example logical graph

The purpose of the network is to connect terminals together. Terminals can be sources
and destinations of messages in the network. They are characterized by certain traffic
requirements, which are explained in section 2.5. It is assumed here that all terminal
locations are fixed.

2.3. Logical graphs

A logical graph represents a particular way of connecting switches, links, and terminals
together. It does not specify anything about where such items are to be placed.

A logical graph is an undirected multigraph LOG = (V, E). (This assumes that ei-
ther the links are bidirectional, or that they are unidirectional and always placed in equal
capacity, oppositely directed pairs.) The set of vertices V is partitioned into two sets,
terminals(LOG) and switches(LOG). Each v € terminals represents a terminal, and each
v € switches represents a switch with one of the given types. Each e € E represents a link
with a given type. The characteristics of a link which are considered most important in this
work are capacity and cost.

To be feasible, a logical graph must satisfy constraints given by the equipment descrip-
tions, e.g., the number and type of links which may be terminated at a particular switch
cannot be violated.

An example logical graph is given in Figure 2. Ovals represent switches, triangles
represent terminals, lines represent links, and numbers represent the capacities of the links.

2.4. Embeddings

An embeddingis a mapping from a logical graph LOG to a physical graph PHYS. It specifies
where each piece of equipment is located. Vertices in LOG (switches and terminals) are



Figure 3: An example embedding

mapped to vertices in PHYS (places). Edges in LOG (links) are mapped to paths in PHYS
(sequences of link paths).

An embedding is feasible if it satisfies constraints such as volume available in places,
cross-sectional area available in link paths, and environment constraints. Taken together, a
physical graph, equipment descriptions, a logical graph, and an embedding determine the
cost of the network.

An example embedding is given in Figure 3. It is the graphs of Figure 1 and Figure 2
superimposed so as to suggest the mapping from the logical graph to the physical graph.
The physical graph is drawn with dashed lines.

2.5. Traffic requirements

A network’s purpose is to satisfy message traffic between terminals. An exact mathemat-
ical model of network traffic is difficult to specify and use, so simplified models are used.
Examples include fixed requirements, nonblocking requirements, and stochastic require-
ments {GK90].

The following types of requirements are examined in this report: fixed point-to-point
connection requests, fixed multipoint requests, and nonblocking point-to-point requests.
All connections are specified with a peak rate; when the connection is active, the network
reserves enough resources to satisfy the peak rate.

2.5.1. Fixed connection requests. Fixed connection requests describe an unchang-
ing pattern of message traffic among terminals. They are not suitable in all cases, but they
can be a good approximation to the real traffic, and the design problems and solutions
which result can lend insight into other problems.



Fixed connection requests for a network are specified by a multiset REQ of individual
requests. REQ will be referred to as a set even though it is a multiset. Individual requests
g are specified by a pair (reg-terms, req-rate), where reg-terms{q) is a set of at least two
terminals in the network, and reg-rate(q) is a nonnegative integer specifying the rate of
traffic for the request.

If a single connection request has exactly two terminals in its reg-terms set, then it
is called point-to-point, otherwise it is called multipoint. If every request in a set REQ
is point-to-point, then the set is called point-to-point, otherwise it is called multipoint. If
every request in a set REQ has the same value of req-rate, then the set is called single rate,
otherwise it is called multirate.

A route 7 is a pair (route-links, route-rate). route-links(r) is a set of links in LOG
which forms a tree whose leaves are terminals of LOG. route-rate(r) is the bandwidth
which is used on each link of the route. A route r realizes a request g if the leaves of r are
exactly the set of terminals req-terms(¢) and route-rate(r) = req-rate(q). Note that for
two terminals the route is simply a path. A state is a (multi)set of routes. A state s realizes
a set of requests REQ if there is a one-to-one correspondence between each request ¢; and
each route r; such that r; realizes g;.

N is used to denote the set of nonnegative integers. Given a logical graph LOG with
link capacities cap : E — A and a state s, we define the usage and available capacity of a
link e in state s to be

usage(s,e) = Z route-rate(r;)
ri€s,r;uses link e
avail (s,e) = cap(e)— usage(s,e)

A state s is compatible with logical graph LOG if
(Ve € E) (usage(s,e) < cap(e))

In other words, every link is used in connections that have a total rate which is at most the
link’s capacity. We say that a logical graph LOG with given link capacities is able to route
a set of fired requests REQ if there exists a state s that realizes the requests REQ and is
compatible with LOG. More briefly, we say LOG is routable for REQ.

For example, the set of fixed requests REQ = {({4,B},3), ({C,D,E}, 1)} can be realized
by the state depicted in Figure 4. The state is superimposed upon the logical graph of
Figure 2. The links are labeled with two numbers, first capacity and then usage. Note
that the link {G, H} has usage(s,{G,H}) = 4 = cap(G, H) and avail(s,{G,H}) = 0.
We call a link saturated if avail(s,e) = 0. The link {H,I} has usage(s,{H,I}) =1 and
avail (s, {H,I}) = 2. '

2.5.2. Nonblocking connection requests. In the nonblocking case, individual con-
nection requests are defined exactly as in the fixed case above. However, instead of knowing
the exact set of requests in advance, we only know some restrictions on the allowable request
sets (those defined below as compatible). The network must be able to handle an arbitrary



Figure 4: An example state

sequence of additions to and removals from the set of requests, as long as that set remains
compatible.

Suppose we are given a logical graph LOG. TFor each terminal , we specify a value
B(t) called the termination capacity of t. This specifies the maximum total rate of all
connections in which ¢ may be involved simultaneously. For example, if 8(¢) = 5, then ¢
may be simultancously involved in connections with rates 1, 2, and 2, but it could not be
involved in any more connections until an existing connection is removed. In order to treat
terminals and switches uniformly, it is convenient to define 3 (v) = 0 for all v € switches(V').

Given a logical graph LOG with termination capacities § : V — A and a (multi)set of
connection requests REQ, we define the usage and available capacity of a vertex v under
requests REQ to be

usage (v, REQ)

Z reg-rate(g;)

g:€REQ, vEreq-terms({g;)
avail(v, REQ) = pB(v) - usage(v, REQ)

A request set REQ is compatible with logical graph LOG if
(Vv € V) (usage(v, REQ) < B (v))
That is, no terminal is involved in more requests than its termination capacity will allow.

Why introduce the notion of a termination capacity? There must be some way to
restrict the number of connection requests that are allowed simultaneously. Later we will
want to have algorithms to design link capacities given other information, so this restriction
should not refer to link capacities. Termination capacity also models real world constraints
well. A “terminal” here could be a terminal that has an interface to the network with
some maximum bandwidth. It could also be a collection of terminals which access the
network through a single multiplexor. The termination capacity models the bandwidth of
the “terminal’s” interface to the network. It’s use was inspired by the “maximum port
weight” 8 used by Melen and Turner [MT89].
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One way of defining a nonblocking network is given below. It is based on a definition
given by Pippenger [Pip82].

Consider a game between two players called the blocker and nonblocker. The parts of
the game which are fixed and cannot be changed by either player are (1) a logical graph
LOG and termination capacities 8 : V — N; (2) a deterministic route selection algorithm
A which, given the network description above, a state s, and a single connection request
¢, produces a set of routes R. For each » € R, r must realize ¢ and s U {r} must be a
compatible state for LOG. All of this is known completely by both players. The blocker
will try to add and remove connection requests so that the nonblocker cannot realize the
Tequests.

At the start of the game, both the set of connection requests REQ and the state s are
empty. The blocker has the first move.

At the beginning of the blocker’s move, s realizes REQ. The blocker either adds a single
connection request to REQ, or it removes a single request. It is then the nonblocker’s move.

At the beginning of the nonblocker’s move, s does not realize REQ. If a request was
removed from REQ, then the nonblocker moves by removing the corresponding route from
s, If a request ¢ was added, then the nonblocker performs algorithm A given s and ¢,
producing a set of routes R. If R is empty, then the game is over and the blocker wins. If
R is not empty, then the blocker selects one of these routes and adds it to s. If the game
is not over, then it is the blocker’s move again. It is critical that the blocker is the one to
choose the route from R.

If the blocker can make a sequence of moves and choices from R such that it eventually
wins, then the network LOG is blocking for routing algorithm A, or simply blocking. I
the nonblocker can prevent R from ever being empty, then the network is nonblocking (for
routing algorithm A).

It should be clear that the only power the nonblocker has is given to it by the routing
algorithm. The same network may be blocking for one routing algorithm, but nonblocking
for another. Section 5 contains several examples of routing algorithms.

3. General and restricted problem descriptions

In the general design problem, we are given a physical graph, equipment descriptions, and
traffic requirements. The object is to construct a feasible network which can satisfy those
requirements as cheaply as possible. The set of logical graphs that can be embedded into
a given physical graph is usually very large. Even given a single logical graph, determining
whether it satisfies the traffic requirements may not be easy.

In order to study several variations on the problem, we vary the portion of the logi-
cal graph and embedding which is to be regarded as unchangeable or fixed. In both the
PARTIAL-DESIGN and LINK-DESIGN problems described below, a physical graph and equip-
ment descriptions are given, and the resulting logical graph and embedding must be feasible.



In the most general PARTIAL-DESIGN problem, an instance of the problem is an arbitrary
logical graph, embedding, and traffic requirements. The goal is to find an addition of
switches and links (but not terminals) to the logical graph and embedding such that the
network satisfies the traffic requirements and has the lowest cost possible.

In the slightly more restricted LINK-DESIGN problem, an instance consists of a set of
switches, their connecting links to terminals, and an embedding. The goal is to add links
between switches in the logical graph and embed them in such a way that the resulting
network satisfies the traffic requirements and has the lowest cost possible. Note that the
links between switches and terminals are fixed, and each terminal is connected to exactly
one switch. Thus we may assume that all traffic requirements are between switches.

The ANALYSIS problem is the most restricted. An instance specifies a complete logical
graph and traflic requirements. An embedding and physical graph are not necessary. The
goal is to answer “yes” if the network satisfies the traffic requirements, and “no” otherwise.

In the case of nonblocking requests, we also study some problems that are “between”
LINK-DESIGN and ANALYSIS in the degree of freedom given to the algorithm. These problems
are discussed in section 5.3.

In this report we restrict the general framework described above in several ways. IMirst,
assume that the physical graph has unlimited cross-sectional area available on link paths,
and that there are no environmental constraints. With these restrictions, the physical graph
specifies allowable link locations and link costs. Switches are assumed to have zero cost and
unlimited capacity to terminate links. Links are available in arbitrary (integer) capaci-
ties, with a fixed cost per unit capacity and per unit length, possibly with an additional
installation cost. Each terminal may only be connected to a single switch.

4. Routable Networks

4.1. Analysis with point-to-point single rate requirements is NP-complete

With the restricted framework given in the previous section, it is useful to restate the design
and analysis problems in a direct form, leaving out details which no longer matter. This
will be done for each problem examined.

Routable Network ANALYSIS with point-to-point single rate requirements

INSTANCE: A logical graph LOG = (V, E) with link capacities cap : E — N. A
point-to-point single rate set of connection requests REQ.

QUESTION: Is LOG routable for REQ? That is, find a state s compatible with
LOG that realizes the requests REQ, or prove that none exists.

A restricted version of the problem above is one in which all link capacities must be 1
and all connection requests must have rate 1. This version will be called EDGE-DISIOINT
CONNECTING PATHS.



EDGE-DISJOINT CONNECTING PATHS (EDCP)

INSTANCE: An undirected graph LOG = (V,E). A set of vertex pairs REQ =
{{ula ’Ul}, LRRE {uks ’U'k}}-

QUESTION: Is there a collection of paths {p1,...,px} such that p; is a path from
u; to v; for all 1 < i < k and no edge appears in more than one path?

Since EDCP is a restriction of the analysis problem, the analysis problem is NP-complete
if EDCP is.

THEOREM 4.1. EDCP is NP-complete.

Proof: The proof is done by a polynomial transformation from the restriction of UNDI-
RECTED TWO-COMMODITY INTEGRAL FLOW [GJ79, problem ND39] in which all edge ca-
pacities are 1. This problem is called simple u2cir by Even, Itai, and Shamir [EIS76], who
proved it NP-complete. It is stated differently there, but when all edge capacities are 1, it
can be stated more simply as given below.

Simple v2cIF

INSTANCE: An undirected graph G = (V, E), source vertices s; and sg, destination
vertices t; and %3, and requirements R;, Rz € V.

QUESTION: Are there R; paths from s; to £; and Ry paths from s to i3 such that
no edge appears in more than one path?

Note that the answer must be no if Ry + Rz > | El, so the only interesting case is when
R1+ Ry < |E|. Let an instance of simple U2cIF be given. The transformation will produce
the EpCP instance LOG = (V/, E'), REQ where:

Vi = VU{u,v:1 <1< Ri}U{w,zi:1 <i< Ry}
E Bu{{si,u}, {ts,v:} : 1 <i < R} U{{s2,wi}, {f2,2:} : 1 £ < Ro}
REQ = {{w,v}:1<i<Ri}U{wiz}:1<i< Ry}

As an example of the transformation, consider the instance of U2CIF consisting of the
graph in Figure 5(a) and Ry = 1, Ry = 3 (this instance has a solution). The transformation
will produce the graph LOG shown in Figure 5(b) and the pairs

REQ = {{u]_, ’U]}, {'UJ1, -Tl}’ {'IUQ, 582}, {wS, 503}}

It is clear that the transformed instance contains a set of edge-disjoint connecting paths
if and only if the original instance of u2cIF has a solution. [

CoROLLARY 4.1. The Routable ANALYSIS problem with multirate traffic requirements (ei-
ther point-to-point or multipoint) is NP-complete.

Proof: Multirate and multipoint connection requests are generalizations of point-to-point
single rate requests, so this problems are generalizations of Routable ANALYSIS with point-
to-point single rate requests. Therefore it is also NP-complete. B
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{a) URCIF graph (b) EDCP graph

Figure 5: Example of transformation from v2cIr to EDCP

4.2. Efficient Algorithm for Link-design with Link Cost Proportional to
Capacity

Next we consider a problem in which we are given fixed traffic requirements, and the object
is to design link capacities such that the requirements can be satisfied. Here the link costs
are assumed to be proportional to the capacity assigned.

Routable Network LINK-DESIGN with link cost proportional to capacity

INSTANCE: A logical graph LOG = (V, E). For each {u,v} € E, a cost per unit
capacity cost(u,v) € . The cost of building a link of capacity cap between u and
v is cost(u,v)- cap. A set of connection requests REQ.

SOLUTION: Any function cap : E — A such that if LOG has edges with those
capacities, then LOG is routable for REQ.

SOLUTION COST: Y (y,0}er c0st (u,v) - cap (u,v)

OBJECT: Find a solution with minimum cost.

Below is a sketch of an algorithm to solve this problem efficiently.

Create a graph G = (V, E) with edge lengths given by the values cost (u,v)
cap(u,v):= 0 for all {u,v} € F
for ¢; € REQ —
if |req-terms(¢;)| = 2 — r; := shortest path between pair of terminals
| |reg-terms{g;}| > 2 — r; := minimum Steiner tree between set of terminals
fi
for e € 7; - cap(e) := cap(e) + req-rate(q;) rof
rof

For the point-to-point case, only shortest paths need to be found. If all pairs of terminals
have requests between them, then the algorithm above could be implemented by first finding

11



shortest paths between all pairs of terminals, and then processing the requests. If n = |V
and m = |E|, then the all pairs shortest path problem can be solved in O(n%logn + nm)
time [FT87]. This dominates the running time of the algorithm.

It is interesting to note that the point-to-point LINK-DESIGN problems are easier to solve
than the corresponding ANALYSIS problems (at least for this type of link cost). Apparently
the freedom to choose link capacities, as opposed to having them given, allows for a faster
solufion.

If instances are restricted to a single multipoint requirement, then this problem is the
optimization version of the NP-complete Steiner tree problem on graphs [GJ79, problem
SP12]. There are polynomial time approximation algorithms for this problem which always
find a tree spanning the endpoints with cost that is no more than twice the minimum
possible cost [KMB81, Wax88]. Furthermore, if there are several requirements, then such
an approximation algorithm can be run for each requirement individually, and the resulting
link dimensions can be summed to get an overall solution which is no worse than twice
optimal.

4.3. Approximation Algorithms for Link-design with Startup Costs

We now consider the link design problem when the link costs include a startup cost. By
startup costs, we mean that the cost of building a link is some given value if the link is
built, and zero if it is not. The cost is independent of the link capacity. This is realistic
over a large range of capacities if the labor for installation costs much more than the link
itself.

Routable Network LINK-DESIGN with link cost independent of capacity

INSTANCE: A logical graph LOG = (V, E). For each {u,v} € E, a cost to build the
link cost(u,v) € M. A set of connection requests REQ. The rates of the requests
are unimportant for this problem; each request is a set of at least two vertices.
SOLUTION: A set of links L C E. For all r € REQ and all u,v € reg-terms(r),
there must be a path between u and v in the graph (V,L).

SOLUTION COST: Given a set of links L, its cost is 3¢, v}ez cost (1, v).
OBJECT: Find a solution with minimum cest.

Note that it is no harder to solve this problem when we allow multipoint requests,
because an instance with multipoint requests can be converted into one with point-to-point
requests only. If g is a multipoint request containing vertex u, then replace ¢ with the
collection of point-to-point requests {{u,v} : v € ¢ — {u}}. Then L C E is a solution for
the original instance if and only if it is a solution for the modified instance. Thus we need
only consider the problem when restricted to point-to-point requests.

The decision version of this problem is NP-complete because if we restrict instances
to have only one multipoint request, it is the Steiner tree problem. Agrawal, Klein, and
Ravi [AKR91] have designed an approximation algorithm which runs in O(mlogm) time
and always finds a solution with cost at most 2(1 — 1/k) times optimal, where m = |E| and
k is the number of vertices which are contained in at least one request.

12



i PP/SR  [PP/MR| MP/MR |

ANALYSIS NPC (Thm. 4.1) |  ~ec (Cor. 4.1)
c-cap P (Sec. 4.2) |  wpH2
LINK- s(cap > 0) NPHZ 1n general
P for a restriction (Sec. 4.3)
DESIGN
s(cap > 0)+c-cap NPH
PARTIAL-DESIGN ?

Table 1: Results for routable networks

Key:

PP — point-to-point, MP — multipoint, SR — single rate, MR ~ multirate

P — polynomial time (efficient) algorithm known

NPC — NP-complete problem

NPH — NP-hard

NPH2 — NP-hard, but there is a known polynomial time algorithm to approx-
imate within factor of 2 of optimal

? — currently unknown

It is useful to consider a set of point-to-point requests as defining a set of edges on the
vertices V. Call the graph RG = (V, REQ) the request graph for the instance. In general,
the request graph is arbitrary. However, if we know that it consists of a single connected
component and some isolated vertices, then the problem is equivalent to that of finding
a minimum Steiner tree on the vertices in the connected component. There are efficient
approximation algorithms for the Steiner tree problem which always find a solution with
cost at most 2(1 — 1/k) times optimal [KMB81, Wax88]. We mention them here because
they may have better performance on average than the one by Agrawal et al.

If we know that RG is connected and has no isolated vertices, then the problem is
equivalent to finding a minimum spanning tree. This problem can be solved exactly in
O(mp(m,n)) time, where n = |V|, m = |E|, and B(m,n) < log*n if m > n [FT87].

4.4. Summary of Results for Routable Networks

Table 1 presents a summary of known results. The LINK-DESIGN problem has been broken
into three subcases. The notation (cap > 0) is an expression which evaluates to one if
the boolean expression contained in parentheses is true, and evaluates to zero if it is false.
Therefore the three subcases represent, in order, (1) link cost is linear with link capacity,
(2) link cost is a startup cost s if the link exists, and zero otherwise, and (3) link cost is
the sum of the previous two. Note that the values of the factors ¢ and s may vary across
the links. The column headings denote restrictions on the type of fixed traffic requirements
allowed. They are, from left to right, point-to-point/single rate, point-to-point/multirate,
and multipoint/multirate.
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Below are justifications for the table entries which were not discussed in previous sec-
tioms.

LINK-DESIGN with link cost = s(cap > 0)+ ¢ cap

No matter what type of connection requests are given, these problems are generaliza-
tions of their counterparts with link cost = s(cap > 0), and are no easier to solve. No
approximation algorithms which are guaranteed to produce a solution within a constant
factor of an optimum solution are known to the author. A heuristic solution based on the
simplex method of linear programming is described by Gavish et al. [GTD*89].

5. Nonblocking Networks

5.1. Routing Algorithms

As mentioned in section 2.5.2, the choice of a routing algorithm can determine whether a
given network is blocking or nonblocking. It can also affect the computational complexity
of the analysis and design problems associated with them.

In this section we consider several examples of routing algorithms for point-to-point
connection requests (some have natural extensions to multipoint requests). In each case,
the algorithm knows the logical graph LOG = (V, E) with link capacities cap, the current
state s, and a point-to-point connection request ¢ = ({u, v}, reg-rate). The algorithm must
compute a set R of routes. Recall from the definitions that for a route r, sU{r} is compatible
if and only if (Ve € r) (reg-rate < avail(s,e)). It is implicitly assumed that any routes not
satisfying this condition are removed from the set returned.

Fixed path routing (FP)

FP has access to a table path. For each pair of endpoints «,v, path{u,v) is a path
between them. Return {path(u,v)}. If we use this routing algorithm in an analysis
or design problem, then the instance must contain the table path.

Fixed shortest path routing (FFSP)

This is similar to fixed path routing, except that path(u,v) is restricted to be a
shortest path between u and v.

Number of hops at most K (HAMK)

HAMEK returns all paths in LOG between » and v such that the path contains at
most K links. K must be specified in the problem instance.

5.2. Properties Independent of Routing Algorithms
Before presenting complexity results, we present results which hold regardless of the routing

algorithm chosen. For X C V, let X denote the complement of X relative to V, V — X.
(X,X) denotes a cut, which is the set of all edges which have one endpoint in X and the
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other in X. We extend the domains of cap and 8 to arbitrary sets of links and vertices by
summing the individual values of each element in the set.

LeMmma 5.1, Let A be any routing algorithm. If LOG = (V, E) with link capacities cap
and termination capacities § is nonblocking for A, then

(VX C V) (cap(X, X) 2 min{B(X),8(X)})

Proof: Let A, LOG, and X C V be chosen. In the game between blocker and nonblocker
used to define nonblocking networks (Sec. 2.5.2), it is possible for the blocker to specify
a sequence of point-to-point connection requests, each of which has one terminal in X
and the other in X. If each of these requests has rate one, then min{8 (X),8(X)} such
requests can be specified; no more can be added without violating the termination capacity
constraints. Given such a request g, any route r realizing ¢ must use at least one link in
(X,X). Therefore the total usage of links in the cut is at least min{8(X),8(X)}. The
usage can be no more than the capacity in any compatible state. =

LEMMA 5.2. Let LOG = (V, E) be a network with link capacities cap and termination
capacities 8. If (X,X) contains a single edge {u,v}, then for every request set REQ
compatible with LOG and every state s which realizes REQ and is compatible with LOG,

usage (s, {u, v}) < min{ (X), 4 (X)}.

Proof: This is easily seen by contradiction. Suppose we have a state s realizing a compatible
request set REQ, and in s the usage of {u,v} is larger than min{8(X),8(X)}. Consider
the set of routes R which use {u,v}. Each such route r has at least one endpoint in X and
at least one in X. Therefore it “uses up” at least reg-rate(r) termination capacity in X
and in X, and so the entire set R uses at least usage(s, {u,v}) termination capacity in X
and in X. But this violates the assumption that the request set REQ is compatible with
LOG (by the definition of a compatible request set). =

A consequence of this lemma is that any edge {u,v} which is a cut (X, X) by itself
(commonly called a bridge) should have capacity exactly equal to the minimum total ter-
mination capacity on each side, min{f(X),8(X)}. It must be at least this much for the
network to be nonblocking, and no more than this is ever used regardless of whether the

network is nonblocking.

Note that the proof of Lemma 5.1 only uses point-to-point single rate connection re-
quests, thus it applies for any restriction on traffic requirements examined here. If we
know that we are allowed to have multirate requests, then we can strengthen the necessary
condition of Lemma 5.1. Let B be the largest rate allowed for any single connection request.

LeMMaA 5.3. Let A be any routing algorithm, and LOG = (V, E) be a network with link
capacities cap and termination capacities 8. If multirate requests are allowed, and LOG is
nonblocking for A, then

vXcVv ,v) > min{max 3 (u), max g (u), B
(VX € )({u,u??}f{x)cap(“ v) mm{uexﬁ()ueai,ﬁ() 1)
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Proof: For any cut (X, X), it is possible to make a request which must use at least one edge
of the cut by making the request between endpoints on opposite sides of the cut. There
must exist an edge in the cut which has enough capacity to carry the connection by itself.
The largest possible rate for this connection can be obtained by picking the endpoints with
largest termination capacity on each side of the cut. |

5.3. Nonblocking Network Tree-design

First we consider a nonblocking network design problem in which the design algorithm must
use the links given. The only freedom it has is to choose the capacities of those links. This

is more restricted than the LINK-DESIGN problem.
Nonblocking network TREE-DESIGN

INSTANCE: A logical graph LOG = (V, F) which is a tree. For each {u,v} € F, a
cost per unit capacity cost(u,v) € M. :

SOLUTION: Any function cap : F — A such that if LOG has edges with those
capacities, then LOG is nonblocking for A.

SOLUTION COST: F(yu)er cost(u,v) - cap (u,v)

OBJECT: Find a solution with minimum cost.

Recall that a tree is a connected acyclic graph, and so there is only one routing algorithm
A which is reasonable to use. A returns the unique smallest subtree of LOG containing the

desired endpoints.

Since every edge of a tree is a cut, we can apply Lemma 5.2 to every edge. If an edge’s
removal leaves two connected components X and X, then its capacity should be exactly
min{3(X),B(X)}. These edge capacities can be found in O(|E|) time by working from
the leaf vertices inward. Note that these same edge capacities will give an optimal solution
even if the cost of building links is an arbitrary nondecreasing function of capacity. Also
note that it does not matter whether the connection requests are single rate or multirate,
point-to-point or multipoint.

5.4. Link-design with Fixed Path Routing Algorithm

For this problem, we consider only point-to-point connection requests, although it does not
matter whether they are single rate or multirate.

Nonblocking network LINK-DESIGN with fixed path routing

INSTANCE: A logical graph LOG = (V, E). For each {u,v} € ¥, a cost per unit
capacity cost(u,v) € M. A fixed path table path containing paths in LOG.
SOLUTION: Any function cap : E — A such that if LOG has edges with those
capacities, then LOG is nonblocking for routing algorithm FP.

SOLUTION COST: 3 (, yer cost(u,v) - cap (u,v)

OBJECT: Find a solution with minimum cost.
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Figure 6: A logical graph and its corresponding endpoint graphs

The TREE-DESIGN problem is a special case of this one. They share an important
property: given any pair of endpoints, there is a unique path which can be used to connect
them. This simplifies matters by eliminating the problem of route selection. It implies that
for any compatible set of requests, there is a unigque state which realizes it. This state does
not depend upon the link capacities, although link capacities do determine whether the state
is compatible. Because of these important properties, designing the capacity of a particular
link involves computing a set of requests, and hence a state, which maximizes the usage
of that link. We introduce endpoint graphs to compute these requests. They allow us to
transform the original design problem into | E| others that have known efficient algorithms.

The endpoint graph of edge {z,y} € E, denoted ENDy, ), contains an edge {u, v} if
and only if path(u,v) uses edge {z,y}. Figure 6 contains the endpoint graphs for the logical
graph of Figure 6(a) and the fixed path routing table in 6(b).

Let REQ be a compatible set of requests and s be the unique state which results by
routing all of the requests using FP. To this state, there corresponds unique assignments to
all of the endpoint graphs, where an assignment is a mapping from the edges of an endpoint
graph to M. Tor edge {u,v} of endpoint graph ENDy, .y, set assignment az,3(u,v) to
be equal to the total rate of all requests ¢; € REQ which are between vertices » and v.
Define the value of an assignment to be the sum of the individual values assigned to each
edge of ENDy, .. Figure 7 shows an example of this correspondence. The integer labels on
vertices in 7(a) are the termination capacities. The requests REQ are represented by the
table in 7(b), where each entry is the total rate of all requests between the given pair. The
other parts of the figure show the corresponding assignments.

An assignment is compatible if for each u € V, the sum of values assigned to all edges
incident to u is at most B(u). This definition is similar to the definition of compati-
bility for request sets, and in fact every assignment is compatible if REQ is compatible.
Also, the usage of link {z,y} in state s is exactly the value of the assignment. Formally,

usage(s,{2,4}) = Deennn,. ,; 34sa)(©)-
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Figure 7: A state and its corresponding assignments

It is also true that for each compatible assignment ay, .1 of an endpoint graph ENDy, 43,
there is a compatible set of requests REQ which is realized by a state s such that the usage
of edge {z,y} in state s is exactly the value of the assignment. Formally, usage (s, {z,y}) =
Y e€ENDy, ;3 e} (€)-

Therefore, to find the maximum usage of a link {z,y} in any state, find a compatible
assignment for ENDy, 3 which has a maximum value among all compatible assignments.
The capacity of link {z,y} should be the value of this assignment. Since the assignment
has maximum value, the usage of the link can never be more than this. We also know
that it can be this much. By repeating this process for each link, we create a capacity
function cap. If every link has a capacity at least as large as specified by cap, then the
network is nonblocking. If any link capacity is less than that given by cap, then the network
is blocking. As long as the link costs are nondecreasing functions of capacity, a cheapest
solution to the LINK-DESIGN problem is to assign exactly the values given by cap.

So now the LINK-DESIGN problem has been reduced to finding maximum value assign-
ments for |E| endpoint graphs. Formally, this problem is:

Generalized Maximum Matching (GMM)

INSTANCE: A graph G = (V, E) with termination capacities § : V — N.
SOLUTION: An assignment @ : £ — A which is compatible, ie., (Vu € V)
(T qunen 2, v) < B (w).

SOLUTION VALUE: 3 ¢y u1enm a(¥,v)

OBJECT: Find an assignment with maximum value,

This problem is called generalized maximum matching because if we restrict instances
to f(u) = 1 for all w € V, then it is the maximum cardinality matching problem [Tar83,
Chap. 9]. It is possible to reduce GMM to maximum cardinality matching, but it requires
time polynomial in the 8 values as well as [V| and |E|, which can be exponential in the
size of the original instance. Fortunately Gabow [Gab83] has designed an algorithm to
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solve the problem in O(nmlogn) time, where n = |V| and m = |E|. He calls it the upper
degree-constrained subgraph problem (UDCS). The overall nonblocking network link design
problem can then be solved in O(mnU logn) time, where U is the largest number of edges
in any endpoint graph. U < n{n — 1}/2 and it may be that large depending on the fixed
routes given by path.

The problem which Gabow’s algorithm actually solves is more general than GMM.
UDCS allows one to specify an upper bound z(u,v) on a(u,v) for each edge {u,v} € E. To
solve the problem GMM above, we merely set p(u,v) = min{4{«), 8(v)} for every edge.

However, since UDCS is more general, we can use this to solve a more general LINK-
DESIGN problem. Suppose we have a pair of terminals u and v which have high termination
capacities, say 1000 each. Then the path path{u,v) must have capacity at least 1000 on
every edge. If we know that many connection requests will never be made between u and
v, but only 150 at most, then we can set the UDCS upper bound to p(u,v) = 150 for every
endpoint graph in which edge {u,v} appears. In general, we can specify such an upper
bound for every pair of terminals. The running time of the design algorithm is not affected.

This design algorithm can also be used to design hierarchical networks. For example,
suppose several subnetworks are connected together by a backbone network, and each sub-
network has a single “gateway” switch through which all connections having destinations
outside the subnetwork are routed. If all terminals simultaneously requested to connect
to terminals outside of their subnetwork, then this would require very large capacity links
on the backbone network. Normally, most requests would be to other terminals within
the subnetwork. Suppose the network designer knew that no more than a total rate Us
of connection requests would pass through the gateway from subnet s to other subnets.
Then the above design algorithm could be run on subnet s by itself (without the backbone
and other subnets) after adding U, to the termination capacity of its gateway switch. The
capacity of the backbone links can then be designed by running the design algorithm on
the backbone network (with subnet gateway switches included) where each subnet gateway
has termination capacity U;. This procedure could be continued for any number of levels

in the hierarchy.

5.5. A Special Case of Fixed Path Routing

A bipartite graph is a graph G = (V, E) whose vertex set can be partitioned into two sets
X and X such that every e € E has one endpoint in X and the other endpoint in X. I
the endpoint graph is bipartite, then the generalized maximum matching problem can be
solved efficiently by transforming it to a maximum flow problem. An instance consists of a
directed graph D = (V, A) with distinguished source vertex s and sink vertex i. Every arc
a € A has a nonnegative capacity cap(a). The transformation is similar to one given by
Ford and Fulkerson [FF64].

Let G = (V,E), 8 : V — A be an instance of GMM, where & has a bipartition given
by X, X. We describe how to create D = (V',A) and cap : 4 — N. Let V/ =V U {s,1}
and A = {(s,u):u € X}U {(u,v):u € X,v€ X}U{(»,t) : v € X}. The capacity of any
arc incident to s or £ is the termination capacity of the other endpoint. The capacity of
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Figure 8: Transformation from bipartite GMM to maximum flow

any arc with both endpoints in V is infinity. An example of this transformation is shown
in Figure 8.

This transformation will be useful for bipartite endpoint graphs, but for arbitrary fixed
paths used by FP, we cannot ensure that all of the endpoint graphs will be bipartite. If
we restrict all of the paths to be shortest paths, then we can show that all of the endpoint
graphs are bipartite. We shall use the notation dist ¢(u,v) to denote the length of a shortest
path between the vertices u and v in graph G with edge lengths [. The graph G intended
will normally be understood from the context.

DEFINITION 1. Let G = (V, E) be an undirected graph with edge lengths ! : E — N, and
{z,y} € E. The shortest path endpoint graph of edge {z,y} in G, denoted SP-ENDy, .3,

is defined as
SP-ENDyz 4} = (V, Eyzyy)

where

Byt = {{1,v} : (3p)(p is a shortest path between u and v,p contains {z,y}}

Please note carefully the difference between shortest path endpoint graphs and endpoint
graphs as given earlier. A normal endpoint graph is derived from LOG and a fixed path
table, which contains a single path for each pair of endpoints. A shortest path endpoint
graph is similar, but it includes edges for all shortest paths between pairs of endpoints.

LEMMA 5.4. Let G = (V, E) be an undirected graph with edge lengths 1 : & — N. For any
{2,y} € E such that I(z,y) > 0, the shortest path endpoint graph SP-ENDy, 1 is bipartite.

Proof: Let u € V be an arbitrarily chosen vertex. The following inequalities must hold by
properties of shortest paths.

dist (u,z)+1(z,¥) (1)
dist (u,y) +1(y, ) (2)

dist(u,y)
dist (u,z)

IA A
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Since G is undirected, the edge lengths are symmetric and [ (z,¥) = {(y, ). We shall say
that an inequality is strict if it still holds after replacing < with <, and that it is #ight if it
still holds after replacing < with =. Let

W = {u€V :both (1) and (2) are tight}
X = {ueV:(1)is tight and (2) is strict}
Y = {ueV:(1)isstrict and (2) is tight}
Z = {u€V:both (1) and (2) are strict}

Since I (z, ) is strictly positive, it cannot be that both of the inequalities are tight. Therefore
the set W must be empty. We will demonstrate that the two sets (AU 2) and J form a
bipartition.

Next consider an arbitrary vertex u € Z. Let p be any shortest path from u to another
vertex v. Assume that it contains the edge {z,y}. Without loss of generality, assume that
 is visited before y when traversing p from u to v (the alternate case in which y is visited
before & can be handled similarly). Let p; be the portion of p from u to z and p; be the
portion of p from y to v. Also let ¢; be a shortest path from % to ¥ and ¢ = ¢;p2. Then

length(p) = length(pr)+1(z,y)+ length (p2) { definition of p }
= dist(u,z)+ [(z,y)+ length (p2) { p1 is a shortest path }
> dist (u,y) + length (p2) { (1) is strict }
= length(q) + length (p2) { definition of gy }
= length(q) { definition of ¢ }

Therefore, g is a path from u to v which is shorter than p. But p is a shortest path from u
to v, so we have a contradiction, and our assumption that p contained {z, y} must be false.

The conclusion is that there can be no shortest path from z € 2 {o any other vertex
such that the path contains the edge {z,y}. Therefore, v must be isolated in SP-ENDy 3.

By a similar “short-cutting” method as used above, it can be shown that no two vertices
u,v € X can have a shortest path between them which contains {z,y}. Therefore v and v
will not have an edge between them in SP-ENDy, 3. Also, any pair of vertices in Y may
not be adjacent in SP-ENDy, 1.

So the two sets (X' U 2Z) and Y form a bipartition for the graph SP-ENDy; 3. =

The fastest solution to the maximum flow problem known to the author was given
by Goldberg and Tarjan [GT88]. It runs in O(nmlog(n?/m)) time, which is asymptot-
ically better than Gabow’s running time for GMM. The overall running time would be
O(mnUlogn) as before, although here U < n?/4. It may be possible to use the results
of Gusfield et al. [GMFB87] to improve this bound. The author believes that shortest
path routing would arise often enough for this bipartite special case to be interesting, and
someone wishing to implement this algorithm may have access to an implementation of a
maximum flow algorithm, whereas it is doubtful they would already have an implementation
of an algorithm for GMM.

At the end of the previous section, we described a generalization of the design problem
in which we can specify an upper bound pu{u,v) on the total rate of connection requests
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TREE-DESIGN P
LINK-DESIGN || P [ P [ 7

Table 2: Results for nonblocking networks

between particular pairs of terminals. The same restriction can be implemented in the
reduction to maximum flow instances given above. If arc (u,») or (v,u) appears in a
maximum flow instance, then set its capacity to p(u, v) instead of infinity.

5.6. Summary of Results for Nonblocking Networks

A summary of complexity results is given in Table 2. On the left are the problems examined
in the context of nonblocking requirements. On the top are the routing algorithms for which
we have found complexity results: fixed shortest path, fixed path, and number of hops at
most K. The table entries contain the complexity of the problem. See the key of Table 1 for
their meanings. The ANALYSIS results for routing algorithms FP and FSP are explained by
noting that the analysis problem can be solved by first solving the LINK-DESIGN problem,
and then simply checking whether all of the given link capacities are at least as large as the
optimum capacities.

For TREE-DESIGN, there is really only one routing algorithm, which could be thought of
as FSP. In fact, it could be solved by the algorithm given in section 5.5, but that algorithm
is slower than the one in section 5.3.

ANALYSIS with routing algorithm HAMK is in co-NP means that given an instance of
the problem, asking the opposite question “Is LOG blocking for algorithm HAMK?” results
in a problem that is in NP. To see that the negated problem is in NP, all that is necessary
is to nondeterministically guess a set of requests REQ and a state s which realizes it. The
deterministic part of the algorithm then verifies that there is some pair of vertices u and v
which both have available termination capacity, but for which there is no path of length at
most X with available capacity between them.

6. Conclusion

The author plans to continue exploring computational complexity questions and searching
for efficient algorithms or approximation algorithms. One concern is that fixed path routing
requires high link capacities. To that end, the author hopes to reduce these requirements
by studying more flexible routing algorithms (but not as flexible as HAMK). The following
are two ideas for further investigation.

Deflection routing (DEF)
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DEF looks up  and v in a table as FP does, but in this case the result is two paths
p1 and py, called the primary path and secondary path, respectively. DEF checks
the current state s o see if p; has enough capacity available. If so, {p1} is returned,
otherwise {p2} is returned.

Shortest available path routing (SAP)

Comnsider the set of links E/ = {e: e € E A reqg-rate < avail(s, e)}, i.e., E’ contains
exactly those links which have enough available capacity to be usable in a route.
SAP returns all paths which have shortest length in the graph (V, £').

The author would like to thank Rex Hill, Buddy Waxman, and Ellen Witte for their
comments on previous versions of this paper. He is also grateful to Jon Turner for his
guidance and discussions involved in this work.
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