
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Winter 1-15-2021

Machine Learning Morphisms: A Framework for Designing and Machine Learning Morphisms: A Framework for Designing and

Analyzing Machine Learning Work ows, Applied to Separability, Analyzing Machine Learning Work ows, Applied to Separability,

Error Bounds, and 30-Day Hospital Readmissions Error Bounds, and 30-Day Hospital Readmissions

Eric Zenon Cawi
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Sciences Commons, Electrical and Electronics Commons, and the Statistics and

Probability Commons

Recommended Citation Recommended Citation
Cawi, Eric Zenon, "Machine Learning Morphisms: A Framework for Designing and Analyzing Machine
Learning Work ows, Applied to Separability, Error Bounds, and 30-Day Hospital Readmissions" (2021).
McKelvey School of Engineering Theses & Dissertations. 605.
https://openscholarship.wustl.edu/eng_etds/605

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=openscholarship.wustl.edu%2Feng_etds%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=openscholarship.wustl.edu%2Feng_etds%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=openscholarship.wustl.edu%2Feng_etds%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/605?utm_source=openscholarship.wustl.edu%2Feng_etds%2F605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

McKelvey School of Engineering

Department of Electrical and Systems Engineering

Dissertation Examination Committee:
Arye Nehorai, Chair

Shantanu Chakrabartty
ShiNung Ching

Ulugbek Kamilov
Patricio S. La Rosa

Neal Patwari

Machine Learning Morphisms: A Framework for Designing and Analyzing Machine
Learning Workflows, Applied to Separability, Error Bounds,

and 30-Day Hospital Readmissions
by

Eric Cawi

A dissertation presented to
the Graduate School

of Washington University
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

January 2021
Saint Louis, Missouri

c©2021, Eric Cawi

Contents

List of Tables . iv

List of Figures . v

Acknowledgments . vii

Abstract . x

1 Machine Learning Workflows: Background and Motivation 1

2 The Machine Learning Morphism . 8
2.1 Statistical Learning Overview . 8
2.2 Defining the Machine Learning Morphism 12

2.2.1 Notation with Regards to Priors . 15
2.2.2 Examples of MLM’s: Linear Regression, Standardization, Naive Bayes 16
2.2.3 Composition of MLM’s . 18
2.2.4 Asymptotic Equality of MLM’s . 25

2.3 Chapter Review . 28

3 Separable Machine Learning Morphisms are Parallel without Sacrificing
Optimality . 30
3.1 Defining Scalable Machine Learning via Asymptotic Equivalence 32
3.2 Strategies for Separability in Mean-Squared Error Problems 34

3.2.1 Separable Linear MLM’s are Feature Parallel 34
3.2.2 Incorporating Prior Information Using Maximum A Posteriori Estima-

tion . 43
3.2.3 Uncorrellated Ensembles are Model Parallel 47
3.2.4 Ensemble Models Built with Randomization are Model, Data, and

Feature Parallel . 49
3.3 Chapter Review . 52

4 Performance Bounds and Generalization Error 55
4.1 The “Bayes” Workflow is the MLM with the Lowest Generalization Error . . 56
4.2 Bounding MLM MSE . 57
4.3 Example Bounds for Individual MLM’s . 60

ii

4.3.1 Centering . 61
4.3.2 Principal Component Analysis . 64
4.3.3 Linear Regression . 65

4.4 Composition of Bounds . 67
4.4.1 Proof of Proposition . 70
4.4.2 Principal Component Analysis Composed with Centering 74
4.4.3 Bound for Principal Component Regression 77

4.5 Chapter Recap . 79

5 Predicting 30-Day Hospital Readmissions Using MLM’s and Topological
Data Analysis . 80
5.1 30-Day Hospital Readmissions at Barnes Jewish 81

5.1.1 Patient Data . 82
5.1.2 Challenges . 86

5.2 TDA Mapper as a MLM . 87
5.2.1 Mapper Algorithm . 87
5.2.2 Machine Learning Workflows with Mapper 89

5.3 Numerical Experiments . 95
5.3.1 Comparisons . 95
5.3.2 Workflow Results on Hospital Readmissions Data 97

5.4 Is the Readmissions Workflow Separable? . 102
5.5 Chapter Recap . 108

6 Conclusions and Future Work . 110

Appendix A Proof of results in Chapter 3 114
A.1 Proof of Theorem 1 . 114
A.2 Principal Component Regression . 116

References . 128

iii

List of Tables

2.1 Notation for sets, spaces, functions, etc used throughout this dissertation. . 8
2.2 Common operations expressed as MLM’s . 19

5.1 Results for different workflows of logistic regression on hospital readmissions
data, with (standard deviations) over n=10 runs. 97

5.2 Results for different workflows of SVMs for hospital readmissions data, with
(standard deviations) over n=10 runs. 98

5.3 Results for different workflows of random forests for hospital readmissions
data, with (standard deviations) over n=10 runs. 98

5.4 Results for different workflows of Adaboost classifiers, with (standard devia-
tions) over n=10 runs. 100

iv

List of Figures

2.1 Probabilistic representation of an MLM, which can be characterized by the
five elements in Def. 1. The learning and choice of optimal parameters are
controlled by the loss function. The morphism outputs into an approximation
space which may not be exactly the same as the true output space, but for
properly designed workflows the approximations ŷ will be close to the true
value y. 15

2.2 The output compositionML2 ◦OML1 first estimates the optimal parameters
of ML1 using empirical risk function R̄1. Then the optimal parameters of
ML2 are estimated using the risk function R̄2, using the output of ML1 on
the training set. 21

2.3 The structural composition ML2 ◦S ML1 estimates the parameters jointly.
As an operation on two MLM’s it combines elements of bothML1 andML2.
This composition will always be more optimal with respect to L2 but may be
more difficult to compute. 22

4.1 The Cramèr-Rao lower bound for the sample mean. As n increases, the error
goes down and the MSE between x2 and FC(x1;θ∗C) approaches 0. 63

4.2 Sometimes the reconstruction error smoothly and swiftly converges to the
lower bound. 66

4.3 Lower bound using Equation 4.14 for OLSLR. As the number of training
samples increases the MSE on the test set approaches the bound. 68

4.4 The reconstruction error of PCA composed with centering. The observed error
covariance is very tight with the true error, and higher than the proposed
bound. This is expected as the bound is a lower bound for the true Fisher
information. 76

4.5 MSE and lower bound computed using Equation 4.95, overlayed with MSE
and bound for OLSLR. As can be seen, they are equal in this case, because
the MLM’s are asymptotically equivalent. 78

5.1 Visualization of Exclusions of data from original dataset. Most were excluded
when we removed repeat visits, as we did not want to account for time de-
pendency. The rest were excluded to missing data. 83

5.2 Descriptive Table of Patient Data from Barnes Jewish Hospital, number rep-
resents number of patients, number in parentheses represents percentage of
total patients in that column . 85

v

5.3 Readmission outcomes of patients receiving institution interventions. 85
5.4 Multivariate logistic regression, showing the odds ratio, confidence interval,

and p-value of significant predictors. 86
5.5 Block diagram of Eq. 5.3, showing how a workflow is created for each node.

The first step is one-hot encoding the data to embed it into RM . The next
step computes the Mapper graph of the data. Then models are trained on
each node, and summed. Finally, a decision function outputs the final class
prediction. 93

5.6 Typical Mapper graph generated from hospital readmissions data. The nodes
are colored showing level of readmissions, and larger node size indicates a
higher number of patients in that node. 99

5.7 Estimated node correlation for AdaBoost workflows with PCA(5.7b) and with-
out PCA(5.7a). The correlation between nodes is less for PCA, which is to
be expected since PCA naturally decorrelates the input data. 103

5.8 Estimated node correlation for Logistic Regression with PCA(5.8b) and with-
out PCA(5.8a). The presence of PCA does not seem to significantly change
the magnitude of correlations between nodes. 104

5.9 Estimated node correlation for random forest workflows with PCA (5.9b) and
without PCA (??). The correlation between nodes is less for PCA, which is
to be expected since PCA naturally decorrelates the input data. 105

5.10 Estimated node correlation for SVM workflows without PCA. There is high
positive correlation between many of the nodes. 106

vi

Acknowledgments

I would like to first thank my advisor, Prof. Arye Nehorai, for his mentorship and insights

over the course of this dissertation, as well as financial support in the final months. Next,

thank you to Dr. Patricio S. La Rosa for our close collaboration, and for always being gentle

when dismantling my wilder ideas. Thank you to the committee, Professors ShiNung Ching,

Ulegbek Kamilov, Neal Patwari, and Shantanu Chakrabartty, and Dr. Patricio S. La Rosa

for providing feedback. Thank you to Dr. Ann-Marcia Tukpah and Dr. Lenise Cummings-

Vaughn, for close collaboration on the hospital readmissions projects, which became the

genesis for the MLM. Thank you to my friends in the department and St. Louis area, who

have shared in the trials and tribulations of the Ph.D. process. Finally, huge thank you to

my parents, who have always supported my work and provided commentary on my research

and papers, and listened to my practice talks.

I wish to acknowledge the financial support of the Preston M. Green Department for the

academic year 2015-2016, the NSF Graduate Research Fellowship Program from 2016-2019,

the Los Alamos National Laboratory Applied Machine Learning Summer school for summer

2018, and Dr. Naveen Singla and Bayer Decision Sciences Emerging Talent for Summer 2020.

vii

I also wish to thank the McDonnell International Scholars Academy for housing support and

five years of opportunites from 2015-2020.

Eric Cawi

Washington University in Saint Louis

January 2021

viii

Dedicated to my parents.

ix

ABSTRACT OF THE DISSERTATION

Machine Learning Morphisms: A Framework for Designing and Analyzing Machine

Learning Workflows, Applied to Separability, Error Bounds,

and 30-Day Hospital Readmissions

by

Eric Cawi

Doctor of Philosophy in Systems Science and Mathematics

Washington University in St. Louis, January 2021

Research Advisor: Professor Arye Nehorai

A machine learning workflow is the sequence of tasks necessary to implement a machine learn-

ing application, including data collection, preprocessing, feature engineering, exploratory

analysis, and model training/selection. In this dissertation we propose the Machine Learn-

ing Morphism (MLM) as a mathematical framework to describe the tasks in a workflow.

The MLM is a tuple consisting of: Input Space, Output Space, Learning Morphism, Param-

eter Prior, Empirical Risk Function. This contains the information necessary to learn the

parameters of the learning morphism, which represents a workflow task.

In chapter 1, we give a short review of typical tasks present in a workflow, as well as

motivation for and innovations in the MLM framework.

In chapter 2, we first define data as realizations of an unknown probability space. Then,

after a brief introduction to statistical learning, the MLM is formally defined. Examples

x

of MLM’s are presented, including linear regression, standardization, and the Naive Bayes

Classifier. Asymptotic equality is defined between MLM’s by analyzing the parameters in

the limit of infinite training data. Two definitions of composition are proposed, output and

structural. Output composition is a sequential optimization of MLM’s, for example stan-

dardization followed by regression. Structural composition is a joint optimization inspired

by backpropagation from neural nets. While structural compositions yield better overall

performance, output compositions are easier to compute and interpret.

In Chapter 3, we define the property of separability, where an MLM can be optimized by

solving lower dimensional sub problems. A separable MLM represents a divide and con-

quer strategy for learning without sacrificing optimality. We show three cases of separable

MLM’s for mean-squared error with increasing complexity. First, if the input space consists

of centered, independent random variables, OLS Linear Regression is separable. This is

extended to linear combinations of uncorrelated ensembles, and ensembles of non-linear, un-

correlated learning morphisms. The example of principal component regression is explored

thoroughly as a separable workflow, and the choice between equivalent linear regressions is

discussed. These separability results apply to a wide variety of problems via asymptotic

equality. Functions which can be represented as power series can be learned via polyno-

mial regression. Further, independent and centered power series can be generated using an

orthogonal extension of principal component analysis (PCA).

In Chapter 4, we explore the connection between generalization error and lower bounds used

in estimation. We start by defining the “Bayes MLM”, the best possible MLM for a given

problem. When the loss function is mean-squared error, Cramer-Rao lower bounds exist for

an MLM which depend on the bias of the MLM and the underlying probability distribution.

This can be used as a design tool when selecting candidate MLM’s, or as a tool for sensitivity

xi

analysis to examine the error of an MLM across a variety of parameterizations. A lower bound

on the composition of MLM’s is constructed by applying a nonlinear filtering framework to

the composition. Examples are presented for centering, PCA, ordinary least-squares linear

regression, and the composition of these MLM’s.

In Chapter 5 we apply the MLM framework to design a workflow that predicts 30-day hospital

readmissions. Hospital readmissions occur when a patient is admitted less than 30 days

after a previous hospital stay. We examine readmissions for a group of medicare/medicaid

patients with the four most common diagnoses at Barnes Jewish Hospital. Using MLM’s,

we incorporate the Mapper algorithm from topological data analysis into the predictive

workflow in a novel ensemble. This ensemble first performs fuzzy clustering on the training

set, and then trains models independently on each cluster. We compare an assortment

of workflows predicting readmissions, and workflows featuring mapper outperform other

standard models and current tools used for risk prediction at Barnes Jewish. Finally, we

examine the separability of this workflow. Mapper workflows incorporating AdaBoost and

logistic regression create node models with low correlation. When PCA is applied to each

node, Random Forest node models also become decorrelated. Support Vector Machine node

models are highly correlated, and do not converge when PCA is applied. This is consistent

with their worse performance.

In Chapter 6 we provide final comments and future work.

xii

Chapter 1

Machine Learning Workflows:

Background and Motivation

This dissertation introduces a fundamental mathematical framework to describe and analyze

machine learning workflows called the Machine Learning Morphism (MLM). In this chapter

we will provide background and motivation for the MLM. In Chapter 2 we formally define

the MLM and introduce basic properties of composition and asymptotic equality for work-

flows. In Chapter 3 we investigate separability properties of MLM’s, and show that a wide

variety of workflows can be approximated in a separable manner. In Chapter 4, we develop

Cramer-Rao style lower bounds for the generalization error of MLM’s, and investigate the

contribution of compositions to that error, In Chapter 5 we develop a workflow to predict

Hospital Readmissions using the MLM framework, improving over current methods.

This prompts a key question: What is a machine learning workflow? Fundamentally, machine

learning establishes a model between a Feature Space and an outcome of interest. The Feature

Space, or Input Space, is a space whose elements represent aspects of the process, system, or

data under study. The outcome of interest could be a number (regression), a discrete object

(classification, clustering), a function, or any other mathematical object. To learn, we assume

1

that there is a true but unknown relationship between the feature and the outcomes, and

learn the proper model between input and outcome based on previous observations.

Ideally, we would collect data, choose a set of candidate model types based on the problem

at hand, and train the models accordingly. However, the structure of data is generally not

immediately conducive to model training. For example, in Chapter 5 the data is a mixture

of real valued and categorical variables, and in order to train models we chose to embed the

categorical variables into real-valued space. This suggests that the mapping between inputs

and outputs is a sequence of learning tasks, which we will call a Machine Learning Workflow.

Expressing a model with a workflow allows us to improve performance at a variety of stages.

Workflows begin with tasks associated to data collection. One task in data collection is data

discovery, the process of acquiring a dataset [88]. Sources include open source benchmark

sets such as the UCI Repository [27], data from experiments, and/or data from processes such

as website clicks. Another task is augmentation, which is the addition of external data to

previously collected data. Augmentation is used widely in neural nets to increase the size of

the training set, mainly featuring warping the data (rotation, shifting, flipping for images) or

using sampling. As a final example of a data collection task, consider data generation. This

is used when sufficient data does not exist, and collection must be crowdsourced, for example,

Amazon Mechanical Turk [75]; or generated synthetically via packages such as sythpop [72]

or SMOTE Sampling [23]. Errors in data collection propagate through the entire workflow.

For example, if collected data does not represent the entire space of features and outcomes,

then a model will never learn parts of the relationship, and never correctly predict certain

input [11].

After data has been collected, preprocessing tasks such as standardization “clean” the data

and transform it into a format compatible with later tasks. Different problems necessitate

2

different preprocessing, tasks. For example, missing data is endemic in real applications, and

must be handled. Common tasks which handle missing data include deletion and imputation

[40]. Sampling is also used in preprocessing, as we wish to remove outliers and select the

most informative subsets of the collected data [36]. In categorical variables, embeddings are

used to project discrete data into real valued vector spaces [81]. Conversely, sometimes real

features are discretized or binned into intervals [31]. In Chapters 3 and 4, we will see that

centering, or subtracting the mean from data, is a fundamentally important preprocessing

task.

Another potential task in a workflow, exploratory analysis deals with the visualization,

statistical properties, and qualitative analysis of data [50]. One goal is to elucidate patterns or

properties which can be exploited later in the workflow. Another goal of exploratory analysis

is to present insights to a wider audience using tools such as Tableau. Visualization tasks

include plotting high dimensional data [17], representation and interpretation of learning

models [58], or exploring matrix structures such as covariance [77]. Principal Component

Analysis (PCA) [85] is used for dimension reduction, decorrelating data, and visualization,

and is a commonly used tool in exploratory analysis and feature engineering. In Chapter 5,

we also examine the TDA Mapper algorithm [93], a relatively recent exploratory tool which

creates a graph representation that captures the “shape” of high dimensional data.

Feature extraction builds off of exploratory analysis by either selecting the most relevant

features, engineering new features from the data, or both. By building new features, the

goal is to extract more relevant information and elucidate better training [42]. In addition

to PCA, other examples of feature extraction used for dimension reduction include Linear

Discriminant Analysis [6] and Multidimensional Scaling [25]. Autoencoders use a neural net

to generate a representation of the data [101]. Manifold learning assumes that data lies

3

on a manifold, and learns the representation of data on that manifold. Once features are

extracted, they must be selected, using an importance metric such as the Akaike Information

Criterion [102] or the Random Forest variable importance score [103]. Feature extraction

and selection are critical to overall performance.

Model training is what comes to mind with the phrase “machine learning,” and handles

the actual prediction of the newly created features. In this work, we assume that model

parameters are learned by optimizing a loss function over a training set. Common examples

of models include neural networks, random forests, and support vector machines. Models

often come with hyperparameters, which specify important aspects of the model but are

not optimized directly by the loss function. Instead, hyperparameter selection and model

comparison are done via processes such as cross validation. Cross validation works by setting

aside some of the training data as a validation set, training a model, and computing a metric.

This process is repeated many times and the metric is averaged to provide a more robust

estimate. In addition to hyperparameter and model selection, cross validation is used to

provide estimates of the overall model performance as well [110].

Workflow development is often seen as a combination of art and science, as there is no

“ultimate” workflow that is best suited for every situation [48]. Often, new ideas for feature

extraction or model training necessitate changes to the preprocessing steps or model selection.

Mathematically, the individual components of workflows are well studied, but there is no

rigorous theory for design of workflows as a whole.

The field of Auto-ML seeks automated design of workflows from an algorithmic perspective.

Packages such as TPOT [73] and Auto-sklearn [32] create wrappers around the popular scikit-

learn package in python, while Auto-WEKA [54] performs hyperparameter optimization over

the WEKA platform [109]. TPOT constructs a graphical model of a workflow, and then

4

uses a genetic algorithm to search the space of possible workflows [73], Auto-WEKA uses

a bayesian framework to iteratively optimize model hyperparameters. Auto-sklearn builds

off of Auto-WEKA, but also incorporates model performance on past datasets and creates

ensemble models out 15 classifiers available in scikit-learn [32]. Google’s Cloud AutoML is

the tech giant’s entry into the AutoML arena, which performs adaptive architecture search

[57].

Auto-ML packages are based off of different systems and languages, but they are required to

establish some sort of ontology on the space of machine learning. Mathematically, an ontology

is a set of objects (for example, functions in a library) and a set of operations, properties,

and relations between them (continuing the example: input/output compatibility, equality,

summation of functions). The packages I have mentioned above are examples of algorithmic

ontology, which feature a set of functions and rules about which functions can interface as

inputs/outputs. Then they search the space of workflows created by these rules. The field

of “Ontology Learning” uses machine learning to create ontologies across different sets of

data, and features prominently in text and language processing [63]. This, however, is not an

ontology on learning itself. In [104] and [105], Wang and others define a “Concept Algebra”

as an ontology for knowledge and machine learning modeling. A concept is an abstract

structure that could represent data, functions, or algorithms, and a large set of formal

algebraic operations are defined. Some challenges with this approach include mathematical

density, and the need to describe a huge array of concepts to cover the various tasks present

in a workflow over a huge array of data types. Therefore, there is a need for a simplified

mathematical representation of learning.

To address this need, we proposed the MLM. Every workflow task features an input/output

relationship, a mapping with parameters, and optimization over an objective function (or

5

equivalent selection method) which learns those parameters. An MLM is a tuple of five

elements which encodes the information necessary to perform a machine learning task [19],

and is endowed with several properties of equality, composition, and separability [20].. In

the coming chapters we will show that MLM’s can be used to design workflows, analyze

separability conditions, and investigate error bounds.

The MLM framework is inspired first and foremost by statistical learning, which we briefly

review in Chapter 2. In statistical learning theory, models are called learning machines, and

models are selected and parameters learned via the process of empirical risk minimization

[98]. Statistical learning makes several assumptions on the regularity of the learning ma-

chines, and specifically studies the model training portion of a workflow [99]. The MLM

framework loosens assumptions on the structure of the learning machines with the goal of

incorporating a larger variety of workflow tasks. For example, we use morphisms instead

of functions in order to account for operations transforming from one category to another.

The MLM couples the choice of learning morphism to a risk function because the param-

eters of the workflow are intrinsically coupled to the choice of risk function. Other fields

which define mathematical formalizations of machine learning include but are not limited to

Vapnik-Chervonenkis (VC) Dimension theory [45], probably approximately correct learning

[44], and algorithmic learning theory [5]. We will rely heavily on the study of empirical

risk minimization in VC Theory, which sets conditions for convergence to minimizing the

expected value of the risk [97].

The innovations of the MLM framework lie in its construction as a novel mathematical

object. We are able to define operations and comparisons across workflows, and propose

structural composition as a novel type of workflow optimization. Asymptotic equality lays

6

the foundation for algebraic operations and linear vector spaces or other ontological formu-

lations of machine learning workflows. The separability results propose a useful divide and

conquer strategy based on functional approximation and asymptotic equality. To the best

of our knowledge, Cramer Rao bounds are not fully explored for general workflows, and the

propogation of error across steps is novel. To the best of our knowledge, the incorporation

of Mapper into a workflow of this type is novel as well.

In the next chapter, we begin with a brief review of statistical learning, and then formally

define the MLM and the basic properties of asymptotic equality, output composition, and

structural composition.

7

Chapter 2

The Machine Learning Morphism

This chapter formally defines the Machine Learning Morphism (MLM). This starts with

a treatment of the definition of data by Mieske and Liese [67]. We continue with a brief

overview of Statistical Learning and Empirical Risk Minimization. Then, we present the

MLM as a mathematical object which attempts to generalize the learning machine from

statistical learning. We explore examples of MLMs, and define the concept of asymptotic

equality between MLM’s, as well as two types of composition.

2.1 Statistical Learning Overview

Mieske and Liese [59] define a statistical model as a probability space with an unknown

distribution paired with a set of candidate distributions that attempt to capture the unknown

Table 2.1: Notation for sets, spaces, functions, etc used throughout this dissertation.

Notation Meaning Example
Script Capital Space S

Bold, Non-Italic Set X
Bold, Italic, Lower Case, Index Array x, x1, y

Capital Italic Function P (·)
Italic, lower case Scalar n

8

distribution. We will use this formulation to explore the idea of machine learning from a

statistical perspective.

First define a triple (Ω,SΩ, PΩ), where Ω represents the universe, SΩ is a sigma algebra on Ω,

and PΩ : SΩ → R is the corresponding probability measure. Next, Mieske and Liese define

a mathematical representation of the universe called the Sample Space, (S,SS). Elements

∼ ∈ S are realizations of a random variable S : SΩ → S. S is also equipped with a sigma

algebra SS and unknown probability measure PS : S → R. Finally, a model is a triple

(S,SS,PΘ) (2.1)

where PA is a collection of probability measures indexed over a set A. The key assumption

is that the true probability measure is contained in the model, i.e. PS ∈ PA, or PA con-

tains a very close approximation to the unknown distribution. By ”close”, we may mean a

small Kullbach-Leibler (KL) Divergence, or directly compare the moments of the true and

approximating distributions.

In machine learning, we impose additional structure on the sample space, i.e. S = (X,Y).

Here Y represents a variable or outcome of interest, and X represents data collected which

relates to the outcome of interest via an unknown process. The elements of (X,Y) are

realizations of the joint random variable (X, Y). We again have a sigma algebra SX,Y with

elements (x,y) and an unknown joint distribution P(X,Y).

Our fundamental objective, however, is different than that presented in statistical decision

theory. Instead of learning the unknown probability distribution, we generally wish to predict

the output Y given an observation of X. Essentially, we wish to learn the conditional mean

EY |X(Y |X). Therefore instead of a set of probability distributions, in statistical learning

9

we have a set of mappings called learning machines, F : X → Y ∈ F, which attempt to

approximate EY |X(Y |X). For simplicity we will present an overview of supervised learning,

which is the case when we have observations of both the input and the output. However,

the fundamental idea remains the same in the unsupervised and semi-supervised cases.

In order to pick a learning machine from F, we assume that our observed data is a set of

realization from the sample space (X,Y). We will denote the realizations of the outcome

of interest as Y ∈ Y × Y × · · · × Y = Yn, and we will call the realizations of the features

as X ∈ X × X × · · · × X = Xn. In [98], Vapnik et al. give three criterion for a supervised

learning problem. The first is the underlying distribution of the features, P (X = x). Next

is the unknown conditional distribution P (Y = y|X = x). Finally, given a parameter space

Θ with elements θ, denote the function

F : X→ Y, ŷ = F (x;θ) (2.2)

used to approximate P (Y = y|X = x) as a learning machine. The parameters θ are learned

using a loss function

L : Y× F (X)→ R, l = L(y, F (x;θ)) (2.3)

as a measure of discrepancy between the predictions F (x;θ) and the observed values y.

Then define the expected risk function as:

R : Θ→ R, r = R(θ;X, Y, F) =

∫

S
L(Y, F (X;θ))dP (X, Y) = E(L(θ;X, Y, F)) (2.4)

where P (X = x, Y = y) = P (Y = y|X = x)P (X = x) is the unknown probability measure

on X and Y. This represents the expected value of the lost function across all realizations,

10

and the optimal parameters are defined as:

θ∗ = arg min
θ∈Θ

R(θ;X, Y, F) (2.5)

Statistical learning theory has a rich history, and the properties of learning machines are

widely studied and researched [78]. For example, Linear Regression [99], Support Vector

Machines (SVMs) [112], and Neural Networks [68] all use this optimization framework with

different choices of learning machine, loss, and risk functions to train their parameters. In

practice the parameters are learned by approximating Eq. 2.4 with an empirical risk function

[97] defined on the realizations:

R̄ : Θ→ R, r̄ =
1

n

n∑

i=1

L(yi, F (xi;θ)) (2.6)

and the optimal parameters are given by:

p̄∗ = arg min
p∈Θ

R̄(p;X, Y, F) (2.7)

Empirical risk is a valid approximation for the expected risk when Eq. 2.6 converges to

Eq. 2.4 in probability as n goes to ∞. The conditions for this convergence are discussed

thoroughly in [97], [99], and [98].

Learning workflows consist of a sequence of operations acting on the realizations in the

statistical space. We distinguish two types of operations in these workflows. The first

set consists of processes such as standardization and sampling, which help guarantee the

convergence of the empirical risk function to the continuous risk function defined in Eq.

2.4. The second set of operations learn the parameters of the learning machine F , which

can itself be defined as a composition of operations acting on the sample space. These

11

operations are often separated into stages such as preprocessing, feature extraction/selection,

model training, etc., and it can be difficult to understand what is actually happening to the

original data or if one has built the best workflow for the task at hand.

In our approach, we define a fundamental building block based off the idea of learning

machines and risk minimization in statistical learning theory called the Machine Learning

Morphism (MLM), that can be used to systematically build and analyze each step in a

machine learning application, and keep track of the data at each step in the process. Since

some data operations do not necessarily fit the mathematical definition of functions, for

example splitting the data into multiple training and hold-out sets for cross-validation, we

use morphisms as the building block rather than functions. This approach allows us to define

a workflow as a composition of morphisms acting on the sample space, whose parameters

are learned using a risk function acting on the statistical space.

2.2 Defining the Machine Learning Morphism

The MLM was defined in [19] as a mathematical object to describe transformations acting on

data in machine learning workflows. Formally the MLM is an object with five components:

Definition 1. Let:

• X be an input space, where X is part of a sample space {S,U} as defined above,

• Y be an output space,

• F : X→ Y a morphism from input to output spaces, with parameters θ ∈ Θ, and

• PΘ(θ) a probability distribution on θ representing prior knowledge of the parameters

12

• R̄ : Θ → R an empirical risk function of the form R̄ = 1
n

∑n
i=1 L(yi, F (xi;θ)), where

L : Y×Y→ R is a loss function. We assume that the empirical risk function converges

to the expected value of the loss function, i.e. lim
n→∞

R̄ = E(X,Y)(L). This is a standard

assumption in statistical learning [97].

Then the Machine Learning Morphism ML : X→ Y is defined as the tuple:

ML : (X,Y, F (x;θ), PΘ(θ), L(y, F)) (2.8)

and the output of the MLM is the learning morphism with parameters learned by optimizing

the loss function:

F (x;θ∗) (2.9)

where

θ∗ = arg min
p∈P

R̄(θ; X,Y, F (·;θ), P (θ)) (2.10)

and X ⊂ Xn and Y ⊂ Yn are n realizations of the input and output spaces used to learn

the parameters with prior distribution PΘ(θ).

The Machine Learning Morphism consists of the morphism F , whose parameters have been

optimized over an empricial risk function R̄ on the set of realizations from the statistical

space. The empirical risk function, or equivalently the choice of loss function, controls the

13

Figure 4.3: Lower bound using Equation 4.14 for OLSLR. As the number of training samples
increases the MSE on the test set approaches the bound.

68

and the Bayes Error is eΓi|i−1
= Γi|i−1 − xi

We will consider the case where the error vectors and Bayes MLM’s are Gaussian, and

uncorrelated from step to step. Then we propose the following bound:

Proposition 1. Let MLW =MLk ◦O · · · ◦OML2 ◦OML1 be a workflow. Assume that:

• The input spaces Xi for i = 1, ..., k are spaces of gaussian random variables.

• The error vectors ei,i−1 and ej−1,j are Gaussian and uncorrelated for i 6= j.

• The Error of the Bayes Models Γi|i−1 and Γj|j−1 are Gaussian and uncorrelated for

i 6= j.

For i = 2, .., k define:

• Lower bounds for each MLM given by Equation 4.14: cov(xi−Fi−1(xi−1;θ∗i)) < LBi−1,i

• Vi = var(xi|xi−1).

• Ri = var(xi − Fi−1 ◦ Fi−2 · · ·F1) < LBi−1,i

• EFi−1
= E(Fi−1 ◦ Fi−2 ◦ · · · ◦ F1(x1;θ∗i)− Fi−1(Xi−1;αi−1))

• Di = (I +
∂BTi−1,i

∂Xi
+

∂ETFi−1

∂Xi
)

• Ai = V−1
i−1 + DiR

−1
i DT

i

• Bi−1 = −E(
∂Γi|i−1(Xi−1)T

∂Xi−1
)V −1

i−1

• Ci−1 = E(
∂Γi|i−1(Xi−1)T

∂Xi−1
)V −1

i−1E(
∂Γi|i−1(Xi−1)T

∂(Xi−1)
)T

• I(X2) = LB1,2

69

Then we can recursively bound the fisher information:

E((Fi−1 ◦ Fi−2 · · ·F1 −Xi)(Fi−1 ◦ Fi−2 · · ·F1 −Xi)
T) << (4.48)

I(Xi) < (Di(LBi−1,i)
−1Di + V−1

i−1 −BT
i−1(I(Xi−1) + Ci−1)−1Bi−1)−1 (4.49)

4.4.1 Proof of Proposition

To prove this proposition, we frame a machine learning workflow as a nonlinear filtering

problem. In this manner, the state is the “true” sequence of data transformations. A non-

linear filter is a system consisting of two parts:

Xi+1 = Gi(Xi,vi) (4.50)

Zi = Hi(Xi, Xi−1, ..., X1, Zi−1,, Z1, ei) (4.51)

Here Xi is a “hidden” state, with Gi representing the process of transitioning from one state

to another. Zi is an observation of this process as a function of the current and previous

states, and the current and previous observations. vi and εi are noise vectors with zero mean

and known covariance matrices. To simplify this, we assume that Hi only depends on the

current and directly previous state and observations:

Hi = Hi(Xi, Xi−1, Zi−1, εi) (4.52)

Then we can define a joint probability distribution between the state and observations as:

P (X,Z) = P (X1)
k∏

i=2

P (Zi|Xi, Zi−1, Xi−1)
k∏

j=2

P (Xj|Xj−1) (4.53)

70

This distribution states that Xj only depends on the previous state, and Zi only depends

on Xi, Xi−1, Zi−1. For i, j = 1, ..., k, X be the vector containing states Xj and Z containing

observations Zi. Define the fisher information as

I(X) = −E(
∂2 logP (X,Z)

∂X∂XT
) (4.54)

Then if X̂(Z) is an estimator of X, we know that

E((Ẑ−X)(Ẑ−X)T) < I(X)−1 (4.55)

Futher, we can bound individual states by finding the information submatrix which we will

denote I(Xi)
−1, which is the ith diagonal element of I(X)−1.

For additive gaussian noise, the system is:

Xi+1 = Gi(Xi) + vi (4.56)

Zi = Hi(Xi, Xi−1, ..., X1, Zi−1,, Z1) + εi (4.57)

let Vi = cov(vi) and Ri = cov(εi) be known and invertible covariance matrices.

If we have formulated an estimator Xi ≈ X̂i(Z1, Z2, ..., Zi) then Tichavsky et al. [95] compute

the information matrix as:

I(Xi) = D22
i−1 −D12,T

i−1 (I(Xi−1 + D11
i−1)−1D12

i−1 (4.58)

71

For matrices given by

D11
i−1 = E(

∂GT
i−1

∂Xi−1

)V−1
i−1E(

∂GT
i−1

∂Xi−1

)T (4.59)

D12
i−1 = −E(

∂GT
i−1

∂Xi−1

)V−1
i−1 (4.60)

D22
i−1 = Vi−1 + E(

∂HT
i−1

∂Xi−1

)R−1
i E(

∂HT
i−1

∂Xi−1

)T (4.61)

When Gi and Fi are linear, this is the classical Kalman filter [95]. If we can formulate the

process of composition of MLM’s as a nonlinear system of this type, then we can utilize this

bound result. For the hidden state, we will use the Bayes MLM as Gi = Γi+1|i. The error

term in this case is normal with mean zero and variance given by the variance of Xi:

Vi = var(xi+1) (4.62)

Xi+1 = Γi+1|i(Xi) + vi (4.63)

For the observations, we use the output of the composition of the learning morphism, and

rewrite in terms of error. Let εi = ei−1,i − E(ei−1,i).

Hi = Fi−1(Zi−1;θi−1) = Fi−1(Fi−2(· · ·F1(Z1))) = (4.64)

Xi + ei−1,i = Xi + E(ei−1,i) + εi (4.65)

72

Recall that the bias of an MLM was denoted as Bi−1,i. Then

E(ei−1,i) = Bi−1,i + E(Fi−1(Zi−1; θi−1)− Fi−1(Xi−1;θi−1)) = (4.66)

Bi−1,i + EFi−1
(4.67)

Then the observation process is:

Hi = Xi + Bi−1,i + EFi−1
+ εi (4.68)

and the full nonlinear system is:

Xi+1 = Γi+1|i(Xi) + vi (4.69)

Zi = Xi + Bi−1,i + EFi−1
+ εi (4.70)

Then, the matrices defined in Proposition 1 are analogous to the matrices D11
i−1,D

12
i−1,D

22
i−1

from Tichavsky et al., and the bound follows from the assumption that Ri < LBi−1,i. This

assumption is based on the idea that compositions will induce more error via approximating

the true value of a state Xi. Finally, this bound is really a bound on the fisher information

matrix.

It is key to again note that we are assuming that εi are uncorrelated Gaussian random

variables. The Gaussian assumption is satisfied when the learning morphisms Fi preserve

normality, for example, linear or affine transformations. Uncorrelated error occurs when the

learning morphisms act as orthogonal projections. Therefore, a sequence of affine transfor-

mations on data should fulfill the assumptions of this bound.

73

4.4.2 Principal Component Analysis Composed with Centering

To investigate the composition of PCR, we will initialize the state X1 = Z1 = x1 as the

original input data. Then for i = 1 the system equation is:

X2 = Γ2|1(X1) + v1 = x1 −αx + v1 (4.71)

Z1 = X1 + B1,2 + EF1 + ε1 = X1 + 0 + ε1 (4.72)

Since this is not yet a composition we know that the covariance of the error is simply given

by the cramer-rao bound: I(X2) = LB12 = 1
n
ΣXX

Then for i = 2 we have the system equation:

X3 = Γ3|2(X2) + v2 = PTx2 + v2 (4.73)

Z2 = X2 + B2,3 + EF2 + ε2 = X2 + 0 + ε2 (4.74)

And we have the variance matrix

V2 = var(x3) = Λ (4.75)

and the matrices

D3 = I (4.76)

B2 = −PV−1
2 (4.77)

C2 = PV−1
2 PT (4.78)

74

and bound is given as:

I(X3) < (LB−1
2,3 + Λ−1 −BT

2 (I(X2) + C2)−1B2)−1 (4.79)

To see that this is less than the true information matrix, we will compute the covariance of

the error directly.

R3 = cov(x3 −ΘT
P(F1(x1;θC)) = (4.80)

cov(PTx2 −ΘP(x2 + e1,2)) = (4.81)

cov(e2,3 −Θpe1,2) = (4.82)

LB2,3 + ΘT
pLB1,2ΘP + 2cov(e1,2, e2,3) = (4.83)

LB2,3 + ΘT
pLB1,2ΘP + 0 (4.84)

because the cross term is zero

cov(e1,2, e2,3) =

(4.85)

E((x2 − F1)(x3 − F2)T) = E(x2x
T
3)− E(x2x2ΘP)− E((x1 − θC)xT3) + E((x1 − θC)xT2 ΘP) =

(4.86)

ΣXXP−ΣXXΘP −ΣXXP + 0 + ΣXXΘP − 0 =

(4.87)

0

(4.88)

75

Figure 4.4: The reconstruction error of PCA composed with centering. The observed error
covariance is very tight with the true error, and higher than the proposed bound. This is
expected as the bound is a lower bound for the true Fisher information.

This satisfies our assumption that the two errors are uncorrelated. Then the lower bound in

Equation 4.79 is a lower bound for this covariance. This is visualized in Figure 4.4. Notice

that the error is larger than the error of PCA on the true centered data, and that the error

is roughly additive. This is because ΘP is an orthonormal matrix, so the quadratic form

ΘT
pLB1,2ΘP does not change the overall magnitude of LB1,2. Given that the proposed bound

is lower than the true Fisher Information, why should we use it? In many situations, we will

not be able to compute the true lower bound, but this bound is realizable.

76

4.4.3 Bound for Principal Component Regression

Next, we examine the case of Principal Component Regression. This is the case of i = 3,

and we have the system equation:

X4 = y = Γ4|3(X3) + v3 = αy + ΣT
XY PTΛ−1x3 + v3 (4.89)

Z3 = X3 + B3,4 + EF3 + ε3 = X2 + 0 + ε3 (4.90)

And we have the variance matrix

V3 = var(x4) = ΣY Y (4.91)

and a bound on R4 < LB3,y.

Then we have the matrices:

D4 = I (4.92)

B3 = −Λ−1P ∗ΣXY V−1
3 (4.93)

C3 = Λ−1P ∗ΣXY V−1
3 ΣT

XY PTΛ−1I(X3) = LB2,3 + ΘT
pLB1,2ΘP (4.94)

and the bound:

I(y) < (LB−1
3,y + Σ−1

Y Y −BT
3 (I(X3) + C3)−1B3)−1 (4.95)

77

Figure 4.5: MSE and lower bound computed using Equation 4.95, overlayed with MSE and
bound for OLSLR. As can be seen, they are equal in this case, because the MLM’s are
asymptotically equivalent.

This bound is visualized in Figure 4.5. Interestingly, in this simulation this bound is compu-

tationally equivalent to LB3,y! Further, the MSE of the composition and the linear regression

on the “true” data is the same. Intuitively, this makes sense as we are not performing any

dimension reduction, and therefore PCR is equivalent to Ordinary Least-Squares Linear Re-

gression. In Chapter 3 and the appendix, we explore the idea that the regression coefficients

for OLSLR and PCR multiply to the same value, which means they will naturally have equal

error. In future work, we will explore the bound as dimension reduction is performed and

information is lost.

78

4.5 Chapter Recap

In this chapter, we explored the idea of covariance bounds on the MSE of MLM’s. First, we

established the Bayes MLM as the best possible workflow for a given loss function. Then

we defined a parameterization of the underlying distribution P (X, Y ;α), and established a

bound for MSE based on α, the Bayes MLM, and the bias of the MLM. For loss functions

other than MSE this bound is useful as it provides a bound for the variance of the difference

between an MLM and the Bayes MLM. Examples were presented for Centering, PCA, and

Linear Regression.

Then we examined the bound for a composition of MLM’s. To compute a bound, we pre-

sented the workflow as a nonlinear filtering system. The state was the evolution of the

Bayes MLM across each stage of the composition, and the observation was the output of

the workflow. By rewriting the observation we presented this problem as one with additive

noise, and exploited the bound of Tichavsky et al. [95] to bound the fisher information of

each stage. This is a lower bound on the fisher information, and is therefore going to be a

lower bound than the CRB. We presented this bound for the stages of PCR. In the case of

PCA, the bound is lower than the true covariance structure, and for full PCR the bound is

equivalent to the CRB. However, in many cases we may not be able to compute the CRB for

the overall workflow and it is useful to have a lower bound for workflow selection purposes.

79

Chapter 5

Predicting 30-Day Hospital

Readmissions Using MLM’s and

Topological Data Analysis

In this chapter, we build a workflow using a composition of MLM’s to predict 30-Day Hospital

Readmissions at Barnes Jewish Hospital in St. Louis. We begin by providing a brief definition

and overview of readmissions and the data under study. Our workflow utilizes the Mapper

Algorithm from Topological Data analysis to cluster patients, and then trains independent

models on each cluster. The cluster models are then combined into an ensemble, whereby

new patients are assigned to the cluster which they are most similar to, and that model is

used to predict the risk of readmission. We compared a variety of workflows for hospital

readmissions, and workflows trained using Mapper significantly improves over the LACE

score (most common risk prediction tool) for this patient population, as well as other models

trained on the entire dataset. Finally, we examine the workflow under the lens of separability

from Chapter 3.

80

5.1 30-Day Hospital Readmissions at Barnes Jewish

An unplanned hospital readmission occurs when a patient is discharged from the hospital

but returns at a later date for reasons either related or unrelated to the previous admissions.

Readmissions incur significant costs to both the hospital and the patients. The Agency for

Healthcare Research and Quality estimated that in 2011 this cost amounted to an additional

$41 billion dollars [46]. The emergence of the Hospital Readmissions Reduction Program

resulted in a national effort to identify patients at risk and interventions to reduce these

hospitalizations. However there are many complexities and challenges [52] and it remains a

controversial quality metric that may inadequately account for socioeconomic status; mean-

while associations with mortality need to be further characterized as decreases in readmission

have correlated with increases in mortality for heart failure and pneumonia. Disease specific

and overall readmission-risk prediction modeling [28][33][70][91] and efforts to improve care

delivery, especially during transition periods, have been studied extensively. The primary

metric reported for predictive performance is the area under the Receiver Operating Char-

acteristic (ROC AUC), which in medical literature is referred to as the c-Statistic. We will

use c-Statistic and ROC AUC interchangeably in this chapter.

Barnes Jewish Hospital (BJH) developed an intervention for patients 65 and older diag-

nosed with Acute Myocardial Infarction (AMI), Congestive Heart Failure (CHF), Chronic

Obstructive Pulmonary Disease (COPD), and Pneumonia (PNA). This intervention, BJH

Stay Healthy Outpatient Program (SHOP), has two arms: the Stay Healthy Clinic (SHC)

is a 45 minute appointment 7-10 days post discharge; and Outpatient Case Management is

a multidisciplinary management approach for up to 60 days post discharge. SHC patients

could be discharged home with/without Home Health services. The noted characteristics of

the SHC patients are: highest readmission rates, more than 3 comorbid diseases, poor health

81

literacy, above average social and socioeconomic issues, poor satisfaction with previous pri-

mary physician, and living alone. A few of the SHOP goals include: increasing medication

adherence, increasing provider visit attendance and decreasing hospital utilization.

Eligible patients are high risk inpatients identified using the LACE Index Scoring Tool. The

LACE score, developed in Canada (with a 30 day readmission rate of 8% in the development

cohort; overall cohort C-statistic 0.679) [96] is the most widely used method to quantify

the risk of readmission, but only achieves a C-statistic of 0.59 in our population and in

some other systems range 0.63-0.70 [61]. Yu et al. reported that “the institution specific

readmission risk prediction framework is more flexible and more effective than the one-size-

fit-all models like the LACE” [113]. Additionally, there is a fine balance in determining

the nature and extent of variables to include into risk prediction models as Nguyen et al.

reported after reviewing over 30,000 admissions that “incorporating clinically granular EHR

(electronic health record) data from the full hospital stay modestly improves prediction of

30-day readmissions” [70].

This chapter presents a proof-of concept study using relevant, available and limited variables

to better identify at risk patients (compared to the LACE score) at Barnes Jewish early in

their hospital stay in order to enroll them into the current readmission reduction programs.

A description of the cohort can be found in the next section.

5.1.1 Patient Data

The Center for Clinical Excellence at BJH determines whether a patient was readmitted.

The study cohort included patients discharged from May 1, 2015 to April 30, 2016 with an

index diagnosis of AMI, COPD, CHF, and PNA using discharge International Classification

82

Figure 5.1: Visualization of Exclusions of data from original dataset. Most were excluded
when we removed repeat visits, as we did not want to account for time dependency. The
rest were excluded to missing data.

of Diseases 9 and 10 codes cross-walked (Appendix 1). 965 registrations of BJH patients age

≥ 65 years using the Clinical Classification Software categories published by Healthcare Cost

and Utilization Project were identified, representing 824 unique patients but 776 were used

in final analyses after accounting for missing data and repeat visits. A diagram of exclusions

is presented in Figure 5.1.

The primary outcome we seek to predict is 30-Day Readmission. The variables collected are:

LACE Risk Score, presence of Diabetes, principal diagnoses from ICD9/10 codes, gender,

83

ethnicity, zip code readmission rate, length of stay, age, and presence of a primary care

provider. 134 (17.3%) of the patients were readmitted. In each run of the simulation, the

data was divided into 621 training and 155 test patients. Some descriptions of the population

under study are given in Figure 5.2.

The overall cohort readmission rate was 17.3% (134/776). Most patients had CHF (48.6%);

CHF patients were also the highest percentage of readmissions, 53%. Most patients were

male (54.1%) and 33.3% were 80+ years old (Figure 5.2). 18.3% of patients had diabetes

and were readmitted more (24% of diabetic patients vs 17.1% of patients without diabetes).

The average length of stay for all patients was 7 days but 8.3 days for readmitted patients.

Most of the patients (66.4%) had a LACE score of ¿=10 and they accounted for most of

the readmissions, 77.6%. (Figure 5.2). For patients who were known to have an appoint-

ment scheduled within 7 days of discharge, 18.2% were readmitted. Patients with CHF had

the longest median days to readmission (Overall: 11 days, AMI: 10 days, CHF: 14 Days,

COPD: 10 Days, PNA: 10 Days). The only statistically significant difference in variables

between readmitted and non-readmitted patients was the LACE Score (p=.007 - LACE 5-9

and p=.002 - LACE ¿=10). There were no statistically significant differences in readmis-

sion between patients who received SHOP/SHC or had a scheduled physician appointment

scheduled within 7 days post discharge prior to leaving the hospital (Figure 5.3).

The baseline model for comparison was a univariate regression with the LACE score as

the predictor. Multivariate Logistic Regression (LR) Models were trained on the entire set

of predictors, the predictors without LACE, the predictors without Discharge Disposition

(DD), and the predictors without both LACE or DD. The removal of the LACE score was

tested to identify other independent variables associated with readmission in our cohort and

DD was removed because that data is not available early in the hospital course. Figure 5.4

84

Figure 5.2: Descriptive Table of Patient Data from Barnes Jewish Hospital, number repre-
sents number of patients, number in parentheses represents percentage of total patients in
that column

Figure 5.3: Readmission outcomes of patients receiving institution interventions.

85

Figure 5.4: Multivariate logistic regression, showing the odds ratio, confidence interval, and
p-value of significant predictors.

shows predictors with increased odds of readmission were LACE score (OR 1.22; 95% CI

1.14- 1.31; p¡.001); home health discharge (OR 2.34; 95% CI 1.57- 3.49; p¡.001); male sex

(OR 1.97; CI 1.36- 2.86; p¡.001); age 75-79 (OR 1.78; 95% CI 1.2- 2.6; p¡.001) and having a

PCP noted in the EMR (OR 1.77; 95% CI 1.5- 2.72; p¡.01).

5.1.2 Challenges

However, the c-statistic of the multivariate logistic regression model, found in Table 5.1, is

0.49, which is much worse than using only the LACE score (0.59). Using SMOTE sampling

and variable selection, we improved the c-statistic to 0.64, which is still under the expected

performance of the LACE score.

Developing a predictive model for readmissions is challenging for a variety of reasons. There

was low data availability (< 1000 patient records were able to be collected from the databases).

The predictors are limited to basic diagnostic and demographic data, and do not provide an

86

accurate picture of what happened during the patient’s stay (which we hypothesize will have

some impact on readmissions). Further, the predictors are not well correlated to readmis-

sions, and in some cases are dependent/redundant. For example, Diabetes as a comorbidity

is included in both the LACE score and as a column in our dataset. Finally, this is an

imbalanced dataset, with most patients not experiencing readmissions.

Therefore, we developed a new predictive model using the MLM framework. The model

works by clustering the patients into more predictive groups, and training models specifically

on these groups. We addressed the class imbalance problem by exploring SMOTE and ROSE

sampling, and were able to improve over the predictivity of LACE and the multivariate

logistic regression. The next section provides an overview of the Mapper algorithm, a tool

from Topological Data Analysis which we utilized in our workflow.

5.2 TDA Mapper as a MLM

In this section we present a brief overview of the TDA Mapper algorithm, show that it fits

into the MLM framework, and build some example workflows utilizing Mapper.

5.2.1 Mapper Algorithm

Topological Data Analysis assumes that the input space X can be endowed with a collection

of subsets O. Elements o ∈ O satisfy ∪
i
oi ∈ O and

n<∞∩
i=1

oi ∈ O, and are called open sets. Then

the ordered pair {X,O}, forms a Topological Space. TDA builds topological spaces on top of

data points, and evaluates the shape of the computed spaces [106]. The critical features are

closed loops in various dimensions, which are invariant to rotation or multiplicative scaling.

87

When X is also endowed with a probability space, the topological features are also endowed

with a probability space [16], and can be used in machine learning. TDA has been used as

a novel visualization tool in bio-medical applications [34][8], text mining [38], and remote

sensing [29].

One visualization tool developed for TDA at Stanford is the Mapper Algorithm [93]. It

creates a graphical representation of the data that keeps an equivalent topological structure,

and has been used in a wide variety of applications [71][24]. Mapper is usually used as a

method for clustering and visualization. Interesting clusters or patterns are used as a feature

selection method to reduce the dimensionality of data before training learning models.

To construct the Mapper graph, first define a filtration function A : X → R (note: it isn’t

necessary for the range to be R, but we’re using it here for simplicity). Then define an

equivalence relation ∼A such that x1 ∼A x2 whenever A(x1) = A(x2), which collapses every

level set of A to a single point. The Reeb Graph is the quotient space of X under the relation

∼A. Mathematically, the Mapper algorithm computationally approximates the Reeb Graph

by computing the nerve of a refined pullback of an open cover, O ⊂ O, of A(X). Practically,

Mapper assigns datapoints to O, and then performs clustering within each member of the

open cover. Then it creates graph G with a set of nodes Ni ∈ N representing the clusters,

and a set of edges E where an edge eij means that two clusters have non-empty intersection.

It has been proven to converge exactly to the Reeb graph if O is refined enough [18]. The full

algorithm is described in [93], and rough pseudocode of computational algorithm is detailed

in Algorithm 1.

In topology, an abstract simplicial complex is a family of non-empty finite sets that is closed

when taking non-empty subsets. One of the main ideas of TDA is to create abstract simplicial

complexes from sets of data [30]. The pullback operator on an open cover has a more

88

complicated definition that is out of the scope of this paper, but the nerve of an open

cover is a representation of the open cover as an abstract simplicial complex. The Mapper

algorithm computes the nerve of the O using the procedure in Algorithm 1, and the result

is a graph showing the “shape” of the data [93].

Algorithm 1 Description of the TDA Mapper Algorithm by Singh, Memoli, and Carlsson
et al.

Input: • Data X, distance metric D on X, filtration function A : X→ R

• Number of intervals k, number of bins when clustering b, percent overlap o
Output: Graph G, nodes ni ∈ N, edges eij ∈ E

1: N← ∅
2: E← ∅
3: Compute Y = A(X)
4: Generate an open cover of Y with k open intervals {Ij}kj=1, with area aI , such that

Ij ∩ Ij+1 6= ∅ and the area of each intersection is o ∗ aI
5: for j = 1 to k do
6: Perform clustering such as k-means, using b clusters, on x ∈ X ∩ A−1(Ij)
7: append each cluster Ni, for i = 1, 2, 3... to N
8: end for
9: for i, j ∈ N do

10: if Ni ∩Nj 6= ∅ then
11: Append edge eij to E
12: end if
13: end for
14: return N, E

5.2.2 Machine Learning Workflows with Mapper

The set of nodes, N = {N1, ...,Nw}, output by Mapper, represents a cover, {Xi}wi=1 of X.

Taking Mapper as a morphism from X to the set of all covers of X, the Mapper algorithm is

an MLM with structure:

• Input space: the topological space (X,O)

89

• Output space: set of all open covers of X

• Parameter Prior: distribution over the parameters in algorithm 1 P (D,A, k, b, o), rep-

resenting prior knowledge or choices of the proper distance metric, filtration function,

etc.

• Morphism: Nerve of the refined pullback of an open cover, O, of A(X)

• Risk function: Graph Edit Distance [35]

Because Mapper approximates the Reeb Graph, we use the graph edit distance (GED) [35]

between Mapper and the “true” Reeb Graph as the risk function for the Mapper MLM.

The graph edit distance between graphs G1 and G2 summing up the cost of the operations

necessary to transform G1 into G2. These operations commonly include adding/deleting

edges, nodes, and changing the labels of nodes. Formally if B = [B1, B2, ..., Bk] contains the

graph operations necessary to transform G1 into G2 and C : B → R+ is a cost function,

then the graph edit distance is:

R̄ = GED(G1, G2) =
k∑

i=1

C(Bi) (5.1)

In Section IV, we use grid search to search through the parameters of Mapper. To bring

this MLM closer to the realm of statistical learning theory, future work could extend the

statistical analysis from [18] to define a computationally tractable loss function and more

informative parameter prior. However, in the context of the larger workflow, the choice of

risk is less relevant, because the parameters are optimized over the final risk function.

We build an example machine learning workflow with Mapper and logistic regression as

follows:

90

• The input space is X, which has training realizations XTR, validation realizations XV,

and testing realizations XTS.

• The output space is Y = {0, 1}.

• ML0: Dummy coding the original data matrix, embeds the data into Rm.

• ML1: Mapper MLM trained on realizations XTR:

– If the first principal component is the filtration function a , then this MLM features

an output composition with the PCA MLM.

– For computational reasons down the line, we remove vertices with less than 40

data points, so the output is not a total cover of X. When the first principal

component is used this seems to have the effect of removing outliers with high/low

PCA scores.

– ML1 outputs a set of spaces {Xi}ki=1, with training realizations separated into

each group {XTR,i ⊂ Xi}

• ML2 =
∑w

i=1Ci(x)MLi2, where each MLi2 has structure:

– Input Space: Rm,

– Output Space: Y = [0, 1], representing the class probability P (y = 1),

– Morphism: Composition of:

∗ Feature extraction, e.g. PCA,

∗ A learning machine, e.g. logistic regression trained on XTR,i

– Parameter Prior: Gaussian priors on the regression coefficients for each node,

uniform priors on the parameters of the Mapper MLM.

91

– Risk function: Maximum Likelihood, combined with sampling to address class

imbalance, e.g. oversampling, undersampling, ROSE [66], or SMOTE [23]. Addi-

tionally, model hyperparameters can be selected with cross validation.

– Ci : X → R is a weighting function depending on where points lie in the input

space, related to which nodes of the Mapper graph are “active” for a given data

point.

• ML3: A decision threshold with:

– Input space: X = [0, 1]

– Output space: Y = {0, 1}

– Morphism:

y = 1 if x ≥ T

y = 0 else

(5.2)

– Parameter Prior: prior information of threshold T ∈ [0, 1]

– Risk Function: Method to choose probability threshold, e.g. choosing an optimal

threshold of a ROC curve over cross validation sets.

The full workflow is:

M : X→ {0, 1} =ML3 ◦S (ML2 ◦OML1) ◦OML0 (5.3)

This MLW creates and optimizes a separate workflow MLi2 for each node created by the

Mapper graph. The Dummy Coding is clearly an output composition, and given the mapper

parameters the classifiersMLi2 are trained independently, so we have an output composition

92

Figure 5.5: Block diagram of Eq. 5.3, showing how a workflow is created for each node. The
first step is one-hot encoding the data to embed it into RM . The next step computes the
Mapper graph of the data. Then models are trained on each node, and summed. Finally, a
decision function outputs the final class prediction.

ML2◦OML1. However, we train the mapper parameters over the loss function of the decision

threshold, and estimate that risk using ROC AUC on cross validation holdout sets. So this

workflow features both output and structural compositions as defined in Chapter 2. Figure

5.5 shows a block diagram represenation of the full workflow using Mapper. Final model

evaluation uses M as an input to an evaluation MLM using realizations from the test set

XTS. The weights Ci(x) inML2 represent an interesting choice. Intuitively, weights should

be non-zero only when a point lies in Xi, so only a portion of the models are “active” for a

given point. Because they are summing elements of a probability space,
∑w

i=1 Ci(x) = 1 for

all x. Options for the weighting parameters include:

• assign a weight of 1 to the “closest” node and 0 to all others.

• Assign equal weight to all nodes to which the point belongs, and 0 to all others.

• Assign weight inversely proportional to the distance from the center of the interval

assigned to that node.

93

• Assign weight proportional to the cross validation metrics of each model, i.e. models

that perform better on the training data are assigned higher weights.

• Train weights within cross validation by defining a loss function based on the metric

of interest.

The Mapper algorithm could be replaced with another clustering algorithm such as k-means,

or any other mapping that chooses subsets of data. We chose the Mapper algorithm because

the subsets it generates have some appealing properties. First, the points in one Xi are all

“close” in the sense of the filtration function, but may have a different internal structure than

another node to which they are not connected. A column of Xi may be positively correlated

with the outcome variable, but the same column of Xj may be negatively correlated. When

considered in a model over the entire dataset, these correlations may “compete” with each

other.

Furthermore, with the proper choice of a filtration function, some nodes may have a higher

incidence of the outcome variable. In previous literature this was done in order to identify

subsets with high minority prevalence for further study. By training a model only on that

node, we reduce some of the class imbalance on that set, theoretically increasing model

performance. Finally, many clustering methods do not produce overlapping clusters, but

in [83], training classifiers on overlapping cluster was shown to improve performance. The

Mapper algorithm allows for datapoints that fall into multiple nodes of the Mapper graph

to contribute information to each node’s model.

To evaluate the workflowM, use the workflow as input to an MLM that evaluates classifier

performance over new realizations from X (the testing set). In the next section we focus on

ROC area under the curve (AUC), Sensitivity, and Specificity as different training metrics.

94

5.3 Numerical Experiments

5.3.1 Comparisons

We built several versions of Eq. 5.3 across two real world datasets. The workflow breakdown

is as follows:

• Realizations: Always an 80/20 training/testing split.

• ML0: Dummy coding performed using the default parameters from the caret package.

• ML1: One of [Mapper, Identity (no transformations)]. For the Mapper graph, we

used a uniform prior on the number of intervals k from [5-20], the percent overlap o

from [20% - 60 %], and the number of bins when clustering from [5-30]. We fixed the

filtration function a as the first principal component, and the distance metric d as the

gower metric, which means we used a dirac delta as the prior for these parameters.

• ML2: Node Models:

– Feature Extraction: Used caret package in R [55] to perform one of: [no transfor-

mations, PCA]

– Sampling: Used caret package in R to perform one of [no sampling, SMOTE,

ROSE]

– Learning Machines: Used caret package in R to train one of [Logistic Regression,

SVM, Random Forests, AdaBoost [89]]

– Cross Validation: Used caret package in R to generate 10-fold cross validation

sets to tune model hyperparameters, such as the number of trees in the random

forests.

95

– Weighting functions Ci: Points are assigned to nodes by computing the filtration

function, assigning to appropriate intervals and then finding the closest cluster

within each interval. Then weights were assigned to the one or two closest nodes.

If two nodes are used, we use either equal weights or weights proportional to the

ROC performance on the validation set.

• ML3 : Decision threshold function as defined in Eq. 5.2.

Mapper graphs used the first principal component as the filtration function, and the other

parameters were tuned by grid search. Preliminary investigations with other filtration func-

tions on patient record data revealed that the first PC seemed to yield the best classifier

performance, so it was fixed as the filtration function for each experiment. These graphs

tended not to find any loops or interesting topological structures when using that particular

filtration function. However, there was usually a good spread with respect to readmission

where some nodes have a high rate and others have very low rates.

The results are grouped by the type of learning machine used in ML2, one of Logistic

Regression, Random Forests, AdaBoost, or SVM. Each workflow uses only one of these types,

and experimenting with more involved model selection on different nodes Xi is an interesting

direction of future work. Every workflow tested was run with 10 different training/testing

splits, and the resulting performance measures were averaged. The workflows are named

by ”Mapper/No Transformation,PCA (if applicable), Sampling method (if applicable), node

weights (if applicable).

96

Table 5.1: Results for different workflows of logistic regression on hospital readmissions data,
with (standard deviations) over n=10 runs.

LR Workflow ROC AUC Sensitivity Specificity Accuracy
No Transformation 0.49 (0.023) 0.58 (0.031) 0.48 (0.021) 0.49 (0.022)

No Transformation, SMOTE 0.64 (0.033) 0.62 (0.029) 0.67 (0.039) 0.66 (0.037)
No Transformation, ROSE 0.53 (0.041) 0.54 (0.044) 0.51 (0.045) 0.52 (0.045

PCA 0.58 (0.017) 0.68 (0.022) 0.45 (0.029) 0.49 (0.028)
PCA, SMOTE 0.49 (0.037) 0.64(0.035) 0.44 (0.034) 0.47 (0.034)
PCA, ROSE 0.45 (0.061) 0.50 (0.059) 0.55(0.065) 0.54 (0.063)

Mapper, No Transformations 0.61 (0.048) 0.62 (0.052) 0.53 (0.049) 0.55 (0.050)
Mapper, No Transformations, SMOTE 0.67 (0.066) 0.60 (0.055) 0.60 (0.064) 0.60 (0.062)

Mapper, No Transformation, ROSE 0.62 (0.073) 0.69 (0.076) 0.59 (0.078) 0.61 (0.078)
Mapper, Node PCA 0.55 (0.065) 0.62 (0.058) 0.50 (0.059) 0.52 (0.058)

Mapper, Node PCA, SMOTE 0.69(0.071) 0.62 (0.069) 0.78 (0.065) 0.75 (0.066)
Mapper, Node PCA, ROSE 0.61 (0.084) 0.58 (0.082) 0.63 (0.087) 0.62 (0.086)

5.3.2 Workflow Results on Hospital Readmissions Data

Tables 5.1-5.4 show the classification results for multiple workflows, themed by the type

of classifier, averaged over 10 runs. The chosen Mapper parameters were 10 intervals, 50%

overlap, and 20 bins when clustering. Typical Mapper graphs had 10 nodes, each with 40-200

patients per node. We report the ROC AUC, Sensitivity, Specificity, and Accuracy for each

model tested, but note that accuracy in this case is biased heavily towards the specificity

score since negatives make up 83% of the patients.

The Mapper graphs were tuned using the first principal component of the entire dataset as

the filtration function, a typical graph is shown in Figure 5.6. Based off of a grid search, a

bin overlap of 40-50% yielded roughly the same results, with 10 intervals as the clustering

parameter. Each run produced 5-10 nodes, with readmission ranging from 5%-30%.

This dataset catalyzed the use of the Mapper graph in the ML workflow. Models trained

on the entire dataset do not perform well, and we were aiming to build a workflow that

97

Table 5.2: Results for different workflows of SVMs for hospital readmissions data, with
(standard deviations) over n=10 runs.

SVM Workflow ROC AUC Sensitivity Specificity Accuracy
No Transformation 0.63 (0.033) 0.65 (0.037) 0.6 (0.035) 0.61 (0.036)

No Transformation, SMOTE 0.59 (0.042) 0.65 (0.040)) 0.49 (0.046) 0.52 (0.044)
No Transformation, ROSE 0.55 (0.083) 0.80 (0.087) 0.44 (0.091) 0.50 (0.090)

PCA 0.64 (0.039) 0.69 (0.044) 0.58 (0.038) 0.60 (0.039)
PCA, SMOTE 0.61 (0.047) 0.58 (0.043) 0.58 (0.048) 0.58 (0.046)
PCA, ROSE 0.62 (0.058) 0.62 (0.049) 0.62 (0.054) 0.62 (0.053)

Mapper, No Transformations 0.53 (0.057) 0.58 (0.075) 0.48 (0.068) 0.49 (0.070)
Mapper, No Transformations, SMOTE 0.57 (0.079) 0.54 (0.072) 0.64 (0.076) 0.62 (0.075)

Mapper, No Transformation, ROSE 0.53 (0.086) 0.50 (0.081) 0.64 (0.088) 0.61 (0.086)
Mapper, Node PCA 0.50 (0.065) 0.62 (0.073) 0.49 (0.072) 0.51 (0.072)

Mapper, Node PCA, SMOTE 0.61 (0.077) 0.73 (0.083) 0.53 (0.089) 0.56 (0.088)
Mapper, Node PCA, ROSE 0.67 (0.092) 0.77 (0.095) 0.60 (0.088) 0.63 (0.089)

Table 5.3: Results for different workflows of random forests for hospital readmissions data,
with (standard deviations) over n=10 runs.

RF Workflow ROC AUC Sensitivity Specificity Accuracy
No Transformation 0.60 (0.047) 0.58(0.042) 0.57 (0.049) 0.57 (0.046)

No Transformation, SMOTE 0.52 (0.053) 0.46 (0.052) 0.75 (0.055) 0.70 (0.055)
No Transformation, ROSE 0.5 (0) 0 (0) 1(0) 0.827 (0)

PCA 0.56(0.051) 0.50 (0.066) 0.63 (0.068) 0.61 (0.068)
PCA, SMOTE 0.57 (0.053) 0.62(0.051) 0.60 (0.058) 0.60(0.056)
PCA, ROSE 0.53 (0.072) 0.54 (0.071) 0.56 (0.076) 0.56 (0.075)

Mapper, No Transformations 0.49 (0.078) 0.46 (0.084) 0.60 (0.081) 0.58 (0.082)
Mapper, No Transformations, SMOTE 0.55 (0.087) 0.58 (0.075) 0.54 (0.082) 0.55 (0.080)

Mapper, No Transformation, ROSE 0.51 (0.093) 0.54(0.116) 0.51 (0.143) 0.52 (0.137)
Mapper, Node PCA 0.57 (0.069) 0.62 (0.076) 0.62 (0.086) 0.62 (0.083)

Mapper, Node PCA, SMOTE 0.57 (0.084) 0.46 (0.095) 0.71 (0.091) 0.67 (0.092)
Mapper, Node PCA, ROSE 0.64 (0.110) 0.65 (0.099) 0.61 (0.091) 0.62 (0.097)

98

Figure 5.6: Typical Mapper graph generated from hospital readmissions data. The nodes
are colored showing level of readmissions, and larger node size indicates a higher number of
patients in that node.

99

Table 5.4: Results for different workflows of Adaboost classifiers, with (standard deviations)
over n=10 runs.

AdaBoost workflow ROC AUC Sensitivity Specificity Accuracy
No Transformation 0.50 (0.043) 0.54 (0.058) 0.49 (0.049) 0.50 (0.051)

No Transformation, SMOTE 0.62 (0.056) 0.65 (0.072) 0.53 (0.070) 0.55 (0.071)
No Transformation, ROSE 0.5(0) 0 (0) 1 (0) 0.827 (0)

PCA 0.48 (0.038) 0.54 (0.044) 0.53 (0.049) 0.53 (0.048)
PCA, SMOTE 0.53 (0.051) 0.50 (0.053) 0.58 (0.057) 0.57 (0.056)
PCA, ROSE 0.69 (0.073) 0.46 (0.078) 0.74 (0.064) 0.69 (0.068)

Mapper, No Transformations 0.56 (0.079) 0.49 (0.082) 0.75 (0.086) 0.71 (0.085)
Mapper, No Transformations, SMOTE 0.63 (0.083) 0.73 (0.077) 0.63 (0.083) 0.65 (0.082)

Mapper, No Transformation, ROSE 0.54 (0.098) 0.42 (0.131) 0.67 (0.110) 0.63(0.119)
Mapper, Node PCA 0.63 (0.066) 0.69 (0.075) 0.58 (0.082) 0.60 (0.081)

Mapper, Node PCA, SMOTE 0.58 (0.088) 0.65 (0.084) 0.54 (0.091) 0.56 (0.089)
Mapper, Node PCA, ROSE 0.44 (0.141) 0.58 (0.109) 0.51 (0.092) 0.52(0.095)

improved upon the LACE score. LACE is a combination of Length of previous hospital stays,

Acuity of admission (emergency/not emergencey), the Charlson Comorbidity, and number

of prior Emergency Department visits, and is the most used tool to predict readmissions risk.

However, our population has a huge majority of “high” risk patients, and logistic regression

trained on lace results in a ROC AUC of 0.59, with the optimal sensitivity at 0.54, which

only correctly predicts slightly more than half of all readmissions. Applying Mapper in to

our workflow resulted in large performance increases over the LACE model.

On the Logistic Regression, the Mapper algorithm with PCA computed for individual nodes

and SMOTE sampling outperforms all other workflows, with Mapper/No Transformation

(NT) and NT + SMOTE also showing higher performance than others. Sensitivity is of

particular interest in this problem, in order to identify as many high risk patients as possible

and target them with additional resources.

100

The SVM classifier performed the best out of the out-of-the-box models with no sampling

or other transformations, however the Sensitivity was significantly increased by the mod-

els using Mapper, Node PCA, and SMOTE/ROSE sampling. None of the models using

Mapper in conjunction with Random Forests showed large improvement over training the

Random Forests over the entire training set. It should be noted that the models running

Random Forests with ROSE sampling in the Caret Package didn’t converge, and voted “no-

readmission” for every point in the test set. This issue also occured when using Adaboost

classifiers with ROSE sampling in Table 5.4.

Adaboost models were improved both by sampling and in two of the Mapper workflows. One

case to note is the PCA+ROSE combination, which features a “high” AUC but low Sensi-

tivity. In this case we would throw out the model in favor of the Mapper, no transformation,

SMOTE workflow which correctly identifies almost 3/4 of the readmitted patients. One

reason AdaBoost models might perform better with the Mapper algorithm is that AdaBoost

is often used on smaller datasets, which the Mapper workflow naturally creates.

Compared to the out of the box models trained using caret, workflows utilizing Mapper

tend to have a higher variance between runs. This can be explained by additional variance

introduced by assigning the testing points to different nodes of the Mapper graph. Since each

run has a different testing set, different node models will predict different numbers of testing

points. Additionally, variance is introduced by using SMOTE or ROSE sampling methods,

since each run creates a new set of synthetic samples. Methods using ROSE Sampling and

Mapper had the highest spread in metrics.

101

Approval

The Washington University Institutional Review Board approved the use of this data as a

retrospective study. All HIPPA identifying information has been removed.

5.4 Is the Readmissions Workflow Separable?

Chronologically, we developed the idea of separable MLM’s after building the hospital read-

missions workflow, but it is natural to ask: Can we really train the node models indepen-

dently? MSE is not the loss function for this workflow, so Theorem 1 and the following

results do not apply in this case. However, in classification, achieving an uncorrelated en-

semble is known to improve performance [60]. Therefore, we hypothesize that uncorrelated

ensemble members is one of the conditions for separability in MLM’s with 0-1 loss.

In the numerical experiments we investigate the correlation between the outputs on each

node. For each training, testing split we computed the mapper graph on the training data.

Then we trained logistic regression, random forest, adaboost, and SVM models for each node

of the mapper graph. Next, we computed the predictions for each node model on the entire

test set, rather than assigning test data to the nodes. For most of the test data, the node

model predictions will be highly inaccurate because they did not see that part of the data

in their training set. Then, we estimate the correlation matrix between each node of the

mapper graph. This is averaged over 10 training and testing splits to estimate the average

node correlation.

Figure 5.7 shows the correlation of AdaBoost node models with and without PCA used for

feature extraction. In both cases, the nodes have relatively low correlation. When they

102

(a) Correlation plot of nodes trained with AdaBoost. The
nodes are relatively uncorrelated.

(b) Correlation plot of nodes trained with PCA for feature
extraction and AdaBoost for classification. The correlation
between nodes is very low, which is desired for classification.

Figure 5.7: Estimated node correlation for AdaBoost workflows with PCA(5.7b) and without
PCA(5.7a). The correlation between nodes is less for PCA, which is to be expected since
PCA naturally decorrelates the input data. 103

(a) Correlation plot of nodes trained with logistic
regression. The nodes are more correlated than
Figure 5.7a but the correlations are still fairly low.

(b) Correlation plot of nodes trained with PCA
for feature extraction and logistic regression for
classification. PCA in this case slightly decreases
the correlation between nodes but does not seem
to decrease it meaningfully.

Figure 5.8: Estimated node correlation for Logistic Regression with PCA(5.8b) and without
PCA(5.8a). The presence of PCA does not seem to significantly change the magnitude of
correlations between nodes.

104

(a) Correlation plot of nodes trained with Random Forests.
Significant correlations exist between nodes.

(b) Correlation plot of nodes trained with PCA for feature
extraction and random forests for classification. The corre-
lation between nodes is very low, which is desired for classi-
fication, but random forest node models with PCA still did
not perform particularly well compared to other workflows.

Figure 5.9: Estimated node correlation for random forest workflows with PCA (5.9b) and
without PCA (??). The correlation between nodes is less for PCA, which is to be expected
since PCA naturally decorrelates the input data.

105

Figure 5.10: Estimated node correlation for SVM workflows without PCA. There is high
positive correlation between many of the nodes.

106

converge, Adaboost models performed well compared to the other workflows tested. This

experiment suggests the Mapper based workflow does create a set of uncorrelated workflows.

Figure 5.8 shows the correlation of Logistic Regression node Models with and without PCA.

In this case the nodes are more correlated than in Figure 5.7. PCA seems to decrease the

correlation between nodes slightly but not significantly. Interestingly, Node 1 tends to be

negatively correlated with many of the other nodes. Node 1 is usually the node with the

lowest readmission rate, which supports the hypothesis that the different groups of patients

have different underlying relationships with readmissions. In general, nodes which are close

on the Mapper graph are positively correlated. This makes sense as those nodes overlap in

terms of training data.

Figure 5.9 shows the correlation of Random Forest Models with and without PCA. Without

PCA, the nodes appear highly correlated, but with PCA most of the correlation disappears.

There are still instances where the low-numbered nodes are negatively correlated to the

higher numbered nodes. These nodes share no data and are on opposite sides of the general

point cloud of patient data explored by Mapper. Even though the models were uncorrelated,

the Random Forests with PCA workflows did not perform particularly well compared to

Logistic Regression or AdaBoost workflows.

When training nodes using SVM with PCA, the algorithm does not converge. Thus we only

present correlation between node models trained without PCA in Figure 5.10. There is high

positive correlation between many nodes, which we hypothesize is part of the reason that

workflows with Mapper and SVM performed poorly overall.

Overall, Mapper workflows using AdaBoost, Logistic Regression, and Random Forests as

node models were able to create ensembles with low correlation between members. In some

107

cases, PCA is required to decorrelate the models, in others not. We hypothesize in these cases

that these models are indeed separable, but future work is necessary to develop conditions

for the separability of 0-1 Loss.

5.5 Chapter Recap

In this chapter we developed a workflow on real data to predict 30-Day hospital readmissions.

This model improved over standard multivariate regression as well as the LACE score. To

our knowledge, models trained directly on Mapper nodes is a novel application of the Mapper

algorithm, as it is mainly used for feature selection and exploratory analysis. Some of the

Mapper based workflows generated uncorrelated ensembles, which we believe is a necessary

condition for separability of classification workflows.

This workflow has some limitations. For example, because there is overlap in the clusters of

patients created by Mapper, it is very difficult to prove analytically that the node models

are uncorrelated, and can therefore be trained independently. Additionally, we restricted

node models to belong to one type of classifier. In the future we could improve this model

by performing model selection (also an MLM) within each node. Our study size is limited,

so our confidence intervals are higher than we would like, and in future work we would like

to train this workflow on more data.

The attempt to analyze the effect of the Mapper algorithm on a workflow was the catalyst

for developing the MLM framework. We needed a structure that could encompass deep

topological operations while also describing the model training down the line. Further,

the MLM as a structure allows us to present an equation representing our workflow when

108

presenting to medical audiences, which helped us present our results to the readmissions

reduction committee at BJH.

109

Chapter 6

Conclusions and Future Work

In this dissertation, we identified a need for a systematic mathematical representation of

machine learning workflows. We propose the Machine Learning Morphism as a framework for

this design. MLM’s are a tuple containing: (input space, output space, learning morphism,

parameter prior, loss function). This contains the information necessary to implement one

step in a workflow.

MLM’s are endowed with the properties of asymptotic equality and separability. Equality is

the foundation for comparing and building algebraic operations on MLM’s. Separability is a

property depending on the loss function and learning morphism that allows the parameters

of an MLM to be computed by optimizing loss functions with lower dimensional parameters.

MLM’s are also endowed with two forms of composition. Output composition defines a

sequential optimization of MLM’s in a workflow, while structural composition defines a joint

optimization. A workflow is then a finite sequence of compositions of MLM’s.

This framework is useful because it provides a modular design where each block has the same

underlying structure. Separability is a useful strategy for scalability because many MLM’s

are asymptotically equivalent to separable MLM’s. Specifically, for MSE loss functions,

linear morphisms acting on uncorrelated and centered random variables are separable. To

110

take advantage of this, design a workflow to engineer a set of uncorrelated, centered, variables

from the input data; for example, PCR. This extends to non-linear ensembles as well, and a

wide variety of MLM’s can be approximated with these decompositions.

Further, we can bound the error of workflows using the MLM framework. This error depends

on the underlying parameterization and represents a connection between machine learning

theory and estimation theory. For MSE loss functions, this bound is a bound on the general-

ization error of the MLM. For non-MSE loss, we still bound the variance of an MLM around

the best possible workflow, which is a useful tool for model selection. For compositions we

bound the composition of MLM’s, and thus a workflow, by formulating a nonlinear filtering

problem. The state of the non-linear filter is the evolution of the bayes model across the

workflow, and the observations are the outputs of the MLM. In the case of additive gaussian

noise, the error bound is computable, and is a lower bound on the true fisher information.

However, in the case of complex workflows the true fisher information is not readily available,

this a useful bound.

In future work, we will continue analyzing the structure and building properties of MLM’s.

Specifically, I am interested in the possibility of vector spaces of workflows. Vector spaces

are particularly useful because they have bases, which would represent a set of learning

morphisms which span the entire space. This is naturally separable, and hypothesized to

approximate many useful workflows. Future work on bounds includes investigating other

types of bounds, including Baranking, Bhattacharyya , or Ziv-Zakai. Future work will also

develop non-linear filtering paradigms to investigate non-gaussian, non-additive error, start-

ing by approximating non-gaussian workflows with a gaussian nonlinear filter. Finally, we

wish to build a method to automate the design of workflows using a graph based structure

of MLM’s.

111

We will conclude this dissertation with a discussion of the MLM’s place in existing machine

learning frameworks. Amazon and Google, as well as many others, are developing software

for automated design. Packages such as PyTorch, Tensorflow, or Caret will often perform

perprocessing tasks automatically. AutoML is an active area of research, as discussed in

Chapter 1. So where does the MLM fit into this?

On one hand, MLM’s are a descriptive or explanatory tool. There is a direct correspondence

between the tasks in a software workflow and the space of MLM’s. We can use MLM’s to

identify special properties of tasks, or design equivalent workflows and then implement them

in software. We can also the measure the impact that different tasks have on the overall

performance, and perform design problems on existing MLM’s.

On the other hand, MLM’s are a competitive tool to these platforms. The set of MLM’s

and operations of equality, structural composition, and output composition represent the

beginning of an ontology of machine learning. We can construct a directed graph of MLM’s,

where edges represent composition of one MLM with another. Then workflows represent a

path in the graph of MLM’s, which can be searched according to the metric of interest. The

main challenges of this graph representation are: representing MLM’s with a suitable data

structure and suitable optimization solvers, and directing the flow of information across the

graph.

The MLM represents a data structure, which can be implemented in an object oriented way.

The MLM object can be endowed with methods such as train and predict, or functions such

as composition. The advantage of this structure is that every MLM has the same underlying

structure, and the user simply has to specify the input/output space, learning morphism,

prior, and loss function. The challenge of an arbitrary structure is that we must provide

proper solvers to handle a variety of datatypes and problems.

112

At the end of it all, though, the MLM represents a way of thinking. What am I learning with

each step in my workflow? Can I learn that objective better with a different risk function

or learning morphism? Is my workflow asymptotically equivalent to the Bayes MLM? What

happens if I add two workflows together? These are the questions and research that the

MLM framework inspires.

113

Appendix A

Proof of results in Chapter 3

A.1 Proof of Theorem 1

Proof of Theorem 1. Define a set of morphisms F0 = θ0 and Fi : Xi → Y, Fi(xi; θi) = θixi

for i = 1, ..., k. Define a corresponding set of MSE loss functions L0 = (y − θ0)2 Li =

(y − Fi(xi; θi))2 = (y − θix)2.

We will check the separability condition by expanding the Expected value of the MSE: Here

FΣ = θ0 +
∑k

i=1 θ
∞
i xi = F0(x; θ0) +

∑K
i=1 Fi(xi; θi). To see that we have asymptotic equality,

114

take the expected value of the loss function:

E(LΣ) = E((y − F0 −
k∑

i=1

Fi)
2) =

(A.1)

E(y2 − 2yF0 − 2y
k∑

i=1

Fi) + F 2
0 + 2F0

k∑

i=1

Fi +
k∑

i=1

Fi

k∑

j=1

Fj) =

(A.2)

E(y − 2yF1 + F 2
1 + F1

∑

j 6=1

Fj − 2y
k∑

i=2

Fi +
k∑

i=2

Fi

k∑

j=2

Fj) + E(−2yF0 + F 2
0 + 2F0

k∑

i=1

Fi) =

(A.3)

E(y − 2yF1 + F 2
1) + E(F1

∑

j 6=1

Fj) + E(−2y
k∑

i=2

Fi +
k∑

i=2

Fi

k∑

j=2

Fj) + E(−2yF0 + F 2
0) + 0 =

(A.4)

E(y − 2yF1 + F 2
1) + 0 + E(−2y

k∑

i=2

Fi +
k∑

i=2

Fi

k∑

j=2

Fj) + E(−2yF0 + F 2
0) =

(A.5)

E((y − F1)2) + E(y2 − y2 − 2y
k∑

i=2

Fi +
k∑

i=2

Fi

k∑

j=2

Fj) + E(−2yF0 + F 2
0) =

(A.6)

E((y − F1)2) + E(y2 − 2y
k∑

i=2

Fi +
k∑

i=2

Fi

k∑

j=2

Fj)− E(y2) + E(−2yF0 + F 2
0) =

(A.7)

E((y − F1)2) + E(y2 − 2yF2 + F 2
2 + F2

∑

i 6=2

Fi − 2y
k∑

i=3

Fi +
k∑

i=3

Fi

k∑

j=3

Fj)−

E(y2) + E(−2yF0 + F 2
0) =

(A.8)

115

E((y − F1)2) + E(y2 − 2yF2 + F 2
2) + 0+

E(−2y
k∑

i=3

Fi +
k∑

i=3

Fi

k∑

j=3

Fj)− E(y2) + E(−2yF0 + F 2
0) (A.9)

... (A.10)

E((y − F1)2) + E((y − F2)2) + · · ·+ E((y − Fk)2) + E((y − F0)2)− (k)E(y2) (A.11)

This uses the idea that E(Fi
∑

j 6=i Fj) = E(θixi
∑

j 6=i θjxj) = 0 because xi and xj are uncor-

related.

Thus

argΘ0×Θ1×···×Θk
minE(LΣ) = (A.12)

argΘ0×Θ1×···×Θk
min E((y − θ1x1)2) + E((y − θ2x2)2) + · · ·+

E((y − θkxk)2) + E((y − θ0)2)− (k)E(y2) = (A.13)

(argΘ0
minE((y − θ0)2), argΘ1

minE((y − θ1x1)2), argΘ2
minE((y − θ2x2)2), . . . , (A.14)

argΘk
minE((y − θkxk)2)) (A.15)

since (k)E(y2) does not depend on the parameters. This fulfills the definition of separability.

A.2 Principal Component Regression

Proof. Proof that PCR is equivalent to OLS Regression

We will start by recalling the definitions of workflow W and ML3.

116

Machine learning workflow is an MLM:

W =ML2 ◦OML1 ◦OML0 = (A.16)

(Rk,R, Fw = (θ2)Tθ∗T1 (x− θ0∗) + θµy , P (θ2)δ(θ1 − θ∗1)δ(θ0 − θ∗0), L2(y, Fw)) (A.17)

And ML3 has structure:

ML3 : (Rk,R, F3 = θ̄
T
x + θ̄0), P (θ̄, θ̄0) = 1, L3 = (y − F3)2) (A.18)

Let X ∈ Rn×k be a n × k matrix of n realizations of X representing the training data, and

let Y ∈ Rn×1 be the corresponding output realizations.

We will begin by examining workflowW . The parameters θ0 can be estimated via the sample

mean of each column:

θ̂0 =
1

n
XT1 (A.19)

Denote the centered variables as

Xc = X− 1θ̂T0 = X− 1

n
11TX (A.20)

The parameters of the principal component analysis are the eigenvectors of the sample co-

variance matrix:

XT
CXC = Θ̂1λΘ̂1 (A.21)

We will denote the matrix XT
CXC = R.

117

Note that

R = (X− 1

n
11TX)T (X− 1

n
11TX) = (A.22)

XTX− 1

n
XT11TX− 1

n
XT11TX +

1

n2
XT11T11TX = (A.23)

XTX− 2

n
XT11TX +

n

n2
XT11TX = (A.24)

XTX− 1

n
XT11TX = (A.25)

XT (X− 1

n
11TX) = (A.26)

XT (I− 1

n
11T)X = (A.27)

XTXC (A.28)

where I is the n× n identity matrix.

To estimate the parameters [θ2 θµy]
T , we define a matrix Z =

[
XCΘ̂1 1

]

118

Then the parameters are given as:

θ̂2

θ̂µy

 = (ZTZ)−1ZTY = (A.29)

Θ̂
T

1 XT
C

1T

[
XCΘ̂1 1

]

−1

Θ̂
T

1 XT
C

1T

Y = (A.30)

Θ̂
T

1 XT
CXCΘ̂1 Θ̂

T

1 XT
C1

1TXCΘ̂1 n

−1

Θ̂
T

1 XT
C

1T

Y = (A.31)

Θ̂
T

1 Θ̂1ΛΘ̂
T

1 Θ̂1 0

0T n

−1

Θ̂
T

1 XT
C

1T

Y = (A.32)

Λ−1 0

0T 1
n

Θ̂
T

1 XT
C

1T

Y = (A.33)

Λ−1Θ̂
T

1 XT
CY

1
n
1TY

 (A.34)

As a recap on W the parameters are given as θ̂0 = 1
n
XT1, Θ̂1 are the eigenvectors of R,

ˆboldsymbolθ2 = Λ−1Θ̂
T

1 XT
CY, and θ̂µy = 1

n
1TY. An interesting note is that θ̂µy is the sample

mean of Y, which is necessary because centered data XC can’t capture a non-zero mean.

Now we will compute the optimal parameters of ML3:

119

Let X̃ = [X1], then the parameters are given by the OLS Formula:

θ̄

θ̄0

 = (X̃T X̃)−1X̃TY =

(A.35)

XT

1T

[
X 1

]

−1

XT

1T

Y =

(A.36)

XTX XT1

1TX n

−1

X

1T

Y =

(A.37)

(XTX− 1
n
XT11TX)−1 − 1

n
(XTX− 1

n
XT11TX)−1XT1

− 1
n
1TX(XTX− 1

n
XT11TX)−1 1

n
+ 1

n2 1TX(XTX− 1
n
XT11TX)−1XT1

X

1T

Y =

(A.38)

R−1 −R−1θ̂0

−θ̂T0 R−1 1
n

+ θ̂
T

0 R−1θ̂0

X

1T

Y

(A.39)

So separating the coefficient and intercept we have:

θ̄ = (R−1XT −R−1θ̂01
T)Y = (A.40)

(R−1XT −R−1 1

n
XT11T)Y = (A.41)

R−1XT
CY = Θ̂1θ̂2 (A.42)

120

This means that the regression coefficients match up with the optimal parameters of W as

desired.

For the intercept:

θ̄0 = (−θ̂T0 R−1XT +
1

n
1T + θ̂

T

0 R−1θ̂
T

0 1T)Y = (A.43)

(− 1

n
1TXR−1XT +

1

n
1T +

1

n2
1TXR−1XT11T)Y = (A.44)

− 1

n
1TXR−1(XT −XT11T)Y +

1

n
1TY = (A.45)

−θ̂T0 R−1XT
CY +

1

n
1TY = (A.46)

−θ̂T0 Θ̂1θ̂2 + θ̂µy (A.47)

Therefore, the machine learning workflowW and structural compositionML3 have the same

output and are equivalent.

Next, we examine the case of comparing W2 and W . In this workflow, all of the parameters

are optimized together, rather than fixing the centering parameters θ0 and matrix Θ1. To

examine the optimal parameters of this matrix, let X be an n × k matrix of training data

with corresponding n × 1 output observations Y. Then we can take the derivative of the

empirical risk function,

R̄2 =
1

n
||Y − ((X− 1n×1θ

T
0)Θ1θ2 + θµy)||22 (A.48)

121

with respect to each set of parameters:

∂R̄2

∂θ0

=
2

n

(
Θ1θ21

T
n×1Y −Θ1θ21

TXΘ1θ2 + nΘ1θ2θ
T
2 ΘT

1 θ0 − nθµyΘ1θ2)
)

(A.49)

∂R̄2

∂Θ1

=
2

n

(
(θ01

T
n×1 −XT)YT+

(XTX− θ01
T
n×1X−XT1n×1θ

T
0 + θ0θ

T
0)Θ1θ2 + θµy(X

T1n×1 − nθ0)
)
θT2

(A.50)

∂R̄2

∂θµy
=

1

n

(
−1Tn×1Y + 1n×1XΘ1θ2 − nθT0 Θ1θ2 + nθµy

)

(A.51)

∂R̄2

∂θ2

=
2

n

(
−ΘT

1 XTY + ΘT
1 θ01

T
n×1Y + ΘT

1 XTXΘ1θ2 − (ΘT
1 XT1n×1θ

T
0 Θ1 + ΘT

1 θ01
T
n×1Xθ1)θ2

+θµyΘ
T
1 XT1n×1 + nΘT

1 θ0θ
T
0 Θ1θ2 − nθµyΘT

1 θ0

)

(A.52)

First, we will check that the estimated parameters θ̂0 from Eq. A.19, Θ̂1(Eq. A.21), θ̂2

(Eq.A.34) and θ̂µy (Equation A.34) set these gradients to zero.

Note that when θ̂0 = 1
n
XT1n×1 is the sample mean, Eq. A.51 simplifies to

−1Tn×1Y + nθµy = 0 (A.53)

which implies that θ̂µy = 1
n
1Tn×1Y as desired.

122

Next, looking at Equation A.49,

Θ̂1θ̂2(1TY − nθµy) = (A.54)

Θ̂1θ2(1TY − n 1

n
1TY) = 0k×1 (A.55)

and

Θ̂1θ̂2(−1Tn×1XΘ̂1θ̂2 + nθ̂
T

2 Θ̂
T

1 θ̂0) = (A.56)

Θ̂1θ̂2(−1Tn×1XΘ̂1θ̂2 + nθ̂
T

0 Θ̂1θ̂2) = (A.57)

Θ̂1θ̂2(−1Tn×1XΘ̂1θ̂2 + n
1

n
1Tn×1XΘ̂1θ̂2) = 0k×1 (A.58)

So evaluating ∂R̄2

∂θ0
|θ̂0,Θ̂1,θ̂2,θ̂µy=0k×1

is also a zero vector.

Next we examine Equation A.50. First note that the term

θ̂µy(X
T1n×1 − nθ̂0) = θ̂µy(X

T1n×1 − n
1

n
XT1n×1) = 0k×1 (A.59)

Next, we can express the rest of Eq. A.50 in terms of the centered matrix XC defined in

Eq.A.20.

(θ̂01
T
n×1 −XT)YT = (

1

n
XT1n×11

T
n×1 −XT)YT = −XT

CYT (A.60)

123

and

XTX− θ̂01
T
n×kX−XT1θ̂

T

0 + θ̂0θ̂
T

0 = (A.61)

XTX− 1

n
XT1n×11

T
n×kX−

1

n
XT1n×11

T
n×1X +

1

n2
XT1n×11

T
n×1X = (A.62)

XT
CXC = R (A.63)

where R is defined in Eq. A.22. Continuing

RΘ̂1θ̂2 = (A.64)

Θ̂1ΛΘ̂
T

1 Θ̂1θ̂2 = (A.65)

Θ̂1Λθ̂2 = (A.66)

Θ̂1ΛΛ−1Θ̂
T

1 XT
CY = (A.67)

XT
CY (A.68)

Thus

∂R̄2

∂Θ1

|θ̂0,Θ̂1,θ̂2,θ̂µy
= 0k×1 = (−XT

CY + XT
CY)θ̂2 = 0k×1θ̂

T

2 = 0k×k (A.69)

as desired.

Finally, we examine the case of the regression coefficients in Eq. A.52.

124

∂R̄2

∂θ2

|θ̂0,Θ̂1,θ̂2,θ̂µy
=

(A.70)

2

n

(
−Θ̂

T

1 XTY +
1

n
Θ̂
T

1 XT1n×11
T
n×1Y + Θ̂

T

1 XTXΘ̂1θ̂2 −
2

n
Θ̂
T

1 XT1n×11
T
n×1Θ̂1θ̂2

+θ̂µyΘ̂
T

1 XT1n×1 + n
1

n2
Θ̂
T

1 XT1n×11
T
n×1XΘ̂1θ̂2 − n

1

n
θ̂µyΘ̂

T

1 XT

)
=

(A.71)

2

n

(
−Θ̂

T

1 XTY +
1

n
Θ̂
T

1 XT1n×11
T
n×1Y + Θ̂

T

1 XTXΘ̂1θ̂2 −
1

n
Θ̂
T

1 XT1n×11
T
n×1XΘ̂1θ̂2

)
=

(A.72)

2

n

(
Θ̂
T

1 XT (−Y +
1

n
1n×11

T
n×1Y + XΘ̂1θ̂2 −

1

n
1n×11

T
n×1XΘ̂1θ̂2)

)
=

(A.73)

2

n

(
Θ̂
T

1 XT (In×n −
1

n
1n×11

T
n×1)(XΘ̂1θ̂2 −Y)

)
=

(A.74)

2

n

(
Θ̂
T

1 XC(XΘ̂1Λ−1Θ̂1X
T
CY −Y)

)
=

(A.75)

2

n

(
Θ̂
T

1 (RT (R−1)TXT
CY −XT

CY)
)

= 0k×1

(A.76)

In conclusion, the optimal parameters of workflowW represent a critical point of the gradient

of the empirical risk function of the structural composition W2. If we fix θ̂0 = 1
n
XT1n×1

and the intercept θ̂µy = 1Tn×1Y, Eqs. A.49 and A.51 are zero no matter what the regression

coefficients and linear transformation.

125

Re-examining Eq. A.50 when Θ1 and θ2 are free for a critical point we need:

−XT
CY + XT

CXCΘ1θ2 = 0k×1 (A.77)

XT
CXCΘ1θ2 = XT

CY (A.78)

Θ1θ2 = (XT
CXC)−1XT

CY (A.79)

which are the coefficients of a centered linear regression. If Θ1 is full rank, we can express

θ2 = Θ−1
1 (XT

CXC)−1XT
CY Then we can rexpress Eq. A.52 as:

−ΘT
1 XTY +

1

n
ΘT

1 XT1n×11
T
n×1Y + ΘT

1 XTXΘ1θ2 −
1

n
ΘT

1 XT1n×11
T
n×1XΘ1θ2 =

(A.80)

−ΘT
1 XTY +

1

n
ΘT

1 XT1n×11
T
n×1Y + ΘT

1 XTXΘ1Θ
−1
1 (XT

CXC)−1XT
CY−

1

n
ΘT

1 XT1n×11
T
n×1XΘ1Θ

−1
1 (XT

CXC)−1XT
CY =

(A.81)

−ΘT
1 XTY +

1

n
ΘT

1 XT1n×11
T
n×1Y + ΘT

1 XT
CY − 1

n
ΘT

1 XT1n×11
T
n×1X(XT

CXC)−1XT
CY =

(A.82)

ΘT
1 (−XTY +

1

n
XT1n×11

T
n×1Y + XT

CY − 1

n
XT1n×11

T
n×1X(XT

CXC)−1XT
CY) =

(A.83)

ΘT
1 (− 1

n
XT1n×11

T
n×1X(XT

CXC)−1XT
CY) = 0k×1

(A.84)

126

The term (XT
CXC)−1XT

CY are the regression coefficients of a linear regression on centered

data.

127

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] Alekh Agarwal, Olivier Chapelle, Miroslav Dud́ık, and John Langford. A reliable
effective terascale linear learning system. The Journal of Machine Learning Research,
15(1):1111–1133, 2014.

[3] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel metaheuristics: recent
advances and new trends. International Transactions in Operational Research, 20(1):1–
48, 2013.

[4] Saba Amiri, Sara Salimzadeh, and ASZ Belloum. A survey of scalable deep learning
frameworks. In 2019 15th International Conference on eScience (eScience), pages
650–651. IEEE, 2019.

[5] Rosa I Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust con-
cepts and random projection. In 40th Annual Symposium on Foundations of Computer
Science (Cat. No. 99CB37039), pages 616–623. IEEE, 1999.

[6] Suresh Balakrishnama and Aravind Ganapathiraju. Linear discriminant analysis-a
brief tutorial. In Institute for Signal and information Processing, volume 18, pages
1–8, 1998.

[7] Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm.
Journal of Machine Learning Research, 11(Feb):849–872, 2010.

[8] Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent
homology analysis of brain artery trees. The annals of applied statistics, 10(1):198,
2016.

[9] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction:
applications to image and text data. In Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 245–250, 2001.

128

[10] Ian Blanes, Joan Serra-Sagrista, Michael W Marcellin, and Joan Bartrina-Rapesta.
Divide-and-conquer strategies for hyperspectral image processing: A review of their
benefits and advantages. IEEE Signal Processing Magazine, 29(3):71–81, 2012.

[11] Tomas Borovicka, Marcel Jirina Jr, Pavel Kordik, and Marcel Jirina. Selecting rep-
resentative data sets. Advances in data mining knowledge discovery and applications,
pages 43–70, 2012.

[12] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[13] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

[14] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[15] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[16] Peter Bubenik. Statistical topological data analysis using persistence landscapes. The
Journal of Machine Learning Research, 16(1):77–102, 2015.

[17] Andreas Buja, Dianne Cook, and Deborah F Swayne. Interactive high-dimensional
data visualization. Journal of computational and graphical statistics, 5(1):78–99, 1996.

[18] Mathieu Carriere, Bertrand Michel, and Steve Oudot. Statistical analysis and param-
eter selection for mapper. The Journal of Machine Learning Research, 19(1):478–516,
2018.

[19] Eric Cawi, Patricio S La Rosa, and Arye Nehorai. Designing machine learning work-
flows with an application to topological data analysis. PloS one, 14(12), 2019.

[20] Eric Cawi, Patricio S. La Rosa, and Arye Nehorai. Conditions for separability of
machine learning workflows. submitted, Journal of Artificial Intelligence Research,
2020.

[21] Sebastian Celis and David R Musicant. Weka-parallel: machine learning in parallel.
In Carleton College, CS TR. Citeseer, 2002.

[22] Patricio Cerda, Gaël Varoquaux, and Balázs Kégl. Similarity encoding for learning
with dirty categorical variables. Machine Learning, pages 1–18, 2018.

[23] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

129

[24] Marc Coudriau, Abdelkader Lahmadi, and Jérôme François. Topological analysis and
visualisation of network monitoring data: Darknet case study. In Information Forensics
and Security (WIFS), 2016 IEEE International Workshop on, pages 1–6. IEEE, 2016.

[25] Michael AA Cox and Trevor F Cox. Multidimensional scaling. In Handbook of data
visualization, pages 315–347. Springer, 2008.

[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool.
Communications of the ACM, 53(1):72–77, 2010.

[27] Dua Dheeru and Efi Karra Taniskidou. Uci machine learning repository, 2017.

[28] Jacques Donzé, Drahomir Aujesky, Deborah Williams, and Jeffrey L Schnipper. Po-
tentially avoidable 30-day hospital readmissions in medical patients: derivation and
validation of a prediction model. JAMA internal medicine, 173(8):632–638, 2013.

[29] Ludovic Duponchel. Exploring hyperspectral imaging data sets with topological data
analysis. Analytica chimica acta, 1000:123–131, 2018.

[30] Charles Epstein, Gunnar Carlsson, and Herbert Edelsbrunner. Topological data anal-
ysis. Inverse Problems, 27(12):120201, 2011.

[31] Artur J Ferreira and Mário AT Figueiredo. Incremental filter and wrapper approaches
for feature discretization. Neurocomputing, 123:60–74, 2014.

[32] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. Auto-sklearn: Efficient and robust automated
machine learning. In Hutter et al. [49], pages 123–143. In press, available at
http://automl.org/book.

[33] Joseph Futoma, Jonathan Morris, and Joseph Lucas. A comparison of models for
predicting early hospital readmissions. Journal of biomedical informatics, 56:229–238,
2015.

[34] Jennifer Gamble and Giseon Heo. Exploring uses of persistent homology for statistical
analysis of landmark-based shape data. Journal of Multivariate Analysis, 101(9):2184–
2199, 2010.

[35] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance.
Pattern Analysis and applications, 13(1):113–129, 2010.

[36] Vicente Garćıa, José Salvador Sánchez, and Ramón Alberto Mollineda. On the effec-
tiveness of preprocessing methods when dealing with different levels of class imbalance.
Knowledge-Based Systems, 25(1):13–21, 2012.

130

[37] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Ma-
chine learning, 63(1):3–42, 2006.

[38] Shafie Gholizadeh, Armin Seyeditabari, and Wlodek Zadrozny. Topological signature
of 19th century novelists: Persistence homology in context-free text mining. 2018.

[39] Hans P Graf, Eric Cosatto, Leon Bottou, Igor Dourdanovic, and Vladimir Vapnik.
Parallel support vector machines: The cascade svm. In Advances in neural information
processing systems, pages 521–528, 2005.

[40] John W Graham, Patricio E Cumsille, and Allison E Shevock. Methods for handling
missing data. Handbook of Psychology, Second Edition, 2, 2012.

[41] Preeti Gupta, Arun Sharma, and Rajni Jindal. Scalable machine-learning algorithms
for big data analytics: a comprehensive review. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 6(6):194–214, 2016.

[42] Isabelle Guyon and André Elisseeff. An introduction to feature extraction. In Feature
extraction, pages 1–25. Springer, 2006.

[43] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business Media,
2009.

[44] David Haussler. Probably approximately correct learning. University of California,
Santa Cruz, Computer Research Laboratory, 1990.

[45] David Haussler, Michael Kearns, and Robert E Schapire. Bounds on the sample com-
plexity of bayesian learning using information theory and the vc dimension. Machine
learning, 14(1):83–113, 1994.

[46] Anika L Hines, Marguerite L Barrett, H Joanna, and Claudia A Steiner. Statistical
brief# 172. Agency for Healthcare Research and Quality, 2014.

[47] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[48] Yu-Chi Ho and David L Pepyne. Simple explanation of the no-free-lunch theorem
and its implications. Journal of optimization theory and applications, 115(3):549–570,
2002.

[49] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automatic Machine
Learning: Methods, Systems, Challenges. Springer, 2018. In press, available at
http://automl.org/book.

131

[50] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data explo-
ration techniques. pages 277–281, 2015.

[51] J-SR Jang and C-T Sun. Functional equivalence between radial basis function networks
and fuzzy inference systems. IEEE transactions on Neural Networks, 4(1):156–159,
1993.

[52] Karen E Joynt, Ashish K Jha, et al. A path forward on medicare readmissions. N Engl
J Med, 368(13):1175–1177, 2013.

[53] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorre-
lation. The American Statistician, 72(4):309–314, 2018.

[54] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. Auto-weka: Automatic model selection and hyperparameter optimization in
weka. In Hutter et al. [49], pages 89–103. In press, available at http://automl.org/book.

[55] Max Kuhn. The caret package, 2009.

[56] Patricio S. LaRosa. Filtering and recognition of manuscript and printed digits in the
principal component space and its orthogonal extensions. Master’s thesis, University
of Chile, Santiago, 5 2003.

[57] Fei-Fei Li and Jia Li. Cloud automl: Making ai accessible to every business. Inter-
net: https://www. blog. google/topics/google-cloud/cloud-automlmaking-ai-accessible-
everybusiness, 2018.

[58] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding
neural models in nlp. arXiv preprint arXiv:1506.01066, 2015.

[59] Friedrich Liese and Klaus-J Miescke. Statistical decision theory. In Statistical Decision
Theory, pages 1–52. Springer, 2007.

[60] Gilles Louppe. Understanding random forests: From theory to practice. arXiv preprint
arXiv:1407.7502, 2014.

[61] Lian Leng Low, Kheng Hock Lee, Marcus Eng Hock Ong, Sijia Wang, Shu Yun Tan,
Julian Thumboo, and Nan Liu. Predicting 30-day readmissions: performance of the
lace index compared with a regression model among general medicine patients in sin-
gapore. BioMed research international, 2015, 2015.

[62] Nicola Lunardon, Giovanna Menardi, and Nicola Torelli. Rose: A package for binary
imbalanced learning. R journal, 6(1), 2014.

[63] Alexander Maedche and Steffen Staab. Ontology learning. In Handbook on ontologies,
pages 173–190. Springer, 2004.

132

[64] John Mandel. Use of the singular value decomposition in regession analysis. The
American Statistician, 36(1):15–24, 1984.

[65] Kishan Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. Elements of artificial neural
networks. MIT press, 1997.

[66] Giovanna Menardi and Nicola Torelli. Training and assessing classification rules with
imbalanced data. Data Mining and Knowledge Discovery, 28(1):92–122, 2014.

[67] Klaus-J Miescke and Friedrich Liese. Statistical Decision Theory: Estimation, Testing,
and Selection.

[68] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal of electronic
imaging, 16(4):049901, 2007.

[69] Tapan K Nayak. Rao–cramer type inequalities for mean squared error of prediction.
The American Statistician, 56(2):102–106, 2002.

[70] Oanh Kieu Nguyen, Anil N Makam, Christopher Clark, Song Zhang, Bin Xie, Ferdi-
nand Velasco, Ruben Amarasingham, and Ethan A Halm. Predicting all-cause read-
missions using electronic health record data from the entire hospitalization: model
development and comparison. Journal of hospital medicine, 11(7):473–480, 2016.

[71] Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and excellent
survival. Proceedings of the National Academy of Sciences, page 201102826, 2011.

[72] Beata Nowok, Gillian M. Raab, and Chris Dibben. synthpop: Bespoke creation of
synthetic data in R. Journal of Statistical Software, 74(11):1–26, 2016.

[73] Randal S. Olson and Jason H. Moore. Tpot: A tree-based pipeline optimization tool for
automating machine learning. In Hutter et al. [49], pages 163–173. In press, available
at http://automl.org/book.

[74] Panče Panov and Sašo Džeroski. Combining bagging and random subspaces to create
better ensembles. In International Symposium on Intelligent Data Analysis, pages
118–129. Springer, 2007.

[75] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experiments
on amazon mechanical turk. Judgment and Decision making, 5(5):411–419, 2010.

[76] Nikita Patel and Saurabh Upadhyay. Study of various decision tree pruning methods
with their empirical comparison in weka. International journal of computer applica-
tions, 60(12), 2012.

133

[77] Paul Pavlidis and William Stafford Noble. Matrix2png: a utility for visualizing matrix
data. Bioinformatics, 19(2):295–296, 2003.

[78] Edwin PD Pednault. Statistical learning theory. Citeseer, 1997.

[79] Daniel Pop. Machine learning and cloud computing: Survey of distributed and saas
solutions. arXiv preprint arXiv:1603.08767, 2016.

[80] Petr Pospichal, Jiri Jaros, and Josef Schwarz. Parallel genetic algorithm on the cuda
architecture. In European conference on the applications of evolutionary computation,
pages 442–451. Springer, 2010.

[81] Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. A comparative study of
categorical variable encoding techniques for neural network classifiers. International
journal of computer applications, 175(4):7–9, 2017.

[82] Junfei Qiu, Qihui Wu, Guoru Ding, Yuhua Xu, and Shuo Feng. A survey of machine
learning for big data processing. EURASIP Journal on Advances in Signal Processing,
2016(1):67, 2016.

[83] Ashfaqur Rahman and Brijesh Verma. Novel layered clustering-based approach for
generating ensemble of classifiers. IEEE Transactions on Neural Networks, 22(5):781–
792, 2011.

[84] Fiana Raiber and Oren Kurland. Kullback-leibler divergence revisited. In Proceed-
ings of the ACM SIGIR International Conference on Theory of Information Retrieval,
ICTIR ’17, pages 117–124, New York, NY, USA, 2017. ACM.

[85] Markus Ringnér. What is principal component analysis? Nature biotechnology,
26(3):303–304, 2008.

[86] Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pages 41–46. IBM
New York, 2001.

[87] Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. Rotation forest: A
new classifier ensemble method. IEEE transactions on pattern analysis and machine
intelligence, 28(10):1619–1630, 2006.

[88] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection for ma-
chine learning: a big data-ai integration perspective. IEEE Transactions on Knowledge
and Data Engineering, 2019.

[89] Raúl Rojas. Adaboost and the super bowl of classifiers a tutorial introduction to
adaptive boosting. Freie University, Berlin, Tech. Rep, 2009.

134

[90] Baijayanta Roy. All about categorical variable encoding, Apr 2020.

[91] Khader Shameer, Kipp W Johnson, Alexandre Yahi, Riccardo Miotto, LI Li, Doran
Ricks, Jebakumar Jebakaran, Patricia Kovatch, Partho P Sengupta, Sengupta Geli-
jns, et al. Predictive modeling of hospital readmission rates using electronic medical
record-wide machine learning: a case-study using mount sinai heart failure cohort. In
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, pages 276–287. World Scien-
tific, 2017.

[92] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Performance modeling and evaluation
of distributed deep learning frameworks on gpus. In 2018 IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelli-
gence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cy-
ber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pages
949–957. IEEE, 2018.

[93] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological methods for
the analysis of high dimensional data sets and 3d object recognition. In SPBG, pages
91–100, 2007.

[94] Martin Slawski et al. On principal components regression, random projections, and
column subsampling. Electronic Journal of Statistics, 12(2):3673–3712, 2018.

[95] Petr Tichavsky, Carlos H Muravchik, and Arye Nehorai. Posterior cramér-rao
bounds for discrete-time nonlinear filtering. IEEE Transactions on signal processing,
46(5):1386–1396, 1998.

[96] Carl van Walraven, Irfan A Dhalla, Chaim Bell, Edward Etchells, Ian G Stiell, Kelly
Zarnke, Peter C Austin, and Alan J Forster. Derivation and validation of an index
to predict early death or unplanned readmission after discharge from hospital to the
community. Cmaj, 182(6):551–557, 2010.

[97] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in
neural information processing systems, pages 831–838, 1992.

[98] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[99] Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE trans-
actions on neural networks, 10(5):988–999, 1999.

[100] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Ver-
belen, and Jan S Rellermeyer. A survey on distributed machine learning. arXiv preprint
arXiv:1912.09789, 2019.

135

[101] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning, pages 1096–1103. ACM, 2008.

[102] Scott I Vrieze. Model selection and psychological theory: a discussion of the differences
between the akaike information criterion (aic) and the bayesian information criterion
(bic). Psychological methods, 17(2):228, 2012.

[103] Huazhen Wang, Fan Yang, and Zhiyuan Luo. An experimental study of the intrin-
sic stability of random forest variable importance measures. BMC bioinformatics,
17(1):60, 2016.

[104] Yingxu Wang. On concept algebra: A denotational mathematical structure for knowl-
edge and software modeling. International Journal of Cognitive Informatics and Nat-
ural Intelligence (IJCINI), 2(2):1–19, 2008.

[105] Yingxu Wang, Yousheng Tian, and Kendal Hu. Semantic manipulations and formal
ontology for machine learning based on concept algebra. International Journal of
Cognitive Informatics and Natural Intelligence (IJCINI), 5(3):1–29, 2011.

[106] Larry Wasserman. Topological data analysis. Annual Review of Statistics and Its
Application, 5:501–532, 2018.

[107] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[108] Virginia Vassilevska Williams. Multiplying matrices in o (n2. 373) time. preprint,
2014.

[109] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[110] Tzu-Tsung Wong. Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation. Pattern Recognition, 48(9):2839–2846, 2015.

[111] Dongrui Wu, Chin-Teng Lin, Jian Huang, and Zhigang Zeng. On the functional equiv-
alence of tsk fuzzy systems to neural networks, mixture of experts, cart, and stacking
ensemble regression. IEEE Transactions on Fuzzy Systems, 2019.

[112] Zhang Xuegong. Introduction to statistical learning theory and support vector ma-
chines. Acta Automatica Sinica, 26(1):32–42, 2000.

[113] Shipeng Yu, Faisal Farooq, Alexander Van Esbroeck, Glenn Fung, Vikram Anand, and
Balaji Krishnapuram. Predicting readmission risk with institution-specific prediction
models. Artificial intelligence in medicine, 65(2):89–96, 2015.

136

[114] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin,
et al. Apache spark: a unified engine for big data processing. Communications of the
ACM, 59(11):56–65, 2016.

137

Machine Learning Morphisms, Cawi, Ph.D. 2021

