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Gene mutations are the radical causes of many diseases, including inheritance diseases

and cancers. Current medical treatments usually focus on changing the concentrations

of related chemicals or mRNAs at the cellular level to stop protein productions or

cell duplications, which can only control the diseases under certain circumstances but

cannot cure them. Little research work has been done at the molecular level, the

fundamental of inheritance, to search possible ways to cure those severe diseases.

In this dissertation, we propose a molecular level control system view of the gene mu-

tations in DNA replication from the finite field concept. By treating DNA sequences

as state variables, chemical mutagens and radiation as control inputs, one cell cycle

as a step increment, and the measurements of the resulting DNA sequence as out-

puts, we derive system equations for both deterministic and stochastic discrete-time,

finite-state systems of different scales. Defining the cost function as a summation of

the costs of applying mutagens and the off-trajectory penalty, we solve the determin-

istic and stochastic optimal control problems by dynamic programming algorithm. In
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addition, given that the system is completely controllable, we find that the global op-

timum of both base-to-base and codon-to-codon deterministic mutations can always

be achieved within a finite number of steps.
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Chapter 1

Introduction

Control and automation play critical roles in systems biology, an emerging academic

field aiming at system-level understanding of biological systems. The control engineer-

s not only provide new technology and equipment for biologists to design and perform

meticulous experiments and take high-throughput measurements, but also work close-

ly with doctors to develop new medical therapies and perform precise manipulations.

The wide range of aspects which control and automation have been applied to include

but are not limited to, gene regulation [Tanaka et al., 2006, Yildirim and Mackey,

2003], drug delivery [Langer, 1990, Yang et al., 2010], and neuron networks [Feng and

Tuckwell, 2003, Moehlis et al., 2006].

Biological systems can be divided into three levels according to their scales: molec-

ular, cellular and tissue level, respectively. Most current research work focuses on

either cellular or tissue level systems. Not much work has been done at the molecular

level. Understanding biological systems at the molecular level provides instrumen-

tal information about radical causes of many diseases and the genetic evidence of

evolution. It also helps biologists to gain a better understanding of molecular level

interactions, draw a complete blueprint of gene networks, improve existing means

and create novel means to cure genetic diseases, and to elaborate on the theory of

evolution.

On the other hand, current obstacles in systems biology are obvious. Albeit the

progress in molecular biology has enabled us to collect comprehensive data sets on

system performance and gain information on the underlying molecules [Kitano, 2002],

the structure and dynamics of biological systems are usually unclear, which makes it
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difficult to build abstract mathematical models for the given biological systems. Con-

ventionally, biologists perform a series of experiments to identify interactions among

related chemicals, construct mathematical models by modifying empirical or heuris-

tic equations, and estimate parameters from experimental data. Random factors

generated by experiments and parameter estimations may lead to the inconsistency

between theoretical and experimental results.

In this dissertation, we use a new approach to construct an abstract mathematical

model at the molecular level directly based on biological theory. With reasonable

assumptions, we can avoid the problems caused by empirical or heuristic equations,

measurements and parameter estimations. The cost function, a summation of the

costs for applying mutagens and the off-trajectory penalty, together with the system

equations, formulates the optimal control problem. The optimal control is then solved

by the dynamic programming algorithm technique.

This chapter is organized as follows. In §1.1, we give an overview about systems

biology. In §1.2, a brief introduction about the research work that has been done for

gene regulatory networks is given. §1.3 describes the organization of this dissertation.

1.1 Systems Biology

Most living organisms use identical biopolymers, DNA, as the medium for long-term

storage of genetic information, and eukaryotes follow the same rules to express genet-

ic information. Although many organisms share these basic traits, they nevertheless

take many different forms, and every individual of the same species is unique. Even

though every organism has the same DNA in all cells, gene expressions differ in dif-

ferent functional tissues. Biologists have struggled for years to discover the structure

of functional units in gene regulations, but have gained understanding only of specific

regulatory units of simple life forms, such as the regulatory network of lac operon in

Escherichia coli and TTG-bHLH-MYB in Arabidopsis, due to the complexity of gene

regulatory networks. Elucidating the structure of functional gene regulatory units

through biological experiments is crucial at early stages of research into gene expres-

sion and regulation processes, but the efficiency of such discovery can be enhanced
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by considering common structures among functional units. For instance, the arabi-

nose utilization network and tryptophan metabolic systems share a similar dynamic

structure with the lac operon from the viewpoint of complex systems.

Biological systems have many intrinsic properties that are similar to man-made com-

plex systems, including stochasticity, nonlinearity, stability, controllability and reach-

ability. System theorists can construct generalized models to describe biological dy-

namics in a systematic fashion, while making these models adaptive to the specific

characteristics of diverse functional units. Various tools in systems theory can be

adaptively applied to model, analyze, control and reconstruct biological systems.

With the help of efficient computational algorithms, systems theorists can simulate

biological systems under different circumstances and at a low cost by tuning pa-

rameters and incorporating random factors. This leads to an understanding of the

structures and properties of functional units without tedious repetition of the same

experiments many times under the same or different conditions. Systems theorists

can use properly designed mathematical models to make inferences about the behav-

ior of biological systems that can lead to the development of novel practical therapies

for diseases [Ledzewicz and Schaettler, 2009, Ledzewicz et al., 2010a,b].

In 1953, James D. Watson and Francis Crick discovered the double helix structure

of DNA and the rule of base pairing. Five years later, Francis Crick first articulated

the central dogma of molecular biology, which describes the transfer of genetic infor-

mation between macromolecules, specifically DNA, RNA and proteins. Since then,

many details of gene expression and regulation processes have been unveiled. System

theorists have played an important role in developing various mathematical models

for understanding complex biological systems. For instance, Leon Glass and Stuart

A. Kauffman applied logical functions to represent biological regulatory units in 1973.

The early development of systems biology started in the late 1940s [Wiener, 1948]. Re-

cent technology in molecular biology, including genome sequencing and high-throughput

measurements, has made a system-level analysis of biological system possible. In gen-

eral, a system-level understanding of a biological system can be derived from insight

into four key properties: (1) the system’s structure, (2) the system dynamics, (3) the

control method, and (4) the design method [Kitano, 2002]. Equivalently, identify-

ing related components and their interactions, gathering qualitative and quantitative
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information about the system’s evolution under different circumstances, achieving

the desired outputs by controlling the input with appropriate definitions of input-

s and outputs of the system, and reconstructing analogous systems by eliminating

the undesired properties are four essential steps in systems biology done by collab-

oration among engineers, biologists, and doctors. The major difficulties, in general,

lie in identifying the first two properties. Figure 1.1 illustrates the typical method

of system construction and verification commonly applied. Control engineers con-

struct models, run simulations, and predict the system behaviors. Biologists design

and carry out the experiments and measure the output data. Control engineers re-

vise and verify the models by comparing the predictions and experimental results.

Currently, data-driven and hypothesis-driven methods are two main tools broadly

applied. Due to the complexity of the systems, the mathematical models are usually

formulated by modifying empirical equations or heuristic equations with only partial

information available. The parameters of proposed models are obtained by various

estimation methods. Although those models can disclose significant details of the

system’s structure and dynamics, the inconsistency between theoretical and exper-

imental results creates obstacles for control engineers to verify the models, develop

optimal controls, and reconstruct systems with desired properties.

Figure 1.1: Typical analysis of biological systems.

Systems biology is a cross-cutting research area connecting control engineering, biol-

ogy, and medical science. as shown in Figure 1.2. It aims at understanding the bare
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Figure 1.2: Systems biology is a cross-cutting research area connecting control engi-
neering, biology, and medical science.
Sources: protein synthesis http://www.anticancer.de, liposome [Lentacker et al., 2009],
corneal transplant http://www.avclinic.com, microarray hybridization [Reinke, 2006], cu-
vettes for electroportation http://en.wikipedia.org, biochip http://www.clemson.edu,
nano robot http://www.molecularlab.it.

function and integration function of the cell to reconstruct the biological systems with

desired features. Control and automation play critical roles in this novel field, not

only by providing new technology and equipment for biologists to design and perfor-

m meticulous experiments, to take high-throughput measurements, and to analyze

experimental data efficiently, but also by offering doctors new medical applications

and improve the precision of medical manipulations. The equipment provided by

control engineers includes but is not limited to, nano-devices, bio-chips, cuvettes for

electroporation, and gene guns. Biologists perform various of biological experiments,

such as protein synthesis and virus DNA modifications, to gather measurements for

model revisions and verifications, to conclude theoretical and practical results from

evidences, and to help medical practice. Doctors use both theoretical and practical

results from biologists to perform tissue engineering, such as organ transplants and

artificial tissue construction. In addition, engineers develop efficient computational
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algorithms to analyze excessive experimental data provided by doctors and biologist-

s. These three groups of scientists collaborate closely to promote the development of

this new emerging field.

Biological systems can be divided into three levels according to their scales: molecu-

lar (nm), cellular (µm), and tissue level (cm). These levels are analogous in systems

theory to part, individual and group, respectively. Consider, for examples, gene reg-

ulation systems at different levels. Molecular level research focuses on how, when,

where and to what extent a gene is expressed [De Jong, 2002]. The completion of

Human Genome Project makes it possible to sketch a complete picture of a gene by

identifying the control sequences that govern how its DNA segments are coded and

how they interact. The essential goal at the molecular level is to sketch a complete

blueprint of gene regulatory network that theoretically describes clearly the function

of every gene (approximately 20,000-25,000 in human DNA) and how genes interact,

predicts possible results of a mutated gene, and provides researchers clues to intro-

duce human interferences into natural processes to eliminate side effects caused by

mutations. Besides gene expression and regulation, gene delivery, focusing on how to

delivery and integrate target genes at the right chromosomes and spots by appropri-

ate vehicles, is also a major topic at the molecular level. While changes in complex

systems at the cellular or tissue level may be accounted for through intrinsic biologi-

cal principles, changes in systems at the molecular level certainly affect the behavior

of the whole system at the cellular and tissue levels. Therefore, understanding the

molecular level systems is of great importance in improving the conventional medical

interventions and creating innovative therapies to control or cure them, by identify-

ing the radical causes in genes. Moreover, novel means to rescue endangered species

may be found by genetically identifying beneficial and deleterious in the course of

evolution.

Research on the cellular level, in general, treats one cell as a plant in classical system

theory and investigates its response to a changing environment, especially changes in

the concentration of RNA and proteins. State-of-the-art medical therapies primarily

based on experimental results at the cellular level, by adjusting the external envi-

ronment to promote the production of beneficial proteins, repress the expression of

deleterious proteins, or to stop the reproduction of bacteria by high concentrations of

antibiotics. Researchers also focus on how to delivery the drug to the desire cells by
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various means, such as electric polarization, which control the penetration of cell wall

or membrane by tuning the intensity of local electric field. Another major topic at

the cellular level is to position the master cell of a group of cells, exam how it affects

the gene expression and regulation of neighboring cells, and develop optimal control

methods to intervene its function. Tissue level research mainly concerns deleterious

tissue suppression, tissue reconstruction, artificial tissue substitutes, and tissue func-

tion recovery. The cell differentiation process is an important topic at this level, and

radiation therapy for cancer is a typical example of a practical application.

Gene regulations are collaboratively controlled by all three level systems, and most

complex biological systems have a hierarchical structure similar to gene regulation

systems. For instance, the metabolism of lactose in Escherichia Coli is jointly con-

trolled by the lac operon, composed by three structural genes, lacZ, lacY and lacA, a

promoter, a terminator, a regulator, and an operator, at the molecular level, and the

concentrations of glucose and lactose both in the cell and in the local environment at

the cellular level.

In general, complex biological systems at the molecular level have discrete state s-

paces, because molecules and nucleotide bases are discrete. The time index of molec-

ular level systems processes can be continuous or discrete, depending on the system.

Our model for gene mutation in DNA replication is discrete-time, with one cell cycle

normalized to the step increment. Because distinct cells have different cell cycles, a

continuous-time system can be a more accurate model. While the controls for bio-

logical systems at the molecular level are usually ON/OFF controls, and hence are

discrete variables, their corresponding systems at the cellular level, in most cases, are

continuous-time, continuous-state systems, where the state and control variables are

typically concentrations of chemicals, whose derivatives are production and reduction

rates. The state space of models for biological systems at the tissue level can be dis-

crete (e.g. the number of cells in a tumor), or continuous (e.g. the size of a tumor),

and the control variables are usually piecewise continuous (e.g. scheduled radiation

therapy).
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1.2 Existing Approaches

Researchers have applied various methods to model, simulate, and control the gene

regulation processes. Early attempts to model and simulate gene regulatory system-

s are summarized in [De Jong, 2002], including direct graphs, Bayesian networks,

Boolean networks, ordinary and partial different equations, qualitative differential

equations, qualitative differential equations, stochastic equations, and role-base for-

malisms ([De Jong, 2002]). Other approaches include Petri nets ([Matsuno et al.,

2000]), transformational grammars ([Collado-Vides, 1989, Collado-Vides et al., 1998]),

and process algebra([Regev et al., 2001]). Some recent work of system-view approach

to gene regulation includes [Tanaka and Kimura, 2008], [Layek et al., 2011], [Mayo

et al., 2006] and [Zhang et al., 2006]. Three important modeling methods in recent

work are compound control models, logic network models and base-to-base molecular

level formulations.

Compound control models

Biological systems are always in response to the compound environmental changes

[Tanaka and Kimura, 2008]. Various mathematical models have been derived

for the gene regulatory units ([Ozbudak et al., 2004, Santillán and Mackey, 2004,

Setty et al., 2003, Yildirim and Mackey, 2003]), including lac operon and cis-

regulatory units. [Tanaka et al., 2006] proposed a generalized model that can

be adaptive to several gene regulatory units with similar structures at the cellu-

lar level, including arabinose utilization network, tryptophan metabolic system,

heat shock response system and λ-system.

Figure 1.3: General scheme of a regulatory unit [Tanaka and Kimura, 2008]
.
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The general scheme of a regulatory unit is illustrated in Figure 1.3, where the

operon acts as the plant in the conventional control theory. And the system

dynamics can be represented by equations

ẋ = F (u, y)− αx, (1.1a)

ẏ = G(x, y)− βx, (1.1b)

u̇ = H(s, y, u)− γx, (1.1c)

ṡ = K(e, y, s)− δx, (1.1d)

where x, y, u, s and e are column vectors corresponding to the concentrations

of mRNA of the operons, of produced proteins, of regulatory molecules, of

second messengers, and of external changes, respectively. α, β, γ and δ represent

the degradation rates (together with the growth rates) for x, y, u and s. The

four functions F,G,H and K describes the production rates of x, y, u and s,

respectively [Tanaka and Kimura, 2008].

However, F,G,H, and K are usually obtained from empirical biomedical kinetic

models or curve fitting algorithms based on the experimental results. And real-

time measurements of concentrations of different chemicals within the cell and

the environment is unavailable. Therefore, the accuracy of such models are not

guaranteed.

Logic network models

The early research of using logical functions to represent biological regulatory

is presented in [Glass and Kauffman, 1973, Thomas, 1973]. The basic idea of

this approach comes from the similarity between gene regulatory networks and

digital circuits. Later, researchers extend this idea to various logic networks, in-

cluding baysian networks, boolean networks, generalized logical networks, Petri

net and their probabilistic generalizations.

Figure 1.4 shows an example of directed hypergraph representation of gene

regulatory networks. Directed hypergraph is defined as a tuple < V,E > with

V , a set of vertices representation genes or other elements, and E, a collection

of edges representing the interaction among genes. + in Figure 1.4 indicates

the activation, and − indicates inhibition. A directed edge is defined by a

tuple < i, [j1, j2, · · · , jn], [s1, s2, · · · , sn] >, representing the edges from vertices
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Figure 1.4: An example of directed hypergraph representation of a regulatory network
with cooperative interactions [De Jong, 2002].

[j1, j2, · · · , jn] to vertex i, with sm ∈ {+,−} corresponding to the pathway from

vertex jm to vertex i, respectively. The definition of V and E in Figure 1.4 can

be expressed as

V = {1, 2, 3},

E = {< 2, [1, 3], [−,−] >,< 3, [1], [−] >,< 1, [2], [+] >,< 3, [3], [−] >}.

Figure 1.5: Hybrid petri net model for two-genes operon [Matsuno et al., 2000].

Figure 1.5 shows a typical hybrid Petri net model for two-genes operon. A hy-

brid Petri net is convertionally defined as Q = (P, T, h,Pre, Post,M0), with set

of places P = {P1, P2, · · · , Pn}(n ≥ 1), set of transitions T = {T1, T2, · · · , Tm}(m ≥
1), h : P ∪T → {D,C} indicating every place or transition whether it is discrete

or continuous, Pre(Pi, Tj)(Post(Pi, Tj)) from a place Pi (a transition Tj) to a
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transition Tj (a place Pi), a function with weighted arc, and the initial marking

M0 [Matsuno et al., 2000].

The drawback of logic network models is too many details are omitted during

the modeling process. As a result, such models can only provide qualitative rep-

resentations for gene regulatory units. Integration of logic network models and

biomedical kinetic models provide more biological details, yet the disadvantages

of both approaches still exist.

Base-to-base molecular level formulation

Instead of using biomedical kinetic models, researchers in the field of DNA

computation proposed a novel mathematical formulation at molecular level.

Initiated by the idea in [Adleman, 1994], [Zhang et al., 2006] proposed three

ways, complex number, integer number, and vector representations, to convert

the character-base DNA sequences to numerical sequences, as shown in (1.2a),

(1.2b) and (1.2c), respectively.

f(x) =


1 x = A,

−1 x = T,

1 x = G,

−1 x = C;

(1.2a)

f(x) =


0 x = A,

1 x = T,

2 x = G,

3 x = C;

(1.2b)

f(x) =



[
1 0 0 0

]
x = A,[

0 1 0 0
]

x = T,[
0 0 1 0

]
x = G,[

0 0 0 1
]

x = C.

(1.2c)

They also presented the corresponding inverse functions, complementary DNA

sequences representations and several important propositions in [Zhang et al.,

2006]. Models for DNA hybridizations, RNA self-hybridizations and a unified

representation of gene expression can be found in [Gao et al., 2010].
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1.3 Organization of This Dissertation

This dissertation is organized as below.

Chapter 2 gives an outline of this dissertation. Our motivations, problem state-

ment, methodology, and potential impacts of our work are discussed in this

chapter.

Chapter 3 begins with a brief introduction to biological details of gene regulations,

including the central dogma in molecular biology, DNA replication, and gene

mutations. Then we go through the details of constructing mathematical models

of mutations in DNA replication for both point and multi-sites, stochastic and

deterministic cases, followed by several important propositions. In addition, we

extend our model to describe mutation involving broken DNA strands.

Chapter 4 shows how we define our optimal control objectives, and apply the dy-

namic programming algorithm to compute optimal control sequences. Simu-

lation results of base-to-base and codon-to-codon, deterministic and stochastic

optimal control problems are illustrated and compared. Codon-to-codon deter-

ministic and stochastic cases are critical as a gene is composed of finite number

of codons. Consequently, the solutions to codon-to-codon deterministic and s-

tochastic cases lead directly to the solutions to gene-to-gene deterministic and

stochastic mutations.

Chapter 5 summarizes the work has been done and discusses possible future work.
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Chapter 2

Problem Statement

This chapter gives an outline of our work. Apart from the previous models introduced

in §1.2, we propose a novel model for DNA replication, and solve the optimal control

problem based on our model. The motivations are discussed in §2.1. The problem

statement and methodology to approach the problem are discussed in §2.2. We discuss

the potential impacts of our work in §2.3.

2.1 Motivations

As mentioned in §1.2, although system models at the cellular level, including logic

networks, compound controls, and the integration of both, can describe the gene

regulatory units, parameter estimations and real-time measurements are two major

problems in these conventional modeling methods. The bottleneck of system models

at the cellular level can be solved by a better understanding of the corresponding

biological systems at the molecular level. The commonalities shared by most life

forms at the molecular level makes it essential to construct a rigorous state-space

model at the molecular level directly based on biological theories.

Most living organisms use DNA as the medium for long-term genetic information

storage. Damage of DNA molecules can lead to deleterious consequences, such as

lethal diseases or inheritance diseases. The high-fidelity of DNA molecules, especial-

ly the regulatory and coding DNA segments, ensures the productions of functional

proteins for metabolism. DNA is usually encapsulated in the chromosomes inside cell

nucleus. DNA sequences are less stable during DNA replications and transcriptions
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when the double helix structure of DNA molecules is destroyed by breaking the hy-

drogen bonds between two DNA strands. Consequently, externals disturbances and

internal noises can interrupt the DNA sequences during those period with a higher

probability than when encapsulated. On the other hand, applying corresponding mu-

tagens at the correct time instance during those periods can restore damaged DNA

sequences. DNA replication is inter-cellular, i.e. the genetic information is replicated

and passed to the new cell. However, DNA transcription is usually inner-cellular, i.e.

the genetic information is transcribed and transported into the cytoplasm of the same

cell. Although the proteins produced by one cell can affect protein productions in

other cells, the accuracy of DNA replication is particularly important to ensure the

correct expression of genes.

Currently, there are two means to restore an abnormal DNA segment back to a normal

sequences, mutagens and viral infection. Mutagens, usually chemicals or radiative

rays, may cause deleterious consequences to living organisms. However, comparing

to viral infection, which may lead to uncontrollable aftermaths, such as cancers or

immune system diseases, applying mutagens in the right order and at the correct time

instance is a relative safe way to control and cure genetic diseases. Because of the

poisonousness of mutagens, we would like to find a way in which we can restore a

disrupted DNA segment to a normal sequence at the lowest risk.

In summary, our goal is to derive a robust system model for gene mutation in DNA

replication at molecular level, and then to find control sequences to drive an abnormal

DNA to a normal state at the minimum cost.

2.2 Problem Statement & Methodology

Figure 2.1 shows the system diagram of restoring an abnormal DNA segment to a

normal sequence by applying mutagens during the process of DNA replication. Once

obtaining patients’ genome, we compare the coding DNA segments with normal DNA

segments in our database to figure out the range of disrupted segments. Due to the

redundancy in genetic codes, as long as any two DNA segments containing the same

number of nucleotide bases can be transcribed and translated to the same amino acid

sequence, the distance reference between them is considered to be zero. Therefore,
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Figure 2.1: System diagram of restoring an abnormal DNA segment back to a normal
sequence by applying mutagens during the process of DNA replication.

our final state lies in a set where the distance reference between any sequence and

the desired sequence is zero, different from classical systems theory, the final state of

which is usually a point or a neighborhood in the state space. We name this set the

final desired set. The prescription is then determined by picking the path with the

lowest cost from the current measurement of current DNA segment to every sequence

in the final desired set.

From the viewpoint of systems theory, a dynamic system is a quintuple, input space,

state space, output space, state transition map, read-out map. Here, we give an

overview of those five components in our systems.

Although the duration of cell cycles varies among tissues, DNA replication always

happens at the beginning of every cell cycle, before cell division. At the molecular

level, our target is usually DNA molecules inside one cell or a group of cells in the

same tissue, therefore, we normalize the duration of a cell cycle to 1, representing a

step increment.

Biologically, gene mutations, both spontaneous and induced, may change the number

of nucleotide bases of targeted segment. On the other hand, from the viewpoint of

systems theory, it is important to keep the consistency of state space during a system’s

evolution. Since DNA segments of different lengths belong to different state spaces,

we require the length of DNA segment remains the same through the whole evolution.

In other word, mutations involving base insertions are ignored in our model, but those

involving base deletions can be expressed by filling deleted sites with artificial non-

sense bases. Enlightened by Zhang’s work [Zhang et al., 2006], we map four nucleotide
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bases, together with an artificially added non-sense bases into a finite field composed

of five real numbers. Subsequently, nucleotide base sequences of DNA segments are

converted to vectors, which are elements of state space. Since DNA segments are of

finite length, and there are only five alleles (four nucleotide bases and one artificial

nonsense bases) at every spot, the total number of all permutations of a given-length

nucleotide sequence is finite. Hence, our state space contains finite number of vectors.

The field structure of our state space is very helpful in our modeling process as it

possesses nice mathematic properties, such as the multiplication and addition among

elements from the field always stay within the same field.

The output, the measurement of current DNA sequence, lies in the same space as the

state variables. In reality, a mutagen, especially a chemical mutagen, correspond to

one or two major transfer patterns and other minor transfer patterns, which occur at

very low probabilities. Therefore, we can view our control space as a set of ON/OFF

controls of all available mutagens at every spot of targeted DNA segment, representing

whether a mutagen is applied at a particular position. The state transition map

describes how the system is driven from input to the output, which are fully discussed

in Chapter 3. In this particular problem, the output is exactly the next state, since

we assume our measurement is always accurate.

Therefore, our system is a discrete-time dynamic system with finite state space and

output space, and a set of ON/OFF switches as controls. Our goal is to optimally

drive this system from a given initial state to a desired final set at the lowest cost.

The objective function is defined as an accumulated sum of the cost of applying muta-

gens, including poisonousness scales, and off-trajectory penalty, a distance reference

between current measurement and the desired set at current step, during system’s

evolution. The chemical and physical properties of animo acid makes it difficult to

define a proper metric over the finite field for codons. Alternatively, we define a dis-

tance reference, which acts as a penalty if the final state is not in the final desired set.

The optimal control sequences are computed in advance to let doctors make medical

treatment plans according to the patient’s initial condition. In general, the optimal

control sequence and the corresponding optimal trajectory are not unique because the

bases mutate independently in most cases and the order of mutating different bases
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is does not matter if the number of medical treatment sessions is not under a tight

restriction.

Additional measurements are taken before and after each treatment if necessary. In

deterministic cases, the purpose of taking additional measurements is to verify the

result of medical interventions and to eliminate internal and external disturbances.

The treatment plan is adjusted if current measurement does not follow the prediction.

In stochastic settings, we take the measurement to conquer the randomness cased by

both mutagens and other noises. The treatment is then updated accordingly. In the

real cases, both the distance reference and the costs of applying mutagens should be

defined by doctors or biologists according to the statistics. We apply the dynamic

programming algorithm to compute the optimal control sequences.

2.3 Impacts

Our work derive a mathematical framework for gene regulation at molecular level and

provide a novel angle to view biological systems in a systematic fashion. Our model

can facilitate biologists and doctors in identifying the structure of functional units

efficient, analyzing biological systems at the molecular level, and gaining a better

understanding of gene expression and regulation at the cellular and tissue levels. Our

model and optimal control algorithm are crucial in the improvement and creation of

novel medical therapies.

In addition, our model can contribute in sketching a complete map of gene network. In

laboratories, biologists can mutate particular sections of DNA on purpose to identify

the regulatory genes, coding sequences and non-coding sequences, and discover the

interactions among them, follow the optimal control sequences computed in advance.

The corresponding cellular and tissue level systems can monitored simultaneously to

understand the interaction among different levels.

Moreover, the beneficial and neutral mutations lead to the diversity of species. Geneti-

cists examine compare the differences between DNA from ancient and living animals

to trace the evidence of evolution. By eliminating the deleterious mutations in the
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natural selection, our model provide a relative safe way to perform those mutations

in the lab or hospital to increase the diversity of the gene pool.

Last not not the least, our model also helps the construction of a molecular computer.

Though DNA replication and hybridization is efficient, but it is not error-free. Our

work provides a possible way to correct computation errors.
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Chapter 3

System Equation Formulation

In this chapter, we construct a novel mathematical formulation for mutations oc-

curring during DNA replication at the molecular level. Instead of using chemical

concentrations as state variables, we directly use the nucleotide-base sequences of

DNA segments as our state variables. Based on the transfer matrix we derived for

perfect DNA replication, we discover that with proper assignment, nucleotide bases,

together with an artificially introduced non-sense base, can be convert into a finite

field composed of five real numbers, under proper definition of addition and multipli-

cation. The system equations for point mutation and large-scale, deterministic and

stochastic cases are then developed. In addition, we show that our system equations

can be adapted to other biological processes at the molecular level, such as broken

DNA strands.

The organization of this chapter is as follows. In §3.1, we give a brief introduction

to biological background. Assumptions and their feasibilities are discussed in §3.2.

Then we present a basic model for the perfect DNA replication, from which we find

a constant transfer matrix and the underlying field of single nucleotide bases when

converting them into real numbers. We go through the details of modifying our basic

model to express deterministic point mutation by reverse engineering the mutations

occurring in DNA replication in §3.3. §3.4 and §3.5 are the extensions of §3.3 to large

scale deterministic and stochastic cases.
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3.1 Background

3.1.1 The Central Dogma of Molecular Biology

The central dogma of molecular biology, first elaborated in [Crick, 1958] and re-stated

in [Crick, 1970], illustrates the detailed residue-by-residue transfer of genetic sequen-

tial information. Nowadays, it is widely recognized as the backbone of molecular

biology. It describes the genetic information flow between three kinds of biopolymer-

s: DNA, RNA, and protein. In most living organisms, genetic information transfers

from DNA to RNA, and then into protein. Though under special conditions, some

transfers are reversible, protein always acts as the sink of information flow, as shown

in Figure 3.1. In Table 3.1, we list out all nine possible transfers between three kinds

of macromolecules, which are classified into three classes: general transfer, special

transfer, and unknown transfer. General transfers are normal biological processes.

Special transfers exists only in virus or in laboratory. No evidence shows that un-

known transfers occur in natural processes or in laboratory up till now.

Figure 3.1: Biological information flow in central dogma of molecular biology.

General Transfer Special Transfer Unknown Transfer

DNA → DNA RNA → DNA Protein → DNA

DNA → RNA RNA → RNA Protein → RNA

RNA → Protein DNA → Protein Protein → Protein

Table 3.1: Three classes of transfers between three kinds of macromolecules classified
by the Central Dogma in Molecular Biology.
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Three general transfers in Table 3.1 are named DNA replication (DNA → DNA),

transcription (DNA → RNA), translation (RNA → protein), respectively, by biolo-

gists.

DNA replication usually happens when a cell prepares to divide. Though there exist

several DNA repair mechanisms which can eliminate replication errors [Friedberg

et al., 1995], errors that are overlooked may lead to severe genetic diseases including

cancers. Our work focus mainly on compensating such errors in genes. More details

about DNA replication will be given in §3.1.2.

Transcription and translation are two key steps leading to the expression of genes.

Transcription is the process of transfering genetic information from DNA segments in-

to RNA sequences following complementary language, i.e. A (adenine)→ U (uracil),

T (thymine) → A and G (guanine) ↔ C (cytosine). The resulting RNA is called

messenger RNA (mRNA) as it contains genetic sequential information from tran-

scribed DNA sequence. Different from the double-helix structure of DNA sequences,

RNA is always single-stranded. In transcription, only one strand of DNA serves as

the template, and it is read in the direction of 3′ → 5′. The other strand is called

the coding strand as its sequence is the same as the resulting mRNA sequences ex-

cept T is replaced by U , if no error occurs. Only DNA segments which direct and

regulate protein synthesis and the coding sequences that is translated into protein

are transcribed. Noncoding DNA sequence, a large portion of total genome size, is

copied to the new DNA strands during DNA replication, but is not involved in the

transcription and translation process.

Translation is the process of converting a mRNA sequence into an amino acid polypep-

tide chain. Translation starts at the start codon of mRNA (usually AUG, sometimes

GUG or UUG), attached by a ribosome, under appropriate initiation factors. One

codon contains three consecutive nucleotides, and one combination corresponding to

a specific amino acid. As there are 43 combinations forming 64 different codons but

only 20 amino acids plus the stop codon, so there exists degeneracy, i.e. several codons

correspond to the same animo acid. But one codon always corresponds to only one

amino acid. Table 3.2 lists the genetic codes, the language of translation process, in

terms of DNA codons. Transfer RNA (tRNA) brings the corresponding amino acid

to each codon as the ribosome moves down the mRNA strand. Translation stops at a
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stop codon. The synthesis of the peptide chain ends and the whole chain is released

from the ribosome, which folds into the correct conformation. This folding process

continues until a natal polypeptide becomes a mature protein.

XXXXXXXXXXXXXXX
1st letter

2nd letter
T C A G

T

T Phe T Ser T Tyr T Cys

C Phe C Ser C Tyr C Cys

A Leu A Ser A STOP A STOP

G Leu G Ser G STOP G Trp

C

T Leu T Pro T His T Arg

C Leu C Pro C His C Arg

A Leu A Pro A Gln A Arg

G Leu G Pro G Gln G Arg

A

T Ile T Thr T Asn T Ser

C Ile C Thr C Asn C Ser

A Ile A Thr A Lys A Arg

G Met/Start G Thr G Lys G Arg

G

T Val T Ala T Asp T Gly

C Val C Ala C Asp C Gly

A Val A Ala A Glu A Gly

G Val G Ala G Glu G Gly

Table 3.2: Genetic codes (DNA 5′ → 3′). A codon consists three consecutive nu-
cleotide bases. The column shows the first base, the row the second, and the letter
in the grid the third.

3.1.2 DNA Replication

DNA molecules, encapsulated in chromosomes within cell nucleolus, serve as the medi-

um for long-term genetic information storage, and is the basis of genetic inheritance.

It consists four kinds of nucleotide acids, adenine (A), thymine (T ), guanine (G)

and cytosine (C), and backbone made of sugars and phosphate. In 1953, James D.

Watson and Francis Crick found the double helix structure of DNA and the rule of

22



base-pairing, known as Watson-Crick base-pairing [Watson and Crick, 1953, 2003]. A

always pairs with T , G always pairs with C, and vice versa.

DNA replication occurs in the interphase of cell cycle. It begins at special locations in

genome, called ”origins”. Double-stranded DNA is unwound at the origin by helicases,

forming a replication fork with two prongs. Both strands serve as template and two

new double-stranded DNA molecules are formed by adding nucleotides matched to the

template strand and a number of associated chemicals, as shown in Figure 3.2. The

new DNA molecules are half old half new, with one strand directly from the unwound

DNA, and the complementary from linking free nucleotide bases inside nucleolus. In

DNA replication, both strands are read in the direction of 3′ → 5′.

Figure 3.2: Biological information flow in central dogma of molecular biology.

The high fidelity of DNA replication is extremely important as the accuracy of gene

expression and regulation are based on precision of nucleotide sequences. In nature,

replication errors occur at a very low rate, one error for every 107 nucleotides added

[McCulloch and Kunkel, 2008]. The redundancy of information caused by the double-

helix structure ensures the fidelity of DNA replication. Some DNA self-repair mech-

anisms, listed in [Friedberg et al., 1995], such as proofreading, also help to eliminate

errors during the replication process.
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3.1.3 Gene Mutation

Gene mutations are changes in the nucleotide sequence of DNA or RNA. Usually, we

focus only on mutations occurring in coding DNA sequences and RNA. Mutations

are caused by various reasons. In natural, spontaneous mutation occurs at a relative

constant rate. Mutation rate is different from one species to another. Induced gene

mutations are brought by mutagenic agents, including chemicals, radiation and viral

infection. Three main types of chemical mutagens that can alter base-pair sequences

are base analogs, base modifiers and intercalcalating agents. Base analogs have struc-

tures similar to DNA bases, thus can substitute normal bases during the replication

process. But unlike normal nucleotide bases, they can bind with bases other than the

complementary to the one they replaced. Base modifiers can change existing bases

and cause them to pair with bases other than the complementary. Intercalcalating a-

gents can interrupt replication and transcription by inserting themselves directly into

the DNA helix. Radiation includes ionizing radiation, including α, β, γ and x-rays,

which can disrupt normal DNA sequences, usually by knocking out base pairs, and

non-ionizing radiation, including ultraviolet light, which can block DNA replication

by bonding adjacent T ’s on a DNA strand and may cause point mutation. Intensive

radiation can destroy the cell by damage the backbone of DNA. It is widely applied in

cancer therapies, usually combined with chemotherapy. Viral infection can reprogram

the genes which regulate cell cycle, and lead to uncontrolled cell division, which is a

major characteristic of cancer cells.

Mutations can be classified differently under specific criteria. According to the num-

ber of affected bases, we can divide them into small-scale mutations and large-scale

mutations. The simplest form of small-scale mutations is point mutation, which sub-

stitutes one nucleotide base by another and happens only at one site of a targeted

DNA segment. Point mutations can be further divided into transitions (A ↔ G or

C ↔ T ) and transversions (A/G↔ C/T ). Figure 3.3 shows an example of transver-

sion, with two bases in the green shaded area not complementary to each other.

Transversions are theoretically expected to be twice as frequent as transitions, but

transitions may be favored over transversions in coding DNA because they usually

result in a more conserved polypeptide sequence [Strachan and Read, 2004]. Based

on inheritance, we can classify them into somatic and gametic mutations. The former
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occur in body cells and the latter occur in sex cells. In general, gametic mutations

can be passed on to offsprings except for organisms reproduce asexually.

In this dissertation, we mainly focus on their impact on the resulting amino acid

and protein sequence. Under this criterion, we divide mutations into five classes

[Robinson, 2005].

Figure 3.3: An example of point mutation. The area shaded by green is where
mutation occurs.

Silent mutation is a mutation that only changes nucleotide sequence but not the

resulting amino acid sequence. It may occur in noncoding DNA segments or

within a codon but resulting in the same amino acid due to the redundancy of

genetic codes in Table 3.2.

Neutral mutation is a mutation that occurs in a codon which results in a different

amino acid with similar chemical properties. In addition, the resulting protein

can function normally. Neutral mutation may be candidates of natural selection.

Missense mutation replaces the original amino acid with a different one, and as a

result, alters the function of the corresponding protein.

Nonsense mutation is a mutation that occurs within a codon causing an early stop

of transcription or translation. The protein may be malfunctional or totally

nonfunctional depending on the location of nonsense mutation.

Frameshift mutation is a shift in reading frame caused by the addition or deletion

of one or more nucleotides. It can totally mess up the downstream sequence from

the mutated site. Insertion, deletion or duplication of a number of nucleotides

are included in this category.
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DNA self-repair mechanismcannot eliminate all mutations in DNA replication since

all organisms interact with their environment, which involves various random factors,

in a unique and unpredictable way. The results of mutations can beneficial, deleterious

or neutral. Deleterious mutations can lead to inheritance diseases or cancers.

Our research focuses on the mutations in coding DNA segments, and we develop a

compensation at the lowest cost for gene mutations.

3.2 Assumptions

In our work, we mainly focus on applying chemical mutagens and radiation to restore

the original amino acid sequence. Other factors that may affect the gene mutation,

including temperature and electroporation, are not within our consideration.

As previously mentioned, mutations involving inserting additional bases into target

DNA segment is ignore to maintain the consistency of state space during system’s

evolution. Mutations involving base deletions can be expressed by using artificial

non-sense bases to replace deleted bases.

The following assumptions hold for Chapter 3 and Chapter 4, unless stated otherwise.

Assumption 3.1. Chemical mutagens or radiation can target one and only one nu-

cleotide base at any predetermined site, despite the technical limitation.

Due to the limitation of current technology, this assumption is not practically true.

Current experimental work can only mix chemical mutagens into DNA solutions, but

it is difficult to predict qualitatively and quantitatively how many targeted bases and

at which sites of targeted bases will be mutated at the molecular level, which leads

to an uncontrollable mutation process. Although gene therapy is a possible practical

solution to large-scale mutations, but the high risk caused by virus, common vector

to transport desired genes into targeted cells by integrating its programmed DNA

segments into the DNA of host cells, is unavoidable. Chemical mutagens or radiation,

applied in correct order with proper doses, can reduce the risk of restoring process.

Assumption 3.2. Every base mutates independently.
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[Koch, 1971] shows some evidence that the mutation rates of neighboring bases may

change if one base is mutated. We neglect affiliated effects of neighboring bases in

mutations since these cases occur in specific situations. Hence, we assume every base

mutates independently and there is no chain effect caused by mutagens.

Assumption 3.3. Only one base in the targeted DNA segment can be mutated by

chemical mutagens or radiation at each step, i.e. at most one chemical mutagen and

one radiative ray are orderly applied at each step. The order of applying chemical

mutagens or radiation can be random, but they cannot be applied at the same time.

And targeted bases response to chemical mutagens and radiation independently.

Indeed, our state space model can describe multi-site mutations within one step. But

in order to avoid chemical reactions between chemical mutagens and the ionization

effects of radiation on chemical mutagens, we take this assumption for simplicity

and unambiguity. Later in this chapter, we define an order and corresponding time

instances to apply chemical mutagens and radiation in a typical cell cycle to construct

a generalized model.

Assumption 3.4. Measurements are always correct.

The technology used in Human Genome Project makes it possible to determine a DNA

sequence in a simple, efficient and reliable manner. Though sometimes this method

is unable to distinguish a base analog from a normal base, repetitive measurements

can always compensate those situations. Therefore, we assume the measurement is

100% correct.

Assumption 3.5. DNA replication error, background mutation rate, and other ran-

dom noise can be eliminated from measurements by considering them as spontaneous

mutation.

We always take current measurement as our new state variable to calculate future

control sequences. Replication errors are negligible as mentioned in §3.1.2. Sponta-

neous mutations can be incorporated into our models by introducing a term similar

to chemical mutagens. Without loss of generality, we compensate all noises from

measurements.

Assumption 3.6. Radiation cause random mutations at a much higher rate than

chemical mutagens.
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In practice, both radiation and chemical mutagens cause randomness. Radiation,

in general, is more difficult and with a relative higher risk, to control the mutation

comparing to chemical mutagens. Under deterministic conditions, we assume the

induced mutations have no randomness. Under stochastic conditions, randomness is

carefully considered and interpreted.

3.3 Base-to-base, Deterministic Model

Denote a targeted DNA segment with n nucleotide bases at kth step by a column

vector xk, as shown in Figure 3.2. xk+1 is the state variable at (k + 1)th stage. xik
denotes the ith element of xk. Let P be the transfer matrix from xk to xk+1, ∀k,

k ∈ Z+ ∪ {0}, without mutation. Then the perfect DNA replication process can be

expressed as

xk+1 = Pxk. (3.1)

Claim 3.1. P = −I.

Proof. As no mutation occurs, xk+1 is completely complementary to xk by Watson-

Crick base pairing rule, and xk+2 is completely complementary to xk+1. Therefore,

xk+2 is exactly the same as xk.

xk+2 = Pxk+1 = P 2xk ⇒ P 2 = I.

Since xk and xk+1 are of the same dimension, P is a square matrix. According to

§3.1.2, every element of xik+1 only depends on the corresponding element of xik, thus

P is diagonal. In addition, xk+1 6= xk, we conclude P = −I.

We rewrite (3.1) as

xk+1 = −Ixk. (3.2)

Based on (3.2), we assign values to nucleotide bases set {A,G,C, T,O}, where O is an

artificial non-sense base. Define an equivalence relationship between {A,G,C, T,O}
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and {1, 2,−2,−1, 0}, i.e. {A,G,C, T,O} ⇔ {1, 2,−2,−1, 0}, with

x
(i)
k =



1 if A,

2 if G,

−2 if C,

−1 if T,

0 if O.

(3.3)

Claim 3.2. {1, 2,−2,−1, 0} is a field under proper definitions of addition and mul-

tiplication.

Proof. Fp = Z/pZ is a field with p a prime number. Let p = 5, F5 = Z/5Z =

{0, 1, 2, 3, 4} is a field and the multiplication and addition defined on this field by

mod5.

Initiated by F5, for {1, 2,−2,−1, 0}, we define the addition table and multiplication

table as follows:

+ 1 2 −2 −1 0

1 2 −2 −1 0 1

2 −2 −1 0 1 2

−2 −1 0 1 2 −2

−1 0 1 2 −2 −1

0 1 2 −2 −1 0

Table 3.3: Addition table for {1, 2,−2,−1, 0}.

× 1 2 −2 −1 0

1 1 2 −2 −1 0

2 2 −1 1 −2 0

−2 −2 1 −1 2 0

−1 −1 −2 2 1 0

0 0 0 0 0 0

Table 3.4: Multiplication table for {1, 2,−2,−1, 0}.
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Now check if the set {1, 2,−2,−1, 0} satisfies the requirements of a field with our

addition and multiplication table.

Closed under addition and multiplication

Satisfied obviously from Table 3.3 and Table 3.4.

Associativity of addition and multiplication

Implicitly satisfied by integer addition and multiplication.

Commutativity of addition and multiplication

Satisfied as Table 3.3 and Table 3.4 are symmetric according to the diagonal.

Additive and multiplicative identity

Additive identity is 0 and multiplicative identity is 1.

Additive and multiplicative inverses

Additive inverses pair: 1↔ −1, 2↔ −2, 0↔ 0.

Multiplicative inverses pair: 1↔ 1, 2↔ −2,−1↔ −1.

Distributivity of multiplication over addition

Implicitly satisfied by integer addition and multiplication.

We conclude {0, 1, 2,−2,−1} is a field under addition and multiplication defined by

Table 3.3 and 3.4.

From now on, we use F to denote the field {0, 1, 2,−2,−1}. And xk ∈ F n is the

state variable representing a DNA segment with n nucleotide bases at kth stage.

As stated in §3.1.3, the simplest mutation is point mutation, which involves only one

nucleotide base. Assume a measurement is taken before every duplication process.

If there is a point mutation as shown in Figure 3.3, we modify (3.2) to

xk+1 = (−I + ∆s)xk + ∆w, (3.4)

where xk, xk+1 ∈ F , and −I reduces to −1 as only one base is involved. The corre-

sponding values of ∆s and ∆w, obtained by reverse engineering with all possible pair

of xk and xk+1, are listed in Table 3.5.
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PPPPPPPPPPP
kth

(k + 1)th
A G C T O

A 2 −2 −1 0 1 }
∆s

G −1 2 0 −2 1

C −2 0 2 −1 1

T 0 −1 −2 2 1

O 1 2 −2 −1 0 }∆w

Table 3.5: Possible values of ∆s and ∆w.

Here, ∆s represents mutations from four normal nucleotide bases, and ∆w corre-

sponds to mutations from artificial non-sense base, i.e. ∆w 6= 0 only if xk = 0.

Rewriting (3.4) by collecting all values of ∆s and ∆w in Table 3.5, we get

xk+1 =

−I +
4∑
j=0

ujksj

xk +
4∑
j=0

cjkwj, (3.5a)

= (−I + uks)xk + ckw, (3.5b)

where {s0, s1, s2, s3, s4} = {0, 1, 2,−2,−1}, {w0, w1, w2, w3, w4} = {0, 1, 2,−2,−1},
ujk, c

j
k ∈ {0, 1}, representing the on/off controls, uk =

[
u0k u1k u2k u3k u4k

]
, ck =[

c0k c1k c2k c3k c4k

]
, and s = w =

[
0 1 2 −2 −1

]T
.

In (3.5a), sj and wj are constants for all k. ujks and cjks, the inputs of our system, are

on/off controls for chemical mutagens or radiation. And
∑4

j=0 c
j
k = 1 only if xk = 0.

(3.5b) is a simplified version of (3.5a) as we put uk, s, ck, w into vector representations.

s and w serve as vector basis for base-to-base deterministic model. uk and ck are now

multi-input controls, each of them contains 5 on/off controls. For a particular k, at

most one of ujks and cjks can be 1, as stated in Proposition 3.1. This is consistent with

the fact that every state can be transferred to only one of the five states in the state

space F with corresponding mutagens available.

Proposition 3.1.

It is always 1 − 1 transfer when mutation occurs, i.e. one nucleotide base can only

transfer to another one, therefore
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• If xk = 0 and cjk = 0,∀j, 0 ≤ j ≤ 4, or c0k = 1, cjk = 0,∀j, 1 ≤ j ≤ 4 ⇔ xk = 0

and ck = 0, or ck =
[
1 0 0 0 0

]
, then xk+1 = 0.

• If xk 6= 0, cjk = 0, ∀j, 0 ≤ j ≤ 4 and
∑4

j=0 u
j
k = 0 or 1 ⇔ ck = 0 and uk is either

0 or a unit row vector.

• If xk = 0, ujk = 0,∀j, 0 ≤ j ≤ 4 and
∑4

j=0 c
j
k = 0 or 1 ⇔ uk = 0 and ck is either

0 or a unit row vector.

•
∑4

j=0 u
j
k +cjk = 0 or 1,∀k ∈ Z+∪{0} ⇔ uk +ck is either 0 or a unit row vector,

∀k ∈ Z+ ∪ {0}.

Now suppose for some reason, we need to take an addition measurement in the middle

of every cell cycle, after the completion of the kth duplication and before the start of

the (k + 1)th. We name this kind of measurement an intermediate state, and denote

it by x′k. Then we have

xk+1 =
(
I + ∆s′

)
x′k + ∆w′, (3.6)

where the values of ∆s′ and ∆w′, listed in Table 3.6, are obtained in the same way

as ∆s and ∆w in Table 3.5.

PPPPPPPPPPP
kth

(k + 1)th
A G C T O

A 0 1 2 −2 −1 }
∆s′

G 2 0 −2 1 −1

C 1 −2 0 2 −1

T −2 2 1 0 −1

O 1 2 −2 −1 0 }∆w′

Table 3.6: Possible values of ∆s′ and ∆w′.

Comparing Table 3.5 and 3.6, we find the collection of ∆s and ∆s′, ∆w and ∆w′,

form the same set, respectively. Thus, we continue using s and w when rewriting
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(3.6) in the form of (3.5), i.e.

xk+1 =

I +
4∑
j=0

vjksj

x′k +
4∑
j=0

c′jkwj, (3.7a)

= (I + vks)x
′
k + c′kw, (3.7b)

where vk, v
j
k, c

′
k, c

′j
k are the counterparts of uk, u

j
k, ck, c

j
k, respectively. And Proposi-

tion 3.2 follows.

Proposition 3.2.

Due to the 1− 1 transfer in mutation, hence

• If x′k = 0 and c′jk = 0,∀j, 0 ≤ j ≤ 4, or c′0k = 1, c′jk = 0,∀j, 1 ≤ j ≤ 4 ⇔ xk = 0

and c′k = 0, or c′k =
[
1 0 0 0 0

]
, then xk+1 = 0.

• If x′k 6= 0, c′jk = 0,∀j, 0 ≤ j ≤ 4 and
∑4

j=0 v
j
k = 0 or 1 ⇔ c′k = 0 and vk is either

0 or a unit row vector.

• If x′k = 0, vjk = 0,∀j, 0 ≤ j ≤ 4 and
∑4

j=0 c
′j
k = 0 or 1 ⇔ vk = 0 and ck is either

0 or a unit row vector.

•
∑4

j=0 v
j
k + c′jk = 0 or 1,∀k ∈ Z+∪{0} ⇔ vk + c′k is either 0 or a unit row vector,

∀k ∈ Z+ ∪ {0}.

Figure 3.4: The order of taking measurements, applying chemical mutagens and
radiation in a cell cycle.

Now take both chemical mutagens and radiation within our consideration. Since

the order of applying chemical mutagens and radiation does not effect the result as
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stated in Assumption 3.3, without loss of generality, we assume that radiation is

always applied after a chemical mutagen in every cell cycle. A chemical mutagen is

applied before duplication process starts, radiation is applied in the middle of every

cell cycle, and a measurement is taken before every replication starts, as shown in

Figure 3.4. Then we can express our system equations as

x′k =

−I + uks︸︷︷︸
mutations caused by chemical

mutagens from normal bases

xk + ckw︸︷︷︸
mutations caused by chemical

mutagens from O

, (3.8a)

xk+1 =

I + vks︸︷︷︸
mutations caused by radiative

rays from normal bases

x′k + c′kw︸︷︷︸
mutations caused by radiative

rays from O

, (3.8b)

yk = xk, (3.8c)

where uk and vk are the inputs of the system, and yk is the measurement. Obviously,

(3.8a) is modified from (3.5b), and (3.8b) from (3.7b). uk, ck obey Proposition 3.1,

and vk, c
′
k obey Proposition 3.2.

The intermediate state x′k of two-step mutation avoids those ambiguous cases in which

xk is changed to different bases by radiation and chemical mutagens simultaneously.

Substituting (3.8a) into (3.8b), we get

xk+1 = (I + vks)(−I + uks)xk + (I + vks)ckw + c′kw, (3.9a)

yk = xk. (3.9b)

Obviously, Proposition 3.1 still holds for uk and ck, and Proposition 3.2 holds for vk

and c′k for (3.9a).

For a deterministic point mutation, we have 20 on/off controls in total for every step

k, 10 for chemical mutagens as described before, and the rest for radiation.
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3.4 Gene-to-gene, Deterministic Model

In general, several or more bases are involved when mutation happens. In those cases,

large scale deterministic model is necessary. Now we show how to extend our model

to large scale systems.

Suppose we have a DNA segment with length n, then xk ∈ F n. Since there are

integer number of codons, which contains three consecutive bases, in a coding DNA

segment, n is generally a multiple of 3. Let xik denote the ith component of xk. This

notation is consistent with the one in §3.3. Again, we take a measurement before every

replication starts and apply a chemical mutagen in front of radiation, if applicable,

as shown in Figure 3.4. Initiated by the base-to-base deterministic model from §3.3,

we write our system equation for large scale system as

x′k =


−I +

n∑
i=1

uikS
i
k︸ ︷︷ ︸

mutations caused by chemical

mutagens from normal bases


xk +

∑
i∈Ok

cikW
i
k︸ ︷︷ ︸

mutations caused by chemical

mutagens from O

, (3.10a)

xk+1 =


I +

n∑
i=1

vikS
′i
k︸ ︷︷ ︸

mutations caused by radiative

rays from normal bases


x′k +

∑
i∈O′k

c′ikW
′i
k︸ ︷︷ ︸

mutations caused by radiative

rays from O

, (3.10b)

yk = xk, (3.10c)

where uik, v
i
k, c

i
k, c
′i
k are on/off controls of the ith element, and Sik, S

′i
k are n× n square

matrices corresponding to mutations from normal bases induced by chemicals and

radiation, respectively, W i
k,W

′i
k are n dimensional column vectors representing the

process of mutations from the artificial non-sense base induced by chemicals and

radiation, respectively, and Ok = {i : xik = 0, 1 ≤ i ≤ n}, O ′k = {i : xik = 0, 1 ≤ i ≤
n}.
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Carefully examining (3.10), we discover Sik and S ′ik should be diagonal matrices accord-

ing to Assumption 3.2 in §3.2. In addition, the values in Table 3.5 and 3.6 correspond

to the diagonal elements of Sik and S ′ik , respectively. The last row of Table 3.5 and 3.6

should be assigned to W i
k and W ′i

k at non-sense base’s spots of xk.

Instead of using step-varying Sik, S
′i
k ,W

i
k,W

′i
k , we would like to find matrix basis to

make uik, c
i
k, v

i
k, c
′i
k be the only variables depending on k, as we did for point mtuations.

Then we can write (3.10) in a form similar to (3.8).

Define S = {sjeieTi ,∀i, j, 0 ≤ j ≤ 4, 1 ≤ i ≤ n}, a collection of n×n matrices, where

sj is the same as in (3.5), ei is the unit column vector of length n with ith component

equals to 1 and all other components equal to 0, and eie
T
i is the square matrix with

only the ith element on the diagonal equals to 1, and 0 otherwise.

Sik, an n× n diagonal matrix with the values of diagonal elements from the first four

rows of Table 3.5, can always be written as the linear combination of all terms in S ,

i.e.

Sik =
n∑
i=1

4∑
j=0

ϑijsjeie
T
i , (3.11)

with ϑij ∈ {0, 1}.

Similarly, S ′ik , a square matrix with the values of diagonal elements from the first four

rows of Table 3.6 can be written as a linear combination of terms from S ,

S ′ik =
n∑
i=1

4∑
j=0

ϑ′ijsjeie
T
i , (3.12)

with ϑ′ij ∈ {0, 1}.

Define W = {wjei,∀i, j, 0 ≤ j ≤ 4, 1 ≤ i ≤ n}, where wj is the same as (3.5). So

W i
k =

n∑
i=1

4∑
j=0

ιijwjei, (3.13)

with ιij ∈ {0, 1}, and

W ′i
k =

n∑
i=1

4∑
j=0

ι′ijwjei, (3.14)
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with ι′ij ∈ {0, 1}, are linear combinations of all terms in W .

Substituting ϑij by u
(i,j)
k in (3.11), ϑ′ij by v

(i,j)
k in (3.12), ιij by c

(i,j)
k in (3.13) and ι′ij

by c
′(i,j)
k in (3.14), we rewrite (3.10) as

x′k =


−I +

n∑
i=1

4∑
j=0

u
(i,j)
k sjeie

T
i︸ ︷︷ ︸

mutations caused by chemical

mutagens from normal bases


xk +

∑
i∈Ok

4∑
j=0

c
(i,j)
k wjei︸ ︷︷ ︸

mutations caused by chemical

mutagens from O

, (3.15a)

xk+1 =


I +

n∑
i=1

4∑
j=0

v
(i,j)
k sjeie

T
i︸ ︷︷ ︸

mutations caused by radiative

rays from normal bases


x′k +

∑
i∈O′k

4∑
j=0

c
′(i,j)
k wjei︸ ︷︷ ︸

mutations caused by radiative

rays from O

, (3.15b)

yk = xk, (3.15c)

where u
(i,j)
k , v

(i,j)
k , c

(i,j)
k , c

′(i,j)
k ∈ {0, 1}.

If we define uik, v
i
k, c

i
k, c
′i
k ∈ F1×5

2 as the ith row of uk, vk, ck, c
′
k, respectively, with

uk, vk, ck, c
′
k ∈ Fn×52 , s = w =

[
0 1 2 −2 −1

]T
, the same as in (3.5b), (3.15) can

be simplified to

x′k =

−I +
n∑
i=1

uikseie
T
i

xk +
∑
i∈Ok

cikwei, (3.16a)

xk+1 =

I +
n∑
i=1

vikseie
T
i

x′k +
∑
i∈O′k

c′ikwei, (3.16b)

yk = xk. (3.16c)
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Substituting (3.16a) into (3.16b), we get

xk+1 =

I +
n∑
i=1

vikseie
T
i

−I +
n∑
i=1

uikseie
T
i

xk

+

I +
n∑
i=1

vikseie
T
i

∑
i∈Ok

cikwei +
∑
i∈O′k

c′ikwei, (3.17a)

yk = xk. (3.17b)

Proposition 3.3.

For large scale deterministic system, uk, vk, ck, c
′
k follow the rules below.

• If eTi xk = 0, then i ∈ Ok.

• If eTi xk = 0, c
(i,j)
k = 0,∀j, 0 ≤ j ≤ 4 or c

(i,0)
k = 1, c

(i,j)
k = 0,∀j, 1 ≤ j ≤ 4 ⇔

eTi xk = 0, cik = 0 or cik =
[
1 0 0 0 0

]
, then i ∈ O ′k.

• ∀i /∈ Ok,
∑4

j=0 u
(i,j)
k = 0 or 1 and c

(i,j)
k = 0,∀j, 0 ≤ j ≤ 4 ⇔ uik is either 0 or a

row unit vector and cik = 0.

• ∀i ∈ Ok,
∑4

j=0 c
(i,j)
k = 0 or 1 and u

(i,j)
k = 0,∀j, 0 ≤ j ≤ 4 ⇔ cik is either 0 a row

unit vector and uik = 0 for that particular i.

• ∀i /∈ O ′k,
∑4

j=0 v
(i,j)
k = 0 or 1 and c

′(i,j)
k = 0,∀j, 0 ≤ j ≤ 4 ⇔ vik is either 0 or a

row unit vector and c′ik = 0.

• ∀i ∈ O ′k,
∑4

j=0 c
′(i,j)
k = 0 or 1 and v

(i,j)
k = 0,∀j, 0 ≤ j ≤ 4 ⇔ c′ik is either 0 or a

row unit vector and vik = 0.

• ∀i, k, 1 ≤ i ≤ n, k ∈ Z+∪{0},
∑4

j=0 u
(i,j)
k +c

(i,j)
k = 0 or 1 and

∑4
j=0 v

(i,j)
k +c

′(i,j)
k =

0 or 1 ⇔ uik + cik is either 0 or a unit row vector and vik + c′ik is either 0 or a

unit row vector.

The generalized mathematical model we proposed in (3.16) or (3.17) is adaptive to

other biological systems at the molecular level, for instance, broken DNA strand and

transcription process.
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Consider, broken DNA strands, as an example. DNA strand breaks due to various

reasons. Our system equation can represent this phenomenon by dividing one sys-

tem into small subsystems. Of course, significant fractured DNA strand is simply

eliminated by cell mechanism to ensure the accuracy to DNA replication and gene

expression. (3.18) represents a case of breaking one DNA segment into two subse-

quences by chemical mutagens.

x′k(1)

x′k(2)

 =


−Im +

m∑
i=1

uikseie
T
i 0

0 −In−m +
n∑

i=m+1

uikseie
T
i


xk(1)

xk(2)



+


∑

i∈Ok,1≤i≤m

cikwei∑
i∈Ok,(m+1)≤i≤n

cikwei

 , (3.18a)

xk+1(1) =

Im +
m∑
i=1

vikseie
T
i

x′k(1) +
∑

i∈O′k,1≤i≤m

c′ikwei, (3.18b)

xk+1(2) =

In−m +
n∑

i=m+1

vikseie
T
i

x′k(2) +
∑

i∈O′k,(m+1)≤i≤n

c′ikwei. (3.18c)

3.5 Gene-to-gene, Stochastic Model

Mutagens, no matter chemicals or radiation, always cause randomness in gene muta-

tion. A gene-to-gene stochastic model is necessary to describe these conditions.

First, we introduce new random variables, h
(i,j)
k,l1

, ri,jk,l2 ∈ {0, 1}, associated with prob-

ability, where k is the step index, l1 is the mutagen index for mutagens inducing

mutation from normal bases, l2 is the mutagen index for mutagens inducing muta-

tion from O, i is the index of DNA segment, and j is the index of set S and W .

We denote the probability associated with h
(i,j)
k,l1

by p
(h)
l1,j

, and associated with r
(i,j)
k,l2

by

p
(r)
l2,j
,∀i, k, 1 ≤ i ≤ n, k ∈ Z+∪{0} . Note different mutagens have different probability
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assignments, and the probability assignments are only related to the type of muta-

gens. Our controls, for chemical mutagens, are uik,l1 , c
i
k,l2
∈ {0, 1}, with 1 representing

the mutagen with corresponding index is applied at ith spot of DNA segment at kth

generation, and 0 representing the mutagen with corresponding index is not applied

at spot i at kth step, similar to §3.3 and §3.4.

In an ideal case, suppose we have 16 kinds of chemical mutagens, each corresponding

to a special mutation pattern, as listed in Table 3.7.

Mutagen index (l1) Major transfer pattern Other possible transfers

1 A→ A A→ G, A→ C, A→ T , A→ O

2 A→ G A→ A, A→ C, A→ T , A→ O

3 A→ C A→ A, A→ G, A→ T , A→ O

4 A→ T

5 G→ A G→ G, G→ C, G→ T , G→ O

6 G→ G G→ A, G→ C, G→ T , G→ O

7 G→ C

8 G→ T G→ G, G→ C, G→ T , G→ O

9 C → A C → G, C → C, C → T , C → O

10 C → G

11 C → C C → A, C → G, C → T , C → O

12 C → T C → G, C → C, C → T , C → O

13 T → A

14 T → G T → A, T → C, T → T , T → O

15 T → C T → A, T → G, T → T , T → O

16 T → T T → G, T → C, T → T , T → O

Table 3.7: Possible transfer patterns by chemical mutagens.

Clearly, chemical mutagens indexed 4, 7, 10 and 13 are artificially added, since those

transfer pairs are complementary to each other, which naturally happen in DNA

replication. Therefore, we always assign p4,AT = p7,GC = p10,CG = p13,TA = 1 and

p4,A· = p7,G· = p10,C· = p13,T · = 0 otherwise.

Table 3.8 shows the relationship between hi,jk,l1 with associated probability p
(h)
l1,j

. The

index j is the index of sj ∈ S from Table 3.5.
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Mutagens hi,jk,l corresponding Probability associated Probability associated

(l1) to major transfer with major transfer with minor transfers

1 hi,2k,1 p
(h)
1,AA = p

(h)
1,2 p

(h)
1,AG, p

(h)
1,AC , p

(h)
1,AT , p

(h)
1,AO

2 hi,3k,2 p
(h)
2,AG = p

(h)
2,3 p

(h)
2,AA, p

(h)
2,AC , p

(h)
2,AT , p

(h)
2,AO

3 hi,4k,3 p
(h)
3,AC = p

(h)
3,4 p

(h)
3,AA, p

(h)
3,AG, p

(h)
3,AT , p

(h)
3,AO

4 hi,0k,4 p
(h)
4,AT = p

(h)
4,0

5 hi,4k,5 p
(h)
5,GA = p

(h)
5,4 p

(h)
5,GG, p

(h)
5,GC , p

(h)
5,GT , p

(h)
5,GO

6 hi,2k,6 p
(h)
6,GG = p

(h)
6,2 p

(h)
6,GA, p

(h)
6,GC , p

(h)
6,GT , p

(h)
6,GO

7 hi,0k,7 p
(h)
7,GC = p

(h)
7,0

8 hi,3k,8 p
(h)
8,GT = p

(h)
8,3 p

(h)
8,GA, p

(h)
8,GG, p

(h)
8,GC , p

(h)
8,GO

9 hi,3k,9 p
(h)
9,CA = p

(h)
9,3 p

(h)
9,CG, p

(h)
9,CC , p

(h)
9,CT , p

(h)
9,CO

10 hi,0k,10 p
(h)
10,CG = p

(h)
10,0

11 hi,2k,11 p
(h)
11,CC = p

(h)
11,2 p

(h)
11,CA, p

(h)
11,CG, p

(h)
11,CT , p

(h)
11,CO

12 hi,4k,12 p
(h)
12,CT = p

(h)
12,4 p

(h)
12,CA, p

(h)
12,CG, p

(h)
12,CC , p

(h)
12,CO

13 hi,0k,13 p
(h)
13,TA = p

(h)
13,0

14 hi,4k,14 p
(h)
14,TG = p

(h)
14,4 p

(h)
2,TA, p

(h)
2,TC , p

(h)
2,TT , p

(h)
2,TO

15 hi,3k,15 p
(h)
15,TC = p

(h)
15,3 p

(h)
1,TA, p

(h)
1,TG, p

(h)
1,TT , p

(h)
1,TO

16 hi,2k,16 p
(h)
16,TT = p

(h)
16,2 p

(h)
3,TA, p

(h)
3,TG, p

(h)
3,TC , p

(h)
3,TO

Table 3.8: Probability assignments to random variables h
(i,j)
k,l1

s.

If we only apply chemical mutagens to a DNA segment, and ignore mutations from

non-sense base O to normal bases, from the viewpoint of stochastic systems, our state

space can be written as

xk+1 =

−I +
16∑
l1=1

l1 6=4,7,10,13

n∑
i=1

uik,l1

4∑
j=0

h
(i,j)
k,l1

sjeie
T
i

xk, (3.19)

where uik,l1 denotes the on/off switch of applying mutagen l1 at ith spot to kth gener-

ation of the DNA segment and h
(i,j)
k,l1

decides the ith spot nucleotide base of (k + 1)th

generation if uik,l1 = 1.
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Rewriting h
(i,j)
k,l1

in the vector form, as we did for u
(i,j)
k in §3.4, we can eliminate index

j. Subsequently, (3.19) becomes

xk+1 =

−I +
16∑
l1=1

l1 6=4,7,10,13

n∑
i=1

uik,l1h
i
k,l1
seie

T
i

xk, (3.20)

where hik,l1 ∈ F1×5
2 and s =

[
0 1 2 −2 −1

]T
.

In practice, we may have several mutagens corresponding to one transfer pair, or no

mutagen for one or several transfer pairs. Hence, we replace 16 by l. In addition, we

assume our system is completely controllable.

Remark 3.1. DNA replication systems with system equations proposed as (3.8),

(3.9), (3.15), (3.16), (3.17), (3.21), (3.22) and (3.23) are completely controllable

if and only if ∀x0, x2k1 , x2k2+1 ∈ F , k1, k2 ∈ Z+ ∪ {0},∃ at least one path from x0

to x2k1 and at least one path from x0 to x2k2+1 by applying proper mutagens in the

correct order, with k1, k2 finite.

Incorporating terms corresponding to mutations from normal bases induced by ra-

diation, and mutations from non-sense base O induced by chemical mutagens and

radiation into stochastic system equation, we get (3.21).
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x′k =


−I +

l∑
l1=1

n∑
i=1

uik,l1

4∑
j=0

h
(i,j)
k,l1

sjeie
T
i︸ ︷︷ ︸

mutations caused by chemical

mutagens from normal bases


xk +

m∑
l2=1

∑
i∈Ok

cik,l2

4∑
j=0

r
(i,j)
k,l2

wjei︸ ︷︷ ︸
mutations caused by chemical

mutagens from O

, (3.21a)

xk+1 =


I +

l′∑
l3=1

n∑
i=1

vik,l3

4∑
j=0

h
′(i,j)
k,l3

sjeie
T
i︸ ︷︷ ︸

mutations caused by radiative

rays from normal bases


x′k +

m′∑
l4=1

∑
i∈O′k

c′ik,l4

4∑
j=0

r
′(i,j)
k,l4

wjei︸ ︷︷ ︸
mutations caused by radiative

rays from O

, (3.21b)

yk = xk. (3.21c)

Simplify (3.21), we have

x′k =

−I +
l∑

l1=1

n∑
i=1

uik,l1h
i
k,l1
seie

T
i

xk +
m∑
l2=1

∑
i∈Ok

cik,l2r
i
k,l2
wei, (3.22a)

xk+1 =

I +
l′∑

l3=1

n∑
i=1

vik,l3h
′i
k,l3
seie

T
i

x′k +
m′∑
l4=1

∑
i∈O′k

c′ik,l4r
′i
k,l4
wei, (3.22b)

yk = xk, (3.22c)

where hik,l1 , r
i
k,l2
, h′ik,l3 , h

′i
k,l4
∈ F1×5

2 .

Instead of having 20 controls, including 5 u
(i,j)
k s, 5 c

(i,j)
k s, 5 v

(i,j)
k s and 5 c

′(i,j)
k s for each

spot i as in gene-to-gene deterministic cases, we have (l+m+ l′+m′) on/off controls

at every spot i, i.e. l uik,l1s, m cik,l2s, l
′ vik,l3s and m′ c′ik,l4s.
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Substituting (3.22a) into (3.22b), we have

xk+1 =

I +
l′∑

l3=1

n∑
i=1

vik,l3h
′i
k,l3
seie

T
i

−I +
l∑

l1=1

n∑
i=1

uik,l1h
i
k,l1
seie

T
i

xk

+

I +
l′∑

l3=1

n∑
i=1

vik,l3h
′i
k,l3
seie

T
i

 m∑
l2=1

∑
i∈Ok

cik,l2r
i
k,l2
wei

+
m′∑
l4=1

∑
i∈O′k

c′ik,l4r
′i
k,l4
wei, (3.23a)

yk = xk. (3.23b)

Proposition 3.4 states the rules uik,l1 , h
i
k,l1
, cik,l2 , r

i
k,l2
, vik,l3 , h

′i
k,l3
, c′ik,l4 , r

′i
k,l4

in (3.22) and

(3.23) need to follow.

Proposition 3.4.

For large-scale stochastic system, uik,l1 , h
i
k,l1
, cik,l2 , r

i
k,l2
, vik,l3 , h

′i
k,l3
, c′ik,l4 , r

′i
k,l4

follow the

rules below.

• If eTi xk = 0, then i ∈ Ok.

• If eTi xk = 0 and
∑m

l2=1 c
i
k,l2

= 0, then i ∈ O ′k.

• If eTi xk = 0,
∑m

l2=1 c
i
k,l2

= 1 and r
(i,0)
k,l2

= 1, r
(i,j)
k,l2

= 0, ∀j, 1 ≤ j ≤ 4 ⇔ eTi xk = 0,∑m
l2=1 c

i
k,l2

= 1 and rik,l2 =
[
1 0 0 0 0

]
, then i ∈ O ′k.

• ∀i, k, l1, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l1 ≤ l, if uik,l1 = 1, then
∑4

j=0 h
(i,j)
k,l1

= 1 ⇔
hik,l1 is a unit row vector.

• ∀i, k, l2, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l2 ≤ m, if cik,l2 = 1, then
∑4

j=0 r
(i,j)
k,l2

= 1

⇔ rik,l2 is a unit row vector.

• ∀i, k, l3, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l3 ≤ l′, if vik,l3 = 1, then
∑4

j=0 h
′(i,j)
k,l3

= 1

⇔ h′ik,l3 is a unit row vector.

• ∀i, k, l4, 1 ≤ i ≤ n, k ∈ Z+ ∪ {0}, 1 ≤ l4 ≤ m′, if c′ik,l4 = 1, then
∑4

j=0 r
′(i,j)
k,l4

= 1

⇔ r′ik,l4 is a unit row vector.
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• ∀i /∈ Ok,
∑l

l1=1 u
i
k,l1

= 0 or 1 and cik,l2 = 0,∀l2, 1 ≤ l2 ≤ m.

• ∀i ∈ Ok,
∑m

l2=1 c
i
k,l2

= 0 or 1 and uik,l1 = 0,∀l1, 1 ≤ l1 ≤ l.

• ∀i /∈ O ′k,
∑l′

l3=1 v
i
k,l3

= 0 or 1 and c′ik,l4 = 0,∀l4, 1 ≤ l4 ≤ m′.

• ∀i ∈ O ′k,
∑m′

l4=1 c
′i
k,l4

= 0 or 1 and vik,l3 = 0,∀l3, 1 ≤ l3 ≤ l′′.

• ∀i, k, 1 ≤ i ≤ n, k ∈ Z+∪{0},
∑l

l1=1 u
i
k,l1

+
∑m

l2=1 c
i
k,l2

= 0 or 1 and
∑l′

l3=1 v
i
k,l3

+∑m′

l4=1 c
′i
k,l4

= 0 or 1.

The probabilities associated with h
(i,j)
k,l1

, h
′(i,j)
k,l3

, r
(i,j)
k,l2

, r
′(i,j)
k,l4

sum up to 1, respectively, as

stated in Proposition 3.5.

Proposition 3.5.

4∑
j=0

p
(h)
l1,j

= 1,∀l1, 1 ≤ l1 ≤ l. (3.24a)

4∑
j=0

p
(r)
l2,j

= 1,∀l2, 1 ≤ l2 ≤ m. (3.24b)

4∑
j=0

p
(h′)
l3,j

= 1,∀l3, 1 ≤ l3 ≤ l′. (3.24c)

4∑
j=0

p
(r′)
l4,j

= 1,∀l4, 1 ≤ l4 ≤ m′. (3.24d)

Similar to the gene-to-gene deterministic model, the gene-to-gene stochastic system

we derived is a generalized model and is adaptive to other stochastic biological systems

at the molecular level, such as multi-site mutations within one stage, broken DNA

strands and transcription process.
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Chapter 4

Optimal Control

In this chapter, we formulate objective functions for dynamic systems constructed

in Chapter 3, and compute the optimal trajectories and minimum costs to drive the

system from initial state to the final desired set.

In §4.1, we present a generalized objective function, consisting of the costs and risks

of applying mutagens, and off-trajectory penalty. The major difficulty in formulating

an objective function is to define a proper metric over the finite field. By taking

the redundancy of genetic codes and both physical and chemical properties of amino

acids within our consideration, we define an alternative distance reference which serves

as off the preset trajectory penalty in §4.2. §4.3 begins with some basic information

about the dynamic programming algorithm, and then we show the details of applying

this algorithm to solve the generalized optimization problem.

In §4.4, §4.5 and §4.6, we carefully present the optimal control problems in single-base

deterministic case, codon-to-codon deterministic case and codon-to-codon stochastic

case, respectively. Examples and simulation results of different scales and parameter

assignments are illustrated and compared. When solving optimal control problem for

a deterministic point mutation, we find that the global optimal can be reached within

finite steps if the system is completely controllable, which is essential in finding the

solution to optimal control problem without constraints on the number of steps. This

result can be further extended to codon-to-codon deterministic case.
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4.1 Objective Function Formulation

As mentioned in Chapter 2, our goal is to find the optimal control policy to drive

the system from an initial state to a final desired set, which is generated by a final

desired state, follow a predefined trajectory, which minimizes the sum of the total cost

(including the risk) of applying mutagens and off-trajectory penalty. To formulate

an optimal control problem, we begin with defining a proper objective function to

quantitatively describe our physical goal. Moreover, this formulation needs to be

adaptive to all kinds of system models we proposed in Chapter 3.

Mathematically, in systems where the controllable parameters of interest are discrete,

the objective function is usually a weighted sum representing the number of times

that a piece of equipment is turned ”on” or ”off”, or the number of resources needed

to execute certain tasks in the frequent cases [Hristu-Varsakelis and Levine, 2005].

Hence, our objective function includes a sum of the total number of times that dif-

ferent mutagens are applied weighted by the corresponding cost (including the risk)

of applying them.

In medical practice, a predefined trajectory is of great importance in avoiding hidden

risks, for instance, disruption of the cell cycle or early stop of transcription process,

which lead of abnormal metabolism or diseases including cancer. In our problem, such

trajectory is indeed a collection of trajectories generated from a desired trajectory. In

other words, a desired set at each stage is generated by the corresponding state of the

desired trajectory, containing all nucleotide sequences that are eventually translated

to the same animo acid sequence as the desired state at the same stage, and possible

desired trajectories are generated by picking one state from the desired set at each

stage and orderly linking them together. Therefore, we do not attempt to compensate

any silent mutations.

Obviously, the set of predefined trajectories is updated according to current measure-

ment. If current measurement implies the current state is off-trajectory, a distance

reference between current state and the desired set at current stage is added as a

penalty cost. Such distance reference is different from common metric defined on

finite field, because of the physical and chemical properties of animo acid sequences.

For example, the distance reference between any two nucleotide sequences which are
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translated to the same amino acid sequence is set to be zero. And the distance refer-

ence of sequences is defined based on the distance reference of codons. Details about

how to a sample distance reference for codons later are illustrated in §4.2. Practical-

ly, this distance reference is defined by doctors or biologists based on experimental

results.

The constraint of our optimal control problem is the corresponding system equa-

tion. We choose multi-dimensional stochastic system equation as the generalized

constraints as it can be reduced to one-dimensional and multi-dimensional determin-

istic cases by modifying the probability distribution associated with random variables.

Moreover, the control sequence of such systems contains information about the order

and the types of mutagens applied, which is important in objective function formu-

lation.

Therefore, our objective function can be mathematically expressed as

J0(x0) = min
u,c,v,c′

E
h,h′,r,r′

[
N−1∑
k=0

l∑
l1=1

n∑
i=1

αl1u
i
k,l1

+
N−1∑
k=0

m∑
l2=1

n∑
i=1

βl2c
i
k,l2︸ ︷︷ ︸

cost of applying chemical mutagens

+
N−1∑
k=0

l′∑
l3=1

n∑
i=1

α′l3v
i
k,l3

+
N−1∑
k=0

m′∑
l4=1

n∑
i=1

β′l4c
′i
k,l4︸ ︷︷ ︸

cost of applying radiative rays

+
N∑
k=0

d

(
xk,
{
xdk

})
︸ ︷︷ ︸

tracing cost

]
, (4.1)

with x0, x
d
k ∈ F n, 1 ≤ k ≤ N given. l1, l2, l3, l4 are the indices of chemical mutagens

inducing mutations from normal bases and from O, and radiation inducing mutations

from normal bases and from O, respectively. αl1 , βl2 , α
′
l3
, β′l4 are the corresponding cost

(including the risk) of applying chemical mutagens and radiation indexed l1, l2, l3, l4,

respectively. {xdk} denotes the set of nucleotide sequences which are eventually trans-

lated to the same amino acid sequence as xdk, or equivalently, the desired state at

kth step. And d
(
xk,
{
xdk
})

is the distance reference between current state xk and

the desired set {xdk} at kth step. The final penalty, the distance reference between

final state to the desired set at k = N , is included in the last term. uik,l1 , c
i
k,l2

, vik,l3 ,
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c′ik,l4 ∈ {0, 1}, inputs of the systems, are the on/off controls, whose physical meanings

are the same as defined in §3.5.

In general, βl2 , β
′
l4
� αl1 , α

′
l3
,∀l1, l2, l3, l4, 1 ≤ l1 ≤ l, 1 ≤ l2 ≤ m, 1 ≤ l3 ≤ l′, 1 ≤

l4 ≤ m′, because O is a set of non-sense bases physically and more information is

necessary to convert an O to normal bases, for instance, the cost of identifying the

exact element in the set O. Our goal is to drive our system optimally from initial

state x0 to the desired final set
{
xdN
}

by applying a sequence of mutagens indexed

with {l1, l2, l3, l4}, at problematic positions i, and in a correct order k.

In (4.1), the first two terms inside the expectation are the portion of costs for trans-

ferring a DNA segment from the initial state x0 to the final state xN with fixed N by

chemical mutagens, and the third and fourth terms are the portion generated from

applying radiation. These four terms do not depend on random variables hik,l1 , r
i
k,l2

,

h′ik,l3 and r′ik,l4 , ∀i, k, l1, l2, l3, l4, as the treatment plan is computed based on the initial

state x0. Given yk, the updated treatment plan is computed accordingly, but still not

related to random variables. The last term inside expectation,
∑N

k=0 d
(
xk,
{
xdk
})

, is

the only term in summation that depends on the distribution of the random variables.

Therefore, we can rewrite our objective function, and formulate our optimal control

problem as

J0(x0) = min
{u,c,v,c′}0,1,··· ,N−1

[
N−1∑
k=0

l′∑
l1=1

n∑
i=1

αl1u
i
k,l1

+
N−1∑
k=0

m∑
l2=1

n∑
i=1

βl2c
i
k,l2

+
N−1∑
k=0

l′∑
l3=1

n∑
i=1

α′l3v
i
k,l3

+
N−1∑
k=0

m′∑
l4=1

n∑
i=1

β′l4c
′i
k,l4

+
N∑
k=0

E
{h,r,h′,r′}0,1,··· ,N−1

[
d

(
xk,
{
xdk

})]]
, (4.2)
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subject to

xk+1 =

I +
l′∑

l3=1

n∑
i=1

vik,l3h
′i
k,l3
seie

T
i

−I +
l∑

l1=1

n∑
i=1

uik,l1h
i
k,l1
seie

T
i

xk

+

I +
l′∑

l3=1

n∑
i=1

vik,l3h
′i
k,l3
seie

T
i

 m∑
l2=1

∑
i∈Ok

cik,l2r
i
k,l2
wei

+
m′∑
l4=1

∑
i∈O′k

c′ik,l4r
′i
k,l4
wei, (4.3a)

yk = xk, (4.3b)

with x0, x
d
k ∈ F n, 1 ≤ k ≤ N given, αl1 , βl2 , α

′
l3
, β′l4 ∈ R, ∀l1, l2, l3, l4, 1 ≤ l1 ≤

l, 1 ≤ l2 ≤ m, 1 ≤ l3 ≤ l′, 1 ≤ l4 ≤ m′, d : F n × F n → R+ ∪ {0}, xk, yk ∈
F n with n ≡ 0 (mod 3), uik,l1 , c

i
k,l2
, vik,l3 , c

′i
k,l4
∈ {0, 1},∀i, k, l1, l2, l3, l4, s = w =[

0 1 2 −2 −1
]T

, and hik,l1 , r
i
k,l2
, h′ik,l3 , r

′i
k,l4
∈ {ej ∈ R5, ej unit column vector, 1 ≤

j ≤ 5},∀i, k, l1, l2, l3, l4.

Discussions and examples of base-to-base deterministic case, codon-to-codon deter-

ministic case and codon-to-codon stochastic case are demonstrated in §4.4, §4.5 and

§4.6, respectively.

4.2 Distance Reference

As mentioned in §4.1, we need to define a proper distance reference to quantitatively

describe the relationship between codons. In this section, we mainly focus on codons

composed of normal nucleotide bases, and codons containing the artificial base O are

omitted since their chemical and physical properties cannot be found in literature.

We first define the distance reference between codons, and then extend it to DNA

sequences.

Use d(ϕ1, ϕ2), ϕ1, ϕ2 ∈ F 3 to denote the distance reference between two codons, ϕ1

and ϕ2. The distance reference needs to fulfill the biological requirements as below.
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1. (Non-negativity) The distance reference between any two codons is either pos-

itive or zero. Mathematically, d : F 3 ×F 3 → R+ ∪ {0}, d(ϕ1, ϕ2) ≥ 0.

2. The distance reference between two codons corresponding to the same amino

acid is zero.

3. (Symmetry) The distance reference from codon ϕ1 to codon ϕ2 equals to the

distance reference from codon ϕ2 to codon ϕ1, i.e. d(ϕ1, ϕ2) = d(ϕ2, ϕ1).

4. The distance reference between two codons corresponding to different amino

acids should reveal the chemical and physical differences between two amino

acids.

5. The distance references from stop codons to all other codons is much larger

than those between other codons as early termination of amino acid sequences

is more deleterious than other forms of mutations.

All the existing metric defined on the finite field cannot achieve all the requirements

above. The second requirement violates the identity of indiscernible, i.e. d(ϕ1, ϕ2) = 0

if and only if ϕ1 = ϕ2. The redundancy in genetic codes implies d(ϕ1, ϕ2) = 0 if those

two amino acids, ϕ1 and ϕ2, correspond to the same amino acids according to the

genetic codes. In addition, the triangular inequality is not necessarily true, according

to the underlying physical meanings. For instance, it is impossible to judge if one

codon is closer to the stop codon than another. Therefore, we take the assumption

that stop codons are of the same distance reference from and to all other codons.

Important physical and chemical properties are listed in Table 4.1. The polarity

property is the opposite of hydrophobicity, i.e. polar amino acids are hydrophilic,

and non-polar are hydrophobic. The last two columns of Table 4.1 are related to each

other, and only of them is considered when defining the distance reference.

From Table 4.1, we can see all codons are divided into different sets with each set

corresponding to the same amino acid. The size and the elements in one codon set

vary from one amino acid to another. This implies that the costs of driving one

codon to the desired final set generated by the desired final state might be different

from the costs of driving the complementary codon to the desired final set generated

by the complementary of desired final state. In other words, there is no symmetric
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relationship between the sets generated by complementary codons. More discussions

about this issue are presented in §4.5.

The distance reference between any two codons can be defined by any reasonable func-

tions. Here, we use a weighted sum of the differences between physical and chemical

properties as an example. And the distance reference between two DNA sequences

are defined as a weighted sum of distance reference between the corresponding pair

of codons. The biological statics plays a crucial rule to define this distance function

practically.

An example of the distance reference can be expressed as

d(ξ1, ξ2) = ζpolaritypolarity(ξ1, ξ2) + ζPHPH(ξ1, ξ2) + ζsizesize(ξ1, ξ2), (4.4)

polarity(ξ1, ξ2) =

{
0 if ξ1, ξ2 are both polar or non-polar,

1 if one of ξ1, ξ2 is polar, and the other non-polar;

PH(ξ1, ξ2) = |PH value of ξ1 − PH value of ξ2|;

size(ξ1, ξ2) =


0 if ξ1, ξ2 are both tiny, small, or normal,

σ1 if one of ξ1, ξ2 is tiny, and the other small,

σ2 if one of ξ1, ξ2 is tiny, and the other normal,

σ3 if one of ξ1, ξ2 is small, and the other normal,

where ξ1, ξ2 are two amino acids.

The last term in (4.4) can be substituted by ζmassmass(ξ1, ξ2) with

mass(ξ1, ξ2) = |average mass of ξ1 − average mass of ξ2|.

In Table 4.2, we show an example of distance reference computed by (4.4) with

ζpolarity = 8, ζPH = 3, ζsize = 1, σ1 = 2, σ2 = 5 and σ3 = 3.

The distance reference is then assigned to pairs of codons according to the genetic

codes listed in Table 3.2, which is used for simulations in §4.4, §4.5 and §4.6.
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4.3 Dynamic Programming

Dynamic programming is an optimization method to solve multi-stage complex prob-

lems by breaking them down into simpler steps at different time points. It deals with

the tradeoff between the desire for low present cost with the undesirability of high

future costs [Bertsekas, 1995]. This method was first articulated in [Bellman, 1952] by

Richard Bellman. Later, a central result of dynamic programming for discrete time

systems, the recursive relationship between the value functions in two consecutive

periods, together with its constraints, is named Bellman equation. The key step of

this optimization method is to find the optimal control policy to compute the best

possible value of the objective based on the knowledge given.

Our optimal problem, mathematically expressed as (4.2), is a multi-stage optimization

problem and can be broken down into simpler steps by the measurement yk, 1 ≤ k ≤
N . In addition, it satisfies the two principal features stated in [Bertsekas, 1995]: (1)

an underlying discrete-time dynamic system, and (2) a cost function that is additive

over time. Therefore, we apply dynamic programming to solve our optimal control

problem.

The derivation in this section follows closely to the one of applying dynamic program-

ming to solve basic model in [Bertsekas, 1995].

To simplify our expression, we rewrite our optimal control problem as

J0(x0) = min
u,c,v,c′

E
h,r,h′,r′

gN(xN) +
N−1∑
k=0

g(xk, uk, ck, vk, c
′
k, hk, rk, h

′
k, r
′
k)

 , (4.5)

subject to

xk+1 = f(xk, uk, ck, vk, c
′
k, hk, rk, h

′
k, r
′
k), k = 0, 1, · · · , N − 1, (4.6)
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where

gN(xN) = d

(
xN ,

{
xdN

})
,

g(xk, uk, ck, vk, c
′
k, hk, rk, h

′
k, r
′
k) =

l∑
l1=1

n∑
i=1

αl1u
i
k,l1

+
m∑
l2=1

n∑
i=1

βl2c
i
k,l2

+
l′∑

l3=1

n∑
i=1

α′l3v
i
k,l3

+
m′∑
l4=1

n∑
i=1

β′l4c
′i
k,l4

+ d

(
xk,
{
xdk

})
,

and f(xk, uk, ck, vk, c
′
k, hk, rk, h

′
k, r
′
k) is the right hand side of (4.3a). The probability

distributions associated with the random variables hik,l1 , r
i
k,l2
, h′ik,l3 , r

′i
k,l are p

(h)
l1

(·|xik, uik,l1),
p
(r)
l2

(·|xik, cik,l2), p
(h′)
l3

(·|xik, vik,l3) and p
(r′)
l4

(·|xik, c′ik,l4), respectively. The probability dis-

tribution only depends on the indices of mutagens l1, l2, l3, l4, but is irrelevant to step

index k and spot index i.

Use Uk(xk) to denote the collection of all possible controls can be applied to the

given xk. Clearly, Uk(xk) is a subset of the control space, since the control space is

the collection of all controls that can be applied to at least one state in the state

space. This implies that for the given DNA segment at kth instance, some mutagens

cannot be applied to induce mutation at a specific spot, which is physically consistent

with practical conditions because each mutagen corresponding to a specific transfer

pattern by assumption.

In the dynamic programming algorithm, the crucial step to generate the optimal

trajectory is to find the set of admissible control policies, and then pick the optimal

from the set. Therefore, we first define the collection of admissible policies by

π = {µ0, µ1, · · · , µN−1}

with µk(xk) =
{
{ui1k,l1 , c

i2
k,l2
, vi3k,l3 , c

′i4
k,l4
}|xk,∀i1, i2, i3, i4, l1, l2, l3, l4, 1 ≤ i ≤ n, 1 ≤ l1 ≤

l, 1 ≤ l2 ≤ m, 1 ≤ l3 ≤ l′, 1 ≤ l4 ≤ m′, 1 ≤ i1, i2, i3, i4 ≤ n
}

, a mapping from

state space to control space, and µk(xk) ∈ Uk(xk),∀xk ∈ F n. The collection of all

admissible policies is denoted by Π.
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Rewriting our optimal control problem in (4.5) and (4.6), we get

J0(x0) = min
u,c,v,c′

E
h,r,h′,r′

gN(xN) +
N−1∑
k=0

g(xk, µk(xk), hk, rk, h
′
k, r
′
k)

 , (4.7)

subject to

xk+1 = f(xk, µk(xk), hk, rk, h
′
k, r
′
k), k = 0, 1, · · · , N − 1. (4.8)

Our goal is to find the π∗ = {µ∗0, µ∗1, · · · , µ∗N−1}, such that

J0(x0) = E
h,r,h′,r′

gN(xN) +
N−1∑
k=0

g(xk, µ
∗
k(xk), hk, rk, h

′
k, r
′
k)

 ,
and π∗ satisfies the constraints such that

xk+1 = f(xk, µ
∗
k(xk), hk, rk, h

′
k, r
′
k), k = 0, 1, · · · , N − 1.

The dynamic programming technique is based on the Bellman’s Principle of Opti-

mality, as stated below.

Principle of Optimality

An optimal policy has the the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision [Bellman, 2003].

Translated it mathematically. Let π∗ = {µ∗0, µ∗1, · · · , µ∗N−1} be an optimal policy for

the basic problem, and assume that when using π∗, a given state xq occurs at time q

with positive probability. Consider the subproblem whereby we are at xq at time q

and which to minimize the “cost-to-go” from time q to time N ,

E
h,r,h′,r′

gN(xN) +
N−1∑
k=q

g(xk, µk(xk), hk, rk, h
′
k, r
′
k)

 .
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Then the truncated policy {µ∗q, µ∗q+1, · · · , µ∗N−1} is optimal for this subproblem [Bert-

sekas, 1995].

The principle of optimality implies that an optimal policy is constructed backward,

starting from building up the subproblem involving the last period. And then the

optimal policy is expended to the one involving last two periods. Continuing in the

same manner, till the optimal policy for the entire problem is found. The dynamic

programming algorithm is derived from this idea.

Define

Jq(xq) = min
u,c,v,c′

E
h,r,h′,r′

gN(xN) +
N−1∑
k=q

g(xk, uk, ck, vk, c
′
k, hk, rk, h

′
k, r
′
k)

 , (4.9)

= min
{u,c,v,c′}q,q+1,··· ,N−1

{
N−1∑
k=q

l∑
l1=1

n∑
i=1

αl1u
i
k,l1

+
N−1∑
k=q

m∑
l2=1

n∑
i=1

βl2c
i
k,l2

+
N−1∑
k=q

l′∑
l3=1

n∑
i=1

α′l3v
i
k,l3

+
N−1∑
k=q

m′∑
l4=1

n∑
i=1

β′l4c
′i
k,l4

+
N∑
k=q

E
{h,r,h′,r′}q,q+1,··· ,N−1

[
d

(
xk,
{
xdk

})]}
, (4.10)

as the “tail problem” for any given xq,∀q, 0 ≤ q ≤ N . According the principle of opti-

mality, if π∗ = {µ∗0, µ∗1, · · · , µ∗N−1} is the optimal policy to J0, then {µ∗q, µ∗q+1, · · · , µ∗N−1}
is optimal for Jq.

Dynamic Programming Algorithm ([Bertsekas, 1995])

For every initial state x0, the optimal cost J0(x0) proceeds backward in time from

period N − 1 to period 0:

JN(xN) = gN(xN), (4.11)

Jq(xq) = min
{uq ,cq ,vq ,c′q}∈Uq(xq)

E
hq ,rq ,h′q ,r

′
q

[
g(xq, uq, cq, vq, c

′
q, hq, rq, h

′
q, r
′
q)

+ Jq+1

(
f(xq, uq, cq, vq, c

′
q, hq, rq, h

′
q, r
′
q)
)]

,

q = 0, 1, · · · , N − 1, (4.12)
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where the expectation is taken with respect to the probability distribution of hk, rk, h
′
k,

r′k, which depends on state xk and controls uk, ck, vk, c
′
k. Furthermore, if {u∗k, c∗k, v∗k, c′∗k }

= µ∗k(xk) minimizes the right side of (4.12) for each xk and k, the policy π∗ =

{µ∗0, µ∗1, · · · , µ∗N−1} is optimal.

Proof of this algorithm can achieve the optimal can be found in §A.1.

Writing our optimal control problem explicitly in the form of (4.11) and (4.12), we

get initialization and iterative equations for our generalized optimal control problem

as

JN(xN) = d

(
xN ,

{
xdN

})
, (4.13)

Jq(xq) = min
uq ,cq ,vq ,c′q

E
hq ,rq ,h′q ,r

′
q

[
l∑

l1=1

n∑
i=1

αl1u
i
q,l1

+
m∑
l2=1

n∑
i=1

βl2c
i
q,l2

+
l′∑

l3=1

n∑
i=1

α′l3v
i
q,l3

+
m′∑
l4=1

n∑
i=1

β′l4c
′i
q,l4

+ d

(
xq,
{
xdq

})
+ Jq+1(xq+1)

]
,

= min
uq ,cq ,vq ,c′q

{
l∑

l1=1

n∑
i=1

αl1u
i
q,l1

+
m∑
l2=1

n∑
i=1

βl2c
i
q,l2

+
l′∑

l3=1

n∑
i=1

α′l3v
i
q,l3

+
m′∑
l4=1

n∑
i=1

β′l4c
′i
q,l4

+ E
hq ,rq ,h′q ,r

′
q

[
d

(
xq,
{
xdq

})
+ Jq+1(xq+1)

]}
,

q = 0, 1, · · · , N − 1. (4.14)

4.4 Base-to-base, Deterministic Case

Similar to Chapter 3, we start with the simplest case, base-to-base deterministic

mutation. Therefore, we do not need to evaluate the expected value. For one-

dimensional optimal control problem, the desired set
{
xdk
}

along the trajectory for

every k, 0 ≤ k ≤ N , always contains a single element. Therefore, for simplicity, we

use xdk instead of
{
xdk
}

to denote the desired state at kth stage. In addition, we require

that xN = xdN , and tracing cost along the trajectory k, 0 ≤ k ≤ N−1 is ignored. Since

the distance reference defined in §4.2 cannot be applied in the single base mutations,
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we define the distance reference between bases as

d
(
xN , x

d
N

)
=

{
0 if xN = xdN ,

∞ if xN 6= xdN ,
(4.15)

with xN , x
d
N ∈ F .

Therefore, the distance reference between different nucleotide bases is much larger

than the costs of applying mutagens, and the corresponding term can be removed

from our objective function. Instead, we add xN = xdN as another constraint to our

single base deterministic optimal control problem.

We consider applying chemical mutagens only because the randomness caused by

applying radiation is much larger and more difficult to control. We also ignore the

mutations between a normal base and O as explained in §4.1, βl2 is, in general, much

larger than αl1 , and more information is necessary to convert O to normal bases.

In sum, our optimal control problem for deterministic single base mutation can be

formulated as

J0(x0) = min
uk,l1 ,0≤k≤N,1≤l1≤l


N−1∑
k=0

l∑
l1=1

αl1uk,l1

 , (4.16)

subject to

xk+1 =

−I +
l∑

l1=1

uk,l1s

xk, (4.17a)

xN = xdN , (4.17b)

with x0 given, xk ∈ F\{0}, where F\{0} denotes the set F excluding the element 0.
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The definition of tail problem Jq(xq), q = 0, 1, · · · , N − 1, and the update equation of

control policy can be written as

Jq(xq) = min
uk,l1 ,q≤k≤N−1,1≤l1≤l


N−1∑
k=q

l∑
l1=1

αl1uq,l1

 , (4.18)

= min
uq,l1 ,1≤l1≤l


l∑

l1=1

αl1uq,l1 + Jq+1


−I +

l∑
l1=1

uq,l1s

xq


 . (4.19)

Clearly,
∑l

l1=1 uq,l1 = 0 or 1, according to the Proposition 3.4.

If in addition, we assume that we have l1 = 12 kinds of mutagens, each corresponding

to a specific transfer pattern, as listed in Table 4.3. The corresponding controls and

costs of applying a specific control are listed in Table 4.4 and 4.5.

Index (l1) 1 2 3 4 5 6

Transfer Pattern A→ A A→ G A→ C G→ A G→ G G→ T

Index (l1) 7 8 9 10 11 12

Transfer Pattern C → A C → C C → T T → G T → C T → T

Table 4.3: An example of chemical mutagens and their corresponding transfer pat-
terns in deterministic mutations.

PPPPPPPPPPP
kth

(k + 1)th
A G C T

A uAA uAG uAC uAT

G uGA uGG uGC uGT

C uCA uCG uCC uCT

T uTA uTG uTC uTT

Table 4.4: Controls corresponding to transfer between bases within one step. The
leftmost column denotes the state kth step, and the upmost row denotes the (k+ 1)th

state.
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PPPPPPPPPPP
kth

(k + 1)th
A G C T

A αAA αAG αAC αAT

G αGA αGG αGC αGT

C αCA αCG αCC αCT

T αTA αTG αTC αTT

Table 4.5: Corresponding step cost of controls as shown in Table 4.4.

The elements along the anti-diagonal of Table 4.4, uAT , uGC , uCG and uTA, are artifi-

cially added, because transfers between complementary bases naturally happen and

no mutagen is necessary. Therefore, the costs along the anti-diagonal of Table 4.5 are

all zero, i.e. αAT = αGC = αCG = αTC = 0. We use nucleotide bases as subscripts in

Table 4.4 and 4.5 because this representation is more straightforward. Otherwise, we

can define a map l1 : {A, T,G,C}×{A, T,G,C} → {integers from 1 to 12}, as listed

in Table 4.3. Equivalence relationship between subscription in two nucleotide bases

and in integer l1 is defined by Table 4.3.

Under the above assumptions, we can rewrite (4.19) explicitly as

Jq(xq) = min
uq,l1

{
αxqA + Jq+1(A), αxqG + Jq+1(G),

αxqC + Jq+1(C), αxqT + Jq+1(T )

}
, (4.20a)

= min
uq,l1

{
αxqψ + Jq+1(ψ),∀ψ ∈ {A, T,G,C} ⇔ F\{0}

}
. (4.20b)

Claim 4.1, 4.2, 4.3 and 4.4 are based on two conditions: (1) the optimal control prob-

lem and constraints follows (4.16) and (4.17), (2) all available mutagens (controls),

the corresponding transfer patterns and costs are listed in Table 4.3, 4.4, and 4.5.

Claim 4.1. For the same xdN , Jq(ψ) ≤ Jq+1(ψ),∀q, 0 ≤ q ≤ N−1,∀ψ ∈ {A, T,G,C},
where ψ denotes the complementary base of ψ in character-based notation, which is

equivalent to −ψ in numerical notation..

Proof. This fact is due to the zero cost for the transfers between complementary bases

in consecutive steps.
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For any 0 ≤ q ≤ N − 1, the relationship between minimal costs in consecutive steps

is shown in (4.20). Since ψ ∈ {A, T,G,C}, αψψ + Jq+1(ψ) is one of the four elements

in the set from which the Jq(ψ) is picked. Moreover, αψψ = 0, therefore, Jq+1(ψ) is

one of the four elements in the set. Since Jq(ψ) is the minimum picking for a set

containing Jq+1(ψ), we conclude that Jq(ψ) ≤ Jq+1(ψ).

Claim 4.2. ∀N ≥ 6, JN−6 (xN−6) is guaranteed to be the global optimal for every

pair of (xN−6, x
d
N) ∈ {A, T,G,C}×{A, T,G,C}. This global optimal can be achieved

by applying at most three different kinds of chemical mutagens, i.e. at most 3 uk,l1s

(1 ≤ l1 ≤ 12), N − 6 ≤ k ≤ N − 1, equal to 1, in at most 6 steps.

If 1 ≤ N ≤ 5, ∃J0(x0) for every particular xdN .

Claim 4.2 can be proved by the brute force method as shown in §A.2. Since the

costs of mutagens are represented by symbols, we cannot compare them numerically.

However, we can eliminate all paths containing circular subunits to reduce the set

where the minimum is picked from.

According to Claim 4.2, with N free, we are guaranteed to reach the global minimum

within 6 steps from the initial state to the target state. For completely controllable

systems, there always exists an M , the first time instance that the global minimum

is achieved.

Proof. (Existence of M )

Since the system is completely controllable, ∃k1, k2,∈ Z∪{0}, s.t. there exists at least

one path from x0 to x2k1 and at least one path from x0 to x2k2+1 by applying proper

mutagens in the correct order, with k1, k2 finite, ∀x0, x2k1 , x2k2+1 ∈ {A,G,C, T}.
Incorporating this fact into the optimal paths in our example, instead of completing

each transfer within one steps, we use k1 or k2 steps transfers to substitute those one

step transfers. Though the value of k1, k2 varies according to the initial and final

state, the total steps needed to reach the global optimal is always finite. Therefore,

M exists and is always finite.

The existence of M implies that for without restriction on the number of steps, we

can reach the global optimal in N−M steps, 6 steps in our example. In addition, the
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objective function remains optimal for xq = xM = ψ and xdN ,∀q, 0 ≤ q ≤M,M−q ≡ 0

(mod 2), and xq = xM = ψ,∀q, 0 ≤ q ≤ M,M − q ≡ 1 (mod 2), ψ ∈ {A, T,G,C},
which leads to Claim 4.3.

Claim 4.3. If the system is completely controllable, ∃M , the first instance that the

global minimum is reached, JM(ψ) is the global minimum and ∀q, 0 ≤ q ≤M,Jq(ψ) =

JM(ψ) if M−q ≡ 1 (mod 2), and Jq(ψ) = JM(ψ) if M−q ≡ 0 (mod 2). In addition,

∀q, 2 ≤ q ≤M ,

Jq(ψ) = Jq−2(ψ) = Jq−1(ψ), ψ ∈ {A, T,G,C} ⇔ {1,−1, 2,−2} = F\{0},

with the same xdN . In our example, M ≥ N − 6.

Proof. For q = M , JM(ψ) is the global minimum. From Claim 4.1, JM−1(ψ) ≤ JM(ψ),

therefore, JM−1(ψ) = JM(ψ) for the same xdN . Therefore, JM−1(ψ) is also a global

minimum.

By backward induction, suppose for q = q1, the statement is true, i.e. Jq1−1(ψ) =

Jq1(ψ) is the global optimal either from xq1−1 = ψ or xq1 = ψ to xdN . Obviously,

for q = q1 − 1, the statement still true. Therefore, Jq(ψ) = Jq−2(ψ) = Jq−1(ψ), ψ ∈
{A, T,G,C},∀q, 2 ≤ q ≤M .

In the proof of global minimum can be reached in the finite step in Claim 4.2, we also

discover Proposition 3.2. Here, Jq(xq, x
N
d ) denotes the optimal cost from xq to xNd .

Claim 4.4. Given two single base mutation optimal control problems, with the same

fixed N , and the desired final states complementary to each other. If JM(ψ, xdN) is the

global minimum, then JM(ψ, xdN) is also the global minimum, i.e. the global minimum

of both systems is reach at the same stage M . Moreover, ∀q, 0 ≤ q ≤M ,

Jq(ψ, x
d
N) = Jq(ψ, xdN), ψ, xdN ∈ {A, T,G,C}.

Physically, Claim 4.4 states that the optimal can be achieve at the same step from

a pair of complementary bases to another pair of complementary bases at the same

cost. It is implicitly shown in the proof of Claim 4.2 in §A.2. However, this fact is
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true only for base-to-base deterministic mutations, because the distance reference is

well-defined in (4.15).

Now, we show an example with simulation results.

The costs of applying different mutagens are listed in Table 4.6. It is a numerical

assignment to Table 4.5. Since we apply mutagens before every replication starts,

uAA actually transfer A to T and then to A by replication. For simplicity, we just use

the kth and (k + 1)th step states as subscripts to represent the corresponding control

and cost. The costs of transitions is lower than the costs of transversions. Therefore,

αAC , αCA, αGT , αTG have smaller values than other mutagens, except artificial ones.

H
HHH

HHHH
xk

xk+1
A G C T

A 5.21 6.60 2.33 0

G 6.15 8.95 0 3.82

C 4.61 0 9.17 7.24

T 0 0.64 5.09 10.28

Table 4.6: Sample step costs.

If we use χ to denote the costs of mutagens as listed in Table 4.6, then

χ =


5.21 6.60 2.33 0

6.15 8.95 0 3.82

4.61 0 9.17 7.24

0 0.64 5.09 10.28

 =


αAA αAG αAC αAT

αGA αGG αGC αGT

αCA αCG αCC αCT

αTA αTG αTC αTT

⇔

α1 α2 α3 0

α4 α5 0 α6

α7 0 α8 α9

0 α10 α11 α12

 .

Here, we use Jq(xq, x
d
N) to denote the optimal cost from xq to xdN as we did in

Claim 4.4. Then

Jq =


Jq(A,A) Jq(A,G) Jq(A,C) Jq(A, T )

Jq(G,A) Jq(G,G) Jq(G,C) Jq(G, T )

Jq(C,A) Jq(C,G) Jq(C,C) Jq(C, T )

Jq(T,A) Jq(T,G) Jq(C,C) Jq(T, T )

 .
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The path to reach the optimal cost is denoted by

Pq =


Pq(A,A) Pq(A,G) Pq(A,C) Pq(A, T )

Pq(G,A) Pq(G,G) Pq(G,C) Pq(G, T )

Pq(C,A) Pq(C,G) Pq(C,C) Pq(C, T )

Pq(T,A) Pq(T,G) Pq(T,C) Pq(T, T )

 ,

where Pq(xq, x
d
N) is the (q + 1)th state from xq to xdN , i.e. xq+1 = Pq(xq, x

d
N).

We run the dynamic programming algorithm for every pair of (xq, x
d
N) ∈ {A, T,G,C}×

{A, T,G,C}, N = 9. The simulation results are shown as below, including op-

timal costs for all possible transfer pairs (xq, x
d
N) ∈ {A, T,G,C} × {A, T,G,C},

Jq, 0 ≤ q ≤ 8, graphical representation in Figure 4.1, and optimal path Pq, 0 ≤ q ≤ 7.
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J0 =


5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 6.79 6.15

0 0.64 5.09 5.21

 J1 =


0 0.64 5.09 5.21

3.82 0 6.79 6.15

6.15 6.79 0 3.82

5.21 5.09 0.64 0



J2 =


5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 6.79 6.15

0 0.64 5.09 5.21

 J3 =


0 0.64 5.09 5.21

3.82 0 6.79 6.15

6.15 6.79 0 3.82

5.21 5.09 0.64 0



J4 =


5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 6.79 6.15

0 0.64 5.09 5.21

 J5 =


0 0.64 5.09 5.21

3.82 0 6.79 6.15

6.15 6.79 0 3.82

5.21 5.09 0.64 0



J6 =


5.21 5.09 0.64 0

6.15 6.79 0 3.82

3.82 0 7.88 6.15

0 0.64 5.09 5.21

 J7 =


0 0.64 5.09 5.21

3.82 0 8.48 6.15

6.15 7.88 0 3.82

5.21 5.09 0.64 0



J8 =


5.21 6.60 2.33 0

6.15 8.95 0 3.82

4.61 0 9.17 7.24

0 0.64 5.09 10.28


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Figure 4.1: Graphical representation of Jq, 0 ≤ q ≤ 8, N = 9, in single base deter-
ministic mutation example. The x-axis and y-axis represent xq and xdN , respectively.
Jq(xq, x

d
N) are represented by 16 isolated points. Those discrete points are connected

together to show the surface.

P0 =


A, T T T T

A,C A,C C C, T

G G G G

A A,G A,C A

 P1 =


T T T A, T

C, T C A,C A,C

G G G G

A A,C A,G A



P2 =


A, T T T T

A,C A,C C C, T

G G G G

A A,G A,C A

 P3 =


T T T A, T

C, T C A,C A,C

G G G G

A A,C A,G A



P4 =


A, T T T T

A,C A,C C C, T

G G G G

A A,G A,C A

 P5 =


T T T A, T

C, T C A A,C

G G G G

A A,C A,G A



P6 =


A, T T T T

A,C A C C, T

G G T G

A A,G A,C A

 P7 =


T T T A

T C A A

G T G G

A C G A


68



For simplicity, we use 1 to represent A, 2 to G, 3 to C and 4 to T in graphical

interpretation. From Figure 4.1, we can see clearly that the optimal cost decreases

as q decreases in the first few steps, and then optimal cost remains at the global

minimum. This phenomena obeys Claim 4.1 and 4.2. In this example, global optimal

is reach at M = 6 for all pairs of initial and final states as J7 6= J5 = J3 and

J8 6= J6 = J4. So the global minimum is achieved before we reach N − 6 = 3 in this

particular case. This also implies that with N free, we can reach the desired final

state in 3 steps from the given initial state.

Observing Jq, 0 ≤ q ≤ 6, we find that Jq−1 equals to Jq by exchanging the first and

the last column, and the second and the third column. Or we can exchange the first

and the last row, and the second and the third row of Jq to obtain Jq−1. Jq1 and

Jq2 are the same for q1, q2 ≤ M = 6 for q1 − q2 = 0 (mod 2). This obeys Claim 4.3

and 4.4.

The optimal trajectories are generated from Pq(xq, x
d
N). For example, given x2 = T ,

and the final state xd9 = G, we want to generate the optimal trajectories.

x3 = P2(T,G) = A,G.

If x3 = A, x4 = P3(A,G) = T ; if x3 = G, x4 = P3(A,G) = C.

If x4 = T , x5 = P4(T,G) = A,G; if x4 = C, x5 = P4(C,G) = G.

If x5 = A, x6 = P5(A,G) = T ; if x5 = G, x6 = P5(G,G) = C.

If x6 = T , x7 = P6(T,G) = A,G; if x6 = C, x7 = P6(C,G) = G.

If x7 = A, x8 = P7(A,G) = T ; if x7 = G, x8 = P7(G,G) = C.

So the optimal routes are

T → A→ T → A→ T → A→ T
uTG−−→
αTG

G

T → A→ T → A→ T
uTG−−→
αTG

G→ C → G

T → A→ T
uTG−−→
αTG

G→ C → G→ C → G

T
uTG−−→
αTG

G→ C → G→ C → G→ C → G

Consequently, the optimal cost is J2(T,G) = 0.64 = αTG.
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Optimal trajectories for other pairs of initial and final states can be obtained in the

same manner.

4.5 Codon-to-Codon, Deterministic Case

Similar to single base deterministic case, we ignore transfers from or to the non-sense

base O, and apply chemical mutagens only. In addition, we ignore the tracing costs

along the trajectory, but keep the final penalty.

Hence, for codon-to-codon deterministic mutations, we formulate our optimal control

problem as

J0(x0) = min
uik,l1

,0≤k≤N,
1≤l1≤l,1≤i≤3


N−1∑
k=0

l∑
l1=1

3∑
i=1

αl1u
i
k,l1

+ d

(
xN ,

{
xdN

}) , (4.21)

subject to

xk+1 =

−I +
l∑

l1=1

3∑
i=1

uik,l1seie
T
i

xk, (4.22)

with x0, x
d
N ∈ F 3

\{0} given, xk ∈ F 3
\{0},∀k, 0 ≤ k ≤ N , and d(ϕ1, ϕ2), ϕ1, ϕ2 ∈ F 3

\{0}

as defined in §4.2.

The definition of tail problem Jq(xq), q = 0, 1, · · · , N − 1, and the update equation of

control policy can be written as

Jq(xq) = min
uik,l1

,q≤k≤N,
1≤l1≤l,1≤i≤3


N−1∑
k=q

l∑
l1=1

3∑
i=1

αl1u
i
k,l1

+ d

(
xN ,

{
xdN

}) , (4.23)

= min
uiq,l1

,1≤l1≤l,1≤i≤3


l∑

l1=1

3∑
i=1

αl1u
i
q,l1

+ Jq+1(xq+1)

 , (4.24)

with xq, x
d
N ∈ F 3

\{0} and uiq,l1 ∈ {0, 1},∀q, l1, i, 0 ≤ q ≤ N − 1, 1 ≤ l1 ≤ l, 1 ≤ i ≤ 3.
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If in addition, we assume all available mutagens, their corresponding transfer pair

and applying cost are as listed in Table 4.3, 4.4 and 4.5. Then we can rewrite (4.24)

as

Jq(xq) = min
uiq,l1

,1≤l1≤l,1≤i≤3

{
αx1qψ1

+ Jq+1


ψ1

x2q

x3q


 , αx2qψ2

+ Jq+1


x

1
q

ψ2

x3q


 ,

αx3qψ3
+ Jq+1


x

1
q

x2q

ψ3


 , ψ1, ψ2, ψ3 ∈ {A, T,G,C} ⇔ F\{0}

}
, (4.25)

with xiq ∈ {A, T,G,C} ⇔ F\{0}, 1 ≤ i ≤ 3 denotes the ith element of xq ∈ F 3
\{0}, and

xiq denotes the complementary base of xiq.

The optimal control sequences depends on the numerical values of αl1s and d(ϕ1, ϕ2),

ϕ1, ϕ2 ∈ F 3
\{0}. Although the values we assigned to αl1s and d(ϕ1, ϕ2) are not actual

practical values, we can always draw conclusions from simulation results by assigning

different sets of numerical values to those parameters.

Below are the simulation results of three different assignments of αl1s, χ, 5χ, and 0.5χ,

and the same d(ϕ1, ϕ2). Here, χ the same as in §4.4.

The graphical interpretation of three assignments are shown in Figure 4.2, Figure 4.3

and Figure 4.4, respectively. The x-axis and y-axis denote xq and xdN , respectively.

For a codon
[
ψ1 ψ2 ψ3

]T
, ψ1, ψ2, ψ3 ∈ {A, T,G,C} ⇔ F\{0}, its index is calculated

by

42(ψ1 − 1) + 4(ψ2 − 1) + ψ3,

where ψi = 1 if A, ψi = 2 if G, ψi = 3 if C and ψi = 4 if T , 1 ≤ i ≤ 3, for the

simplicity of graphical interpretation. Since a codon has 43 = 64 permutations, there

are 642 pairs of initial and final desired states, and there are 64 × 21 pairs of initial

state and final desired set. The surface is generated by connecting 64 × 64 discrete

points together. Jq is calculated following the same procedure as in base-to-base

deterministic cases. The value of optimal cost can be read directly from graphical

interpretation, and the optimal path can be generated from path matrix Pq, similar
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to base-to-base deterministic case. Both Jq and Pq, ∀q, 0 ≤ q ≤ N are of 64 × 64

dimension.

N αl1 d(ϕ1, ϕ2) First q when the global Global minimum

minimum is reached

19 0.5χ Table 4.2 q = 12 J12(x12)

19 χ Table 4.2 q = 13 J13(x13)

19 5χ Table 4.2 q = 15 J15(x15)

Table 4.7: Simulation results with different αl1 assignments and the first q where the
global optimal is reached.

From the graphical interpretation and Table 4.7, we find that the value of q where

the global minimum is reach at the first time decreases as αl1 decreases. And the

surface generated by J0 is more similar to the one generated J18 with α = 5χ than

with α = χ or α = 0.5χ. This implies that if d(ϕ1, ϕ2) is the deterministic term in our

objective function, then the treatment plan is made to drive the final state as close

to the desired set as possible; if the costs of applying mutagens is the deterministic

term in the objective function, then the treatment plan tends to stay in the original

state and applying less mutagens; if they are of equal weight, then the treatment plan

deals with this tradeoff.

Moreover, no matter how the numerical values of final penalty and the costs of ap-

plying mutagens change in our objective function, there is always a M,M ≤ N − 18,

JM(xM) is global minimum. This property is stated in Claim 4.5.

Claim 4.5. Given an optimal control problem with objective function in the form

of (4.21), constraints in the form of (4.22), and all available chemical mutagens,

their corresponding transfer pairs and costs as listed in Table 4.3, 4.4 and 4.5, then

JN−18(xN−18) is guaranteed to be the global optimal with fixed
{
xdN
}

and N ≥ 18.

Proof. The objective function in (4.21) can be written as a summation of three sepa-

rate single base mutation systems, and the distance reference between the final state
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Figure 4.2: Graphically representation of Jq, q = 0, 1, 2, 3, 15, 16, 17, 18 for codon-to-
codon deterministic mutations, with αl1 = χ, d(·, ·) as listed in Table 4.2, N = 19.
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Figure 4.3: Graphically representation of Jq, q = 0, 1, 2, 3, 15, 16, 17, 18 for codon-to-
codon deterministic mutations, with αl1 = 5χ, d(·, ·) as listed in Table 4.2, N = 19.

74



Figure 4.4: Graphically representation of Jq, q = 0, 1, 2, 3, 15, 16, 17, 18 for codon-to-
codon deterministic mutations, with αl1 = 0.5χ, d(·, ·) as listed in Table 4.2, N = 19.
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and final desired set, i.e.

Jq(xq) = min
n1,n2,n3≥0

2N≤n1+n2+n3≤3N−1

{
Jn1(xn−1)

(
x1q, ψ1

)
︸ ︷︷ ︸

optimal costs of base-to-base

deterministic optimal control

problem formed by the 1st base

+ Jn2(xn−2)
(
x2q, ψ2

)
︸ ︷︷ ︸

optimal costs of base-to-base

deterministic optimal control

problem formed by the 2nd

base

+ Jn3(xn−3)
(
x3q, ψ3

)
︸ ︷︷ ︸

optimal costs of base-to-base

deterministic optimal control

problem formed by the 3rd

base

+d


ψ1

ψ2

ψ3

 ,{xdN}
 ,

}
(4.26)

where N − q = (N − n1) + (N − n2) + (N − n3).

According to Claim 4.2, JN−6(xN−6) is guaranteed to be the global optimal for single

base mutations. Therefore, optimal costs corresponding to three single base mutation

systems, Jn1(xn−1)
(
x1q, ψ1

)
, Jn2(xn−2)

(
x2q, ψ2

)
, Jn3(xn−3)

(
x3q, ψ3

)
is guaranteed to

reach their own global optimal at n1 = n2 = n3 = N−6 with all possible combinations

of ψ1, ψ2, ψ3 ∈ {A, T,G,C}. Therefore, q = N−18 is a guaranteed global optimal.

Claim 4.5 is a three-dimensional extension of Claim 4.2. We choose N = 19 in our

example based on Claim 4.5. Indeed, Claim 4.5 is a quite loose condition. The q

values where the first global optimal is reached at M ≥ N − 18 = 1 with different

parameter assignments in our example are listed in Table 4.7. Moreover, if JM(xM)

is a global optimal from xM to {xdN}, then it is also a global optimal from xM to any

final state in the set of {xdN} since the final desired set generated by every element

from {xdN} is {xdN}.

We can also extend Claim 4.3 to codon-to-codon deterministic cases.
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Claim 4.6. Similar to base-to-base deterministic mutations, after the global minimum

is reached at JM(xM) for fixed xdN , ∀q, 2 ≤ q ≤M ,

Jq


ψ1

ψ2

ψ3


 = Jq−1


ψ1

ψ2

ψ3


 = Jq−2


ψ1

ψ2

ψ3


 .

Therefore, Jq

([
ψ1 ψ2 ψ3

]T)
is the global minimum if M − q ≡ 0 (mod 2), from

xq = xM =
[
ψ1 ψ2 ψ3

]T
to
{
xdN
}

with xdN ∈ F 3
\{0}; Jq

([
ψ1 ψ2 ψ3

]T)
is the

global minimum if M − q ≡ 1 (mod 2), from xq = xM =
[
ψ1 ψ2 ψ3

]T
to the same

final desired set
{
xdN
}

.

The proof of Claim 4.6 is similar to the one of Claim 4.3.

Graphically, the indices of complementary codons,
[
ψ1 ψ2 ψ3

]T
and

[
ψ1 ψ2 ψ3

]T
,

sum up to 65, i.e.

(
16(ψ1 − 1) + 4(ψ2 − 1) + ψ3

)
+
(

16(ψ1 − 1) + 4(ψ2 − 1) + ψ3

)
=
(
16(ψ1 − 1) + 4(ψ2 − 1) + ψ3

)
+
(
16((5− ψ1)− 1) + 4((5− ψ2)− 1) + (5− ψ3)

)
,

= 65.

Therefore, Jq and Jq−1, 1 ≤ q ≤ M , are symmetric about the plane x = 32.5, Jq−2

and Jq, 2 ≤ q ≤M , are the same, as shown in Figure 4.2, Figure 4.3 and Figure 4.4.

However, as mentioned in §4.2, Claim 4.4 cannot be extended to codon-to-codon

deterministic case due to the redundancy of genetic codes, i.e. the set of codons

translated to the same amino acid varies from one amino acid to another as shown in

Table 4.1. The simulation results show that the costs a pair of complementary codons

to two final desired set generated by a pair of complementary final desired codons are

different, i.e. Jq

(
xq,
{
xdN
})
6= Jq

(
xq,
{
xdN

})
, in general, for any q. Graphically, the

optimal cost profile Jq is not symmetric about the plane y = 32.5 for Jq−1, 1 ≤ q ≤M .

Therefore, the doctors need to make treatment plans for both strands and choose the
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one with lower cost. This also implies that in large scales cases, for instance, a gene

contains hundreds of nucleotide bases, the doctors should make the treatment plan

according to the strand with lower optimal cost than the other.

4.6 Codon-to-Codon, Stochastic Case

In this section, we formulate optimal control problem for codon-to-codon stochas-

tic mutations, derive update equation by the dynamic programming algorithm, and

demonstrate simulation results with different assignments of parameters.

Again, we take the same assumptions as we did for base-to-base and codon-to-codon

deterministic cases. Assume mutagens with possible transfer patterns involving the

non-sense base O, and radiation are unavailable. Also, we only keep the final penalty

cost and ignore the tracing cost along the path.

The optimal control problem of codon-to-codon stochastic mutations can be written

as

J0(x0) = min
uik,l1

,0≤k≤N−1
1≤l1≤l,1≤i≤3


N−1∑
k=0

l∑
l1=1

3∑
i=1

αl1u
i
k,l1

+ E
hik,l1

,0≤k≤N−1
1≤l1≤l,1≤i≤3

[
d

(
xN ,

{
xdN

})] ,(4.27)

subject to

xk+1 = −Ixk +
l∑

l1=1

3∑
i=1

uik,l1h
i
k,l1
seie

T
i xk, (4.28)

with x0, x
d
N ∈ F 3

\{0} given, xk ∈ F 3
\{0}.
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The definition of tail problem Jq(xq), q = 0, 1, · · · , N − 1, and the update equation of

control policy can be written as

Jq(xq) = min
uik,l1

,q≤k≤N−1
1≤l1≤l,1≤i≤3


N−1∑
k=q

l∑
l1=1

3∑
i=1

αl1u
i
k,l1

+ E
hik,l1

,q≤k≤N−1
1≤l1≤l,1≤i≤3

[
d

(
xN ,

{
xdN

})] ,(4.29)

= min
uiq,l1

,1≤l1≤l,1≤i≤3


l∑

l1=1

3∑
i=1

αl1u
i
q,l1

+ E
hiq,l1

,1≤l1≤l,1≤i≤3

[
Jq+1(xq+1)

] . (4.30)

with xq, x
d
N ∈ F 3

\{0} given, and uiq,l1 ∈ {0, 1},∀q, l1, i, 0 ≤ q ≤ N − 1, 1 ≤ l1 ≤ l, 1 ≤
i ≤ 3.

The major difference between deterministic and stochastic systems is the random

variable, hik,l1 , is incorporated into our system equation (4.28). We denote the prob-

ability associated with hik,l1s by p
(h)
l1,ψ1ψ2

with ψ1, ψ2 ∈ {A, T,G,C}.

Ideally, we assume that we have l1 = 12 kinds of mutagens, each corresponding to

one major transfer pattern, as listed in Table 4.8.

Index(l1)

HH
HHH

HHH
From

To
A G C T Major transfer pattern

1 A p
(h)
1,AA p

(h)
1,AG p

(h)
1,AC p

(h)
1,AT A→ A

2 A p
(h)
2,AA p

(h)
2,AG p

(h)
2,AC p

(h)
2,AT A→ G

3 A p
(h)
3,AA p

(h)
3,AG p

(h)
3,AC p

(h)
3,AT A→ C

4 G p
(h)
4,GA p

(h)
4,GG p

(h)
4,GC p

(h)
4,GT G→ A

5 G p
(h)
5,GA p

(h)
5,GG p

(h)
5,GC p

(h)
5,GT G→ G

6 G p
(h)
6,GA p

(h)
6,GG p

(h)
6,GC p

(h)
6,GT G→ T

7 C p
(h)
7,CA p

(h)
7,CG p

(h)
7,CC p

(h)
7,CT C → A

8 C p
(h)
8,CA p

(h)
8,CG p

(h)
8,CC p

(h)
8,CT C → C

9 C p
(h)
9,CA p

(h)
9,CG p

(h)
9,CC p

(h)
9,CT C → T

10 T p
(h)
10,TA p

(h)
10,TG p

(h)
10,TC p

(h)
10,TT T → G

11 T p
(h)
11,TA p

(h)
11,TG p

(h)
11,TC p

(h)
11,TT T → C

12 T p
(h)
12,TA p

(h)
12,TG p

(h)
12,TC p

(h)
12,TT T → T

Table 4.8: 12 kinds of mutagens, each corresponding to major transfer patterns, and
probability assignment of different mutagens on different transfer patterns.

79



Then we can write (4.30) explicitly as

Jq(xq) = min
uiq,l1

,1≤l1≤l,1≤i≤3

{
αx1qψ1

+ E
h1
q,l1(x

1
qψ1)

Jq+1


 ·x2q
x3q



 ,

αx2qψ2
+ E

h2
q,l1(x

2
qψ2)

Jq+1


x

1
q

·
x3q



 , αx3qψ3

+ E
h3
q,l1(x

3
qψ3)

Jq+1


x

1
q

x2q

·



 ,

ψ1, ψ2, ψ3 ∈ {A, T,G,C} ⇔ F\{0}

}
, (4.31)

where

Jq(xq) = min
uiq,l1

,1≤l1≤l,1≤i≤3

{
αx1qψ1

+ E
h1
q,l1(x

1
qψ1)

Jq+1


 ·x2q
x3q



 ,

αx2qψ2
+ E

h2
q,l1(x

2
qψ2)

Jq+1


x

1
q

·
x3q



 , αx3qψ3

+ E
h3
q,l1(x

3
qψ3)

Jq+1


x

1
q

x2q

·



 ,

ψ1, ψ2, ψ3 ∈ {A, T,G,C} ⇔ F\{0}

}
, (4.32)

where

E
h1
q,l1(x

1
qψ1)

Jq+1


 ·x2q
x3q



 = p

(h)

l1(x1qψ1),x1qA

Jq+1


Ax2q
x3q



+ p

(h)

l1(x1qψ1),x1qG

Jq+1


Gx2q
x3q





+ p
(h)

l1(x1qψ1),x1qC

Jq+1


Cx2q
x3q



+ p

(h)

l1(x1qψ1),x1qT

Jq+1


Tx2q
x3q



 ,
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where xiq ∈ {A, T,G,C} ⇔ F\{0}, 0 ≤ q ≤ N−1, 1 ≤ i ≤ 3, denotes the ith element of

xq ∈ F 3
\{0}, x

i
q denotes the complementary base of xiq, and l1 : ψ1ψ2 ∈ {A, T,G,C} ×

{A, T,G,C} → {integers from 1 to 12}, the mapping from major transfer pattern

ψ1 → ψ2 to mutagen index, as shown in Table 4.8. The mathematical expression

of E
h2
q,l1(x

2
qψ2)

[
Jq+1

([
x1q · x3q

]T)]
and E

h3
q,l1(x

3
qψ3)

[
Jq+1

([
x1q x2q ·

]T)]
is similar to

E
h1
q,l1(x

1
qψ1)

[
Jq+1

([
· x2q x3q

]T)]
as shown above.

Table 4.8 is the same as Table 3.8 by deleting the four artificial mutagens corre-

sponding to natural transfers and adjusting the indices accordingly. So all elements

in Table 4.8 obeys Proposition 3.5.

In order to run simulations, we assign numerical values to probabilities in Table 4.8,

as illustrated in Table 4.9.

The same as in §4.5, we use three different assignments for αl1s, χ, 5χ, and 0.5χ,

respectively, and the distance reference, d(ϕ1, ϕ2), ϕ1, ϕ2 ∈ F 3
\{0}, in Table 4.2. The

indices of codons remain the same as those in §4.5, and optimal cost profile Jq with

selected q values, for every pair of (xq, x
d
N), is graphically interpreted in Figure 4.5,

Figure 4.6, Figure 4.7, respectively, with N = 29.

81



Index (l1)

HHH
HHH

HH
From

To
A G C T

1 A 0.90 0.05 0.03 0.02

2 A 0.11 0.58 0.21 0.10

3 A 0.14 0.16 0.42 0.28

4 G 0.85 0.07 0.03 0.05

5 G 0.02 0.02 0.92 0.04

6 G 0.10 0.09 0.22 0.59

7 C 0.79 0.13 0.04 0.04

8 C 0.01 0.02 0.87 0.10

9 C 0.04 0.12 0.09 0.75

10 T 0.13 0.76 0.05 0.06

11 T 0.07 0.03 0.62 0.28

12 T 0.08 0.04 0.25 0.63

Table 4.9: Sample probabilities with respect to different mutagens and different trans-
fer patterns.

The simulation results of codon-to-codon stochastic case are somewhat similar to

the ones in §4.5. The profile of J0 is more similar to J29 when αl1s are assigned 5χ

than χ or 0.5χ. This implies in codon-to-codon stochastic mutations, the optimal

control sequence behaves in a similar way as codon-to-codon deterministic cases,

i.e. the system tends to getting as close as possible to the final desired set if αl1s

are much smaller than d(ϕ1, ϕ2), and the system tends to remain in the same state

with minor mutations when αl1s are relatively larger than d(ϕ1, ϕ2). And Claim 4.1

is still valid in codon-to-codon stochastic case with xq =
[
ψ1 ψ2 ψ3

]T
∈ F 3

\{0},

ψ1, ψ2, ψ3 ∈ {A, T,G,C} and xdN ∈ F 3
\{0}.

However, in stochastic cases, we cannot reach a global minimum because of the ran-

domness caused by mutagens. In general, there exists no stationary global minimum,

hence an error tolerance ε is necessary to stop the dynamic programming algorithm

with N free. In other words, if |Jq(ψ)− Jq−1(ψ)| ≤ ε with the same
{
xdN
}

, then the

dynamic programming algorithm stops iterating. Otherwise, we need to proceed to

calculate Jq−2(ψ). The value of ε is decided based on doctors’ experience. Obviously,

the smaller ε is, the better treatment plan is. Observing Figure 4.5, Figure 4.6 and
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Figure 4.5: Graphically representation of Jq(xq), q = 0, 1, 2, 3, 15, 19, 24, 28 for codon-
to-codon stochastic mutations, with αl1 = χ, probability assignment as in Table 4.9,
d(·, ·) as listed in Table 4.2, N = 29.

83



Figure 4.6: Graphically representation of Jq(xq), q = 0, 1, 2, 3, 15, 19, 24, 28 for codon-
to-codon stochastic mutations, with αl1 = 5χ, probability assignment as in Table 4.9,
d(·, ·) as listed in Table 4.2, N = 29.
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Figure 4.7: Graphically representation of Jq(xq), q = 0, 1, 2, 3, 15, 19, 24, 28 for codon-
to-codon stochastic mutations, with αl1 = 0.5χ, probability assignment as in Ta-
ble 4.9, d(·, ·) as listed in Table 4.2, N = 29.
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Figure 4.7, we conclude that J0 and J2 are almost of the same shape in all three

different parameter assignments.

Higher dimensional optimal control problems, gene-to-gene stochastic mutations, can

be solved by decomposing it into a series of cascade codon-to-codon stochastic optimal

control problems.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this dissertation, we derive a mathematical model to restore the abnormal gene to

a normal nucleotide sequence from the viewpoint of dynamic systems. Different from

existing models, our model is constructed directly from basic biological theories, the

central dogma in molecular biology and the complementary base pairing rule of DNA

molecules with double helix structure. It describes in detail how the induced muta-

tions affect a targeted DNA segment at the molecular level. It provides instrumental

information for gene mutations at the molecular level to support research work at the

cellular and tissue level systems. Our model is adaptive to point and multi-site, de-

terministic and stochastic mutations, as shown in Chapter 3. Though we emphasize

that we target at the induced mutations during the process of DNA replication in our

work, this model can be extended to other biological process at molecular level, such

as transcription process and broken DNA strands.

In our optimal control problem, the objective function includes two factors: the

risk/cost of applying mutagens and the off-trajectory penalty. Under the optimal

control policy, the summation of those two factors are minimized by the dynamic

programming algorithm, to propose a low-risk treatment plan. We define the distance

reference following the chemical and physical properties of amino acids, representing

the off-trajectory penalty. Our objective is to drive the system from a given initial

state to the final desired set, generated by the final desired state, at the lowest cost.

We define the final desired set since redundancy in genetic codes give us additional
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options of final desired state to further reduce the cost and to ignore silent muta-

tions. The dynamic programming algorithm ensures the optimality of the solution.

We also discuss optimal control problems of three different small-scale systems, and

demonstrate the simulation results of examples in Chapter 4.

The optimal control problems of base-to-base and codon-to-codon deterministic mu-

tations are of theoretical importance. As shown in the subsequent claims, the global

optimal can be reached within finite steps if the system is completely controllable. If

the step limit N is larger than the number of step that global optimal can be achieved,

then we have some flexibility in our treatment plan. In addition, there exist multiple

optimal paths with the same total cost for some pairs of initial state and final desired

set.

The optimal control problem for codon-to-codon stochastic mutations is of practical

importance, since codon is the basic component form nucleotide sequence of genes.

The step limit N is decided by doctors according to patients’ conditions and the

treatment plan is made according to the initial state and step limit. As the doctors

constantly take measurement to see the effects of mutagens, the treatment plan is

updated according to the current measurement. The optimal control sequence com-

puted for codon-to-codon stochastic mutations is crucial in solving the optimal control

problem for gene-to-gene stochastic mutations practically.

Our work contributes to several aspects of systems biology. The optimal control

sequences generated by the dynamic programming algorithm make it possible for

biologists and doctors to mutate certain sections of a gene on purpose at a relative

low cost and low risk in laboratory, an essential step to identify the structure of

functional units, to exam the interactions among different segments, and to find

healthy, deleterious and lethal nucleotide bases combinations. All those results are

beneficial in gene network construction.

The fundamental details of gene mutation at the molecular level help biologists to

elaborate on biological theories at the cellular and tissue levels, such as the theory

of evolution. By our method, biologists can distinguish the deleterious and beneficial

mutations, and induce beneficial mutations during the evolution process in a proper

way, which greatly helps to save rare species in danger.
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In addition, our solution to the optimal control problem proposed provides a new med-

ical intervention to genetic diseases. Comparing to existing gene therapy, treatments

by mutagens are safer because the side effects caused virus infection are avoided.

Our work also contributes to the construction of a DNA computer. Calculation errors,

mispairings in the process of two single-stranded DNA segments, can be compensated

at the lowest cost by applying a different mutagens in an orderly manner.

5.2 Future Work

Future work can be done in several aspects.

Extending codon-to-codon stochastic optimal control problem to gene-to-gene stochas-

tic mutations is one possible direction. The distance reference between DNA segments

with equal length can be defined as a weighted sum of the distance references between

codons. Since certain combinations of amino acids are deleterious or lethal, those

high-risk states should be avoided. This goal can be achieved by either defining a col-

lection of preset trajectories, or adding extra constraints to avoid high-risk sequences

in the state space.

Also, we can examine the system’s behavior with noisy measurements. Under this

condition, spontaneous mutation can be modeled as an additional random factor

in our state update equations. Another random noise is added to output equation

representing the random factor incorporated in measurements.

In addition, mutations caused by deletions or insertions can be formulated by our

method. As those cases involve the change of state space, we need adept theoretical

results in information theory in the modeling process.

Moreover, our mathematical model can be applied to transcription process to control

the speed and amount of protein production. Medical interventions at the cellular

level can be created by controlling the number of mRNA copies in cytoplasm, which

requires to a combination of systems at the molecular and cellular levels.
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Appendix A

Proofs

In this appendix, we proof some results in Chapter 4.

A.1 Proof of the Optimality of Dynamic Program-

ming Algorithm

The random variables hik,l1 , r
i
k,l2
, h′ik,l3 , r

′i
k,l4

takes a finite number of values, and the

expected values of all terms in the expression of the cost function (4.7) are well

defined and finite for every admissible policy π, therefore we can proof the optimality

of the dynamic programming algorithm for our generalized optimal control problems.

The proof follows the one to the optimality of the dynamic programming algorithm

in [Bertsekas, 1995].

Proof. ([Bertsekas, 1995])

For any admissible policy π = {µ0, µ1, · · · , µN−1} and each q = 0, 1, · · · , N − 1,

denote πq = {µq, µq+1, · · · , µN−1}. Let Jq(xq) be the optimal cost for the (N − q)-
stage problem that starts at state xq and time q, and ends at time N , i.e.

Ĵq(xq) = min
πq

E
{h,r,h′,r′}q,q+1,··· ,N−1

gN(xN) +
N−1∑
k=q

g
(
xk, µk(xk), hk, rk, h

′
k, r
′
k

) .(A.1)
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For q = N , we define ĴN(xN) = gN(xN). We proof that Ĵq = Jq, where Jq is generated

by the dynamic programming algorithm described in §4.3. Therefore, when q = 0,

we get the desired result.

By definition, ĴN = JN = gN . Suppose for some q and all xq+1, we have Ĵq+1(xq+1) =

Jq+1(xq+1). Since πq = (πq, π
q+1), then ∀xq,

Ĵq(xq) = min
(πq ,πq+1)

{
E

{h,r,h′,r′}q,q+1,··· ,N−1

[
g
(
xq, µq(xq), hq, rq, h

′
q, r
′
q

)
+ gN(xN) +

N−1∑
k=q+1

g
(
xk, µk(xk), hk, rk, h

′
k, r
′
k

) ]}
(A.2a)

= min
µk

{
E

hq ,rq ,h′q ,r
′
q

[
g
(
xq, µq(xq), hq, rq, h

′
q, r
′
q

)
+ min

πq+1

{
E

{h,r,h′,r′}q+1,··· ,N−1

[
gN(xN)

+
N−1∑
k=q+1

g
(
xk, µk(xk), hk, rk, h

′
k, r
′
k

) ]}}
(A.2b)

= min
µk

{
E

hq ,rq ,h′q ,r
′
q

[
g
(
xq, µq(xq), hq, rq, h

′
q, r
′
q

)
+ Ĵq+1

(
f(xq, µq(xq), hq, rq, h

′
q, r
′
q)
)]}

(A.2c)

= min
µk

{
E

hq ,rq ,h′q ,r
′
q

[
g
(
xq, µq(xq), hq, rq, h

′
q, r
′
q

)
+ Jq+1

(
f(xq, µq(xq), hq, rq, h

′
q, r
′
q)
)]}

(A.2d)

= min
{uq ,cq ,vq ,c′q}∈Uq(xq)

{
E

hq ,rq ,h′q ,r
′
q

[
g
(
xq, uq, cq, vq, c

′
q, hq, rq, h

′
q, r
′
q

)
+ Jq+1

(
f(xq, uq, cq, vq, c

′
q, hq, rq, h

′
q, r
′
q)
)]}

(A.2e)

= Jq(xq). (A.2f)

In (A.2b), we moved the minimum over πk+1 inside the braced expression, using the

fact that the probability distributions of hk, rk, h
′
k, r
′
k, k = q + 1, · · · , N − 1, depend
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only on xk and {uk, ck, vk, c′k}, respectively. In (A.2c), we used the definition of Ĵq+1

as in (A.1), and in the fourth equation, we used the inductions hypothesis. In (A.2e),

we converted the minimization over µq to a minimization over {uq, cq, vq, c′q}, using

the fact that for any function F of x and u, we have

min
µ∈M

F
(
x, µ(x)

)
= min

u∈U(x)
F (x, u),

where M is the set of all functions µ(x) such that µ(x) ∈ U(x),∀x.

A.2 Proof of Claim 4.2

In this section, we proof Claim 4.2 by the brute force method. Use Jq(xq, x
d
N) to

denote the optimal cost from xq to xdN . Then we get

q = N− 1

JN−1(A,A) = αAA

JN−1(G,A) = αGA

JN−1(C,A) = αCA

JN−1(T,A) = 0

JN−1(A,G) = αAG

JN−1(G,G) = αGG

JN−1(C,G) = 0

JN−1(T,G) = αTG

JN−1(A,C) = αAC

JN−1(G,C) = 0

JN−1(C,C) = αCC

JN−1(T,C) = αTC

JN−1(A,T) = 0

JN−1(G,T) = αGT
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JN−1(C,T) = αCT

JN−1(T,T) = αTT

q = N− 2

JN−2(A,A) = 0

JN−2(G,A) = min{αGA + αAA, αGT , αGG + αGA, αCA}
JN−2(C,A) = min{αCA + αAA, αCT , αGA, αCC + αCA}
JN−2(T,A) = min{αAA, αTT , αTG + αGA, αTC + αCA}

JN−2(A,G) = min{αAA + αAG, αTG, αAG + αGG, αAC}
JN−2(G,G) = 0

JN−2(C,G) = min{αCA + αAG, αCT + αTG, αGG, αCC}
JN−2(T,G) = min{αAG, αTT + αTG, αTG + αGG, αTC}

JN−2(A,C) = min{αAA + αAC , αTC , αAG, αAC + αCC}
JN−2(G,C) = min{αGA + αAC , αGT + αTC , αGG, αCC}
JN−2(C,C) = 0

JN−2(T,C) = min{αAC , αTT + αTC , αTG, αTC + αCC}

JN−2(A,T) = min{αAA, αTT , αAG + αGT , αAC + αCT}
JN−2(G,T) = min{αGA, αGT + αTT , αGG + αGT , αCT}
JN−2(C,T) = min{αCA, αCT + αTT , αGT , αCC + αCT}
JN−2(T,T) = 0

q = N− 3

JN−3(A,A) = min{αAA, αTT , αTG+αGA, αTC+αCA, αAG+αGT , αAG+αGG+αGA, αAG+

αCA, αAC + αCT , αAC + αGA, αAC + αCC + αCA}
JN−3(G,A) = min{αGA, αGT +αAA, αGT +αTT , αGT +αTC +αCA, αGG +αGT , αGG +

αCA, αCA + αAA, αCT , αCC + αCA}
JN−3(C,A) = min{αCA, αCT+αAA, αCT+αTT , αCT+αTG+αGA, αGA+αAA, αGT , αGG+

αGA, αCC + αCT , αCC + αGA}
JN−3(T,A) = 0
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JN−3(A,G) = min{αAA + αTG, αAA + αAC , αAG, αTT + αTG, αTG + αGG, αTC , αAC +

αCT + αTG, αAC + αGG, αAC + αCC}
JN−3(G,G) = min{αGA+αAA+αAG, αGA+αTG, αGA+αAC , αGT +αAG, αGT +αTT +

αTG, αGT + αTC , αGG, αCA + αAG, αCT + αTG, αCC}
JN−3(C,G) = 0

JN−3(T,G) = min{αAA + αAG, αTG, αAG + αGG, αAC , αTT + αAG, αTT + αTC , αTC +

αCA + αAG, αTC + αGG, αTC + αCC}

JN−3(A,C) = min{αAA + αTC , αAA + αAG, αAC , αTT + αTC , αTG, αTC + αCC , αAG +

αGT + αTC , αAG + αGG, αAG + αCC}
JN−3(G,C) = 0

JN−3(C,C) = min{αCA+αAA+αAC , αCA+αTC , αCA+αAG, αCT +αAC , αCT +αTT +

αTC , αCT + αTG, αGA + αAC , αGT + αTC , αGG, αCC}
JN−3(T,C) = min{αAA + αAC , αTC , αAG, αAC + αCC , αTT + αAC , αTT + αTG, αTG +

αGA + αAC , αTG + αGG, αTG + αCC}

JN−3(A,T) = 0

JN−3(G,T) = min{αGA +αAA, αGA +αTT , αGA +αAC +αCT , αGT , αGG +αGA, αGG +

αCT , αCA, αCT + αTT , αCC + αCT}
JN−3(C,T) = min{αCA+αAA, αCA+αTT , αCA+αAG+αGT , αCT , αGA, αGT+αTT , αGG+

αGT , αCC + αCA, αCC + αGT}
JN−3(T,T) = min{αAA, αTT , αAG+αGT , αAC+αCT , αTG+αGA, αTG+αGG+αGT , αTG+

αCT , αTC + αCA, αTC + αGT , αTC + αCC + αCT}

q = N− 4

JN−4(A,A) = 0

JN−4(G,A) = min{αGA+αAA, αGA+αTT , αGA+αTG+αGA, αGA+αAC +αCT , αGA+

αAC + αGA, αGT , αGG + αGA, αGG + αCT , αCA, αCT + αAA, αCT + αTT , αCT + αTG +

αGA, αCC + αCT , αCC + αGA}
JN−4(C,A) = min{αCA+αAA, αCA+αTT , αCA+αTC +αCA, αCA+αAG+αGT , αCA+

αAG + αCA, αCT , αGA, αGT + αAA, αGT + αTT , αGT + αTC + αCA, αGG + αGT , αGG +

αCA, αCC + αCA, αCC + αGT}
JN−4(T,A) = min{αAA, αTT , αTG+αGA, αTC+αCA, αAG+αGT , αAG+αGG+αGA, αAG+

αCA, αAC+αCT , αAC+αGA, αAC+αCC+αCA, αTG+αGG+αGT , αTG+αGG+αCA, αTG+
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αCT , αTG+αCC+αCA, αTC+αGT , αTC+αGG+αGA, αTC+αCC+αCT , αTC+αCC+αGA}

JN−4(A,G) = min{αAA + αAG, αAA + αTC , αTG, αAG + αGG, αAC , αTT + αAG, αTT +

αTC , αTC+αCA+αAG, αTC+αGG, αTC+αCC , αAG+αGT+αAG, αAG+αGT+αTC , αAG+

αCA + αAG, αAG + αCC}
JN−4(G,G) = 0

JN−4(C,G) = min{αCA + αAA + αTG, αCA + αAA + αAC , αCA + αAG, αCA + αTT +

αTG, αCA+αTC , αCT+αAA+αAG, αCT+αTG, αCT+αAC , αCT+αTT+αAG, αCT+αTT+

αTC , αGA + αAA + αAG, αGA + αTG, αGA + αAC , αGT + αAG, αGT + αTT + αTG, αGT +

αTC , αGG, αCC}
JN−4(T,G) = min{αAA + αTG, αAA + αAC , αAG, αTT + αTG, αTG + αGG, αTC , αAC +

αCT+αTG, αAC+αGG, αAC+αCC , αTT+αAC , αTG+αGA+αTG, αTG+αGA+αAC , αTG+

αCT + αTG, αTG + αCC}

JN−4(A,C) = min{αAA + αAC , αAA + αTG, αTC , αAG, αAC + αCC , αTT + αAC , αTT +

αTG, αTG+αGA+αAC , αTG+αGG, αTG+αCC , αAC+αCT+αAC , αAC+αCT+αTG, αAC+

αGA + αAC , αAC + αGG}
JN−4(G,C) = min{αGA + αAA + αTC , αGA + αAA + αAG, αGA + αAC , αGA + αTT +

αTC , αGA + αTG, αGT + αAA + αAC , αGT + αTC , αGT + αAG, αGT + αTT + αAC , αGT +

αTT + αTG, αGG, αCA + αAA + αAC , αCA + αTC , αCA + αAG, αCT + αAC , αCT + αTT +

αTC , αCT + αTG, αCC}
JN−4(C,C) = 0

JN−4(T,C) = min{αAA + αTC , αAA + αAG, αAC , αTT + αTC , αTG, αTC + αCC , αAG +

αGT+αTC , αAG+αGG, αAG+αCC , αTT+αAG, αTC+αCA+αTC , αTC+αCA+αAG, αTC+

αGT + αTC , αTC + αGG}

JN−4(A,T) = min{αAA, αTT , αAG+αGT , αAC+αCT , αTG+αGA, αTG+αGG+αGT , αTG+

αCT , αTC+αCA, αTC+αGT , αTC+αCC+αCT , αAG+αGG+αGA, αAG+αGG+αCT , αAG+

αCA, αAG+αCC+αCT , αAC+αGA, αAC+αGG+αGT , αAC+αCC+αCA, αAC+αCC+αGT}
JN−4(G,T) = min{αGA, αGT + αAA, αGT + αTT , αGT + αAG + αGT , αGT + αTC +

αCA, αGT + αTC + αGT , αGG + αGT , αGG + αCA, αCA + αAA, αCA + αTT , αCA + αAG +

αGT , αCT , αCC + αCA, αCC + αGT}
JN−4(C,T) = min{αCA, αCT + αAA, αCT + αTT , αCT + αAC + αCT , αCT + αTG +

αGA, αCT +αTG+αCT , αGA+αAA, αGA+αTT , αGA+αAC+αCT , αGT , αGG+αGA, αGG+

95



αCT , αCC + αCT , αCC + αGA}
JN−4(T,T) = 0

q = N− 5

JN−5(A,A) = min{αAA, αTT , αTG+αGA, αTC+αCA, αAG+αGT , αAG+αGG+αGA, αAG+

αCA, αAC+αCT , αAC+αGA, αAC+αCC+αCA, αTG+αGG+αGT , αTG+αGG+αCA, αTG+

αCT , αTG +αCC +αCA, αTC +αGT , αTC +αGG +αGA, αTC +αCC +αCT , αTC +αCC +

αGA, αAG +αGG +αCT , αAG +αCC +αCT , αAG +αCC +αGA, αAC +αGG +αGT , αAC +

αGG + αCA, αAC + αCC + αGT}
JN−5(G,A) = min{αGA, αGT + αAA, αGT + αTT , αGT + αTC + αCA, αGT + αAG +

αGT , αGT + αAG + αCA, αGT + αTC + αGT , αGG + αGT , αGG + αCA, αCA + αAA, αCA +

αTT , αCA+αTC+αCA, αCA+αAG+αGT , αCA+αAG+αCA, αCT , αCC+αCA, αCC+αGT}
JN−5(C,A) = min{αCA, αCT + αAA, αCT + αTT , αCT + αTG + αGA, αCT + αAC +

αCT , αCT+αAC+αGA, αCT+αTG+αCT , αGA+αAA, αGA+αTT , αGA+αTG+αGA, αGA+

αAC + αCT , αGA + αAC + αGA, αGT , αGG + αGA, αGG + αCT , αCC + αCT , αCC + αGA}
JN−5(T,A) = 0

JN−5(A,G) = min{αAA + αTG, αAA + αAC , αAG, αTT + αTG, αTG + αGG, αTC , αAC +

αCT+αTG, αAC+αGG, αAC+αCC , αTT+αAC , αTG+αGA+αTG, αTG+αGA+αAC , αTG+

αCT + αTG, αTG + αCC , αAC + αCT + αAC , αAC + αGA + αTG, αAC + αGA + αAC}
JN−5(G,G) = min{αGA+αAA+αAG, αGA+αAA+αTC , αGA+αTG, αGA+αAC , αGA+

αTT +αAG, αGA +αTT +αTC , αGT +αAA +αTG, αGT +αAA +αAC , αGT +αAG, αGT +

αTT+αTG, αGT+αTC , αGT+αTT+αAC , αGG, αCA+αAA+αTG, αCA+αAA+αAC , αCA+

αAG, αCA + αTT + αTG, αCA + αTC , αCT + αAA + αAG, αCT + αTG, αCT + αAC , αCT +

αTT + αAG, αCT + αTT + αTC , αCC}
JN−5(C,G) = 0

JN−5(T,G) = min{αAA + αAG, αAA + αTC , αTG, αAG + αGG, αAC , αTT + αAG, αTT +

αTC , αTC+αCA+αAG, αTC+αGG, αTC+αCC , αAG+αGT+αAG, αAG+αGT+αTC , αAG+

αCA + αAG, αAG + αCC , αTC + αCA + αTC , αTC + αGT + αAG, αTC + αGT + αTC}

JN−5(A,C) = min{αAA + αTC , αAA + αAG, αAC , αTT + αTC , αTG, αTC + αCC , αAG +

αGT+αTC , αAG+αGG, αAG+αCC , αTT+αAG, αTC+αCA+αTC , αTC+αCA+αAG, αTC+

αGT + αTC , αTC + αGG, αAG + αGT + αAG, αAG + αCA + αTC , αAG + αCA + αAG}
JN−5(G,C) = 0
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JN−5(C,C) = min{αCA+αAA+αAC , αCA+αAA+αTG, αCA+αTC , αCA+αAG, αCA+

αTT +αAC , αCA +αTT +αTG, αCT +αAA +αTC , αCT +αAA +αAG, αCT +αAC , αCT +

αTT +αTC , αCT +αTG, αCT +αTT +αAG, αGA +αAA +αTC , αGA +αAA +αAG, αGA +

αAC , αGA + αTT + αTC , αGA + αTG, αGT + αAA + αAC , αGT + αTC , αGT + αAG, αGT +

αTT + αAC , αGT + αTT + αTG, αGG, αCC}
JN−5(T,C) = min{αAA + αAC , αAA + αTG, αTC , αAG, αAC + αCC , αTT + αAC , αTT +

αTG, αTG+αGA+αAC , αTG+αGG, αTG+αCC , αAC+αCT+αAC , αAC+αCT+αTG, αAC+

αGA + αAC , αAC + αGG, αTG + αGA + αTG, αTG + αCT + αAC , αTG + αCT + αTG}

JN−5(A,T) = 0

JN−5(G,T) = min{αGA+αAA, αGA+αTT , αGA+αAC +αCT , αGA+αTG+αGA, αGA+

αTG + αCT , αGA + αAC + αGA, αGT , αGG + αGA, αGG + αCT , αCA, αCT + αAA, αCT +

αTT , αCT + αAC + αCT , αCT + αTG + αGA, αCT + αTG + αCT , αCC + αCT , αCC + αGA}
JN−5(C,T) = min{αCA+αAA, αCA+αTT , αCA+αAG+αGT , αCA+αTC +αCA, αCA+

αTC+αGT , αCA+αAG+αCA, αCT , αGA, αGT +αAA, αGT +αTT , αGT +αAG+αGT , αGT +

αTC + αCA, αGT + αTC + αGT , αGG + αGT , αGG + αCA, αCC + αCA, αCC + αGT}
JN−5(T,T) = min{αAA, αTT , αAG+αGT , αAC+αCT , αTG+αGA, αTG+αGG+αGT , αTG+

αCT , αTC+αCA, αTC+αGT , αTC+αCC+αCT , αAG+αGG+αGA, αAG+αGG+αCT , αAG+

αCA, αAG +αCC +αCT , αAC +αGA, αAC +αGG +αGT , αAC +αCC +αCA, αAC +αCC +

αGT , αTG +αGG +αCA, αTG +αCC +αCA, αTG +αCC +αGT , αTC +αGG +αGA, αTC +

αGG + αCT , αTC + αCC + αGA}

q = N− 6

JN−6(A,A) = 0

JN−6(G,A) = min{αGA+αAA, αGA+αTT , αGA+αTG+αGA, αGA+αAC +αCT , αGA+

αAC + αGA, αGA + αTG + αCT , αGT , αGG + αGA, αGG + αCT , αCA, αCT + αAA, αCT +

αTT , αCT +αTG +αGA, αCT +αAC +αCT , αCT +αAC +αGA, αCT +αTG +αCT , αCC +

αCT , αCC + αGA}
JN−6(C,A) = min{αCA+αAA, αCA+αTT , αCA+αTC +αCA, αCA+αAG+αGT , αCA+

αAG+αCA, αCA+αTC+αGT , αCT , αGA, αGT +αAA, αGT +αTT , αGT +αTC+αCA, αGT +

αAG+αGT , αGT+αAG+αCA, αGT+αTC+αGT , αGG+αGT , αGG+αCA, αCC+αCA, αCC+

αGT}
JN−6(T,A) = min{αAA, αTT , αTG+αGA, αTC+αCA, αAG+αGT , αAG+αGG+αGA, αAG+

αCA, αAC+αCT , αAC+αGA, αAC+αCC+αCA, αTG+αGG+αGT , αTG+αGG+αCA, αTG+
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αCT , αTG +αCC +αCA, αTC +αGT , αTC +αGG +αGA, αTC +αCC +αCT , αTC +αCC +

αGA, αAG +αGG +αCT , αAG +αCC +αCT , αAG +αCC +αGA, αAC +αGG +αGT , αAC +

αGG + αCA, αAC + αCC + αGT , αTG + αCC + αGT , αTC + αGG + αCT}

JN−6(A,G) = min{αAA + αAG, αAA + αTC , αTG, αAG + αGG, αAC , αTT + αAG, αTT +

αTC , αTC+αCA+αAG, αTC+αGG, αTC+αCC , αAG+αGT+αAG, αAG+αGT+αTC , αAG+

αCA +αAG, αAG +αCC , αTC +αCA +αTC , αTC +αGT +αAG, αTC +αGT +αTC , αAG +

αCA + αTC}
JN−6(G,G) = 0

JN−6(C,G) = min{αCA + αAA + αTG, αCA + αAA + αAC , αCA + αAG, αCA + αTT +

αTG, αCA + αTC , αCA + αTT + αAC , αCT + αAA + αAG, αCT + αAA + αTC , αCT +

αTG, αCT +αAC , αCT +αTT +αAG, αCT +αTT +αTC , αGA +αAA +αAG, αGA +αAA +

αTC , αGA+αTG, αGA+αAC , αGA+αTT+αAG, αGA+αTT+αTC , αGT+αAA+αTG, αGT+

αAA + αAC , αGT + αAG, αGT + αTT + αTG, αGT + αTC , αGT + αTT + αAC , αGG, αCC}
JN−6(T,G) = min{αAA + αTG, αAA + αAC , αAG, αTT + αTG, αTG + αGG, αTC , αAC +

αCT+αTG, αAC+αGG, αAC+αCC , αTT+αAC , αTG+αGA+αTG, αTG+αGA+αAC , αTG+

αCT +αTG, αTG +αCC , αAC +αCT +αAC , αAC +αGA +αTG, αAC +αGA +αAC , αTG +

αCT + αAC}

JN−6(A,C) = min{αAA + αAC , αAA + αTG, αTC , αAG, αAC + αCC , αTT + αAC , αTT +

αTG, αTG+αGA+αAC , αTG+αGG, αTG+αCC , αAC+αCT+αAC , αAC+αCT+αTG, αAC+

αGA +αAC , αAC +αGG, αTG +αGA +αTG, αTG +αCT +αAC , αTG +αCT +αTG, αAC +

αGA + αTG}
JN−6(G,C) = min{αGA + αAA + αTC , αGA + αAA + αAG, αGA + αAC , αGA + αTT +

αTC , αGA+αTG, αGA+αTT+αAG, αGT+αAA+αAC , αGT+αAA+αTG, αGT+αTC , αGT+

αAG, αGT+αTT+αAC , αGT+αTT+αTG, αGG, αCA+αAA+αAC , αCA+αAA+αTG, αCA+

αTC , αCA +αAG, αCA +αTT +αAC , αCA +αTT +αTG, αCT +αAA +αTC , αCT +αAA +

αAG, αCT + αAC , αCT + αTT + αTC , αCT + αTG, αCT + αTT + αAG, αCC}
JN−6(C,C) = 0

JN−6(T,C) = min{αAA + αTC , αAA + αAG, αAC , αTT + αTC , αTG, αTC + αCC , αAG +

αGT+αTC , αAG+αGG, αAG+αCC , αTT+αAG, αTC+αCA+αTC , αTC+αCA+αAG, αTC+

αGT +αTC , αTC +αGG, αAG +αGT +αAG, αAG +αCA +αTC , αAG +αCA +αAG, αTC +

αGT + αAG}
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JN−6(A,T) = min{αAA, αTT , αAG+αGT , αAC+αCT , αTG+αGA, αTG+αGG+αGT , αTG+

αCT , αTC+αCA, αTC+αGT , αTC+αCC+αCT , αAG+αGG+αGA, αAG+αGG+αCT , αAG+

αCA, αAG +αCC +αCT , αAC +αGA, αAC +αGG +αGT , αAC +αCC +αCA, αAC +αCC +

αGT , αTG +αGG +αCA, αTG +αCC +αCA, αTG +αCC +αGT , αTC +αGG +αGA, αTC +

αGG + αCT , αTC + αCC + αGA, αAG + αCC + αGA, αAC + αGG + αCA}
JN−6(G,T) = min{αGA, αGT + αAA, αGT + αTT , αGT + αAG + αGT , αGT + αTC +

αCA, αGT + αTC + αGT , αGT + αAG + αCA, αGG + αGT , αGG + αCA, αCA + αAA, αCA +

αTT , αCA+αAG+αGT , αCA+αTC+αCA, αCA+αTC+αGT , αCA+αAG+αCA, αCT , αCC+

αCA, αCC + αGT}
JN−6(C,T) = min{αCA, αCT + αAA, αCT + αTT , αCT + αAC + αCT , αCT + αTG +

αGA, αCT+αTG+αCT , αCT+αAC+αGA, αGA+αAA, αGA+αTT , αGA+αAC+αCT , αGA+

αTG + αGA, αGA + αTG + αCT , αGA + αAC + αGA, αGT , αGG + αGA, αGG + αCT , αCC +

αCT , αCC + αGA}
JN−6(T,T) = 0

q = N− 7

∀ψ1, ψ2 ∈ {A, T,G,C},

JN−7(ψ1, ψ2) = JN−6(ψ1, ψ2) = JN−6(ψ1, ψ2) = JN−7(ψ1, ψ2). (A.3)

q ≤ N− 7

∀ψ1, ψ2 ∈ {A, T,G,C},

Jq(ψ1, ψ2) = Jq+1(ψ1, ψ2) = Jq+1(ψ1, ψ2) = Jq(ψ1, ψ2). (A.4)

Remark A.1. For q ≥ N − 6, Jq(ψ, x
d
N) = min Γq(ψ, x

d
N) and Jq+1(ψ, x

d
N) =

min Γq+1(ψ, x
d
N), where Γq(ψ, x

d
N) denotes the set from which Jq(ψ, x

d
N) is selected.

By checking every possible pair of (ψ, xdN) ∈ {A, T,G,C}×{A, T,G,C}, we conclude

that

Γq+1(ψ, x
d
N) ⊂ Γq(ψ, x

d
N),

therefore, Jq(ψ, x
d
N) ≤ Jq+1(ψ, x

d
N).
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In addition, for q ≤ N − 7,

Γq(ψ, x
d
N) = Γq+1(ψ, x

d
N),

therefore, Jq(ψ, x
d
N) = Jq+1(ψ, x

d
N), for q ≤ N − 7. This proves Claim 4.1, 4.2 and

4.3.

Remark A.2. The iterative equation (A.4), together with (A.3), prove Claim 4.3

and 4.4.

Remark A.3. For N − q = 0 (mod 2),

Jq(ψ1, ψ1) = 0,∀ψ1 ∈ {A, T,G,C};

For N − q = 1 (mod 2),

Jq(ψ1, ψ1) = 0,∀ψ1 ∈ {A, T,G,C},

since complementary transfer happens naturally without any mutagen cost.

Remark A.4. We can generate at least one optimal path from every cost in Γq(ψ, x
d
N).

For instance, αCT + αAC + αGA, αCT + αTG + αGA ∈ ΓN−6(C, T ), the optimal paths

generate by this cost is listed in Table A.1.

Cost xN−6 xN−5 xN−4 xN−3 xN−2 xN−1 xN

αCT + αAC + αGA C
uCT−−→
αCT

T → A
uAC−−→
αAC

C → G
uGA−−→
αGA

A→ T

αCT + αTG + αGA

C
uCT−−→
αCT

T
uTG−−→
αTG

G
uGA−−→
αGA

A→ T → A→ T

C
uCT−−→
αCT

T
uTG−−→
αTG

G→ C → G
uGA−−→
αGA

A→ T

C
uCT−−→
αCT

T → A→ T
uTG−−→
αTG

G
uGA−−→
αGA

A→ T

C → G→ C
uCT−−→
αCT

T
uTG−−→
αTG

G
uGA−−→
αGA

A→ T

Table A.1: Paths generated by two elements from ΓN−6(C, T ).
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