Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering . : .
Research Computer Science and Engineering

Report Number: WUCS-91-53

1991-01-01

Exit Statements are Executable Miracles

Wei Chen

In this paper, we present a simple wp semantics and a programming law for the exit statement.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Chen, Wei, "Exit Statements are Executable Miracles" Report Number: WUCS-91-53 (1991). All Computer
Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/671

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/671?utm_source=openscholarship.wustl.edu%2Fcse_research%2F671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Exit Statements are Executable Miracles

Wei Chen

WUCS-91-53

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Exit Statements Are Executable Miracles

Wei Chen

Department of Computer Science
Washington University
Campus Box 1045
St. Louis, MO 63130

Abstract

In this paper, we present a simple wp semantics and a programming

law for the exit statement.

Keywords: exitl, miracle, wp, refinement.

1 Introduction

This paper has two principal goals. The first is to give a simple weakest
precondition semantics for the exit statement. In order to define the se-
mantics of exif , the Turing language [3] uses a more complicated form of
the wp definition, which is a map over a triple of predicates. In contrast,
our proposal maintains Dijkstra’s original form and exploits a miraculous

statement, one that can achieve impossibility, to represent exif .

The second purpose of this paper is to provide programming laws to
develop programs that admit exzif statements in the context of refinement
calculus [1, 7, 6]. The Turing language supports a development methodology
for ezit only in the very restricted way that exit is the first or last statement
of a loop. Our approach imposes no such restriction on the appearance of
exit . And we have a dynamic programming law set. At various stages of
program development, we stipulate new laws for later use. In this specific
case, a new law will designate a miraculous statement to refine to an ewit

statement.

2 Refinement calculus and miraculous statements

‘The refinement calculus, as Carroll Morgan put in [6], is a notation and
set of rules for deriving programs from their specifications. Our program-
ming notation includes a specification statement to specify a programming
task; thus there is no separate notation for specifications and the program
derivations are carried out within a single framework.

Specifically, we extend Dijkstra’s guarded command language with the

following form of the specification statement {5]:
z : [pre,post]

where z is a set of program variables, and pre and post are two predicates.

Its wp semantics is defined by
wp(x:[pre,post],R) = pre A (Y : post : R}

Operationally, it specifies a programming task that when started in states

satisfying pre terminates in states satisfying post by changing variables a.

Obviously, this statement is not executable by a computer. Program de-
velopment proceeds to eliminate all specification statements by applying
programming laws. A collection of those laws can be found in [2].

Dijkstra’s law of the excluded miracle, i.e. wp(S, fulse) # false for any
program .5, is not necessarily met by a specification statement. Consider
z:[true, fulse]. From the semantic definition of the specification statement,
wp(x : [true, false], false) = lrue, ie. the statement guarantees to achieve
everything, even impossibilities. We call any statement that does not meet
the law of the excluded miracle miraculous.

In general, a miraculous statement cannot be further refined into an exe-
cutable statement, so we should keep our program non-miraculous. However,
admitting miraculous statements often simplifies the programming theory.
In the following, we will see how we can use a miraculous statement to de-
fine the semantics of exit , and we will also encounter a situation where a

miraculous statement can be replaced by an executable statement.

3 The wp semantics of exit

First, we extend our programming notation. We assume that a do statement
can be followed by alabel (L}, and that no two do’s can have the same labels.
We will refer to an L-labeled do as doy,. We also introduce exzit in the syntax
of exit(L). Operationally, it causes the program control to jump to the end
of do;, when doy, encloses it.

We do not define exit independently. Since ezit has a meaning only when
it appears in some doy,, we need only define doy, and deal with exif inside it.

In calculating wp(dog, R), suppose that the calculation eventually reduces

to wp{exit(L), Q) for some Q. Since exit(L) changes program control to
the end of do;, where R needs to hold, the weakest possible precondition
to execute exit(L) is R. However, wp requires that exit{L} establish Q.
Obviously, this is in general impossible (unless 2 = .) Thus, we have
to work out some miracle. In this case, we need to activate a miraculous
statement whose weakest precondition is R, i.e. : [R, false] in our syntax.

Having observed this, we define the following ezit rule
wp(dor(exit(L)), R) & wp(do(:[R, false]), R)

In other words, for a postcondition R, wp of dor, is the same as unlabeled

do’s after replacing all exit(L) with :[R, fulse]. As an example, we calculate

wp(do true — exit (L) od(L}, R)
= { exitrule}
wp(do true — : (R, false] od, R)
= {dorule}
the strongest solution in terms of X in
(X = wp(: [R, false], X) V fulse]
= { definition of the specification statement }
the strongest solution in terms of X in

(X = R]

{ calculus }

4 Ezit in refinement calculus

Now that we have a formal definition of ezif , the remaining question is

how we can consciously introduce ezit in program development. From our

semantics we see that we need to detect an adequate context where a certain
type of specification statements can be replaced by an ezit. Such a context
appears when we introduce a do statement. The following law formalizes

this idea.

Law (introduce dor)

“BATl = R
z:[[LR] C doB—z:[of=vAIl, IAN0O<Lvf <v]od{Ll)

Sublaw (introduce ewity)
yi[R,Q] T exit(L)
where L is a fresh label, vf and » are an integer function and a fresh logical

constant as usual.

We use sublaw to refer to a law which can be applied only within a
block newly introduced by the application of the main law. In this case, the
sublaw can be applied only to constructs within the dog introduced by the
main law.

Sp C 51 indicates that Sp can be replaced with 5y (a formal definition
of this refinement order C can be found in [6].) Programming starts with a
specification statement and proceeds by replacements under the refinement

order until an executable program is reached. As an example, we derive

z:fz = 5,2 = 5]
C { the main law: I, B,vf := & = 5, true,0 }
dotrue — z:fu=0A2=5,2=5A0 <vjod{L)

c { a known law “weaken pre”: z:[pre A P,post] C z:[pre,posi] }

dotrue — z:[z =5,2 =5A0 < v]od{(L)
C { the sublaw }

do true — exit (L) od{L)

That is, the final program terminates at = 5, when started at z = 5.

5 Conclusion

Woe have formalized exit within the wp framework and provided programming
laws to introduce it in program construction. A similar proof rule of ewit
for partial correctness is given in [4]. Our use of the miraculous statement
allows exit to be easily adapted to the situation of total correctness. We
anticipate the same techniques will be applicable to other forms of the gofo
statement.

The ezit statement is rarely touched in formal program construction.
One reason might be that there were no programming laws known about it.
However, in some cases, using ezit can indeed lead to more straightforward
programs. We hope that the techniques presented in this paper allow exit

to play a role in formal program development.

6 Acknowledgements

I thank Ken Cox, Jerome Plun and Bala Swaminathan for commenting on
an earlier draft of this paper.

This work is prompted by a proof system for ezit reported by Ron Olsson
and Daniel Huang [8], though Ron Olsson and I ave still debating the validity

of that system.

References

[1] Back, R.J.R.: “A calculus of refinements for program derivations”, Acta

Informatica 25, 593-624, 1988.

[2] Chen, W.: “Programming by transformation ~ theory and methods”,

D.Sc. Dissertation, Washington University (St. Louis). May 1991.

[3] Holt, R.C., Matthews, P.A., Rosselet, J.A. and Cordy, J.R.: The Turing
Programming Language: Design and Definition, Prentice-Hall, Engle-

wood Cliffs, 1988.

[4] London, R.L., Guttag, J.V., Horning, J.J., Lampson, B.W., Mitchell,
J.G. and Popek, G.J.: “Proof rules for the programming language Fu-
clid”, Acta Informatica 10, 1-26, 1978.

[5] Morgan, C.C.: “The specification statement”, ACM TOPLAS 10, 403-
419, 1988.

{6] Morgan, C.C., Robinson, K. and Gardiner, P.: “On the refinement cal-
culus”, Technical Monograph PRG-70, Oxford University, 1988.

[7} Morris, J.M.: “Programs from specifications”, in: Formal Development

of Programs and Proofs, Addison-Wesley, Reading, MA, 81-115, 1990.

[8] Olsson, R.A. and Huang, D.T.: “Axiomatic semantics for escape state-

ments”, IPL 39, 27-33, 1991.

	Exit Statements are Executable Miracles
	Recommended Citation

	tmp.1455646060.pdf.OVBq9

