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Abstract

This paper considers the problem of expressing predicate calculus in connectionist networks that are
based on energy minimization. Given a first-order-logic knowledge base and a bound k, a symmetric
network is constructed (like a Boltzman machine or a Hopfield network) that searches for a proof
for a given query. If a resolution-based proof of length no longer than k exists, then the global
minima of the energy function that is associated with the network represent such proofs. If no proof
exist then the global minima indicate the lack of a proof. The network that is generated is of size
polynomial in the bound & and the knowledge size. There are no restrictions on the type of logic
formulas that can be represented. An extension enables the mechanism to cope with inconsistency
in the knowledge base; Le., a query is entailed iff there exists a proof supporting the query and no
“better” (or equally “good”) proof exists supporting its negation. Fault tolerance is obtained since
symbolic roles are dynamically assigned to units and many units are competing for those roles.
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1. Introduction

The ability to reason from acquired knowledge is undoubtedly one of the basic and most important
components of human intelligence. Among the major tools for reasoning in the area of AI are deductive
proof techniques. However, traditional methods are plagued by intractability, inability to learn and
adjust, as well as by inability to cope with noise and inconsistency. A connectionist approach may
be the missing link: fine grain, massively parallel architecture may give us real-time approximation;
networks are potentially trainabie and adjustable; and they may be made tolerant to noise as a result
of their collective computation.

Most connectionist reasoning systems that implement parts of first-order logic (see for examples:
[Holldobler 90], [Shastri et al. 90]) use the spreading activation paradigm and usually trade® expres-
siveness with time efficiency. In contrast, this paper uses the energy minimization paradigm (like
[Derthick 88], [Ballard 86], {[Pinkas 91c] and [Anandan et al. 89]), representing an intractable problem,
but trading time with correctness; i.e., as more time is given, the probability of converging to a correct
answer (a global minimum) increases.

Symmetric connectionist networks used for constraint satisfaction are the target platform [Hopfield 82a),
[Hopfield 84b], [Hinton, Sejnowski 86], [Peterson, Hartman 89), [Smolensky 86]. They are characterized
by a symmetric matrix of weights and a quadratic energy function that should be minimized. Each unit
of the network asynchronously computes the gradient of the energy function and changes its activation
value so energy decreases and a stable state is found. Some of the models in the family of symmetric
networks perform simulated annealing or deterministic annealing thus, they may be seen as performing
a gearch for a global minimum of their energy function.

The task is therefore to represent logic deduction that is bound by a finite proof length® as energy
minimization. The network should allow us to integrate in a unified way both knowledge about facts
and rules, and meta-knowledge about the reasoning process itself. The inference mechanism (logic
deduction) should be combined with the knowledge (predicate logic) into a single network of polynomial
size such that when global minimurm is found, a proof (if one exists) is also found. If no proof exists,
the global minima represent the lack of a proof.

When a query is clamped, the network should search for a proof that supports the query. If a proof
to the query exists, then every global minimum of the energy function associated with the network
represents a proof. The network that is generated is of polynomial size in the knowledge size and in the
proof length.

The paper is organized in the following way: Section 2 sketches the main idea while sections 3 and
4 give the details of the representation and the constraints needed for the propositional case. Section
5 extends the technique to first-order predicate logic (FOL). Section 6 discusses soft constraints and
section 7 concludes.

2. Main Idea

The idea is to construct a network whose visible units represent clauses and literals, and to use parallel
constraint satisfaction to cause a proof for a posted query to ernerge on the units. The proof is based
on resolution steps [Robinson 65]%; however, it is not by refutation. A proof is a list of clauses ending
with the query (goal) such that every clause used is either an criginal clause, a copy of a clause that

! Trading complexity with expressive power is a well known tradeoff of symbolic systems [Levesque 84).

2Without a bound on the proof length, the problem is undecidable.

3Resolution is used for its simplicity and completeness. Other deduction steps may be used (like modus ponens) to
gain efficiency.
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appears earlier in the proof, or a result of a resolution step of the two clauses that appeared just earlier,
At a global minimum, the activations of the visible units represent a list of clauses and unifications that
together form a proof.

The constraints encoded are of three classes: 1) Proof constraints: force a resolution-based proof
(resolution steps, copy steps and unifications); 2) Knowledge base constraints: force the proof to use
syntax of clauses from the knowledge base; 3) Soft constraints: cause “better” proofs to be preferred
over not so “good” proofs { “better” will be defined later).

The first two groups are hard constraints that are satisfied by exactly all valid proofs of length
not higher than the given bound. The network performs a constraint optimization; it minimizes the
violation of the soft constraint, while satisfying the hard constraints. When a state of the units is found
that satisfies all the hard constraints and as many soft constraints as possible, then this state is a global
minimum and it represents a valid and most desired proof. If no state satisfies all the hard constraints
then no proof exists. If only the hard constraints are satisfied but the number of the satisfied soft
constraints is not maximized, then we have a valid proof that may not be the “best” proof available;
i.e., not the most general, not the shortest, etc,.

A. matrix of units constitutes the proof area and functions as a clause list (see C in figure 1). This
list represents an ordered set of clauses that form the proof. The query clauses are clamped onfo this
area and activate hard constraints that force the rest of the uniis of the matrix to form a valid proof
(if it exists}).

Variable binding is performed by dynamic allocation of instances using a technique that is similar
to the techniques used in [Anandan et al. 89] and in [Barnden §1]. In this technique, if two symbols
need to be bound together, an instance? is allocated from a pool of general purpose instances, and
this instance is connected to both symbols. An instance can be connected to a literal in a clause, to
a predicate type, to a constant, to a function or to a slot of another instance (for example, a constant
that is bound to the first slot of a predicate).

3. Representing proofs of propositional logic

I'll start by assuming that the knowledge base is propositional; i.e., each clause in the knowledge base
is a list of positive and negative literals and each literal is an atomic proposition. Section 5 extends the
mechanism to first-order predicate logic (FOL).

3.1. The proof area

The clauses that participate in the proof are represented using a 3-dimensional matrix (C, ;;) and a
2-dimensional matrix (P, ;) as illustrated in figure 1. The rows of C represent clauses of the proof, while
the rows of P represent atomic propositions. The columns of both matrices are the pool of instances
used for binding propositions to clauses.

A clause is a list of negative and positive instances that represent literals. The instance thus behaves
as a two-way pointer that binds composite structures like clauses with their constituents (the atomic
propositions). If the same instance is allocated both to a clause and to an atomic proposition we say
that the clause and the proposition are bound.

A row { in the matrix C, represents a clause which is composed of pairs of instances. If the unit
Cy i j is set, then the matrix represents a positive literal in clause i. If P4 ; is also set, then Cy ;;

%] use the terminology of [Anandan et al. 89].
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Figure 1: The proof area for & propositional case

represents a posilive literal of clause i that is bound fo the atomic proposition A. Similarly C_;;
represents a negative literal.

A proof is a list of clauses that satisfies certain constraints. For example: given a knowledge base of
the following clauses:

1) A

2) ~AVBVC

3}BVD

4) -Cv D
we would like to prove the query D, by generating the following list of clauses (the order is the reverse

of the common practice):

1) D (obtained by resolution of clauses 2 and 3 by canceling A).
2) A (original clause no. 1).
3)—AvVD (obtained by resolution of clauses 4 and 5 by canceling C).
4) -CvD (original clause no. 4).
5) "AvCVD (obtained by resolution of clauses 6 and 7 by canceling B).
6)-BvD (original clause no. 3).

7) ~AVvBvVC (original clause no. 2).

Each clause in the proof is either an original clause, a copy of a clause from earlier in the proof, or a
resolution step. The full representation of the above proof appears in figure 1.
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In figure 1, the first row of matrix C is the query® clause D. It contains only one positive literal
that is bound to atomic proposition I via instance 4, The third row of the matrix represents a clause
of two literals: a positive one that is bound to D via instance 4, and a negative one bound to A via
instance 1 (this is the clause —~A v D); it is generated as a result of a resolution step.

3.2. Posting a query

A query is posted by clamping its clauses onto the first rows of C and setiing the appropriate IN
units. This indicates that the query clauses participate in the proof and should be proved by either a
resolution step, a copy or an original clause.

Figure 1 represents the complete proof for D (the query). We start by allocating an instance (4) for
D in the P matrix, and clamping a positive literal D in the first row of C (Cj. 1,4); the rest of the row’s
units are clamped zero. The unit I'N; is biased (to have the value of one) to indicate that the query is
in the proof. If no proof exists, the IN; unit will become zero; i.e., the global minima is obtained by
setting IN; to zero despite the bias.

Once a clause is in the proof, it must itself be proved and so on.

3.3. Participation in the proof

The vector IN represents whether a clause ¢ participates in the proof. In our example, all the clauses
are in the proof; however, in the general case some of the rows of C' may be meaningless. When IN; is
on, it means that the clause 7 is in the proof and must be proved as well.

Every clause that participates in the proof is either a result of a resolution step (RES; is set), a
copy® of a some clause (CPY; is set), or it is an original clause from the knowledge base (K B; is set).
Clause C3 in figure 1 for example is an original clause of the knowledge base. If a clause 7 is copied
it must be in the proof itself and therefore IN; is set. Similarly, if it is a result of a resolution step
(as in the case of figure 1) then the two clauses must also be in the proof (IN;y; ; and IN;y 2 ;) and
therefore must be themselves resolvents, copies or originals. This chain of constraints continues until
all constraints are satisfied and a valid proof is generated,

3.4. Representing resolutions steps

The vector RES is a structure of units that indicates which are the clauses in C that are obtained by
a resolution step; i.e., If RES; is set, then the #th row is obtained by resolving row i+ 1 of C' with row
i 4 2. Thus, the unit RES; in figure 1 indicates that the clause D in the first row of C is a resolvent
of the second and the third rows of C representing = AV D and A respectfully. Two literals cancel each
other if they have opposite signs and are represented by the same instance. In figure 1, the literal A in
the third row of C' and the literal —A of the second row cancel each other generating the clause of the
first row.

*If the query consists of more than one clause then it nuses the first few rows of C.
5The proof example in figure 1 does not need copy steps; however, in general such copies are needed, if we want our
proof mechanism to be complete.
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3.5. Representing canceled literals

The rows of matrix R represent literals canceled by resolution steps. If C; is the result of a resolution
step, there must be one and only one instance 7 such that both clause { + 1 and clause { + 2 include it
with opposite signs. For example (figure 1): the clause D in the first row of C is the result of resolving
the clause A with the clause A v D which are in the second and third rows of C respectfully. Instance
1, representing atomic proposition 4, is the one that is canceled; R; ; is set therefore, indicating that
clause 1 is the result of a resolution step that cancels the literals of instance 1.

3.8. Copied and original clauses

The matrix IJ indicates which clauses are copied to other clauses in the proof area. Setting D; ; means
that clause { is obtained by copying clause j info clause 7 (figure 1 does not use any copy step).

The matrix K indicates which original knowledge-base clauses participate in the proof. The unit
K; ; indicates that a clause i in the proof area is an original clause, and the syntax of the j-th clause in
the knowledge base must be imposed on the units of clause i. In figure 1 for example, clause 2 in the
proof assumes the identity of clause number 1 in the knowledge base and therefore Ky o is set.

4. Hard constraints

We are now ready to specify the hard constraints that must be satisfied by the units so that a proof
is found. The constraints are specified as well formed logic formulas (boolean formulas). For example
the formula (AV B) A C imposes a constraint over the units (4, B, C) such that the only possible valid
assignments to those units are (011), (101}, (111). A general method to implement an arbitrary logical
constraint on connectionist networks is shown in [Pinkas 90b].7

4.1. In-proof constraints

If a clause participates in the proof, it must be either a result of a resolution step, a copy step or an
original clause. In logic, the constraints may be expressed as:

Vi:IN;—RES;vCPY;v KB;

The three units (per ¢lause 7) consist a winner takes all subnetwork (WTA). This means that only one
of the three units is actually set. The WTA constraints may be expressed as:

RES;—-CPY; A—KB;

CPY;——RES; AN K B;

KB;——RES; AN ~CPY;

The WTA property may be enforced by inhibitory connections between every pair of the three units.
Figure 2 illustrates an implementation of such subnetwork.®

"The algorithm in [Pinkas 90b] may generate hidden units if the constraint involve more than two units. The number
of hidden units generated is in the order of the size of the formula.

8This is a general technique to implement a disjunctive constraint on WTA units. Many of the constraints in this
paper may be implemented in a similar way. Other fechniques (not necessarily symmetric) may also be used.
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Figure 2: A disjunctive constraint on a WTA network (IN;—(RES; V. CPY; v K B;)).

4.2. Copy constraints
If CPY; is set then clause 1 must be a copy of another clause j in the proof. This can be expressed as
Vi : CPY;— \/(Di; AIN).
i

The rows of D are W'TA allowing i to be a copy of only one j; thus, the constraint may be implemented
like the “in-proof” constraint mentioned earlier. In addition, if clause j is copied into clause i then
every unit set in clause 7 must also be set in clause i.? This may be specified as:

Vi, 5,1 Di j—=((Caig — Cr i) A(C-ia — C_ 1))

4.3. Resolution constraints

If a clause ¢ is a result of resolving the two clauses i 4- 1 and i 4 2, then there must be one and only one
instance () that is canceled (represented by R; ;), and C; is obtained by copying both the instances of
Ciy1 and Cjiyg, without the instance j.

These constraints may be expressed as:

Vi: RES;— V,- R;; at least one instance is canceled

Vi, 5,54 # 7 Rij——Riy only one instance is canceled (WTA)

Vi, 7 Ry j—(Cy 41,5 A O ip2j) V(C_ iy1; A Cy ita ;) cancel literals with opposite signs.

Vi: RES;~INijp1 A TNy the two resolvents are also in proof

Vi: RES;i—(Ch i j44(Cyit1,; V Crit25) AR copy positive literals without the canceled
Vi: RES;—(C_ i j++(C_ iy1,; VC_i425) ARy copy negative literals without the canceled

4.4, Clause-instance constraints

The sign of an instance in a clause should be unique; therefore, any instance pair in the matrix C is
WTA:
Vi, j i G j—C- i

9Clause { is either copied or weakened; i.e., more literals are added to the clause { in addition to the literals of j.
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The columns of matrix P are WTA since an instance is allowed to represent only one atomic proposition:

VA, i, B # A: Py i—Py;.

The rows of P may be WTA:®
VA, 1,5 #£1: Pai—Py;.

4.5. Knowledge base constraints

If a clause 1 is an original knowledge base clause, then there must be a clause j (out of the m original
clauses) whose syntax is forced upon the units of the i-th row of matrix C. This constraint can be

expressed as:
m
Vi: KBi—~\/ Ki;
i
The rows of &' are WTA networks so that only one original clause is forced on the units of clause i:

Vi, j, 5 # 52 Kij——Kiji.

‘The only constraints that are left are those that force the syntax of a particular clause from the
knowledge base. Assume for example that K; 4 is set, meaning that clause ¢ in C' must have the syntax
of the fourth clause in the knowledge base (—~C Vv D). Instances j and j' must be allocated to the atomic
propositions C and D respectfully, and must appear also in clause { as the literals C.. ;; and Cy ; .

The following constraints capture the syntax of (~C v D):

Vi: K;4—V;(C-ij APc;) there exists a negative literal that is bound to C;
¥i: Ki4—V;(D4,i,j A Pc,j)  there exists a positive literal bound to D.

Note that because the rows of P are WTA, it is possible to implement the constraints using :
Vi’j . K‘lu‘i_’(c—ail’. A P'Dlj)

Vi! j : Ki,4_+(c+:isj A PC!J.)'

5. FOL extension

In first-order predicate logic (FOL) instead of atomic propositions we must deal with predicates. As in
the propositional case, a literal is represented by a positive or negative instance; however, an instance
must be allocated to a predicate name and may have slots to be filled by other instances (representing
functions and constants).

For example, an instance for the literal R(f(X,a), X) must satisfy the following constraints: the
instance (#) must be connected to a predicate type R; a second instance () that is connected to the
function f must be connected also to the first slot of the instance of i. A third instance (k) that is
connected to the constant @, must be also connected to the second slot of j. Finally, any instance that
is connected to the first slot of  must also be connected to the second slot of 7. To accommodate such
complexity a new matrix (NEST) is added, and the role of matrix P is revised (see figure 3).

The matrix P must accommodate now function names, predicate names and constant names instead
of just atomic propositions. Each row of P represents a name, and the colummns represent instances that
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Figure 3: The proof area for a FOL example: proving R(f(b,U), V) from P(Z, W) and B(f(X,a), X}V
-P(X,Y).

are allocated to those names. The rows of P that are associated with predicates and functions may
contain several different instances of the same predicate or function, thus, they are not WTA anymore.

In order to represent compound terms and predicates, instances may be bound to slots of other
instances. The new matrix (NEST, ;) is capable of representing such bindings. If N EST; ;p is set,
then instance 7 is bound to the p slot of instance j. Instance 1 in figure 3 for example, represents the
predicate R(f(X,a), X): instance 1 is allocated to predicate R; instance 5 is allocated to the function
f; instance 2 is allocated to the constant a and 6 is used as an instantiation of the variable X. Instance
5 (the function f) is bound to the first slot of instance 1 using the unit NESTg,,1; the constant a
represented by instance 2 is bound to the second slot of 5 (NESTh 5 2). The variable X represented by
instance 6 is bound to the first slot of instance 5 and to the second slot of instance 1 (NESTgs 1 and
NESTs1,2). Note that the columns of NEST are WTA, allowing only one instance fo be bound to a
certain slot of another instance,

When a clause 7 is forced to have the syntax of some original clause I, syntactic constraints are
triggered so that the literals of clause { become instantiated by the relevant predicates, functions,
constants and variables imposed by clause ..

For example, assume that clause m in the knowledge base is of the form: R(f(X, a), X)V-P(X,Y).

10This is not mandatory, but helpful in specify the syntactic constraints of the next subsection.
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If clause ¢ in C must have the syntax of clause m of the knowledge base, there must be some positive
literal (instance j) of predicate R; and a negative literal (instance [) of predicate P. The first slot of j
must be instantiated by some instance j' representing f. Some instance 7" representing the constant
a must instantiate the second slot of j'. In addition, any instance that fills either the first slot of j7,
the second slot of  or the first slot of /, must fill all of these slots (representing the variable X). This
corapound constraint can be expressed as:

Vii:Kim— VJ.(C.,_,,-,J- A Pr ;i) there exists a positive literal R in #;

Vii:Kijm— VJ-(C_,,-,; A Pp;) there exists a negative literal = P;

Vi, j: K,',m A C+,,',J' A PR,j_*VjJ(NESI}",j,l A Pf,j:)
there exists a function f in the first slot of R;

Vi, 5,7t Kim ACyhij ANEST) ;1 A Prj=—t VJ-H(NES‘.Z}”’J",z A Py 1)
there exists a constant a in the second slot of f in R;

Yi, 7,3, : K.',m A C+,,‘.J' A PR,J‘ A NESI}:JJ—)(NEST}I,J-r,lHNESﬁr,j’g)
whatever instantiates the first slot of f in R also instantiates
the second slot of R and vice versa (R(f(X,), X));

Vi, 5, LUt Kim ACyh i A PriANC- i3 A Ppi—(NESTy jo+NEST ;1)
whatever instantiates the second slot of R also instantiates
the first slot of P and vice versa (R(, X) vV P(X,)).

The second slot of I represents an unbounded free variable Y. There is no constraint on this slot
and it can be instantiated later by dynamic unification (or not be instantiated at all).

Unification is implicitly obtained if two predicates are instantiated using the same instance while
still satisfying the constraints. When a resolution step is needed, the network tries to allocate the same
instance to the two literals that need to cancel each other. If the syntactic constraints on the literals
permit such sharing of an instance, then the attempt to share the instance is successful and a unification

occurs

5.1. An example

Figure 3 represents the proof of the query R(f(5,U), V) (where U,V are existentially quantified), in one
resolution step using the clauses: P(Z, W} and R(f(X, a), X} v-P(X,Y). The state of the proof area
in figure 3 represents the proof with the necessary unifications (after a global minimum was reached):

1R(f(b,a),bd) The query is obtained by resolving 2 and 3;
2)P(6, W) an original clause;
3)R(f(b,a),b) v -P(b,W) an original clause.

The query is clamped by allocating an instance (1) to R, and two other instances (5,6) to f and &
respectfully {Pr,1, Pss, P 6). By clamping NESTs 5, we specify that the constant b fills the first slot
of f . By clamping N ESTs ;1 we specify that the function f fills the first slot of R. The first clause
of the proof area is clamped by setting C 1, while the rest of the units in the first clause are clamped
to zero. To initiate the search, IN; is clamped.

11Note that occur check is done implicitly since it is impossible to generate infinite nested trees when there is a bound
on the number of Instances.

12Note that existentially quantified variables in the query are left with no constraints to limit them., Universally
quantified query variables should be skolemized; i.e., instantiated by a unigue constant that cannot be matched by any
constant in the knowledge base. Remember that unlike standard resolution, the query is not negated and this is the
reason we skolemize universal quantifiers and not existential quantifiers.
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The system attempts to prove the query by allocating instance 1 (of the query) also to the literal
R(f(X,a), X). This causes instance 6 (the constant ) to fill also the second slot of 1 and the first slot
of 3 which is the instance that happened to be allocated to the literal ~P(X,Y’). This last instance (3)
is shared with P(Z, W), the two literals cancel each other and the query (represented by instance 1) is
proved.

6. Optimization and soft constraints

The constraints discussed in the previous section are sufficient to force valid proofs on the units of the
proof area; however, among the valid proofs some are preferable to others. By means of soft constraints
and optimization it is possible to encourage the network to search for the preferred proofs. Theorem-
proving thus is viewed as a constraint optimization problem. A weight may be assigned to each of the
constraints'® and the network tries to minimize the weighted sum of the violated constraints, so that
the set of the optimized solutions is exactly the set of the preferred proofs. The following are some
examples where this approach is useful.

6.1. Most general unifications

Two literals of different sign are unified iff they are instantiated by the same instance. The hard
constraints imposed on the instances are enough to assure that the unification is correct if the constraints
are satisfied. However, the unification that is obtained is not necessarily the most general one (MGU).

The assignment of small penalties (negative bias) to every binding of a function (or a constant) to
a position of another instance (in NEST), causes the network to search for a proof that uses as few
bindings as possible:
Vi, j, 5 : e(Pyj—+NEST; ;.).

The penalty (€) is small enough not to interfere with the hard constraints; it is sufficient however, to
cause the network to prefer unifications with fewer bindings. It is easy to show that a unification with
as few variable bindings as possible is a MGU.

6.2. Parsimony, minimizing cost of plans and reliability

If shorter proofs should be preferred, soft constraints may be added that penalize every clause that

participates in the proof:
Vi E(—IIN.').

Minimizing the penalty thus corresponds to finding the shortest proof.

If the knowledge is used to reason about plans (for example, in situation calculus), each of the
actions is represented by a function and may be penalized using its cost. Let f be an action and let py
be the cost of this action (eg., the time it takes to perform the action): the constraints

Vf € ACTIONS, i : py(~Py).

cause the network to search for plans that have minimal sum of costs.

Each of the clauses in the knowledge base may have a reliability (or certainty) associated with it.
We can therefore rank all possible proofs according to their reliability. Let p; be a reliability measure
that is associated with the ith clause; the constraint

Vi, i1 1/pi (=K j)

13For a general method for expressing weighted soft constraints on symmetric networks see [Pinkas 91d].
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causes the network to search for proofs that are based on more reliable clauses,!* Attaching penalties to
beliefs is a useful techniques to represent nonmonotonic knowledge (see [Derthick 88], [Goldszmidt, et al. 90],
[Pinkas 91c]).

6.3. Coping with inconsistency

The last approach of having reliability measures (certainties) attached to beliefs may be extended for
dealing with inconsistent knowledge bases. Thus, consistent subsets of the beliefs in the knowledge
base may be used to prove contradicting conclusions, The ranking among proofs determined by the
certainties may be used for preferring one possible conclusion rather than its negation. It is possible
to build an inference mechanism that entails @ iff there exists a proof that supports ¢ and no better
(or equally good) proof exists that contradicts . This notion of competition among contradicting
proofs enables us to express defeasible rules, defaults, and exceptions, as well as to reason with noisy
knowledge.

To construct this nonmonotonic mechanism we may use the same constraints that introduce certain-
ties to beliefs are used. In addition, two subnetworks are constructed: one that searches for a proof for
the query and the other that tries to prove its negation. Using the hard constraint Q«—@Q the combined
network is forced {o either prove @ or its negation. By biasing —¢ a bit more than the biasing for @,
we cause the proof for Q to win if and only if it is strictly better than any proof for =Q.1%

7. Summary

Given a finite set T of m clauses, where n is the number of different predicates, functions and constants,
and given also a bound k over the proof length, we can generate a network that searches for a proof
with length not longer'® then k, for a clamped query Q. If a global minimum is found then an answer
is given as to whether there exists such a proof and the proof {with MGU’s) may be extracted from
the state of the visible units. A nonmonotonic extension of the technique allows proving @ from an
inconsistent knowledge base, if a proof for Q is found and no “better” proof exists that contradicts Q.

In the propositional case the network that is generated is of O(k?+km-+kn) units and O(k3+km-+kn)
connections.” For predicate logic there are O(k® + km + kn) units and connections, and we need to
add O(kim) connections and hidden units, where { is the maximal complexity-level’® of the syntactic
constraints. Note that if the the maximal proof length (k) is a small constant, the size of the network
becomes linear in the size of the original knowledge base.

Most of the problems in an earlier approach [Ballard 86] are fixed: 1) We are not limited to unit
resolution and the syntax of the FOL clauses is not restricted at all; 2) the network is compact and the
representation of bindings (unifications) is efficient; 3) nesting of functions and multiple uses of rules
are allowed; 4) only one relaxation phase is needed {and not two as in [Ballard 86]); 5) the network is
capable of coping with inconsistency; 6) the query does not need to be negated and pre-wired; it can

14The reliability rank of a proof is the sum of —1/p; of all the clauses that participate in the proof. A proof is better
iff its reliability is higher.

15The approach can be implemented easily for the propositional case; however, in FOL an inconsistent set of clauses
may be used to form a faulty argument. I have not found a way yet to integrate a consistency check on a FOL “proof”
so that a consistent proof is found in a single relaxation phase.

18The bound k limits the number of clauses in the proof the number of literals that participate in the proof and the
number of sub-terms that participate; i.e., the number of bindings.

17§ only pairwise connections are allowed, more hidden units (O(¥3 + km + kn})} are needed.

18The complexity level of a syntactic constraint is determined by the number of different instances involved in it. It is
a function of the nesting Ievel of the terms within the clause and of the interdependencies among them.
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be clamped during query time; and 7) global minimum always corresponds to a proof if one exists (no
loops).

As for performance, local minima still exist, so the task of finding a global minimumn may be hard
(note that we are trying to solve an inherently intractable problem). Hopes for an improved average-case
performance are based on the massively parallel architecture, on training algorithms that re-shape the
energy surface, and on other advances in the dynamics of neural and constraint satisfaction networks,

The architecture discussed has a natural fault-tolerance capability: the units in matrices C, P, R
and NEST, are dynamically allocated for binding purposes. When a unit becomes faulty, it simply
cannot assume a role in the proof, and other units are allocated instead. Similarly, instances (like in
matrices K, D) or clauses (like in C,IN,RES, K B) are simply ignored if they cannot be used, and
other instances/clauses are used instead.

The implementation is not limited only to the symmetric networks discussed in [Pinkas 90b]; the
special energy funetions of [Derthick 88] may be used, as well as a variety of techniques and heuristics
for constraint satisfaction networks [Dechter, Pearl 88]. .
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