Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-52

1991-12-01

Representation and Learning of Propositional Knowledge in
Symmetric Connectionist Networks

Gadi Pinkas

The goal of this article is to construct a connectionist inference engine that is capable of
representing and learning nonmotonic knowledge. An extended version of propositional
calculus is developed and is demonstrated to be useful for nonmonotonic reasoning and for
coping with inconsistency that may be a result of noisy, unreliable sources of knowledge.
Formulas of the extended calculus (called penalty logic) are proved to be equivalent in a very
strong sense to symmetric networks (like Hopfield networks and Boltzmann machines), and
efficient algorithms are given for translating back and forth between the two forms of
knowledge representation. The... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Pinkas, Gadi, "Representation and Learning of Propositional Knowledge in Symmetric Connectionist
Networks" Report Number: WUCS-91-52 (1991). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/670

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/670?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/670

Representation and Learning of Propositional Knowledge in Symmetric
Connectionist Networks

Gadi Pinkas

Complete Abstract:

The goal of this article is to construct a connectionist inference engine that is capable of representing
and learning nonmotonic knowledge. An extended version of propositional calculus is developed and is
demonstrated to be useful for nonmonotonic reasoning and for coping with inconsistency that may be a
result of noisy, unreliable sources of knowledge. Formulas of the extended calculus (called penalty logic)
are proved to be equivalent in a very strong sense to symmetric networks (like Hopfield networks and
Boltzmann machines), and efficient algorithms are given for translating back and forth between the two
forms of knowledge representation. The paper presents a fast learning procedure that allows symmetric
networks to learn representations of unknown logic formulas by looking at examples. A connectionist
inference engine is then sketched whose knowledge is either compiled from a symbolic representation or
that is inductively learned from training examples. Finally, the paper shows that penalty logic can be used
as an high-level specification language for connectionist networks, and as a framework into which several
recent systems may be mapped.

https://openscholarship.wustl.edu/cse_research/670?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/670?utm_source=openscholarship.wustl.edu%2Fcse_research%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages

Representation and Learning of Propositional
Knowledge in Symmetric Connectionist Networks

Gadi Pinkas

WUCS-91-52

December, 1991

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Representation and Learning
of Propositional Knowledge in
Symmetric Connectionist
Networks

Gadi Pinkas *
December 12, 1991
WUCs-91-52

Computer Science Dept.,
Campus Box 1045,
‘Washington University,
5t. Louis, MO 63130
E.mail: pinkas@cics.wustl.edu. Tel:(314) 935-7526

Abstract

The goal of this article is to construct a connectionist inference engine that is capable of representing
and learning nonmonotonic knowledge. An extended version of propositional calculus is developed
and is demonstrated to be useful for nonmonotonic reasoning and for coping with inconsistency that
may be a result of noisy, unreliable sources of knowledge. Formulas of the extended calculus (called
penalty logic) are proved to be equivalent in a very strong sense to symmetric networks (like Hopfield
networks and Boltzmann machines), and efficient algorithms are given for translating back and forth
between the two forms of knowledge representation. The paper presents a fast learning procedure
that allows symmetric networks to learn representations of unknown logic formulas by looking at
examples. A connectionist inference engine is then sketched whose knowledge is either compiled
from a symbolic representation or that is inductively learned from training examples. Finally, the
paper shows that penalty logic can be used as an high-level specification language for connectionist
networks, and as a framework into which several recent symbolic systems may be mapped.

*This research was supported by NSF grant 22-1321 57136.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 1

1. Infroduction

Humans seem to be able to reason about the surrounding world from a noisy and incomplete knowledge
and with remarkably high speed. They are astoundingly good at inferring useful and often reliable

information even from knowledge that is self-contradicting and sometimes erroneous.

It has been 2 decade now that Al has realized that the analysis of such reasoning mechanisms is
a major task. As a result, many nonmonotonic systems have been proposed as formal models for this
kind of reasoning. Some well known examples are circumscription [McCarthy 80] and default logic

[Reiter 80].

Research in non-monotonic reasoning has tried to understand the basic mechanisms and the rationale
behind our intuition when dealing with incomplete description of the world. Recent nonmonotonic
systems are quite successful in capturing our intuitions (for examples see [Geffner 89], [Simari, Loui 90]).
Most systems, however, are still plagued with intractable computational complexity, sensitivity to noise,
inability to combine other sources of knowledge (like probabilities, utilities,...) and inflexibility to adjust

themselves to new situations, and to develop personal intuitions.

Connectionist systems may be the missing link. They can supply us with a fast, massively parallel
platform, and their ability to learn may be used to incorporate new data and dynamically change the

knowledge base.

While scientists in traditional, symbolic Al were concentrating on development of powerful knowl-
edge representation systems, connectionists were concentrating on powerful learning and adaptation
mechanisms. Connectionism was criticized for lacking mechanisms like compositionality and sys-
tematicity, which are essential for high-level cognitive tasks and are easy for symbolic approaches
[Fodor, Pylyshyn 88]. We would like to have systems that have sufficient expressive power, that perform
fast (the brain suggests massive parallelism) and that are capable of learning and adjusting. “Clearly,
the ultimate goal for both scientific approaches is to find efficient learning procedures for represen-
tationally powerful systems” [Hinton 90]. This article studies networks that can represent and learn

unrestricted propositional’ rules.

1The approach can be expanded to represent unrestricted predicate logic [Pinkas 91d].

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 2

One big difference between connectionist networks and symbolic knowledge representations is that
symbolic systems need an interpreter to process the information expressed in the representation, and
to reason with it. Connectionist networks have no such interpreter. The interpreter and the control
mechanism should be included in the knowledge that is being represented. We strive therefore to find a
connectionist representation that is capable of representing the information, as well as the procedural

knowledge that is needed for control.

Among the different connectionist models, I choose to consider those with a symmetric matrix of
weights. This family of models includes Hopfield networks [Hopfield 82a], [Hopfield 84b], Boltzmann
machines [Hinton, Sejnowski 86), harmony theory {Smolensky 86], mean field theory [Hinton 89], and

other variations. The reasons for using symmeiric connectionist networks (SCNs) are the following:

1. symmetric networks can be characterized by energy functions which make it easier to specify the

networks’ behavior [Feldman 85];

2. symmetric networks were used successfully to express and solve (approximate) “hard” problems

[Hopfield, Tank 85];

3. symmetric networks are capable of representing a large set of asymmetric networks [Pinkas 91e];2
therefore they are quite powerful, and we will not lose expressive power if we restrict ourselves to

the symmetric case.®

Ideally, we would like a wide range of logical formalisms to be representable in connectionist net-
works; however, we will be satisfied even if only some but general nonmonotonic frameworks will be
represented. Also, it would be beneficial if we had a formal, declarative language that is capable of
describing the knowledge encapsulated in a network. Such high-level, declarative language may then be
used for specification and “programming” of connectionist networks. In the spirit of implementational
connectionism, such language may be used as an intermediate level of abstraction between high-level

cognitive processes and their low-level connectionist implementation.

2Tn fact, every non-oscillating network of binary threshold units is representable in SCNs.
3Zometimes an asymmetric form of a symmetric network will perform better; therefore, for efficiency, we may consider
not to restrict ourselves to the symmetric case.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 3

To sumimarize, my long term goal is to have an inference mechanism that 1) is highly expressive
and yet capable of learning and adjusting; 2) is capable of nonmonotonic reasoning and of coping with
inconsistent and noisy knowledge; 3) is fast on the average and capable of intelligent guessing when
facing intractable problems (trades time with accuracy); 4) is capable of representing both data and

control information; 5) is useful as a framework for the mapping of many symbolic systems.

My purpose in this article is to show that 1) nonmonotonic knowledge can be captured naturally
in SCNs; 2) knowledge that is encapsulated in any SCN can be described by an extended version of
propositional logic; 3) SCNs can learn representations of unknown formulas by looking at examples of
truth assignments that satisfy the formulas; and finally, 4) SCNs can used as inference mechanisms that
are capable of capturing both the information embedded in the logic formulas as well as the procedural

knowledge used for control.

The paper is organized in the following way: section 2 presents penalty logic, its semantics and its
proof-theory. The section demonstrates the usefulness of the new logic for nonmonotonic reasoning.
In section 3, symmetric connectionist networks are introduced and the energy paradigm is reviewed.
Section 4 defines equivalence of forms of knowledge representation and proves a strong equivalence
between penalty logic formulas and SCNs. Section 5 discusses a learning algorithm that enables SCNs
to learn representations of unknown propositional formulas inductively. An inference engine is sketched

in section 6. Section 7 discusses related work, and section 8 concludes.
2. Penalty Logic

T'll extend now propositional calculus so that it will be useful for nonmonotonic reasoning and for coping

with inconsistency. Later, this calculus will be mapped into SCNs.

The extended calculus is capable of expressing strength of belief, reliability of sources of knowl-
edge, etc., by adding a real positive number (penalty) to every belief. This penalty may be assigned
a variety of interpretations, for example, the numbers may represent “certainties” or “likelihoods”
as in [Shortliffe 76], priorities as in [Brewka 89],[Lifschitz 85] or maximal entropy constraints as in

[Goldszmidt, et al. 90]. When the knowledge sources are unreliable, a penalty may represent a measure

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 4

of reliability [Rescher, Manor 70]. Note that some of these systems compute the penalties from less
explicit information, while other systems let the user specify the penalties explicitly. I do not insist on
a particular use or interpretation of the penalties, since the intention is to develop a general framework

into which many logicist systems could be reduced (possibly with a variety of interpretations).

2.1. Extending propositional calculus

DEFINITION 2.1 A penally logic well formed formuls (PLOFF) 1 is a finite set of pairs. Each pair
s composed of a real positive number, called penally, and a standard propositional formula, called
assumption (or belief); ie., ¥ = {< p;, ; >| ;s € RY, p; is a WEFF, i = L..n}.

The set of the beliefs that are in ¥ (denoted by Uy) is Uy = {p; |< pi, ; >€ ¥},

ExaMpLE 2.1 The Nixon diamond can be stated as:

1000 N—R Nixon is a republican

1000 N—@} Nixon is also a quaker

10 R—=-P Republicans tend to be not pacifist
i0 Q—P Quakers tend to be pacifist

3000 N The person we reason about is Nixon.

An iHu%a.tion of the example is shown in figure I.

The set of the beliefs in the example is inconsistent; however, the penalties in this example reflect
the strength with which we believe each proposition. High penalty is given to strict logic rules (facts),
like the one that states that Nixon is a republican. We cannot allow strict facts to be defeated. The last
fact (V) states that Nixon is the one we reason about. This fact receives the highest penalty of all since
it is considered as evidence, The evidence is not usually pari of our knowledge base and we would like to
“jump” to conclusions once it is given. The evidence in this case is considered a temporary (corrigible)
but very certain (infallible). Lower penalties are given to “defeasible” rules (“tend to be” rules), like the
one that states that republicans tend to be not pacifist. When we know that somebody is a republican,

we tend fo believe that the person is not pacifist (by default); however, this “jumping” to conclusion

REPRESENTATION AND LEARNING OF NONMONOTONIG KNOWLEDGE - .- 5

' Figure"l: An illustration of the Nixon diamond as an inheritance ne;fwork: nodes represent atomic
propositions; the numbers are the penalties. ’ i

is blocked, if we know that the person is an exception to the rule. For example, we wouldn’t like to
conclude that a quaker is pacifist, if the person is also a republican, or if it was explicitly mentioned
that the person is not pacifist. Clearly, we would like to conclude that Nixon is both a republican (R)
and a quaker (Q); however, we would not like to conclude anything about the pacifism of Nixon. We

don’t have adequate reason either to believe P nor —P; therefore P is considered ambiguous.

If we would like to express the belief that religious ideas are stronger than polifical affiliations in
influencing one’s pacifism, then we may increase the penalty for Q—P to 15; leaving the penalty for

R—~—P unchanged (10).

EXAMPLE 2.2

1000 N—R Nixon is a Republican

1000 N—@Q Nixon is also a Quaker

10 E—-P Republican tend to be not pacifist
15 Q@Q—P Quakers tend to be pacifist

3000 N The person we reason about is Nixon.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 6

In the revised set of assumptions, we have two competing arguments. One argument supports the
pacifism of Nixon while the other supports its negation. The pacifism of Nixon is not ambiguous in
this case, since the argument that supporis P wins {the winning argument is stronger and therefore

manages to defeat the disagreeing argument [Loui 87]).

2.2. Model-theory

There are many ways to interpret the penalties and the assumptions in our formalism. I shall give one

such interpretation that is convenient, useful and general.

Given a knowledge base ¥y = {< pi,; >}, the PLOFF 3 determines a ranking over the set of
all possible models (truth assignments of n atomic propositions). This ranking reflects “normality” or
“goodness” we tend to associate with possible models of the world (see [Shoham 88]). By specifying ¥
we mean informally that models that satisfy many “important” assumptions are “better” than models
that satisfy fewer or less important assumptions. Every two models may always be compared by looking
at the assumptions (in ¢) that are violated. Two models that violate the same set of assumptions are
considered to be “equally good”. Even if the models violate different sets of assumptions but the sum
of the penalties of both sets is the same, then the two models are “equally good”. A model is more
“normal” (or “better”) than another model if the sum of the penalties of the violated assumptions of

the first is less than the sum of the penalties violated by the second.

This interpretation of the penalties induces a ranking function that assigns a real value (rank) to

all the possible models. The ranking function that is induced is called the violation rank of t:

DeEFINITION 2.2 The violation-rank of a PLOFF 4 is the function (Vranky) that assigns a real-valued
rank to each of the truth assignments. The Vranky for a truth assignment ¥ is computed by summing

the penalties for the assumptions of 1 that are violated by the assignment; i.e., Vranky(Z) =3 Egp, Pi-

DEFINITION 2.3 The models that minimize the Vranky function are called the preferred models of ¥;

ie., {Z| ming{Vrank¢(g}j} = Vranky(Z)}. The set of all preferred models is denoted by I'y.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 7

DEFINITION 2.4 Let ¢, ¥ be PLOFFs, a PLOFF ¢ semantically entails ¢ (¢|=¢p) iff all the preferred

models of 1 are also the preferred models of ; i.e., Ty, C Tp.

Note that a sentence 1 therefore entails ¢ iff any model that minimizes the violation-rank of 4, also

minimizes the violation-rank of 4.

In the Nixon example, the preferred models are only two: (NRQP) and (N RQ-P). Examples of some
valid conclusions are therefore N, R A @, etc. (since these conclusions are satisfied by all the preferred
models). The pacifism of Nixon is ambiguous, since P holds in one preferred model while =P holds in

the other.

2.3. Merging PLOFF's, evidence and background knowledge

The operator merge (U) in the meta language, plays the role of A (AND) in classic propositional logic.

It allows us to combine two PLOFFs simply by merging them.

DEFINITION 2.5 The merge operation (CJ) is defined: ¢1G¢2 = (1 — P2) U (2 — 1) U{< 2p;, p; >|

< pisip; >E PN}

The reader may check that Vrankyuy = Vranky + Vranky (when ¢ N¢' = ¢).

The merge operation allows us an incremental update of the knowledge. Combining new rules with
existing ones is simply done by adding the appropriate Vrank functions. Later, after the equivalence of
networks and logic formulas is established, we’ll see that this property allows to add or delete a PLOFF
from an existing network only by adding or deleting the relevant energy terms. There is no need to

re-compute the new network all over again when some updates occur.

Nonmonotonic systems “jump” to conclusions based on evidence given, and later may retract those
conclusions based on new evidence. It is therefore convenient to divide the knowledge from which we
want to reason into “background” knowledge and “evidence” [Gefiner 89}, [Poole 85]. The background
knowledge is relatively fixed, and there should be an easy way to combine evidence with it. In our
formalism, combining the evidence is simply done by merging the evidence and the background or

adding together the two ranking functions,

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 8

DEFINITION 2.6 Let 3,e,¢ be PLOFFs. Evidence e entails ¢ with respect to a background knowledge

¥
¥ (el=p), iff 1,LrL*Je}=<p. ‘The consequence reletion induced by 1 is the set of all pairs < e, ¢ > such that
o

el=gp.

One special case of this definition is when the evidence is strict; i.e., its validity is certain. This
special case is very useful, and indeed, in most reasoning systems the evidence is never defeated, and the
agent draws conclusions based on the absolute validity of the evidence {e.g., [Geffner 89]). To represent
a strict formula in penalty logic, the set 2/, should be consistent and the penalties that are assigned to
the assumptions should be higher than any other combination of background beliefs (the penalties are

practically infinite).

DEFINITION 2.7 Strict evidence is a PLOFF e = {< 00, ¢; >} such that the set &, = {e;} is consistent

and oo represents a large penalty (larger than any combination of background beliefs).

ExAMPLE 2.3 In the Nixon diamond the following beliefs are considered background:

1000 N—R Nixon is a Republican.

1000 N—Q Nixon is also a Quaker.

10 R——P Republicans tend to be not pacifist.
10 Q—P Quakers tend to be pacifist,

The fact < 3000, N > is strict evidence that triggers for example the conclusion of @ A E. Another

example of strict evidence is < 3000, @ > that triggers the conclusion —N.

The nonmonotonicity of penalty logic is reflected by the property that sometimes conclusions need
to be retracted when new evidence is added. In the example, when there is an evidence that some one
is a Quaker the conclusion is that he or she is also pacifist. If in addition, we add the evidence that

Nixon is that someone, we need to retract the conclusion.

Loyal to the goal of being as general as possible, I'll not restrict the evidence to being strict. Such

generalization is not mere formality, and has its direct uses. Defeasible evidence is a phenomenon

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 9

encountered in many practical applications. For example, when the evidence is obtained via sensory
devices that are unreliable, redundant and noisy, our agent may “not believe its own eyes” if the evidence

contradicts with some highly reliable facts of the background knowledge.

As with evidence, conclusions need not be strict. Most symbolic systems treat a conclusion as
a strict proposition that either follows from the background knowledge, or its negation follows, or is
ambiguous. Penaléy logic allows conclusions to be stated as PLOFFs (with penalties}. Thus, such
conclusions may arrive for example as queries via noisy channels. The query we wish to prove may

therefore be redundant and unreliable exactly as the evidence and the background knowledge.

2.4. Proof-theory

A sound and complete proof-theory can be shown for penalty logic. This proof-theory is based solely

on syntactic considerations, and gives a clarifying look at the reasoning process in penalty logic.

Instead of ranking the models and using the “best” models for the reasoning process, we can rank
consistent-subsets of the assumptions of 1, and use the “best” (preferred) consistent-subsets to perform

deduction. A conclusion is made in the proof-theory iff all the preferred consistent-subsets entail it.

DErFmITION 2.8 A set T is called a theory of a PLOFF 9 iff T is a consistent subset of the assumptions

in t; L.e., the set of T C U is 2 subset of the assumptions in ¥ and there is a model that satisfy T.

DEFINITION 2.9 The penalty-funciion of a theory T of i is the function obtained by summing the

penalties of the assumptions in 4 that are not included in T i.e., penaltyy(T) = E(p_ e(tty—T) Pi-

A ranking is therefore induced by 9 over the set of theories of 4. This ranking is computed by summing

the penalties of the missing assumptions.

DEFINITION 2.10 A preferred theory of 4 is a theory T that minimizes the penalty function of +; i.e.,

The set of the preferred theories of 1 is Ty = {T'| penaltyy(T) = ming{penaltyy(S) | S is a theory of
¥}}.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 10

DEFINITION 2.11 Let 1, be PLOFFs, let Ty = {T;} the set of all preferred theories of 1, and let
Tip = {T{} the set of all preferred theories of ¢.

We say the ¢ entails * ¢ (denoted by yl-¢) iff all the preferred theories 7; of ¢ entail (in the classical
sense) the disjunction of all the preferred theories of ¢; i.e.,

st \ e V1
T"ET¢ T;ETw

As a special case, consider the case where the conclusion ¢ is strict (¢ is a classical propositional formula
without penalties). A PLOFF 1 entails ¢ iff every preferred theory of ¢ entails ¢ in the classical sense

of entaillment.

In the Nixon example, the set of assumptions is inconsistent (leads to a contradiction); however,
there are 2° —2 non-empty consistent subsets where at least one belief of 1 is missing. If we rank each of
the consistent subsets by summing the penalties of the missing beliefs, we get that the preferred theories
are T} = {N,N—Q,N—R,Q—P} and T3 = {N,N—=Q, N—R,R——-P}. These preferred theories are

each ranked 10 since only one belief in 4 (of strength 10) is missing in each such theory.

Each of the two preferred theories entails the obvious conclusions (like N, @ A R), but neither P nor
~P can be concluded, since the two preferred theories do not agree on either. The reasoning process can
be intuitively understood as a competition among consistent subsets. The subsets that win are those

theories with minimal penalty. A conclusion is entailed only if all the winners conclude it independently.
We'll need the next two lemmas to show that the proof-theory is scund and complete.
Lemma 1 Let T'C Uy be a consisient subset of the assumptions in 1.

The subset T is mazimal-consistent® in ¢ iff every model that satisfies T has a violation-rank equal to

the penally of T; i.e., T is a mazimal-consistent subset iff (VZ) if ZET then penaltyy(T) = Vranky ().

Proof: H T is a maximal-consistent subset of 4, the assumptions in ¥ that are left out of T are also the

assumptions that are violated by any model # that satisfies T {otherwise such assumptions are consistent with

#Note that the deductive closure of preferred theories roughly resemble extensions (like in [Reiter 80]). The definition
of entailment in penalty logic resembles therefore entailment by intersection of all extensions.

5 A subset T is maximal-consistent if no other assumption of 1 can be added to T while still preserving the consistency
of the set.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 11

T and therefore T is not maximal), Also, every assumption that is violated by a model T that satisfies T
cannot be in T, Therefore, if T' is 2 maximal-consistent subset then for every model Z of T, the set of missing
assumptions in T is equal to the set of assumptions violated by Z. Therefore penaltyy (T) = Vranky(%).
Assume that every model £ that satisfies T has Vranky(Z) = penaltyy(T). If T is not maximal-consistent
then there is an assumption in) that can be included into T" and have 2 model 7 satisfying both T and the new
assumption. The violation rank of Z must be lower than the penalty of T since the set of asgumption not included
in T subsumes the set of assumptions violated by ¥ and contains at least one assumption not vioclated by &;i.e.,

Vranke(Z) < penaltyy (T). This is a contradiction with the assumption that penaltyy (T} = Vranky(%).

0

The reader may observe that any preferred-theory of ¢ is a maximal-consistent subset of Iy and
therefore the penalty of a preferred theory is equal to the violation rank of its satisfying models. This
allows us to use a proof-theoretic ranking function (penaltyy) instead of the model-theoretic function

(Vranky).

The next lemma establishes the relationship between preferred models and preferred theories.

Lemma 2 A model ¥ s a preferred model of @ PLOFF 1 iff the model T salisfies some preferred theory

of .

Proof: If % is a preferred model of ¢ then it minimizes Vranky. Let T be the set composed of 21l assumptions
in ¢ that are satisfied by #. Since the assumptions that are violated by T are exactly those that are not
included in T, we deduce that Vranky(Z) = penaliyy(T). But if T is not a preferred theory then there exists
a preferred theory TV such that penaliyy (1) < penaltyy(T). By lemma 1, the models § that satisfy 7/ have
Vranky(#) = penaltyy(T'), and we conclude that Vranky(#) = penaltyy(T) < penaliy,(T) = Vranky(£).
This is a contradiction to the minimality of Vrank(Z).

If # is a model of 2 preferred theory T of 4 then T minimizes the penalty function. By lemma 1, Vranky(E) =
penaliyy (T). I ¥ is not a preferred model of ¥ then there must be a preferred model § such that Vranky(§) <
Vranky(F). Let 7' the set of all assumptions of ¢ satisfied by § The set T’ has penaliyy(T'} = Vranky(d),

since the set of the assumptions violated by § is equal to the set of assumptions not included in T’. Therefore,

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 12

penaltyy (T') = Vranky(§) < Vranky (&) = penaltyy(T), in contradiction to the minimality of penalty, (7).

Theorem 1 The proof procedure is sound and complete; i.c., = iff Y.

Proof: K yj=p then every preferred model of ¢ is also a preferred model of ¢. Based on lemma 2, every
preferred model of 4 satisfies some preferred theory T of ¢ and also satisfies some preferred theory of ¢.
Therefore, every preferred model of ¢ satisfies the disjunction of the preferred theories of . From lemma 2
every model that satisfies a preferred theory T of ¥ is also a preferred model of 4 and therefore satisfies the
disjunction of the preferred theories of ¢; i.e., T+ VTJ,_ €Ty T%. We conclude therefor that Y.

If Pk then every model that satisfies a preferred theory T of 1 also satisfies a preferred theory TV of .
From lemma 2, a model that satisfies T' is also a preferred model of ¢ and therefore, every model that satisfies
T is also a preferred model of . Based or lemma 2 every preferred model T of 4 satisfies some preferred theory

of ¢ and therefore is a preferred model of ¢ (F'y € I'p}). We therefore conclude that 1=,

[

This sound and complete proof mechanism of competing theories is useful for both dealing with
inconsistency in the knowledge base and for defeasible reasoning. For example, when we detect incon-
sistency, we usually want to adopt a theory with maximum cardinality (we assurne that only a minority
of the observations are erroneous). Indeed, in penalty logic, when all the penalties are one, the theories
that win have maximal cardinality and only a minority of the assumptions is defeated. Thus, minimum
penalty means maximum cardinality. Penalty logic is therefore a generalization of the maximal cardi-
nality principle which is useful when coping with noisy and inconsistent sets of beliefs. For defeasible
reasoning, the notion of conflicting theories can be used to decide between conflicting sets of arguments.
Intuitively, a set of arguments A; defeats a conflicting set of arguments A, if A; is supported by a
“better” theory than all those that support A; (see [Loui 87] and [Simari, Loui 80] for a discussion on

argument systems).

ExXAMPLE 2.4 Two levels of blocking (from [Brewka 89]):

1 meeting T usually go to the Monday meeting.

10 sick —+(— meeting) If Pm sick I usually don’t go to the meeting.

100 cold-only — meeting If I have only a cold then I tend go to the meeting,.
1000 cold-only — sick If I have a cold it means I’'m sick.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 13

Without any additional evidence, all the assumptions are consistent, and we can infer that “meeting” is
true (from the first assumption). However, given the evidence that “sick” is true, we prefer theories that
falsify “meeting” and “cold-only”, since the second assumption has greater penalty than the competing
first assumption (the only theory that wins does not include the first assumption). If we include the
evidence “cold-only” then the theory that previously won loses now, and the new winner is the theory
that does not include the second assumption. As a result, the conclusion “meeting” is drawn despite

the fact that “sick™ is also concluded.

3. Energy functions

This section reviews® symmetric connectionist models and the energy minimization paradigm. Later,

we’ll show the relationship between penalty logic and the energy paradigms.

Searching for a global minima for quadratic functions is the essence of symmetric connectionist
models used for parallel constraint satisfaction. Examples for such models are Hopfield networks,
Boltzmann machines, harmony theory and mean-field theory. These models are characterized by a
recurrent network architecture, & symmetric matrix of weights (with zero diagonal) and a quadratic
energy function that should be minimized. Each unit asynchronously computes the gradient of the
function and adjusts its activation value, so that energy decreases gradually. The network eventually
reaches equilibrium, settling on either a local or a global minimum. [Hopfield 84b] demonstrated that
certain complex optimization problems can be stated as constraints that are expressed in quadratic

energy functions and be approximated using these kind of networks.

There is a direct mapping between these networks and the quadratic energy functions they mini-
mize. Every quadratic energy function can be translated into a corresponding network and vice versa.
Weighted arcs (i.e., pairwise connections} in the network correspond to weighted terms of two variables
in the energy function (with opposite sign). Thresholds of units in the network correspond to single-
variable terms in the function. Most of the time we will not distinguish between the function and the

network that minimizes it. An example of a network and its energy function is given in figure 2.

8The figures are taken from [Pinkas 901},

REPRESENTATION AND LEARNING OF NONMONOTONIC KNOWLEDGE ' 14

ay

Figure 2: A symmetric network that represents the function E = —2NT — 25T — 2WT + 5T+ NS+
RN-WN4+W.

3.1. High-order energy functions

To represent arbitrary logic formulas, a network will need the power of either high-order connections or
hidden units. This section reviews high-order networks, and shows how to convert them into standard

(pairwise) networks by introducing new hidden units.

High-order connectionist networks have sigma-pi units [Rumelhart et al. 86] with multiplicative con-
nections. Symmetric networks can be easily extended to handle high-order connections. Naturally, such

networks may be viewed as minimizing high-order energy functions [Sejnowski 86).

A k-order energy function is a function E : {0, 1}* — R that can be expressed as sum of products,

with product terms of up to k variables. A k-order energy function is denoted by: E:(zy,...,z0) =

1
z TSNP CORLED. €N o E Wiy, a1 iy~ Kig g T+ E w; X
15{1(!’-:{---(5‘;:‘31}. 1$1.1<---<8-k...1_sﬂ ISign

Quadratic energy functions (or second-order functions) are special cases of the high-order case:

E w;_,-X,-Xj - ZwiX,'.

1<i<i<n i<n

REPRESENTATION AND LEARNING OF NONMONOTONIC KNOWLEDGE 15

In the high-order model each node is assigned a sigma-pi unit that updates its activation value using:
dE
net; = '&'X__' - Z b 7 TR S 11]:[Xl‘.j
t i 1<F <k i

a=>F (net.-)

where a; = F(net;) is the standard update rule that is unique to the model we wish to extend. In
the Hopfield model for example, F(net;) = 1 if net; > 0, and F(net;) = 0 otherwise. A high-order
network (see figure 3) is a hyper graph, where k-order terms are translated into hyper-arcs connecting
k nodes. The arcs are not directed (the weight is the same for every node that is part of the arc) and
the weight of an arc is determined by the weight of the corresponding term in the energy function (with

an opposite sign).

Figure 3: A cubic network that represents E == ~NSW + N S+ RN — WN 4+ W using sigma-pi units
and a cubic hyper-arc (it is equivalent to the network of figure 1 without the hidden unit T).

As in the quadratic case, there is a translation back and forth between k-order energy functions and
symmetric high-order networks with k-order sigma-pi units. We can arbitrarily divide the variables of an
energy function into two sets: visible variables and hidden variables. The hidden variables correspond

to the hidden units of the network, and the visible variables correspond to the visible units. An emergy

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 16

function with both hidden and visible variables is denoted usually as a function E(Z,7), where Z

represents the visible variables and f represents the hidden variables.

An assignment of zeros and ones to the visible variables is called a visible state. The values of the

visible units after an equilibrium was reached, are considered as the “answer” of the network.

Later in this article, I’Il interpret visible states as truth assignments: the visible variables are viewed

as atomic propositions: “1” is interpreted as “true” and “Q” is interpreted as “false”.
prop p P

We call the set of minimizing vectors projected onto the visible variables, “the visible solutions” of
the minimization problem; i.e., {Z | (3) E(%,%) = ming z{E(¥, 2)}}. Models like Boltzmann machines,
harmony theory, mean field theory, as well as many other variations, may be viewed as searching for a
global minimum” of the corresponding energy functions. Local minima or spuriéus memories may exist.
In general however, local minima are considered to be undesirable phenomena, and cause a degradation
in the performance of the network. This article will ignore local minima that are not global, and usually

they will not represent any meaningful knowledge.

DEFINITION 3.1 Let E be a symmetric network with energy function E(&,7), where £ designates the hid-

den variables. The characteristic function of the network is the function: Erankg(F) = ming{E(.i", N}

The Erankg function defines the energy of all visible states. The energy of a visible state is the energy
level obtained when the visible units are clamped with the state’s values, and the hidden units are free
to settle so that a minimum is reached. This Frankp function characterizes the network’s behavior:
it is independent of the hidden units and it is also independent of the exact topology of the original
network. There may be many possible networks with the same characteristic function. The next section

uses the characteristic function to show equivalence between different networks.

3.2. The equivalence between high-order networks and low-order networks

The following subsection is a review of results reported in [Pinkas 90b].

TSeveral global minima may exist, all with the same energy level.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 17

We call two energy functions sirongly equivalent, if their corresponding characteristic (Erank) fune-
tions are equal up to a constant difference; i.e: E; & Ey iff Erankg, = Erankg, +c. Networks that are
strongly equivalent not only have the same set of global minima, but also have a very similar energy
surface and induce the same ordering on the visible states; i.e., if 5; and s are visible states then “same

ordering” means that Ey(s;) < E;(s2) iff Ez(s1) < E3(s2).

I’ll show now an algorithm fo convert any high-order network into a strongly equivalent low-order one
with additional hidden units. In addition, any energy function with hidden variables can be converted
into a strongly equivalent, (possibly) higher-order network by eliminating some or all of the hidden
units. These algorithms allow us to trade the computational power of sigma-pi units for additional
simple units and vice versa. As a result we’ll see that the expressive power of high-order networks is

the same as that of low-order networks with hidden units.

Readers who are not interested in the technical details of the constructions may skip now to the
next subsection. They may keep in mind only that the constructions for both directions are possible

and efficient.

Theorem 2 o Any k-order term (w]:'ﬂ-:=1 2;), with NEGATIVE coefficient w, can be replaced by the
guadratic lerms: Ele 2wX;T ~ (2k — 1)wT generatling a strongly equivalent energy function with

one additional hidden variable T.

s Any k-order term (w Hle z;), with POSITIVE coefficient w, can be replaced by the termas:
w2} 2i~(T5) 20X T)+ 2w X, T+(2k—3)wT, generating a strongly equivalent energy function

of order k — 1 with one edditional hidden variable T'.
Proof appears in [Pinkas 90a).

ExaMPLE 3.1 The following is a 4-order energy function with a 4-order term XY ZU. It can be

converted into a quadratic energy function using two additional hidden variables T and TV,

XY+ XYZU w-XY+XYZ—-2XT-2YT-2ZT+2UT+5T
o —XY + XY -2XT' - 2YT' + 22T 4+ 3T - 2XT - 2YT - 22T + 2UT + 5T
= —2XT' - 2YT' +2ZT' + 37" —2XT —2YT - 22T 4 2UT + 5T

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 18

The symmetric transformation, from low-order into high-order functions by eliminating any subset

of the variables, is also possible (of course we are interesting in eliminating only hidden variables).
To eliminate T, bring the energy function to the form: E = E +oldterm, where oldterm = (zle wy Hi{_ﬂ X;)T.

Consider all assignments S for the variables { X = z;, - --2;,) in oldterm (not including T, such that

k 15
Bs = Ej:l wj H£J=1 x5, < 0.

“Xi,” if S(Xi;) =1
“N—-Xg,) fS(Xi;)=0
the variable is assigned 1 or 0 in 5.

Let L'}; = { it is the expression “X;” or “(1 — X;)” depending whether

The expression H,If=1 L’,'s therefore determines the state S, and the expression

1
newterm = Z Bs H Lf';.
S such that 8 < 0 §=1

represents the disjunction of all the states that cause a reduction in the total energy.

The new function E' + newterm, is therefore equivalent to £ + oldterm and does not include 7.

EXAMPLE 3.2 Let T be the hidden variable to be eliminated, then:
AB+TAC—-TA+2TB~T=AB+T(AC— A+2B-1)

The following assignments for (4, B,C) cause § to be less then zero:

Bop,e =1
Boo1y = -1
Baen =2
B =1

The new term equals:
—(1-4)1-B)(1-C)—(1—A)(1—-B)C—2A(1—-B}{(1-C)—A(1—-B)C = —ABC+AB+ AC—A+4+B-1

Therefore:

AB+TAC ~TA+2TB—~Twx ~ABCH+2AB+ AC—~ A+ B.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 19

4. The equivalence between penalty-logic and energy minimization

‘This section defines equivalence between different forms of knowledge representation, and use these

definitions to show the relationships between penalty logic and SCNs.

4.1. Reasoning with ranking functions

A ranking function over a set of models is a function that assigns a real value (rank) to every model in
the set. The ranking of the models may be considered as a grade for the “normality” or the “goodness”

of the models.

As we saw in previous subsection, every SCN F is characterized by the ranking function Erenkg.
Similarly, every ranking function is equal to some high-order energy function and therefore characterizes
some SCN.B A search performed by the SCN for a global minimum may be viewed thus as a search for

a model that minimizes the ranking function.

Penalty logic formulas, classical logic WFFs, and SCNs may be interpreted as representations of
ranking functions. It may be useful therefore to define our reasoning mechanism independently of the

knowledge representation form:

DEFINITION 4.1 Let W = {0,1}" be the set of models defined over a set of n atomic propositions.

A ranking function k : W — R is a function that maps models into reals.

A ranking function k is strict iff the domain of k is {0, co} (where co represents a large positive number).
A preferred model T of a ranking function k is a model that minimizes k; i.e., k(&) = ming{k(ﬂ')}.

The set of preferred models of & is denoted T'g.

DerFmNiTION 4.2 Let f, k, ¢ ranking functions.
f is entailed from &k (kl=f) iff Ty C T'y.
E
f is entailed from the background knowledge & using the evidence e (el=f) iff k + e|={.

¥
The consequence relation induced by k is the set of all pairs {< e, f >| el=f}.

3There is no guarantee that the the size of the network will be polynomial in n (the number of visible variables).

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 20

The reasoning mechanism defined for penalty logic in section 2 is consistent with the above definitions

if Vranky is taken as the ranking function.

4.2. Calculi to describe ranking functions

Our next step is to describe symbolically the knowledge that is encapsulated in a ranking function.
This subsection defines several languages for describing of ranking function and shows their equivalence.
Sentences of such languages are interpreted as ranking functions, and {ransformations are allowed from

one knowledge representation into another if some basic properties are preserved.

The following definitions establish the relationship between a form of knowledge representation and

its meaning.

DEFINITION 4.3 A calculus is a triple < £,m(), M >, where £ is 2 language, M is a set of possible
models and m : £ — {k | k is a ranking function } is a function that returns for each sentence of the
language £, a ranking function. m(s) is called the inlerpretation of the sentence s.

Let 5,¢',e,k € £; a model is a preferred model of s (£l=5) iff ¥ is a preferred model of the ranking
function m(s).

A sentence s entails sentence s’ (sj=s') if the ranking function m(s) entails the ranking function m(s’).
Similarly, a combination of a background sentence with an evidence sentence is interpreted as the
addition of their corresponding ranking functions; i.e., e;_-s iff (m(e) + m(k))l=m(s).

E
The consequence relation of k is the set of all pairs {< e,s >| el=s}.

Both classic predicate logic and propositional logic can be viewed as calculi whose languages describe

strict ranking functions.

EXAMPLE 4.1 Propositional caleulus is < £,m(), {0,1}" >, where L is the language of propositional
well formed formulae (WFFs) and m(s) outputs the function (co(1 — H,(£))), given a formula s (o0

represents a large positive real). H,(X) is the characteristic fanction of the WFFs and is recursively

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 21

defined as:
X; if s = X; is an atomic proposition
2 1— Hy(X) if 5 = g’
H(X) = H, (%) x H,,(X) if =81 Asg

H, (X)) + H, (X) - H, (X) x H(X) ifs=51Vs2

The reader may easily observe, that any propositional WFF describes a strict ranking function that

returns 0 for truth assignments that satisfy the WFF, and oo for assignments that do not satisfy it.
EXAMPLE 4.2 Penalty logic is a calculus < £p, m, {0,1}" > such that m(¢)) = Vranky.

DEFINITION 4.4 Let s € £; and s € £, be sentences of two (possibly different) calculi < £1,m, M >

and < £',m', M >; we define three kinds of equivalence relations between them:

1. s is strongly equivalent to s’ (s#s') iff their corresponding ranking functions are equal, up to 2
constant difference; i.e., m(s) = m/(s’) + ¢. We call this equivalence “magnitude preserving” or

s-equivalence.

2. s is p-equivalent to & (s&s') iff their associated ranking functions induce the same ordering over
the set of models; i.e., VE, 7, m(s)(Z) < m(s)(#) iff m'(s'}(&) < m'(s")(§). We call this equivalence

“preference preserving” or p-equivalence.

3. s is weakly equivalent to s’ (s&s') iff their corresponding ranking functions have the same sets
of satisfying models; i.e., () = Lme(ery. We call this equivalence “minima preserving’ or w-

equivalence.

OBSERVATION 4.1 1. Ifiwo background seniences are strongly equivalent, then for any given evidence
e, the two corresponding sentences entail the same set of conclusions; i.e., if srus’ then for every
evidence e and every concluston ¢, (m(s) + m(e))=m(c) iff (m'(s') + m'(e))l=m'(c). Therefore,
two strongly equivalent sentences have the same induced consequence relation. i.e., In addition, the

probabilistic meaning that is usually associated with the energy funclion of Bollzmann Machines

is preserved, since P(Z)/P(y) = e(mENE)=m()TN) = (' ("N D))= (' ('Y F)+)).

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 22

2. If two background sentences are p-equivalent, then for every strict evidence e, the {wo sentences
entail the same set of conclusions; i.e., if dom(e) = {0,00} and sés’, then for every conclusion
¢, (m(s) + e)=m(c) iff (m'(s") + e)=m'(c). We can’t guarantee this property for any non-sirict

evidence.

3. If two sentences s,s" are weakly equivalent, then the two seniences eniail the same sel of direct
conclusions; i.e., m(s)E=m(c) iff m'(s")=m'(c). We can’t guaraniee this property to hold once we

try o add evidence.

The reader may easily observe that if two sentences are strongly equivalent then they are also p-

equivalent and if they are p-equivalent they are also weakly equivalent.

If all we want is to preserve the set of conclusions achievable from a piece of knowledge, we may use
transformations which only preserve the minima (weak equivalence). If however, we would like to be able
to combine strict evidence to our transformed knowledge, we need to perform “preference preserving”
transformations. We need “magnitude preserving” transformations (strong equivalence) if we want to
combine any evidence or give probabilistic interpretation to our transformed knowledge. Most of our
. transformations in the reminder of this paper are “magnitude preserving” (strongly equivalent). Strong
equivalence of two forms of knowledge representation means that the ranking functions that are induced
by either these representations are the same (up to a constant difference).

If a PLOFF 1 is strongly equivalent to a network represented by an energy function E then:

1. 'The set of global minima of E is equal exactly to the set of the preferred models of ¢.
2 Both knowledge representations induce the same order on the possible models; ie., g is “better”

than s’ iff Erankp(s) < Erankgp(s") iff Vranky(s) < Vranky(s’).

3. Knowledge update is cumulative. An addition (update} to the knowledge base can be done by
merging the new PLOFT with the existing one. An equivalent result can be cbtained by adding
the energy terms of the new PLOFF to the energy function representing the old one. The update

of a network with a new piece of knowledge is therefore modular and simple.

We define now an equivalence between two calculi.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 23

DEFINITION 4.5 A calculus C; =< £,{0,1}*, m > is (s-/p-/w-) equivalent to a calculus ¢’ =< £', {0, 1}",m’' >
iff for every s € £ there exists a (s-/p-/w-) equivalent s’ € £’ and for every s' € £’ there exists a (s-/p-

/w-) equivalent s € L.

We thus can use the language £ to represent every ranking function that is representable using the
language £, and vice versa. In the sections to come I shall present several equivalent calculi and show

that all of them describe the knowledge embedded in SCNs,

4.3. Some examples of equivalent caleuli

ExaMPLE 4.3 The calculus of energy functions.

The algebraic notation that was used to describe energy functions as sum-of-products can be viewed as a
language for describing ranking functions. The calculus of energy functionsis therefore < {E}, {0,1}",m() >,
where {E} is the set of all strings representing energy functions written as sum-of-products, and
m(E) = Erankg. Two special cases are of particular interest: the caleulus of quadratic functions

and the calculus of high-order energy functions with no hidden variables.

In section 3.2, algorithms were given that 1) Convert high-order energy functions to strongly
equivalent® low-order ones with additional hidden variables, and 2) Convert energy functions with
hidden variables into strongly equivalent (possibly) higher order ones without those hidden variables.
We may therefore conclude that the calculus of high-order energy functions with no hidden units is
strongly equivalent to the calculus of quadratic functions. Thus, we can use the language of high-order
energy functions with no hidden units to describe any symmetric neural network {(SCN) with arbitrary
pumber of hidden units and vice-versa. Note also that the calculus of SCNs whose language describes
graphs, weights and thresholds is of course also strongly equivalent to the calculus of quadratic energy

functions.

ExamrLe 4.4 Propositional calculus

In [Pinkas 90a] and in [Pinkas 90b), I showed that the satisfiability of propositional calculus is weakly

9Tn these papers we were concerned only with weak equivalence, but it is easily shown that strong equivalence holds.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 24

equivalent to quadratic energy minimization. The energy function Eip is obtained from ¢ using the

following algorithm:

1. convert the WFF into a conjunction of sub-formulas, each of at most three variables.!® This is
done by adding additional hidden atomic propositions, and “naming” binary subexpressions of
the formula using the new propositions. For example, (((AV B) V —-C)—(D Vv E)) is converted

into (Ti=AV B) A (T3=Ty V-CYA (Th—=DV E).

2. Assuming the result is of the form A ;i the energy function is computed to be EJ- H.p, , where
3

Hyp is the characteristic function defined in example 4.1.

3. convert the cubic terms in the result to quadratic ones using a high-order to low-order procedure

of section 3.2.11

Propositional calenlus is therefore weakly equivalent to the calculus of quadratic energy functions
and can be used as a high-level language to describe SCNs. However, two limitations exist: 1) The
algorithm (in [Pinkas 90b]) that converts an energy function to a satisfiable WFF may generate an
exponentially long WFF; and 2) The equivalence is weak. It means that although the WFF and
the energy function have the same set of satisfying models, neither evidence can be added nor the

probabilistic interpretation is preserved.

4.4. The equivalence of penalty logic and SCNs

This section shows that penalty logic and SCNs are strongly equivalent: Every penalty logic formula
can be represented efficiently in a SCN and every SCN can be described efficienily by a penalty logic

formula.

4.4.1. Representing penalty logic using SCNs.

Theorem 3 For every PLOFF ¢ = {< p;i,p; >| i =1...n} there exisis a sirongly equivalent quadratic

energy function E(Z,1); i.e., there exist a constant ¢ such that Vranky = Erankg +c.

10Ty contrast to the familiar 3-3AT, connectives in a sub-formula are not limited to disjunctions of literals.
11This step is not necessary if we allow for high-crder {cubic) connectionist networks [Seinowski 86].

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 25

Proof is by construction:

We can construct % from 1 using the following procedure:

1. Start with an empty set of assumptions 1. For every pair < p;, ¢ > in 1, create a new hidden
variable T3, “name” g; using Ti++p; and add the pairs < oo, Tj—¢; > and < p;, T} > into 9.
The penalty oo represents a real value that is large enough to force the “naming” constraint to
be satisfied. The original penalty p; causes the T}’s to compete with each other; while the high
penalty oo guarantees that if T; holds (among the winners) then ¢; also holds. #' is therefore

strongly equivalent to ¢ and the T;'s may be considered as hidden variables.

2. Construct the energy function)_; OB, — EJ- p;T;, where Ep is the function generated by

the algorithm described in example 4.4.

‘The size of the network that is generated is of the same order as the length of the original PLOFF.

The “naming” of the first step is needed only if the number of variables in an assumption ¢; is
greater than three. If this is the case and we do not “name” ¢;, then the second step of the algorithm
might generate more then one “triple”. Each triple will have a penalty that will contribute to the energy
function independently of the other friples, and the constraint as a whole will not have the atomicity
we expect. Thus, the ranking function that will be generated will not be the one we wished. The high
penalty we use for the “naming” causes the system to always find solutions that satisfy the “naming”
constraints. Once we guarantee that all the “naming” constraints are satisfied, all we need to do is to
make the T;’s compete as if they were the original assumptions. When the number of variables is less or
equal to three, the way we construct the energy function guarantees that only one triple is generated.
Thus, either the constraint is satisfied as a whole (with zero penalty) or it is not satisfied (and the
penalty is p;}; i.e., the splitting of one constraint into more then one “triple” does not happen, and the

atomicity is preserved.

The network that is generated can be seen as performing a search for a preferred model of 4.
According to the sound and complete proof-theory, it can also be seen as searching for a preferred
theory of #; i.e., the 7;’s that win the competition correspond to the assumptions in some preferred

theory.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 26

In the following example the assumptions have no more than three variables, thus “naming” is not

needed.

EXAMPLE 4.5 The Nixon diamond case of example 2.1.
The PLOFTF that is to be converted is:

% = {< 3000, N >, < 1000, N=@ >, < 1000, N—R >, < 10,@Q—+P >, < 10, R—-P >}

No “naming” is needed, so ' = ¥.

Each of the pairs is converted to an energy function:

1000 N—R 1000(E- yvg) = 1000(N — N R)
1000 N—Q 1000(E-pvq) = 1000(N — NQ)
10 R—~P 10(E-py-p) = 10(RP)

10 Q—P 10(E-qvr) =10(Q - QP)

3000 N 3000(Ey) = 3000(—N)

Summing the energy terms together:

E = —1000NQ — 1000N R + 10RP — 10Q P — 1060N 4 10

The corresponding network appears in figure 4.

EXAMPLE 4.6 Converting the “meeting” example; we first show the general case with “naming” (it is

used for demonstration purposes only, since the assumptions have less than four variables):
Penalty WFF By, (Z)
1000 71+ meeting 1000(7; — 211 M + M)
1000 Ty (sick —(— meeting)) 1000(To5M — 213 — S — M + T3S+ T2 M)
1600 Ty (cold-only — meeting) 1000(—T3 — C +2T3C + M — T3M — T5:CM)

1000 T4+ (cold-only — sick) 1000(~Ty — C + 2T4C + § — TuS — T4CS)
1 i —-173

10 T -107%

100 T3 —10075

1000 Ty —106007;

BREPRESENTATION AND LEARNING OF NONMONOTONIC KNOWLEDGE 27

Figure 4: The network that represents the Nixon diamond example. It corresponds to the energy
function: E = —1000NQ — 1000NE + 10RP — 10QP — 1000N -+ 10Q

The energy function we get by summing the energy of the assumptions is:

100073 SM — 1000T3CM — 1000T3CS — 200071 M + 1000735 + 100072 M 4 200073C — 1000T3M +
200074 C — 10007%S + 1000M — 2000C + 9997 — 201073 — 110073 — 20007. It is shown as a cubic
symmetric network in fig 5-a and as a quadratic network in fig 5-b. Since the assumptions in our
example have less than three variables each, we can generate a simpler (strongly equivalent) network

from the energy function of 3; piEugp, = 1(=M) + 100(C — CM) + 1000(C — CS) (see fig 5-c).

Once we can generate a network that searches for preferred models (or preferred theories), it is
possible to construct a network that will reason according to our definition of entailment. A construction

of such network is described in section 6.

4.4.2, representing SCNs as penalty logic formulas. This subsection shows that it is possible
to describe efficiently any network by a penalty logic formula. The motivation here is to demonstrate
that penalty logic is an efficient and compact language for specification of symmetric connectionist

networks.

REPRESENTATION AND LEARNING OF NONMONOTONIC KNOWLEDGE 28

)

Figure 5: Equivalent symmetric networks for the meeting example (the numbers in the circles are
thresholds): a) cubic; b) quadratic; and ¢) quadratic for the simple conversion (no naming}.
Theorem 4 Every energy function E is strongly equivaleni o some PLOFF ¥; i.e., there exists a

constant ¢ such that Erankg = Vranky +c.

Proof is by construction:

The following algorithm generates a strongly equivalent PLOFF from an energy function:

1. Eliminate hidden variables (if any) from the energy function, using the algorithm of section 3.2.

2. The energy function (with no hidden variables) is now brought into a sum-of-products form and
is converted into a PLOFF in the following way:
Let E(Z) = 37, w; [[5, 2:,. be the energy function.
We construct a PLOFF % = {< —w;, A¥, 2, >[ws <0}U{< w, AL 7, > w >0}
The formula that is generated is strongly equivalent to the original energy function (network). The size

of the formula is in the order of the size of the original network (linear in the number of connections).

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 29

EXAMPLE 4.7 Looking at the network of figure 4, we would like to describe this network as a PLOFF:

The energy function is:

E = ~1000NQ — 1000NR + 10RP — 10Q P — 1000N + 10Q

The negative terms are:
<1000, NAQ > <1000,NAR>, <10,Q AP >, <1000, N >

The positive terms are:

< 10,-Rv-P > < 10,-Q >
The final PLOFF is therefore:

< 1000, N A Q >, < 1000, NAR>,<10,QA P>, < 1000, N >< 10,~RV P >, < 10,7Q >

Note that as it is usually the case with reverse-compilation, the formula we get is not very meaningful;

however, it is clear that a compact description exists for every network.

5. Learning propositional formulas

So far, we have learned that networks can be compiled from logic formulas. However, much of the
appealing of connectionist models is their ability to learn from examples. This section shows that SCNs
can learn unknown propositional formulas inductively, and develop a representation that is equal to the

ones constructed by compiling formalas.

Assume the network tries to learn an unknown formula ¢ by looking at the set of the satisfying
models of . For simplicity, let us assume that the formula to learn is a satisfiable strict WFF. The
task of the network is to update its weights in such a way that at the end of the learning process the
energy function is equal to the one obtained by translating ¢ into Eyp. Clearly, by doing so, the set
of global minima of the energy function is equal to the set of satisfying models of ¢ (T'p) which is the

training set.

Another way to lock at the process is ag learning of an associative memory: Given a set of vectors to

be stored as memories, assuming that those vectors are the satisfying models of some unknown formula,

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 30

we would like to construct a network such that the global minima of its energy function are exactly

equal to the vectors presented.

The algorithm that is described uses hyper-arcs; however, the reader should remember that it is

always possible to convert the hyper arcs into pairwise connections by adding hidden units.

DEFINITION 5.1 A k-CNF is a WFF that is formed as a conjunction (AND) of clauses. Each clause is
a disjunction (OR) of up to k literals. A literal is either an atomic propositions or a negated (—) atomic
proposition. For example (AV -B) A (-AV=C Vv D) is a 3-CNF that is composed of two clauses: the

first contains two literals and the second contains three.

Note that every formula can be brought into a k-CNF form; thus, the algorithm works in theory for
every set of presentations and any unknown formula ¢ (the algorithm is not practical though, when &

is too large).

‘We present now a new learning rule for symmetric connections (possibly high-order arcs) and a fast
learning algorithm that learns an unknown k-CNT formula from the truth assignments that satisfy the
formula. After each presentation the network is updated, and the corresponding energy function is
guaranteed to have a set of global minima that is exactly equal to the set of presentations seen so far,
Therefore, assuming we know the % of the unknown :-CNF formula, the desired network is generated

after one cycle over the training set.

Let an instantiation of the visible units Xj, ..., X,, be a vector of zeros and ones ¥ = (z1, ...z,) such
that z; € {0,1}. A presentation (an example) is an instantiation of the visible units, done by clamping

them: with the values of the example.

The following learning rule is responsible for the update of the weight of a single {-order (hyper-) arc:

The k-clause learning rule:

Let Are = {X1,..., Xi} be a l-order arc.

Given a presentation £ = {#1,...,zn) that instantiates the visible units to 0/1 values, the [-order arc
Arc is updated iff there exists an extension Fzf = (X, ..X4, X4y, Xjn_,)» that includes Are, such

that the rest of the units (Fzt — Arec = Xj,,..Xj,_,) are all instantiated to zeros, and such that the

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 31

instantiation (i, , .., Z4, Zj,5 1 £j,_,) I8 new; i.e., never seen in one of the earlier presentations.
If this condition holds, then the weight of arc Arc is incremented (+1) if the number of zero units in

Are is even (including the all ones case) and is decremented (—1) if the number of zeros is odd.

ExaMPLE 5.1 Given the presentation ABC = 011, a 2-clause rule updates the weight of arc AB by
Aap = —1, since the extension (A= 0,B = 1) is new and the arc contains an odd number of zeros.
The weight of BC is updated by Agc = +1, since the extension (B = 1,C = 1) is new and the arc
contains no zeros. The bias of unit B (which is the singleton arc {B}) is updated by Ap = +1, since
the extension A = 0,B = 1 is new to the arc B, it is extended using only zeros (4 = 0) and the arc
B includes no zeros. The weight of A is not updated since it cannot be extended into a set of two
units by adding a zero unit. In a similar way, the arc AC is decremented (like AB), and the bias C' is

incremented (like the bias B).

Note that in a special case of k-clause rule, when k = 2 (for pairwise “standard” connections) the rule is
very similar to the Hebbian learning rule used so frequently in connectionist learning: When two units
have the same value (either both ones or both zeros) the weight is incremented. When the two units

have different values (odd number of zeros) the weight of the connection between these units decreases.

Algorithm to learn a k-CNF formula:
Initialize all weights to zero.
For all presentations in the training set
using the k—clause rule, npdate the Weights of all the l-order arcs (0 < ! < k) until no more arcs

are updated.

Theorem 5 If the presentations are truth assignments that satisfy some unknouwn k-CNF formula ¢,
then the algorithm generates a network whose global minima are exactly the set of presentations of the
k-CNF formula, and whose energy funclion is equal Ep. The network is generated after a single pass

over the presentations.

Proof
Only ar intuitive proof is given:
The proof is based on showing that the algorithm is equivalent to Valiant’s algorithm for learning &-CNF

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 32

[Valiant 84]. Valiant’s algorithm starts with a list of clauses that consists of all possible k-clanges over n atomic
propositions. For every presentation of a truth assignment that satisfies the unknown k-CNF (positive example)
the algorithm eliminates those clauses from the list that are not satisfied by the example.

1t can be proved that in every step, the conjunction of the clauses in the list is 2 formula that is consistent
with al! the presentations seen so far and exactly these presentations. Therefore, when all the examples are
seen, the k-CNF formula has been learned.'?

Show that the set of weight updates performed by the E-clanse rule, can be interpreted as clause eliminations.
First, show that the conjunction of all possible k-clauses can be represented by a network with zero weights
(the initialization step of our algorithm). Later, show that the clause elimination step is equivalent to the set
of weight updates performed after each presentation.

An energy function of zero (or any constant energy function) represents formulas that are symmetric con-
junction of clause (contradictions or tautologies that have the property that every model satisfies exactly the
same number of clauses}. The conjunction of all possible clauses in Valiant’s algorithm is exactly such formula
and therefore, the starting point of our algorithm (with the zero weights) represents the desired list.

The next step is to show that the clause elimination step may be translated to the set of weight updates
performed by the k-clause rule.

A clause is eliminated in Valiant’s algerithm if it is a disjunction

o=V % V5

#;=1 v 20

where the X;'s are instantiated by the example to one, and the Y;’s are instantiated to zexo. A clause elimination
is reflected in the energy space by deleting the energy terms of E.. Since the weights of a network are the energy
terms with reverse signs, the weights are actually updated by adding:

EcmH-.¢=HAX'.A_|}?= HX:'H(].—YJ').

=l yj=0

The arcs that are updated as a result of eliminating ¢ contain all the units X;’s in ¢ that are instantiated with
ones, while the rest of units are zeros. I the number of zeros in the arc is odd the weight is decremented, and
if it is even (or no zeros) it is incremented. Our algorithm updates all the arcs that can be extended into a
set of k units by adding zero units, This is equivalent to finding one clause that needs to be deleted and its
deletion affects the arc that is updated. The extension Ezt = {Xq, ..., X1, Xj; ; ..y Xj,.; } Tepresents a clause to
be eliminated, and when the elimination occurs the Arc = {Xi,..., Xi} is updated according to the parity of

the zeros in it. D

EXAMPLE 5.2 Learning the XOR formula (A @ B}«+C, looking at the four satisfying assignments for
ABC €{011,101,000,110}.

We need a 3-clause rule since we cannot express our function in less then 3-CNF.

Given the presentation ABC = 011 = A4 pc = —1 (odd no. of zeros); Apc = +1 (even no. of zeros);
given ABC = 101 = A pc = —1 (0dd); Age = +1 (even) ;

given ABC =000 = Aspc = -5 Aac=+1;Apc =+ 84 =+1; 84 =~ Ap = -1 Ac = -1

given ABC =110 = Agpc = —1; A4 = +1;
12¥aliant actually shows that in the PAC model, not all the examples have to be presented.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 33

The energy function obtained by summing the updates (after reversing signs) is F = 4ABC — 2AC —
2BC —2AB + A+ B+ C. Iis global minima are exactly the four presentations, and the high order
connection (4ABC) can be replaced by second order connections (4AB — 8AH — 8BH +8CH + 12H)

by adding one hidden unit H.

An extension of the algorithm using Va;,liant’s notion of “probably approximately correct” (PAC) learn-
ing, enables the learning of k-CNF formulas when the k of the formula is not known. The algorithm
starts with low & (for example k = 2) activates the k-clause learning rule for an entire cycle and then
activates a test to see whether the network performs well. If the network passes the test, the algo-
rithm stops; otherwise, k is increased and another cycle begins. The test is a sequence of checks of
the network behavior; each fests whether the network converges to a wrong global minimum. The test
procedure allows up to m errors within r checks (m and r are computed from the bounds on the error
rate requested by the user). If the number of errors is less than m then the test succeeds, otherwise, it

fails.

The algorithm guarantees that with arbitrary high probability the network’s error rate is arbitrary
small. Polynomial learning time and polynomial network compiexity are guaranteed if the target concept

(the boolean formula) can be represented by a k-CNF with some constant k.13

The PAC framework allows us to cope with a noisy training set, and to make claims about the
generalization capability of the network when not all the presentations are available. In addition, an
extension of the algorithm enables the network to learn nonmonotonic knowledge. thus achieving the
full representation powers of penalty logic. A full discussion of these algorithms is too lengthly and

deserves a separate report.

6. A connectionist inference engine

Suppose a background PLOFF 1, an evidence PLOFYF e, and 2 query which is a (strict) standard logic

WFF . We would like to construct a connectionist network to answer one of the possible three answers:

1) ¢ Uel=ep; 2) ¥ U el=(—¢); or 3) both ¢ J=¢ and ¢ f=(—p) (“ambiguous”).

13When k is large the size of the network and the performance of the algorithms become exponential in k. Note however,
that as is usually the case with knowledge bases, there are many rules and propositions, but each rule is composed of only
few number of propositicns (a constant k).

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 34

Intuitively, our connectionist engine is built from two sub-networks, each of which is trying to find a
satisfying model for gbtje. The first sub-network is biased to search for a preferred model which satisfies
also ¢, whereas the second sub-network is biased to search for a preferred model which satisfies —.
If two such models exist, then we conciude that ¢ is “ambiguous” (l,bCJe entails neither ¢ nor —p). If
no preferred model also satisfies ¢, we conclude that 1) U el="vp, and if no model also satisfies —p, we
conclude that ¢ U ef=¢. For simplicity let us first assume that the evidence e is a strict conjunction of
literals (atomic propositions or their negation) and that ¢ is a single atomic proposition. Later we’ll

describe a general solution.

To implement this intuition we first need to duplicate our background knowledge 3 and create
its copy ¥’ by naming all the atomic propositions A using A’. For each atomic proposition @ that
might participate in a query, we then add two more propositions: “QUERYgp” and “AMBIGUOUSg”.
QUERYy is used to initiate a query @; it will be externally clamped by the user, when he or she
inquires about Q. The unit “AMBIGUOUSG” representé the answer of the system. It will be set to

TRUE if we can conclude neither that ¢ entails @ nor that ¢ entails —Q.

Qur inference engine can be therefore described (in the language of penalty logic) by:

¥ searches for a preferred model of ¥ that satisfies also @
U’ searches for a preferred model of ¢ that satisfies also —Q
U{< ¢,(QUERYq—Q) >} bias ¢ to search for a model that satisfies @

U{< ¢,(QUERYq—(—Q")) >} bias ¢ to search for a model that satisfies (—Q’)

U{< 6,(Q A-QV—AMBIGUOUSg >} if two satisfying models exist that do not agree on @,
we conclude “AMBIGUQUS”

U{< €,(Q—Q")—+(~AMBIGUOUSg) >} if despite the bias we are unable to find two such
satisfying models we conclude “AMBIGUOUSg”

Using the algorithm of Theorem 3, we generate the corresponding network. The network that is gener-

ated for the Nixon example is shown in figure 6.

To initiate a query about @ the user externally clamps the unit QUERYg. This causes a small positive
bias ¢ to be sent to unit @ and a small negative bias —¢ to be sent to Q. Each of the two sub-networks
¥ and 9, searches for a global minimum (a satisfying model} of the original PLOFF. The bias (€) is
small enough so it does not introduce new global minima for each of the subnetworks. It may however,
constrain the set of global minima. If a satisfying model that also satisfies the bias exists, then this

model is in the new set of global minima of 1. The new set of global minima is the set of all preferred

REPRESENTATION AND LEARNING OF NONMONOTONIC KNOWLEDGE 35

Figure 6: Inference engine for the Nixon diamond case: the {wo rings represents two similar subnetwork:
One searches for a preferred model that satisfies the query and the other searches for a preferred model

the falsifies the query.

bias ¢ to be sent to unit Q and a small negative bias —¢ to be sent to @'. Each of the two sub-networks
¢ and 9, searches for a global mlmmum (a satisfying model) of the original PLOFF. The bias (¢) is
small enough so it does not introduce new global minima for each of the subnetwork;s. It may however,
constrain the set of global minima. If a satisfying model that also satisfies the bias exists, then this
model is in the new set of global minima of . The new set of global minima is the set of all preferred
models of ¥ that also satisfy the query. If no preferred model also satisfies the query then the set of

global minima is unaffected by the bias and the network searches for one of those models (that do not
satisfy Q).

The network therefore tries to find models that satisfy also the bias rules. If it succeeds, we conclude
“A MBIGUOUS”, otherwise we conclude that all the satisfying models agree on the same truth value
for the query. The “AMBIGUQUS” proposition is then set to“‘false” , and the answer whether $|=¢ or
whether ¥j=—p can be found in the unit Q. If @ is “true” then the answer is 1}=¢ since Q holds in all

satisfying models. Similarly, if Q is false, we conclude that ¢l=—¢.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 36

minimum. An annealing schedule'# like in [Hinton, Sejnowski 86] may be used for such search. A slow
enough annealing is certain to find a global minimum and therefore the correct answer, but it might take
exponential time. Since the problem is NP-hard, we will probably not find an algorithm that will always
give us the correct answer in polynomial time. Traditionally in AI, knowledge representation systems
trades the expressiveness of the language they use with the time complexity they allow [Levesque 84],%
and the accuracy of the answer is usually not sacrificed. The inference mechanism described in this
section, as in [Derthick 88)], trades the time resources with the accuracy of the answer. Only limited
time resources are given, and we wish to stop the search when this limit is reached. The annealing
schedule can be planned to fit the time limitation, and an answer is always given at the end of the
process. Although the answer may be incorrect, the system is able to improve its guess as more tirmne

TesOUICES are given.

7. Related work and discussion

7.1. Connectionist approaches

Derthick [Derthick 88] observed that weighted logical constraints (which he called “certainties”) can
be used in massively parallel architecture. Derthick translated those constraints into special energy
functions and used them to implement a subset of the language KL-ONE. The approach described
in this paper has a lot of similarities to his system. Looking at his translation from logic to energy
functions (Derthick uses different energy functions and no hidden units), there are however, several
basic differences: 1) Derthick’s “mundane” reasoning is based on finding a most likely single model; his
system is never skeptical. The system described in this paper is more cautious and closer in its behavior
to symbolic nonmonotonic systems; 2) my system can be implemented with standard low-order units,
using relatively well-studied architectures like Hopfield networks or Boltzmann machines. It is possible
therefore to take advantage of the hard ware implementations as well as of the learning algorithms that
were developed for these networks; 3} formal proofs of two-way equivalence are given so that every
network can be described as a PLOFTF and not just the reverse; 4) a learning algorithm is given that

achieves the same networks that are obtained from direct compilation.

14 There are also other techniques for improving the chances to escape from local minima [Hopfield 84b], [Hinton 89].
15Connectionist systems like [Shastri et al. 90] and [H&lldobler 90} trade expressiveness with time complexity.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 37

Another connectionist nonmonotonic system is [Shastri 88]. It uses evidential reasoning based on
maximum likelihood to reason in inheritance networks, My appreach is different; I use standard low-level
connectionist models and am not restricted to inheritance networks.'® Shastri’s system is guaranteed
to work and has a polynomial time complexity, whereas the system described here tries to solve an
intractable problem and trades correctness with time; i.e., a correct solution (a global minimum) is not

guaranteed; however, the chance of finding one improves as more time is given.

This article shares with [Branden 91), [Holldobler 90], [Shastri et al. 90], and [Touretzky, Hinton 88]
the implementationalist motivation [Pinker, Prince 88]. These systems implement subsets of predicate
calculus by either spreading activation or by rule-firing. The expressive power of these mechanisms is
limited by performance and tractability considerations, and they all stress the problems of representing
complex structures, syntax sensitivity and multi-place predicates. In this article I had no intension of
attacking these problems; rather, I wanted to show how to represent eny proprositional constraint, and

how networks can cope naturally with inconsistency.

‘We may lock at penalty logic as one of the layers of abstraction that are needed between descriptions
of high-level cognitive processes and low-level neural implementations. Thus, penalty logic may be seen
as a first level of abstraction that is higher than the neural implementation (see [Branden 91] for a
nice discussion on the multi-span approach). Using the language described in this paper we can map'?
several of the systems mentioned above into penalty logic, and then compile them into symmetric

networks (possibly by sacrificing efficiency) [Pinkas 91e].

7.2. Symbolic systems

Penalty logic is along the lines of work done in preferential semantics [Shoham 88]. Specifically, sys-
tems with preferential semantics that use ranked models, like [Lehmann, Magidor 88], [Lehmann 89]
or [Pearl 90]. Lehmann and Magidor’s results about the relationship between rational consequence

relations and ranked models can be applied to our paradigm: A strict consequence relation (induced

15We can easily extend our approach to handle inheritance networks by looking at the atomic propositions as predicates
with free variables. Those variables are bound by the user during query time.

17Only non oscillating networks may be reduced into SCNs, therefore [Shastri et al. 90] for example cannot be mapped
directly.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 38

by a PLOFF) is a binary relation between a strict evidence and 2 strict conclusion. It is therefore a
set of pairs Ry = {< ¢',p >| ga’f—-@}, where both ¢’ and ¢ are strict WFFs. Lehmann and Magidor
defined a rational consequence relation as one that satisfies certain conditions (inference rules), and
proved that a consequence relation is rational iff it is defined by some ranking function. As a result
we may conclude a rather strong conclusion for our system: For every rational consequence relation
we can build a ranked model and implement it as a a ranking function on a symmetric network. Also,
any symmetric network can be viewed as implementing some rational consequence relation if we use it
to determine entailment. We can therefore be sure that every implementation of our inference engine

induces a rational consequence relation.

One system of ranked models that can be reduced directly to penalty logic is [Goldszmids, Pearl 91]
which actually computes the penalties from a given conditional knowledge (the user does not specify
any penalty) based on maximal entropy considerations. The system uses the same ranking function as

the one described in this article.

Penalty logic has some similarities with systems that are based on priorities {given to beliefs). One
such system [Brewka 89] is based on levels of reliability. Brewka’s system for propositional logic can
be mapped into penalty logic by selecting large enough penalties. Systems like [Poole 88] (with strict
specificity) can also be implemented using our architecture, and like in [Goldszmidt, et al. 90], the
penalties can be generated automatically. Another system that is based on priorities is system Z+
[Goldszmidt, Pearl 91] where the user does specify the penalties, but there is a “ghost” that changes
them so that several nice properties hold (e.g. specificity). Penalty logic can only approximate priority
systems by assigning penalties that reflect scaled priorities.!® Every conclusion that is entailed in a
priority system like system Z*, will also be entailed by the approximating penalty logic knowledge base.
However, some conclusions that are ambiguous in a priority system may be drawn decisively in penalty
logic. In this sense penalty logic can be considered as bolder (less cautious) than those which are based

on priorities.

For example consider the “penguins and the wings” case [Goldszmidt, Pearl 91). We are given the

following defaults: birds fly; birds have wings; penguins are birds and penguins do not fly. Many

18The penalties are scaled so that there is no subset of low-priority assumptions whose sum exceeds a higher priority.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 39

systems based on priorities (like Z1) will not be able to conclude that penguins have wings. Penalty
logic in contrast will conclude according to our infuition; i.e., that penguins do have wings despite the
fact that penguins do not fly, The reason for this intuitive deduction is that penalty logic considers the
models where penguins do not fly but have wings to be more “normal” than models where penguins
do not fly and have no wings (like in [Goldszmidt, et al. 90]). Priority-based system will be ambiguous

since they don’t have such preference.

For another exarple consider the Nixon case {example 2.1) when we add to it: < 1000, N—FF >
and < 10, FF—~-P > (Nixon is also a football fan and football fans tend to be not pacifist). Most other
nonmonotonic systems will still be skeptical about P [Touretzky 86), [Loui 87], [Geffner 89] [Pearl 90],
[Lehmann 89]. Our system boldly, and in contrast with intuition, decides ~P since it is better to
defeat the one assumption supporting P than the two assumptions supporting —=P. We can correct this
behavior however, by multiplying the penalty for Q—P by two. Further, a network like our system that
learns, may adjust the penalties autonomously and thus develop its own infuition and nonmonofonic

behavior.

Because we do not allow for arbitrary partial orders ([Shoham 88] [Geflner 89]) of the models, there
are other fundamental'® problematic examples where our system (and all systems with ranked models
semantics) boldly concludes, while other systems are skeptical (these are cases where the intuition tell

us that skepticism is the right behavior).

The following is an example for which we have clear intuition; nevertheless, no ranking function

exists that induces the intuitive behavior we wish:

EXAMPLE 7.1 Assume the following defeasible rules: A—D, B—~D and C——I}. The intuition we
have states that:

Given A,C, D we should conclude —B; therefore, rank(ABCD) < rank(ABCD).

Given A, B,C we should conclude that D is ambiguous; therefore, rank(4BCD) = rank(ABCD).
Given A4,C, D we should conclude that B is ambiguous; therefore, rank{ABCD) = rank(ABCD).
Given A, B,C we should conclude that D is ambiguous; therefore, rank(ABCD) = rank(ABCD).

This is a contradiction since rank(ABCD) < .rank(ABCD).

19 This claim is due to Hector Geffner (private communication).

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 40

8. Conclusions

The main task of this paper was to develop the theoretical foundations needed for a connectionist
inference engine that is capable of representing and learning nonmonotonic knowledge. Along these

lines I have introduced penalty logic and showed mappings between its sentences and SCNs.

Penalty logic may be used as a framework for defeasible reasoning and handling inconsistency. Sev-
eral systems can be mapped to this paradigm and therefore suggest settings of the penalties. When the
right penalties are given (for example using algorithms like in [Brewka 89] that are based on specificity),
penalty caleulus features 2 non-monotonic behavior that (usually) matches our intuition. It is possible

to show, though, that some intuitions cannot be expressed in ranking-functions.

A strong equivalence between sentences of the logic and symmetric networks is formally proved.
This two-way equivalence serves two purposes: 1) we can translate a sentence of penalty logic into
an equivalent network; this serves the basic construction of our inference engine; 2) any symmetric
network (and also asymmetric non oscillating networks) can be described by penalty logic sentences,
The calculus may thus be used as a specification language and gives another clarifying look at the

dynamics of such networks.

Several equivalent high-level languages can be used to describe SCNs: 1) quadratic energy functions;
2} high-order energy functions with no hidden units; 3) propositional logic, and finally 4) penalty logic.
All these languages are expressive enough to describe any SCN and every sentence of such languages can
be translated into a SCN; however, penalty logic has properties that make it more attractive than the
other languages. Algorithms are given for translating between any two of the knowledge representation

forms above.

An inference engine constructed that is capable of answering whether a query follows the knowledge
or not. When a query is clamped, the global minima of such network correspond exactly to the correct
answer. Using massively parallel hardware convergence should be very fast, although the worst case
for the correct answer is still exponential. The mechanism however trades the probability of getting a

sound answer with the time given to solve the problem.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 41

The engine can obtain its knowledge either by compiling a symbolic knowledge base or by learning
propositional rules inductively by looking at examples. Learning is shown to be equivalent to a powerful

symbolic algorithm developed within the PAC paradigm.

Revision of the knowledge base and adding new evidence are easy tasks if we use penalty logic to
describe tile network: adding (or deleting) 2 PLOFF is simply computing the energy function of the
new PLOFT and then adding (deleting) it to the background energy function. A local change to the

PLOFF describing the network is translated to a local change in the network.

The mappings given in this paper are limited to propositional knowledge; however, their potential
exceeds the propositional case, and allows also for higher level paradigms (like first-order logic) to be

represented [Pinkas 91e].

Acknowledgment: Thanks to Bill Ball, Jon Doyle, Hector Geffner, Sally Goldman, Dan Kimura, Stan

Kwasny, Fritz Lehmann, Ron Loui, Judea Pearl and Dave Touretzky for helpful discussions.

References

[Branden 9¢1] J.A. Branden, “Encoding complex symbolic data structures with some unusual connec-
tionist techniques,” in J.A Branden and J.B. Pollack, Advances in Connectionist and
Neural Computation Theory 1, High-level connectionist models, Ablex Publishing Corpo-
ration, 1991,

[Brewka 89] G. Brewka, “Preferred sub-theories: An extended logical framework for default reasoning,”
Proceedings of IJCAIL pp. 1043-1048, 1989,

[Derthick 88] M. Derthick “Mundane reasoning by parallel constraint satisfaction,” PhD thesis, CMU-
CS-88-182 Carnegie Mellon University, Sept. 1988

[Feldman 85] J.A Feldman “Energy and the behavior of connectionist models,” technical report, Com-
puter Science Department, University of BRochester, TR-155 1985.

{Fodor, Pylyshyn 88] J.A. Fodor, Z.W. Pylyshyn, “Connectionism and cognitive architecture: A critical
analysis,” Cognition 28, pp. 3-71, 1988.

[Geffner 89] H. Geflner, “Defeasible reasoning: Causal and conditional theories,” PhD Thesis, Depart-
ment of Computer Science, UCLA, 1989.

[Goldszmidt, et al. 90] M. Goldszmidt, P. Morris, J. Pearl, “A maximum entropy approach to non-
monotonic reasoning,” Proceedings of AAAIL pp 646-652, 1950.

[Goldszmidt, Pearl 91] M. Goldszmidt, J. Pearl, “System Z*: A formalism for reasoning with variable-
strength defaults,” Proceedings of AAAIL pp 399-404, 1991.

[Hinton 89] G.E Hinton “Deterministic Boltzmann learning performs steepest descent in weight space,”
Neural Computation 1, no. 1, 1989,

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 42

[Hinton, Sejnowski 86] G.E Hinton and T.J. Sejnowski, “Learning and re-learning in Boltzman Ma-
chines,” in J. L. McClelland and D. E. Rumelhart, Parallel Distributed Processing: Ezplo-
rations in The Microsiructure of Cognition I, pp. 282 - 317, MIT Press, 1986.

[Hinton 90] G.E. Hinton, “Preface to the special issue on connectionist symbol processing,” Artificial
Intelligence 46, nos. 1-2, 1990.

[Holldobler 90) S. Hélldobler, “CHCL, a connectionist inference system for Horn logic based on con-
nection method and using limited resources,” International Computer Science Institute
TR-20-042, 1390.

[Hopfield 82a) J. J. Hopfield “Neural networks and physical systems with emergent collective compu-
tational abilities,” Proceedings of the National Academy of Sciences 79, pp. 2554-2558,
1982.

[Hopfield 84b] J. J. Hopfield “Neurons with graded response have collective computational properties
like those of two-state neurons,” Proceedings of the National Academy of Sciences 81, pp.
3088-3092, 1984,

[Hopfield, Tank 85] J.J. Hopfield, D.W. Tank “Neural Computation of Decisions in Optimization Prob-
lems,” Biological Cybernetics 52, pp. 144-152,

[Lang 89] T.E. Lang and M.G. Dyer, “High-level inferencing connectionist network,” Connection
Science 1, no. 2, pp. 181-217, 1989

[Lehmann, Magidor 88 | D. Lehmann, M. Magidor, “Rational logics and their models: A study in cu-
mulative logic,” technical report TR-86-16, Leibnitz Center for Computer Science, Hebrew
University, Jerusalem, 1988,

[Lehmann 89] D. Lehmann, “What does & conditional knowledge base entail?,” Proc. of the Interna-
tional Conf on Knowledge Representation and reasoning, pp. 212-222, Toronto, Canada,
1989,

[Levesque 84] H.J. Levesque, “A fundamental tradeoff in knowledge representation and reasoning,”
Proc. CSCSI-84, pp. 141-152, London, Ontario, 1984.

[Lifschitz 85] V. Lifschitz, Computing circumscription. Proceedings of IJCAI, 1985.

fLoui 87] R.P. Loui, “Defeat among arguments: A system of defeasible inference,” Computational
Inielligence 3, no. 3, 1987.

[McCarthy 80] J. McCarthy, “Circumseription, a form of nonmonotonic reasoning,” Artificial Intelli-
gence 25, pp. 41-72, 1980,

[Pearl 90] J. Pearl, “System Z: A natural ordering of defaults with tractable applications to non-
monotonic reasoning,” in proceedings TARK-90, M. Vardi (ed.), pp. 121-135, 1990.

[Pinkas 90a] G. Pinkas, “Energy minimization and the satisfiability of propositional calculus,” technical
report, Department of Computer Science, Washington University, WUCS-90-03, 1690,

[Pinkas 90b] G. Pinkas, “Energy minimization and the satisfiability of propositional calculus,” Neural
Computation 3, no. 2, 1991.
Also in Touretzky, D.S., Elman, J.L. Sejnowski, T.J. Hinton, G.E. (eds), Proceedings of
the 1990 Connectionist Models Summer School, San Mateo, Morgan Kaufmann.

[Pinkas 91c] G. Pinkas, “Propositional Non-Monotonic Reasoning and Inconsistency in Symmetric Neu-
ral Networks,” Proceedings of ITJCAI Sydney, 1991.

[Pinkas 91d] G. Pinkas, “Representing first-order- predicate logic in symmetric networks,” to appear in
Advances in Neural Information Processing Systems IV (NIPS), 1992.

REPRESENTATION AND LEARNING OF PROPOSITIONAL KNOWLEDGE 43

[Pinkas 91e] G. Pinkas, “Converting binary threshold networks into symmetric networks,” technical
report, Computer Science Department, Washington University, WUCS-91-31, 1991,

[Pinkas 91f] G. Pinkas, “Symbolic knowledge representation using symmetric connectionist networks,”
PhD thesis, Washington University, in preparation, 1992.

[Pinker, Prince 88] S. Pinker, A. Prince, “On language and connectionism: Analysis of a parallel dis-
tributed processing model of language acquisition,” Cognition 28, pp. 73-193, 1988.

[Poole 85] D. Poole, “On the comparison of theories: preferring the most specific explanation,” Pro-
ceedings of IJCAI pp. 144-147, 1985,

[Poole 88] D. Poole, “A logical framework for default reasoning,” Artificial Intelligence 36, 1988.

[Rescher, Manor 70] N. Rescher,R. Manor, “On inference from inconsistent premises,” Theory and
Decision 1, pp. 179-217, 1970.

[Reiter 80] R. Reiter, “A logic for default reasoning,” Artificial Intelligence 13, pp. 81-132, 1980.

[Rumelhart et al. 86] D.E. Rumelhart, G.E Hinton, J.L. Mcclelland, “A general framework for parallel
distributed processing,” in J. L. McClelland and D. E. Rumelhart, Parallel Distributed
Processing: Ezplorations in The Microstructure of Cognition I, MIT Press, 1986.

[Seinowski 86] T. J. Sejnowski “Higher-Order Bolizman Machines,” Neural Networks for Computing,
Proceedings of The American Institute of Physics 151, Snowbird Utah, pp. 3984, 1986.

[Shastri 88] L. Shastri, “Semantic networks: An evidential formulation and its connectionist realiza-
tion,” Pitman, London, 1988.

[Shastri et al. 90] L. Shastri, V. Ajjanagadde, “From simple associations to systernatic reasoning: A
connectionist representation of rules, variables and dynamic bindings,” technical report,
University of Pennsylvania, Philadelphia, MS-CIS-90-05, 1990.

[Shoham 88] Y. Shoham, Reasoning about Change, MIT Press, Cambridge, 1988.
[Shortliffe 76] E.H Shortliffe, Computer-based medical consuliation, MYCIN, Elsevier, New York, 1976.

[Simari, Loui 90] G. Simari, R.P. Loui, “Mathematics of defeasible reasoning and its implementation,”
to appear in AI Journal

[Smolensky 86] P. Smolensky, “Information processing in dynamic systems: Foundations of harmony
theory,” in J.L.McClelland and D.E.Rumelhart, Parallel Distributed Processing: Exzpio-
rations in The Microstructure of Cognition I, MIT Press, 1986.

[Touretzky 86] D.S. Touretzky, The Mathematics of Inheritance Systems, Pitman, 1986.

[Touretzky, Hinton 88] D.S Touretzky, G.E. Hinton “A distributed connectionist production system,”
Cognitive Science 12, 3, pp.423-466, 1988,

[Valiant 84] L.G. Valiant, “A theory of the learnable,” Communications of the ACM 27, pp. 1134-1142,
1984.

	Representation and Learning of Propositional Knowledge in Symmetric Connectionist Networks
	Recommended Citation
	Representation and Learning of Propositional Knowledge in Symmetric Connectionist Networks

	tmp.1455646060.pdf.bHyTd

