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Abstract of the Dissertation

The gut microbiome in healthy and severely malnourished humans

by

Tanya Yatsunenko

Doctor of Philosophy in Biology and Biomedical Sciences 

(Molecular Microbiology and Microbial Pathogenesis) 

Washington University in St. Louis, 2011

Professor Jeffrey I. Gordon, Chairperson

Human large intestine is home to tens of trillions of microbes belonging to all three do-

mains of life. The functions encoded by the genes in this community (microbiome) include 

processing and production of macro- and micronutrients. Much remains unknown about 

the factors that determine the assembly of the gut microbial community starting at birth, 

and if disruptions in the assembly of this ‘microbial metabolic organ’ early in life result in 

physiologic and metabolic deficits later in life. The central goal of my thesis was to char-

acterize development of the gut microbiome early in life, with a focus on describing the 

relationship between the microbiome and nutritional status.

My thesis consists of three parts. Because the degree of temporal variation in the 

gut microbiome in children and adults in healthy and diseased state was not well described, 

I began by using metagenomic methods and a variety of computational and statistical tools 

to characterize the proportional representation of bacterial phylotypes and gene functions 

in the fecal communities of seven healthy adult USA monozygotic twin pairs sampled over 

a four-month period. I found that the fecal microbiota and microbiome are stable within 

each co-twin even in the face of ecologic invasion with a popular commercial fermented 

diary product. I then compared the fecal microbiota and microbiome in 524 healthy infants, 
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children and adults living in three different countries with distinct cultural traditions (USA, 

Malawi and Amazon region of Venezuela). I found that interpersonal variation in babies is 

significantly greater than between adults, and that the microbiota evolves towards an adult 

configuration during the first three years of life in all three populations sampled. In addi-

tion, distinct patterns of functional maturation were observed which involved microbial 

genes encoding enzymes that participate in the biosynthesis of several vitamins. Finally, I 

characterized assembly of gut microbiomes in a cohort of Malawian twins concordant for 

healthy status and twins discordant for severe forms of malnutrition (kwashiorkor or ma-

rasmus). Twins were sampled during their first three years of life, including before, during 

and after treatment with a peanut butter-based ready-to-use therapeutic food (RUTF). In 

the case of the discordant twins, both co-twins were treated with RUTF. My comparative 

metagenomic analyses revealed notable differences in the responses to RUTF in kwashi-

orkor versus healthy co-twins.
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Introduction
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Among the diversity of life on our planet, and all the networks and patterns occurring 

within this diversity, few organisms exist that can survive in isolation. We humans are part 

of this diversity. We are connected and dependent on the other forms of life that surround 

us. Specifically we have formed a symbiotic relationship with microbes. Our most densely 

populated body habitat is the distal gut where up to one trillion microbial cells can reside 

in a millimeter of luminal contents. I will use the term ‘microbiota’ when referring to the 

organismal composition of this gut community, and the term ‘microbiome’ referring to its 

aggregate pool of microbial genes.

The gut microbiota contains representatives of all three domains of life on Earth 

– Bacteria, which dominate this ecosystem, Archaea and Eukarya, plus viruses. Our in-

teraction with the gut microbiota provides many benefits, ranging from protection against 

invasion by pathogenic organisms, development of the innate and adaptive arms of the 

immune system, to harvesting energy/nutrients from otherwise indigestible components of 

our diet (e.g. complex plant polysaccharides) and synthesis of vitamins (K, B12, folate, ri-

boflavin). Thus, we should consider a person’s genotype and metabotype as being the sum 

of genetic and metabolic features encoded and expressed by his/her H. sapiens genomes 

and microbiomes.

Many questions regarding the human gut microbiota are unanswered. For example, 

the factors that determine the assembly of this microbial ’organ‘ starting at birth and its 

subsequent development and adaptations in healthy and diseased hosts are not well under-

stood.

Methods for studying the gut microbiota

The most unbiased and thorough studies of microbial diversity in the human gut have 

come from sequencing the small subunit ribosomal (SSU) RNA gene. This gene has been 

a long-favored phylogenetic marker due to its ubiquitous presence in all microorganisms 
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and its large degree of sequence conservation (Woese et al. 1975, Lane et al. 1985). The 

composition of microbial communities can be deciphered using culture-independent meth-

ods centered around sequencing of SSU rRNA genes (16S rRNA in the case of members 

of Bacteria and Archaea, 18S rRNA in the case of members of Eukaryota). Since members 

of Bacteria dominate most microbial communities, the majority of efforts have centered 

on developing methods for characterizing bacterial 16S rRNA genes. PCR reactions con-

taining primers directed against highly conserved region of this gene are used to generate 

amplicons that span both conserved and variable regions of the 16S rRNA gene. The am-

plicons can then be sequenced, as part of a pool in which each biospecimen’s 16S rRNA 

amplicons are amplified with a unique, sample-specific, error-correcting oligonucleotide 

identifier (‘barcode’), all amplicons from all samples in a given survey are combined, and 

the mixture is subjected to ‘multiplex’ sequencing with massively parallel DNA sequenc-

ers (initially 454 FLX pyrosequencer and most recently Illumina HiSeq2000). However, 

these high-throughput molecular methods, and the computational tools needed to mine 

the resulting datasets became available only in the last several years (Hamady et al. 2008, 

Walters et al. 2011, Caporaso et al. 2011).

The human microbiota have fascinated scientists since the first microscope was 

constructed by Antonie van Leeuwenhoek. At the beginning, microscopy was the primary 

tool for defining diversity in the gut microbiota. This was followed by culture-based ef-

forts, with an explosion in information occurring with the development of robust methods 

for culturing anaerobic bacteria (Hungate 1950, Miller and Wolin 1974, Balch et al. 1979). 

This allowed metabolic and other properties expressed by various species to be delineated 

in pure culture. However, because complex metabolic interrelationships are established 

among members of a microbial community, we have little information about the functional 

capacities of individual species in a community occupying a given habitat, or of the com-

munity as whole.
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One starting point for reconstructing the functional capacity of a community is to 

perform shotgun sequencing of its metagenome (microbiome). This involves random frag-

mentation of a community DNA preparation, and sequencing of the resulting fragments 

(Venter et al. 2004). The sequences (‘reads’) are then compared to known genes in hier-

archically annotated databases, such as KEGG, and assigned to orthologous gene groups 

(e.g., KEGG KOs). Functional profiles of many microbiomes can be compared to one an-

other using a variety of multivariate statistical tools, such as principal coordinate analysis.

Adult gut microbiota

Table 1 provides an abbreviated historical overview of some of the reported metagenomic 

studies of the human gut microbiota and microbiome. These studies have taught us a num-

ber of important lessons. First, within a given individual, the microbiota has a complex 

biogeography (i.e., its composition varies along the length as well as the width of the gut). 

Intrapersonal variation along the length of the distal gut, which harbors the vast majority 

of our gut symbionts, is smaller compared to interpersonal variation. This makes the fecal 

microbiota a reasonable choice for monitoring intrapersonal variations in community ecol-

ogy and for conducting comparative studies of interpersonal differences [a fecal sample is 

easy and safe to procure and 50% of its biomass is microbial, (Eckburg et al. 2005)]. Sec-

ond, the configuration of a persons’ microbiota appears to be unique. However, genetically 

related adult family members share more microbial lineages than unrelated individuals. 

Importantly, the overall degree of phylogenetic similarity between the fecal microbiota of 

monozygotic (MZ) adult twins is not significantly different than the degree of similarity 

between dizygotic adult twins (DZ), underscoring the importance of early environmental 

exposures and implying that host genotype is not solely responsible for the configura-

tion of the gut microbiota. Despite large interpersonal variation in bacterial composition 

of the microbiota, the gene content of the microbiome is more conserved (Turnbaugh et 

al. 2009, Muegge et al. 2011). This has allowed a group of shared genes to be identified 
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and designated as a ‘core microbiome’. Third, compared to the human genome, the gut 

microbiome contains a greater representation of genes encoding enzymes involved in the 

degradation of complex polysaccharides, the metabolism of amino acids and xenobiotics 

as well as the biosynthesis of vitamins (Gill et al., 2006, Turnbaugh et al. 2010, Qin et al. 

2010) ; Fourth, comparisons of 60 phylogenetically diverse, carnivorous, herbivorous and 

omnivorous mammals with three types of gut physiologies (simple gut, hind gut fermen-

ters, foregut fermenters) revealed that diet has been the principal factor that has shaped the 

configuration of the gut microbiota and microbiome during the course of mammalian evo-

lution (Ley et al. 2008; Muegge et al., 2011). Studies in humans, and in gnotobiotic mice 

that harbor human gut microbiota have established the importance of diet in defining com-

munity structure and function (Turnbaugh, Ridaura, et al. 2009, Faith et al. 2011, Muegge 

et al. 2011,Wu et al. 2011).

Table 1. Major sequencing-based studies describing the species and gene content of 

the human gut microbiome.
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The importance of diet in shaping gut microbiota had been recognized long before the 

advent of metagenomic methods (Cannon 1921, Porter and L. Rettger 1940, Torrey 1919). 

A number of experiments were conducted in humans and animals who were fed human 

diets from several days to several months, usually composed of a single ingredient, such 

as ground beef or egg yolks or potatoes (Cannon 1921). In one experiment, fecal micro-

biota was examined in three subjects before, during and after consumption of a diet com-

posed exclusively of meat (Torrey and Montu 1931). Two of the three subjects were Arctic 

explorers who consumed meat for 13 months. During that period the frequency of fecal 

sample collection varied from every 2 -3 days to 6 months resulting in 16 samples from 

one man, and 8 from another. A third subject consumed meat for 10 days during which time 

three fecal samples were obtained. Bacterial diversity was determined by direct micro-

scopic counting of diluted fecal samples spread onto a glass slide and stained with Gram’s 

stain, as well as by culture-based methods. Only a few isolates were identified (at that time 

their assigned taxonomic names were Bacillus coli, Proteus, Enterococcus, Staphylococ-

cus, Lactobacillus acidophilus, B.bifidus and B.welchii). One common observation was 

made across all three humans: direct microscopic count revealed decreased number of 

bacteria when meat diet was consumed, but reverted to the original density when shifted 

to the regular diet. The authors speculated that the decrease in isolation of certain bacteria 

was due to the absence of the carbohydrates required for their growth.

Gut microbiota in humans living in different geographic regions

If the gut microbiota of mammals can be delineated based on the dietary habits of the host, 

is it possible to distinguish human gut microbiomes based on the genetic makeup of the 

human populations and their cultural traditions, especially their dietary habits? Much like 

human haplogroups, is it possible to classify human gut microbiomes based on shared 

taxonomic and functional features and would they overlap with the haplogroups (imply-

ing the influence of genetics)? Does the “map of the human gut microbiome” parallel 
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anthropologic characterizations of human cultural evolution and diversity? Several reports 

have described differences in the bacterial taxonomic composition between various human 

populations: the majority are based on analysis of a handful of subjects and use culture-

based or other methods that did not allow broad sampling of bacterial diversity (e.g., Peach 

et al. 1974). Furthermore, there is a dearth of comprehensive comparisons to date of the gut 

microbiota in healthy people living in economically highly developed versus economically 

least developed countries: a recent report of fecal microbiota in children living in Europe 

(Italy) and West Africa (Burkina Faso) attributed the differences between the two popula-

tions to the differences in dietary habits (De Filippo et al. 2010). Moreover, the functional 

diversity of the gut microbiome in humans living in different parts of the world is largely 

unknown. I will address these questions in the Chapter 3 of my thesis where I compare the 

phylogenetic and functional composition of gut microbial communities in humans living 

in three different countries located on three different continents with distinct cultural tradi-

tions.

Temporal variation of adult microbiota

Any comparison of the gut microbiota of healthy versus sick humans living in a given 

country, or humans from different geographic regions is challenging: i.e., because each 

individual’s microbiota is unique, detection of changes across multiple unrelated people 

may be a daunting task. To understand the differences associated with a given host variable 

(age, gender, physiological phenotype, pathologic state, etc), understanding the degree of 

variation within a healthy person’s gut microbiota is necessary: how does the composition 

of a fecal microbiota sampled at a given time from a given individual compare to his/her 

microbiota sampled a day, a month, or a year earlier? A few studies examining the gut mi-

crobiota of small number of healthy individuals over a short period of time using molecular 

methods such as TGGE and FISH, concluded that intra-individual variation is less than 

inter-individual variation (Zoetendal et al. 1998, Franks et al. 1998). Bacterial 16S rRNA-
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based sequencing followed, allowing broader and less biased methods to estimate this vari-

ation (Les Dethlefsen et al. 2008, L. Dethlefsen and D. A. Relman 2010, Caporaso et al. 

2011). Recently, deep Illumina-based sequencing of 16S rRNA amplicons generated from 

fecal specimens collected from two individuals on a daily basis for up to a year, showed 

that individual’s microbiota is quite variable, with fewer than 10% phylotypes persisting 

(i.e. detectable at the level of sampling employed) over the period surveyed (Caporaso et 

al. 2011). So far there have not been published reports characterizing temporal variation in 

the gene content of the gut microbiome in a cohort of healthy related or unrelated individu-

als. In the chapter 2 of my thesis I address this question by studying seven healthy adult 

female MZ twin pairs: the degree of temporal variation of their gut microbiota and mi-

crobiomes was defined, and effect of consumption of a commercially available fermented 

dairy product on this variation was determined.

Assembly of the gut microbiota in infants

While we have some idea of the structure and function of the healthy adult gut microbiota 

and microbiome, as well as the influence of diet, many questions remain unanswered. How 

and when do we acquire these microbes? Are their identifiable shared versus distinctive 

features of microbiota/microbiome assembly in infants and children living in different 

geographic and cultural contexts? Are we programmed to evolve a microbial community 

peculiar to each of us; how do events experienced early in our lives shape maturation and 

differentiation of our microbiota and microbiome? Descriptions of the patterns of the initial 

microbial colonization of a newborn human began to appear more than a century ago. The 

fact that babies are born ’germ-free’ and then rapidly colonized by bacteria within hours 

of birth was recognized early in the history of microbiology (Rettger and Cheplin 1921). 

Theodor Escherich in 1885 was the first scientist to conduct a systematic survey of feces in 

breast-fed babies starting at birth and through the first few months of life. His observations 

were based on direct microscopy counts and morphological descriptions of cells spread 
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on glass slides (Escherich 1988, Hall and O’Toole 1935). When examining the meconium 

of two infants who died during birth he did not find any bacteria, concluding that the me-

conium was sterile. According to his observations, the “first settlers” in a newborn baby 

were “cocci or yeasts” that were also found in the air, presumably one of the sources of 

colonization. The number of bacterial cells increased within the first 24 hours of life. He 

also noted that the bacilli observed in the meconium of a newborn were also found in the 

feces of that same baby 8–10 days later. In 1899, Henry Tissier isolated Bifidobacterium 

(Bacillus bifidus at that time) from the feces of a breast-fed baby. In 1900, Moro isolated 

Bacillus acidophilus. Both species were claimed to be predominant in an infant gut (Rett-

ger and Cheplin 1921).

Culture-based studies revealed that the complexity of a gut microbiota increases 

with age (Rettger and Cheplin 1921). With the advent of 16S rRNA-based DNA microar-

rays and with more limited amplicon sequencing, Palmer et al. 2007 demonstrated in a 

cohort of 14 children, studied from birth through 1 year of life, that each child appeared to 

have a unique pattern of microbial colonization. Intriguingly, they found a greater degree 

of similarity in the one twin pair enrolled in this study, leading them to conclude that early 

environmental exposures and/or host genetics play an important role.

Despite the seemingly chaotic period of initial microbial colonization, some obvious 

and shared features about initial succession have been defined. Colonization starts within 

hours after birth: in vaginally-delivered infants, members of Proteobacteria dominate in the 

first few days of life followed by Bifidobacteria, which prevail in the first several months of 

life (Favier et al. 2002). The gut microbiota is highly variable within a baby even during the 

period of exclusive breast-feeding. This implies that physiological maturation of the host, 

including the maturation of the innate and adaptive arms of the immune system (which, 

in turn may be influenced by the microbiome itself forming a positive feedback loop), as 

well as other host factors influence community assembly. Variations in the composition of 

mother’s breast milk over the course of lactation, and the influence of this biochemical and 
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immunologic variation on the microbiome are not well described or understood.

During the period of weaning onto solid foods, diversity increases dramatically, 

with greater representation of taxa usually found in adults, such as members of Firmicutes 

and Bacteroidetes. Interestingly, members of Bacteroidetes and Firmicutes have been de-

tected in the first few days of life, which poses a question “is everything there from the 

beginning” and are changes primarily in relative representation of different bacteria in 

response to diet, host physiology and various ill-defined environmental stimuli?

 Many studies reported that microbes that colonize an infant’s gut were derived 

from mother’s skin, vagina and feces, as well as the environment in which birth occurred 

(Dudgeon and Jewesbury 1924, Brook et al. 1979, Mändar and Mikelsaar 1996). A recent 

bacterial 16S rRNA-based study of 10 breast-fed newborn babies and their mothers living 

in Venezuela characterized over a 24 h period reported significant differences in fecal mi-

crobiota composition between babies delivered vaginally versus those delivered by cesar-

ean section (Dominguez-Bello et al. 2010). The fecal microbiota in vaginally-delivered ba-

bies were dominated by species present in their mother’s vagina, while the bacteria present 

on mother’s skin were well represented in the microbiota of infants delivered by C-section. 

However, given the short duration of this study, it was unclear how long these latter taxa 

persisted and how they affected subsequent gut community assembly. It is also unclear how 

many taxa are transmitted from other family members, unrelated caregivers that interact 

with a baby, or other environmental microbial reservoirs (including pets).

Culture-based studies have revealed that the microbiota of formula fed babies is 

quite different from breast-fed. The former have less Bifidobacteria and more Firmicutes 

and Bacteroidetes (H. J. Harmsen et al. 2000, Yoshioka et al. 1983).

Only a handful studies reported the functional changes in the gut microbiomes 

of growing healthy babies (Kurokawa et al. 2007, Koenig et al. 2011). In a report of one 

baby sampled over a year, fecal microbiomes sampled during the first three months of life 
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contained genes involved in utilization of lactose and galactose which are highly abundant 

in breast milk, as well as genes involved in the degradation of sialic acid residues pres-

ent in glycans found in the mucus overlying the gut epithelium. Remarkably, both studies 

reported the presence of genes encoding enzymes involved in the degradation of complex 

polysaccharides in the microbiomes of breast-fed infants implying that the infant gut mi-

crobiome is equipped to utilize complex glycans long before encountering them.

Is the assembly of the gut microbiota follows the same pattern in infants living in 

different parts of the world?

The vast majority of studies of gut microbial community assembly in infants have been 

conducted in Europe and other economically well developed countries. This raises the 

obvious question of what differences exist in the maturation of the gut microbiota and mi-

crobiomes in individuals living in Western societies versus countries where lifestyles and 

cultural traditions are quite different (e.g., where sanitation is poor, and where diets contain 

much less fat and protein)?

De Fillipo et al. (De Filippo et al. 2010) used 16S rRNA sequencing to demonstrate 

differences in the fecal microbiota of 15 Italian children and 14 children living in West 

Africa (Burkina Faso). These children were 1-6 years old: each provided a single fecal 

sample. The microbiota of children living in Burkina Faso had higher representation of 

Bacteroidetes compared to those living in Italy. However, since these children were not 

subjected to serial sampling, it is unknown at what developmental stage these differences 

became evident: i.e. shortly after birth or during weaning on solid foods, or later.

There have been only few (mostly culture-based) studies of infants living in other 

economically least developed or less developed countries (Guatemala, Indi, Ethiopia); they 

have confirmed the prevalence of Enterobacteria in the first few days of life, with subse-

quent shifts to Bifidobacteria dominated communities (Mata and Urrutia, 1971). The ma-

jority of studies of the gut microbiota in economically developing countries have focused 
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on determining whether potential pathogens are present in the stools of children suffering 

from diarrhea and other illnesses. However, no study has been published to my knowledge 

comparing the gut microbiota and microbiomes of healthy infants in developed and devel-

oping countries. I address this question in the Chapter 3 of my thesis.

Is the assembly and function of the gut microbiota compromised in severe childhood 

malnutrition?

Malnutrition is a major global health problem. It is estimated that almost half of all deaths 

in children under five years of age is directly or indirectly caused by malnutrition (UNICEF 

2008).

A person is malnourished (undernourished) if his or her diet does not provide ad-

equate calories and micronutrients for growth and maintenance, or if he or she is unable 

to fully utilize the energy and nutrients contained in the food that he or she eats (UNI-

CEF 2006). Malnutrition is diagnosed using anthropometric measurements of height and 

weight, which are then compared to the median measurements in an international reference 

population adjusted for age and gender. These are converted into Z scores, which describe 

the number of standard deviations from median weight for age (WAZ, a measure of acute 

malnutrition), height for age (HAZ, measure of chronic malnutrition) or weight for height 

(WHZ, another measure of acute malnutrition, UNICEF 2008).

Severe malnutrition, which is defined if a child’s WHZ score is less than -3 or if a 

child presents with edema (WHO 2004) can lead to three syndromes – marasmus, kwashi-

orkor, and marasmic kwashiorkor. Marasmus, derived from the Greek word marasmos or 

wasting, is characterized by severe wasting. The highest incidence of marasmus occurs 

between 6-17-months-of-age (Courtright and Canner 1995, Ahmed et al. 2009). Kwashi-

orkor, the name derived from the Ga language in Ghana meaning “the sickness of the 

weaning”, occurs in about 2% malnourished children, at older ages, usually 1-4 years; it 
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is more difficult to treat, and has a higher mortality rate than marasmus (Scrimshaw and 

Viteri 2010). It is characterized by the presence of edema, fatty liver (hepatic steatosis) 

and de-pigmented skin (Blackburn 2001). Children with marasmic kwashiorkor have both 

wasting and edema.

Kwashiorkor was first described by Cicely Williams in 1931 (Williams 1935). 

A number of hypotheses have been proposed on the etiology of this disease; however, 

none yet received a wide support. A long prevailing hypothesis held that kwashiorkor was 

caused by hypoalbuminemia due to a diet low in protein. However, the diets of children 

with kwashiorkor do not differ from those with marasmus (Golden 2002, Lin et al. 2007). 

Moreover, edematous malnutrition can resolve on a low-protein diet without significant 

accompanying changes in the levels of plasma proteins.

The cause of malnutrition does not result from food insecurity alone. Infectious 

diseases play a large role (Golden 2002, Prentice et al. 2008). For example, infection with 

enteropathogens often leads to diarrhea, one of the leading causes of childhood deaths, 

resulting in nutrient malabsorption and suppression of appetite (Schaible and Kaufmann 

2007,Victora et al. 2008). HIV, malaria and tuberculosis lead to immune suppression. The 

effects of these infectious diseases on gut microbial ecology and in turn on the nutrient 

processing and other metabolic activities of the gut microbiome have not been described. 

Pathogenic organisms have evolved numerous mechanisms for nutrient sequestration from 

the host. For example, reliance on host-derived iron is a feature of members of Yersinia, 

Chlamydia, Salmonella and Mycobacterium (Schaible and Kaufmann 2004).

Severe malnutrition compromises the innate and acquired immune responses, in-

creasing susceptibility to infection (Schaible and Kaufmann 2007). Antibody responses are 

reduced in malnourished children. Severe thymus atrophy, defined by death and decreased 

proliferation of CD4+CD8+ thymocytes, has been observed in malnourished subjects. 

Such abnormalities are reversible with nutritional interventions (Savino et al. 2007).
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Both malnutrition and infection produce changes in gut morphology that may af-

fect the microbiota and nutrient processing. Villus atrophy occurs in the small intestines of 

malnourished hosts (often in the context of a histopathologic state known as environmental 

enteropathy), affecting the surface area available for nutrient processing and absorption 

(Brunser et al. 1968, Welsh et al. 1998, Tabrez and Roberts 2001, Redmond et al. 1971). 

Malnutrition also results in reduced thickness of the polysaccharide-rich mucus slime lay-

er, a microhabitat where embedded microbes can maintain a foothold in the ecosystem and 

avoid washout and where members of the microbiota can physically juxtapose themselves 

in order to effectively establish syntrophic (nutrient sharing) relationships with one anoth-

er, as well as provide protection from invasion of pathogens. Thus, loss of mucus glycans 

could affect the composition, stability as well as the metabolic activities of the microbiota/

microbiome.

Current protocols for the management of moderate and severe malnutrition still 

result in 30% case fatality rates for children with marasmus, and 60% for children with 

kwashiorkor (Collins 2007). Recently, a new dietary formula has been developed that revo-

lutionized treatment of moderate and severe malnutrition. This ready-to-use-therapeutic 

food (RUTF) is a mixture of peanut butter, sugar and milk fortified with vitamins and min-

erals. So far, it has been extensively used in Malawi, where 90% malnourished children 

respond successfully (Linneman et al. 2007). The short term and longer term impact of this 

supplementation on gut microbial ecology and microbiome function has not been defined, 

nor is there information about why it has poor efficacy in some children but not others, or 

whether its success will be comparable in children living in other countries with distinctive 

cultures and diets.

Gut microbiota configuration in children with malnutrition.

The gut microbiota was implicated in the pathogenesis of severe malnutrition, such as 

kwashiorkor several decades ago (Smythe 1958). The hypothesis was that the gut micro-
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biota competes with the host for nutrients thus causing malnutrition, and therefore should 

be ‘eliminated’ using antibiotics. Very few reports exist describing the gut microbiota in 

children affected with severe malnutrition: only one study describes the gut microbiome in 

only one malnourished child: the major findings in this one case were high prevalence of 

enteropathogens and genes associated with them (Gupta et al. 2011). A number of studies 

have reported the presence of ‘bacterial overgrowth’ in the small intestine. Using culture-

based methods (Mata et al. 1972) examined bacteria in the small intestines as well as the 

feces of 13 children with severe malnutrition before, during and after nutritional therapy, 

as well as 4 healthy controls. Bifidobacteria were dominant in the feces of healthy chil-

dren, but in only one third of children who suffered from severe malnutrition. Facultative 

aerobes sometimes outnumbered anaerobes in children with malnutrition, but not in the 

healthy controls. In all cases of malnutrition, the microbiota responded to dietary interven-

tion: total bacterial counts decreased in the jejunal aspirates, and the anaerobic bacteria 

prevailed over facultative anaerobes in feces. Notably, although enteropathogens were not 

detected in the majority of children with malnutrition, most children contained intestinal 

parasites. Importantly, there was no difference seen across all subjects either at the time of 

presentation with malnutrition or as a response to therapeutic intervention in terms of types 

of bacteria that were isolated.

Overview of the dissertation

The central hypotheses of my thesis are as follows: (i) the gut microbiome has a definable 

pattern of functional maturation during postnatal life and this maturation plays a key role in 

myriad physiologic aspects underlying the healthy growth of infants and children; (ii) fea-

tures of this maturation are shared across diverse human populations yet at the same time 

there are definable patterns of microbiome differentiation across ages and cultures/geogra-

phy; (iii) the microbiota and microbiome are biomarkers and mediators of nutritional status 

in children and adults – as such, considerations of the nutritional requirements of humans 
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should incorporate information about the functional potential and/or activities of their mi-

crobiomes; (iv) severe forms of malnutrition are associated with and to some extent caused 

by disruptions in the functions normally encoded and expressed by the gut microbiome.

With these hypotheses in mind, the goal of my thesis was to describe the organismal 

composition and gene content of the gut microbiota/microbiomes of infants and children 

who were severely malnourished, prior to, during and after treatment with a peanut butter-

based RUTF. These infants lived in Malawi, one of the poorest countries in the world 

where malnutrition is rampant. Because of the interpersonal variations that exist in gut mi-

crobial communities, my work focused on twins who were concordant for healthy status or 

who were discordant for marasmus or kwashiorkor. In the case of the discordant twins, and 

in accordance with current standards of care in Malawi, both co-twins were treated with 

RUTF. All twins studied (n=317) were enrolled in a Bill and Melinda Gates Foundation-

sponsored project.

In order to determine if the gut microbiome is altered in malnourished children 

and the degree to which the microbiome responds to a nutritional resuscitation, I needed 

to first describe the variation of the gut microbiome in healthy individuals. In addition, to 

test how applicable my findings from Malawi would be for the rest of the world, I had to 

characterize the organismal and gene content of the microbiomes in healthy humans across 

multiple geographic regions. Therefore, my thesis consists of three parts. In Chapter 2, I 

describe the gut microbiota and microbiome in healthy adult USA MZ twins who were 

each sampled nine times over a four-month period. I found that the microbiota and micro-

biome are variable within each twin, but the variation was less between co-twins compared 

to unrelated individuals. This study helped to establish a baseline variation in the healthy 

adult microbiome. Furthermore, it allowed me to develop methods for analyzing the data-

sets I generated from the fecal microbiota and microbiomes of infants and children during 

the later phases of my thesis. In Chapter 3, I describe the variation in gut microbiota and 

microbiome in 524 healthy adults and children living in three different countries, with 
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very distinct cultural traditions, located on three continents (three metropolitan areas in 

the USA, two villages of Amerindians located in the Amazon region of Venezuela, plus 

four rural villages in Malawi). Interpersonal variation in babies was significantly greater 

than between adults. Nevertheless, related family members shared more features of their 

microbiota and microbiomes than unrelated individuals. In addition, common patterns of 

community assembly, and functional maturation of microbiomes were observed across all 

three countries, as well as distinct features associated with Western versus non-Western so-

cieties. Finally, in Chapter 4 I used metagenomic methods and a variety of computational/

statistical tools to characterize assembly of the gut microbiomes of healthy and severely 

malnourished Malawian twins during their first three years of life, and the effects of RUTF 

on the configuration of their microbiomes. 
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Chapter 2

The impact of a consortium of fermented milk strains on the human gut 
microbiome: a study involving monozygotic twins and gnotobiotic mice
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Abstract

Understanding how the human gut microbiota and host are impacted by probiotic bacterial 

strains requires carefully controlled studies in humans, and in mouse models of the gut eco-

system where potentially confounding variables that are difficult to control in humans can 

be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes 

of adult female monozygotic twin pairs through repeated sampling four weeks prior to, 

seven weeks during, and four weeks following consumption of a commercially-available 

fermented milk product (FMP) containing a consortium of Bifidobacterium animalis sub-

sp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis 

subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring 

a 15-species model human gut microbiota whose genomes contain 58,399 known or pre-

dicted protein-coding genes were studied prior to and after gavage with all five sequenced 

FMP strains. No significant changes in bacterial species composition or in the propor-

tional representation of genes encoding known enzymes were observed in the feces of hu-

mans consuming the FMP, while only minimal changes in microbiota configuration were 

noted in mice following single or repeated gavage with the FMP consortium. However, 

RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabo-

lites disclosed that introducing the FMP strains into mice results in significant changes in 

expression of microbiome-encoded enzymes involved in numerous metabolic pathways, 

most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the 

dominant persistent member of the FMP consortium in gnotobiotic mice, upregulates a 

locus involved in catabolism of xylo-oligosaccharides in vivo compared to growth in vitro, 

underscoring the importance of these sugars to this organism and providing mechanistic 

insight about their potential bifidogenic effects. The human fecal metatranscriptome exhib-

ited significant changes, confined to the period of FMP consumption, that mirror changes 

in gnotobiotic mice, including those related to plant polysaccharide metabolism. These 

experiments illustrate a translational research pipeline for characterizing the effects of fer-

mented milk products on the human gut microbiome.
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Introduction

Our physiology and physiological differences are not only manifestations of our human 

genes and epigenomes, but also a reflection of the genes and genetic variations that exist in 

our resident microbial communities (microbiomes). Our microbiomes contain at least 100 

times more genes than our human genomes (1). Dramatic increases in DNA sequencing 

capacity have led to an explosive increase in the number and types of culture-independent 

metagenomic studies of intra- and interpersonal variations in human microbial ecology — 

as a function of our human lifecycle, cultural traditions, and health status (2-7). Long-term 

goals of this quest to understand the genomic and metabolic underpinnings of our mutually 

beneficial relationships with microbes include using our symbionts as a new class of bio-

sensors and biomarkers of wellness, and devising safe and effective ways to deliberately 

manipulate the structure and functions of our microbiome in order to optimize our health, 

as well as to treat various diseases.

A necessary starting point for assessing how the structure and functions of the hu-

man microbiome are related to our biology is to characterize the normal variations that oc-

cur in these communities, their gene pools, and their gene expression profiles both within 

and between individuals. This requires carefully designed studies where potentially con-

founding variables such as host genotype, diet and various environmental exposures can 

be controlled and systematically manipulated. Monozygotic (MZ) twins represent one way 

to constrain some of these variables, given that they have more similar genotypes and have 

experienced more similar dietary and other early environmental exposures than any other 

combination of individuals. A complementary approach is to use germ-free mice colo-

nized at various points in their life with defined collections of microbes, with sequenced 

genomes, that represent major phylogenetic lineages encountered in the body habitats of 

human populations of interest. Gnotobiotic mice harboring ‘synthetic’ model human mi-

crobiomes, where all component organisms and microbial genes are known, can be reared 

under conditions where a number of the variables that confound human studies are ex-
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tremely well controlled. Insights gleaned from these gnotobiotic animals can be applied 

back to humans (8).

Common intended or unintentional disturbances to our microbiomes include chang-

es in our diets, consumption of antibiotics, and ingestion of live microbial strains posited to 

improve health. The latter include commercially available probiotics that are incorporated 

into fermented milk products (FMPs). With increasing regulatory pressure to validate the 

composition and health claims of probiotics and ‘functional’ foods, it is particularly im-

portant to develop informative translational medicine pipelines so that proof-of-concept 

clinical trials can be performed using validated biomarkers for quantitative phenotyping 

of subjects and of their responses. The present study demonstrates one type of approach. 

It uses adult MZ co-twins and metagenomic methods to first define temporal fluctuations 

in the organismal and gene content and gene expression profiles of their fecal microbial 

communities as a function of administration of a widely used commercial FMP. It then 

takes the five sequenced strains present in the FMP and introduces them as a consortium, 

at a dose analogous to that experienced by humans, into gnotobiotic mice containing a 

model human microbiome composed of 15 sequenced human gut symbionts. Quantitative 

analyses of temporal changes in the proportional representation of microbial species and 

genes, and of microbiome gene expression and metabolism before and after an ecological 

‘invasion’ with the 5-member FMP microbial consortium, has provided insights into the 

ways that FMP strains and the indigenous model gut community respond to one another. 

The transcriptional responses were used as biomarkers to interrogate metatranscriptome 

datasets obtained from the MZ twins’ fecal specimens.
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Results 

Human studies

Study design and assessment of intrapersonal and interpersonal variations in 

the fecal microbiota of monozygotic twin pairs over a four-month period

Details concerning the seven adult MZ twin pairs recruited for this study are provided in 

Table S1. All had been vaginally delivered; none consumed antibiotics in the four months 

prior to and during their participation in the present study; none had a history of gastroin-

testinal diseases (including irritable bowel syndrome) or any other acute or chronic medical 

conditions; none were consuming dietary supplements or probiotics at the time of enroll-

ment; and none had a history of gluten sensitivity or other food allergies, nor were any 

vegans or lacto-vegetarians. 

Fresh lots of a FMP were shipped every two weeks to the participants’ homes from 

the same pilot production facility; strain-specific qPCR-based assays indicated that at the 

time of shipment each gram of the FMP contained on average 3.2x107 genome equivalents 

(GE) of Bifidobacterium animalis subsp. lactis (strain CNCM I-2494) and 6.3x107 GE of 

Lactobacillus delbrueckii subsp. bulgaricus (CNCM I-1632, CNCM I-1519). These results 

were consistent with previous measurements of the number of colony-forming units (cfu) 

in a typical cup of the FMP [4.9x107 cfu/g (B. animalis subsp. lactis), 8.4x107 cfu/g (L. 

delbrueckii subsp. bulgaricus)]. 

Three fecal samples were obtained over the course of a 4-week period prior to 

initiation of FMP consumption (‘pre-treatment phase’; see Fig. 1A). Each co-twin then 

consumed two servings of the FMP per day for 7 weeks (breakfast and dinner). Four fecal 

samples were collected at defined intervals during this treatment period, while two addi-

tional samples were collected during the 4 weeks following cessation of FMP consumption 

(‘post-treatment phase’; Fig. 1A). Participants kept a daily log of their FMP consumption 
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and stool parameters including frequency. Statistical analyses of this log indicated that in 

this population, FMP consumption was associated with significantly softer stools but no 

significant changes in stool frequency (see Supplementary Material). However, based on 

existing regulatory criteria, our study of this small cohort was insufficiently powered to 

draw clinical conclusions about these stool parameters. Moreover, the MZ twin popula-

tion recruited was comprised entirely of healthy individuals, so these data cannot be used 

to make statements about the impact of FMP consumption on stool softness in unhealthy 

patient populations.

All fecal samples collected during the three phases of this study were frozen at 

-20oC within 30 min of their passage, and maintained at this temperature during overnight 

shipment to a biospecimen repository where they were subsequently stored at -80oC prior to 

metagenomic analyses. To assess intra- and interpersonal variations in microbial commu-

nity structure, we performed multiplex 454 FLX pyrosequencing of amplicons generated 

from variable region 2 (V2) of bacterial 16S rRNA genes present in fecal DNA. A total of 

431,700 sequencing reads were obtained from 126 fecal samples (3,426 ± 2,665 sequences 

per sample, Table S2A). Noise due to PCR and pyrosequencing artifacts was removed from 

this dataset using software incorporated into the QIIME suite of 16S rRNA analysis tools 

(9). De-noised reads were binned into species-level phylogenetic types (phylotypes), with 

a species defined as isolates that share ≥97% identity in their 16S rRNA gene sequence. To 

ensure even coverage across samples, each of the 126 datasets was subsampled to 1,640 

reads per fecal microbiota. A phylogenetic tree was built from one representative sequence 

from each phylotype using FastTree’s approximately maximum-likelihood implementation 

(10) and communities were compared using unweighted UniFrac (11): the UniFrac metric 

measures community similarity based on the degree to which their members share branch 

length on a reference phylogenetic tree of Bacteria.

To quantify temporal variation in community composition within and between MZ 

twins, we generated a matrix of unweighted UniFrac distances for all pairwise compari-
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sons of all 126 fecal samples obtained from the twins in our study. This matrix allowed us 

to compare any two fecal communities separated by all possible time intervals between 

sampling for each individual in each of the 7 twin pairs (Fig. 2A). The results indicated 

that no matter how far apart in time sample collection occurred (1 week to 4 months), the 

phylogenetic distance between communities from the same individual was less than the 

distance between communities between co-twins or unrelated individuals. UniFrac dis-

tances between samples harvested from a given individual increased modestly as a function 

of time during the 4-month period, although the changes were not statistically significant 

(Fig. 2A). 

Each sample contained 163±3 (mean±SEM) observed species-level phylotypes. 

Four of the total 1,673 phylotypes identified in our dataset were found in all 126 samples; 

all belonged to the family Lachnospiraceae (order Clostridiales; phylum Firmicutes) and 

represented 2.5±0.04% of the 16S rRNA sequences in each sample. 24.6±0.4% of species-

level phylotypes observed in a given sample were consistently represented in all 9 samples 

from that individual (Fig. 2B): the family-level taxa to which these species belong con-

sist principally of Lachnospiraceae, Ruminococcaceae, and Veillonellaceae (phylum Fir-

micutes), the Bacteroidaceae and Rikenellaceae (phylum Bacteroidetes), and Coriobacte-

riaceae (phylum Actinobacteria). 13.7±0.2% of the observed phylotypes were represented 

in all samples from both co-twins (Fig. 2B).

Impact of FMP consumption on fecal bacterial community composition

A qPCR assay disclosed that 1 week after initiation of FMP consumption, the level 

of representation of B. animalis subsp. lactis (CNCM I-2494) was 107 cell equivalents 

(CE)/g feces; this level was sustained in all 14 individuals throughout the ensuing 7 weeks 

of FMP consumption (i.e., there were no statistically significant differences between the 1, 

2, 4 and 7 week time points as determined by Friedman test with post-hoc correction). The 

Spearman correlation test revealed no significant effect of human family membership on 
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the levels of B. animalis subsp. lactis during FMP consumption. Levels fell to below the 

limits of detection of the assay in all but 4 participants within 2 weeks of cessation of FMP 

consumption (Fig. S1); two of these individuals represented a twin pair, while the other 

two individuals were unrelated to each other.

Co-occurrence analysis (see Supplementary Material) indicated that with the FMP 

dosing schedule used no species-level phylotypes present in the pre-treatment microbiota 

exhibited a statistically significant change in their proportional representation in feces in 

any individual, during or following the period of FMP consumption. In addition, no spe-

cies-level taxa that were undetected in the pre-treatment period appeared and persisted 

during and/or after treatment in any individual (paired t-test, ANOVA). Of course, it is pos-

sible that with even deeper sampling differences might be revealed in feces, or may exist in 

more proximal regions of the gut. Further details of this co-occurrence analysis, including 

the results of tests at the genus and family level, plus deeper sequencing of a subset of twin 

pairs are provided in Supplementary Material. 

Effects of FMP consumption on the functional gene repertoire of the fecal 

microbiome

To determine the effects of FMP consumption on the representation of gene func-

tions in the microbiome, we performed shotgun sequencing on 48 of the fecal DNA prepa-

rations generated from 4 of the MZ twin pairs (n=6 samples/individual; 2 fecal samples 

obtained before, 2 during, and 2 after cessation of FMP consumption; see Fig. 1A). Two 

of these twin pairs lived together, while two pairs lived 3 and 932 miles apart. A 634 Mb 

dataset was generated (60,863±28,775 sequences per sample, average length 238 nt; Table 

S2B). A BLASTX search against version 54 of the Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) GENES database (12-14) yielded a total of 2,205±26 (mean±SEM) KEGG 

Orthology identifiers (KOs) per microbiome sample: 64% of the KOs in a given sample 

(1,417±46) were consistently represented in all 6 samples from that individual; 55% were 
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consistently represented in all samples from both co-twins; 892 KOs (41% of the total KOs 

in a given sample) were identified in all 48 samples forming a core set of shared fecal mi-

crobiome-associated functions. Fig. 2C provides a visual representation of this conserved 

set of 892 KOs: 38% of the 892 belong to six KEGG categories — ‘membrane transport’, 

‘carbohydrate metabolism’, ‘DNA replication and repair,’ ‘amino acid metabolism,’ ‘trans-

lation,’ and ‘metabolism of co-factors and vitamins.’

The proportional representation of KEGG pathways and their component KOs was 

subsequently calculated for each of the 48 microbiomes. The microbiomes were then sub-

jected to all possible pairwise comparisons based on these two classification schemes. The 

results, quantified using the Hellinger distance metric, disclosed that over time, unlike the 

UniFrac-based 16S rRNA comparisons of community bacterial species composition, there 

was no significant difference in the degree of similarity of microbiome functional profiles 

for a given co-twin compared to the degree of similarity that existed between co-twins (i.e., 

intrapersonal variation was not significantly different from interpersonal variation between 

co-twins). However, as with the UniFrac results, individual and twin pair microbiomes 

were significantly more similar to one another than those from unrelated individuals (Fig. 

2D). No KEGG pathways or KOs exhibited a statistically significant change in their rela-

tive abundance in response to FMP consumption in any of the subjects at any of the time 

points (Student’s paired t-test and 2-way ANOVA with Bonferroni post-hoc testing).

At this point in our analysis, the human studies indicated that exposure of a healthy 

individual’s resident gut microbiota to the FMP strains did not produce a detectable pertur-

bation in fecal bacterial species composition, nor did it have a broad effect on the functional 

profile of fecal microbiome genes. To help guide further analysis of the human datasets, we 

turned to a simplified in vivo model of the human gut microbiota. We based our selection 

of model community members on several criteria. All members of this model community, 

or their close relatives, would be represented in the fecal microbiota of the MZ twins and 

other sampled human populations. They would encompass the three major bacterial phyla 
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present in this host habitat (Firmicutes, Bacteroidetes, Actinobacteria), and would have 

deep draft or finished genome sequences available. Gnotobiotic mice harboring such a 

model human microbiome would be used to characterize the impact of FMP strain intro-

duction on the community’s species and microbial gene abundances, as well as the micro-

biome’s transcriptional profile, and to ascertain the impact of the model community on the 

abundance and gene expression profiles of the FMP strains whose genome sequences were 

also known. The knowledge gleaned would then be used to help guide further analysis of 

the human fecal microbiome datasets, including microbial RNA-Seq datasets generated 

from a subset of the human fecal samples.

Studies in gnotobiotic mice

A community of 15 sequenced human gut-derived microbes containing a total of 58,399 

known or predicted protein-coding genes was constructed (Fig. 1B, Table S3). Fig. S2 

uses assigned KOs to provide evidence of the functional similarity of this model human 

microbiome to a collection of 127 genomes generated from cultured members of the human 

gut microbiota, a deeply sampled set of fecal microbiomes obtained from 124 unrelated 

Europeans (1), and deeply sampled microbiomes from a pair of obese MZ co-twins (15).

Fig. 1B presents the study protocol. Two groups of adult 6–8 week old germ-free 

C57Bl/6J male mice were colonized with a single gavage of the 15-member community 

(6x106 cfu/member, total of 9x107 cfu). Each group (n=5 animals) was maintained on a 

low fat, plant polysaccharide-rich diet. Fourteen and fifteen days after gavage with the 

15-member community, both groups of mice were inoculated with a mixture of the five 

FMP strains. One group received a second pair of gavages of the five strains 7d and 8d 

later, and a third pair 21d and 22d after the first inoculation of the FMP consortium (multi-

ple treatment group). Each gavage consisted of a community composed of 2x107 cfu: 25% 

(5x106 cfu) S. thermophilus; 25% B. animalis subsp. lactis, and 25% L. lactis subsp. cremo-

ris, with the remaining 25% split between the two L. delbrueckii subsp. bulgaricus strains 



37

(12.5% each; 2.5x106 cfu/strain). Dosing was based on the following considerations: (i) a 

daily dose of two cups of the FMP contains ~1010 cfu of B. animalis subsp. lactis; (ii) as-

suming ~1014 bacteria in the human gut, the ratio of the number of input B. animalis subsp. 

lactis cfu to the human gut symbiont population is approximately 10-4; (iii) to maintain this 

ratio of 10-4 in mice, and assuming 1011-1012 organisms in the mouse gut, we administered a 

total of 107 B. animalis subsp. lactis cfu per gavage period (one period equals two gavages 

within 24h); (iv) the difference in cfu between the least and most abundant microbial spe-

cies in the FMP product remains ≤2-fold during manufacture and storage; therefore, each 

species in the gavage was represented at equivalent levels. By administering the strain 

consortium directly by gavage, rather than the corresponding commercial fermented milk 

product, we were able to more precisely control dosing and avoid unintended colonization 

of the gnotobiotic mice with other microbial species.

The repertoire of carbohydrate active enzymes (CAZymes) in members of the 

FMP consortium and model human gut microbial community

The genomes of the five FMP strains in this study were sequenced, either com-

pletely (B. animalis subsp. lactis) or at a deep draft level (other four strains) for subsequent 

analyses of their representation in the model community after gavage of gnotobiotic mice 

and so we could define their in vivo patterns of gene expression (Table S3).

Analysis of the 48 CAZyme families (16) identified in the five FMP strains, and the 

126 CAZyme families identified in the 15-member model human microbiota disclosed that 

23 of the 24 CAZyme glycoside hydrolase (GH) families, 11 of the 12 glycosyltransferase 

(GT) families, 4 of the 4 carbohydrate esterase (CE) families, and 4 of the 8 carbohydrate 

binding modules (CBMs) represented in the former were also represented in the latter. 

The FMP consortium contains only six CAZyme families that were not represented in the 

model human gut community. Three of these are associated with L. lactis subsp. cremo-

ris: of these, two are predicted to play roles in the binding and metabolism of chitin (Fig. 
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S3; Table S4), The other three are from B. animalis subsp. lactis: BALAC2494_01193 

encodes a GT39 family mannose transferase involved in O-glycosylation of proteins; 

BALAC2494_01288 specifies a predicted beta-mannanase carrying a C-terminal CBM10 

carbohydrate-binding module predicted to bind cellulose; BALAC2494_01971 gives rise to 

a protein with a CBM23 module predicted to bind mannan.

 Introducing the FMP strain consortium produces minimal changes in the 

species representation of the 15-member model human gut microbiota

We used COmmunity PROfiling by Sequencing (COPRO-Seq), a generally appli-

cable method based on highly parallel DNA sequencing (17), to quantify the proportional 

representation of each component of the 15 member microbiota and of the FMP consortium 

in our gnotobiotic mice. Sequencing reads generated from fecal DNA samples collected 

before, during and after introduction of the FMP strains were analyzed as described in 

Fig. S4A. Briefly, “informative” tags (i.e., reads that can be mapped uniquely to a single 

genome) were first identified. Informative tags were then summed by species to generate 

digital “counts” of abundance. In cases where a read could not be assigned with certain-

ty during COPRO-Seq analysis, it was ignored. To account for this fact, species-specific 

counts were normalized using their “informative genome size” (defined as the percent of 

all possible k-mers a genome can produce that are unique multiplied by the total genome 

length). Multiplex sequencing using the Illumina GA-IIx instrument yielded sufficient 

numbers of reads per sample so that an organism comprising ≥0.003% of the community 

could be detected: for a mouse colonized at 1011-12 cfu/ml cecal contents or feces, this rep-

resents 106 cfu/ml.

COPRO-Seq produced several notable findings. First, community assembly prior 

to introduction of the FMP strains occurred in a highly reproducible manner, both within 

and between the two groups of animals (Fig. S5A, Table S5A). This reproducibility en-

sured that animals in both treatment groups harbored communities with structures compa-



39

rable to one another at the time of administration of the five-member FMP strain consor-

tium. Second, within one week of introducing the FMP strains, either as a single treatment 

or in multiple treatments, B. animalis subsp. lactis and L. lactis were detectable in the fecal 

microbiota (Fig. S5B; Table S5A). These two species persisted in the gut throughout the 

study. Importantly, B. animalis subsp. lactis was the most prominently represented mem-

ber of the FMP consortium in the model human gut microbiota, exhibiting a progressive 

increase in its representation during the 28 days following initial introduction, and reaching 

comparable levels in both the single and multiple treatment groups (up to 1.1%; see Fig. 

S5B). In contrast, S. thermophilus and the two strains of L. delbrueckii subsp. bulgaricus 

were undetectable or intermittently just over the limit of detection in both the single- or 

multi-treatment groups. Third, as with the MZ twin pairs, introduction of the consortium 

led to minimal rearrangements in overall community structure, whether or not the con-

sortium was administered twice in a two-day period or on two subsequent occasions (see 

Table S5B for the results of Mann-Whitney tests of significance for each species at each 

time point surveyed relative to the time point just before initial introduction). Collinsella 

aerofaciens, the lone Actinobacteria in the 15-member community, showed a significant 

reduction in its abundance in both treatment groups immediately following FMP strain 

introduction (Fig. S5C) that persisted through later time points, raising the possibility of 

a competitive relationship between this organism and B. animalis subsp. lactis, the only 

Actinobacteria in the FMP strain consortium.

The B. thetaiotaomicron component of the 15-member human gut microbiota was 

composed of a library of 34,544 randomly inserted transposon mutant strains covering 

3,435 of the organism’s 4,779 genes (72%). As noted in Supplementary Material and Table 

S6, by comparing the representation of mutants in fecal samples before and after introduc-

ing the FMP strains, we were able to determine that their presence did not affect the profile 

of B. thetaiotaomicron’s genetic determinants of fitness in the distal gut.
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Microbial RNA-Seq analysis of the response of B. animalis subsp. lactis to 

the gut environment and members of the 15-member community to the FMP strain 

consortium

Moving beyond COPRO-Seq based structural analysis, we performed microbial 

RNA-Seq analysis to determine the functional impact of exposing the established mod-

el human community to the FMP strains, and to ascertain which FMP consortium genes 

are most highly expressed in the intestines of these animals. B. animalis subsp. lactis at-

tained sufficient abundance in gnotobiotic mice to allow profiling of its transcriptome at 

late time points (days 35, 36, and 42). When its in vivo patterns of gene expression were 

compared with those documented during mid-log and stationary-phase in MRS medium 

and in the commercial FMP (see Supplementary Material and Table S7), we noted that 

the BALAC2494_00604-BALAC2494_00614 locus, encoding enzymes involved in the ca-

tabolism of xylo-oligosaccharides (XOS) (18), was strongly upregulated in vivo (average 

across the locus; 27-fold at the day 42 time point compared to mid-log phase in MRS 

monoculture; 128-fold compared to the FMP, Table S7). Xylose is the main building block 

of dietary hemicelluloses. Addition of this pentose sugar is also one of the first steps in 

O-glycosylation of host mucins. These results support previous observations suggesting 

XOSs may serve as potent ‘bifidogenic factors’, whose consumption increases the densities 

of Bifidobacteria in the gut (19, 20).

Ordination of samples and B. animalis subsp. lactis CAZyme gene expression pat-

terns by correspondence analysis identified additional CAZymes that correlate strongly 

with the in vivo state (Fig. 3), including members of families expected to play roles in 

the degradation of dietary plant polysaccharides [GH43 (xylan beta-xylosidases), GH77 

(4-alpha-glucanotransferases)]. The analysis revealed sets of B. animalis subsp. lactis CA-

Zymes that corresponded well with each growth condition (i.e., MRS medium, commercial 

dairy matrix, and mice). Within each growth condition, the expressed groups of CAZymes 

often had related functions (Fig. 3). 
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We next examined the impact of the FMP strain consortium on expression of genes 

in the 15-member community. In a ‘top-down’ analysis, genes were binned by function 

and the community’s metatranscriptome evaluated in aggregate, ignoring the species from 

which each transcript arose. A complementary ‘bottom-up’ analysis allowed us to deter-

mine how each species in the community responded to the introduction of the FMP con-

sortium.

Top-down analysis of the impact of the FMP strains on the community metatran-

scriptome revealed significant increases in expression of genes falling within the KEGG 

categories ‘carbohydrate metabolism’, and ‘nucleotide metabolism’, while decreases were 

observed in ‘amino acid metabolism’ and ‘lipid metabolism’ (Fig. 4A, Table S8). Peak 

responses in both treatment groups occurred 3 weeks following the first gavage of the FMP 

strains, corresponding to the time of highest representation of B. animalis subsp. lactis in 

the community.

 The genes that exhibited the highest fold-change in expression were heavily skewed 

towards the KEGG categories ‘carbohydrate metabolism’ and ‘membrane transport.’ The 

latter includes a number of ABC- and PTS-type carbohydrate transporters (Table S9). 

When these KEGG category-level responses were subsequently broken down into KEGG 

pathways (Fig. 4B), it was apparent that the most significant responses in the ‘carbohydrate 

metabolism’ category involved increases in ‘starch and sucrose metabolism’, ‘fructose and 

mannose metabolism’, and ‘pentose and glucuronate interconversions.’ 

Transcript data were subsequently binned by enzyme commission (EC) number. 

The levels of mRNAs encoding these ECs at each time point were compared using Shot-

gunFunctionalizerR, an R-based statistical and visualization tool originally designed to 

identify genes significantly enriched or depleted in environmental microbiomes (21, 22). 

Using this approach, we were able to determine that the ‘starch and sucrose metabolism’ 

pathway response to the FMP strains was driven by significant upregulation of genes en-
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coding three enzymes involved in metabolism of dietary plant polysaccharides: (i) EC 

3.2.1.65 (levanase), which cleaves 2,6-beta-D-fructofuranosidic linkages in 2,6-beta-D-

fructans (levans); (ii) EC 3.1.1.11 (pectinesterase), which de-esterifies pectin to pectate 

and methanol; and (iii) EC 2.4.1.20 (cellobiose phosphorylase), which uses cellobiose 

formed from partial hydrolysis of cellulose as its substrate to generate alpha-D-glucose-

1-phosphate and D-glucose. The genes encoding these ECs, which catalyze early steps 

in three entry points of the ‘starch and sucrose metabolism’ KEGG pathway, underwent 

significant increases in their expression within 1d after introduction of the FMP consor-

tium (Fig. 5A). The levels of expression of these genes either increased further (levanase) 

or were sustained (the other two ECs) in both the single and multiple treatment groups 

through the remaining 4 weeks of the experiment (Fig. 5A). The levanase response showed 

remarkable species specificity: this gene is represented in 8 members of the 15-member 

community, yet the community’s transcriptional response is driven almost exclusively by 

the levanase in Bacteroides vulgatus (BVU_1663; Fig. 4C). In contrast, the pectinesterase 

response was distributed across 6 members of the community (B. caccae, B. ovatus, B. the-

taiotaomicron, B. vulgatus, B. WH2, C. aerofaciens), with changes in transcription largely 

due to pectinesterase genes found in B. ovatus (BACOVA_03576, BACOVA_03581, BA-

COVA_04902), B. thetaiotaomicron (BT_4109, BT_4110), B. vulgatus (BVU_1116), and B. 

WH2 (BACWH2_3569, BACWH2_3615). Increases in the proportional abundance of cel-

lobiose phosphorylase transcripts reflected the contributions of three community members: 

B. uniformis, E. rectale, and R. obeum (Table S8).

The KEGG ‘starch and sucrose metabolism’, ‘pentose and glucuronate intercon-

versions’ and ‘pentose phosphate’ pathways process products generated by these three 

enzymes. Fig. 5B shows that many of the other components of these pathways that are 

upregulated in the 15-member community when the FMP strain consortium is introduced. 

ShotgunFunctionalizeR also identified significant increases in the expression of genes en-
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coding five ECs that participate in the generation of propionate and succinate: the induc-

tion occurred within 1d after the FMP strains were introduced and involved acetate kinase 

(EC 2.7.2.1; catalyzes a bidirectional reaction between propanoyl phosphate and propio-

nate), phosphate acetyltransferase (EC 2.3.1.8), methylmalonylCoA decarboxylase (EC 

4.1.1.41), propionylCoA carboxylase (EC 6.4.1.3) and methylmalonylCoA mutase (EC 

5.4.99.2, yields succinylCoA as its product) (Fig. S6). Only a single treatment with the 

FMP consortium was required to produce a sustained response involving the enzymes that 

can yield propionate (Fig. S6). 

A breakdown of RNA-Seq reads by the community member genome to which 

they mapped revealed that the abundance of a species in the 15-member community did 

not necessarily correlate with its contribution to the community transcript pool. At the 

time point sampled immediately prior to invasion (d14), two of the most extreme outliers 

were B. WH2 (comprised 39.6±1.6%; mean±SD) of the community but only contributed 

15.4±2% of the raw reads to the total RNA-Seq read pool) and R. obeum (2.1±0.4 % of 

the community; 18.2±4.4% of the transcript pool) (Fig. S7). These observations indicate 

that community-level transcriptional responses can be driven by species representing small 

fractions of the microbiota. 

Our ‘bottom-up’ analysis is summarized in Fig. S8 and Table S10, and disclosed 

early- and later-responding species. Specifically, there were more significantly highly-

regulated R. obeum transcripts within the community metatranscriptome 1d after gavage 

than would be expected based on its community representation, and more highly regulated 

R. obeum genes in the comparison between day 14 (just before gavage) versus day 15 

metatranscriptomes than between day 14 versus day 42 metatranscriptomes. In contrast, B. 

WH2, Clostridium scindens, and B. uniformis were defined as late responders to the FMP 

consortium. 
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Identifying predictive features from the model community metatranscriptome 

data using a Random Forests classifier

Machine learning techniques employing the random forests classifier can be applied 

to metagenomic data (23) to learn a function that maps a set of input values or predictors 

(in this case relative abundance of KEGG categories, KEGG pathways or ECs in a com-

munity) to a discrete output value (here, the presence/absence of the FMP strains). KEGG 

categories, KEGG pathways and ECs were all able to predict pre-/post- treatment status 

with low estimated generalization error (KEGG categories: 6.7%, ECs: 13.3%, KEGG 

pathways: 10.0%). In all cases, these generalization error rates were less than half of the 

baseline error rate of 33% (i.e., that achieved by always predicting the largest category). 

There were 11 predictive and 5 highly predictive KEGG categories, 35 moderately predic-

tive ECs, and 27 predictive and 4 highly predictive KEGG pathways (Table S11). The 

predictive ECs identified using our supervised classification approach include a number of 

carbohydrate metabolism-related functions that were also identified using ShotgunFunc-

tionalizeR in our top-down analysis. 

Metabolomic analyses

To evaluate the impact of invasion with the 5-member FMP consortium on micro-

bial-host co-metabolism, we performed untargeted gas chromatography-mass spectrom-

etry (GC/MS) on urine samples collected at multiple time points (days 0, 14 and 42) from 

members of the single- and multi-treatment groups (Fig. 1B). A metabolite profile was 

constructed for each urine sample (n=19) using the spectral abundances of all identifiable 

metabolites. A total of 198 metabolites met our reverse match score cutoff of 65% and were 

present in at least 50% of samples at one or more time points (for an explanation of the 

reverse match score, see (24) and Table S12). Comparing day 0 and 14 samples revealed 

39 metabolites whose levels were significantly higher or lower following colonization with 

the defined 15- member community (see Table S12A). The changes included decreases in 
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the levels of oligosaccharides we would expect to be consumed by members of the micro-

biota [melibiose (87% decline); raffinose/maltotriose (98%); note that oligosaccharides are 

by their nature difficult to identify with certainty with the present, non-targeted GC/MS 

technique, and our annotations of these metabolites as melibiose, and raffinose/maltotriose 

are provisional]. The observed 3.4-fold increase in pyrogallol, a polyphenol, is consistent 

with the known ability of many gut microbes to cleave these molecules from polyphenols 

present in dietary plant material. A 4.4-fold increase in taurine following the initial coloni-

zation of mice was also noted, probably a result of microbial deconjugation of taurine from 

bile compounds.

Table S12B lists urinary metabolites that change significantly after introducing the 

five FMP strains (compare day 14 versus 42 in Table S12B). Fructose and xylose were not 

significantly affected by introduction of the defined 15-member community but increased 

significantly following introduction of the FMP strain consortium (2.3- and 2.9-fold, re-

spectively; Fig. 6A,B). Increases in fructose may reflect an enhanced capacity of the com-

munity to liberate this monosaccharide from levan and other polyfructans via levanase-

catalyzed reactions. Increases in xylose might be explained by the additional xylanase 

activity introduced by B. animalis subsp. lactis (Fig. 3), or alternatively by the induction 

of microbiome genes encoding xylan-degrading enzymes ( e.g., BACOVA_04387 and BA-

COVA_04390, which were upregulated 5.2- and 11.0-fold, respectively, following intro-

duction of the FMP strains, Table S10). Changes in other metabolites such as xanthosine 

(Fig. 6C), a purine metabolite, suggest that the metabolic consequences of FMP strain 

introduction extend beyond the processing of carbohydrates.

Collectively, our transcriptional and metabolite analyses indicated that introducing 

FMP strains that constitute a small fraction of a defined model human gut microbiota sig-

nals the microbiota to change its metabolic activities, including activities related to carbo-

hydrate metabolism. With this information in hand, we returned to the human fecal samples 

to determine the extent to which observations made in our gnotobiotic mouse model were 
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applicable to humans.

Microbiome transcriptional responses to FMP strains that are shared by 

gnotobiotic mice and humans

Microbial RNA-Seq analysis was performed on human fecal samples obtained 1 

week prior to FMP consumption, 1 and 4 weeks into the consumption period, and 4 weeks 

following cessation (both co-twins from family 1; one co-twin from family 3; see Table 

S1). Using an analysis pipeline comparable to the one employed for the mouse data, we first 

aligned all RNA-Seq reads against a reference set of 127 human gut microbial genomes 

plus the FMP strain genomes, binned the aligned transcripts based on their EC annotations, 

and used ShotgunFunctionalizeR to identify ECs whose abundances were significantly 

changed as a function of FMP exposure (Benjamini-Hochberg adjusted p-value <0.01).

Categorical analysis of the responses of the human fecal community to FMP con-

sumption revealed that significantly upregulated ECs were principally distributed among 

the KEGG categories ’carbohydrate metabolism’, ’amino acid metabolism’, and ’metabo-

lism of cofactors and vitamins’ (see Table S13 for a complete list of ECs identified from 

the various pairwise comparisons of time points).

Fig. 7 highlights the 86 ECs that were significantly changed (p<0.01) in the same 

direction in all humans and in all sampled mice as a function of exposure to the FMP strain 

consortium. Similar to our findings in mice, the most prominently represented KEGG cat-

egory among up-regulated gene functions in all comparisons of human metatranscriptomes 

was ‘carbohydrate metabolism’ (Fig. 7). The three ECs involved in entry points in the 

KEGG ‘starch and sucrose metabolism’ pathway [levanase (EC 3.2.1.65); pectinesterase 

(EC 3.1.1.11), and cellobiose phosphorylase (EC 2.4.1.20)] were significantly upregulated 

within one week after FMP consumption was initiated in the humans surveyed. This tran-

scriptional response was sustained in the case of levanase and pectinesterase and ceased 
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(fell to below the limits of detection) within four weeks after FMP administration was 

stopped (Fig. 5A). 

ECs involved in succinate and propionate metabolism (EC 2.7.2.1 and EC 6.4.1.3) 

were also upregulated in the human fecal metatranscriptome within 1 week of the initiation 

of FMP consumption (FMP1 versus Pre1, Fig. 7). As with levanase, pectinesterase and cel-

lobiose phosphorylase, this response was sustained during, and subsided after the period of 

FMP consumption (see ‘FMP4 versus Pre1’ and ‘FMP1 versus Pre1’ in Fig. 7 and Table 

S13).

Human fecal transcripts were detected that mapped to the B. animalis subsp. lactis 

genome (see Supplementary Material). The presence of these transcripts was limited to the 

period of FMP consumption, supporting the notion that they emanated from the FMP strain 

rather than from a related species present within the microbiota (Fig. S9). This clear link-

age to FMP consumption was not evident in the case of other members of the consortium, 

so we could not confidently analyze their patterns of gene expression in vivo. The highest 

number of mapped reads to the B. animalis subsp. lactis genome was obtained 1 week after 

FMP administration began: among the 4,000 reads, we were able to detect transcripts from 

all but 1 of the 10 genes in the BALAC2494_00604-BALAC2494_00614 locus that encodes 

enzymes involved in the catabolism of xylo-oligosaccharides, leading us to conclude that 

this locus is highly expressed in the distal human gut, just as it is in our mouse model.
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Discussion

Repeated sampling of seven healthy MZ adult twin pairs over a 4-month period empha-

sized that intrapersonal variation in bacterial community structure was less than interper-

sonal variation, with co-twins having significantly more similar phylogenetic and taxo-

nomic structure in their fecal microbiota compared to those from unrelated individuals 

(9, 25, 26). The results also showed that (i) consumption of a fermented milk product 

containing 5 bacterial strains was not associated with a statistically significant change in 

the proportional representation of resident community members within and between indi-

viduals; (ii) the appearance and disappearance of strains comprising the FMP consortium 

did not exhibit familial patterns in the fecal microbiota; and (iii) B. animalis subsp. lactis 

CNCM I-2494 was the most prominent assayed member of the consortium represented in 

the microbiota during the 7-week period of FMP consumption. Analyses of the fecal gene 

repertoire over the course of the 16 weeks of the experiment indicated that (i) variations in 

the functional features of the (fecal) microbiome were less than the variations in bacterial 

species composition; (ii) there was no significant difference in the degree of similarity in 

representation of KEGG orthology group functions for a given co-twin at each time point 

compared to the degree of similarity that existed between co-twins, while individual and 

twin pair microbiomes were significantly more similar to one another than those from 

unrelated individuals; and (iii) there were no statistically significant changes in the repre-

sentation of these functions when the FMP strain consortium was being consumed. With 

these findings in mind, and with each individual as well as each genetically identical co-

twin serving as a control, we concluded that at least at the depth and frequency of sampling 

employed for this small healthy cohort, the bacterial species and gene content of their fecal 

microbiota/microbiome was not an informative biomarker for understanding whether or 

how this commercial fermented milk product impacted microbial community properties.

Gnotobiotic mice harboring a model 15-member gut microbial community that rep-

resented the three principal bacterial phyla present in the human gut microbiota, and whose 
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58,399 known or predicted protein-coding genes encompassed many of the prominent 

functions present in the normal adult human fecal microbiome, provided a means for char-

acterizing the impact of the 5-member FMP strain consortium on expressed gut microbial 

community functions, and then applying the results to the human fecal specimens collected 

for this study. As with the MZ twins, introduction of the 5-member strain consortium did 

not significantly affect the representation of the 15 species comprising the model human 

microbiota. As with the MZ twins, B. animalis subsp. lactis exhibited the greatest fitness 

of the five FMP strains in the gut, as judged by its prominence and persistence. Unlike the 

human arm of the study, where all subjects consumed the FMP twice daily, the design of 

the mouse study, with its single versus multiple treatment regimens, allowed us to directly 

compare the persistence of FMP consortium members. Only B. animalis subsp. lactis and 

L. lactis subsp. cremoris were able to maintain a foothold in the gut ecosystem at detectable 

levels for the entire 4 week monitoring period after a single dose. In addition, colonization 

levels were not affected by the number of times the FMP strains were administered to mice.

An advantage of constructing the model human gut microbiome was that its entire 

predicted gene repertoire was known. This allowed us to define the impact of introducing 

the FMP strain consortium on the functions expressed by the overall community as well as 

by its individual components. A major theme emanating from our analysis was the effect of 

introducing the FMP consortium on carbohydrate metabolism by the community, as well as 

the effect of the community on a feature of carbohydrate metabolism by B. animalis subsp. 

lactis. The model 15-member community responded to the FMP consortium by inducing 

genes encoding enzymes involved in catalyzing reactions that represent the three entry 

points into the KEGG ‘starch and sucrose metabolic pathway’, as well as enzymes that 

catalyze fermentation of carbohydrates to propionate. The mechanism by which the FMP 

strains elicit this response is unclear at present, but the effect is rapid (occurring within 

the first 24h after invasion) and was persistent whether the consortium was introduced in 

a single set of gavages during a 1-day period, or with subsequent repeated gavage over a 
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several week period. The persistence of both the carbohydrate pathway response, and of 

B. animalis subsp. lactis, suggests but does not prove that the latter may be instrumental in 

instigating and maintaining the former. 

Intriguingly, the carbohydrate response showed features of ‘differentiation.’ As not-

ed in Results, the levanase response was driven almost entirely by changes in transcription 

in just a single species (B. vulgatus), the pectinesterase response by 6 community members 

(B. caccae, B. ovatus, B. thetaiotaomicron, B. vulgatus, B. WH2, C. aerofaciens) and the 

cellobiose phosphorylase response by three components of the defined model human gut 

microbiota (B. uniformis, E. rectale, and R. obeum). Of the 50 genes with predicted xylan-

degrading capacity in the model microbiome (i.e., those encoding enzymes in ECs 3.2.1.37 

and 3.2.1.8), only BACOVA_04387 and BACOVA_04390 (both from B. ovatus) were sig-

nificantly upregulated after FMP strain introduction (this is ignoring xylanase genes en-

coded by FMP strains like B. animalis subsp. lactis). This upregulation in a limited subset 

of the model community coincides with an increase in urinary xylose. 

The ability to attribute EC-level changes to individual genes in specific bacterial 

species was not possible with our RNA-Seq analysis of the human fecal samples. The dif-

ferentiation of carbohydrate responses among bacterial species documented in gnotobiotic 

mice emphasizes a challenge and opportunity that can be addressed in these models: name-

ly, to further delineate the niches, interactions and adaptive resource switching behaviors 

of community members by intentional addition, removal or substitution of taxa, and/or 

by their modification through genetic manipulation. Although requiring significantly more 

animals and loss of the ability to use an animal as its own control, future studies could be 

expanded to include sampling of community gene expression in different segments of the 

small intestine.

The increased expression of genes encoding enzymes involved in the interconver-

sion of propionate and succinate is intriguing given the fact that this short chain fatty acid 
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has been linked in some reports to effects on gastrointestinal transit time. However, work 

in this area has yielded varying results and conclusions, perhaps because of the diversity 

of models and methodologic approaches used (27-30). Propionate may also link the gut 

microbiota and human physiology through its effects on hepatic and adipose tissue me-

tabolism (31). Notably, another group has reported that in the T-bet-/-Rag2-/- mouse model 

of colitis, consumption of a fermented milk product containing a dairy matrix plus the 

same strains used in this study led to increased cecal propionate levels and a reduction in 

intestinal inflammation (32).

The extent of translatability of data from gnotobiotic mouse models harboring col-

lections of sequenced representatives of the human gut microbiota to humans themselves 

needs to be tested further, not only at the transcriptional level but also at the level of com-

munity-host co-metabolism. While current models can and should be evolved to embrace 

more of the diversity present in our gut communities, even with current limitations they can 

serve as part of a pre-clinical discovery pipeline designed to identify candidate biomark-

ers and mediators of the effects of existing or new probiotic strains on the properties of 

microbial communities and their hosts. They also represent an analytic tool for character-

izing the effects of specified dietary components on the indigenous gut community and on 

probiotic species that are deliberately consumed. The results could yield new candidate 

prebiotics that may impact the representation and metabolic properties of probiotic species 

or entrenched members of our gut microbiota and provide the proof-of-mechanism and 

-principle observations needed to justify, direct and interpret human studies.
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Materials and Methods

Human studies

Subject recruitment — Seven MZ female twin pairs aged 21–32 years with BMIs 

ranging from 20-25 kg/m2 were recruited for this study. These twins were long-standing 

participants in the Missouri Adolescent Female Twin Study (MOAFTS; (26, 33)). Proce-

dures for obtaining consent, for providing fecal samples, and for maintaining diaries of 

FMP consumption, and stool frequency and consistency were approved by the Washington 

University Human Studies Committee. 

Other procedures — Methods used for the production and distribution of the FMP 

to study participants, analysis of the effects of FMP consumption on stool parameters, 

qPCR analysis of fecal levels of FMP strains, multiplex pyrosequencing of 16S rRNA 

genes in fecal samples and the FMP, co-occurrence analysis, and shotgun sequencing of 

human fecal microbiomes are described in the Methods section of Supplementary Material.

Studies in gnotobiotic mice

Colonization of germ-free mice — The justification for using mice and the pro-

tocols employed for treating them were approved by the Washington University Animal 

Studies Committee. Animals belonging to the C57Bl/6J inbred strain were maintained in 

plastic flexible film gnotobiotic isolators, and fed a standard autoclaved chow diet (B&K 

rat and mouse autoclavable chow #7378000, Zeigler Bros, Inc) ad libitum. Two groups of 

6-8 week-old germ-free male animals (n=5/group) were colonized with a single gavage of 

500 ml of supplemented TYG medium (TYGs; (34)) containing 15 sequenced human gut-

derived bacterial symbionts (6x106 cfu/strain; total of 9x107 cfu for the community). The 

B. thetaiotaomicron component of this community was composed of a library of 34,544 

transposon mutants prepared as described (34). Fourteen and fifteen days later, both groups 

of mice were gavaged with a mixture of the five FMP strains (each species at 5 x 106 cfu) in 
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300 ul of TYG. One group of mice received a second pair of gavages 7d and 8d later, and 

a third pair of gavages 21d and 22d after the initial FMP strain introduction.

Other procedures — Methods used for sampling animals, COPRO-Seq, INSeq, 

microbial RNA-Seq and non-targeted metabolomics via gas chromatography/mass spec-

trometry (GC/MS) are described in the Methods section of Supplementary Material, as are 

methods for sequencing and annotating FMP strain genomes.
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Figure Legends

Figure 1. Experimental design for human and mouse studies. (A) Human study. Seven 

healthy lean MZ twin pairs were sampled before, during, and after FMP consumption. 

(B) Gnotobiotic mouse study. Two groups of five germ-free mice were colonized by oral 

gavage at 6–8 weeks of age with a 15-member microbial consortium constituting a model 

human gut microbiota (day of gavage denoted by black arrows). Two weeks later, the five 

species FMP strain consortium were administered by oral gavage to each group of mice 

twice over two days (denoted by green arrows). Mice in the single treatment group under-

went no further manipulations while animals in the multiple treatment group received addi-

tional two-day gavages one and three weeks following the first gavage. Samples were col-

lected at the indicated time points for profiling bacterial community membership (shotgun 

and 16S rRNA gene sequencing for human fecal samples, COPRO-Seq for mouse fecal 

and cecal samples), gene expression profiling (microbial RNA-Seq) and metabolite analy-

sis (urines, GC/MS). The species comprising the model 15-member human community and 

the 5-member FMP consortium are listed in the gray and green boxes, respectively. 

Figure 2. Metagenomic studies of human fecal microbiomes sampled over time. (A) 

16S rRNA-based time course study of intra- and interpersonal variations in fecal bacte-

rial community structure during the course of the four-month study. Unweighted UniFrac 

measurements of community distances, from pairwise comparisons of all samples obtained 

from a given individual, from co-twins, and from unrelated individuals are plotted as mean 

values ±SEM. (B) Colored boxes represent the proportion of bacterial phylotypes that were 

consistently present within an individual over time (gray), between co-twins over time 

(orange), and in all 126 fecal samples (red). The white box represents the average num-

ber of species-level phylotypes found in a given sample. All measures of spread provided 

in parentheses represent ±SEM. (C) KEGG Orthology groups (KOs) consistently pres-

ent within the fecal microbiome of an individual over time (gray), between co-twins over 

time (orange), and in all 48 microbiomes analyzed from the four sets of MZ twins during 
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the four-month study (red). The white box indicates the average number of unique KOs 

(±SEM) identified in a particular sample. All measures of spread provided in parentheses 

represent ±SEM. (D) Hellinger distance measurements of fecal microbiomes based on their 

KO content. Tests of statistical significance are based on 1000 permutations of a Hellinger 

distance matrix. Mean values (±SEM) are shown for the three types of comparisons (self-

self; co-twin-co-twin; unrelated-unrelated individual).

Figure 3. Correspondence analysis of B. animalis subsp. lactis CAZyme gene expres-

sion. RNA-Seq data for all B. animalis subsp. lactis genes encoding known or predicted 

CAZymes were subjected to unconstrained correspondence analysis using the ‘vegan’ 

package in R. Correspondence analysis (CA) allows for the generation of biplots in which 

samples and genes can be plotted in the same ordinate space to reveal associations/anti-

associations between the two. Black points represent individual CAZymes (genes). The 

genes ordinating furthest from the origin in the direction of one of the sample clusters 

(treatment groups) are labeled according to their locus number and are colored based on 

CAZyme family assignment (see Table to the right of the Figure for details; the abbrevia-

tion NA refers to no designation). Red triangles represent samples and are labeled accord-

ing to the following nomenclature: LX, logarithmic phase cells in MRS with X being the 

technical replicate number (e.g., L1 refers to the first technical replicate harvested in log 

phase); SX, stationary phase cells in MRS with accompanying replicate number; MX, fe-

ces from designated gnotobiotic animals obtained four weeks after the initial invasion with 

the FMP strain consortium; PX, samples obtained after 3h of fermentation in the FMP dairy 

matrix. Each cluster of samples from a particular treatment is associated with a function-

ally related set of expressed CAZymes.

Figure 4. ‘Top-down’ analysis of the effects of the FMP strain consortium on the mod-

el 15-member community’s metatranscriptome. RNA-Seq reads were mapped to the 

sequenced genomes of the 15 community members. Transcript counts were normalized 

[reads per kb of gene length per million reads (RPKM), see Supplementary Material] and 
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binned using the hierarchical levels of functional annotation employed by KEGG. For each 

KEGG category (A) or pathway (B) shown, boxplots depict the proportion of normalized 

read counts assignable to that annotation out of all reads which could be assigned annota-

tions for that hierarchical level. Data shown correspond to the ‘multiple’ treatment group of 

mice (the group for which the most time points were collected), however, data for all mice 

are provided in Table S8. (C) Illustration of how a model community’s functional response 

(e.g., the increased expression of levanase-encoding genes) can be dissected to identify the 

subset of genes/species driving the response. Boxes denote top quartile, median, and bot-

tom quartile. Whisker length represents 1.5x inter-quartile range (IQR), except where there 

are no outliers; in these situations, whiskers span the range from minimum to maximum 

values. Box color denotes the day fecal samples were obtained (day 14 is the pre-treatment 

timepoint immediately preceding gavage of the FMP strain consortium). When an asterisk 

is centered over a box, it indicates that there was a statistically significant change following 

administration of the FMP consortium relative to the pre-treatment timepoint (p<0.05 by 

paired, two-tailed Student’s t-test). The positioning of asterisks above versus below a box 

emphasizes the direction of change (above, upregulation; below, downregulation).

Figure 5. Mouse and human communities share transcriptional responses to the FMP 

strain consortium involving ECs related to carbohydrate metabolism. (A) Box plots 

of the proportion of all RPKM-normalized reads in mouse and human fecal metatranscrip-

tomes represented by three ECs involved in plant biomass degradation. Individual samples 

are shown as black dots (n=2-10). Boxes are also colored by fold-change, as determined by 

comparing mean values at a given time point to the value at the pre-treatment time point 

[for gnotobiotic mice pre-treatment refers to day 14; in the case of humans, pre-treatment 

refers to the fecal sample collected 1 week prior to initiation of FMP consumption (sample 

‘Pre1’ in Fig. 1A)]. Statistical significance was determined using the ShotgunFunctional-

izeR package in R and an adjusted p-value cutoff of <0.01. Pre-treatment time points, and 

subsequent time points where expression levels were not significantly different from the 
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pre-treatment mean are colored white. (B) Components of KEGG ‘starch and sucrose me-

tabolism’, ‘pentose and glucuronate interconversions’ and ‘pentose phosphate’ pathways 

whose expression in the 15-member model community changed compared to pre-treatment 

values when the 5-member FMP strain consortium was introduced. Gray indicates that the 

fold-change was statistically significant (adjusted p-value <0.01). Ovals highlight the three 

enzymes shown in panel A. Dashed arrows indicate that multiple enzymatic reactions lead 

from these ECs and their indicated substrates to the products shown. These intermediate 

reactions have been omitted for clarity or because the omitted ECs did not manifest signifi-

cant changes in their expression.

Figure 6. Select urinary metabolites whose levels are significantly altered following 

the introduction of the FMP strain consortium into mice harboring a defined model 

human gut microbiota. The statistical significance in pairwise comparisons shown in pan-

els A-C was evaluated using a two-tailed Student’s t-test on the log-transformed spectral 

abundance of the metabolite in each sample. Values for the statistical significance of differ-

ences between time points as evaluated by one-way ANOVA, followed by FDR-correction 

and a post-hoc Tukey HSD test are also provided in Table S12. Horizontal bars represent 

group means, vertical bars represent ± SEM. Abbreviations: *, p < 0.05; **, p < 0.01; n/s, 

not significant.

Figure 7. Shared transcriptional responses to FMP strain exposure in mice and hu-

mans. The heatmap shows ECs that exhibit a statistically significant change in their ex-

pression (ShotgunFunctionalizeR, adjusted p < 0.01) and manifest a consistent direction of 

change in their expression in all four comparisons shown. Comparisons include those where 

the pre-treatment timepoint was compared with a timepoint shortly after FMP strains were 

introduced (mouse: ‘d15 vs d14’, human: ‘FMP1 vs Pre1’) and those where the pre-treat-

ment period was compared to a timepoint several weeks after strain introduction (mouse: 

‘d42multi vs d14’, human: ‘FMP4 vs Pre1’). ‘d42multi’ indicates the multiple-treatment 

group at day 42 of the mouse experiment. The colored boxes correspond to the KEGG cat-
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egories that contain the ECs shown to the right of the heatmap. The scale refers to fold-dif-

ference in the mean of relative abundance of each EC between treatment and pre-treatment 

groups based on the mean number of normalized reads (RPKM) of transcripts assigned to 

a given EC. The 18 ECs shown at the bottom of the Figure are not associated with the five 

prominent KEGG categories listed. Their assigned categories are provided in Table S13.
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Figure 2.
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Figure 3.

In
 v

iv
o

G
en

e
C

A
Zy

fa
m

ily
EC

A
ct

iv
ity

 p
re

di
ct

ed
 b

y 
EC

-3
-2

-1
0

1
2

-2-1012

C
A

1

CA2

B
A

LA
C

24
94

_0
00

04

B
A

LA
C

24
94

_0
06

05 B
A

LA
C

24
94

_0
06

08

B
A

LA
C

24
94

_0
06

12

B
A

LA
C

24
94

_0
06

37

B
A

LA
C

24
94

_0
06

44

B
A

LA
C

24
94

_0
10

67

B
A

LA
C

24
94

_0
11

73

B
A

LA
C

24
94

_0
12

23

B
A

LA
C

24
94

_0
12

33

B
A

LA
C

24
94

_0
13

49

B
A

LA
C

24
94

_0
13

54

B
A

LA
C

24
94

_0
13

59

B
A

LA
C

24
94

_0
13

49
G

T2
2.

4.
1.

-
H

ex
os

yl
tra

ns
fe

ra
se

B
A

LA
C

24
94

_0
13

54
G

T2
2.

4.
1.

-
H

ex
os

yl
tra

ns
fe

ra
se

B
A

LA
C

24
94

_0
13

59
G

T2
2.

4.
1.

83
do

lic
hy

l-p
ho

sp
ha

te
 

β-
D

-m
an

no
sy

ltr
an

sf
er

as
e 

B
A

LA
C

24
94

_0
12

23
G

T2
2.

4.
1.

-
H

ex
os

yl
tra

ns
fe

ra
se

B
A

LA
C

24
94

_0
12

33
G

T2
2.

4.
1.

-
H

ex
os

yl
tra

ns
fe

ra
se

B
A

LA
C

24
94

_0
00

04
G

T2
N

A
N

A

P
ro

du
ct

In
 v

itr
o 

(M
R

S
)

B
A

LA
C

24
94

_0
11

73
G

H
77

2.
4.

1.
25

4-
α

-g
lu

ca
no

tra
ns

fe
ra

se

B
A

LA
C

24
94

_0
06

44
G

H
2

3.
2.

1.
23

β-
ga

la
ct

os
id

as
e

B
A

LA
C

24
94

_0
06

08
G

H
43

3.
2.

1.
37

xy
la

n 
1,

4-
β-

xy
lo

si
da

se
B

A
LA

C
24

94
_0

06
12

G
H

43
3.

2.
1.

37
 | 

3.
2.

1.
55

xy
la

n 
1,

4-
β-

xy
lo

si
da

se
 | 

α
-L

-a
ra

bi
no

fu
ra

no
si

da
se

B
A

LA
C

24
94

_0
06

05
G

H
43

3.
2.

1.
-

G
ly

co
si

da
se

B
A

LA
C

24
94

_0
06

37
G

H
42

3.
2.

1.
23

β-
ga

la
ct

os
id

as
e

B
A

LA
C

24
94

_0
10

67
G

H
42

3.
2.

1.
23

β-
ga

la
ct

os
id

as
e

L1
S

1

L2 S
2

P
1

P
2

P
3

M
8

M
6

M
5

M
10

M
1

M
2

M
3 M

4

M
7

M
9



68

Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Supplementary Material

Supplementary Materials and Methods

Microbial genome sequencing

The following bacterial strains are incorporated into the commercially available FMP: Bifi-

dobacterium animalis subsp. lactis (strain CNCM I-2494); Lactobacillus delbrueckii sub-

sp. bulgaricus (strains CNCM I-1632, CNCM I-1519), Lactococcus lactis subsp. cremoris 

(strain CNCM I-1631), and Streptococcus thermophilus (strain CNCM I-1630). We per-

formed shotgun 454 FLX pyrosequencing of both L. delbrueckii subsp. bulgaricus strains, 

plus the L. lactis subsp. cremoris strain (39-, 41- and 51-fold coverage, respectively). Us-

ing the Newbler assembler (454 Life Sciences) and already sequenced strains of these 

species, we obtained draft genome assemblies with N50 contig sizes of 66,436 and 55,626 

and 55,851 bp, respectively. The total sizes of the assembled L. delbrueckii genomes were 

1,780,478 bp (CNCM I-1632) and 1,808,929 bp (CNCM I-1519), while the L. lactis as-

sembly had an aggregate genome size of 2,511,332 bp. A finished genome sequence of the 

B. animalis subsp. lactis genome and a deep draft assembly of the S. thermophilis genome 

were previously generated by Integrated Genomics (see Table S3 for a summary of ge-

nome metrics).

Annotation and comparative genomic analysis

The genomes of all sequenced bacterial species used in this study were annotated by 

BLAST searches (E-value threshold cutoff <10-5) against version 54 (v54) of the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (S1-3) and the Carbohydrate Ac-

tive Enzyme (CAZy) database (S4). BLAST results were parsed into a lookup table for 

each genome, and each fecal microbiome, using a perl script (lookup_KEGG_for_genes_

BLAST.pl) that assigns a KEGG orthology (KO) number of the top BLAST hit to each 

gene (minimum threshold BLAST e-value = 10-5). In cases where multiple annotated da-
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tabase entries shared the same lowest e-value, the gene was annotated with the KOs from 

each of the entries.

These lookup tables were then used to calculate the ‘coverage ratio’ of each KEGG 

metabolic pathway in each of the FMP consortium’s constituent bacterial genomes using 

the perl script kegg_key.pl. For each K number node of each KEGG metabolic pathway, 

this script searches for a gene that has been assigned that K number by our annotation 

pipeline in (i) a given microbial genome, (ii) defined collections of microbial genomes, or 

(iii) larger, incompletely sequenced microbiomes. For genes with multiple pathway assign-

ments, the corresponding K number was placed in each of the pathways without weighting. 

The file of the percentage of all K number nodes present for each KEGG pathway repre-

sented in each genome or microbiome was then employed for average linkage hierarchical 

clustering in Cluster 3.0 (S5) using an un-centered correlation similarity metric. A heatmap 

visualization of this clustered data was then generated using the Java Treeview application 

(jtreeview.sourceforge.net/).

Culturing of B. animalis subsp. lactis

A frozen stock of B. animalis subsp. lactis (strain CNCM I-2494) was streaked out on 

MRS-agar plates (BD/Difco) and transferred to a Coy chamber for overnight growth at 

37oC under an atmosphere of 5% H2, 20% CO2 and 75% N2. Single colonies were picked 

and inoculated into 10ml of pre-reduced MRS broth (BD/Difco) that had been stored for 

24h in the anaerobic chamber. The medium was not supplemented with cysteine. Each 

culture was passaged four times to stationary phase, during which time test growth curves 

were used to discern growth kinetics. 100ml of an overnight culture was used to inoculate 

10 ml of fresh anaerobic MRS in 27ml Balch tubes with rubber stoppers and aluminum 

crimp tops. The initial headspace of the tubes was composed of 5% H2, 20% CO2, and 75% 

N2 at ambient pressure. Tubes were incubated at 37oC, and 4ml aliquots were collected at 

mid-log phase (9h post-inoculation, OD600=0.2) and during late stationary phase (27h post-
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inoculation, OD600=2.6). Each aliquot from each culture (n=2) was immediately combined 

with 8 ml of RNAprotect Bacteria Reagent (Qiagen), incubated for 5 min at room tempera-

ture, then centrifuged (3,220 x g; 15 min at 25oC). The pellets were snap-frozen in liquid 

nitrogen and stored at -80oC, and total cellular RNA was subsequently isolated as described 

previously (S6).

Human studies

Production and distribution of the FMP to study participants — The FMP used 

for this study was produced in Danone’s pilot plant located in Fort Worth, TX. Batches 

were shipped directly to subjects by an independent delivery service so that the names of 

study participants would remain unknown to all but those in the MOAFTS study group. 

Each subject received four shipments of FMP, spaced at two-week intervals. Each ship-

ment was composed of sufficient numbers of cups (pots) so that study participants could 

consume one 4 oz serving twice a day (each serving consisted of a single pot). Each co-

twin chose her flavors (strawberry, vanilla, and/or peach). The same flavor selection was 

shipped each time. Each subject was allowed to vary the sequence of selected flavors ac-

cording to her wishes.

Analysis of the effects of FMP consumption on stool parameters — Stool consis-

tency, difficulty of passage, and frequency were assessed using a daily stool diary in which 

participants recorded the time of day for each bowel movement. Participants rated the stool 

consistency using the seven point Bristol Stool Form Scale (S7) and the difficulty of pas-

sage using a five-point scale (no difficulty to extreme difficulty).

Quantitative (q) PCR analysis of fecal levels of FMP strains — qPCR was used 

to define the levels of selected FMP strains in fecal samples obtained from MZ co-twins 

and gnotobiotic mice (S8-12). The PCR primer sets targeting each strain’s 16S rRNA gene 

or CRISPR locus are described in Table S14, as are the amplification conditions. Samples 

were analyzed on an Applied Biosystems 7900HT instrument using SYBR green chemis-
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try. Standard curves were constructed using genomic DNA prepared from a known num-

ber of bacterial cells harvested from monocultures grown to stationary phase (cells were 

counted by microscopy after DAPI staining); Ct values for each reaction could, therefore, 

be expressed in terms of cell equivalents (CE).

To calculate the concentration of a given bacterial strain in each fecal sample, three 

serial dilutions of extracted fecal DNA (10ng, 1ng, 0.1ng) were assayed in at least two 

independent qPCR reactions. Ct values falling within the linear range of the assay were 

referenced to the standard curves, while those outside the linear range were excluded from 

the analysis. For human samples, data were log-transformed and normalized to fecal mass 

(log10 CE/g of feces). For mouse samples, data were log-transformed and normalized to 

mass of template DNA (log10 CE/mg DNA).

Multiplex pyrosequencing of 16S rRNA genes in fecal samples and the FMP 

— A total of 126 fecal samples (9 samples per individual) were collected over the course 

of 4 months according to the schedule shown in Fig. 1. All fecal samples were frozen at 

-20oC within 30 min after they were produced, and maintained at this temperature for <24h 

while being shipped to a biospecimen repository. As soon as samples were received, they 

were de-identified and stored at -80°C. DNA was extracted from frozen, pulverized fecal 

samples by bead beating followed by phenol-chloroform extraction, as described previous-

ly (S13). Methods for generating and performing multiplex pyrosequencing of amplicons 

from variable region 2 (V2) of bacterial 16S rRNA genes are described in (S13). Bacterial 

V2 16S rRNA gene sequencing data were pre-processed to remove sequences with low 

quality scores, sequences with ambiguous characters, and sequences outside the length 

bounds (200-300 nucleotides). All subsequent data processing and analyses were done us-

ing QIIME software (S14). Pyrosequencing ‘noise’ was removed with an algorithm imple-

mented in QIIME. 16S rRNA reads were binned according to their sample-specific, error-

correcting barcode incorporated into the reverse primer. Similar sequences were binned 

into phylotypes using CD-HIT with minimum pairwise identity of 97% (S15).
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Aliquots of freshly produced as well as 30 day-old FMP from 6 batches of each 

flavor were sent directly from the pilot production plant to one of our labs using the same 

shipping protocol that was used to deliver the FMP to study participants. DNA was extract-

ed and amplicons from the V2 region of bacterial 16S rRNA were generated and sequenced 

using the protocols described above. 49,959 high quality reads were obtained from a total 

of 33 FMP samples (1,332±187 reads/sample (mean ± S.D)): 43,729 reads of these were 

classified using GreenGenes database (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi), 

and belonged to the genera Streptococccus, Lactococcus, Lactobacillus or Bifidobacterium.

Co-occurrence analysis — To determine whether there were statistically signifi-

cant associations between the presence of B. animalis subsp. lactis and the occurrence of 

resident gut bacterial species-level phylotypes in human fecal samples, a co-occurrence 

analysis was performed using software tools present in QIIME under the script otu_cat-

egory_significance.py. We used this script to employ an ANOVA test to search our fecal 

16S rRNA datasets for phylotypes whose relative abundances were higher in samples in 

which B. animalis subsp. lactis was present versus samples in which B. animalis was ab-

sent, as determined using qPCR. To avoid biases that might be introduced by differences 

in sample sequencing depth, we randomly selected an even number of sequences/sample 

(1,644 sequences) prior to performing the analysis. The raw p-values were corrected for 

multiple tests using the false discovery rate (fdr) correction (S16). We also performed the 

analysis at the genus and family levels by binning all operational taxonomic units (OTUs) 

that mapped to the same family or genus based on classification with the RDP classifier, 

using the summarize_taxa.py script in QIIME.

Shotgun sequencing of fecal microbiomes — Forty-eight fecal samples from 4 

twin pairs were selected for multiplex shotgun pyrosequencing of total community DNA 

(454 FLX chemistry). For each individual, 2 fecal samples were analyzed before initiation 

of FMP consumption, 2 samples during the period when FMP was being consumed, and 2 

samples after consumption had ceased.
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Each fecal community DNA sample was randomly fragmented to an average length 

of 500 bp by nebulization, and then labeled with a distinct MID (Multiplex IDentifier; 

Roche) using the manufacturer’s protocol. Equivalent amounts of 12 MID-labeled samples 

from each family were pooled prior to each pyrosequencer run. Shotgun reads were subse-

quently filtered using publicly available software (S17) to remove (i) all reads less than 60 

bases in length, (ii) LR70 reads with at least one degenerate base (N) or reads with two con-

tinuous and/or three total degenerate bases, (iii) all duplicates, defined as sequences whose 

initial 20 nucleotides were identical and shared an overall identity of >97% throughout 

the length of the shortest read, and (iv) all sequences with significant similarity to human 

reference genomes (BLASTN with e-value < 10-5, bitscore > 50, percent identity > 75%) to 

ensure continued de-identification of samples.

Datasets of reads obtained from shotgun sequencing of the twins’ fecal microbi-

omes were used to query v54 of the KEGG GENES database (Table S15) (BLASTX E val-

ue <10-5, bitscore > 50, and %identity > 50). A comparable annotation was performed for 

published fecal microbiome gene lists that had been generated from 124 deeply sampled 

unrelated adult Europeans (S18), and from a pair of obese adult MOAFTS twins (S19).

Studies in gnotobiotic mice

Using INSeq to assay the determinants of fitness in a saccharolytic member of the 

15-species model human microbiota –INsertion Sequencing (INSeq) is a method based on 

a mutagenic transposon modified so that discrete fragments of adjacent chromosomal DNA 

can be captured when the transposon is excised from bacterial genomes by the restriction 

enzyme MmeI (S20). Sequencing fragments excised from a mixed population of tens of 

thousands of transposon mutants provides information about the location of each transpo-

son in the genome. The number of occurrences of the transposon insertion site sequence 

mirrors the relative abundance of that mutant in the mixed population. By identifying mu-
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tants that significantly decrease in relative abundance after passage through a selective 

condition, INSeq allows a genome-wide map of in vivo fitness determinants to be created.

To determine whether introduction of the FMP strain consortium results in differ-

ences in the in vivo fitness requirements of a human gut symbiont present in the 15-mem-

ber community, B. thetaiotaomicron strain VPI-5482 was mutagenized with the INSeq 

transposon (S20). A library of 34,544 randomly inserted transposon mutant strains cov-

ering 3,435 of the organism’s 4,779 genes was introduced, by gavage, together with the 

other 14 non-mutagenized members of the community into germ-free mice. Fecal samples 

were subsequently collected from each mouse (n = 10) before (d7, d14), immediately after 

(d16), and 7d after (d21) initial introduction of the FMP strains. INSeq libraries were pre-

pared as described (S20) and sequenced using an Illumina GA-IIx instrument (~1,000,000 

36 nt reads/sample; Table S6). Resulting sequences were mapped to the B. thetaiotaomi-

cron reference genome and quantified as described (S20). We found that insertions in 626 

genes showed a significantly decreased relative abundance in the day 14 fecal microbiota 

(multiple hypothesis testing-corrected q< 0.001), reflecting a fitness requirement for these 

genes in the colonization process (Table S6). Analysis of fecal samples collected just prior 

to, plus 1, and plus 7 days after introduction of the FMP consortium established that expo-

sure to the FMP strains did not impose significant new fitness pressures on specific genes 

present in this saccharolytic bacterial species.

Animal sampling — Fecal samples were obtained from each animal at time points 

indicated in Fig. 1. Each fecal sample was collected directly as it emerged from the anus 

into a 1.7ml screw-cap Eppendorf tube, which was immediately deposited in a stainless 

steel dewer containing liquid N2 (the dewer was introduced into the gnotobiotic isolator 

on the day of collection after it had been sterilized in the isolator’s entry port with chlorine 

dioxide spray (Clidox-S; PRL Pharmacal)). Various subsets of samples were subjected to 

COPRO-Seq, INSeq and microbial RNA-Seq analyses. Blood samples were collected into 

lithium heparin tubes (Becton Dickinson), placed immediately on ice, and then centrifuged 
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(2,700 x g for 3min at 4°C). The resulting plasma supernatant was stored at -80oC until as-

say. Urine was collected directly into Eppendorf tubes and immediately frozen in liquid N2. 

Upon sacrifice, ceca were dissected and cecal contents were frozen immediately at -80oC.

Isolation of DNA from cecal contents and feces — Microbial community DNA 

was prepared in a two-step process consisting of a crude extraction step followed by ad-

ditional purification and RNAse treatment.

Crude extraction. The sample (typically 25-100 mg of frozen feces or 50-125mg 

of frozen cecal contents) was combined with 250ml of 0.1mm zirconium beads (BioSpec 

Products), 500ml Buffer A (200mM NaCl, 200mM Tris, 20mM EDTA), 210ml SDS (20% 

v/v, filter-sterilized), and 500ml phenol:chloroform:isoamyl alcohol (25:24:1, pH 7.9, Am-

bion), and the mixture was briefly chilled on ice. Samples were then disrupted using a 

Mini-BeadBeater-8 (BioSpec) set to 'homogenize' (bead-beating for 2 min at room tem-

perature, followed by placement on ice for 1-2 min, followed by bead-beating for 2 min). 

The aqueous phase (~600ml) was then collected after centrifugation (6,800 x g, 3 min, 

4oC), combined with an equal volume of phenol:chloroform in 2 ml ‘light’ phase-lock gel 

tubes (5Prime) per the manufacturer’s protocol. The aqueous phase was combined with 

1 volume of chilled 100% isopropanol (-20oC) and 1/10 volume sodium acetate (3M, pH 

5.5). Following incubation at -20oC for 1h, the precipitate was pelleted (20,800 x g, 20 min, 

4oC), washed in 100% EtOH, dried, and resuspended in 5ml TE (pH 7.0) per milligram of 

original sample material.

RNAse treatment and further purification. Aliquots of crude DNA were transferred 

to a 96-well plate. Buffer PM (Qiagen) was mixed with RNase A (Qiagen) to a final con-

centration of 1.3mg/ml. Three volumes of this mixture were added to each well and the 

reactions were allowed to incubate at room temperature for 2 min. Following RNase di-

gestion, samples were applied to a QIAquick 96 PCR purification plate (Qiagen) and pro-

cessed according to the manufacturer’s instructions using a QIAvac 96 manifold. DNA 
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was eluted in 100ml of Buffer EB (Qiagen). DNA quality and purity were verified using a 

Nanodrop spectrophotometer (model ND-1000).

Preparing DNA libraries for Illumina sequencing and COPRO-Seq analysis in 

a 96-well format — DNA libraries were prepared for sequencing using a modified version 

of Illumina’s sample preparation protocol for generating libraries from genomic DNA. The 

six steps include the following:

(i) Fragmentation. Two micrograms of each purified DNA sample was suspended 

in 100ml Buffer EB and fragmented by sonication in 1.7ml Eppendorfs using the Biorup-

torXL multi-sample sonicator (Diagenode) set on ‘high.’ Samples were sonicated over the 

course of 20 min using successive cycles of 30 sec ‘on’ followed by 30 sec ‘off .’ Sonicated 

samples were subsequently cleaned up using the MinElute 96 UF PCR Purification Kit 

(Qiagen) per the manufacturer's instructions. Each sonicated DNA sample in each well of 

the 96-well plate was eluted with 22ml Buffer EB.

(ii) ‘Add-only’ enzymatic modification. Ten microliter aliquots of eluates described 

in the preceding paragraph were transferred to a 96-well plate where they were subjected 

to enzymatic blunting in 20ml reaction mixture. Each reaction contained: 10ml DNA, 2ml 

T4 DNA ligase buffer [10X; New England Biolabs (NEB), catalogue number B0202S], 1ml 

dNTPs (1mM; NEB, N1201AA), 0.5ml Klenow DNA polymerase (5U/ml; NEB, M0210S), 

T4 PNK (10U/ml; NEB, M0201S), and 6ml molecular grade water. Blunting reactions were 

incubated (25oC, 30 min) then heat-inactivated (75oC, 20 min). Residual dNTPs were de-

phosphorylated by adding 1ml of shrimp alkaline phosphatase (1U/ml; Promega, M820A) 

to each reaction. Reactions were incubated (37oC, 30 min) and heat-inactivated (75oC, 30 

min). Adenine tailing reactions were set up in 30ml reaction volumes that contained 21ml 

of the inactivated phosphatase reaction, 6.4ml T4 DNA ligase buffer (diluted to 1X; NEB, 

B0202S), 0.6ml dATP (5mM), and 2ml Klenow 3'->5' exo- (5U/ml; NEB, M0212L). Reac-

tions were incubated (37 oC, 30 min) and heat-inactivated (75oC, 20 min).
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(iii) Ligation. Customized Illumina adapters containing maximally distant 4bp bar-

codes described elsewhere (S6) were ligated to the polyA-tailed DNA in 50ml reactions as 

follows. Thirty microliters of the inactivated A-tailing reaction described in the preceding 

paragraph were added to 5ml T4 DNA ligase buffer (10X), 5ml adapter mix (1mM final con-

centration per adapter), and 9ml water at 4oC. One microliter of T4 DNA ligase (2,000,000 

U/ml; NEB M0202M) was subsequently added and reactions were incubated (16oC, 1h) 

followed by heat-inactivation (65oC, 10 min). Ligation reactions were cleaned up using the 

MinElute 96 UF PCR Purification Kit (Qiagen) according to the manufacturer’s recom-

mended protocol. DNA was eluted in 22ml Buffer EB.

(iv) Gel Purification. 10ml of each elution was separated by gel electrophoresis 

on 2% agarose. DNA migrating at 200bp was excised and gel slices were purified using a 

QIAquick 96 PCR Purification Kit (Qiagen).

(v) PCR Amplification. Each library was PCR amplified for 19 cycles using Illumi-

na’s standard amplification primers with modifications to impart barcode-specificity (S6) 

and Illumina’s recommended amplification conditions/reagents. Products were purified us-

ing a QIAquick 96 PCR Purification Kit (Qiagen), and an aliquot subjected to 2% agarose 

gel electrophoresis to confirm the absence of significant adapter-dimer contamination.

(vi) Library Pooling and Sequencing. The concentration of each purified library 

was quantified using the Qubit dsDNA HS Assay Kit (Invitrogen). Barcoded libraries were 

subsequently pooled (typically in groups of 16) at equivalent final concentrations. Sequenc-

ing was performed using the standard Illumina GA-IIx sequencing protocol, with libraries 

loaded on the flow cell at a concentration of 2.0-2.5pM).

A custom software pipeline was written in Perl for performing COPRO-Seq data 

processing in a computer cluster environment running Sun Grid Engine. These data pro-

cessing steps are schematized in Fig. S4A. Briefly, raw Illumina GA-IIx reads from a 

sequencing pool were first de-plexed by barcode and trimmed to 34bp (30bp genome se-
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quence + 4bp barcode). Trimmed reads were aligned to the genomes of the 20 microbial 

strains used in this study using Illumina’s ELAND aligner. Perfect, unique alignments to 

the reference genomes were retained, while those mapping less than perfectly or having 

multiple possible alignments to the reference genomes were filtered out, ensuring that only 

high-quality, unambiguous reads were used. Hits to each genome were then tallied, after 

which the summed counts for each genome were normalized by that genome’s ‘informa-

tive genome size’ (term defined in Results) to adjust for both genome size and uniqueness 

relative to all other genomes in the experiment. The Perl scripts supporting the COPRO-

Seq analytic pipeline can be downloaded from: http://gordonlab.wustl.edu/projects/2011-

McNulty_et al.

Characterizing gene expression with microbial RNA-Seq — Following extrac-

tion of total nucleic acid with phenol-chloroform, and precipitation with isopropanol, fecal 

samples were subjected to DNAse digestion (S6). Total RNA was then (i) passed through 

an MEGAClear column (Ambion) to deplete RNAs <200 nt (removing most 5S rRNA 

and tRNA species; (S6)); (ii) subjected to another round of DNAse digestion; (iii) passed 

through another MEGAClear column; and (iv) subjected to a hybridization-based pull-

down of 16S and 23S rRNAs using custom-designed biotinylated oligonucleotides that 

contain short rDNA sequences conserved across a set of 37 human gut-derived sequenced 

microbial genomes (S6). The depletion protocol, which has been adapted to 96-well for-

mat, is described elsewhere (S6). PCR (30 cycles) employing primers directed against the 

most abundant community member (typically Bacteroides WH2), verified the absence of 

detectable gDNA in the purified RNA preparations.

Doubled stranded (ds) cDNA was synthesized using random hexanucleotide prim-

ers. At the conclusion of the reaction, Illumina adapters containing sample-specific 4 nt 

barcodes were ligated to the dscDNA. Multiplex sequencing was performed using the Illu-

mina GA-IIx instrument. We typically sequenced two barcoded in vitro samples/lane of the 
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8-lane flow cell; in vivo samples were not multiplexed (i.e., 1 sample analyzed/lane). This 

allowed us to identify mRNA present at levels representing ≥0.001% of all reads.

The pipeline for processing microbial RNA-Seq data is presented in Fig. S4B. The 

8-20 million 36nt cDNA reads from each sequencing lane were separated by barcode, and 

mapped against the relevant set of genome sequences using the SSAHA2 algorithm (S21) 

to determine the raw unique-match ‘counts’ (reads) for each gene present in the relevant 

microbial genome or microbiome. Reads that mapped non-uniquely were added to each 

gene in proportion to each gene’s fraction of unique-match counts (e.g., a non-unique read 

that maps equally well to gene A with 18 unique reads and gene B with 2 unique reads will 

be scored as 0.9 of a count to gene A, and 0.1 of a count to gene B; the influence of ties 

is negligible for RNA-Seq given the small numbers of distinct genomes, but would be-

come more important with more complex communities). Raw counts were then normalized 

to reads/kb gene length/million mapped reads (RPKM) using one or more gene position 

file(s) in conjunction with custom perl scripts.

Data normalization was carried out at two different levels in this study. For our 

‘top-down’ analysis, data were normalized at the level of the entire community metatran-

scriptome (i.e., raw counts from all species were normalized simultaneously using a single 

gene position file that included the positions of all genes in the model community metatran-

scriptome). Data normalized in top-down fashion allowed us to determine, after binning 

gene expression values by function, how the collective operations of the model community 

were changing as the result of experimental perturbations. In our ‘bottom-up’ analysis, data 

were normalized at the level of individual species (i.e., raw counts from each individual 

species were normalized separately from one another, in each case using a species-specific 

gene position file describing the positions of only that species’ genes). Data normalized in 

bottom-up fashion allowed us to interrogate what statistically significant gene expression 

changes were occurring within a given species of interest.
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Bottom-up normalized transcript data were analyzed by Cyber-T (S22) to identify 

mRNAs that exhibited significant differences in their levels of expression between sam-

ples. For each comparison, transcripts were then binned into a list where the magnitude of 

the difference in their expression was ≥ 4-fold. Binned transcripts were subsequently an-

notated using the kegg_counting.pl perl script described above. Each resulting annotated 

dataset was used to determine the representation of individual genomes and KEGG level 2 

categories within these lists.

Further functional comparisons were carried out using ShotgunFunctionalizeR, an 

R package designed to analyze differences between metagenomic datasets using a Poisson 

statistical model (S23). The kegg_counting.pl script was used to sum RPKM normalized 

reads for all transcripts annotated with an EC number obtained from BLAST to KEGG. 

Summed reads in each EC bin were rounded to integer format, and the data imported into 

ShotgunFunctionalizeR, which was then used to generate lists of transcripts encoding ECs 

that were differentially expressed in various samples.

Identification of predictive KEGG categories, pathways and ECs using a Random 

Forests classifier — To identify KEGG categories, ECs, or pathways that were signifi-

cantly differentiated across treatment states, we used the Random Forests classifier (S24) 

described in (S25). Mouse samples were divided into 10 pre-treatment samples (experi-

mental day 14) and 20 post-treatment samples (experimental days 15 and 42). To estimate 

the generalization error of the classifier we used leave-one-out cross-validation, in which 

each sample’s group was predicted by a classifier trained on the other 29 samples. Training 

was done using default settings for the randomForest package in R (S24). Each feature’s 

predictiveness was estimated by calculating the mean increase in estimated generalization 

error when the values of that feature were permuted at random. Features whose removal 

caused an average error increase of at least 0.1% were labeled as ‘predictive’; those with 

an increase of at least 1% were labeled as ‘highly predictive.’
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Non-targeted metabolomics via gas chromatography/mass spectrometry (GC/

MS) — Urines were first assayed for creatinine content as measured by a modified Jaffe 

method using the three microliter “random-urine” routine and CR-S 3000 reagent on the 

UniCel DxC 600 Synchron Clinical System (Beckman Instruments, Brea, CA). A urine 

volume equivalent to 0.2 micromoles of creatinine was then aliquoted and spiked with 

perdeuterated myristic acid (D27-C14:0) as an internal standard for retention-time locking 

(RTL IS). Following treatment with 7.5 volumes of methanol, the mixture was centrifuged 

and the supernatant was decanted and dried.

Derivatization of all dried supernatants for GC/MS followed a method adapted with 

modifications from that of (S26). Reagents were from Sigma-Aldrich (St. Louis, MO), un-

less otherwise noted. Briefly, certain reactive carbonyls were first methoximated at 50ºC 

with a saturated solution of methoxyamine hydrochloride in dry pyridine, followed by 

replacement of exchangeable protons with trimethylsilyl (TMS) groups using N-methyl-N-

(trimethylsilyl) trifluoroacetamide with a 1% v/v catalytic admixture of trimethylchlorosi-

lane (Thermo-Fisher Scientific, Rockford, IL) at 50ºC.

GC/MS methods generally followed those of Fiehn (S27) and Kind (S28), and used 

a 6890N GC connected to a 5975 Inert single-quadrupole MS (Agilent, Santa Clara, CA). 

A large-volume, ProSep inlet enabled programmed-temperature vaporization and diversion 

of heavy contaminants away from the GC and MS, as described below, greatly reducing 

maintenance time (Apex Technologies, Inc., Independence, KY). The two wall-coated, 

open-tubular GC columns connected in series were both from J&W/Agilent (part 122-

5512), DB5-MS, 15 meters in length, 0.25 mm in diameter, with an 0.25-µm luminal film. 

Prior to each run, initial inlet pressures were empirically adjusted such that the resulting 

retention time (RT) of the TMS-D27-C14:0 standard was set at ~16.727 minutes. Under 

these conditions, derivatized metabolites eluted from the column and reached the electron-

ionization (EI) source in the MS at known times (e.g., bis-TMS-lactic acid at ~6.85 min-

utes, and TMS-cholesterol at ~27.38 minutes). A mid-column, microfluidic splitter (Agi-
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lent) provided a means for hot back-flushing of the upstream GC column at the end of each 

run while the oven was held at 325ºC for a terminal “bake-out” (another antifouling and 

anti-carryover measure analogous to that described in (S29)). During this terminal “bake-

out,” the inlet was also held at 325ºC, and it was purged with a large flow of the carrier gas, 

helium. Positive ions generated with conventional EI at 70 eV were scanned broadly from 

600 to 50 m/z in the detector throughout the run.

Raw data from Agilent’s ChemStation software environment were imported into the 

freeware, Automatic Mass Spectral Deconvolution and Identification Software (AMDIS), 

developed by Drs. Steve Stein, W. Gary Mallard, and their coworkers at National Insti-

tute of Standards and Technology (S30-32); also courtesy of NIST at http://chemdata.nist.

gov/mass-spc/amdis/). Deconvoluted spectra were identified, to the extent possible, using 

several commercial and public spectral libraries. Our primary source was the Fiehn GC/

MS Metabolomics RTL Library (a gift from Agilent Technologies, Santa Clara, CA, part 

number G1676-90000). Additional spectra for comparison were gleaned from the Golm 

Metabolome Library (courtesy of Dr. Joachim Kopka and coworkers at the Max Planck 

Institute of Molecular Plant Physiology, Golm, Germany (S33); http://csbdb.mpimp-golm.

mpg.de/csbdb/gmd/gmd.html), the commercial NIST/EPA/NIH Mass Spectral Library and 

our own purpose-built spectral library. Where indicated, peak alignment was performed 

with SpectConnect freeware (courtesy of Dr. Gregory Stephanopoulos, Massachusetts In-

stitute of Technology, www.spectconnect.mit.edu (S34)). Chemometrics were performed 

with Mass Profiler Professional (a recent descendant of GeneSpring MS, purchased from 

Agilent), along with our own custom macros, written in Visual Basic for use in the Excel 

software environment.

The statistical significance of differences in the log2 spectral abundances of each 

metabolite in samples obtained at different time points was tested using two approaches. 

A first-pass, highly-permissive set of pairwise comparisons was calculated between each 

combination of samples (d0 versus d14, d0 versus d42, d14 versus d42) using a simple 
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two-tailed Student’s t-test. The resulting p-values, which were not corrected for multiple 

hypothesis testing, are listed in Table S12. Given the high ratio of hypotheses tested to 

samples per group (198 metabolites; 5-8 samples per group), we also guarded against false 

discovery by performing a more stringent set of calculations that produced a shorter list 

of metabolites with significant differences in abundance. This latter procedure consisted 

of first taking metabolite data from all three time points and subjecting them to a one-way 

ANOVA. The resulting p-values were then adjusted using Benjamini-Hochberg correction, 

generating q-values. The log2 spectral abundances of all metabolites whose q-values were 

below 0.05 were then subjected to Tukey’s HDS (Honestly Significantly Different) post-

hoc test to determine which time points were significantly different from one another. All 

Tukey’s HDS p-values that were calculated are provided in Table S12.

Supplementary Results

Human studies

Analysis of the effects of FMP consumption on stool consistency, difficulty of passage, 

and frequency — To determine whether there were differences in stool consistency and 

difficulty of passage of stools between pre-treatment, treatment, and post-treatment study 

periods, we first constructed a dataset in which the unit of analysis was ‘bowel move-

ment.’ Using ordinal logistic regression, we analyzed separate models predicting stool con-

sistency and difficulty of stool passage using ‘treatment period’ as the reference group. 

We adjusted for clustering of observations using a Huber-White robust variance estimator 

(STATA 2004). When data from the entire study period were included in the analyses, no 

significant differences were observed between study periods for either stool consistency or 

difficulty passing stool. Next, we conducted an alternate analysis in which data from the 

first two weeks of the treatment and of the post-treatment phases were omitted. We found 

that women had lower stool consistency scores during the last two weeks of the post-
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treatment phase compared to the last two weeks of the treatment phase: i.e., stools were 

softer during the treatment period (OR=0.69; p=0.04). The difference in stool consistency 

between the pre-treatment phase and the last two weeks of the treatment phase was not 

significant; however, there was a significant difference between the pre-treatment versus 

treatment compared to the post-treatment versus treatment odds ratios (p=0.005).

Analyses for stool frequency were conducted similarly to those above with the 

exception that the unit of analysis was the ‘person-day’ (i.e., one observation per person 

per day) and the dependent variable was number of bowel movements per day. We did not 

find stool frequency to be associated with study period regardless of which study days were 

included in the analysis.

One participant had a diarrheal illness on three of the FMP treatment days, with 

a dramatic increase in stool frequency and decrease in stool firmness on these days. She 

reported taking four 2 mg tablets of loperamide [4-(p-chlorophenyl)-4-hydroxy-N, N-di-

methyl- a, a-diphenyl-1-piperidinebutyramide monohydrochloride] to relieve her symp-

toms during this period. Therefore, data from these bowel movements were excluded from 

the analyses.

Co-occurrence analysis — As noted above, to identify species-level phylotypes 

that consistently increase or decrease in abundance when B. animalis subsp. lactis is pres-

ent in human fecal samples, we performed a co-occurrence analysis using QIIME (see 

Supp. Methods). This analysis indicated that no OTUs present in the pre-treatment micro-

biota exhibited a statistically significant change in their proportional representation in feces 

during the period of FMP consumption or during the post-treatment period in any indi-

vidual after correction for multiple tests. The OTU that most nearly achieved significance 

was closely related to Lactococcus lactis (raw p-value = 0.00067, ANOVA: p>0.05 after 

FDR correction). A follow-up co-occurrence analysis for all genera also identified the ge-

nus Lactococcus as being significantly more abundant when B. animalis subsp. lactis was 
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present (the latter determined by qPCR). It is reasonable that L. lactis would co-occur with 

B. animalis subsp. lactis given the presence of both strains in the FMP. A co-occurrence 

analysis performed at the family level of taxonomy failed to identify any significant dif-

ferences.

Our ability to identify L. lactis in our co-occurrence analysis was encouraging, but 

raised the question of why an OTU representing B. animalis subsp. lactis did not achieve 

significance, given that nearly every sample collected during the period of FMP consump-

tion was positive for this strain by qPCR. Of the 58 samples deemed positive for B. ani-

malis subsp. lactis by qPCR, only 7 yielded an OTU in our 16S rRNA dataset with a 

100% identity match to B. animalis subsp. lactis. This OTU was not detected in any of the 

samples deemed negative by qPCR. Therefore, we concluded that the discrepancy between 

B. animalis subsp. lactis being called ‘present’ by qPCR and by 16S rRNA sequencing was 

due to inadequate depth of sequencing. Extrapolating, there could be other rare species 

whose changes in abundance were not detected. To explore this latter possibility, the fecal 

microbiota of two healthy MZ twin pairs, similar in age and body mass index, but with 

marked differences in their degree of geographical proximity (Table S1), were subjected 

to deeper sequencing (n=36 samples, yielding an additional 411,177 16S rRNA sequences, 

resulting in 14,241±2,144 (mean±SD) reads/sample from these individuals). No significant 

changes at any level of bacterial taxonomy were observed in this small sample dataset.

Studies in gnotobiotic mice

Measurement of adiposity — The body weights and epididymal fat pad weights of mice 

from both treatment groups were measured at the time of sacrifice. We observed no signifi-

cant differences between the single and multiple treatment groups in either measurement 

(p=0.6865, p=0.3516, respectively; two-tailed Student’s t-test). Furthermore, all measure-

ments of adiposity and weight were in line with those of mice from other studies that had 

involved animals from the same inbred strain, who were similarly aged, the same gender, 
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on same diet, and who harbored comparable defined model human gut microbiota but 

without FMP strains.

In vitro studies

RNA-Seq profiling of B. animalis subsp. lactis during growth in vitro — Sequencing of 

transcripts expressed by B. animalis subsp. lactis during mid-log phase growth in MRS 

medium (1.5-2.9 million reads per technical replicate; n=2 independent cultures) revealed 

products from 1,618 of the organism’s 1,660 predicted genes, while profiling during late 

stationary phase indicated that 1,609 of its genes were expressed. The transition from log- 

to stationary phase was accompanied by significant up- or down-regulation of 98 and 194 

genes, respectively including those involved in various aspects of carbohydrate, amino 

acid and nucleotide metabolism (see Table S7A for a list).
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Supplementary Figure Legends

Figure S1. Levels of B. animalis subsp. lactis (CNCM I-2494) in human fecal samples 

collected prior to, during and after consumption of a FMP. (A) qPCR assays; each dot 

represents a sample from a given individual. The green bar denotes the period of FMP con-

sumption. (B) Comparison of qPCR results to the number of shotgun reads mapped to the 

genomes of three B. animalis subsp. lactis strains. qPCR results are plotted on the X-axis, 

while the proportional representation of reads that mapped to the B. animalis subsp. lactis 

genomes is presented on the Y-axis.

Figure S2. KEGG pathway coverage ratios suggest that the model human gut mi-

crobiome encodes many of the functions present in more complex human fecal com-

munities. Genes in the (i) genomes of the five-member FMP strain consortium, (ii) the 

15-member model human gut microbiota, (iii) a highly simplified two-member human 

gut microbiota composed of B. thetaiotaomicron and a Firmicute (Eubacterium rectale) 

(S35), (iv) the reference set of 127 sequenced human gut microbial isolates, (v) the deeply 

sampled fecal microbiomes of 124 unrelated adult Europeans [‘METAHIT’,(S18)], (vi) the 

fecal microbiomes of the 7 twin pairs characterized in the present study, and (vii) the deep-

sequenced fecal microbiomes of an obese adult MZ twin pair (S19) were re-annotated us-

ing v54 of the KEGG GENES database. The presence/absence of each KO in each KEGG 

pathway was determined for every set of genes and the pathway coverage ratio (i.e., % of a 

pathway’s components called ‘present’; BLASTP E-value cutoff <10-5) was calculated and 

depicted as the heatma p shown using Cluster 3.0/Treeview. 

Figure S3. CAZyme profiles of the 20 bacterial strains introduced into gnotobiotic 

mice. The indicated genomes were annotated for all glycoside hydrolases (GH), glyco-

syltransferases (GT), carbohydrate binding modules (CBM), and polysaccharide lyases 

(PL) using the CAZy classification scheme. The Bacteroides possess a larger and more 

diverse arsenal of CAZymes relative to the Firmicutes/Actinobacteria. Though most CA-
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Zyme families encoded in the genomes of the FMP strains were also present in defined 

community members. The small number of FMP strain-specific CAZyme families (CBM5, 

CBM10, CBM23, CBM33, GH85, GT39) are highlighted in red. The scale refers the num-

ber of genes in a given CAZy family in a given genome.

Figure S4. Summary of analysis pipelines utilized in this study. (A) COPRO-Seq. (B) 

RNA-Seq.

Figure S5. COPRO-Seq-based time series analysis of the abundance of members of 

the model human microbiota and of the FMP strain consortium in the feces of gnoto-

biotic mice. Relative abundance, expressed as the log10 of percent representation of all de-

tected community members, is defined over time (d0, time of colonization with the model 

15-member community; d14, time of first gavage with the FMP consortium for the single 

and multiple treatment groups; d21 and d35, times of subsequent gavage with the FMP 

consortium for the multiple treatment group). For each treatment, animals were gavaged 

twice over a 24h period. Mean values ± SEM are plotted (n=5 animals/treatment group; 1 

fecal sample/animal/time point; limit of detection = 0.003%). In cases where an error bar 

would extend below the x-axis, only the upper limit and mean are plotted. (A) COPRO-

Seq data for 13 members of the 15 member community (F. prausnitzii and C. spiroforme 

were below the limits of detection throughout the study). (B) Data obtained from the two 

members of the FMP consortium that persisted at levels above the limit of detection fol-

lowing their introduction into mice. (C) Data from panel A representing the response of C 

aerofaciens to introduction of the FMP strain consortium (see text for details).

Figure S6. Top-down analysis of the model community’s transcriptional response to 

the FMP strain consortium reveals upregulation of genes involved in interconversion 

of propionate and succinate. Normalized RNA-Seq data were binned at the level of E.C. 

and comparisons were made between early responses (day 14 versus d15, representing 

time points just before and 1 day after gavage with the strain consortium) and late respons-
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es (days 14 versus 42). Boxes and lines are colored according to the key shown above the 

pathway map and in the legend to panel B of Figure 5.

Figure S7. A species’ contribution to the meta-transcriptome is not necessarily pro-

portional to its abundance in the 15-member community. Microbial RNA-Seq data 

from day 14 of the mouse study were parsed by species to determine the total number 

of reads that each community member contributed to the total sequenced transcript pool 

(‘meta-transcriptome’) (both raw and normalized reads as defined in Fig. S4B). Data were 

further broken down into reads that could be mapped to genes with known functions (as 

defined by KEGG) and those with unknown functions (lacking any K number in the KEGG 

GENES v54 database). Mean values ± S.D. are plotted for each of the four types of data 

presented. Significant differences between a species proportional abundance in the com-

munity (COPRO-Seq) and its contribution to the transcript pool are noted at the bottom of 

the figure next to the species name; the type of transcript data that show significant differ-

ences relative to the COPRO-Seq data are indicated by the colored box next to the species 

name. Note, for example, the large number of raw reads attributed to R. obeum despite its 

low proportional abundance in the community. Conversely, Bacteroides WH2 contributes 

a far smaller proportion of total raw RNA-Seq reads to the pool than its relative abundance 

in the community might have suggested.

Figure S8. Bottom-up analysis of genes whose expression changes significantly fol-

lowing introduction of the FMP strain consortium. (A) Volcano plots of the >48,000 

expressed genes detected in at least one fecal RNA sample. Colored points represent genes 

whose difference in expression followed introduction of the FMP strain consortium was (i) 

≥4-fold (increased or decreased) relative to the d14 pre-treatment time point and (ii) statis-

tically significant (p<0.05; two-tailed Student’s t-test). Dots are colored according to each 

gene’s species of origin (color key shown to the right of the panel). Black dots represent 

genes whose change in expression is <4-fold at the time points indicated and/or not statisti-
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cally significant. See Table S10 for a complete list of all the genes shown as colored dots. 

(B) Species-breakdown of differentially expressed genes. (C) KEGG category breakdown 

of differentially expressed genes, showing that late responses are more numerous than im-

mediate ones, and that there is a noticeable bias towards genes involved in carbohydrate 

and glycan metabolism, particularly in the late response to introduction of the FMP strain 

consortium.

Figure S9. The number of RNA-Seq reads, obtained from human fecal samples, that 

map to genomes in the FMP strain consortium peaks shortly after FMP consump-

tion begins. RNA-Seq reads derived from selected human samples were mapped back to 

the five genomes in the FMP consortium to determine which species’ transcripts could be 

detected over time. B. animalis transcripts were detected only during periods of FMP con-

sumption. Reads attributed to L. lactis, S. thermophilus, and L. delbrueckii at time points 

before consumption began may reflect ‘spurious’ mapping to related endogenous strains 

in the gut community. Facet labels located at the top of each bar chart correspond to the 

sample labels shown in Figure 1A of the main text. Numbers are presented below each 

bar chart correspond to the code number assigned to each de-identified co-twin (see Table 

S1). Sequence data at time points marked ‘long’ represent 72nt reads, while all other data 

represent 36nt reads.
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Supplementary Figures

Figure S1.
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Figure S2.
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Figure S3.
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Figure S4.
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Figure S5.

A

B C. aerofaciens abundance over time
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Figure S6.
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Figure S7.
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Figure S8.
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Figure S9.
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Supplementary Table Legends

Table S1. Characteristics of adult female monozygotic (MZ) twins enrolled in study.

Table S2. Summary of human fecal metagenomic datasets. (A) Multiplex pyrosequenc-

ing of fecal bacterial 16S rRNA V2 amplicons. (B) Multiplex shotgun pyrosequencing of 

total fecal community DNA.

Table S3. Features of the microbial genomes in the 5-member FMP strain consortium 

and the 15-member model human gut microbiota.

Table S4. Carbohydrate active enzyme (CAZy) annotation data. (A) CAZy summaries 

by genome. (B) CAZy annotations for the 20 bacterial species in this study.

Table S5. COPRO-Seq analysis of bacterial species abundance in mouse fecal sam-

ples. (A) Proportional representation of the 20 bacterial species in this study in mouse fecal 

samples as measured by COPRO-Seq. (B) Statistical significance and fold-change of dif-

ferences in pairwise comparisons of abundance calculated from data in panel A. The group 

mean for each day/treatment/species combination at time points after the introduction of 

the FMP strain consortium was compared to the mean for the same treatment/species at 

d14 (the last time point collected prior to introduction of the FMP strains) using Welch’s 

t-test. Values have not been corrected for multiple hypothesis testing. p-values <0.05 are 

highlighted in pink. Fold-changes greater than 2 or less than -2 are highlighted in pink and 

green, respectively.

Table S6. INSeq analysis. (A) INSeq analysis sequencing statistics. Scale factor corre-

sponds to counts per million normalization; underrepresented samples were re-sequenced 

and combined with original data so that all samples were represented by ~1 million reads. 

(B) Genes required by B. thetaiotaomicron for survival in the intestines of mice harboring 

the 15-member model human gut microbiota. The table describes the relative abundance of 

transposon insertions in each gene (rows) in the input community (average of two indepen-
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dent technical replicates) and in the output communities (fecal samples collected from 10 

mice two weeks after introduction of the synthetic model community, immediately prior to 

introduction of the FMP strain consortium). A z-test was used to identify genes whose log-

transformed output to input ratios were significantly different from the overall distribution 

(a uniform value of 1 was added to all counts, and genes with no insertions were removed 

to allow ratios to be calculated). Resultant p-values were corrected for multiple hypothesis 

testing by q-test (S36). Genes assigned a q < 0.001 are highlighted in red. Data filtering, 

normalization, mapping, and statistical analysis were conducted in Perl and Matlab.

Table S7. Differentially expressed B. animalis subsp. lactis (CNCM I-2494) genes. (A) 

Log versus stationary growth in MRS medium. (B) In vivo (mouse) versus in vitro (log-

phase in MRS) growth.

Table S8. Top-down function-level analysis of the impact of the FMP strain consor-

tium on the model human gut microbiota’s metatranscriptome. (A) Proportional rep-

resentation of assignable normalized RNA-Seq counts binned by KEGG category in fecal 

samples collected over time from singly and multiply-treated animals. (B) Proportional 

representation of assignable normalized RNA-Seq counts binned by KEGG pathway in 

fecal samples collected over time from singly and multiply-treated animals.

Table S9. Model human gut microbiota membrane transport genes demonstrating 

≥4-fold increases or decreases in their expression following introduction of the FMP 

strain consortium.

Table S10. Bottom-up (gene-level) analysis of the impact of the FMP strain consortium 

on the model community’s metatranscriptome. (A) Breakdown by microbial species of 

significantly up/down-regulated genes. (B) Breakdown by KEGG category of significantly 

up/down-regulated genes. (C) Model community microbiome genes demonstrating sig-

nificant increases/decreases in their expression following introduction of the FMP strain 

consortium.
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Table S11. Results of Random Forests supervised classification analysis.

Table S12. Urine metabolites whose levels change significantly in transitions between 

colonization states. The ‘Reverse match score’ column contains the AMDIS, dot-product, 

reverse-match scores (S32) which in this case evaluate not only mass-spectral concordance, 

but also the goodness of fit of chromatographic retention-time index made by comparison 

to (i) commercial and public target-compound libraries of small metabolites (S28, 33), and 

(ii) our own in-house reference library. Metabolites with match scores less than an arbitrary 

threshold of 65% were excluded from these results. (A) Day 0 (germ-free) versus day 14 

(colonized with 15-member model community). (B) Day 14 (colonized with 15-member 

model community) versus day 42 (colonized with 15-member model community plus five-

member FMP consortium).

Table S13. ShotgunFunctionalizeR analysis of EC-level changes in the metatranscrip-

tome as a function of FMP strain introduction into mice and humans. The table shows 

fold-change in mean proportional representation of each EC between groups for each com-

parison. Values for nonsignificant EC changes in a comparison (adjusted p≥0.01, Shotgun-

FunctionalizeR) are reported as “NS”. Note that ECs can have multiple KEGG pathway 

and category assignments.

Table S14. Primers and amplification conditions used for quantitative PCR assays of 

FMP consortium strains in fecal DNA. (A) Primers used to assay human fecal samples. 

(B) Primers used to assay mouse fecal samples. (C) Amplification conditions.

Table S15. List of 127 human gut microbial genomes used to annotate human fecal 

microbiome datasets.
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Supplementary Tables

Table S1.

Table	  S1.	  Characteris1cs	  of	  adult	  female	  monozygo1c	  (MZ)	  twins	  enrolled	  in	  study.

Family	  ID Twin	  ID
Age	  at	  enrollment	  

(years)

BMI	  at	  
enrollment	  

(kg/m2)

Physical	  distance	  
between	  co-‐twins	  

(miles)

BreasJed,	  Y/N	  

(length)1
Fermented	  milk	  product	  flavor(s)	  selected	  

(4	  shipments)

F1 F1T1 27 23 3 No 27	  strawberry,	  9	  peach
F1 F1T2 27 23 3 No 27	  strawberry,	  9	  vanilla
F2 F2T1 27 20 11 NA 12	  strawberry,	  12	  peach,	  12	  vanilla
F2 F2T2 27 21 11 NA 12	  strawberry,	  12	  peach,	  12	  vanilla
F3 F3T1 23 21 0 NA 12	  strawberry,	  12	  peach,	  12	  vanilla
F3 F3T2 23 23 0 NA 12	  strawberry,	  12	  peach,	  12	  vanilla
F4 F4T1 23 26 0 NA 18	  strawberry,	  18	  peach
F4 F4T2 23 23 0 NA 18	  strawberry,	  18	  peach
F5 F5T1 27 21 932 Yes	  (2	  months) 36	  peach
F5 F5T2 27 21 932 Yes	  (2	  months) 18	  peach,	  18	  strawberry
F6 F6T1 31 21 1926 NA 36	  vanilla
F6 F6T2 31 20 1926 NA 12	  strawberry,	  12	  peach,	  12	  vanilla
F7 F7T1 32 24 770 NA 12	  strawberry,	  12	  peach,	  12	  vanilla
F7 F7T2 32 21 770 NA 18	  strawberry,	  18	  vanilla

1NA	  =	  breasFeeding	  data	  not	  available
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Table S2.
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F4T1Post4 44105 34134 4	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F4T1Pre1 46610 39617 1	  week	  before	  start	  of	  FMP	  consump-on
F4T1Pre4 61274 50261 4	  weeks	  before	  start	  of	  FMP	  consump-on
F4T2FMP4 45720 38928 4	  weeks	  into	  FMP	  consump-on
F4T2FMP7 44513 35448 7	  weeks	  into	  FMP	  consump-on
F4T2Post2 35497 27596 2	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F4T2Post4 64160 48809 4	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F4T2Pre1 32380 25396 1	  week	  before	  start	  of	  FMP	  consump-on
F4T2Pre4 57289 50679 4	  weeks	  before	  start	  of	  FMP	  consump-on
F5T1FMP4 35261 33254 4	  weeks	  into	  FMP	  consump-on
F5T1FMP7 68995 65919 7	  weeks	  into	  FMP	  consump-on
F5T1Post2 47394 44885 2	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F5T1Post4 58502 49499 4	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F5T1Pre1 62935 57038 1	  week	  before	  start	  of	  FMP	  consump-on
F5T1Pre4 56065 50262 4	  weeks	  before	  start	  of	  FMP	  consump-on
F5T2FMP4 70374 61573 4	  weeks	  into	  FMP	  consump-on
F5T2FMP7 149079 129330 7	  weeks	  into	  FMP	  consump-on
F5T2Post2 83963 71274 2	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F5T2Post4 212675 184097 4	  weeks	  aFer	  cessa-on	  of	  FMP	  consump-on
F5T2Pre1 46874 44073 1	  week	  before	  start	  of	  FMP	  consump-on
F5T2Pre4 85328 72400 4	  weeks	  before	  start	  of	  FMP	  consump-on

*	  Sequences	  used	  aFer	  removing	  poor	  quality,	  duplicate	  and	  human	  sequences
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Tables S3 — S4.

Please reference provided CD for these tables.
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Tables S6 — S10.

Please reference provided CD for these tables.
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Table S11.

A.	  'Predic+ve'	  and	  'highly	  predic+ve'	  KEGG	  categories.

KEGG	  category Importance	  score
Germina3on 0.053574154 Highly	  predic3ve
Sporula3on 0.048158403 Predic3ve
Cell	  mo3lity	  and	  secre3on 0.030330699
Func3on	  unknown 0.020830591
Amino	  acid	  metabolism 0.014304414
Lipid	  metabolism 0.007210555
Metabolism	  of	  other	  amino	  acids 0.006722455
Carbohydrate	  metabolism 0.006280581
Environmental	  adapta3on 0.003092801
Cell	  growth	  and	  death 0.002750286
Pores	  ion	  channels 0.002355375
Transla3on 0.002096304
Transcrip3on	  related	  proteins 0.002061799
Transport	  and	  catabolism 0.001905376
Signaling	  Molecules	  and	  interac3on 0.001858913
Transcrip3on 0.001481509

B.	  'Predic+ve'	  and	  'highly	  predic+ve'	  KEGG	  pathways.

KEGG	  pathway Importance	  score
Atrazine	  degrada3on 0.0231 Highly	  predic3ve
Novobiocin	  biosynthesis 0.0197 Predic3ve
Isoquinoline	  alkaloid	  biosynthesis 0.0161
Pentose	  and	  glucuronate	  interconversions 0.0119
FaTy	  acid	  metabolism 0.0080
Fructose	  and	  mannose	  metabolism 0.0072
Alanine	  	  aspartate	  and	  glutamate	  metabolism 0.0072
beta-‐Alanine	  metabolism 0.0062
Nitrogen	  metabolism 0.0060
Inositol	  phosphate	  metabolism 0.0059
Arachidonic	  acid	  metabolism 0.0057
Carbazole	  degrada3on 0.0054
Taurine	  and	  hypotaurine	  metabolism 0.0053
Steroid	  hormone	  biosynthesis 0.0045
Sphingolipid	  metabolism 0.0044
Phenylalanine	  metabolism 0.0037
Pyruvate	  metabolism 0.0036
Prion	  diseases 0.0034
Carbon	  fixa3on	  in	  photosynthe3c	  organisms 0.0032
Streptomycin	  biosynthesis 0.0029
Arginine	  and	  proline	  metabolism 0.0024
Starch	  and	  sucrose	  metabolism 0.0023
Other	  glycan	  degrada3on 0.0022
Flavone	  and	  flavonol	  biosynthesis 0.0020
Alzheimers	  disease 0.0015
Selenoamino	  acid	  metabolism 0.0014
Styrene	  degrada3on 0.0013
Transla3on	  factors 0.0013
Sulfur	  metabolism 0.0013
Lysosome 0.0012
Benzoate	  degrada3on	  via	  hydroxyla3on 0.0011

Table	  S11.	  Gene	  expression	  profile	  features	  with	  predic+ve	  value	  for	  classifying	  mouse	  fecal	  samples	  by	  treatment	  status	  (i.e.	  pre-‐	  versus	  post-‐
treatment	  with	  the	  FMP	  consor+um).
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C.	  'Predic+ve'	  and	  'highly	  predic+ve'	  enzyme	  commission	  (EC)	  numbers.

Enzyme	  commission	  (EC)	  number Importance	  score
tRNA-‐specific	  adenosine	  deaminase	  [EC:3.5.4.-‐] 0.009528252 Predic3ve
malate	  dehydrogenase	  (oxaloacetate-‐decarboxyla3ng)(NADP+)	  [EC:1.1.1.40] 0.00848779
fructoselysine	  6-‐phosphate	  deglycase	  [EC:3.5.-‐.-‐] 0.008074793
aspartate	  aminotransferase	  [EC:2.6.1.1] 0.007070721
L-‐rhamnose	  isomerase	  [EC:5.3.1.14] 0.005562481
xylose	  isomerase	  [EC:5.3.1.5] 0.004887727
endoribonuclease	  Dicer	  [EC:3.1.26.-‐] 0.003280151
pec3nesterase	  [EC:3.1.1.11] 0.003260817
feruloyl-‐CoA	  synthase	  [EC:6.2.1.34] 0.003150745
inosose	  dehydratase	  [EC:4.2.1.44] 0.002515511
GDPmannose	  4,6-‐dehydratase	  [EC:4.2.1.47] 0.002275375
diaminopimelate	  dehydrogenase	  [EC:1.4.1.16] 0.002246208
foldase	  protein	  PrsA	  [EC:5.2.1.8] 0.002009365
sialidase-‐1	  [EC:3.2.1.18] 0.001700689
arabinogalactan	  endo-‐1,4-‐beta-‐galactosidase	  [EC:3.2.1.89] 0.001672472
alanine	  dehydrogenase	  [EC:1.4.1.1] 0.001672122
2',3'-‐cyclic-‐nucleo3de	  2'-‐phosphodiesterase	  [EC:3.1.4.16] 0.00164777
threonyl-‐tRNA	  synthetase	  [EC:6.1.1.3] 0.001639447
transcrip3onal	  repressor	  NF-‐X1	  [EC:6.3.2.-‐] 0.001557477
his3dinol-‐phosphate	  aminotransferase	  [EC:2.6.1.9] 0.001556015
4-‐hydroxyphenylacetate-‐3-‐hydroxylase	  large	  chain	  [EC:1.14.13.3] 0.001490383
GTP	  cyclohydrolase	  II	  [EC:3.5.4.25] 0.001453787
site-‐specific	  DNA-‐methyltransferase	  (cytosine-‐N4-‐specific)	  [EC:2.1.1.113] 0.001353193
GTP	  cyclohydrolase	  II	  [EC:3.5.4.25] 0.001337456
leucyl-‐tRNA	  synthetase	  [EC:6.1.1.4] 0.001319817
pep3de-‐methionine	  (S)-‐S-‐oxide	  reductase	  [EC:1.8.4.11] 0.001315217
rubredoxin-‐NAD+	  reductase	  [EC:1.18.1.1] 0.001287784
3-‐oxo-‐5-‐alpha-‐steroid	  4-‐dehydrogenase	  3	  [EC:1.3.99.5] 0.001245141
4-‐hydroxy	  2-‐oxovalerate	  aldolase	  [EC:4.1.3.39] 0.001240895
transcrip3onal	  ac3vator	  TenA	  [EC:3.5.99.2] 0.001227339
choline-‐sulfatase	  [EC:3.1.6.6] 0.001184942
threonine	  3-‐dehydrogenase	  [EC:1.1.1.103] 0.001162346
lysostaphin	  [EC:3.4.24.75] 0.001128836
formyltetrahydrofolate	  deformylase	  [EC:3.5.1.10] 0.001064236
cyclase	  HisF	  [EC:4.1.3.-‐] 0.001021597
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Tables S12 — S14.

Please reference provided CD for these tables.
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Table S15.

Table	  S15.	  List	  of	  127	  human	  gut	  microbial	  genomes	  used	  to	  annotate	  human	  fecal	  microbiome	  datasets.

Microbial	  strain	  name Genome	  ID
Ac#nomyces	  odontoly#cus	  ATCC	  17982 NZ_AAYI00000000
Akkermansia	  muciniphila	  ATCC	  BAA-‐835 NC_010655
Alis#pes	  putredinis	  DSM	  17216 NZ_ABFK00000000
Anaerococcus	  hydrogenalis	  DSM	  7454 NZ_ABXA00000000
Anaerofus#s	  stercorihominis	  DSM	  17244 NZ_ABIL00000000
Anaeros#pes	  caccae	  DSM	  14662 NZ_ABAX00000000
Anaerotruncus	  colihominis	  DSM	  17241 NZ_ABGD00000000
Bacteroides	  caccae	  ATCC	  43185 NZ_AAVM00000000
Bacteroides	  capillosus	  ATCC	  29799 NZ_AAXG00000000
Bacteroides	  cellulosily#cus	  DSM	  14838 NZ_ACCH00000000
Bacteroides	  coprocola	  DSM	  17136 NZ_ABIY00000000
Bacteroides	  coprophilus	  DSM	  18228 NZ_ACBW00000000
Bacteroides	  dorei	  DSM	  17855 NZ_ABWZ00000000
Bacteroides	  eggerthii	  DSM	  20697 NZ_ABVO00000000
Bacteroides	  finegoldii	  DSM	  17565 NZ_ABXI00000000
Bacteroides	  fragilis	  3_1_12 NZ_ABZX00000000
Bacteroides	  fragilis	  NCTC	  9343 NC_003228
Bacteroides	  fragilis	  YCH46 NC_006347
Bacteroides	  intes#nalis	  DSM	  17393 NZ_ABJL00000000
Bacteroides	  ovatus	  ATCC	  8483 NZ_AAXF00000000
Bacteroides	  plebeius	  DSM	  17135 NZ_ABQC00000000
Bacteroides	  sp.	  1_1_6 NZ_ACIC00000000
Bacteroides	  sp.	  D1 NZ_ACAB00000000
Bacteroides	  sp.	  D2 NZ_ACGA00000000
Bacteroides	  stercoris	  ATCC	  43183 NZ_ABFZ00000000
Bacteroides	  thetaiotaomicron	  3731 NC_Bthetaiotaomicron3731
Bacteroides	  thetaiotaomicron	  7330 NC_Bthetaiotaomicron7330
Bacteroides	  thetaiotaomicron	  VPI-‐5482 NC_004663
Bacteroides	  uniformis	  ATCC	  8492 NZ_AAYH00000000
Bacteroides	  vulgatus	  ATCC	  8482 NC_009614
Bacteroides	  WH2 NC_BWH2
Bacteroides	  xylanisolvens	  XB1A NC_BxylanisolvensXB1A
Bifidobacterium	  adolescen#s	  ATCC	  15703 NC_008618
Bifidobacterium	  adolescen#s	  L2-‐32 NZ_AAXD00000000
Bifidobacterium	  angulatum	  DSM	  20098 NZ_ABYS00000000
Bifidobacterium	  animalis	  subsp.	  lac#s	  CNCM	  I-‐2494 NC_BanimalisDN1730010
Bifidobacterium	  animalis	  subsp.	  lac#s	  AD011 NC_011835
Bifidobacterium	  animalis	  subsp.	  lac#s	  HN019 NZ_ABOT00000000
Bifidobacterium	  breve	  DSM	  20213 NZ_ACCG00000000
Bifidobacterium	  catenulatum	  DSM	  16992 NZ_ABXY00000000
Bifidobacterium	  den#um NC_Bden#um
Bifidobacterium	  gallicum	  DSM	  20093 NZ_ABXB00000000
Bifidobacterium	  longum	  DJO10A NC_010816
Bifidobacterium	  longum	  NCC2705 NC_004307
Bifidobacterium	  pseudocatenulatum	  DSM	  20438 NZ_ABXX00000000
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Blau#a	  hansenii	  DSM	  20583 NZ_ABYU00000000
Blau#a	  hydrogenotrophica	  DSM	  10507 NZ_ACBZ00000000
Bryantella	  formatexigens	  DSM	  14469 NZ_ACCL00000000
Butyrivibrio	  crossotus	  DSM	  2876 NZ_ABWN00000000
Catenibacterium	  mitsuokai	  DSM	  15897 NZ_ACCK00000000
Citrobacter	  youngae	  ATCC	  29220 NZ_ABWL00000000
Clostridium	  asparagiforme	  DSM	  15981 NZ_ACCJ00000000
Clostridium	  bartle_i	  DSM	  16795 NZ_ABEZ00000000
Clostridium	  bolteae	  ATCC	  BAA-‐613 NZ_ABCC00000000
Clostridium	  hiranonis	  DSM	  13275 NZ_ABWP00000000
Clostridium	  hylemonae	  DSM	  15053 NZ_ABYI00000000
Clostridium	  leptum	  DSM	  753 NZ_ABCB00000000
Clostridium	  methylpentosum	  DSM	  5476 NZ_ACEC00000000
Clostridium	  nexile	  DSM	  1787 NZ_ABWO00000000
Clostridium	  ramosum	  DSM	  1402 NZ_ABFX00000000
Clostridium	  scindens	  ATCC	  35704 NZ_ABFY00000000
Clostridium	  sp.	  L2-‐50 NZ_AAYW00000000
Clostridium	  sp.	  M62/1 NZ_ACFX00000000
Clostridium	  sp.	  SS2/1 NZ_ABGC00000000
Clostridium	  spiroforme	  DSM	  1552 NZ_ABIK00000000
Clostridium	  sporogenes	  ATCC	  15579 NZ_ABKW00000000
Clostridium	  symbiosum NC_Csymbiosum
Collinsella	  aerofaciens	  ATCC	  25986 NZ_AAVN00000000
Collinsella	  intes#nalis	  DSM	  13280 NZ_ABXH00000000
Collinsella	  stercoris	  DSM	  13279 NZ_ABXJ00000000
Coprococcus	  comes	  ATCC	  27758 NZ_ABVR00000000
Coprococcus	  eutactus	  ATCC	  27759 NZ_ABEY00000000
Desulfovibrio	  piger	  ATCC	  29098 NZ_ABXU00000000
Desulfovibrio	  piger	  GOR1 NC_DpigerGOR1
Dorea	  formicigenerans	  ATCC	  27755 NZ_AAXA00000000
Dorea	  longicatena	  DSM	  13814 NZ_AAXB00000000
Enterobacter	  cancerogenus NC_Ecancerogenus
Escherichia	  coli	  str.	  K-‐12	  substr.	  MG1655 NC_000913
Escherichia	  fergusonii	  ATCC	  35469 NC_011740
Eubacterium	  biforme	  DSM	  3989 NZ_ABYT00000000
Eubacterium	  dolichum	  DSM	  3991 NZ_ABAW00000000
Eubacterium	  eligens	  ATCC	  27750 NC_012778
Eubacterium	  hallii	  DSM	  3353 NZ_ACEP00000000
Eubacterium	  rectale	  ATCC	  33656 NC_012781
Eubacterium	  rectale	  DSM17629 NC_Erectale_DSM17629
Eubacterium	  ventriosum	  ATCC	  27560 NZ_AAVL00000000
Faecalibacterium	  prausnitzii	  A2-‐165 NZ_ACOP00000000
Faecalibacterium	  prausnitzii	  M21/2 NZ_ABED00000000
Fusobacterium	  sp.	  4_1_13 NZ_ACDE00000000
Fusobacterium	  varium	  ATCC	  27725 NZ_ACIE00000000
Helicobacter	  pylori	  HPAG1 NC_008086
Holdemania	  filiformis	  DSM	  12042 NZ_ACCF00000000
Lactobacillus	  casei	  ATCC	  334 NC_008526
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Lactobacillus	  delbrueckii	  subsp.	  bulgaricus	  ATCC	  11842 NC_008054
Lactobacillus	  reuteri	  DSM	  20016 NC_009513
Lactococcus	  lac#s	  subsp.	  cremoris	  MG1363 NC_009004
Lactococcus	  lac#s	  subsp.	  cremoris	  SK11 NC_008527
Lactococcus	  lac#s	  subsp.	  lac#s	  Il1403 NC_002662
M23A NC_M23A
Methanobrevibacter	  smithii	  ATCC	  35061 NC_009515
Methanobrevibacter	  smithii	  DSM	  2374 NZ_ABYV00000000
Methanobrevibacter	  smithii	  DSM	  2375 NZ_ABYW00000000
Methanosphaera	  stadtmanae	  DSM	  3091 NC_007681
Mitsuokella	  multacida	  DSM	  20544 NZ_ABWK00000000
Parabacteroides	  distasonis	  ATCC	  8503 NC_009615
Parabacteroides	  johnsonii	  DSM	  18315 NZ_ABYH00000000
Parabacteroides	  merdae	  ATCC	  43184 NZ_AAXE00000000
Parvimonas	  micra	  ATCC	  33270 NZ_ABEE00000000
Prevotella	  copri	  DSM	  18205 NZ_ACBX00000000
Proteus	  penneri	  ATCC	  35198 NZ_ABVP00000000
Providencia	  alcalifaciens	  DSM	  30120 NZ_ABXW00000000
Providencia	  reegeri	  DSM	  1131 NZ_ACCI00000000
Providencia	  rus#gianii	  DSM	  4541 NZ_ABXV00000000
Providencia	  stuar#i	  ATCC	  25827 NZ_ABJD00000000
Roseburia	  intes#nalis	  L1-‐82 NZ_ABYJ00000000
Ruminococcus	  bromiiL263 NC_RbromiiL263
Ruminococcus	  gnavus	  ATCC	  29149 NZ_AAYG00000000
Ruminococcus	  lactaris	  ATCC	  29176 NZ_ABOU00000000
Ruminococcus	  obeum	  ATCC	  29174 NZ_AAVO00000000
Ruminococcus	  torques	  ATCC	  27756 NZ_AAVP00000000
Shigella	  sp.	  D9 NZ_ACDL00000000
Streptococcus	  infantarius	  subsp.	  infantarius	  ATCC	  BAA-‐102 NZ_ABJK00000000
Streptococcus	  thermophilus	  CNRZ1066 NC_006449
Streptococcus	  thermophilus	  LMD-‐9 NC_008532
Streptococcus	  thermophilus	  LMG	  18311 NC_006448
Subdoligranulum	  variabile	  DSM	  15176 NZ_ACBY00000000
Vic#vallis	  vadensis	  ATCC	  BAA-‐548 NZ_ABDE00000000
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Chapter 3

Human gut microbiome differentiation viewed across cultures, ages and families
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Abstract

Genotypic differences between human populations are typically viewed as consisting of 

differences in the frequencies of shared Homo sapiens alleles. Another source of genetic 

diversity resides in differences in representation of the millions of genes and myriad gene 

functions within our gut microbial communities. To address the question of how gut mi-

crobiomes differ between human populations, when viewed from the combined perspec-

tive of their component microbial lineages1,2, encoded metabolic functions3,4, stage of host 

postnatal development4-8 and environmental exposures, we have conducted a demonstra-

tion project characterizing the bacterial species present in fecal samples obtained from 524 

infants, children and adults from 147 families, and the community gene content of 110 of 

their microbiomes. These individuals are from three different countries located on three 

different continents (Malawi in Africa, Venezuelan Amerindians in South America, and 

residents of the USA in North America) and exemplify distinctive living environments 

and cultural traditions. Shared features of the functional maturation of the gut microbiome 

were identified during the first three years of life in all three populations including, for ex-

ample, age-associated changes in the representation of genes involved in the biosynthesis 

and metabolism of vitamins. Pronounced differences in bacterial species assemblages and 

functional gene repertoires were also noted between individuals residing in the USA com-

pared to the other two countries. These distinctive features, which include differences in 

vitamin metabolism, are evident in early infancy as well as during adulthood. In addition, 

the similarity of fecal microbiomes noted among family members extends across cultures. 

Together, these findings emphasize the importance of considering the microbiome when 

evaluating the nutritional needs of humans who live in different parts of the world. More-

over, genographic studies of humans should include a longitudinal analysis of the gut mi-

crobiome component, in part to understand how the pressures of westernization are chang-

ing the microbial components of our genetic, metabolic and developmental landscapes3,9.
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Results and Discussion

Fecal samples were obtained from healthy individuals in families of Guahibo Am-

erindians residing in two villages, separated by 10 miles, located near Puerto Ayacucho 

in the Amazonas State of Venezuela: in Platanillal, diets are dominated by cassava, corn, 

fruits, fish and sporadically, meats obtained by hunting; in Coromoto, increased consump-

tion of Western-type foods has begun to occur during the past 10 years (Table S1). Samples 

were also procured from members of families living in four rural communities of Malawi 

located within 10-70 miles of one another (Chamba, Makwhira, Mayaka, Mbiza). Life-

styles in these villages are very similar, and diets are relatively monotonous, dominated by 

maize10. In addition, we sampled families distributed across the USA including the greater 

metropolitan areas of St. Louis, Philadelphia and Boulder. The sampled populations in-

cluded parents and siblings, and, in the USA and Malawi, monozygotic (MZ) and dizygotic 

(DZ) twin pairs. A total of 524 individuals and 147 families were studied: 114 individuals 

(34 families) from Malawi; 98 individuals (19 families) in Venezuela; and 312 individuals 

(94 families) from the USA (see Table S2 for subject characteristics; note that all except 31 

adults and one child from the USA were newly recruited for this study).

DNA was prepared from a single fecal sample donated by each person. Variable 

region 2 (V2) of bacterial 16S rRNA genes present in each fecal community was amplified 

by PCR and the resulting amplicons were subjected to multiplex pyrosequencing to define 

the phylogenetic types (phylotypes) present [n=3,195±3,002 (mean±SD) pyrosequencer 

reads/fecal sample; total of 1,679,598 reads]. Species-level bacterial phylotypes were de-

fined as organisms sharing ≥97% nucleotide sequence identity in the V2 region of their 

16S rRNA genes11. In addition, we characterized functions encoded in community DNA 

by performing multiplex shotgun pyrosequencing of fecal DNA from a subset of 110 fecal 

samples, encompassing 43 families with members matched as closely as possible for age [9 

Malawian; 6 Amerindian and 28 USA; 157,036±86,512 reads/sample; total size of dataset, 

5.9 Gb]. The resulting shotgun reads were annotated with KEGG Orthology group (KO) 
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assignments and with enzyme commission (EC) numbers (KEGG version 58). Table S2 

summarizes all of the datasets incorporated into the present study.

Changes in the taxonomic/phylogenetic composition of fecal bacterial communities as 

a function of age and population 

Many reports have examined the bacterial species content of infants and children within 

one population using culture-based methods. Far fewer studies have attempted to compare 

the gut communities of humans living under markedly different socio-economic and cul-

tural traditions10,11. Culture-based approaches, although informative, capture only a limited 

portion of the species diversity present in microbial communities, and, unlike metage-

nomic analyses, cannot directly provide information about the functional features encoded 

by gut microbiomes. Culture-independent techniques have been used to define the gut mi-

crobiota at various points in postnatal development 6,12, but have been limited either by the 

analytic methods used (FISH and DGGE can typically see only the most dominant organ-

isms; DGGE and broad-taxon DNA microarrays cannot specifically identify organisms), 

by the limited number of subjects examined, or by the scope of the populations surveyed. 

These studies have nonetheless provided important insights. Using 16S rRNA gene-based 

microarrays, Palmer et al.13 observed considerable intra- and interpersonal variation in fe-

cal bacterial community structures during the first year of life in 12 unrelated children and 

1 twin pair. Interpersonal variation was less within the twin pair and intrapersonal variation 

decreased as a function of age.

In order to determine whether there is a consistent pattern of human gut community 

development, we used a combination of next-generation sequencing approaches to assess 

microbiota species composition and gene content across ages and as a function of different 

cultural traditions/geography. Our analytical approach was to use the 16S rRNA data to 

compare populations in terms of patterns of succession of the microbiota compared across 

individuals, and to employ shotgun metagenomics to understand the patterns of change in 
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the representation of gene functions. The resulting datasets were analyzed using a variety 

of statistical as well as machine learning approaches to identify shared as well as discrimi-

natory species and genes, and to relate change in microbiota to change in microbiome.

To assess the microbiota, we collected bacterial 16S rRNA data from 323 individu-

als aged 0-17 years (83 Malawian, 64 Amerindian and 176 residents of the USA) plus 201 

adults aged 18-70 years (31 Malawians, 34 Amerindians, and 136 residents of the USA). 

16S rRNA datasets were first analyzed using UniFrac, a tool that measures similarity be-

tween microbial communities based on the degree to which their component taxa share 

branch length on a bacterial tree of life14. There were several notable findings. First, the 

phylogenetic composition of the bacterial community evolved towards an adult-like con-

figuration within the 3-year period following birth in all three populations (Fig. 1a, Fig. 

S1). Second, interpersonal variation is significantly greater between children than between 

adults4; this finding is robust to geography (Fig. 1b). Third, there were significant dif-

ferences in the phylogenetic composition of fecal microbiota between individuals living 

in the different countries, with especially pronounced separation occurring between USA 

compared to Malawian and Amerindian microbiota; this was true for individuals aged 0-3 

years, 3-17 years, and for adults (Fig. 1b, Table S3). We also performed unsupervised 

clustering using Principal Coordinates Analysis (PCoA) of UniFrac distance matrices. The 

results indicate that age and geography primarily explain the variation in our dataset (Fig. 

S2). 

We next used the nonparametric Spearman rank correlation to determine which 

bacterial taxa change monotonically with increasing age within and between the three 

sampled populations. We only considered children who were breastfed. Because of biases 

exhibited by PCR primers used to amplify 16S rRNA genes of certain taxa (e.g., members 

of the Actinobacteria are not well represented among the V2 region of the 16S rRNA gene 

amplicons5), we mapped shotgun pyrosequencing reads from the fecal microbiomes of 

the 110 sampled individuals [24 babies (0.6-5 months old), 60 children and adolescents 
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(6 months to 17 years old) and 26 adults] to 126 sequenced human gut-derived microbial 

species (listed in Table S4). The results are summarized in Table S5 and Fig. S3a,b. The 

majority (75±20%) of all shotgun sequences in all babies mapped to members of the genus 

Bifidobacterium. Bifidobacteria continued to dominate fecal communities throughout the 

first year of life although their proportional representation diminished during this period, 

in agreement with the results of several studies of small numbers of children4,6,7 (Fig. S3a). 

The advantage of using the 126 gut microbes as a reference database is that spurious hits of 

shotgun microbiome reads to taxa that are not present in the gut are minimized. Nonethe-

less, we repeated the entire analysis, blasting against 1280 genomes in KEGG. The results 

were similar to those obtained using just the 126 gut-derived microbial genomes (Fig. 

S3b). Table S5a,b lists the species-level bacterial taxa whose representation increases sig-

nificantly with age in all three populations, as well as species that change in a population-

specific manner as defined from analysis of the shotgun sequencing data that were avail-

able from 110 of the 524 individuals. 

We used Random Forests, a supervised machine learning technique15, and the 16S 

rRNA datasets obtained from all 524 individuals to identify bacterial species-level opera-

tional taxonomic units (OTUs) that identify differences in fecal community composition in 

children and adults within and between the three populations. The purpose of a classifier 

such as Random Forests is to learn a function that maps a set of input values or predictors 

(here, relative OTU abundances in a community) to a discrete output value (here, USA ver-

sus non-USA microbiota). Random Forests is a particularly powerful classifier that can ex-

ploit non-linear relationships and complex dependencies between OTUs. The measure of 

the method’s success is its ability to correctly classify unseen samples, estimated by training 

it on a subset of samples, and using it to classify the remaining samples (cross-validation). 

The cross-validation error is compared to the baseline error that would be achieved by 

always guessing the most common category. As an added benefit, Random Forests assigns 

an importance score to each OTU by estimating the increase in error caused by removing 
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that OTU from the set of predictors. In our analysis, we considered an OTU to be highly 

predictive if its importance score was at least 0.001; all error estimates and OTU impor-

tance scores were averaged over 100 even rarefactions of the sample communities in order 

to control for sequencing effort. For adults, Random Forests revealed distinct community 

signatures for Western (USA) and non-Western individuals (baseline error=0.286, cross-

validation error=0.020 ± 0.004, 64 highly predictive OTUs). Of the 64 highly predictive 

OTUs shown in Fig. S4 and Table S6, 58 were over-represented in non-USA adults, and 44 

of the 58 were assigned to the genus Prevotella or family Prevotellaceae. Malawians and 

Amerindians could also be distinguished from each other, although the difference was less 

extreme than the USA versus non-USA comparison (baseline error=0.407, cross-validation 

error=0.089 ± 0.027, 27 highly predictive OTUs). There were only small discernable dif-

ferences between infants in the above comparisons, and between adults living in the two 

Amerindian villages (cross-validation error greater than or equal to half of baseline error 

in all cases). Thus, a Western (USA) lifestyle appears to affect the bacterial component of 

the gut microbiota significantly, although this influence is not detectable against the high 

degree of variability observed in infants and children. Although the Prevotella were the 

most discriminatory lineages, removing the entire family of Prevotellacae increased the 

classification error only slightly, all 20 of the non-Prevotellaceae OTUs are still predictive, 

and the average decrease in predictive accuracy when they are removed is <0.1%. Thus, 

as in the case of the Bifidobacteria, the Prevotellaceae provide a major component of the 

effect we report, but by no means all of the effect. 

Confirming the importance of Prevotella as a discriminatory taxon, a recent study 

also showed that abundance of this genus was present at higher levels in the fecal mi-

crobiota of children living in West Africa (Burkina Faso) compared to children living in 

Europe (Italy)10. Additionally, a member of this genus is one of three bacterial species 

that, in European adults, distinguishes strongly among three clusters, or enterotypes, of 

gut microbiota configurations that are claimed to be reproducible across Western adult 



137

populations16. Therefore, we asked whether the fecal microbiota of infants and adults in 

each of our three geographically and distinct populations fell into natural discrete clusters. 

We did not find evidence for discrete clustering (see Methods), but rather for continuous 

variation driven in adults by a trade-off between Prevotella and Bacteroides, as previously 

observed17. Although Western and non-Western populations tended to occupy the Bacte-

roides-rich and Prevotella-rich ends of the gradient, respectively, truncated sections of the 

gradient were reproduced in each of the three sub-populations we studied (Fig. S5a-c). 

Including infants introduces a new, strongly supported gradient driven by Bifidobacteria, 

generally orthogonal to the Bacteroides/Prevotella gradient. Clustering of sub-populations 

of increasing minimum age indicates that adult cluster membership is generally consistent, 

but that children between 0.6 years and 1 year of age may be clustered with adults or with 

younger children, depending on whether the younger children are included in the analysis 

(Fig. S5d-e).

Non-bacterial members of the fecal microbiota — Shotgun sequences were used 

to query the NCBI non-redundant nucleotide database (Blastn threshold E-value<10-5) to 

identify the representation of organisms that belong to domains other than Bacteria in the 

110 fecal microbiomes. Across all samples, 7±8% of reads mapped to non-bacterial se-

quences. The majority of these sequences belonged to Archaea and Fungi. Fig. S6 shows 

that the proportional representation of archaeal sequences is significantly higher in adults 

compared to children ≤3 years of age in Malawi and the USA (Mann-Whitney test; p<0.05; 

note that the differences between age groups were not statistically significant among Amer-

indians). More than 99% of these archaeal sequences mapped to the methanogen Methano-

brevibacter smithii, previously shown to be the dominant archaeon in USA population18,19. 

The representation of fungi was significantly higher in adults compared to children in all 

populations; among adults, fungal sequences were significantly higher in Malawian and 

Amerindian versus USA microbiomes (see Fig. S6 for the most abundantly represented 

taxa out of all non-bacterial sequences). As the databases of gut-associated genomes ex-
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pand, it is likely that additional sequences may map to other archaea and eukaryotes. 

Shared functional changes in the microbiome as children mature

Very few studies have described changes in the gene content of the gut microbiome as a 

function of age: the largest study reported to date was carried out in 13 healthy Japanese 

individuals (5 children, the youngest 3-months-old, and 8 adults)4. Our dataset of 110 in-

dividuals allowed us to characterize the representation of functional gene groups [KEGG 

Orthology (KO) annotations and Enzyme Commission numbers (ECs)] in the microbiomes 

representing broader age groups (youngest 3 weeks), and several distinct geographic lo-

cations/cultural traditions. We used Hellinger distance measurements to show that just as 

children are significantly more different from one another than are adults in terms of their 

fecal bacterial community phylogenetic structure, they are also more different in terms 

of their repertoires of microbiome-encoded functions, as defined by the proportional rep-

resentation of EC and KO assignments (Fig. 1b,c, Fig S7, Table S3). Moreover, as with 

UniFrac distances, Hellinger distances were greater between the USA and the other two 

populations at all ages sampled (Fig. 1b,c, Fig S8, Table S3). Of interest is the concor-

dance between the two data types: accordingly, we used Procrustes analysis20, which is a 

method of comparing the goodness of fit between two point clouds, scaling and rotating 

the first point cloud to align with the second in order to test whether the relative orientation 

of each point is preserved in the two datasets. The goodness of fit was highly significant 

result (P<0.001 with 1,000 iterations) whether UniFrac (the most appropriate metric for 

16S rRNA data) or Hellinger distance (for consistency with the method used on the KEGG 

EC and KO data) was used to reduce the OTU table (Fig. S9 plus data not shown). COG 

annotations also produced similar concordance with 16S rRNA datasets (Fig. S9). 

When examining EC profiles across 110 fecal microbiomes, we obtained the re-

markable result that of the 1,349 ECs identified in the sampled populations, none was 

uniquely present in all adults (n=26) but not in babies (n=24), or in all babies but not adults. 
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Moreover, the total number of ECs found in adults was not significantly different compared 

to the total number of ECs scored in babies (sampling normalized to coverage in Fig. S7a). 

This finding was robust to culture/geography. The fraction of sequences with assignable 

KEGG EC annotations declined with increasing age in all three populations (Fig. S7b). 

This may be due to the increased complexity of the adult microbiome, with fewer repre-

sentative genomes sequenced.

We used ShotgunFunctionalizerR21, a software tool designed for metagenomic 

analysis and based on a Poisson model, to identify 1008 ECs whose proportional represen-

tation in fecal microbiomes differed significantly between all sampled babies and all adults 

irrespective of their geographic location; 530 of the 1008 ECs were significantly higher 

in adults (p<0.0001, Table S7). A prominent example of these shared age-related changes 

involves vitamins B12 (cobalamin) and folate metabolisms. In contrast to folate, which is 

synthesized by both microbes and plants, vitamin B12 is produced primarily by microbes19. 

The gut microbiomes of breast-fed babies are enriched in genes involved in the de novo 

biosynthesis of folate, while those of adults have a significantly higher representation of 

genes that metabolize dietary folate and its reduced form tetrahydrofolate (THF, Fig. 2a, 

Fig. S10, Table S7). Unlike de novo folate biosynthetic pathway components, which de-

crease with age, the proportional representation of genes encoding the majority of enzymes 

involved in cobalamin biosynthesis increase with age (Fig 2b, Fig S11, Table S7). The 

folate and cobalamin pathways are linked functionally: methionine synthase (EC 2.1.1.13) 

catalyzes formation of THF from 5-Methyl-THF and L-homocysteine, and requires co-

balamin as a cofactor (Fig. 2a, Fig S10). Methionine synthase gene representation in the 

microbiome also increases with age (Fig. S10).

The low relative abundance of ECs involved in cobalamin biosynthesis in the mi-

crobiomes of babies correlates with the lower representation of members of Bacteroidetes, 

Firmicutes, and the archaeon M. smithii in their fecal microbiota (see Fig. S12 for Spear-

man correlation coefficients). While the biosynthetic pathway for cobalamin is well rep-
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resented in the genomes of these organisms (Fig. S12), Bifidobacterium, Streptococcus, 

Lactococcus, Lactobacillus which dominate the baby gut microbiota (Table S5, Fig. S3), 

are deficient in these genes (Fig. S12). In contrast, a number of these early gut colonizers 

contain ECs involved in folate biosynthesis/metabolism (Fig. S12). The traditional view of 

the developing infant gut is that the principal change is in the representation of Bifidobac-

teria. Our analysis indicated that although differences in representation of Bifidobacteria 

contribute to this effect, differences in vitamin metabolism among the rest of the bacteria 

remain even when all Bifidobacteria sequences are excluded (Table S7b). The changes in 

vitamin biosynthetic pathway representation in the microbiome correlate with published 

reports indicating that blood levels of folate decrease and vitamin B12 increase as babies 

age22,23.

Besides cobalamin and folate, the relative abundance of ECs involved in the bio-

synthesis of vitamins B7 (biotin) (biotin synthase, EC2.8.1.6) and thiamine (thiamine-

phosphate diphosphorylase, EC2.5.1.3) are significantly higher in adult microbiomes com-

pared to the microbiomes of babies (Fig. 2c, Table S7). Together, these findings suggest 

that the microbiota should be considered when assessing the nutritional needs of humans at 

various stages of development. 

Random Forests asks a somewhat different statistical question from ShotgunFunc-

tionalizeR: i.e., which genes or species are most discriminatory among different class la-

bels, rather than which are most over/underrepresented, and tends to identify fewer fea-

tures than does ShotgunFunctionalizeR when applied to the same data. Nevertheless, this 

complementary approach identified exactly the same major biological patterns. Random 

Forests analysis yielded 107 ECs that best discriminate the adult and baby microbiomes 

(Table S7, see description of the method above); these predictive ECs were among the 

most significantly different ECs determined by ShotgunFunctionalizeR and included ECs 

involved in the metabolisms of vitamin B12 and folate (Fig. 2c, Table S7). Random For-

ests revealed that ECs involved in fermentation, methanogenesis and metabolism of ar-
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ginine, glutamate, aspartate and lysine were higher in the adult microbiomes, while ECs 

involved in the metabolism of cysteine and a fermentation pathway found in lactic acid 

bacteria [acetolactate decarboxylase (EC4.1.1.5) and 6-phosphogluconate dehydrogenase 

(EC1.1.1.4)] were represented primarily in the baby microbiomes. 

When we compared representation of KOs (instead of ECs) between babies and 

adult microbiomes, we obtained essentially same results as reported with ECs. The only 

novel finding was the overrepresentation of KOs assigned to a wide variety of ABC trans-

porters in baby microbiomes (Table S7c). 

Population- and age-specific differences in the representation of microbiome functions 

ShotgunFunctionalizeR and Spearman rank correlation analyses were both used to com-

pare EC representation in fecal microbiomes as a function of predefined categories of geo-

graphic location and age. 476 ECs were identified as being significantly different in the 

USA versus Malawian and Amerindian babies (p<0.0001, ShotgunFunctionalizeR; Table 

S8). The most prominent differences involved pathways related to vitamin biosynthesis 

and carbohydrate metabolism. Malawian and Amerindian babies had higher representation 

of ECs that were components of vitamin B2 (riboflavin) biosynthetic pathway (Fig. 3a,b). 

These differences were not evident in adults (Table S7). Riboflavin is found in human 

milk, meat and dairy products. We did not measure the levels of these vitamins in mothers 

and in their breast milk in the sampled populations, although it is tempting to speculate the 

observed differences in baby microbiomes may represent an adaptive response to vitamin 

availability. 

Studies in gnotobiotic mouse models indicate that the ability of members of the 

microbiota to access host-derived glycans plays a key role in establishing a gut microbial 

community24,25.  As expected4,5, compared to adults, the baby microbiomes were enriched in 

ECs involved in foraging of glycans represented in mother’s milk and the intestinal mucosa 

(mannans, sialylated glycans, galactose, fucosyloligosaccharides; Table S7). A number of 
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genes involved in utilizing these host glycans are significantly overrepresented in Amerin-

dian and Malawian compared to USA baby microbiomes, most notably exo-alpha-sialidase 

and alpha-L-fucosidase (Fig. 3a, Table S8). These population-specific biomarkers may 

reflect differences in the glycan content of breast milk. In fact, the representation of these 

glycoside hydrolases decreases as Malawian and Amerindian babies mature and transition 

to a diet dominated by maize-, cassava- and other plant-derived polysaccharides. In con-

trast, alpha-fucosidase gene representation increases as USA infants age and are exposed 

to diets rich in readily absorbed sugars (Fig. S13, Table S9). 

Another biomarker that distinguishes microbiomes based on age and geography 

is urease (EC3.5.1.5). Urease gene representation is significantly higher in Malawian and 

Amerindian baby microbiomes and decreases with age in these two populations, unlike in 

the USA where it remains low from infancy through adulthood (Fig. 3a, Fig. S13). Urea 

comprises up to 15% of the nitrogen present in human breast milk26. Urease releases am-

monia that can be used for microbial biosynthesis of essential and nonessential amino 

acids27,28. Furthermore, urease plays a major role in nitrogen recycling, particularly when 

diets are deficient in protein29,30. Under conditions where dietary nitrogen is limiting, the 

ability of the microbiome to utilize urea would presumably be advantageous to both the 

microbial community and host. Urease activity has been characterized previously in Strep-

tococcus thermophilus31. While most attribute urease to Helicobacter and Proteus spp., the 

relative abundance of members of these two genera was low (<0.05%) and not significantly 

different between the three populations. Our analysis of metagenomic reads that matched to 

the 126 gut genomes revealed that the representation of five species that possess EC3.5.1.5 

(Bacteroides WH2, Coprococcus comes, Roseburia intestinalis, Streptococcus infantarius 

and S. thermophilus) was significantly higher in Malawian and Amerindian compared to 

USA baby microbiomes (Table S5). 

Random Forests analysis again confirmed these results, showing that the best pre-

dictors of USA vs Malawian/Amerindian baby microbiomes (Table S8) were among the 
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most significant ECs determined by ShotgunFunctionalizeR.

Effects of breast milk versus formula feeding in USA twins — In the analyses de-

scribed above, we only considered infants who were breastfed. Epidemiologic studies have 

shown that formula feeding is more common in the USA than in a number of developing 

countries32,33. Therefore, we compared shotgun sequences generated from the fecal micro-

biomes of 4 USA twin pairs where both co-twins were breast-fed, and 4 USA age-matched 

(2-5 month old) twin pairs that were formula-fed. Formula-fed babies contained signifi-

cantly fewer sequences that mapped to Bifidobacteria genomes, and more taxa belonging 

to the Firmicutes and Bacteroidetes compared to their breast-fed counterparts (p<0.0001; 

Mann-Whitney test; Fig S14). We identified 244 ECs whose proportional representation 

differentiated formula- and breast-fed microbiomes (p<0.0001, ShotgunFunctionalizeR; 

Fig. S15, Table S10). The majority of the 170 genes that were overrepresented in formula-

fed fecal microbiomes were involved in various aspects of carbohydrate metabolism (e.g., 

fructose, mannose) as well as nitrogen and amino acid metabolism (e.g., lysine biosyn-

thesis). The representation of genes involved in biosynthesis of cobalamin and folate in 

formula-fed babies phenocopies what is observed in adults, i.e., the proportion of genes 

involved in the generation of cobalamin is higher and the representation of genes that 

participate in de novo folate synthesis is significantly lower than in breast-fed infants (Fig. 

2, Fig. S11). These findings highlight the need to use the types of biomarkers we have 

identified to conduct longitudinal metagenomic studies comparing the development of the 

microbiomes of formula- versus breast-fed individuals. The goal would be to determine 

whether differences between formula- and breast-fed children persist through adulthood, 

and the extent to which early exposure to formula heralds microbiome-encoded metabolic 

programs that confer human physiologic phenotypes distinct from those of breast-fed chil-

dren (e.g., ref. 33).

Differences in adult fecal microbiomes associated with geography — Annotation 

of the shotgun sequencing datasets yielded a total of 1,349 ECs in the 26 adults surveyed: 
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ShotgunFunctionalizeR revealed that the representation of genes encoding 893 of these 

ECs were significantly different in USA versus Malawian/Amerindian fecal microbiomes 

(p<0.005 after multiple comparison correction; 433 overrepresented in USA samples). By 

contrast, at this threshold only 445 ECs were identified as different between Malawian and 

Amerindian adults (see Table S11 for a complete list). A USA diet is rich in protein, while 

diet in Malawi and Amerindian populations are dominated by corn and cassava (see Table 

S1 for the results of dietary surveys of Amerindians and Malawians). The differences be-

tween USA versus Malawian/Amerindian microbiomes can be related to these differences 

in their diets. Genes encoding ECs whose representation are most significantly enriched 

in USA fecal microbiomes parallel differences observed in carnivorous versus herbivo-

rous mammals 34: ECs encoding glutamate synthase and glutamine synthase are higher in 

proportional representation in Malawian and Amerindian adult microbiomes and are also 

higher in herbivorous mammalian microbiomes34 (Fig. 3c), while degradation of glutamine 

was overrepresented in USA as well as carnivorous mammalian microbiomes. Several ECs 

involved in the degradation of other amino acids were overrepresented in adult USA fe-

cal microbiomes: aspartate (EC4.1.1.12), proline (EC1.5.99.8), ornithine (EC2.6.1.13) 

and lysine (EC5.4.3.2) (Fig. 3c), as were ECs involved in catabolism of simple sugars 

(glucose-6-phosphate dehydrogenase, 6-phosphofructokinase,), sugar substitutes (L-iditol 

2-dehydrogenase, which degrades sorbitol), as well as host glycans (alpha-mannosidase, 

beta-mannosidase, alpha-fucosidase, Fig. 3c). In contrast, alpha-amylase (EC 3.2.1.1), 

which participates in the degradation of starch, was overrepresented in the Malawian and 

Amerindian microbiomes, reflecting their corn-rich diet.

USA microbiomes also had significant overrepresentation of ECs involved in the 

biosynthesis of vitamins B12 (Fig. 2,3c), lipoic acid and biotin (Fig. 3c), the metabolism of 

xenobiotics [phenylacetate CoA ligase (EC 6.2.1.30) which participates in the metabolism 

of aromatic compounds) and mercury reductase (EC1.16.1.1)], and choloyglycine hydro-

lase (EC3.5.1.24) which metabolizes bile salts (the latter may reflect diets that are higher 
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in fat) (Fig. 3c).

The Random Forests classifier again confirmed these results, revealing that all 52 

ECs that were the best at discriminating USA versus non-USA adult microbiomes were 

among the most significantly different identified by ShotgunFunctionalizeR (Table S12). 

Effects of kinship on the microbiome across countries

The definition of the family is a key parameter that differs among societies, and differences 

in social structures may influence the extent of vertical transmission of the microbiota and 

the flow of microbes and microbial genes among members of a household. Differences in 

cultural tradition also affect food, exposure to pets and livestock, and many other factors 

that could influence how and from where a gut microbiota/microbiome is acquired. We 

previously observed that MZ twins are no more similar to one another in gut bacterial com-

munity structure than DZ twins for adults living apart in the USA35. This result suggests 

that the overall heritability of the microbiome is low. We confirmed that the phylogenetic 

architecture of the fecal microbiota of MZ Malawian co-twins ≤3 years of age is not more 

similar than the microbiota of similarly aged DZ co-twins (n=15 MZ and 6 DZ twin pairs). 

We found that this is also true for MZ and DZ twin pairs aged 1-12 months of age (n=16 

twin pairs), as well as teenaged twins (13-17 years-old; n=50 pairs) living together in the 

USA (Fig. 4). Although biological mothers are in a unique position to transmit an initial 

inoculum of microbes to their infant during and following birth, our analysis of mothers of 

teenage USA twins showed that their fecal microbiota were no more similar to their chil-

dren than were biological fathers and that genetically unrelated but co-habiting mothers 

and fathers were significantly more similar to one another microbially than were members 

of different families (Fig. 4; note that no fathers were sampled in Malawi and only 4 fathers 

in the Amerindian cohort). These latter observations emphasize the importance of a history 

of numerous common environmental exposures in shaping gut microbial ecology. More-

over, the similarity in overall pattern of the effects of kinship on microbial community 
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structure suggests that despite the large influence of cultural factors on which microbes are 

present in both children and adults in each population, the bases for the degree of similarity 

among members of a family are consistent across the three populations studied. 

The high similarity of Malawians and Amerindians microbiomes is remarkable, 

given the large geographic (and genetic) distances between these populations, and also 

implies a major influence of environment (diet) on the structure of gut microbiome. One 

question is the extent to which the recent deep sampling of 124 adult European microbi-

omes by the MetaHIT consortium (2-7.3 Gbp of shotgun sequence/fecal sample; ref. 2) 

represents the gene content present in the microbiomes of all modern humans of all ages. 

Accordingly, we tested the extent to which this gene catalog recruited reads from each of 

our subjects, using the 90% nucleotide identity criterion that Meta-HIT employed to iden-

tify reads as belonging to the same gene in the same microbial species2. On average, 91% 

of reads from the fecal microbiomes of adults living in the USA, 81% from Amerindian 

adult microbiomes, and 76% from Malawian adult microbiomes mapped to Meta-HIT; the 

corresponding numbers for children below three years of age were 79%, 72% and 78% re-

spectively (Fig. S15); additionally, individuals from the MetaHIT European cohort cluster 

with the USA population we studied (Fig. S16). 

Together, our results emphasize that it is essential to sample a broad population 

of healthy humans over time, both in terms of their age, geography and cultural tradi-

tions, in order to discover features of our microbiomes that are unique to different living 

circumstances. The continuous pattern of variation we observed with enterotype analysis 

suggests that while some features of normal variation in the human gut microbiota, such 

as the Prevotella/Bacteroides gradient, are highly reproducible even in human population 

subsets of reduced variability, a full accounting of the directions in which the human gut 

microbiota can vary will require a substantially broader cross-cultural and cross-age sam-

pling. In addition, we need to understand how the pressures of westernization are changing 

the microbial parts of our genetic landscape — changes that potentially mediate the suite 
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of pathophysiological states (obesity, diabetes, etc.) correlated with Westernization, and 

changes that may influence which populations are chosen for clinical trials that test various 

pharmacologic agents36. In the same way that extensive efforts exist to preserve the cul-

tural, linguistic and genetic heritage of threatened and/or assimilating populations, we must 

preserve humanity’s microbiological heritage9.: this diversity may provide fertile grounds 

for bio-prospecting for microbial genes and species lost through antibiotics or the Western 

diet that could, if restored, counterbalance some disturbing trends in global human health. 

Finally, given the need for global policies about sustainable agriculture and improved nu-

trition, it will be important to understand how we can match these policies not only to our 

varying cultural conditions but also to our varied gut microbiomes.

Methods

Subjects — Subjects were recruited for the present study using procedures approved by 

Human Studies Committees from Washington University, the University of Pennsylvania, 

the University of Colorado, Boulder, the University of Malawi, the University of Puerto 

Rico, and the Venezuelan Institute for Scientific Research (IVIC). Subject characteristics 

are summarized in Table S2. 

Isolation of fecal DNA and multiplex pyrosequencing — Each participant pro-

vided a fecal specimen that was frozen within 30 min. All samples were stored at -80oC 

prior to metagenomic analyses. Moreover, all fecal samples were subjected to a common 

protocol for DNA extraction. Fecal samples were pulverized with a mortar and pestle at 

-80oC. Genomic DNA was extracted from 400 mg aliquots of frozen pulverized samples. 

Amplification of amplicons from the V2 region was carried as described10. 

For multiplex shotgun 454 Titanium FLX pyrosequencing, each fecal community 

DNA sample was randomly fragmented by nebulization 500-800 bp and then labeled with 

a distinct MID (Multiplex IDentifier; Roche) according the manufacturer’s protocol (Rapid 
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Library preparation for FLX Titanium). Equivalent amounts of 12 MID-labeled samples 

were pooled prior to each pyrosequencer run.

Data analysis 

Pyrosequencing reads were demultiplexed and binned by sample according to their bar-

codes. Reads with a low quality region [i.e. 50 or more consecutive nucleotides with a 

quality score below 25] were truncated at the beginning of the window, and reads shorter 

than 150 nucleotides were discarded. Reads were classified into OTUs based on a 97% 

sequence identity threshold using uclust36, and each OTU was assigned taxonomic infor-

mation using the RDP naïve Bayesian classifier37. The set of representative sequences for 

the OTUs were aligned using PyNAST, and a de novo taxonomic tree of the sequences was 

constructed from the alignment based on the degree of sequence similarity. 

16S rRNA amplicon sequences were processed using the QIIME (v2.1) suite of 

software tools38. A table of OTU counts per sample was generated and used in combination 

with the tree to calculate alpha and beta diversity. To generate unweighted UniFrac dis-

tance matrices, all communities were rarefied to 500 16S rRNA reads/sample. Unweighted 

UniFrac rather than weighted UniFrac was used for analyses due to the large differences in 

taxonomic representation among the samples. Nonetheless, the patterns were similar with 

weighted UniFrac (data not shown).

Enterotype analysis — Enterotype testing was performed on the rarefied versions 

of the 16S rRNA OTU relative abundance tables. OTU counts were binned into genus-

level taxonomic groups according to the taxonomic assignments discussed above. Several 

distance measures were considered, including Jensen-Shannon divergence, Bray-Curtis, 

and weighted/unweighted UniFrac distances. Clustering was performed via partitioning 

around medoids in the R package “cluster”39. The choice of number of clusters and quality 

of the resulting clusters were assessed by maximizing the silhouette index40. Traditionally, 

silhouette indices of 0.5 or above have been considered evidence of reasonable cluster-
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ing structure. Although some silhouette scores above 0.5 were found in this data set (e.g. 

for two clusters when clustering all adult populations with Jensen-Shannon divergence), 

re-clustering within different subpopulations (e.g. individual countries) introduced new 

cluster boundaries with silhouette scores still near or above 0.5, indicating that silhouette 

index scores may be need to be substantially above 0.5 to claim clustering structure for 

microbial enterotype testing.

Shotgun sequences from fecal microbiomes — Shotgun reads were filtered using 

custom Perl scripts and publicly available software to remove (i) all reads <60 nt, (ii) Tita-

nium reads with two continuous and/or three total degenerate bases (N), (iii) all duplicates 

(a known artifact of pyrosequencing), defined as sequences whose initial 20 nucleotides 

are identical and that share an overall identity of >97% throughout the length of the short-

est read41 and (iv) all sequences with significant similarity to human reference genomes 

(BLASTN with e-value < 10-5, bitscore > 50, percent identity > 75%) to ensure the contin-

ued de-identification of samples.

Searches against the database of 126 human gut bacterial genomes were conducted 

with Blastn. A sequence read was annotated as the best hit in the database if the E-value 

was < 10-5, the bit score was > 50, and the alignment was at least 95% identical between 

query and subject. Relative abundances of reads mapped to each of the 126 genomes were 

adjusted to genome sizes. Searches against protein-coding component of the KEGG data-

base (v58) and against COG (v8.3) were conducted with BLASTX. (Note that when we 

performed searches against a separate KEGG database of intergenic regions alone, very 

few hits to were observed). Counts were normalized to the mapped reads. 40±8% reads 

were mapped to KEGG KOs and 56±11% to COG. 44±16% of the reads mapped to the 126 

gut genomes using 95% sequence similarity cut-off. Unmapped reads were excluded from 

the analyses shown in the main text, although repeating analyses including these reads had 

little effect on the results. To quantify the differences in KEGG EC profiles among fecal 

microbiomes, evenly rarefied matrices of EC counts were created with all samples, and 
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Hellinger distances were calculated using QIIME.

Spearman rank correlations were carried out using the R statistical software42. To 

identify bacterial taxa that change with increasing age in each population, the proportion 

of reads that map to each of the 126 reference sequenced human gut genomes in each fecal 

microbiome was identified. The relative abundance of reads from each genome was then 

correlated with age (years) for each geographic region. To identify genes encoding ECs 

that change with age, the proportion of reads annotated with each EC in each fecal micro-

biome was identified. The relative abundance of each EC was subsequently correlated with 

age (years) for each geographic region.

Random Forests Analysis 

Random Forests analysis was applied as described in8, using the randomForest package 

in R43, with 500 trees and all default settings. Generalization error was estimated using 

5-fold cross-validation for all comparisons involving adults from the 16S rRNA data; 

leave-one-out cross-validation was used for all other comparisons. For each comparison, 

the relevant subset of samples was extracted from the table of OTU or EC counts, and all 

singleton OTUs/ECs (or all OTUs/ECs present in fewer than 5 samples for the 16S rRNA 

comparisons involving adults) were subsequently removed. Random Forests analysis was 

performed for each comparison on 100 rarefied versions of the data, and the average cross-

validation error estimates and OTU/EC importance estimates were reported. Rarefaction 

depths were chosen manually to include all samples without exceptionally low total se-

quences. The chosen depth for each comparison and the resulting number of samples are 

shown in Table S6 and Table S12.
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Figure Legends

Fig 1. Differences in the fecal microbial communities of Malawians, Amerindians and 

residents of the USA at different ages. (a) UniFrac distances between children and adults 

decrease with increasing age of children in each population. Each point shows an average 

distance between a child and all adults unrelated to that child but from the same coun-

try. (b,c) Large interpersonal variations are observed in the phylogenetic and functional 

configurations of fecal microbial communities at early ages. Malawian and Amerindian 

children and adults are more similar to one another than to USA children and adults. In 

panel b, UniFrac distances were defined from bacterial 16S rRNA data generated from the 

microbiota of 184 unrelated adults (≥18 years old) and 206 unrelated children (n=32 Mala-

wians 0.03-3 years old, 21 3-17 years old; 30 Amerindians 0.08-3 years old, 29 3-17 years 

old; 32 residents of the USA 0.08-3 years old, 62 sampled at 3-17 years of age). In panel c, 

Hellinger distances derived from EC profiles are shown for unrelated children ≤3 years of 

age and unrelated adults (n=9 children and 5 adults from Malawi; 11 children and 5 adults 

from Venezuela; 10 children and 8 adults from USA). Mean values ± SEM are plotted. 

Abbreviations: * p<0.05; **p<0.005 (Student’s t-test with 1000 Monte Carlo simulations). 

See Table S3 for a complete description of the statistical significance of all possible com-

parisons shown in the Figure. 

Fig. 2. Changes in the representation of genes involved in folate and cobalamin bio-

synthesis and metabolism in fecal microbiomes as a function of age. (a) Diagram of 

KEGG folate metabolic pathway indicating ECs involved in the de novo biosynthesis of 

folate whose proportional representation was higher in the fecal microbiomes of breast-fed 

babies (0.6-5 months old, colored in yellow) compared to adults (gray). Note that the rep-

resentation of genes encoding ECs involved in folate metabolism is higher in adult fecal 

microbiomes and in formula-fed USA baby microbiomes compared to the microbiomes of 

breast-fed babies in all populations. (b) Diagram of KEGG pathway for cobalamin biosyn-

thesis, indicating ECs whose proportional representation was higher in the fecal microbi-
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omes of all adults and formula-fed USA infants (gray) compared to the fecal microbiomes 

of breast-fed babies in all populations. However, among adults, USA fecal microbiomes 

have higher relative representation of ECs in this pathway compared to adult Malawian/

Amerindian microbiomes. P-values for the highlighted ECs can be found in Table S7. (c) 

Age-related changes in the proportional representation of genes encoding ECs best dis-

criminating baby and adult microbiomes. UPGMA clustering (average linkage method) 

of fecal microbiomes, based on the relative abundances of ECs (normalized by Z-score 

across all datasets). The bars on the top indicate geographic location of each human that 

was sampled.

Fig. 3. Geographic differences in the bacterial functional structure of fecal microbi-

omes in three populations. (a) Examples of ECs that exhibited the largest differences in 

proportional representation between USA and Malawian/Amerindian baby fecal microbi-

omes. UPGMA clustering of 10 USA, 10 Malawian and 6 Amerindian fecal microbiomes, 

based on the relative abundances of genes encoding ECs (normalized by Z-score across all 

datasets). (b) Diagram of KEGG riboflavin biosynthetic pathway indicating ECs whose 

proportional representation was higher in the fecal microbiomes of Malawian and Am-

erindian compared to USA babies; (c) Examples of ECs that exhibited the largest differ-

ences in proportional representation between USA and Malawian/Amerindian adult fecal 

microbiomes. UPGMA clustering of 16 adult USA, 5 Malawian and 5 Amerindian fecal 

microbiomes, based on the relative abundances of genes encoding ECs (normalized by Z-

score across all datasets).

Fig. 4. Differences in the fecal microbial communities between family members across 

the three populations studied. UniFrac distances between the fecal bacterial communities 

of family members were calculated (n=19 Amerindian families, 34 Malawian families, 54 

USA families with teenage twins). Mean ± SEM values are plotted. The UniFrac matrix 

was permutated 1000 times; p values represent the fraction of times permuted differences 

were greater than real differences: ns (not significant; p>0.05), * p<0.05, **p<0.005.
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Figure 2a,b.
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Figure 2c.
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Figure 3.
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Figure 4.
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Supplemental Figure Legends

Fig. S1. Large interpersonal variation between children. UniFrac distances between 

children ≤ 3 years old and adults from the same population compared to adults from the 

other two populations. Mean values ± SEM are plotted. **p<0.001, Student’s t-test with 

1000 Monte Carlo simulations. 

Fig. S2. Principal Coordinates Analysis of UniFrac distances between 524 sampled in-

dividuals. When adults are considered alone (a), or when babies are considered alone (b), 

there is clear separation among populations using unweighted UniFrac. When adults, ba-

bies and children older than 6 months are considered together (c,d), the main axis separates 

by age, and the differences among adult populations are more apparent than differences 

among infant populations, in part because of the high inter-individual variability in infants. 

Fig. S3. Changes in the representation of bacterial taxa in the fecal microbiota as a 

function of age and geographic region. (a) Shotgun reads were mapped to 126 reference 

sequenced human gut microbial genomes. Spearman correlations (Rho values) were sub-

sequently calculated for the representation of reads that match to each genome against age 

for each population (a Rho value of ±1 indicates maximum correlation with age, a zero in-

dicates minimum correlation). Rho values for Malawians are plotted against Rho values for 

Amerindians (black points) or residents of the USA (yellow points). Each point represents 

a genome; coordinates are correlations for the relative abundance of that genome with age 

in Malawians (x-axis) and Amerindians or USA residents (y-axis). Spearman correlations 

relating populations: Malawi vs USA, Rho=0.65, p<10-15; Amerindians vs USA Rho=0.78, 

p<10-15; Malawi vs Amerindians Rho = 0.66, p<10-15. Lower panel presents examples of the 

largest changes with age in all three populations (Bifidobacterium longum and Clostridium 

sp), and changes that are most pronounced in Malawi and Amerindians (Providencia rett-

geri). (b) An analysis similar to that shown in panel a, but using 1280 microbial genomes 

present in KEGG.
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Fig. S4. Geographic differences in the bacterial phylogenetic structure of adult fe-

cal microbiomes. Random Forests analysis disclosed groups of species-level phylotypes 

whose representation is significantly different between the three populations. Shown are 

relative abundances (log10) for the 64 OTUs whose removal increases estimated error by 

0.001.

Fig. S5. Enterotype analysis. (a) Stacked bar plot of Bacteroides/Prevotella gradient. 

Each column shows relative abundances of Bacteroides (red), Prevotella (blue), and other 

genera (green) for a single gut community; communities are ordered according to increas-

ing Bacteroides relative abundance. Box plots below show the distribution of samples from 

each country. (b) Classical multidimensional scaling (also known as principal coordinates 

analysis) of Jensen-Shannon distances between all adult (≥ 20 years of age) gut commu-

nities; samples are colored by host country, and lines connect samples to their putative 

enterotype cluster centroids (silhouette index = 0.58). The inset shows a scatter plot of the 

relative abundance of Bacteroides and Prevotella along the first principal coordinate axis 

(PC1). (c) Clustering results for several adult sub-populations (silhouette indices: Malawi 

= 0.37; Amazon 0.51; non-USA = 0.50; USA = 0.68) showing new putative enterotype 

boundaries. (d) Enterotype clustering algorithm applied to samples from all countries and 

all ages; samples are colored by age. (e) Enterotype membership for partitioned subpopu-

lations of increasing minimum age. Samples are sorted vertically first by putative cluster 

number, then by age within each cluster. Lines indicate samples that switched cluster mem-

bership after a partitioning step.

Fig. S6. Most abundant non-bacterial members identified in the fecal microbiota. 

Shotgun sequences were used to query the NCBI nr database (Blastn e-value threshold 

cutoff, 10-5). The proportion of sequences that mapped to non-bacterial sequences was cal-

culated for each age- and geographic group. The most abundant fungal sequences belong to 

the NCBI nr family level taxa Ascomycota and Microsporidia and were found in all three 

populations. In NCBI nr, ‘other eukaryota’ refers to sequences that do not map to fungi, 
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plants, arthropoda, mammals, and ‘other metazoa’. In USA microbiomes ‘other eukaryota’ 

was most prominently represented by Hexamitidae, Trichomonadidae families and genus 

Entamoeba, while in Malawian and Amerindian microbiomes the most abundant group 

was “uncultured compost protozoan”, with Codonosigidae and Hexamitidae families rep-

resented less frequently. *** p<0.0005, **p<0.005, *p<0.05 (Mann-Whitney test).

Fig. S7. The number of ECs identified is similar in adult and infant fecal microbiomes, 

while the fraction of reads with assignable EC annotations declines with age in all 

three populations. (a) EC matrix was rarefied to 3,650 sequences per sample, and number 

of ECs plotted against log (Age) for each sample. (b) Percent of sequences with KEGG 

annotation plotted against log (Age).

Fig. S8 –Analysis of Hellinger distances between KEGG KO profiles. (a,b) PCoA plots. 

(c) Hellinger distances derived from KO profiles are shown for unrelated children ≤3 years 

of age and unrelated adults (n=9 children and 5 adults from Malawi; 11 children and 5 

adults from Venezuela; 10 children and 8 adults from USA). Mean values ± SEM are plot-

ted. Abbreviations: * p<0.05; **p<0.005 (Student’s t-test with 1000 Monte Carlo simula-

tions). For the analyses shown in (a-c), counts were normalized to the total number of reads 

for each fecal microbiome sample, thus accounting for sequences unassigned to KEGG. 

Fig. S9. PCoA and Procrustes analysis of 16S rRNA and shotgun datasets annotated 

with KEGG ECs (a), KEGG KOs (b) and COGs (c). Two spheres connected by a line 

represent two different data types from the same fecal sample. The colors of the lines indi-

cate the type of data; in all cases, the grey component of the line is connected to the sphere 

representing 16S rRNA data, while the red component of the line is connected to the sphere 

corresponding to that sample’s functional annotation data (EC, KO, or COG). The overall 

goodness of fit for the different data types (M2) is noted in each panel (three dimensions 

were used to calculate this M2 value).
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Fig. S10. Age-related changes in the proportional representation of genes encoding 

ECs involved in folate metabolism. (a) KEGG pathway for folate metabolism. (b) UP-

GMA clustering (average linkage method) of fecal microbiomes of 24 babies and 26 adults 

based on the relative abundances of genes encoding ECs shown in panel A, normalized by 

Z-score across all datasets. 

Fig. S11. Age-related changes in the proportional representation of genes encoding 

ECs involved in cobalamin biosynthesis. UPGMA clustering (average linkage method) 

of all 110 characterized fecal microbiomes, based on the relative abundances of ECs in-

volved in cobalamin biosynthesis (normalized by Z-score across all datasets). The bars on 

the top indicate the age, breastfeeding status and geographic location of each human that 

was sampled.

Fig. S12. Spearman correlation between gut microbial species predicted to synthesize 

vitamins B12 and folate and their representation in fecal microbiomes at different 

ages and in different populations. UPGMA clustering of 126 sequenced gut genomes 

(average linkage method) based on the presence of the ECs involved in folate and cobala-

min biosynthesis and metabolism (black squares). Spearman correlation coefficients of the 

proportional representation of these genomes with increasing age are shown on the right 

for each geographic location; a negative value indicates a decrease in the proportion of a 

taxon with increasing age.

Fig. S13. Changes in EC representation in fecal microbiomes as a function of age 

and population. Spearman correlation coefficients (Rho values) were calculated for the 

proportional representation of each EC against age for each human population. Plotted are 

Rho values for Malawians (X-axis) against Rho values for Amerindians (black points) or 

USA residents (yellow points). Each point represents an EC and coordinates are Rho val-

ues for that EC in Malawians (X-axis) and Amerindians or USA residents (Y-axis). Spear-

man correlation: Malawi vs USA, Rho=0.76, p<10-15; Amerindians vs USA Rho=0.66, 
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p<10-15; Malawi vs Amerindians Rho = 0.78, p<10-15. Panels a-f show examples of ECs 

with similar or distinct Rho values for the three populations. The calculated Spearman cor-

relation coefficient and the corresponding p-value for these examples are provided at the 

bottom of the figure.

Fig. S14. Proportional representation of 126 microbial genomes in the fecal micro-

biomes of breastfed Malawian twins and breast-fed and formula fed USA twins (1-5 

months old). 

Fig. S15. Examples of genes encoding ECs whose abundance is significantly greater in 

the fecal microbiomes of USA formula-fed compared to breast-fed twins (2-5 months/

old). Criteria for inclusion: p-value <10-10 (ShotgunFunctionalizeR) and consistent repre-

sentation in a KEGG pathway in one or the other feeding group. The relative abundances 

of genes encoding ECs are normalized by Z-score across all datasets.

Fig. S16. Percentage of fecal microbiome gene content in sampled members of the 

three populations that is also represented in the METAHIT gene catalog generated 

from 124 adult Europeans. Percentage of shotgun pyrosequencing reads in each popula-

tion that could be assigned to the METAHIT gene catalog using the following Blastn pa-

rameters: ≥90% nucleotide sequence identity between the read and a member of the gene 

catalog, E-value <10-5, bitscore ≥50.

Fig. S17. Principal Coordinate Analysis of Hellinger distances between the KEGG 

KO profiles of adult USA, Amerindian and Malawian fecal microbiomes from the 

present study and from 70 European microbiomes in the METAHIT dataset2. First 

three principal coordinates are shown.
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Supplemental Figures
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Figure S2.
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Figure S3.
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Figure S4.
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Figure S5.
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Figure S6.
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Figure S7.
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Figure S8.
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Figure S9.
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Figure S10.
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Figure S11.
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Figure S12.

 Eubacterium dolichum DSM 3991 
 Lactococcus lactis subsp. cremoris SK11 
 Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 
 Collinsella intestinalis DSM 13280 
 Butyrivibrio crossotus DSM 2876 
 Eubacterium ventriosum ATCC 27560 
 Bifidobacterium adolescentis ATCC 15703 
 Bifidobacterium breve DSM 20213 
 Bifidobacterium adolescentis L2-32 
 Bifidobacterium angulatum DSM 20098 
 Bifidobacterium longum DJO10A 
 Bifidobacterium longum NCC2705 
 Bifidobacterium catenulatum DSM 16992 
 Bifidobacterium pseudocatenulatum DSM 20438 
 Collinsella stercoris DSM 13279 
 Bifidobacterium gallicum DSM 20093 
 Bifidobacterium animalis subsp. lactis HN019 
 Bifidobacterium animalis subsp. lactis AD011 
 Streptococcus infantarius subsp. infantarius ATCC BAA-102 
 Lactococcus lactis subsp. lactis Il1403 
 Streptococcus thermophilus LMD-9 
 Streptococcus thermophilus LMG 18311 
 Streptococcus thermophilus CNRZ1066 
 Lactococcus lactis subsp. cremoris MG1363 
 Lactobacillus casei ATCC 334 
 Catenibacterium mitsuokai DSM 15897 
 Eubacterium biforme DSM 3989 
 Parvimonas micra ATCC 33270 
 Clostridium leptum DSM 753 
 Clostridium methylpentosum DSM 5476 
 Clostridium spiroforme DSM 1552 
 Clostridium nexile DSM 1787 
 Holdemania filiformis DSM 12042 
 Anaerofustis stercorihominis DSM 17244 
 Clostridium hiranonis DSM 13275 
 Faecalibacterium prausnitzii A2-165 
 Faecalibacterium prausnitzii M21g2 
 Subdoligranulum variabile DSM 15176 
 Victivallis vadensis ATCC BAA-548 
 Bacteroides coprocola DSM 17136 
 Bacteroides coprophilus DSM 18228 
 Bacteroides plebeius DSM 17135 
 Bacteroides eggerthii DSM 20697 
 Akkermansia muciniphila ATCC BAA-835 
 Bacteroides intestinalis DSM 17393 
 Bacteroides vulgatus ATCC 8482 
 Parabacteroides merdae ATCC 43184 
 Bacteroides stercoris ATCC 43183 
 Bacteroides uniformis ATCC 8492 
 Bacteroides WH2 
 Bacteroides cellulosilyticus DSM 14838 
 Bacteroides dorei DSM 17855 
 Parabacteroides distasonis ATCC 8503 
 Bacteroides fragilis NCTC 9343 
 Bacteroides fragilis 3 1 12 
 Bacteroides fragilis YCH46 
 Bacteroides sp. D2 
 Parabacteroides johnsonii DSM 18315 
 Clostridium sp. M62g1 
 Clostridium symbiosum 
 Clostridium asparagiforme DSM 15981 
 Clostridium bolteae ATCC BAA-613 
 Roseburia intestinalis L1-82 
 Ruminococcus gnavus ATCC 29149 
 Eubacterium rectale DSM17629 
 Eubacterium rectale ATCC 33656 
 Clostridium hylemonae DSM 15053 
 Dorea formicigenerans ATCC 27755 
 Ruminococcus torques ATCC 27756 
 Clostridium sporogenes ATCC 15579 
 Clostridium scindens ATCC 35704 
 Clostridium bartlettii DSM 16795 
 Fusobacterium sp. 4 1 13 
 Anaerotruncus colihominis DSM 17241 
 Bryantella formatexigens DSM 14469 
 Blautia hydrogenotrophica DSM 10507 
 Ruminococcus obeum ATCC 29174 
 Blautia hansenii DSM 20583 
 Anaerostipes caccae DSM 14662 
 Citrobacter youngae ATCC 29220 
 Fusobacterium varium ATCC 27725 
 Eubacterium hallii DSM 3353 
 Bacteroides capillosus ATCC 29799 
 Lactobacillus reuteri DSM 20016 
 Ruminococcus lactaris ATCC 29176 
 Dorea longicatena DSM 13814 
 Coprococcus comes ATCC 27758 
 Collinsella aerofaciens ATCC 25986 
 Desulfovibrio piger ATCC 29098 
 Desulfovibrio piger GOR1 
 Mitsuokella multacida DSM 20544 
 Actinomyces odontolyticus ATCC 17982 
 Prevotella copri DSM 18205 
 Providencia rettgeri DSM 1131 
 Escherichia fergusonii ATCC 35469 
 Enterobacter cancerogenus 
 Providencia alcalifaciens DSM 30120 
 Providencia rustigianii DSM 4541 
 Proteus penneri ATCC 35198 
 Providencia stuartii ATCC 25827 
 Shigella sp. D9 
 Escherichia coli K-12 MG1655 
 Bacteroides sp. 1 1 6 
 Bacteroides thetaiotaomicron 7330 
 Bacteroides thetaiotaomicron VPI-5482 
 Bacteroides thetaiotaomicron 3731 
 Bacteroides ovatus ATCC 8483 
 Bacteroides xylanisolvens XB1A 
 Alistipes putredinis DSM 17216 
 Bacteroides sp. D1 
 Bacteroides caccae ATCC 43185 
 Bacteroides finegoldii DSM 17565 
 Coprococcus eutactus ATCC 27759 
 Clostridium sp. L2-50 
 Clostridium sp. SS2g1 
 M23A 
 Clostridium ramosum DSM 1402 
 Eubacterium eligens ATCC 27750 
 Anaerococcus hydrogenalis DSM 7454 
 Ruminococcus bromiiL263 
 Helicobacter pylori HPAG1 
 Bifidobacterium dentium 
 Methanosphaera stadtmanae DSM 3091 
 Methanobrevibacter smithii DSM 2375 
 Methanobrevibacter smithii ATCC 35061 
 Methanobrevibacter smithii DSM 2374  E

C
2.3.1.37 

 E
C

2.1.1.152 
 E

C
1.14.13.83 

 E
C

3.5.1.90 
 E

C
1.3.1.54 

 E
C

1.3.3.3 
 E

C
3.5.1.10 

 E
C

4.1.1.37 
 E

C
3.1.3.73 

 E
C

4.1.1.81 
 E

C
6.3.5.10 

 E
C

2.7.8.26 
 E

C
2.4.2.21 

 E
C

2.7.1.156 
 E

C
2.7.7.62 

 E
C

6.3.1.10 
 E

C
4.99.1.3 

 E
C

2.1.1.131 
 E

C
2.1.1.133 

 E
C

2.1.1.130 
 E

C
2.1.1.151 

 E
C

2.1.1.132 
 E

C
6.3.1.- 

 E
C

5.4.1.2 
 E

C
1.2.1.70 

 E
C

5.4.3.8 
 E

C
4.2.1.24 

 E
C

2.1.1.107 
 E

C
1.3.1.76 

 E
C

4.99.1.4 
 E

C
2.5.1.61 

 E
C

1.16.3.1 
 E

C
6.6.1.2 

 E
C

2.1.2.10 
 E

C
2.5.1.17 

 E
C

2.1.1.13 
 E

C
4.2.1.75 

 E
C

3.1.3.1 
 E

C
6.3.4.3 

 E
C

1.3.99.22 
 E

C
1.5.1.5 

 E
C

3.5.4.9 
 E

C
6.3.3.2 

 E
C

2.1.2.3 
 E

C
2.1.2.2 

 E
C

1.5.1.3 
 E

C
2.1.1.45 

 E
C

1.5.1.20 
 E

C
3.5.4.16 

 E
C

2.5.1.15 
 E

C
2.7.6.3 

 E
C

6.3.2.17 
 E

C
2.6.1.85 

 E
C

4.1.3.38 
 E

C
4.1.2.25 

 E
C

4.2.3.12 
 E

C
2.1.2.5 

 E
C

4.3.1.4 
 E

C
2.1.1.148

 E
C

1.5.1.34 
 E

C
1.16.8.1 

 E
C

1.1.1.153
 E

C
1.5.1.15 

 E
C

1.1.1.220

 -0.7  -0.3  0  0.3  0.7  1

Spearman
correlation
coefficient

E.C. present E.C. absent Folate related EC B12-related EC

USAAmerindians

Malawians

 -1

Actinobacteria Bacteroidetes Firmicutes 
Fusobacteria Proteobacteria Verrucomicrobia Archaea



181

Figure S13.
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Figure S14.
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Figure S15.

 Alpha-L-fucosidase EC3.2.1.51 
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Figure S16.
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Figure S17.
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Supplemental Table Legends

Table S1. Diet survey conducted in two Amerindian villages. (a) Platanillal (b) Coromoto. Data 

are based on 24 h recall.

Table S2. Summary of study participants and of fecal bacterial 16S rRNA and whole com-

munity DNA sequence datasets. Our analyses also included (i) V2-derived 16S rRNA data from 

30 individuals representing 10 USA families, each comprised of lean adult female twins and their 

mother, who had been characterized in one of our earlier publications, together with shotgun py-

rosequencing data from a subset of three of these families35, plus (ii) 16S rRNA and shotgun data 

from two fecal samples obtained from a single USA mother and child who had been the subject of 

report describing the assembly of that child’s gut microbiota/microbiome5.

Table S3. P values (Student t-test with 1000 Monte Carlo permutations) of UniFrac and 

Hellinger distances between fecal communities of children and adults shown in Fig. 1b,c.

Table S4. List of the 126 reference human gut microbial genomes.

Table S5. Spearman correlations of relative abundances of reads that map to microbial ge-

nomes in fecal microbiomes with age for each country using (a) 126 genomes and (b) 1,280 

genomes from KEGG database.

Table S6. Results of Random Forests classifier of OTUs (species-level phylotypes) that dis-

criminate the adult fecal microbiota of USA and non-USA residents (performed over 100 even 

rarefactions of sampled communities). The rarefaction depth for was 718 sequences/sample. One 

hundred even rarefactions were performed for the comparison.

Table S7. ECs identified by Random Forests and ShotgunFunctionalizeR that exhibit signifi-

cant age-associated differences. Shown are ECs with p-values < 0.0001 (adjusted for multiple 

comparison using Benjamini-Hochberg False Discovery Rate). 

Table S8. ECs identified by Random Forests and ShotgunFunctionalizeR that exhibit signifi-

cant population-specific differences in babies (0-6 months old). Shown are ECs with p values < 
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0.0001 (adjusted for multiple comparisons using Benjamini-Hochberg False Discovery Rate).

Table S9. ECs identified by Spearman correlation analysis that exhibit age-associated chang-

es in their proportional representation. 

Table S10. ECs identified by Random Forests and ShotgunFunctionalizeR that exhibit sig-

nificant differences in their representation in the fecal microbiomes of 4 breast-fed USA twin 

pairs versus 4 formula-fed USA twin pairs (2-5 months old).

Table S11. ECs identified by Random Forests and ShotgunFunctionalizeR that exhibit sig-

nificant population-specific differences in the fecal microbiomes of adults. Shown are ECs 

with p values < 0.0001 (adjusted for multiple comparisons using Benjamini-Hochberg False 

Discovery Rate).
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Supplemental Tables

Tables S1 — S2. 

Please reference provided CD for these tables.
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Table S4

Table S4. List of the 126 reference human gut microbial genomes
Genome name Genbank ID Genome size
Actinomyces odontolyticus ATCC 17982 NZ_AAYI00000000 2393758
Akkermansia muciniphila ATCC BAA-835 NC_010655 2664102
Alistipes putredinis DSM 17216 NZ_ABFK00000000 2549878
Anaerococcus hydrogenalis DSM 7454 NZ_ABXA00000000 1889366
Anaerofustis stercorihominis DSM 17244 NZ_ABIL00000000 2284603
Anaerostipes caccae DSM 14662 NZ_ABAX00000000 3605636
Anaerotruncus colihominis DSM 17241 NZ_ABGD00000000 3718888
Bacteroides caccae ATCC 43185 NZ_AAVM00000000 4564814
Bacteroides capillosus ATCC 29799 NZ_AAXG00000000 4241076
Bacteroides cellulosilyticus DSM 14838 NZ_ACCH00000000 6726268
Bacteroides coprocola DSM 17136 NZ_ABIY00000000 4295617
Bacteroides coprophilus DSM 18228 NZ_ACBW00000000 3855443
Bacteroides dorei DSM 17855 NZ_ABWZ00000000 5487768
Bacteroides eggerthii DSM 20697 NZ_ABVO00000000 4157980
Bacteroides finegoldii DSM 17565 NZ_ABXI00000000 4881901
Bacteroides fragilis 3_1_12 NZ_ABZX00000000 5486240
Bacteroides fragilis NCTC 9343 NC_003228 5205140
Bacteroides fragilis YCH46 NC_006347 5277274
Bacteroides intestinalis DSM 17393 NZ_ABJL00000000 6052596
Bacteroides ovatus ATCC 8483 NZ_AAXF00000000 6463169
Bacteroides plebeius DSM 17135 NZ_ABQC00000000 4421324
Bacteroides sp. 1_1_6 NZ_ACIC00000000 6855195
Bacteroides sp. D1 NZ_ACAB00000000 5986762
Bacteroides sp. D2 NZ_ACGA00000000 6901960
Bacteroides stercoris ATCC 43183 NZ_ABFZ00000000 4009229
Bacteroides thetaiotaomicron 3731 NC_Bthetaiotaomicron3731 7098445
Bacteroides thetaiotaomicron 7330 NC_Bthetaiotaomicron7330 6894436
Bacteroides thetaiotaomicron VPI-5482 NC_004663 6260361
Bacteroides uniformis ATCC 8492 NZ_AAYH00000000 4717497
Bacteroides vulgatus ATCC 8482 NC_009614 5163189
Bacteroides WH2 NC_BWH2 7129681
Bacteroides xylanisolvens XB1A NC_BxylanisolvensXB1A 5861392
Bifidobacterium adolescentis ATCC 15703 NC_008618 2089645
Bifidobacterium adolescentis L2-32 NZ_AAXD00000000 2385710
Bifidobacterium angulatum DSM 20098 NZ_ABYS00000000 2007108
Bifidobacterium animalis subsp. lactis AD011 NC_011835 1933695
Bifidobacterium animalis subsp. lactis HN019 NZ_ABOT00000000 1915892
Bifidobacterium breve DSM 20213 NZ_ACCG00000000 2297799
Bifidobacterium catenulatum DSM 16992 NZ_ABXY00000000 2058429
Bifidobacterium dentium NC_Bdentium 2642189
Bifidobacterium gallicum DSM 20093 NZ_ABXB00000000 2019802
Bifidobacterium longum DJO10A NC_010816 2375792
Bifidobacterium longum NCC2705 NC_004307 2256640
Bifidobacterium pseudocatenulatum DSM 20438 NZ_ABXX00000000 2304808
Blautia hansenii DSM 20583 NZ_ABYU00000000 3053221
Blautia hydrogenotrophica DSM 10507 NZ_ACBZ00000000 3565428
Bryantella formatexigens DSM 14469 NZ_ACCL00000000 4548960
Butyrivibrio crossotus DSM 2876 NZ_ABWN00000000 2482791
Catenibacterium mitsuokai DSM 15897 NZ_ACCK00000000 2671313
Citrobacter youngae ATCC 29220 NZ_ABWL00000000 5143204
Clostridium asparagiforme DSM 15981 NZ_ACCJ00000000 6224391
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Clostridium bartlettii DSM 16795 NZ_ABEZ00000000 2971856
Clostridium bolteae ATCC BAA-613 NZ_ABCC00000000 6556988
Clostridium hiranonis DSM 13275 NZ_ABWP00000000 2423348
Clostridium hylemonae DSM 15053 NZ_ABYI00000000 3885459
Clostridium leptum DSM 753 NZ_ABCB00000000 3270109
Clostridium methylpentosum DSM 5476 NZ_ACEC00000000 3406326
Clostridium nexile DSM 1787 NZ_ABWO00000000 3861016
Clostridium ramosum DSM 1402 NZ_ABFX00000000 3234795
Clostridium scindens ATCC 35704 NZ_ABFY00000000 3619905
Clostridium sp. L2-50 NZ_AAYW00000000 2954116
Clostridium sp. M62/1 NZ_ACFX00000000 3836694
Clostridium sp. SS2/1 NZ_ABGC00000000 3141381
Clostridium spiroforme DSM 1552 NZ_ABIK00000000 2507485
Clostridium sporogenes ATCC 15579 NZ_ABKW00000000 4102125
Clostridium symbiosum NC_Csymbiosum 4954054
Collinsella aerofaciens ATCC 25986 NZ_AAVN00000000 2439869
Collinsella intestinalis DSM 13280 NZ_ABXH00000000 1804297
Collinsella stercoris DSM 13279 NZ_ABXJ00000000 2399821
Coprococcus comes ATCC 27758 NZ_ABVR00000000 3238915
Coprococcus eutactus ATCC 27759 NZ_ABEY00000000 3102087
Desulfovibrio piger ATCC 29098 NZ_ABXU00000000 2826240
Desulfovibrio piger GOR1 AF192152 2597386
Dorea formicigenerans ATCC 27755 NZ_AAXA00000000 3186031
Dorea longicatena DSM 13814 NZ_AAXB00000000 2913833
Enterobacter cancerogenus NC_Ecancerogenus 4605129
Escherichia coli str. K-12 substr. MG1655 NC_000913 4639675
Escherichia fergusonii ATCC 35469 NC_011740 4588711
Eubacterium biforme DSM 3989 NZ_ABYT00000000 2415920
Eubacterium dolichum DSM 3991 NZ_ABAW00000000 2190453
Eubacterium eligens ATCC 27750 NC_012778 2144190
Eubacterium hallii DSM 3353 NZ_ACEP00000000 3290996
Eubacterium rectale ATCC 33656 NC_012781 3449685
Eubacterium rectale DSM 17629 NC_Erectale_DSM17629 3255606
Eubacterium ventriosum ATCC 27560 NZ_AAVL00000000 2869695
Faecalibacterium prausnitzii A2-165 NZ_ACOP00000000 3080849
Faecalibacterium prausnitzii M21/2 NZ_ABED00000000 3126983
Fusobacterium sp. 4_1_13 NZ_ACDE00000000 2268505
Fusobacterium varium ATCC 27725 NZ_ACIE00000000 3321664
Helicobacter pylori HPAG1 NC_008086 1596366
Holdemania filiformis DSM 12042 NZ_ACCF00000000 3803745
Lactobacillus casei ATCC 334 NC_008526 2895264
Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842NC_008054 1864998
Lactobacillus reuteri DSM 20016 NC_009513 1999618
Lactococcus lactis subsp. cremoris MG1363 NC_009004 2529478
Lactococcus lactis subsp. cremoris SK11 NC_008527 2438589
Lactococcus lactis subsp. lactis Il1403 NC_002662 2365589
M23A NC_M23A 4338875
Methanobrevibacter smithii ATCC 35061 CP000678.1 1853160
Methanobrevibacter smithii DSM 2374 NZ_ABYV00000000 1727775
Methanobrevibacter smithii DSM 2375 NZ_ABYW00000000 1704865
Methanosphaera stadtmanae DSM 3091 NC_007681 1767403
Mitsuokella multacida DSM 20544 NZ_ABWK00000000 2574556
Parabacteroides distasonis ATCC 8503 NC_009615 4811379
Parabacteroides johnsonii DSM 18315 NZ_ABYH00000000 4612238
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Parabacteroides merdae ATCC 43184 NZ_AAXE00000000 4431877
Parvimonas micra ATCC 33270 NZ_ABEE00000000 1703772
Prevotella copri DSM 18205 NZ_ACBX00000000 3507873
Proteus penneri ATCC 35198 NZ_ABVP00000000 3747729
Providencia alcalifaciens DSM 30120 NZ_ABXW00000000 4029346
Providencia rettgeri DSM 1131 NZ_ACCI00000000 4749568
Providencia rustigianii DSM 4541 NZ_ABXV00000000 3965844
Providencia stuartii ATCC 25827 NZ_ABJD00000000 4603561
Roseburia intestinalis L1-82 NZ_ABYJ00000000 4380675
Ruminococcus bromii L263 NC_RbromiiL263 2240019
Ruminococcus gnavus ATCC 29149 NZ_AAYG00000000 3501911
Ruminococcus lactaris ATCC 29176 NZ_ABOU00000000 2729735
Ruminococcus obeum ATCC 29174 NZ_AAVO00000000 3624708
Ruminococcus torques ATCC 27756 NZ_AAVP00000000 2739406
Shigella sp. D9 NZ_ACDL00000000 4717340
Streptococcus infantarius subsp. infantarius ATCC BAA-102NZ_ABJK00000000 1925087
Streptococcus thermophilus CNRZ1066 NC_006449 1796226
Streptococcus thermophilus LMD-9 NC_008532 1856368
Streptococcus thermophilus LMG 18311 NC_006448 1796846
Subdoligranulum variabile DSM 15176 NZ_ACBY00000000 3237471
Victivallis vadensis ATCC BAA-548 NZ_ABDE00000000 5294868



193

Table S5

Please reference provided CD for this table.
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Tables S7 — S11.

Please reference provided CD for these tables.
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Chapter 4

Temporal variation in the gut microbiomes of healthy and twin pairs discordant for 
severe malnutrition.
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Introduction

Undernutrition is a leading cause of childhood deaths in the world (Bryce, 2005). Those 

who suffer from severe forms of malnutrition, such as kwashiorkor or marasmus, are es-

pecially at high risk. There are a number of long-term consequences of undernutrition, 

including stunting and neurodevelopmental disorders.  As noted in Chapter 1 of this thesis, 

kwashiorkor was first described by Williams in 1931 (Williams 1973). Prominent phe-

notypic features include generalized edema, hepatic steatosis and depigmentation of the 

skin (Blackburn 2001). Its etiology remains obscure. An early hypothesis held that it was 

caused by a low protein diet. However, epidemiologic studies subsequently showed that 

the diets of children with kwashiorkor do not differ significantly from those with marasmus 

(Golden 2002, Lin et al. 2007). Moreover, the edematous malnutrition that characterizes 

kwashiorkor can resolve on a low-protein diet without accompanying changes in plasma 

protein levels. Marasmus, which has a higher mortality rate (Scrimshaw and Viteri, 2010), 

is characterized by severe wasting: its onset typically occurs earlier than kwashiorkor [6-17 

months versus up to 4 years (Courtright & Canner 1995, Ahmed et al. 2009)]. A ready-to-

use-therapeutic food (RUTF), composed of peanut butter, sugar, vegetable oil and milk 

fortified with vitamins and minerals, has been developed recently: clinical studies indicate 

that it has increased efficacy in the treatment of severe forms of malnutrition compared to 

standard nutritional rehabilitation protocols (Ciliberto et al. 2005). 

The role of the gut microbiome in the pathogenesis of kwashiorkor and marasmus 

is unclear. However, there is mounting evidence that the nutritional value of food is influ-

enced in part by a consumer’s gut microbial community (microbiota), and that food in turn 

shapes the composition and operations of microbiota and its vast collection of microbial 

genes (the ‘gut microbiome’) (Muegge et al., 2011; Wu et al., 2011). Information is also 

rapidly accumulating that many features of our metabolic phenotypes (metabotypes) are 

a reflection of enzymatic activities encoded in our human genomes and gut microbiomes. 

Chapter 3 describes a developmental program where the proportional representation of 
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genes encoding metabolic functions related to micro- and macronutrient processing and 

biosynthesis changes as healthy infants and children develop. The link between infections 

that occur within and outside the gastrointestinal tract, and the development of nutritional 

deficiencies has been emphasized for many years (Golden 2002, Prentice et al., 2008). We 

are learning how our gut microbial communities and immune systems co-develop, how 

microbiota influences mucosal barrier function and impedes invasion with enteropatho-

gens. This barrier function can be disrupted by malnutrition as well as by perturbations in 

immune function. Poor nutrition in turn, increases the risk for infection. 

Together, these observations give rise to the following testable hypotheses: (i) the 

gut microbiome is a microbial metabolic organ that provides key functions needed for 

healthy postnatal growth and development; (ii) disturbances in microbiome assembly and 

function, including those prompted by enteropathogen infection, affect the risk for kwashi-

orkor or marasmus; (iii) in a self-reinforcing pathogenic cascade, undernutrition in infants 

affects gut microbiome functions involved in determining host nutritional status, thus fur-

ther worsening health status; (iv) there may be a number of gut microbiome configurations 

associated with kwashiorkor or marasmus among different hosts and even within a given 

host over time; (v) microbiome configurations associated with kwashiorkor or marasmus 

may be differentially affected by RUTF and features that are reconfigured during the treat-

ment may not persist after its withdrawal, indicating a need for longer term nutritional 

support to repair microbiome-associated metabolic lesions that may underlie lingering host 

phenotypes associated with a history of kwashiorkor or marasmus. 

Study Design

 Prospective, longitudinal, comparative metagenomic studies of functional features present 

in the developing gut microbiomes of healthy infants and children, and those who develop 

these two severe forms of malnutrition, have not been reported. Therefore, we have con-

ducted a pilot study characterizing the configuration of fecal microbiota and microbiomes 
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in mono- and dizygotic twin pairs who were born in Malawi and became discordant for 

kwashiorkor and marasmus. Malawi, located in southeastern Africa, has one of the highest 

infant mortality rates in the world (81 deaths/1,000 live births), with 42% child’s deaths 

associated with malnutrition (Pelletier et al., 1994). In designing the study, we had to take 

into account that there is considerable intra- as well as interpersonal variation in the organ-

ismal content of the gut microbiota during infancy (Palmer et al. 2007). We reasoned that a 

healthy co-twin in a twin pair discordant for kwashiorkor or marasmus represented a very 

desirable control given his/her genetic relatedness to the affected co-twin, and their similar 

exposures to diet, the microbiota of family members including the mother, and to other 

microbial reservoirs that exist in their shared early environment. Following each co-twin in 

a twin pair prospectively would allow each individual to serve as his/her own control (e.g. 

comparing their microbiome structure before the onset of disease, plus during and after 

treatment); if there were many different routes to disrupted microbiome structure/function, 

then each discordant twin pair could provide a ‘vignette’ of the pathologic process. Being a 

twin not only increases the risk of malnutrition but comparing the incidence of discordance 

for severe malnutrition among mono- versus dizygotic twins would allow us to assess 

the contributions of host genotype to kwashiorkor or marasmus. Moreover, in Malawi, 

the standard of care for twins discordant for kwashiorkor or marasmus is to treat both the 

healthy and malnourished co-twin with RUTF, allowing us to compare and contrast the re-

sponses of their microbiomes prior to, during and after treatment. Finally, as an additional 

set of controls, we defined the gut microbiome assembly and encoded functions in twin 

pairs who remained healthy and lived in the same geographic location as discordant pairs. 

Twin pairs who were less than 3 years old were enrolled regardless of their health 

status from five villages (Makhwira, Mitondo, M’biza, Chamba, Mayaka) located in the 

southern region of Malawi (Fig. 1). There are two seasons in this region: a rainy season 

that lasts from November to May and coincides with the highest incidence of malnutrition, 

and dry season (CIA 2011). In the southern region, 58.9% infants are exclusively breastfed 
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during the first 6 months of life; 70.3% children continue to be breastfed in the first 2 years 

of life (WHO 2006).

317 twin pairs and 3 families of triplets were recruited. The average age at enroll-

ment was 9±6 months; all but 19 twin pairs were being breastfed (average age at the ces-

sation of breastfeeding, 18±5 months). Children were followed until they were 36 months 

old. Zygosity testing, using buccal DNA and a custom array containing 48 autosomal SNPs 

with high heterozygosity in the Yoruban HapMap sample (see Methods), revealed that 46 

of the twin pairs, 1 set of triplets, and 2 children in another triplet were monozygotic (MZ). 

The percentage of same gender twin pairs in the recruited cohort was higher than opposite 

gender pairs (p=7.53e-9, Binomial test, probability of success = 66.24%, CI =(0.61,0.71), 

Table 1a). 

Our study design is depicted in Fig.2. Assessments of nutritional status and anthro-

pometric data were conducted once a month; a fecal sample was collected every 2 months 

up until 1 year of age, and every 3 months thereafter. Kwashiorkor was diagnosed based 

on the presence of a pitting edema. Marasmus was diagnosed when an infant or child had 

a weight-for-height Z score (WHZ) that was less than -3. Children with WHZ scores be-

tween -2 and -3 were classified as moderately undernourished. Twin pairs who developed 

kwashiorkor or marasmus immediately received a peanut butter-based, ready-to-use thera-

peutic food (RUTF), while those with moderate malnutrition received a soy-based diet 

(Matilsky et al., 2009). After the diagnosis with malnutrition, health status was monitored 

and fecal sample collected every 2 weeks until the child recovered (in the case of maras-

mus, when WHZ scores of children with marasmus became greater than -2;  in the case of 

kwashiorkor, with resolution of edema). On average, twin pairs where one or both children 

developed kwashiorkor received 4 weeks of RUTF treatment, while those with marasmus 

were treated for 7 weeks. 

50% of the enrolled twin pairs remained healthy throughout the study, 43% twin 

pairs became discordant for undernutrition, and 7% manifested concordance for under-
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nutrition (Table 1a). The prevalence of discordant compared to concordant phenotypes 

was significant (p<2e-16, Binomial and chi-squared tests). Moderate malnutrition was sig-

nificantly more frequent than severe malnutrition, affecting 60% of the discordant twin 

pairs (p=0.02, Chi-square test). 7% of the children in this cohort experienced episodes of 

kwashiorkor, 2.5% developed marasmus, and 14% exhibited moderate malnutrition. 10% 

of children experienced multiple episodes of these forms of undernutrition (i.e., kwashior-

kor, marasmus and/or moderate malnutrition), with the most frequent combination being 

marasmus and moderate malnutrition (5.4% children, Table 2). Table 3 indicates the ages, 

anthropometric measurements and incidence of symptoms of diarrhea, fever, cough and 

vomiting at the time a child presented with undernutrition. The average age at the presen-

tation with marasmus was 11±4 months; the corresponding values for kwashiorkor and 

moderate malnutrition were 16±7 and 14±7 months, respectively. Children with marasmus 

had the lowest anthropometric values: weight for height Z score (WHZ) was -3.6±0.6, 

height-for-age Z score (HAZ) was -3.7±1.3 and weight-for-age Z score (WAZ) was -4.6±1. 

In addition, children with marasmus suffered significantly more episodes of diarrhea than 

did those with kwashiorkor or moderate malnutrition (p<0.05; see Table 3). Moreover, the 

highest proportion of deaths was found in co-twins that were members of twin pairs dis-

cordant for marasmus, compared to those who were discordant for kwashiorkor or moder-

ate malnutrition (p=0.0027, Chi-square test): one co-twin died during the study in 43% of 

the twin pairs who were discordant for marasmus versus 9% in twin pairs discordant for 

kwashiorkor and 14% pairs discordant for moderate malnutrition (Table 1a). The majority 

of deaths were caused by diarrhea, malaria or pneumonia. Unfortunately, death of a child 

in a family was not a rare event: in 120 out of 320 (37.5%) sampled families at least 1 child 

(not twin) died in a family at some point before the study began. HIV prevalence was low 

among twins: only 1 twin pair was HIV positive and 11 of 266 sampled mothers were re-

ported as positive. 
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Influence of genetics, geography and gender on susceptibility to malnutrition

Recruitment of both, MZ and dizygotic (DZ) twin pairs allowed us to assess the role of host 

genetics in the susceptibility to malnutrition. There was no significant relationship between 

the concordance for malnutrition and zygosity: the number of MZ twin pairs concordant 

for moderate or severe malnutrition was not significantly different from the number of DZ 

twins concordant for any of these diseases (Table 1b). We did not find significant differ-

ences in the number of MZ versus DZ twin pairs affected with any type of malnutrition 

in our twin cohort (Chi-squared and Fisher’s exact tests). Among same gender twin pairs 

discordant for severe malnutrition, only 1 MZ twin pair was discordant for marasmus, 

while 7 MZ twin pairs were discordant for kwashiorkor; however, this difference was not 

significant, perhaps due to low number of subjects. Taking all 135 discordant pairs into ac-

count, we did not find a statistically significant difference in the incidence of discordance 

for marasmus, kwashiorkor, or moderate malnutrition in MZ versus DZ twins (Table 1a). 

We did not find any association between gender and the type of malnutrition, or the fre-

quency of malnutrition, or discordance for malnutrition among twin pairs (Chi-squared and 

Fisher’s exact tests, Table 2). 

We found a significant association between where a village was located and the fre-

quency of kwashiorkor (p=0.0044, Chi-square test, Table 3): the incidence of kwashiorkor 

was lowest in the 2 southernmost villages surveyed (Fig. 1); these villages were located in 

the Shire River valley, where soil is typically more fertile. Cultivation of cotton and sugar 

cane occurs in this area unlike in the 3 other sites. A lower prevalence of kwashiorkor in 

this area had been reported before (Courtright and Canner, 1995). 

Sampling fecal microbiomes from twins who were concordant for healthy status and 

twins who were discordant for severe malnutrition

For our pilot survey of functional changes in the fecal microbiomes in these chil-

dren, we focused on 9 same gender twin pairs who never developed malnutrition through-
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out the course of the study (“healthy” group), 13 same gender twin pairs who became dis-

cordant for kwashiorkor, and 10 same gender twin pairs discordant for marasmus. Table 4 

provides a summary of the characteristics of these families, and Table 5 provides detailed 

information about each fecal sample collected from these twins. Anthropometric data in 

the form of Z scores collected over the course of the study for these twin pairs is shown in 

Fig. 3. On average, 5±1 fecal samples were collected every 2-3 months from twins who 

remained healthy. For twin pairs discordant for severe malnutrition, fecal samples were 

collected every 2-3 months before diagnosis of malnutrition, every 2 weeks during the 

RUTF treatment and 1 month immediately after cessation of RUTF therapy (Fig. 2). This 

resulted in 8±3 samples from twins discordant for kwashiorkor and 8±5 samples from twin 

pairs discordant for marasmus (Table 4). Fecal samples were immediately frozen in liquid 

nitrogen at the site where they were produced by the children, transported to the laboratory, 

and subsequently stored at -80oC.

Total genomic DNA was isolated from each pulverized fecal sample, and subject-

ed to multiplex shotgun pyrosequencing (454 FLX Titanium chemistry; 82,138±43,730 

high quality sequences per sample; total size of the dataset is 14.5 Gb). Human sequences 

(6±14% of reads) were identified by BLASTn searches of the human genome, and discard-

ed. The remaining reads were functionally annotated by comparison to the KEGG database 

(version 58). Reads were assigned to KEGG orthologous groups (KOs) and enzyme com-

mission numbers (ECs) (BLAST e-value cutoff <10-5); 40±8% of sequences received an-

notations using this procedure (Fig.4). In addition to sequencing whole community DNA, 

we sequenced amplicons generated from variable region 2 of bacterial 16S rRNA genes 

represented in 1,041 fecal samples in order to survey the phylogenetic composition of these 

communities as a function of age, health status, and treatment.  On average, 2,055±2,254 

reads were obtained from each fecal sample, resulting in 2,139,576 total reads (average 

read length 250 nt).



205

Comparison of fecal microbiomes across all children 

To compare functional gene profiles across all 453 fecal samples that had been subjected to 

shotgun sequencing, we calculated Hellinger distances from KEGG KO assignments. We 

confirmed our previous finding (Chapter 3 of this thesis) of greater inter-individual varia-

tion at younger ages: the average distance between microbiomes sampled during the first 

few months of life was much greater than the distance between microbiomes sampled at 

older ages (Fig. 5). We then used principal coordinates analysis (PCoA) of the Hellinger 

distances to visualize variation in this dataset (Fig. 6). Principal coordinate 1, which ex-

plained the largest amount of variation (18%), was strongly associated with age and family 

membership (linear mixed model, Fig. 6a,b): i.e., within each family the functional com-

position of fecal microbiomes was changing at a similar rate as children matured. Micro-

biomes of twins affected with kwashiorkor or marasmus did not cluster in a fashion that 

was significantly differently from their healthy co-twins along PC1 (Fig. 6c,d). This lack of 

strong clustering is not surprising given the high inter-individual variation observed during 

the first 3 years of life even in the microbiomes of healthy children from Malawi as well as 

other countries, plus the strong familial similarity (Chapter 3 of this thesis). 

When we examined the distribution of samples (sequenced and annotated fecal 

microbiomes) along other principal coordinates, we noticed that variation along PC2 was 

driven by several samples primarily from twin pairs discordant for marasmus (Fig. 6e), 

although the association between position along PC2 and health status was not significant 

according to Spearman correlation and mixed model regression analyses. However, the 

position of these samples along PC2 was positively correlated with the representation of 

bacterial taxa belonging to the family Enterobacteriaceae, and negatively correlated with 

the representation of the genera Bifidobacterium and Colinsella (Fig 6f). Although a large 

number of common enteropathogens are found in the family Enterobacteriaceae, gut mi-

crobiomes with the highest proportional representation of this family did not come from 

children with the most severe cases of malnutrition.
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Because of the high degree of intra- and inter-personal variation due to age, and be-

cause of the significant familial similarity, we did not expect to observe common responses 

across all families to malnutrition or to RUTF treatment. Nonetheless, our study design al-

lowed us to control for age and family effects by comparing a healthy co-twin to his or her 

malnourished co-twin. But first we proceeded with the analysis of twin pairs who remained 

healthy throughout the study, in order to define baseline variation of the gut microbiome in 

healthy children in this region.

Temporal variation of the gut microbiomes of twin pairs who remained healthy

The adult human gut microbiome is relatively stable over time: a recent study of healthy 

adult USA female twins who were sampled over 4 months showed that intra-individual 

variation was smaller than variation between twins from the same family; in other words, 

microbiomes from the same person were most similar to one another, and then to a co-twin 

(McNulty et al. 2011). However, the extent of variation in infant microbiomes within an 

individual and family (in this case twin pair) has not been described in Malawi or other 

populations. Therefore, we first asked if intrapersonal as well as ‘familial’ similarity ap-

pears early in life. Hellinger distances were calculated between 93 KEGG KO profiles 

obtained from 9 healthy twin pairs sampled between 3 weeks and 24.5 months of age 

(Table 5). When Hellinger distances between microbiomes sampled from the same child 

were compared to distances between microbiomes of related children, we found that un-

like in adults, on average the degree of intrapersonal variation was not smaller than varia-

tion between co-twins. This was true for phylogenetic composition (defined by UniFrac 

distances obtained from comparison of 16S rRNA sequences), as well as functional gene 

content, and was independent of distance metrics (Fig. 7). In other words, familial similar-

ity was evident in the first 2 years of life while the individual makeup of the gut microbial 

community was not observed during the age range of 1-24 months. However, as co-twins 

mature, the distance between their microbiomes increases; this was most evident in terms 
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of phylogenetic composition (Fig. 8, linear mixed model regression). As co-twins grow 

they become more autonomous, and they are able to interact with other people, animals and 

other microbial reservoirs in their environment, which may explain the observed increasing 

dissimilarity in the phylogenetic content of their microbiomes. 

Despite this large variation early on, common patterns of ‘maturation’ of the gut 

microbiome could be described. The rate of ‘maturation’ of the gut microbiome with age 

did not differ significantly between families, when positions of microbiomes along PC1 

were regressed against age (Fig. 9). Just as we noted in Chapter 3 of this thesis, fecal mi-

crobiomes sampled during the first 6 months were dominated by members of Bifidobacte-

ria; as children age, the proportional representation of Bifidobacteria diminished while the 

representation of Bacteroidetes and Firmicutes increased (Fig. 10a). Interestingly, in this 

infant population, the representation of different Bifidobacteria species varied with age: B. 

longum dominated during the first 7 months; this phylotype was superseded by B. catenu-

latum and B. pseudocatenulatum (Fig. 10b). 

To characterize age-associated changes in the functional repertoire of microbiomes, 

we used Spearman correlation analysis of the representation of ECs encoded by the fecal 

microbial communities of infants aged 1-24 months and their mothers (Table 7). The re-

sults were consistent with those reported in the Chapter 3 of this thesis. Intriguingly, we 

detected ECs involved in the degradation of complex polysaccharides in the samples as 

young as 3 weeks of age (e.g. starches) despite the fact that the diet was exclusively breast 

milk, indicating that the healthy infant gut microbiome is already equipped to process more 

complex dietary components even though they will be encountered later as supplemental 

feeding begins. 



208

Temporal variation in the fecal microbiomes of twin pairs discordant for kwashiorkor

Having characterized the variation in healthy twin pairs, we turned to 13 twin pairs in 

which one of the co-twins developed kwashiorkor (see Tables 4 and 5 for subject charac-

teristics). We started first by comparing intra- and inter-personal variations in phylogenetic 

and KEGG KO profiles. Much like in twins who remained healthy, the temporal varia-

tion within a child was equal to the variation between co-twins, but still smaller than in 

unrelated children (Fig. 11a). We then asked if the increased dissimilarity with age that 

we observed in healthy twins (Fig. 7) was also evident in the microbiomes of co-twins 

discordant for kwashiorkor. When distances between co-twins in a given twin pair were 

compared over time, there was no significant relationship with age, unlike twin pairs who 

remained concordant for healthy status during the first three years of life (Figs. 7, 11b,c). 

This result indicates greater degree of variation in the microbiomes of co-twins discordant 

for kwashiorkor compared to twin pairs who remained healthy. Nevertheless, there were no 

significant correlations between Hellinger distances between co-twin microbiomes at each 

of three key time points: at the time of presentation with kwashiorkor, 2 weeks into RUTF 

treatment, and 1 month after cessation of RUTF (Fig. 11d,e).

We then used PCoA of KO profiles to further compare microbiomes. The results 

revealed that much like in the healthy twin pairs, age and family membership were signifi-

cantly correlated with the PC1 (31% variation, mixed model linear regression, Fig. 12a,b). 

Because the “age” variable implies not only physiological maturation of a growing child, 

but also behavioral and dietary changes, exposure to pathogens, as well as changes in the 

nutritional status of a host, we wanted to know if the fecal microbiomes of children who 

had kwashiorkor matured differently from their healthy siblings. When positions along 

PC1 were compared using only 3 samples – at the time one of the twins presented with 

kwashiorkor, 2 weeks into RUTF and 1 month after cessation of RUTF, we found that 

microbiomes of healthy children progressed steadily towards more ‘mature’ configura-

tion: microbiomes 1 month after cessation of RUTF were significantly ‘older’ compared 
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to before RUTF (p<0.05, Friedman test with Dunn’s post-hoc comparison, Fig. 12c,d). 

However, this was not the case for their siblings with kwashiorkor: the difference between 

before and after RUTF was not significant, but on average, fecal microbiomes sampled at 2 

weeks into RUTF treatment were significantly more ‘mature’ compared to those sampled at 

kwashiorkor (p<0.05 after Dunn’s post-hoc test). These findings indicate that the fecal mi-

crobiomes of kwashiorkor co-twins were more responsive to RUTF than the microbiomes 

of their healthy co-twins. But unlike the steady ‘maturation’ observed in the healthy co-

twins, the average position along PC1 shifted towards a ‘younger’ state once RUTF treat-

ment stopped, implying that the kwashiorkor-associated microbiome, or the environment 

in the gut was not able to sustain the ‘mature’ configuration induced by RUTF (Fig. 12c,d). 

Similar to twin pairs who remained concordant for healthy status throughout the 

study, Bifidobacteria dominated in the first 10 months of life twin pairs discordant for 

kwashiorkor, with subsequent dominance by members of the Bacteroidetes and Firmicutes 

(Fig. 13a). Using the 127 human gut genomes database for phylogenetic assignments of 

shotgun sequences generated from fecal microbiomes, we compared representation of ma-

jor bacterial phyla in discordant co-twins at the time that the co-twin first presented with 

kwashiorkor, 2 weeks after initiation of RUTF treatment, and 1 month after cessation of 

RUTF. We found that representation of Actinobacteria decreased significantly with RUTF 

only in co-twins afflicted with kwashiorkor, but not their healthy siblings (p<0.05, Fig. 

13b).

Changes in KEGG ECs involved in various metabolic functions in the fecal 

microbiomes of co-twins discordant for kwashiorkor

We next determined the functional gene changes associated with kwashiorkor and RUTF 

treatment. Because age and familial similarity largely determined the composition of fecal 

microbiomes across all twin pairs, we examined the functional differences in each family 

individually. We used Fisher’s exact test to determine the differences in representation of 
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genes encoding KEGG ECs between a healthy and malnourished co-twin within a family 

at the time of presentation with kwashiorkor, 2 weeks into RUTF treatment and 1 month 

after termination of RUTF. As expected each family had a unique collection of ECs that 

were significantly different at each comparison (see Table 8 for all ECs whose proportional 

representation was significantly different within each family). We provide an example of 

family k138, where functional differences in the fecal microbiomes of the twin pair were 

most pronounced compared to other twin pairs (Figs. 12d and 14). These MZ male co-

twins were enrolled in the study at 12.4 months of age when both were healthy; their last 

visit took place when they were 36.6 months old. WHZ and WAZ scores were declining 

in both twins prior to the development of kwashiorkor, but remained within the ‘healthy’ 

range (Fig. 14a). All Z scores were slightly lower in the co-twin who developed the dis-

ease. Weight improved immediately following RUTF treatment (Fig. 14a), and remained 

stable until both boys received anti-malarial treatment for 2 months when their weights 

dropped again temporarily. There were no increased symptoms of cough, fever, diarrhea 

or vomiting at the presentation of kwashiorkor (Fig. 14b), suggesting that acute infection 

may not have been the cause of kwashiorkor. We compared the representation of major 

bacterial phyla in both children (Fig. 14c): the co-twin who developed kwashiorkor had a 

significantly higher representation of Actinobacteria in his fecal microbiome prior to and at 

the time of diagnosis (Fisher’s exact test, p<0.05 after FDR correction), and a significantly 

lower representation of Bacteroidetes and Firmicutes. Actinobacteria decreased follow-

ing RUTF treatment, but then increased again once the co-twins returned to their usual 

diet. When we compared KEGG KO profiles using PCoA, examination of microbiomes 

along PC1, which explains the most variation in the data, revealed that the trajectories of 

maturation of microbiomes in both co-twins paralleled one another with the malnourished 

twin falling slightly behind (see Fig. 14d). Comparing the representation of KEGG ECs 

before, during and after RUTF treatment, revealed an overrepresentation of ECs in the 

healthy child at the time his co-twin developed kwashiorkor that are involved in the car-
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bohydrate metabolism (fructose/mannose, galactose metabolism), as well as glycerolipid 

metabolism. Among ECs overrepresented in the kwashiorkor co-twin’s microbiome were 

those involved in the cysteine/methionine metabolism, selenocompound and  glutathione 

metabolism, as well as degradation of host glycans (Table 9). Four of these ECs were also 

overrepresented in this co-twin 2 months prior to the development of the disease (alpha-

mannosidase, beta-glucosidase, purine nucleosidase, and an EC with a transferase activity). 

We used the results of the Spearman correlation analysis obtained from compari-

sons of healthy twins and their mothers (Table 7) to assess the degree of ‘maturation’ 

of healthy and kwashiorkor co-twin’s microbiomes. A negative value for this coefficient 

implies that representation of an EC declines with increasing age and is usually present 

in infants. The average Spearman coefficient of ECs overrepresented in the kwashiorkor 

microbiome was -0.635, while average coefficient of ECs overrepresented in the healthy 

twin was 0.5, indicating that the kwashiorkor microbiome was underdeveloped relative to 

his healthy sibling (Fig. 14e). This trend reversed once both co-twins in this discordant pair 

were treated with RUTF for 2 weeks: the kwashiorkor co-twin’s microbiome now looked 

more ‘mature’ compared to his healthy sibling, which correlates with our finding of more 

vigorous response to RUTF in kwashiorkor co-twins compared to their healthy siblings 

(Fig. 12 c,d; Fig. 14e). Among the 78 ECs whose proportional representation was higher 

during RUTF treatment in the  child with kwashiorkor were those involved in the bio-

synthesis of vitamin B12, nitrogen metabolism, amino acid metabolism (cysteine/methio-

nine, lysine, aspartate), as well as glucoronate interconversion (Table 9). Upon withdrawal 

of RUTF, the kwashiorkor co-twin’s microbiome appeared less ‘mature’ relative to that 

of his healthy sibling, as judged by the Spearman coefficients of the significantly differ-

ent ECs (Fig. 14e). The representation of EC2.7.1.69  (protein-N-phosphohistidine-sugar 

phosphotransferase), which is involved in the translocation of phosphorylated sugars into 

bacteria and forms part of the phosphotransferase system, was significantly lower in the 

kwashiorkor co-twin’s fecal microbiome at all time points surveyed: i.e., before and at the 
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time of diagnosis, as well as during RUTF treatment. 

In two other families (k46 and k268, Table 8), the microbiomes of kwashiorkor 

co-twins appeared to be less ‘mature’ compared to their healthy co-twins as judged by the 

values of Spearman coefficients of the ECs significantly underrepresented in the malnour-

ished microbiomes. In both families, these ECs were involved in the carbohydrate me-

tabolism (for example, pullulanase, alpha-amylase, beta-glucosidase). In addition, in these 

2 families, the underrepresentation of genes encoding enzymes involved in carbohydrate 

metabolism was observed a month before they were diagnosed with kwashiorkor.

Taken together, these results suggest that RUTF induces a ‘temporal maturation’ of 

the microbiomes of children with kwashiorkor but not their healthy siblings. ‘Regression’ 

back to ‘immature’ microbiome appears when children go back on their regular diet, sug-

gesting that their microbiomes (or the environment in the intestine) are not able to sustain 

the re-configuration induced by short-term nutritional therapy.

Temporal variation in fecal microbiomes of twin pairs discordant for marasmus

Similar to healthy and twins discordant for kwashiorkor, familial similarity was greater 

than intra-individual similarity in the fecal microbiomes of twins discordant for marasmus 

(Fig.15a). Over time, the distances between twins increased, similar to twins who remained 

healthy, but the distances were even greater than those of healthy twins, and considerably 

higher than those with kwashiorkor whose discordance was lower than in pairs concordant 

for healthy status (Fig.15b,c). This finding was surprising given that these twin pairs on av-

erage were younger than twins discordant for kwashiorkor, and given that in healthy pairs 

the distance between microbiomes is lower at younger ages (Fig. 8).

As in the case with kwashiorkor twins, we focused on three fecal samples from 

each discordant twin pair: samples obtained at the presentation with marasmus, the first 

sample collected after 2 weeks of RUTF treatment, and first sample collected 1 month 
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after the cessation of RUTF to compare the distances between co-twins at each time point. 

Although microbiomes in each family (twin pair) changed differently, on average distances 

between co-twins at 1 month after cessation of RUTF were smaller than at the time of pre-

sentation with marasmus (Fig. 15d,e). We used PCoA to compare KEGG KO profiles of 

microbiomes. The results revealed that much like in the healthy twin pairs, age and family 

membership were significantly correlated with PC1 (33% variation explained). When posi-

tions along PC1 were compared using only 3 samples, we found that the fecal microbiomes 

of both healthy and marasmus co-twins progressed steadily towards a more functionally 

mature microbiome configuration, and in contrast to co-twins who had kwashiorkor, the 

fecal microbiomes of children with marasmus did not respond to RUTF with significantly 

greater functional changes than their healthy siblings (Fig. 16). Similar to co-twins who 

remained healthy, Bifidobacteria dominated the fecal microbiomes of marasmus co-twins 

during the first 10 months, and were gradually ‘replaced’ by Bacteroidetes and Firmicutes 

(Fig. 17). However, a greater representation of Proteobacteria was noted in the microbi-

omes of these families compared to twins who remained healthy or those discordant for 

kwashiorkor (Fig. 10 and 13), although the difference was not significant across all sub-

jects.

Changes in KEGG ECs involved in various metabolic functions in the fecal 

microbiomes of co-twins discordant for marasmus

Due to the strong effects of age and family membership, we used Fisher’s exact test to 

compare the representation of KEGG ECs in the fecal microbiomes of each of the dis-

cordant twin pairs before, during and after RUTF treatment (Table 10). As in the case of 

kwashiorkor, each family had a unique response to the disease and RUTF. We used Spear-

man correlation analysis to assess the degree of ‘maturation’ of the microbiomes before, 

during and after RUTF. Prior to RUTF treatment, in 4 of 10 discordant pairs, the microbi-

omes of the co-twins with marasmus appeared less mature. With RUTF treatment, the fecal 
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microbiome of the marasmus co-twin appeared less mature in 6 of 10 pairs (Fig. 16). In this 

comparison, 5 twins with marasmus had an increased representation of urease, as well as 

several ECs involved in host glycan degradation (e.g., alpha-mannosidase and exo-alpha-

sialidase). As noted in Chapter 3, urease releases ammonia that can be used for microbial 

biosynthesis of essential and nonessential amino acids. In addition, urease plays a major 

role in nitrogen recycling. Under conditions where dietary nitrogen is limiting, the ability 

of the microbiome to utilize urea should be advantageous to both the microbial community 

and host. Increased representation of genes involved in foraging of host glycans would 

be an adaptive response if glycans in the diet were limiting or if a microbiome lacked the 

glycoside hydrolases needed to degrade classes of polysaccharides that were in their diets.

We provide example of family m229 where changes in the representation of ECs 

were most pronounced. One of the co-twin’s in this male dizygotic pair remained healthy 

throughout the study period. The other co-twin presented with marasmus at 11 weeks of 

age (WHZ -3.3, versus -1.7 for his co-twin), and was treated with RUTF for 8 weeks. He 

then developed kwashiorkor twice later in the study; the first time 4 weeks after cessation 

of RUTF; 14 months after a second 4 week-long round of RUTF treatment, he was again 

diagnosed with kwashiorkor and again treated with RUTF (see Fig. 18a for a anthropo-

metric measurements; note that throughout the study anthropometric measurements for the 

undernourished twin remained lower than of his healthy sibling). Moreover, the number 

of days with fever, diarrhea and vomiting was significantly higher for the sick co-twin 

(p<0.05, Poisson test, Fig. 18b). 

When we compared the representation of major bacterial phyla across microbiomes, 

the co-twin with marasmus had lower representation of Actinobacteria (p<0.05) compared 

to his healthy sibling (Fig. 18c). This phylum increased in relative abundance following 

RUTF treatment and continued to dominate, especially after the withdrawal of RUTF when 

that child developed kwashiorkor. Remarkably, the response to RUTF after the appearance 

of kwashiorkor was similar to the response observed in twins discordant for this disease 
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that we described earlier (Fig. 13b): i.e., the representation of Actinobacteria decreased 

with RUTF in the severely undernourished child, but not his healthy sibling, along with the 

significant increase of Bacteroides (mainly Prevotella, Fig. 18c). When we examined the 

functional configuration (KEGG KO profile) using PCoA analysis (Fig. 18d), we observed 

that following presentation with marasmus, the first round of RUTF treatment and subse-

quent development of kwashiorkor, the microbiome of the malnourished co-twin remained 

in “younger” coordinate space compared to his healthy sibling. However, following the 

second RUTF intervention, his microbiome ‘matured’.

To further characterize functional differences between the microbiomes of this twin 

pair, we used Fisher’s exact test on the relative abundances of KEGG ECs. At the time of 

presentation with marasmus, 50 ECs had a significantly higher proportional representation 

in the severely undernourished co-twin compared to his healthy sibling (Table 11). They 

included ECs involved in butanoate, glyoxylate and sulfur metabolism as well as cephalo-

sporin-C deacetylase, which degrades beta-lactam group antibiotics.  Following 2 weeks of 

RUTF treatment, ECs that were significantly overrepresented in the malnourished microbi-

ome included those involved in host glycan and urea degradation (alpha-mannosidase, exo-

alpha-sialidase, alpha-l-fucosidase, urease) (note that these ECs were also overrepresented 

in the microbiomes of co-twins with marasmus in five other twin pairs at the time of RUTF 

treatment; Table 11). Importantly, all ECs overrepresented in the microbiome of the co-

twin had lower Spearman correlation coefficients (Fig. 18e), suggesting that microbiome 

was ‘underdeveloped’ relative to the microbiome of his healthy twin. This trend became 

more obvious upon the withdrawal of RUTF at which point the malnourished twin devel-

oped kwashiorkor: i.e., ECs significantly overrepresented in his microbiome had lower 

Spearman coefficients compared to the healthy twin; they included alpha-mannosidase, 

ECs involved in glutathione metabolism, as well as myo-inositol degradation (Table 11). 

Remarkably, with the second RUTF administration for treatment of kwashiorkor, ECs that 

had a significantly higher representation in the fecal microbiome of the undernourished 
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co-twin appeared to be more ‘mature’ compared to his healthy twin, as judged by their 

Spearman coefficients (Fig. 18e). This result is similar to what we described in the previous 

section about the responses of co-twins discordant for kwashiorkor.

These results suggest that the fecal microbiomes of twins discordant for marasmus 

are less similar to one another compared to twins who remained healthy throughout the 

study or who were discordant for kwashiorkor. Unlike the more pronounced response to 

RUTF in children with kwashiorkor, no significant difference in the degree of the response 

was found across all twin pairs discordant for marasmus. Nonetheless, when microbiomes 

were compared in each twin pair at the time of first treatment with RUTF, a greater degree 

of functional ‘maturation’ of the microbiome was noted among healthy co-twins compared 

to their siblings with marasmus. The prevalence of ECs involved in the degradation of 

host glycans and urea may indicate a paucity of bioavailable nutrients in the distal guts of 

children with marasmus despite RUTF treatment – either because most nutrients in RUTF 

are absorbed in their small intestines or their microbiomes may not already have, fail to 

adopt configurations that have a level functional maturity or capacity to utilize key nutrient 

represented in this therapeutic diet. 

Taken together, our results show the value of twin studies in deciphering differ-

ences in microbiome configurations in healthy versus malnourished infants and children 

in the face of the significant intra- and interpersonal, and familial variation, in microbial 

community structure that is normally manifest during this stage of development. Our data 

indicate that the microbiome is not only a biomarker but a potential causal factor in the 

development of severe undernutrition. It is also reporter of the response and efficacy of a 

given therapeutic food intervention. Our results underscore that there may be many specific 

routes by which the microbiome contributes to malnutrition; a general trend, more obvious 

in the case of kwashiorkor, is functional immaturity of this microbial metabolic organ as 

it relates to nutrient metabolism/biosynthesis. The fact that in the subset of kwashiorkor 

microbiome characterized, we see a robust response to RUTF followed by a regression in 
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state functional maturation, raises the possibility that despite current clinical parameters 

indicating successful treatment, longer term nutritional support may be required to ame-

liorate persistent and irreparable metabolic dysfunction, or to permit time for functional 

repair/regeneration. Using the microbiome to judge these parameters should be very useful 

in selecting the type and duration of nutritional support, especially in the case of disorders 

such as marasmus. Finally, it will be very important to take these observations made in 

twins and perform direct functional assays of the microbiome. One approach, described in 

a separate study from our lab, involves transplantation of previously frozen fecal microbial 

communities, obtained from the untreated discordant twin pairs characterized above into 

germ-free mice. This allows a fecal community from a single donor to be replicated with 

a high degree of accuracy in multiple recipient mice who are given the same diets as those 

consumed by the donor: i.e., a macro- and micronutrient deficient Malawi diet, followed by 

RUTF, followed by a Malawi diet. This approach allows assessment of the degree to which 

donor phenotypes can be transmitted via their microbiomes, a determination of the contri-

butions of diet and microbiome to these phenotypes, a detailed assessment of community 

structure along the length of the gut, characterization of myriad features microbial com-

munity metabolism and host-microbial co-metabolism as well as immune function under 

highly controlled conditions, direct assessment of the contributions of RUTF components 

and/or duration of administration, definition of multiple other features of physiology and 

pathology inside and outside of the GI tracts of these humanized gnotobiotic animals, and 

use of the resulting datasets to further characterize and understand the human donors that 

made these models possible. 
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Methods

Subjects recruitment and sample collection – The current study was approved by Hu-

man Studies Committees from Washington University and University of Malawi. Twin 

pairs were recruited through the health centers located in the five sites surveyed. A team of 

one USA pediatrician and a minimum of two trained local personnel visited each site every 

week. During each visit, the weight and height of each infant or child was measured in 3 

replicates; during each visit mothers of twins were interviewed about whether her children 

had symptoms of cough, fever, diarrhea and vomiting in the preceding days. During each 

visit for a scheduled fecal sample collection, each child wore a commercial diaper until a 

sample was deposited. An aliquot of sample was taken with a clean spatula and collected 

into sterile plastic 2 ml tube, which was immediately deposited into an aluminum tank 

filled with liquid nitrogen. Upon arrival to the laboratory, tubes with samples were trans-

ferred and stored at – 80°C until further processing. Buccal smears were collected once for 

zygosity test using Oragene kits. RUTF and soy-based diet were produced locally.

Isolation of fecal DNA and multiplex pyrosequencing – Fecal samples were pul-

verized with a mortar and pestle at -80oC. Genomic DNA was extracted from 200 mg of 

frozen sample as described in (Muegge et al. 2011). For multiplex shotgun 454 Titanium 

FLX pyrosequencing, each fecal community DNA sample was processed according to the 

manufacturer’s protocol (Rapid Library preparation for FLX Titanium, Roche). Equivalent 

amounts of 12 samples each labeled with a unique barcode sequence were pooled prior to 

each pyrosequencer run with FLX Titanium chemistry.

Data analysis 

Zygosity tests – We selected 48 autosomal SNPs with high heterozygosity in the Yoruban 

HapMap sample (N=90) from the Illumina DNA Test Panel of 360 SNP loci that have been 

optimized for the BeadExpress (Catalog # GT-17-221). The SNP minor allele frequen-

cies in Yorubans ranged from 0.28-0.43, and each autosome was sampled by at least one 
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marker with the exception of 7,19, and 21, with minimum marker separation of 3Mb. We 

ran PREST (Pedigree Relationship Statistical Test, McPeek & Sun 2000) to estimate the 

identity-by-descent (IBD) sharing and kinship between the relative pairs, and compared 

reported relationships versus the inferred relationships from the genetic data.

16S rRNA data processing and analysis was carried out using QIIME as previ-

ously described (Muegge et al, 2011)

Shotgun sequences from fecal microbiomes

Raw sequences were processed as described previously in Muegge et al (2011). 

Functional annotation against version 58 of the KEGG database, where sequences without 

an assigned KO number were removed, was carried out using BLASTX with the following 

parameters: e-value cut-off less than 1e-5, bitscore > 50, and percent identity > 50%, and 

option –z 2214788408. In the cases where a shotgun sequence had a significantly equal 

match to more than one (n) KOs, all KOs were accounted for and each assigned 1/n counts.

Taxonomic composition of the shotgun sequence data

Shotgun sequences were mapped to the database of 127 sequenced bacterial and 

archaeal genomes, listed in the Table 6. BLASTN was used with the following cut-offs: 

e-value < 1e-20, bitscore > 50, percent identity > 50, percent alignment > 80% (Arumugam 

et al., 2011). Relative abundance of each genome was adjusted to a genome length.

Statistical analyses

Hellinger distances and principal coordinates analyses were carried out using QI-

IME software. Spearman correlation and Fisher’s exact tests were conducted using R sta-

tistical software. Linear mixed model regression was conducted using R package NLME.



220

References

Ahmed T., S. Rahman , A. Cravioto  Oedematous malnutrition. Indian J. Med. Res. 130 

:651–4 (2009). 

Arumugam M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada,D.R. Mende, et al. Enterotypes 

of the human gut microbiome. Nature  473, 174–80 (2011). 

Blackburn, G.L. Pasteur’s Quadrant and malnutrition. Nature  409, 397–401 (2001). 

Bryce J., Boschi-Pinto C., Shibuya K., Black R.E. WHO estimates of the causes of death 

in children. Lancet 365,1147-1152 (2005).

CIA. CIA - The World Factbook 2011; Available from: https://www.cia.gov/library/

publications/the-world-factbook/geos/mi.html (2011)

Ciliberto M.A., H. Sandige H., M.J. Ndekha M.J., P. Ashorn, A. Briend A., H.M. Ciliberto, 

et al. Comparison of home-based therapy with ready-to-use therapeutic food with 

standard therapy in the treatment of malnourished Malawian children: a controlled, 

clinical effectiveness trial. The American Journal of Clinical Nutrition 81, 864–70 

(2005). 

Courtright P., J. Canner  The distribution of kwashiorkor in the southern region of Malawi. 

Ann Trop Paediatr. 15, 221–6 (1995). 

Golden M.H.N. The development of concepts of malnutrition. J. Nutr. 132, 2117S-2122S 

(2002). 

Lin C.A., S. Boslaugh, H.M. Ciliberto, K. Maleta, P. Ashorn, A. Briend, et al. A prospective 

assessment of food and nutrient intake in a population of Malawian children at risk 

for kwashiorkor. J. Pediatr. Gastroenterol. Nutr.  44, 487–93 (2007). 

Matilsky D.K., K. Maleta, T. Castleman, M.J. Manary  Supplementary feeding with fortified 

spreads results in higher recovery rates than with a corn/soy blend in moderately 

wasted children. J. Nutr 139, 773–8 (2009). 



221

McNulty N. P., T. Yatsunenko, A.  Hsiao, J.J. Faith, B. D. Muegge, A. L. Goodman, B. 

Henrissat, R. Oozeer, S. Cools-Portier, G. Gobert, C. Chervaux, D. Knights, C.A. 

Lozupone, R. Knight, A.E. Duncan, J.R. Bain, Muehlbauer M. J., Newgard C., 

Heath A. C., Gordon J. I., The impact of a consortium of fermented milk strains on 

the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 

3, 106ra106 (2011).

McPeek M.S., L. Sun.  Statistical tests for detection of misspecified relationships by use of 

genome-screen data. Am. J. Hum. Genet. 66,1076–94 (2000). 

Muegge B.D., J. Kuczynski, D. Knights, J.C. Clemente, A. González, L. Fontana, et al. Diet 

Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny 

and Within Humans. Science 332, 970–4 (2011). 

Palmer C., E.M. Bik, D.B. DiGiulio, D.A. Relman, P.O. Brown. Development of the 

Human Infant Intestinal Microbiota. PLoS Biol. 5, :e177 (2007). 

Pelletier D.L., E.A. Frongillo EA Jr, D.G. Schroeder, J.P. Habicht. A methodology for 

estimating the contribution of malnutrition to child mortality in developing 

countries. J. Nutr. 124, 2106S-2122S (1994). 

Prentice A.M., M.E. Gershwin, U.E. Schaible, G.T. Keusch, C.G. Victora, J.I. Gordon. 

New challenges in studying nutrition-disease interactions in the developing world. 

J Clin Invest 118, 1322–9 (2008). 

Scrimshaw N.S., F.E. Viteri. INCAP studies of kwashiorkor and marasmus. Food Nutr 

Bull. 31, 34–41 (2010). 

WHO. WHO | Infant and young child feeding data by country,  Available from: http://www.

who.int/nutrition/databases/infantfeeding/countries/en/index.html#M (2006)

Williams C.D. Deficiency diseases in infants, a report by Miss C. D. Williams from Gold 

Coast Colony Annual Medical Report, 1931-1932, p. 93. Nutr. Rev. 31, (1973). 



222

Wu G.D., J. Chen, C. Hoffmann, K. Bittinger, Y-Y. Chen, S.A. Keilbaugh, et al. Linking 

long-term dietary patterns with gut microbial enterotypes. Science  334, 105–8 

(2011).



223

Figure Legends

Figure 1. Geographic location of the villages where the study was conducted. A health 

center at each of the five highlighted villages served as a meeting place for the twin visits.

Figure 2. Study design. Twin pairs who were less than three-years-of-age were enrolled 

for the study. Every month, anthropometric data was collected from each twin pair and 

their nutritional status monitored. Fecal samples were collected every two months from 

twins who were less than 1 year old, and thereafter every three months from twins between 

one and three-years-of-age. If one or both children in a twin pair developed kwashiorkor or 

marasmus, both were given RUTF and fecal samples were collected every two weeks until 

nutritional status improved as judged by anthropometric measurements.

Figure 3. Anthropometric data for twin pairs whose gut microbiomes were sequenced. 

Each column shows data for each twin pair: weight-for-height Z-scores, (WHZ), height-

for-age Z-scores (HAZ), and weight-for-age Z scores (WAZ) are plotted against their age 

over the course of the study. For twins discordant for undernutrition, the time of presenta-

tion with kwashiorkor or marasmus is indicated with a yellow or  cyan dot, respectively. 

(a) twins concordant for healthy status; (b) twin pairs discordant for kwashiorkor; (c) twin 

pairs discordant for marasmus.

Figure 4. The fraction of shotgun pyrosequencer reads that had significant annotation 

in the KEGG database decreases with increasing age. Percent of reads with significant 

BLAST hits to genes in the KEGG database is plotted against age for each category of twin 

pairs: both healthy; pairs discordant for kwashiorkor; pairs discordant for marasmus. 

Figure 5. Large interpersonal variations are observed in the functional configurations 

of fecal microbial communities at early ages. Each point represents an average Hellinger 

distance between unrelated children at each age range identified on the Y-axis.
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Figure 6. Principal coordinate analysis (PCoA) of Hellinger distances generated from 

KEGG KO profiles. (a) PC1 coordinates of all 453 sequenced twin fecal microbiomes 

are plotted against age. Each sphere represents a microbiome, colored by age; (b) same as 

(a) colored by a health status of a twin pair; (c) PC1 coordinate of twin pairs discordant 

for kwashiorkor (207 microbiomes) is plotted against age, colored by the health status 

of each twin (those who developed kwashiorkor over the course of the study are colored 

in red before and after onset of the disease; (d) same as (c) for twin pairs discordant for 

marasmus (169 microbiomes); (e) PC2 coordinates of 453 sequenced microbiomes are 

plotted against age and colored by the health status of a twin pair. (f) Spearman correlation 

between position of microbiomes along PC2 and relative abundance of sequences with 

representation in 127 reference human gut microbial genomes. Microbiomes spread along 

PC2 have increased representation of Enterobacteriaceae and decreased representation of 

Bifidobacteria. 

Figure 7. Analysis of Hellinger distances between and within healthy infant micro-

biomes.  Distances between all microbiomes that originate from a child, and distances 

between microbiomes sampled from a twin pair, are plotted next to an average distance be-

tween microbiomes of unrelated children: (a) Unweighted Unifrac measurements of phy-

logenetic distances between microbial communities; (b) Weighted UniFrac measurement; 

(c) Hellinger distance derived from 16S rRNA OTUs; (d) Hellinger distance derived from 

KEGG KO profiles.

Figure 8. Microbiomes of children within a twin pair become dissimilar with age. Dis-

tances between twins are calculated at each age using (a) unweighted UniFrac distances 

generated from 16S rRNA datasets, and (b) Hellinger distances generated from KEGG KO 

profiles. Each line represents a family.

Figure 9. Age and family membership explain the largest variation in the healthy 

microbiomes. PC1 coordinate is plotted against age for 97 fecal microbiomes from twin 
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pairs who remained concordant for healthy status. Microbiomes are colored by family 

membership.

Figure 10. Taxonomic changes with age in healthy twin pairs. (a) Relative abundance of 

bacterial phyla and Archaea are plotted against age for all sampled microbiomes; (b) The 

representation of members of Bifidobacteria (phylum Actinobacteria) are plotted against 

age for all sampled microbiomes.

Figure 11. Distances between microbiomes of twins discordant for kwashiorkor. (a) 

Distances between all microbiomes originated from a child, and distances between micro-

biomes sampled from a twin pair are plotted next to an average distance between microbi-

omes of unrelated children for Unweighted UniFrac and Hellinger distances derived from 

KEGG KO profiles; Unweighted UniFrac distances (b) and Hellinger distances generated 

from KEGG KO profiles (c) between twins at each age sampled; (d) same as (c) for only 3 

time points – before, during and after RUTF, average ± SEM; (e) same as (d) but individual 

family is shown.

Figure 12. Principal Coordinate Analysis (PCoA) of Hellinger distances generated 

from KEGG KO profiles. (a) PC1 coordinates of 207 microbiomes are plotted against 

age; (b) same as (a) colored by a family membership; (c) Average ± SEM PC1 coordinate 

before, during and after RUTF for co-twins with kwashiorkor and their healthy siblings; 

(d) same as (c) but with each family shown.

Figure 13. Taxonomic changes with age in twins discordant for kwashiorkor. (a) Rel-

ative abundance of bacterial phyla and Archaea are plotted against age for all sampled 

microbiomes; (b) The representation of Actinobacteria decreases with RUTF in the mi-

crobiomes of kwashiorkor co-twins, but not in the microbiomes of their healthy siblings, 

Friedman test p=0.0054 with Dunn’s multiple comparison correction (* p<0.05); average 

values ± SEM are plotted.
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Figure 14. Example of changes in taxonomic and functional composition in a twin 

pair discordant for kwashiorkor. (a) Weight-for-height Z scores (WHZ), Height-for-

age Z-scores (HAZ), and Weight-for-age Z scores (WAZ) collected over the course of the 

study. (b) Number of days with fever, cough, diarrhea and vomiting preceding each visit 

to a health center. (c) Relative abundance of bacterial phyla and archaeal sequences in the 

microbiomes of the co-twins in this twin pair. (d) PC1 derived from Hellinger distances 

obtained from KEGG KO counts plotted against age. (e) ECs shown as segments, identi-

fied by Fisher’s exact test to be significantly different between the fecal microbiomes of 

the healthy versus kwashiorkor co-twins before (upper panel), during (middle) and after 

(lower panel) RUTF intervention. Corresponding Spearman correlation values, obtained 

from healthy twin pairs and their mothers is shown next to each EC. For descriptions of 

ECs shown see Table 9.

Figure 15. Distances between microbiomes of twins discordant for marasmus. (a) Dis-

tances between all microbiomes originated from a child, and distances between microbi-

omes sampled from a twin pair are plotted next to an average distance between microbi-

omes of unrelated children for Unweighted UniFrac and Hellinger distance derived from 

KEGG KO profiles; Unweighted UniFrac distances (b) and Hellinger distances generated 

from KEGG KO profiles (c) between twins at each age; (d) same as (c) for only 3 time 

points – before, during and after RUTF, average ± SEM; (e) same as (d) but individual 

family is shown.

Figure 16. Principal Coordinate Analysis (PCoA) of Hellinger distances generated 

from KEGG KO profiles of twins discordant for marasmus. (a) Average±SEM PC1 

coordinate before, during and after RUTF treatment for co-twins with marasmus and their 

healthy siblings; (b) same as in (a) but with each family shown. 
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Figure 17. Taxonomic changes with age in twins discordant for marasmus. Relative 

abundance of bacterial phyla and Archaea are plotted against age for all sampled fecal 

microbiomes.

Figure 18. Example of changes in taxonomic and functional composition in a twin 

pair discordant for marasmus. (a) Weight-for-height Z scores (WHZ), Height-for-age Z 

scores (HAZ), and Weight-for-age Z scores (WAZ) collected over the course of the study. 

(b) Number of days with fever, cough, diarrhea and vomiting preceding each visit to a 

health center. (c) Relative abundance of bacterial phyla and archaeal sequences in the mi-

crobiomes of two twins. (d) PC1 derived from Hellinger distances obtained from KEGG 

KO counts plotted against age. (e) ECs shown as segments, identified by Fisher’s exact test 

to have significantly different representation in the fecal microbiomes of the healthy versus 

marasmus co-twin before (upper panel), during and after (middle panels) RUTF interven-

tion, as well as two weeks after second RUTF treatment (lower panel). The Spearman cor-

relation value calculated from healthy twin pairs and their mothers is shown next to each 

EC. For descriptions of ECs shown see Table 11.
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Figure 3b.
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Figure 3c.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Figure 10.
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Figure 11.
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Figure 12.
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Figure 13.
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Figure 14.
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Figure 15.

Hellinger Distance between co-twins (KOs)
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Figure 16.
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Figure 17.
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Figure 18.
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Table Legends

Table 1. (a) Number of twin pairs enrolled in study, their zygosity, gender and nutritional 

status. (b) An excerpt from part (a) showing number of MZ and DZ twins concordant or 

discordant for malnutrition used to estimate the significant of the relationship between the 

zygosity and concordance for malnutrition. 

Table 2. Gender distribution in undernourished twin pairs.

Table 3. Characteristics of twins with malnutrition

Table 4. Characteristics of families whose fecal microbiomes were subjected to shotgun 

sequencing.

Table 5. Information on whole community DNA sequence datasets.

Table 6. List of the 127 reference sequenced human gut microbial genomes.

Table 7. ECs identified by Spearman correlation analysis that exhibit age-associated 

changes in their proportional representation in healthy fecal microbiomes.

Table 8. ECs whose representation is significantly different in the fecal microbiomes of 

healthy versus malnourished co-twins before and at the time of presentation with kwashi-

orkor, 2 weeks into RUTF treatment and 1 month after cessation of RUTF.

Table 9. ECs whose representation is significantly different in the gut microbiomes of a 

healthy co-twin versus his/her co-twin with kwashiorkor (pair k138). Twins were sampled 

before and at the time of presentation with kwashiorkor, 2 weeks into RUTF treatment and 

1 month after cessation of RUTF.

Table 10. ECs whose representation in the fecal microbiome of a healthy co-twin was 

significantly different than in his/her co-twin with marasmus when sampled at the time of 

presentation with marasmus, 2 weeks into the RUTF treatment period, and 1 month after 

cessation of RUTF.
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Table 11. ECs whose representation was significantly different in the fecal microbiome of 

a healthy twin versus his co-twin who presented with marasmus (pair m229). Twins were 

sampled at the time of presentation with marasmus, 2 weeks into the period of RUTF treat-

ment, 1 month after cessation of RUTF, when the twin who had marasmus subsequently 

developed kwashiorkor, and 2 weeks after cessation of a second round of RUTF treatment.
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Table 6.

Table 6. List of the 127 reference human gut microbial genomes
Genome name Genbank ID Genome size
Actinomyces odontolyticus ATCC 17982 NZ_AAYI00000000 2,393,758
Akkermansia muciniphila ATCC BAA-835 NC_010655 2,664,102
Alistipes putredinis DSM 17216 NZ_ABFK00000000 2,549,878
Anaerococcus hydrogenalis DSM 7454 NZ_ABXA00000000 1,889,366
Anaerofustis stercorihominis DSM 17244 NZ_ABIL00000000 2,284,603
Anaerostipes caccae DSM 14662 NZ_ABAX00000000 3,605,636
Anaerotruncus colihominis DSM 17241 NZ_ABGD00000000 3,718,888
Bacteroides caccae ATCC 43185 NZ_AAVM00000000 4,564,814
Bacteroides capillosus ATCC 29799 NZ_AAXG00000000 4,241,076
Bacteroides cellulosilyticus DSM 14838 NZ_ACCH00000000 6,726,268
Bacteroides coprocola DSM 17136 NZ_ABIY00000000 4,295,617
Bacteroides coprophilus DSM 18228 NZ_ACBW00000000 3,855,443
Bacteroides dorei DSM 17855 NZ_ABWZ00000000 5,487,768
Bacteroides eggerthii DSM 20697 NZ_ABVO00000000 4,157,980
Bacteroides finegoldii DSM 17565 NZ_ABXI00000000 4,881,901
Bacteroides fragilis 3_1_12 NZ_ABZX00000000 5,486,240
Bacteroides fragilis NCTC 9343 NC_003228 5,205,140
Bacteroides fragilis YCH46 NC_006347 5,277,274
Bacteroides intestinalis DSM 17393 NZ_ABJL00000000 6,052,596
Bacteroides ovatus ATCC 8483 NZ_AAXF00000000 6,463,169
Bacteroides plebeius DSM 17135 NZ_ABQC00000000 4,421,324
Bacteroides sp. 1_1_6 NZ_ACIC00000000 6,855,195
Bacteroides sp. D1 NZ_ACAB00000000 5,986,762
Bacteroides sp. D2 NZ_ACGA00000000 6,901,960
Bacteroides stercoris ATCC 43183 NZ_ABFZ00000000 4,009,229
Bacteroides thetaiotaomicron 3731 NC_Bthetaiotaomicron3731 7,098,445
Bacteroides thetaiotaomicron 7330 NC_Bthetaiotaomicron7330 6,894,436
Bacteroides thetaiotaomicron VPI-5482 NC_004663 6,260,361
Bacteroides uniformis ATCC 8492 NZ_AAYH00000000 4,717,497
Bacteroides vulgatus ATCC 8482 NC_009614 5,163,189
Bacteroides WH2 NC_BWH2 7,129,681
Bacteroides xylanisolvens XB1A NC_BxylanisolvensXB1A 5,861,392
Bifidobacterium adolescentis ATCC 15703 NC_008618 2,089,645
Bifidobacterium adolescentis L2-32 NZ_AAXD00000000 2,385,710
Bifidobacterium angulatum DSM 20098 NZ_ABYS00000000 2,007,108
Bifidobacterium animalis subsp. lactis AD011 NC_011835 1,933,695
Bifidobacterium animalis subsp. lactis HN019 NZ_ABOT00000000 1,915,892
Bifidobacterium breve DSM 20213 NZ_ACCG00000000 2,297,799
Bifidobacterium catenulatum DSM 16992 NZ_ABXY00000000 2,058,429
Bifidobacterium dentium NC_Bdentium 2,642,189
Bifidobacterium gallicum DSM 20093 NZ_ABXB00000000 2,019,802
Bifidobacterium longum DJO10A NC_010816 2,375,792
Bifidobacterium longum NCC2705 NC_004307 2,256,640
Bifidobacterium pseudocatenulatum DSM 20438 NZ_ABXX00000000 2,304,808
Blautia hansenii DSM 20583 NZ_ABYU00000000 3,053,221
Blautia hydrogenotrophica DSM 10507 NZ_ACBZ00000000 3,565,428
Bryantella formatexigens DSM 14469 NZ_ACCL00000000 4,548,960
Butyrivibrio crossotus DSM 2876 NZ_ABWN00000000 2,482,791
Catenibacterium mitsuokai DSM 15897 NZ_ACCK00000000 2,671,313
Citrobacter youngae ATCC 29220 NZ_ABWL00000000 5,143,204
Clostridium asparagiforme DSM 15981 NZ_ACCJ00000000 6,224,391
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Clostridium bartlettii DSM 16795 NZ_ABEZ00000000 2,971,856
Clostridium bolteae ATCC BAA-613 NZ_ABCC00000000 6,556,988
Clostridium hiranonis DSM 13275 NZ_ABWP00000000 2,423,348
Clostridium hylemonae DSM 15053 NZ_ABYI00000000 3,885,459
Clostridium leptum DSM 753 NZ_ABCB00000000 3,270,109
Clostridium methylpentosum DSM 5476 NZ_ACEC00000000 3,406,326
Clostridium nexile DSM 1787 NZ_ABWO00000000 3,861,016
Clostridium ramosum DSM 1402 NZ_ABFX00000000 3,234,795
Clostridium scindens ATCC 35704 NZ_ABFY00000000 3,619,905
Clostridium sp. L2-50 NZ_AAYW00000000 2,954,116
Clostridium sp. M62/1 NZ_ACFX00000000 3,836,694
Clostridium sp. SS2/1 NZ_ABGC00000000 3,141,381
Clostridium spiroforme DSM 1552 NZ_ABIK00000000 2,507,485
Clostridium sporogenes ATCC 15579 NZ_ABKW00000000 4,102,125
Clostridium symbiosum NC_Csymbiosum 4,954,054
Collinsella aerofaciens ATCC 25986 NZ_AAVN00000000 2,439,869
Collinsella intestinalis DSM 13280 NZ_ABXH00000000 1,804,297
Collinsella stercoris DSM 13279 NZ_ABXJ00000000 2,399,821
Coprococcus comes ATCC 27758 NZ_ABVR00000000 3,238,915
Coprococcus eutactus ATCC 27759 NZ_ABEY00000000 3,102,087
Desulfovibrio piger ATCC 29098 NZ_ABXU00000000 2,826,240
Desulfovibrio piger GOR1 AF192152 2,597,386
Dorea formicigenerans ATCC 27755 NZ_AAXA00000000 3,186,031
Dorea longicatena DSM 13814 NZ_AAXB00000000 2,913,833
Enterobacter cancerogenus NC_Ecancerogenus 4,605,129
Escherichia coli str. K-12 substr. MG1655 NC_000913 4,639,675
Escherichia fergusonii ATCC 35469 NC_011740 4,588,711
Eubacterium biforme DSM 3989 NZ_ABYT00000000 2,415,920
Eubacterium dolichum DSM 3991 NZ_ABAW00000000 2,190,453
Eubacterium eligens ATCC 27750 NC_012778 2,144,190
Eubacterium hallii DSM 3353 NZ_ACEP00000000 3,290,996
Eubacterium rectale ATCC 33656 NC_012781 3,449,685
Eubacterium rectale DSM 17629 NC_Erectale_DSM17629 3,255,606
Eubacterium ventriosum ATCC 27560 NZ_AAVL00000000 2,869,695
Faecalibacterium prausnitzii A2-165 NZ_ACOP00000000 3,080,849
Faecalibacterium prausnitzii M21/2 NZ_ABED00000000 3,126,983
Fusobacterium sp. 4_1_13 NZ_ACDE00000000 2,268,505
Fusobacterium varium ATCC 27725 NZ_ACIE00000000 3,321,664
Helicobacter pylori HPAG1 NC_008086 1,596,366
Holdemania filiformis DSM 12042 NZ_ACCF00000000 3,803,745
Lactobacillus casei ATCC 334 NC_008526 2,895,264
Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842NC_008054 1,864,998
Lactobacillus reuteri DSM 20016 NC_009513 1,999,618
Lactococcus lactis subsp. cremoris MG1363 NC_009004 2,529,478
Lactococcus lactis subsp. cremoris SK11 NC_008527 2,438,589
Lactococcus lactis subsp. lactis Il1403 NC_002662 2,365,589
M23A NC_M23A 4,338,875
Methanobrevibacter smithii ATCC 35061 CP000678.1 1,853,160
Methanobrevibacter smithii DSM 2374 NZ_ABYV00000000 1,727,775
Methanobrevibacter smithii DSM 2375 NZ_ABYW00000000 1,704,865
Methanosphaera stadtmanae DSM 3091 NC_007681 1,767,403
Mitsuokella multacida DSM 20544 NZ_ABWK00000000 2,574,556
Parabacteroides distasonis ATCC 8503 NC_009615 4,811,379
Parabacteroides johnsonii DSM 18315 NZ_ABYH00000000 4,612,238
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Parabacteroides merdae ATCC 43184 NZ_AAXE00000000 4,431,877
Parvimonas micra ATCC 33270 NZ_ABEE00000000 1,703,772
Prevotella copri DSM 18205 NZ_ACBX00000000 3,507,873
Proteus penneri ATCC 35198 NZ_ABVP00000000 3,747,729
Providencia alcalifaciens DSM 30120 NZ_ABXW00000000 4,029,346
Providencia rettgeri DSM 1131 NZ_ACCI00000000 4,749,568
Providencia rustigianii DSM 4541 NZ_ABXV00000000 3,965,844
Providencia stuartii ATCC 25827 NZ_ABJD00000000 4,603,561
Roseburia intestinalis L1-82 NZ_ABYJ00000000 4,380,675
Ruminococcus bromii L263 NC_RbromiiL263 2,240,019
Ruminococcus gnavus ATCC 29149 NZ_AAYG00000000 3,501,911
Ruminococcus lactaris ATCC 29176 NZ_ABOU00000000 2,729,735
Ruminococcus obeum ATCC 29174 NZ_AAVO00000000 3,624,708
Ruminococcus torques ATCC 27756 NZ_AAVP00000000 2,739,406
Shigella sp. D9 NZ_ACDL00000000 4,717,340
Streptococcus infantarius subsp. infantarius ATCC BAA-102NZ_ABJK00000000 1,925,087
Streptococcus thermophilus CNRZ1066 NC_006449 1,796,226
Streptococcus thermophilus LMD-9 NC_008532 1,856,368
Streptococcus thermophilus LMG 18311 NC_006448 1,796,846
Subdoligranulum variabile DSM 15176 NZ_ACBY00000000 3,237,471
Victivallis vadensis ATCC BAA-548 NZ_ABDE00000000 5,294,868
Vibrio cholerae O1 biovar eltor str. N16961 (chromosomes I and II)NC_002505, NC_002506
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Tables 7 — 8.

Please reference provided CD for these tables.
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Tables 10   11.

Please reference provided CD for these tables.
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Chapter 5

Conclusions and Future Directions
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Together, the studies I have carried out during my thesis work demonstrate that while 

the organismal and functional composition of the gut microbiota is highly variable across 

humans, common patterns of assembly of this microbial ‘organ’ starting at birth can be 

deciphered. My work emphasizes the importance of further understanding the complex 

and dynamic interrelationship between diet and nutritional status and microbiome func-

tion, both in infants and children when microbial community assembly is occurring and 

in adults. My studies illustrate the importance of understanding the influence of varying 

cultural traditions and geography on our human microbiomes. The findings reported in my 

thesis provide a starting point for follow-up testing of a variety of the hypotheses presented 

in Chapters 2-4.

Enhancing the nutritional value of food via intra-familial probiotics

In the Chapter 4 of my thesis, I described the composition and gene content of the microbi-

ota in twins who are discordant for severe forms of malnutrition. Much work is still needed 

to elucidate the mechanisms by which the gut microbiota contributes to severe childhood 

malnutrition. Studies in gnotobiotic animals, where potentially confounding variables that 

are difficult to control in human studies could be controlled, offer an opportunity to move 

beyond in silico predictions of the functional potential of a person’s microbiome to direct 

tests of its functional activities, and of its contributions to host phenotypes. A number 

of experiments involving fecal samples obtained from twin pairs who were part of the 

cohort described in the Chapter 4 have already began. The idea of these experiments is 

based on work initiated in our lab several years ago. Peter Turnbaugh, studying twins who 

were concordant for obesity or leanness, showed that it was possible to take a frozen fecal 

microbiota and transplant the community from a single donor to multiple recipient mice 

(Turnbaugh et al. 2009). Remarkably, the donor community was replicated to a large de-

gree in the recipients; importantly, the communities established in each mouse were highly 

similar to one another. In essence, this procedure allowed a single human microbial com-
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munity, obtained at a given moment in a person’s life, to be reproduced multiple times. 

The resulting ‘humanized’ gnotobiotic mice could then be followed over time, fed various 

human diets, and be subjected to a variety of dietary or other perturbations under highly 

controlled conditions. The transplant recipient could be a wild-type mouse or a mouse with 

an engineered mutation thought to play a role in modulating or effecting host-microbiome 

interactions. A key benefit of this approach was that it provided an opportunity to directly 

test the degree to which a donor’s physiologic or pathologic phenotype can be transferred 

to and thus assigned to his or her microbiota.

With these thoughts in mind, Michelle Smith, a post-doctoral fellow in the lab, has 

transplanted fecal microbiota from four twin pairs discordant for kwashiorkor into groups 

of adult C57Bl/6J germ-free mice. Transplant recipients have been given a corn-based 

macro- and micronutrient deficient diet typically consumed in Malawi (‘Malawi diet’), fol-

lowed by RUTF, followed by a return to the Malawi diet. She has found that mice receiv-

ing microbiota from co-twins with kwashiorkor experienced a significantly greater degree 

of weight loss than those harboring a microbiota from the healthy co-twin. RUTF only 

partially rescues the weight loss phenotype. The combination of a kwashiorkor microbiota 

and Malawi diet also disrupts mucosal barrier function leading to immune activation. As in 

humans, the response of a transplanted kwashiorkor microbiota to RUTF is more dramatic 

than that of the transplanted healthy co-twins microbiota and withdrawal of the therapeu-

tic food is accompanied by a regression in the gut microbial community’s organismal and 

functional gene configuration towards a pre-treatment state.

A procedure to generate taxonomically defined, clonally arrayed ‘personalized cul-

ture collections’ composed of bacterial isolates from a person’s stool has been recently de-

veloped in the lab (Goodman et al. 2011). The method captures 99% of the order-level and 

over 50% of species level bacterial taxa found in the original fecal sample. Culture collec-

tions can be generated from a healthy and kwashiorkor co-twins. Transplantation of these 

culture collections into gnotobiotic mice fed the sequence of diets described above would 
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allow us to test whether the culturable component of a kwashiorkor microbiota can transfer 

the phenotypes transmitted by the intact uncultured community. If this is observed, then a 

sequence of experiments could be performed. Cultured communities from kwashiorkor and 

healthy co-twins could be mixed together prior to transplantation into germ-free recipients 

to ascertain whether a healthy community could ameliorate phenotypes transmitted by the 

kwashiorkor community. Alternatively, mice harboring each of the two communities could 

be co-housed together with a germ-free mouse to study phenotype transfer/amelioration. 

In yet another derivative, the ability of a mother harboring a transplanted culture collection 

to transfer that collection and a microbiota-associated phenotype to her offspring could be 

determined; if transfer does occur, then cross fostering experiments could be performed 

involving litters where mothers either harbor a kwashiorkor or a healthy co-twin’s culture 

collection.

Another set of studies could focus on systematic tests of which components of a 

kwashiorkor or healthy co-twin’s complete community or culture collection are responsive 

to existing or experimental therapeutic foods. Responsive taxa would be identified by feed-

ing these foods to mice harboring a complete uncultured human microbiota from kwashi-

orkor or healthy co-twin donors or the corresponding culture collections and monitoring 

community responses by 16S rRNA profiling. The effects of removing these taxa from the 

culture collection before transplant on host phenotypic responses to the therapeutic foods 

could then be ascertained. These leave ‘one or more taxa out’ experiments would be fol-

lowed by ‘add one or more back’ experiments. This type of approach would represent a 

preclinical pipeline for identifying new pre- and probiotics or mixtures of the two (‘synbi-

otics’). The results could ultimately give rise to new therapeutic strategies for treating the 

donors.

An additional attraction of using gnotobiotic mice harboring complete communi-

ties or culture collections is that it allows virtual clinical trials to be performed using mi-

crobiota from children with or without malnutrition living in other areas of the world: mice 
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harboring different donor microbiota would be fed the diets of the donors or diets from 

other populations, and the effects of a given therapeutic food, fed for various periods of 

time, tested in various microbiota/native diet contexts.

Another advantage of using sequenced personal culture collections is that it allows 

a custom probiotic consortium to be selected and subsequently manufactured as a thera-

peutic agent. As the efficiency of generating these collections increases, one source may 

be a healthy family member (sibling or mother who has already adapted to the local diet).

Finally, by 2100 our planet is expected to be home to 10 billion human beings 

(United Nations 2010). This raises great challenges for human nutrition, especially given 

concerns about sustainable agriculture in the face of climate change, diminishing land and 

water resources. One hope is that nutritional recommendations and even decisions about 

what crops to grow can be predicated on deeper knowledge of the consumer’s microbi-

ome and/or by increasing the nutritional value of existing foods through manipulation of 

a human gut microbiota. The experiments described above could be extended to other hu-

man populations, especially where the diet is monotonous and poor in quality (which in 

fact may simplify enrichment of the most responsive taxa). Despite the large interpersonal 

variation in gut microbiome configurations described in my thesis, the findings presented 

in Chapter 3 indicate that features of gut microbiomes distinctive to given human popula-

tions can be identified, and thus population-specific ‘probiotics’ designed.

Filling the gaps in our understanding of the assembly of the gut microbiota

While my studies provide insights into the patterns of organismal and functional matura-

tion of gut communities in infants across multiple human populations, our knowledge of 

factors that influence assembly is still incomplete. Understanding the variables that shape 

an infant’s microbiome could lead to development of tools for manipulation of the micro-

biome early in life while the community is more ‘flexible’. Figure 1 represents my view of 

the factors that influence ‘maturation’ of the microbiome in children.
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Figure 1. Influence of mother’s health status, diet and environment on the microbial colo-

nization of an infant gut.

Remarkably, not only the nutritional status of a mother is important, but her ex-

posure to various microbial antigens during pregnancy influences the development of her 

child’s immune system (Ege et al. 2006; Schaub et al. 2009). The innate and adaptive arms 

of the immune system influence the composition and function of the gut microbiome (Fig. 

2). To my knowledge, there have not been extensive studies addressing the question of the 

role of nutritional status of a mother, including the composition of breast milk over the 

course of lactation, on the microbiota of her offspring.

Figure 2. Interaction of factors influencing ‘maturation’ of a child’s gut microbiome.
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Initial inoculum

During birth, microbes are thought to be transmitted primarily from the mother. Role of 

other variables, such as the environment in which birth and subsequent perinatal exposures 

have occurred (e.g., who handles the child in different cultural traditions, the presence 

or absence of household pets) has been difficult to study systematically. In addition, the 

importance of initial versus later microbial exposures in shaping the organismal and func-

tional makeup of the microbiota is unclear. Although a few reports exist about the transmis-

sion of bacterial strains from a mother to a child (Mändar and Mikelsaar 1996; Dominguez-

Bello et al. 2010), more work is clearly needed. Now that DNA sequencing is becoming 

more affordable, and computational tools for handling massive metagenomic datasets are 

in hand, it will be interesting to establish microbial observatory projects in which mothers 

are enrolled in the third trimester of pregnancy. The microbial communities of mothers 

would be thoroughly sampled in multiple body habitats (skin, mouth, vaginal) prior, im-

mediately after, and at multiple intervals following delivery. Breast milk would also be 

sampled, not only for definition of immune and nutrient content but also for microbes. The 

child would be similarly sampled at daily intervals beginning at birth for the first month, 

as would all of his/her human contacts and immediate environment. Deep sequencing of 

16S rRNA genes would be required to estimate the fraction of shared phylotypes between 

a mother and her child over the course of initial colonization. Currently, sequencing of 16S 

rRNA amplicons on the Illumina HiSeq instrument allows the most cost-effective way for 

monitoring diversity in high-resolution time series studies (Caporaso et al. 2011).

The co-development of the gut microbiota and breast milk

The composition of breast milk varies over the course of lactation between women (Neville 

et al. 1984; Thurl et al. 2010). How does this variation contribute to intra- and interpersonal 

variations in the gut microbiome in babies is unknown. The nutritional status of a mother 

affects the nutritional content of her breast milk (Brenna et al. 2007; Qian et al. 2010). A 
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large diversity of oligosaccharides present in the human milk escape digestion in the infant 

small intestine, but represent an energy source for distal gut microbes. The preferences of 

different components of the infant gut microbiota towards these human milk oligosaccha-

rides (HMOs) remains ill-defined. Methods for HMO purification have been and are being 

developed (German et al. 2008). This should allow a series of experiments to be performed 

using sequenced personal culture collections generated from infant gut microbiota. For ex-

ample, purified oligosaccharides could supplement the diets of gnotobiotic mice colonized 

with culture collections (Goodman et al. 2011) created from a fecal microbiota of a breast-

fed baby. Responsive taxa could be recovered from the arrayed culture collections, their 

genomes sequenced and their transcriptional and metabolic responses to the purified HMOs 

defined in vitro. These responsive taxa represent potential new generation probiotics. To 

illustrate this point further, the diversity of oligosaccharides in the breast milk of mothers 

living in Western versus non-Western societies has not been well characterized. If milk 

samples could be obtained from mothers living in Malawi and USA, comparative analyses 

could be performed to identify glycan species whose representation is affected by maternal 

diet and nutritional status. The response of members of culture collections generated from 

the infants of representative sampled mothers to purified differentially represented breast 

milk glycans could be ascertained in vitro, and in vivo using gnotobiotic mouse models 

harboring culture collections from these infants (and in follow up experiments from infants 

living in other areas of the world). Responsive taxa could then be omitted from or added 

to culture collections prior to their transplantation to mice and the effects of these glycan-

responsive taxa on host nutritional status, microbiome and host metabolism, immune func-

tion including gut integrity, and other parameters could be defined. This workflow could 

represent a pipeline for generating new generation pre-, pro- and synbiotics for babies at 

risk for undernutrition because their mother’s nutritional status is compromised.
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LETTERS

A core gut microbiome in obese and lean twins
Peter J. Turnbaugh1, Micah Hamady3, Tanya Yatsunenko1, Brandi L. Cantarel5, Alexis Duncan2, Ruth E. Ley1,
Mitchell L. Sogin6, William J. Jones7, Bruce A. Roe8, Jason P. Affourtit9, Michael Egholm9, Bernard Henrissat5,
Andrew C. Heath2, Rob Knight4 & Jeffrey I. Gordon1

The human distal gut harbours a vast ensemble of microbes (the
microbiota) that provide important metabolic capabilities, includ-
ing the ability to extract energy from otherwise indigestible dietary
polysaccharides1–6. Studies of a few unrelated, healthy adults have
revealed substantial diversity in their gut communities, as mea-
sured by sequencing 16S rRNA genes6–8, yet how this diversity
relates to function and to the rest of the genes in the collective
genomes of the microbiota (the gut microbiome) remains obscure.
Studies of lean and obese mice suggest that the gut microbiota
affects energy balance by influencing the efficiency of calorie har-
vest from the diet, and how this harvested energy is used and
stored3–5. Here we characterize the faecal microbial communities
of adult female monozygotic and dizygotic twin pairs concordant
for leanness or obesity, and their mothers, to address how host
genotype, environmental exposure and host adiposity influence
the gut microbiome. Analysis of 154 individuals yielded 9,920 near
full-length and 1,937,461 partial bacterial 16S rRNA sequences,
plus 2.14 gigabases from their microbiomes. The results reveal that
the human gut microbiome is shared among family members, but
that each person’s gut microbial community varies in the specific
bacterial lineages present, with a comparable degree of co-variation
between adult monozygotic and dizygotic twin pairs. However,
there was a wide array of shared microbial genes among sampled
individuals, comprising an extensive, identifiable ‘core micro-
biome’ at the gene, rather than at the organismal lineage, level.
Obesity is associated with phylum-level changes in the microbiota,
reduced bacterial diversity and altered representation of bacterial
genes and metabolic pathways. These results demonstrate that a
diversity of organismal assemblages can nonetheless yield a core
microbiome at a functional level, and that deviations from this core
are associated with different physiological states (obese compared
with lean).

We characterized gut microbial communities in 31 monozygotic
twin pairs, 23 dizygotic twin pairs and, where available, their mothers
(n 5 46) (Supplementary Tables 1–5). Monozygotic and dizygotic
co-twins and parent–offspring pairs provided an attractive model
for assessing the impact of genotype and shared early environmental
exposures on the gut microbiome. Moreover, genetically ‘identical’9

monozygotic twin pairs gain weight in response to overfeeding in a
more reproducible way than unrelated individuals10 and are more
concordant for body mass index (BMI) than dizygotic twin pairs11.

Twin pairs who had been enrolled in the Missouri Adolescent
Female Twin Study (MOAFTS12) were recruited for this study (mean
period of enrolment in MOAFTS, 11.7 6 1.2 years; range, 4.4–13.0
years). Twins were 21–32 years old, of European or African ancestry,
and were generally concordant for obesity (BMI > 30 kg m22) or

leanness (BMI 5 18.5–24.9 kg m22) (one twin pair was lean/over-
weight (overweight defined as BMI $ 25 and , 30) and six pairs were
overweight/obese). They had not taken antibiotics for at least
5.49 6 0.09 months. Each participant completed a detailed medical,
lifestyle and dietary questionnaire: study enrolees were broadly
representative of the overall Missouri population for BMI, parity,
education and marital status (see Supplementary Results).
Although all were born in Missouri, they currently live throughout
the USA: 29% live in the same house, but some live more than 800 km
apart. Because faecal samples are readily attainable and representative
of interpersonal differences in gut microbial ecology7, they were col-
lected from each individual and frozen immediately. The collection
procedure was repeated again with an average interval between
sampling of 57 6 4 days.

To characterize the bacterial lineages present in the faecal micro-
biotas of these 154 individuals, we performed 16S rRNA sequencing,
targeting the full-length gene with an ABI 3730xl capillary sequencer.
Additionally, we performed multiplex pyrosequencing with a 454
FLX instrument to survey the gene’s V2 variable region13 and its
V6 hypervariable region14 (Supplementary Tables 1–3).

Complementary phylogenetic and taxon-based methods were
used to compare 16S rRNA sequences among faecal communities
(see Methods). No matter which region of the gene was examined,
individuals from the same family (a twin and her co-twin, or twins
and their mother) had a more similar bacterial community structure
than unrelated individuals (Fig. 1a and Supplementary Fig. 1a, b),
and shared significantly more species-level phylotypes (16S rRNA
sequences with $97% identity comprise each phylotype)
(G 5 55.2, P , 10212 (V2); G 5 12.3, P , 0.001 (V6); G 5 11.3,
P , 0.001 (full-length)). No significant correlation was seen between
the degree of physical separation of family members’ current homes
and the degree of similarity between their microbial communities
(defined by UniFrac15). The observed familial similarity was not due
to an indirect effect of the physiological states of obesity versus lean-
ness; similar results were observed after stratifying twin pairs and
their mothers by BMI category (concordant lean or concordant obese
individuals; Supplementary Fig. 2). Surprisingly, there was no sig-
nificant difference in the degree of similarity in the gut microbiotas of
adult monozygotic compared with dizygotic twin pairs (Fig. 1a).
However, we could not assess whether monozygotic and dizygotic
twin pairs had different degrees of similarities at earlier stages of their
lives.

Multiplex pyrosequencing of V2 and V6 amplicons allowed higher
levels of coverage compared with what was feasible using Sanger
sequencing, reaching on average 3,984 6 232 (V2) and
24,786 6 1,403 (V6) sequences per sample. To control for differences
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in coverage, all analyses were performed on an equal number of
randomly selected sequences (200 full-length, 1,000 V2 and 10,000
V6). At this level of coverage, there was little overlap between the
sampled faecal communities. Moreover, the number of 16S rRNA
gene sequences belonging to each phylotype varied greatly between
faecal microbiotas (Supplementary Tables 6–8).

Because this apparent lack of overlap could reflect the level of
coverage (Supplementary Tables 1–3), we subsequently searched all
hosts for bacterial phylotypes present at high abundance using a
sampling model based on a combination of standard Poisson and
binomial sampling statistics. The analysis allowed us to conclude that
no phylotype was present at more than about 0.5% abundance in all
of the samples in this study (see Supplementary Results). Finally, we
sub-sampled our data set by randomly selecting 50–3,000 sequences
per sample; again, no phylotypes were detectable in all individuals
sampled within this range of coverage (Supplementary Fig. 3).

Samples taken from the same individual at the initial collection
point and 57 6 4 days later were consistent with respect to the specific
phylotypes found (Supplementary Figs 4 and 5), but showed varia-
tions in relative abundance of the major gut bacterial phyla
(Supplementary Fig. 6). There was no significant association between
UniFrac distance and the time between sample collections. Overall,
faecal samples from the same individual were much more similar to
one another than samples from family members or unrelated indi-
viduals (Fig. 1a), demonstrating that short-term temporal changes in
community structure within an individual are minor compared with
inter-personal differences.

Analysis of 16S rRNA data sets produced by the three PCR-based
methods, plus shotgun sequencing of community DNA (see below),
revealed a lower proportion of Bacteroidetes and a higher proportion
of Actinobacteria in obese compared with lean individuals of both
ancestries (Supplementary Table 9). Combining the individual P
values across these independent analyses using Fisher’s method dis-
closed significantly fewer Bacteroidetes (P 5 0.003), more
Actinobacteria (P 5 0.002) but no significant difference in
Firmicutes (P 5 0.09). These findings agree with previous work
showing comparable differences in both taxa in mice2 and a progress-
ive increase in the representation of Bacteroidetes when 12 unrelated,
obese humans lost weight after being placed on one of two reduced-
calorie diets6.

Across all methods, obesity was associated with a significant
decrease in the level of diversity (Fig. 1b and Supplementary Fig.
1c–f). This reduced diversity suggests an analogy: the obese gut
microbiota is not like a rainforest or reef, which are adapted to high
energy flux and are highly diverse; rather, it may be more like a
fertilizer runoff where a reduced-diversity microbial community
blooms with abnormal energy input16.

We subsequently characterized the microbial lineage and gene
content of the faecal microbiomes of 18 individuals representing
six of the families (three lean and three obese European ancestry
monozygotic twin pairs and their mothers) through shotgun pyro-
sequencing (Supplementary Tables 4 and 5) and BLASTX compar-
isons against several databases (KEGG17 (version 44) and STRING18)
plus a custom database of 44 reference human gut microbial genomes
(Supplementary Figs 7–10 and Supplementary Results). Our analysis
parameters were validated using control data sets comprising ran-
domly fragmented microbial genes with annotations in the KEGG
database17 (Supplementary Fig. 11 and Supplementary Methods).
We also tested how technical advances that produce longer reads
might improve these assignments by sequencing faecal community
samples from one twin pair using Titanium pyrosequencing methods
(average read length of 341 6 134 nucleotides (s.d.) versus 208 6 68
nucleotides for the standard FLX method). Supplementary Fig. 12
shows that the frequency and quality of sequence assignments is
improved as read length increases from 200 to 350 nucleotides.

The 18 microbiomes were searched to identify sequences matching
domains from experimentally validated carbohydrate-active
enzymes (CAZymes). Sequences matching 156 total CAZy families
were found within at least one human gut microbiome, including 77
glycoside hydrolase, 21 carbohydrate-binding module, 35 glycosyl-
transferase, 12 polysaccharide lyase and 11 carbohydrate-esterase
families (Supplementary Table 10). On average, 2.62 6 0.13% of
the sequences in the gut microbiome could be assigned to
CAZymes (a total of 217,615 sequences), a percentage that is greater
than the most abundant KEGG pathway (‘Transporters’;
1.20 6 0.06% of the filtered sequences generated from each sample)
and indicative of the abundant and diverse set of microbial genes
directed towards accessing a wide range of polysaccharides.

Category-based clustering of the functions from each microbiome
was performed using principal components analysis (PCA) and hier-
archical clustering19. Two distinct clusters of gut microbiomes were
identified based on metabolic profile, corresponding to samples with
an increased abundance of Firmicutes and Actinobacteria, and sam-
ples with a high abundance of Bacteroidetes (Fig. 2a). A linear regres-
sion of the first principal component (PC1, explaining 20% of the
functional variance) and the relative abundance of the Bacteroidetes
showed a highly significant correlation (R2 5 0.96, P , 10212;
Fig. 2b). Functional profiles stabilized within each individual’s
microbiome after 20,000 sequences had been accumulated
(Supplementary Fig. 13). Family members had more similar profiles
than unrelated individuals (Fig. 2c), suggesting that shared bacterial
community structure (‘who’s there’ based on 16S rRNA analyses)
also translates into shared community-wide relative abundance of
metabolic pathways. Accordingly, a direct comparison of functional
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and taxonomic similarity (see Supplementary Methods) disclosed a
significant association: individuals with similar taxonomic profiles
also share similar metabolic profiles (P , 0.001; Mantel test).

Functional clustering of phylum-wide sequence bins representing
microbiome reads assigned to 23 human gut Firmicutes and 14
Bacteroidetes reference genomes showed discrete clustering by
phylum (Supplementary Figs 14a and 15). Bootstrap analyses of the
relative abundance of metabolic pathways in the microbiome-derived
Firmicutes and Bacteroidetes sequence bins disclosed 26 pathways
with a significantly different relative abundance (Supplementary
Fig. 14a). The Bacteroidetes bins were enriched for several carbohyd-
rate metabolism pathways, whereas the Firmicutes bins were enriched
for transport systems. This finding is consistent with our CAZyme
analysis, which revealed a significantly higher relative abundance of
glycoside hydrolases, carbohydrate-binding modules, glycosyltrans-
ferases, polysaccharide lyases and carbohydrate esterases in the
Bacteroidetes sequence bins (Supplementary Fig. 14b).

One of the major goals of the International Human Microbiome
Project(s) is to determine whether there is an identifiable ‘core
microbiome’ of shared organisms, genes or functional capabilities
found in a given body habitat of all or the vast majority of humans1.
Although all of the 18 gut microbiomes surveyed showed a high level

ofb-diversity with respect to the relative abundance of bacterial phyla
(Fig. 3a), analysis of the relative abundance of broad functional cat-
egories of genes and metabolic pathways (KEGG) revealed a generally
consistent pattern regardless of the sample surveyed (Fig. 3b and
Supplementary Table 11): the pattern is also consistent with results
we obtained from a meta-analysis of previously published gut micro-
biome data sets from nine adults20,21 (Supplementary Fig. 16). This
consistency is not simply due to the broad level of these annotations,
as a similar analysis of Bacteroidetes and Firmicutes reference gen-
omes revealed substantial variation in the relative abundance of each
category (see Supplementary Fig. 17). Furthermore, pairwise com-
parisons of metabolic profiles obtained from the 18 microbiomes in
this study revealed an average value of R2 of 0.97 6 0.002 (Fig. 2a),
indicating a high level of functional similarity.

Overall functional diversity was compared using the Shannon
index22, a measurement that combines diversity (the number of dif-
ferent metabolic pathways) and evenness (the relative abundance of
each pathway). The human gut microbiomes surveyed had a stable
and high Shannon index value (4.63 6 0.01), close to the maximum
possible level of functional diversity (5.54; see Supplementary
Methods). Despite the presence of a small number of abundant meta-
bolic pathways (listed in Supplementary Table 11), the overall func-
tional profile of each gut microbiome is quite even (Shannon evenness
of 0.84 6 0.001 on a scale of 0–1), demonstrating that most metabolic
pathways are found at a similar level of abundance. Interestingly, the
level of functional diversity in each microbiome was significantly
linked to the relative abundance of the Bacteroidetes (R2 5 0.81,
P , 1026); microbiomes enriched for Firmicutes/Actinobacteria had
a lower level of functional diversity. This observation is consistent with
an analysis of simulated metagenomic reads generated from each of 36
Bacteroidetes and Firmicutes genomes (Supplementary Fig. 18): on
average, the Bacteroidetes genomes have a significantly higher level of
both functional diversity and evenness (Mann–Whitney U-test,
P , 0.01).

At a finer level, 26–53% of ‘enzyme’-level functional groups
(KEGG/CAZy/STRING) were shared across all 18 microbiomes,
whereas 8–22% of the groups were unique to a single microbiome
(Supplementary Fig. 19a–c). The ‘core’ functional groups present in
all microbiomes were also highly abundant, representing 93–98% of
the total sequences. Given the higher relative abundance of these ‘core’
groups, more than 95% were found after 26.11 6 2.02 megabases of
sequence were collected from a given microbiome, whereas the ‘vari-
able’ groups continued to increase substantially with each additional
megabase of sequence. Of course, any estimate of the total size of the
core microbiome will depend on sequencing effort, especially for
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functional groups found at a low abundance. On average, our survey
achieved more than 450,000 sequences per faecal sample, which,
assuming an even distribution, would allow us to sample groups
found at a relative abundance of 1024. To estimate the total size of
the core microbiome based on the 18 individuals, we randomly sub-
sampled each microbiome in 1,000 sequence intervals (Supple-
mentary Fig. 19d). Based on this analysis, the core microbiome is
approaching a total of 2,142 total orthologous groups (one site bind-
ing (hyperbola) curve fit, R2 5 0.9966), indicating that we identified
93% of functional groups (defined by STRING) found within the core
microbiome of the 18 individuals surveyed. Of these core groups, 71%
(CAZy), 64% (KEGG) and 56% (STRING) were also found in the
nine previously published, but much lower coverage, data sets gener-
ated by capillary sequencing of adult faecal DNA20,21 (average of
78,413 6 2,044 bidirectional reads per sample; see Supplementary
Methods).

Metabolic reconstructions of the ‘core’ microbiome revealed sig-
nificant enrichment for several expected functional categories,
including those involved in transcription and translation (Fig. 4).
Metabolic profile-based clustering indicated that the representation
of ‘core’ functional groups was highly consistent across samples
(Supplementary Fig. 20), and included several pathways that are

likely important for life in the gut, such as those for carbohydrate
and amino-acid metabolism (for example, fructose/mannose meta-
bolism, amino-sugar metabolism and N-glycan degradation).
Variably represented pathways and categories include cell motility
(only a subset of Firmicutes produce flagella), secretion systems and
membrane transport (for example, phosphotransferase systems
involved in the import of nutrients, including sugars; Fig. 4 and
Supplementary Fig. 20).

The distribution of CAZy glycoside hydrolase and glycosyltrans-
ferase families was compared between each pair of microbiomes (see
Supplementary Table 10 for CAZy families with a relative abundance
greater than 1%). This analysis revealed that all individuals had a
similar profile of glycosyltransferases (R2 5 0.96 6 0.003), whereas
the profiles of glycoside hydrolases were significantly more variable,
even between family members (R2 5 0.80 6 0.01; P , 10230, paired
Student’s t-test). This suggests that the number and spectrum of
glycoside hydrolases is affected by ‘external’ factors such as diet more
than the glycosyltransferases.

To identify metabolic pathways associated with obesity, only non-
core associated (variable) functional groups were included in a com-
parison of the gut microbiomes of lean versus obese twin pairs. A
bootstrap analysis23 was used to identify metabolic pathways that
were enriched or depleted in the variable obese gut microbiome.
For example, similar to a mouse model of diet-induced obesity4,
the obese human gut microbiome was enriched for phosphotransfer-
ase systems involved in microbial processing of carbohydrates
(Supplementary Table 12). All gut microbiome sequences were com-
pared with the custom database of 44 human gut genomes: an odds
ratio analysis revealed 383 genes that were significantly different
between the obese and lean gut microbiome (q value , 0.05; 273
enriched and 110 depleted in the obese microbiome;
Supplementary Tables 13 and 14). By contrast, only 49 genes were
consistently enriched or depleted between all twin pairs (see
Supplementary Methods).

These obesity-associated genes were representative of the taxo-
nomic differences described above: 75% of the obesity-enriched
genes were from Actinobacteria (compared with 0% of lean-enriched
genes; the other 25% are from Firmicutes) whereas 42% of the lean-
enriched genes were from Bacteroidetes (compared with 0% of the
obesity-enriched genes). Their functional annotation indicated that
many are involved in carbohydrate, lipid and amino-acid metabol-
ism (Supplementary Tables 13 and 14). Together, they comprise an
initial set of microbial biomarkers of the obese gut microbiome.

Our finding that the gut microbial community structures of adult
monozygotic twin pairs had a degree of similarity that was compar-
able to that of dizygotic twin pairs, and only slightly more similar
than that of their mothers, is consistent with an earlier fingerprinting
study of adult twins24, and with a recent microarray-based analysis,
which revealed that gut community assembly during the first year of
life followed a more similar pattern in a pair of dizygotic twins than
12 unrelated infants25. Intriguingly, another fingerprinting study of
monozygotic and dizygotic twins in childhood showed a slightly
reduced similarity profile in dizygotic twins26. Thus, comprehensive
time-course studies, comparing monozygotic and dizygotic twin
pairs from birth through adulthood, as well as intergenerational
analyses of their families’ microbiotas, will be key to determining
the relative contributions of host genotype and environmental expo-
sures to (gut) microbial ecology.

The hypothesis that there is a core human gut microbiome, defin-
able by a set of abundant microbial organismal lineages that we all
share, may be incorrect: by adulthood, no single bacterial phylotype
was detectable at an abundant frequency in the guts of all 154
sampled humans. Instead, it appears that a core gut microbiome
exists at the level of shared genes, including an important component
involved in various metabolic functions. This conservation suggests a
high degree of redundancy in the gut microbiome and supports an
ecological view of each individual as an ‘island’ inhabited by unique
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collections of microbial phylotypes: as in actual islands, different
species assemblages converge on shared core functions provided by
distinctive components. Our findings raise the question of how core
functionality is assembled in this body habitat. Understanding the
underlying principles should provide insights about microbial
adaptation to, and mutualistic community assembly within, a wide
range of environments.

METHODS SUMMARY

Faecal samples were collected from each individual. Community DNA was pre-

pared and used for pyrosequencing (454 Life Sciences), as well as for PCR and

sequencing of bacterial 16S rRNA genes. Shotgun reads were mapped to ref-

erence genomes using the National Center for Biotechnology Information ‘non-

redundant’ database, KEGG17, STRING18, CAZy (http://www.cazy.org/) and a

44-member human-gut microbial genome database. Metabolic reconstructions

were performed based on CAZy, KEGG and STRING annotations. The relative

abundance of KEGG metabolic pathways is referred to as a ‘metabolic profile’.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Community DNA preparation. Faecal samples were frozen immediately after

they were produced. De-identified samples were stored at 280 uC before proces-

sing. Ten to twenty grams of each sample was pulverized in liquid nitrogen with a

mortar and pestle. An aliquot (approximately 500 mg) of each sample was then

suspended, while frozen, in a solution containing 500ml of extraction buffer

(200 mM Tris (pH 8.0), 200 mM NaCl, 20 mM EDTA), 210ml of 20% SDS,

500ml of a mixture of phenol:chloroform:isoamyl alcohol (25:24:1, pH 7.9),

and 500ml of a slurry of 0.1-mm diameter zirconia/silica beads (BioSpec

Products). Microbial cells were subsequently lysed by mechanical disruption

with a bead beater (BioSpec Products) set on high for 2 min at room temper-

ature, followed by extraction with phenol:chloroform:isoamyl alcohol, and pre-

cipitation with isopropanol. DNA obtained from three separate aliquots of each

faecal sample were pooled ($200mg DNA) and used for pyrosequencing (see

below).

16S rRNA gene-sequence-based surveys. Complementary phylogenetic- and

taxon-based methods were used to compare 16S rRNA sequences among faecal

communities. Phylogenetic clustering with UniFrac15 is based on the principle that

communities can be compared in terms of their shared evolutionary history, as

measured by the degree to which they share branch length on a phylogenetic tree.

We complemented this approach with taxon-based methods27, which disregard

some of the information contained in the phylogenetic tree of the taxa in question,

but have the advantage that specific taxa unique to, or shared among, groups of

samples can be identified (for example, those from lean or obese individuals).

Before both types of analysis, we grouped 16S rRNA gene sequences into opera-

tional taxonomic units (OTUs/phylotypes) using both cd-hit28 and the furthest-

neighbour-like algorithm, with a sequence identity threshold of 97%, which is

commonly used to define ‘species’-level phylotypes. Taxonomy was assigned using

the best-BLAST-hit against Greengenes29 (E value cutoff of 10210, minimum 88%

coverage, 88% identity) and the Hugenholtz taxonomy (downloaded from

http://greengenes.lbl.gov/Download/Sequence_Data/Greengenes_format/ on 12

May 2008, excluding sequences annotated as chimaeric).

Selection of operational taxonomic units. 16S rRNA gene-derived pyrosequen-

cing data were pre-processed to remove sequences with low-quality scores,

sequences with ambiguous characters or sequences outside the length bounds

(V6 , 50 nucleotides, V2 , 200 nucleotides), and binned according to sample-

specific barcode (see, for example, ref. 13). Similar sequences were identified

using Megablast30 and cd-hit, with the following parameters: E value 10210

(Megablast only); minimum coverage 99%; minimum pairwise identity 97%.

Candidate OTUs were identified as sets of sequences connected to each other at

this level using a maximum of 4,000 hits per sequence. Each candidate OTU was

considered valid if the average density of connection was above threshold; other-

wise, it was broken up into smaller connected components27.

Tree building and UniFrac clustering for PCA analysis. A relaxed neighbour-

joining tree was built from one representative sequence per OTU using

Clearcut31, employing the Kimura correction (the PH Lane mask was applied

to V2 and full-length data), but otherwise with default comparisons. Unweighted

UniFrac15 was run using the resulting tree. PCA was performed on the resulting

matrix of distances between each pair of samples. To determine if the UniFrac

distances were on average significantly different for pairs of samples (that is,

between twin pairs, between twins and their mother, or between unrelated indi-

viduals), we performed a t-test on the UniFrac distance matrix, and generated a P

value for the t-statistic by permutation of the rows and columns as in the Mantel

test, regenerating the t-statistic for 1,000 random samples, and using the distri-

bution to obtain an empirical P value.

Rarefaction and phylogenetic diversity measurements. To determine which

individuals had the most diverse communities of gut bacteria, rarefaction plots

and phylogenetic diversity measurements, as described by Faith32, were made for

each sample. Phylogenetic diversity is the total amount of branch length in a

phylogenetic tree constructed from the combined 16S rRNA data sets, leading to

the sequences in a given sample. To account for differences in sampling effort

between individuals, and to estimate how far we were from sampling the divers-

ity of each individual completely, we plotted the accumulation of phylogenetic

diversity (branch length) with sampling effort, in a manner analogous to

rarefaction curves. We generated the phylogenetic diversity rarefaction curve

for each individual by applying custom python code (http://bmf2.colorado.
edu/unifrac/about.psp) to the Arb parsimony insertion tree27.

Pyrosequencing of total community DNA. Shotgun sequencing runs were per-

formed on the 454 FLX pyrosequencer from total faecal community DNA. Two

samples were also analysed in a single run using Titanium extra-long-read pyr-

osequencing technology (see Supplementary Tables 4 and 5). Sequencing reads

with degenerate bases (‘Ns’) were removed along with all duplicate sequences, as

sequences of identical length and content are a common artefact of the pyrose-

quencing methodology. Finally, human sequences were removed by identifying

sequences homologous to the Homo sapiens reference genome (BLASTN

E , 1025, %identity . 75, score . 50).

CAZyme analysis. Metagenomic sequence reads were searched against a library

of modules derived from all entries in the carbohydrate-active enzymes (CAZy)

database (www.cazy.org using FASTY33, E , 1026). This library consists of

approximately 180,000 previously annotated modules (catalytic modules,

carbohydrate-binding modules and other non-catalytic modules or domains

of unknown function) derived from about 80,000 protein sequences. The num-

ber of sequencing reads matching each CAZy family was divided by the number

of total sequences assigned to CAZymes and multiplied by 100 to calculate a
relative abundance. An R2 value was calculated for each pair of CAZy profiles.

We then compared the distribution of glycoside hydrolase similarity scores with

the distribution of glycosyltransferase similarity scores.

Statistical analyses. Xipe23 (version 2.4) was used for bootstrap analyses of

pathway enrichment and depletion, using the parameters sample size 5 10,000

and confidence level 5 0.95. Linear regressions were performed in Excel (version

11.0, Microsoft). Mann–Whitney and Student’s t-tests were used to identify

statistically significant differences between two groups (Prism version 4.0,

GraphPad; Excel version 11.0, Microsoft). The Bonferroni correction was used

to correct for multiple hypotheses. The Mantel test was used to compare distance

matrices: the matrix of each pairwise comparison of the abundance of each

reference genome, and the abundance of each metabolic pathway, were com-

pared (Mantel program in Python using PyCogent34; 10,000 replicates). Data are

represented as mean 6 s.e.m. unless otherwise indicated.

Microbiome sequences were compared against the custom database of 44 gut

genomes (BLASTX E , 1025, bitscore . 50, and %identity . 50). A gene-by-

sample matrix was then screened to identify genes ‘commonly-enriched’ in

either the obese or lean gut microbiome (defined by an odds ratio greater than
2 or less than 0.5 when comparing the pooled obese twin microbiomes with the

pooled lean twin microbiomes, and when comparing each individual obese twin

microbiome with the aggregate lean twin microbiome, or vice versa). The stati-

stical significance of enriched or depleted genes was then calculated using a

modified t-test (q value , 0.05; calculated with code supplied by M. Pop and

J.R. White, University of Maryland). We also searched for genes that were con-

sistently enriched or depleted in all six monozygotic twin pairs. A gene-by-

sample matrix was generated based on BLASTX comparisons of each micro-

biome with our custom 44-genome database, to calculate an odds ratio based on

the frequency of each gene in each twin versus the respective co-twin. The

analysis revealed only 49 genes (odds ratio . 2 or , 0.5): they represent a variety

of taxonomic groups, including Firmicutes, Bacteroidetes and Actinobacteria,

and did not show any clear functional trends.
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We deeply sampled the organismal, genetic, and transcriptional
diversity in fecal samples collected from a monozygotic (MZ) twin
pair and compared the results to 1,095 communities from the gut
and other body habitats of related and unrelated individuals. Using
a new scheme for noise reduction in pyrosequencing data, we
estimated the total diversity of species-level bacterial phylotypes in
the 1.2-1.5 million bacterial 16S rRNA reads obtained from each
deeply sampled cotwin to be ~800 (35.9%, 49.1%detected in both).
A combined 1.1 million read 16S rRNA dataset representing 281
shallowly sequenced fecal samples from 54 twin pairs and their
mothers contained an estimated 4,018 species-level phylotypes,
with each sample having a unique species assemblage (53.4 ±
0.6% and 50.3 ± 0.5% overlap with the deeply sampled cotwins).
Of the 134 phylotypes with a relative abundance of >0.1% in the
combined dataset, only 37 appeared in >50% of the samples, with
one phylotype in the Lachnospiraceae family present in 99%. Non-
gut communities had significantly reduced overlap with the deeply
sequenced twins’ fecal microbiota (18.3 ± 0.3%, 15.3 ± 0.3%). The
MZ cotwins’ fecal DNAwas deeply sequenced (3.8-6.3 Gbp/sample)
and assembled reads were assigned to 25 genus-level phylogenetic
bins. Only 17% of the genes in these bins were shared between the
cotwins. Bins exhibited differences in their degree of sequence var-
iation, gene content including the repertoire of carbohydrate active
enzymes present within and between twins (e.g., predicted cellu-
lases, dockerins), and transcriptional activities. These results pro-
vide an expanded perspective about features that make each of
us unique life forms and directions for future characterization of
our gut ecosystems.

microbial phylogenetic analyses | microbiota | transcriptomics |
carbohydrate active enzymes

Human microbiome projects are being initiated throughout the
world, with the goal of correlating human physiological phe-

notypes with the structures and functions of their indigenous
microbial communities. Substantial insight into the patterns of
variation in the microbiota between body habitats and individuals
has been gained using shallow sequencing of 16S rRNA gene
amplicons and community DNA. Because of limitations imposed
by sequencing costs and throughput, these studies have examined
the more abundant species or genes. A timely question is this:
What additional insights about the microbial diversity present
within a body habit are obtained with deeper sequencing? More-
over, how much of the observed organismal diversity is an artifact
of noise introduced during PCR and sequencing of 16S rRNA
genes (1–3)? Therefore, in the current study we use a variety of
experimental and computational approaches to explore the level
of diversity and interpersonal variation in bacterial phylotypes,
microbial genes, and their expressedmRNA transcripts within the
human gut, home to our largest community of microorganisms.

Results and Discussion
Study Design and Data Collection. Total communityDNAandRNA
was initially isolated from two fecal samples, each obtained from
26-year-old, obese, MZ female cotwins (body mass index, 39 and
45 kg/m2). Both cotwins (designated TS28 and TS29) had been
vaginally delivered; neither cotwin had any history of intestinal
disease, and neither had used antibiotics at least 6 months before
providing fecal samples, at which time the cotwins lived 5 km apart
(4). A 454 pyrosequencing method was used to obtain 1.2–1.5
million sequencing reads from PCR-amplified V2 regions of bac-
terial 16S rRNA genes present in each fecal sample (average read
length ∼232 nt), and 3.8–6.3 Gbp of single- and paired-end shot-
gun reads from total fecal community DNA (Table S1). Using a
method for rRNA depletion based on a combination of size
selection (to remove 5S rRNA and tRNA), and streptavidin bead-
based pull-down of biotinylated oligonucleotides hybridized to
domains conserved among gut bacterial rRNA genes (5), we
enriched for fecal mRNA and then generated 12–16 million
sequencing reads representing expressed genes in their micro-
biomes (Table S2).

Analysis of Bacterial Diversity Present in the Gut Microbiota. Algo-
rithms for denoising pyrosequencing data: tests using mixtures of bacte-
rial strains. We analyzed test datasets composed of an unequal
mixture of DNA from 90 cloned bacterial 16S rRNA gene
sequences (2) or DNA purified from 67 bacterial strains cultured
from the human gut and pooled together over a range of relative
concentrations (Table S3). These test datasets were used to
establish a set of procedures for removing noise from 16S rRNA
datasets that arise from PCR and pyrosequencing (SI Text).
Comparison of the fecal microbiota of the deeply sampled MZ co-twins.
Using these procedures, we determined that most species-level
phylotypes were present at low abundance [species defined as
organisms sharing ≥97% sequence identity (%ID) in their 16S
rRNA genes; Fig. S1]; ∼100,000 16S rRNA sequences were
required to observe 60% of the total phylotypes (Fig. 1A). At the

Author contributions: P.J.T., C.Q., R.K., and J.I.G. designed research; P.J.T., J.J.F., and T.Y.
performed research; P.J.T., F.N., J.A., and M.E. contributed new reagents/analytic tools;
P.J.T., C.Q., J.J.F., A.C.M., B.H., R.K., and J.I.G. analyzed data; and P.J.T., C.Q., R.K., and J.I.G.
wrote the paper.

The authors declare no conflict of interest.

Data deposition: Datasets from shotgun sequencing projects have been deposited at
DDBJ/EMBL/GenBank under accession number 43253. 454 and Illumina sequencing reads
have been deposited in the NCBI Short Read Archive.

Freely available online through the PNAS open access option.
1Current address: FAS Center for Systems Biology, Harvard University, Cambridge, MA
02138.

2To whom correspondence should be addressed. E-mail: jgordon@wustl.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
1002355107/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1002355107 PNAS | April 20, 2010 | vol. 107 | no. 16 | 7503–7508

M
IC
RO

BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
mailto:jgordon@wustl.edu
http://www.pnas.org/cgi/content/full/1002355107/DCSupplemental
http://www.pnas.org/cgi/content/full/1002355107/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1002355107


95%ID and 97%ID phylotype cutoffs, rarefaction curves did not
completely saturate even when >106 sequences were collected
(Fig. 1A), indicating that additional phylotypes remain unchar-
acterized even at this high level of coverage.
The total estimated diversity of species-level bacterial phylotypes

(97%ID) in the TS28 and TS29 datasets was lower than expected
(878 and 768, respectively; Table 1 andTable S4), basedonprevious
studies that did not account for noise. There was notable variation
even between these genetically identical cotwins: 35.9% and 49.1%
of the species-level phylotypes found in the fecal communities of
TS28 and TS29, respectively, were shared between the two samples
(39.0% and 52.8% were shared at the 95%ID level).
However, these values do not account for phylotypes that may be

abundant in one sample and rare in another. Overall, shared phy-
lotypes showed a small but positive correlation in relative abun-
dance between samples, and rarely varied by more than two orders

ofmagnitude (R2=0.18 for 97%IDandR2=0.27 for 95%ID). This
observation allowed us to define a normalized overlap between the
samples by considering only phylotypes found at a sufficient relative
abundance ineach sample that they areunlikely tohavebeenmissed
because of variations in their relative abundance (“Normalized
overlap” in SI Text). With this normalization, 68% and 79% of 97%
ID phylotypes in TS28 and TS29 were designated as being shared
in the other cotwin’s microbiota (76.7% and 86.0% at 95%ID).
Comparisons to more shallowly sampled fecal samples obtained from
other twin pairs. To test whether the deep sampling of these cotwins
allowed us to capture the bacterial diversity present in fecal sam-
ples obtained from other families containing twins, we extended
our survey to include 1.1 million bacterial V2 16S rRNA
sequencing reads from 281 fecal samples procured from 31 MZ
and 23 dizygotic (DZ) twin pairs and their mothers [3,984 ± 232
(mean ± SEM) reads/sample] (4). Like the deeply sampled cot-
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Fig. 1. Measurements of bacterial diversity in the human fecal microbiota. (A) Rarefaction curves at 97%ID and 95%ID phylotype cutoffs are shown for the
deeply sequenced TS28 and TS29 MZ cotwin (“Deep Twins”) datasets. Sequences were classified as chimeric at the 50% probability cutoff. (B) Comparison of
diversity within and between gut microbial communities. Curves at 97%ID phylotype cutoff are shown for 250 fecal samples taken from 146 individuals
(“Shallow twins”; 1,000 16S rRNA gene sequences were randomly selected from each sample), 250 samples taken frommultiple body habitats (“Whole body”;
1,000 randomly selected sequences per sample), and the two deeply sequenced fecal samples (“TS28-Deep” and “TS29-Deep”). Phylotypes found in multiple
fecal samples are labeled “co-occurring.” (C) Plot of proportion of 97%ID phylotypes found in TS28 and TS29 across 277 fecal samples (black circles) and 814
samples taken from multiple body habitats in nine individuals [habitat groups are colored green (fecal), purple (skin), red (external auditory canal; EAC), blue
(hair), orange (nostrils), and light blue (oral cavity)]. Four EAC and one skin sample did not contain any shared phylotypes with TS28 and TS29. (D) The
proportion of the 250 fecal samples containing each 97%ID phylotype plotted as a function of the relative abundance (%) of each phylotype in the combined
dataset. Phylotypes are colored according to phylum: Bacteroidetes (red), Firmicutes (green), and other (black). The expected proportion of samples con-
taining each phylotype, assuming a random distribution across samples, is shown (median ± 95% confidence interval).

Table 1. Number of species-level (97%ID) and 95%ID bacterial phylotypes in the deep and shallow sequenced fecal microbiota of
twins, and in the whole body sampling datasets

Dataset 16S rRNA seqs
Observed phylotypes

(97%ID)
Estimated phylotypes

(97%ID Chao)a
Observed phylotypes

(95%ID)
Estimated phylotypes

(95%ID Chao)

TS28-Deep 848,512 473 627 413 538
TS29-Deep 553,416 344 558 307 514
TS28-Shallow 3,288 135 375 121 329
TS29-Shallow 1,178 81 127 70 130
TSAll-Shallow 250,000 2,815 4,018 1,974 2,498
TSAll-Co-occur 250,000 1,898 2,043 1,221 1,283
WholeBody 250,000 3,869 4,949 2,957 3,646

aChao’s nonparametric total diversity estimates are given. Phylotypes are grouped based on the degree of sequence identity in the V2 regions of their 16S
rRNA genes.

TS28- and TS29-Deep, deeply sequenced cotwin fecal samples; TS28- and TS29-Shallow, shallow sequenced cotwin fecal samples; TSAll-Shallow, 1,000
randomly selected sequences from 250 fecal samples; TSAll-Co-occur, restricted to co-occurring sequences from 250 fecal samples; WholeBody, 250 randomly
selected samples from a total of 814 samples obtained from 27 body sites from 9 individuals, 1,000 sequences/sample).
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wins, these other twin pairs were born in Missouri, ranged in age
from25 to 32 years, did not have a history ofGI pathology, and had
not consumed antibiotics before sampling. All 16S rRNA pyro-
sequencing reads were preprocessed as done above to remove
noise and chimeras.
A comparison of the total bacterial diversity found across these

fecal samples and the two deeply sequenced samples underscored
the much higher level of inter- compared with intrapersonal var-
iation when considering a single body habitat (Fig. 1B). The com-
bined “Shallow” fecal datasets had an estimated 4,018 97%ID
phylotypes and 2,498 95%ID phylotypes (2,815 and 1,974
observed, respectively). These values are ∼5-fold higher than in
each deeply sequenced fecal microbiota (Table 1). In addition,
each sample had a unique collectionof 97%IDphylotypes (mean±
SEM, 53.4 ± 0.6% and 50.3 ± 0.5% overlap with TS28 and TS29),
whereas the fraction of phylotypes from each sample that were
shared with TS28 correlated with the fraction shared with TS29
(R2 = 0.73; Fig. 1C).
Our initial analysis of these fecal samples had indicated that

there was no core set of abundant species-level phylotypes found
in all individuals (4); this was confirmed after removing PCR and
sequencing noise. The proportion of samples containing each
phylotype was lower than expected by chance at all levels of
relative abundance (Fig. 1D), but within each level of abundance
there was a large spread. Only a few phylotypes appeared in the
majority of samples: of the 134 species-level phylotypes that had
a relative abundance in the combined dataset >0.1%, only 37
appeared in >50% of the samples (28% of the phylotypes,
compared with 100% expected by chance). Phylotypes assigned
to the Firmicutes phylum were more evenly spread than the
Bacteroidetes: 33% with >0.1% relative abundance appeared in
50% of samples, compared with only 12% of the Bacteroidetes
phylotypes (Fig. 1D). In addition, one nearly ubiquitous phylo-
type belonging to the family Lachnospiraceae (phylum Firmi-
cutes) was found in 99% of the samples, representing 5.7% of
the sequences in the combined dataset.
Comparisons to bacterial phylotypes present in other human body habitats.
To determine whether phylotypes present in the gut microbiota
were detectable in other body habitats, we surveyed V2 16S rRNA
sequencing reads obtained from nine unrelated healthy individu-
als (male and female) who had been sampled at 27 sites, including
feces, twice over a 24-h period on two occasions, each occasion
separated by 3 months (age range, 30–35 years with the exception
of one individual 60 years of age; no recent history of antibiotic
use; mean ± SD 1,315 ± 420 reads per sample) (6). All data were
subjected to the same denoising procedures described above.
A comparison of the total diversity found across the 27 body

habitats to the shallowly sequenced fecal samples and the two
deeply sequenced fecal samples demonstrated higher levels of
diversity when comparing across multiple body habitats vs. com-
parisons of the same habitat across multiple individuals (Fig. 1B).
The combined 27-body habitats dataset contained an estimated
4,949 species-level phylotypes (97%ID) and 3,646 95%ID phylo-
types (3,869 and 2,957 observed, respectively) (Table 1). Although
the range of overlapping species-level phylotypes for the fecal
samples from the 27-body habitat survey was comparable to the
twin fecal cohort (mean± SEM 45.1 ± 1.9% and 41.7 ± 1.4%), the
other nongut body habitats showed a significantly reduced overlap
(mean± SEM18.3± 0.3%and 15.3± 0.3%withTS28 andTS29;P
< 10−17, Student’s t test; Fig. 1C). As with the fecal samples from
the shallowly sampled twins, the fraction of phylotypes from each
sample that were shared with TS28 correlates with the fraction
shared with TS29 (R2 = 0.42).
Conclusions. Together, these results emphasize the following: (i)
despite large interpersonal variations in the composition of the gut
microbiota and the absence of a core set of abundantly represented
universally shared phylotypes, common phylotypes can be identi-
fied through deep sequencing of a small number of individuals; (ii)

a surprising amount of phylotypes are shared between distinct body
habitats across unrelated individuals (i.e., only five samples did not
contain any phylotypes from the deeply sequenced TS28 and TS29
gut microbial communities); and (iii) it seems feasible that future
studies that broadly sample humans living in distinct cultural set-
tings will be able to define population-wide gut phylotypes and, as a
result, provide a rationale for selecting cultured representatives of
these phylotypes for genome sequencing (e.g., start with phylotypes
in the top right portion of Fig. 1D).

Deep Shotgun Sequencing of the Fecal Microbiome of the MZ Cotwins:
Analyses of Genus-level Phylogenetic Bins. We turned next to the
followingquestions:Doesdeep sequencing enable the assembly and
binning of “population genomes” from complex microbial com-
munities? How diverse is the gut microbiome in terms of gene
content. and how unique are these genes relative to those contained
in 122 genomes from cultured human gut isolates? What can we
infer about the similarities and differences between MZ cotwins
when interrogating their deeply sequenced microbiomes?
Deep shotgun sequencing of total fecal communityDNAallowed

us to assemble and bin large scaffolds from the TS28 and TS29
microbiomes (Tables S5 and S6 and Phylogenetic binning of micro-
biome scaffolds in SI Text). A combined assembly of single- and
paired-end pyrosequencing reads from TS28 and TS29 yielded
92,104 and 61,460 contigs >500 bp per sample, with 11,780 and
6,392 scaffolds, respectively (scaffolds represent one or more con-
tigs ordered and oriented using paired-end reads). PhyloPythia, a
phylogenetic classifier that uses a multiclass Support Vector Ma-
chine (SVM) for composition-based characterization of sequence
fragments at different taxonomic ranks (7), was trained on 1,775
finished or draft microbial genomes, in addition to 5,548 and 3,391
contigs from TS28 and TS29, respectively, that mapped with high
confidence to gut microbial genomes (Table S7). After training,
PhyloPythia was used to accurately bin all scaffolds >2 Kbp at the
genus- and family-level, resulting in 24–25 bins of scaffolds per fecal
sample; these bins contained from 2.0 Kbp to 22.4 Mbp of total
sequence (Figs. S2B and S3 and Table S6).
The total number of genes across all microbiome bins from the

TS28 and TS29 fecal samples was 88,316 and 64,453, respectively.
Clustering of protein sequences from these bins and the 122 gut
microbial genomes, revealed 180,550, 257,823, and 334,211 total
protein-coding gene clusters at 40%, 60%, and 80% identity cut-
offs, respectively (Fig. 2A and Fig. S2A). The largest group of gene
clusters at all cutoffs was unique to the reference genomes,
whereas 25% of the clusters were found only in the TS28 or TS29
microbiome bins. Overall, 36% of the gut microbiome gene clus-
ters had a representative (60%ID) in the 122 gut microbial
genome database, indicating that although sequencing reference
genomes from culturable members of the microbiota has already
uncovered a substantial proportion of the gene content present in
the fecal communities of these cotwins, more reference genome
and microbiome sequencing is clearly needed.
A total of 25 genus- and family-level bins were identified in the

TS28 fecal microbiome dataset, and 24 in the TS29 dataset; 22 of
these bins were found in both samples (bins unique to one sample
only contained nine of the 16,554 total scaffolds). There were strong
correlations between the two fecal microbiomes with respect to the
number of scaffolds, their aggregate length, and the number of genes
found in each bin (R2 = 0.94, 0.74, and 0.69, respectively; Table S6).
As expected from our bacterial 16S rRNA analyses, the genus-level
bins with the largest number of scaffolds were the Ruminococcus,
Bacteroides, Clostridium, and Eubacterium (members of the Bac-
teroidetes and Firmicutes phyla). However, substantial assemblies
were also obtained from Methanobrevibacter [M. smithii is repor-
ted to be the dominant archaeon in the human gut microbiome;
(8)] and from Bifidobacterium (the former is missed with primers
for amplification of bacterial 16S rRNAgenes, whereas the current
version ofV2-directed bacterial primersmissmembers of the latter
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taxa; Fig. S4). When sequencing reads from each sample were
mapped to the microbiome bins from that sample to identify high-
confidence sequence variants in each bin, we found that the Fae-
calibacterium had the highest relative level of variation, whereas
the Methanobrevibacter had the lowest (Fig. 2B).
Taken together, these results suggest that “population genomes”

can be constructed and reliably binned even from diverse microbial
communities given enough sequencing depth, although rare mem-
bers of the community will be missed (e.g., the TM7 phylum). The
bins provided the basis for amore in-depth analysis, annotation, and
transcriptional profiling than a standard gene-centric (i.e., sequenc-
ing read–based) approach, revealing 36,151 and 24,134 gene clusters
unique toTS28 andTS29, respectively, and not represented in any of
the 122 reference gut genomes (Fig. 2A). Comparisons of the
abundance of shared clusters between TS28 and TS29 revealed a
stronger average correlation than the shared species-level phylotypes
(mean R2 = 0.37 vs. R2 = 0.18). Rarefaction analysis disclosed that
the number of genes and gene clusters in the gut microbiomes con-
tinues to increase even after 2 million mapped reads (Fig. 2C), with
an estimatedplateauof 242,023 and 234,661 genes, corresponding to
115,216 and 112,522 gene clusters in the TS28 and TS29 fecal
microbiomes, respectively (Table S8).

The Diversity of Carbohydrate Active Enzymes in the Human Gut
Microbiome and Evidence of Genes with Predicted Cellulolytic Activity.
The human genome lacks the large repertoire of glycoside hydro-
lases and polysaccharide lyases required to cleave the many glyco-
sidic linkages present in complex dietary polysaccharides (9).
Because processing of these polysaccharides is a major function
of the distal gut microbiota (10), we annotated the predicted pro-
teins from each genus- and family-level microbiome bin using pro-
cedures described in the Carbohydrate-Active EnZyme database

[CAZy (9)] (Table S9andS10 andFig. S5). In total,weobserved143
CAZy families representing 5,145 genes in the gut microbiomes of
these cotwins.
In general, the relative abundance of genes assigned to each CAZy

family was consistent across genus-level bins from both individuals
(Fig. 3A and Table S10). However, one notable exception was found:
the Faecalibacterium bin from TS28 contained 42 genes predicted to
encodedockerins,whichare small proteins involved in theassemblyof
extracellular cellulosomes (11).Noneof these geneswere identified in
the Faecalibacterium bin from her cotwin’s fecal microbiome, nor in
the genome of F.prausnitzii isolate M21/2. However, 30 dockerins
were identifiedacross theRuminococcusandEubacteriumbinsof the
two samples (Table S9). In agreementwith thepredicted formationof
cellulosomes, the Faecalibacterium dockerins from TS28 were found
with a number of genes predicted to encode cellulases (GH5,GH9,
GH44,GH48), beta-mannanases (GH26), xyloglucanases (GH74),
and polysaccharide lyases (PL), none of which were observed in the
Faecalibacteriumbin fromTS29 (χ2 test,P< 10−4). Finally, a cohesin-
encoding gene (the cognate molecule for dockerins) was identified in
the Faecalibacteriumbin fromTS28, further supporting the existence
of human gut cellulosomes.
To assess the distribution of genes predicted to encode dockerins

across microbiomes from other twins, we compared 18 fecal
microbiome datasets (mean ± SEM 535,232 ± 23,294 sequencing
reads per sample; 118.7 ± 8.7 Mb/sample) obtained from six MZ
twin-pairs and their mothers (4) to the protein-coding gene
sequences from the microbiome bins obtained from the deeply
sampled MZ twins. This analysis revealed that the identified dock-
erin-encoding genes are widely distributed across gut microbiomes
but vary in abundance: all 18 microbiomes contained reads with
significant sequence similarity to these genes (mean number of
genes12.4, range1–55genes; andmeannumberof sequencing reads
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54.3, range 2–222 reads). However, only sequences from TS28
contained reads matching the identified cohesin-encoding gene.
Together, these results expand the known diversity of CAZymes

in the human gut microbiome and reveal a suite of genes with
predicted cellulolytic activity. The fact that the latter genes were
highly enriched in the Faecalibacterium bins found in the micro-
biome of TS28 and not in her genetically identical cotwin high-
lights another level of genetic variation between humans. Future
research will be necessary to characterize the enzymatic activity of
these systems, the breadth of their organismal distribution, the
host and environmental parameters (including diet) that deter-
mine their abundance in a given human gut microbiome, and their
contributions to host nutrient/energy harvest.

The Metatranscriptome Viewed from the Perspective of Phylogenetic
Bins. To characterize gene expression in the gut microbiome, we
analyzed cDNA and DNA datasets obtained from sequencing total
community cDNAandDNAprepared fromthe two fecal samplesof
TS28 and TS29. All sequencing reads were mapped against the
database of 122 gut microbial genomes and the microbiome bins
(Metatranscriptome analysis in SI Text). The results revealedmarked
differences in gene abundance and expression (Figs. S6 and S7). In
all cases, technical replicates of each microbiome and metatran-
scriptome (n=3–4) clustered together; this clusteringwas robust to
subsampling by COG functional categories (Fig. S6). Microbiome
profiles showed the highest average correlation between individuals
(R2 = 0.37), relative to metatranscriptomes (R2 = 0.12) and the
relative abundance of species-level phylotypes (R2 = 0.18). As with
the microbiome, rarefaction analysis of the metatranscriptome
revealed that the number of expressed genes and gene clusters
continues to increase even after 500,000 mapped reads (Fig. 2C),
with an estimated plateau of 85,099 and 173,309 genes, corre-
sponding to 35,781 and 58,339 gene clusters in TS28 and TS29,
respectively (Table S8).
We subsequently calculated the ratio of the relative abundance of

cDNA sequences in eachmicrobiome bin to the relative abundance
of DNA sequences in that bin, for each fecal community (12). Even
at the genus-level, there were detectable differences in relative gene
expression: six bins showed higher relative expression than gene
abundance, whereas the Bifidobacterium had the lowest level of
relative expression in both microbiomes (Fig. 2D).
We then compared cDNA and DNA profiles at the level of

individual genes to determine the relative expression of each gene
compared with its abundance (12). Genes were defined as “High
Relative Expression” (High-Expr) or Low-Expr based on the ratio
of cDNA to DNA relative abundance. A 10-fold difference was

chosen as the threshold cutoff based on all pairwise comparisons
of technical replicate datasets obtained from cDNA or DNA se-
quencing of each sample (Fig. S8A, n = 3–4 replicates per sample
per method).
These comparisons revealed 6,961 genes with high or low rela-

tive expression in the fecal microbiome of TS28 (4,816 High-Expr
and 2,145 Low-Expr) and 7,893 genes in TS29 (5,476 High-Expr
and 2,417 Low-Expr; Tables S11 and S12). As expected, many of
these genes came from bins with an overall higher relative
expression (Fig. 2D), including Parabacteroides, Alistipes, Meth-
anobrevibacter, and Bacteroides, or bins with a lower relative
expression (the Bifidobacterium bin contained 962 Low-Expr
genes in sample TS29 and 112 in TS28). However, some notable
exceptions were found; the Bacteroides had 1,416 High-Expr
genes in theTS28microbiome, despite having overall similar levels
of cDNA and DNA assignments across the entire bin (ratio 1.5).
The distribution of genes assigned to COG functional categories

was then calculated using each set ofHigh- or Low-Expr genes (Fig.
3B), aswell as the set of genes thatwereobservedonlywith cDNAor
DNA sequencing (Fig. S9A). A disproportionate number of High-
Expr genes encoded hypothetical proteins without predicted func-
tions [33.9% (TS28) and 31.2% (TS29) of the High-Expr genes,
comprising 77.9% (TS28) and 75.1% (TS29) of the total hypo-
thetical genes with either a high or low relative expression]. High-
Expr genes from both microbiomes were more frequently assigned
to COG categories for translation (J), energy metabolism (C), and
chaperones (O) (Fig. 3B and Tables S11 and S12), whereas Low-
Expr genes were more frequently assigned to COG categories for
secretory systems (U), replication, recombination, and repair (L),
and membrane proteins (M) (Fig. 3B). In addition, many of these
High-Expr genes have predicted functions related to fermentation
and carbohydratemetabolism: e.g., ABC-type transport systems for
carbohydrate import and metabolism plus genes involved in meth-
anogenesis and acetogenesis (key pathways in the clearance of the
hydrogen end-product of fermentation, and thus important deter-
minants of fermentation efficiency).
To better characterize specific pathways represented by genes

with high or low relative expression, we annotated each gene in the
122 gut microbial genomes and the microbiome bins using the
KEGG annotation scheme (v52) (13). The relative abundance of
KEGGpathways was tallied across genes defined asHigh- or Low-
Expr in TS28 and TS29 or found to be unique to the cDNA or
DNA datasets, and used for UPGMA clustering. Both micro-
biomes showed consistent trends, including high relative expres-
sion of genes assigned to pathways for essential cell processes, e.g.,
“RNA polymerase,” “Ribosome,” “Pyruvate metabolism,” and
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“Glycolysis” (Fig. S8B). We extended these analyses to five addi-
tional samples from two sets of MZ cotwins and one unrelated
individual (Samples labeled “TSDA” in Fig. S9 and Additional
microbiomes andmeta-transcriptomes in SI Text) and found similar
results, including the higher relative expression of genes assigned
to COG categories for transcription, energy metabolism, defense
mechanisms, and chaperones (Fig. S9A), in addition to KEGG
pathways involved in carbohydrate metabolism (e.g., fructose/
mannose metabolism), nucleotide metabolism, and vitamin me-
tabolism/biosynthesis (e.g., folate biosynthesis) (Fig. S9B).

Prospectus. Our results indicate that a majority of species-level
phylotypes are shared between these deeply sampled MZ cotwins,
despite large variations in the abundance of each phylotype. The
genetic and transcriptional diversity of thehumangutmicrobiome is
remarkable.Muchof this diversity hasnot beenpreviously identified
through sequencing cultured human gut isolates; 64% of the gene
clusters present in our microbiome bins had no representative in a
set of 122 human gutmicrobial genomes, and only 17%were shared
between the two cotwins. This diversity, even between genetically
identical individuals, provides an expanded view of our multi-
cellularity and interpersonal genetic variation. Features of the
genus-level bins within the gut microbiome were distinctive inmany
ways, ranging from differences in gene content and transcriptional
activity, to the extent of sequence variation within each population.
Identifying the factors that determine such between-taxon differ-
ences will provide an important step toward understanding the
functions (niches) of these organisms in the human gut microbial
community, with the ultimate goal of linking thepresence of specific
organisms to gene content and activity. Our results and the
accompanying datasets also provide a framework for future studies
of human and environmental microbiomes. As noted above, 16S
rRNAgene sequence datasets can be used to prioritize genomes for
isolation and sequencing, starting with the most abundant phylo-
types found across themost individuals, andworking toward the rare
members of the gut microbiota. The reduced level of organismal
diversity in a single individual implies that it may be soon be possible
to identify all strains present in a single gut (fecal) microbiota. The
fraction of shared phylotypes between MZ cotwins, between unre-
lated individuals, and between body habitats provides an important
context for designing studies of the assembly, dynamic operations,
and host effects of “model” human gut microbiota/microbiomes,
composed of sequenced cultured gut isolates, in gnotobiotic mice.
Finally, the application of transcriptional profiling to the study of
human body habitat-associated microbial communities will enable
correlations to be made between genes expressed by our micro-
biomes and our physiologic and metabolic phenotypes.

Materials and Methods
Sequencing of 16S rRNA Gene Amplicons. Fecal samples were stored at −80°C
before processing. DNA was extracted by bead beating followed by phenol-
chloroform extraction as described previously (4). The V2 region was tar-
geted for amplification by PCR (with primers 8F-338R) and multiplex GS FLX
pyrosequencing (4). In addition, six control pools were constructed with
equimolar or variable concentrations of purified genomic DNA from 67
cultured reference human gut–derived strains; the V2 regions of 16S rRNA
genes present in these pools were then amplified and sequenced.

Assembly of the Human Gut Microbiome. Shotgun sequencing runs were per-
formed on libraries prepared from total fecal community DNA using the 454
GS FLX Titanium single- and paired-end protocols. For all analyses involving
unassembled reads, sequencing reads with degenerate bases (“Ns”) were
removed along with all replicate sequences using the following parameters: 0.9
(90%ID), length difference requirement = 0, and 3 beginning bases checked
(14). Each deeply sequenced dataset (TS28 and TS29) was assembled separately
using the 454 GS de novo assembler software (Newbler v2.0.00.22), and all
scaffolds were used for subsequent analysis. High-confidence sequence variants
were identified using the 454 GS Reference Mapper software (v2.0.00.20).

Metatranscriptome Analysis. Microbial RNA sequencing (RNA-Seq) was per-
formed as described previously (5). Briefly, total RNA was extracted from each
fecal sample. The sample was subjected to rigorous DNase digestion to remove
residualgDNA,depleted for rRNAand tRNA,converted to cDNA,and sequenced
using the Illumina GAII platform. A total of 36 nucleotide reads produced from
the each runwere trimmed at their beginning and ends to remove bases with a
quality score <20. Adapter sequences and sequencing reads with a length <20
nucleotides were subsequently eliminated from further analysis. All trimmed
reads were mapped with SSAHA2 (15) to phylogenetic bins constructed from
microbiome scaffolds and to 122 sequenced human gut-associated microbial
genomes (SSAHA2 parameters: -best 1 -score 20 -solexa). Gene clusters were
defined by grouping all protein sequences from the database using the pro-
gram cd-hit [parameter -c 0.6 -n 4 (16)]. Gene and gene cluster counts were
normalized based on the total number of mapped sequencing reads. Genes
from the database with significant homology (BLASTN e-value <10−30) to non-
coding transcripts from the 122 gut microbial genomes were excluded from
subsequent analysis. Ties representing sequences matching multiple reference
genes with the same score were split evenly, whereas ties matching multiple
gene clusters were weighted according to the frequency of unique (nontie)
matches to each cluster.

Details concerning (i) phylogenetic binning of microbiome scaffolds, (ii)
analysis of gene, bin, and transcript abundance, (iii) development and vali-
dation of methods for 16S rRNA gene sequence analysis, and (iv) additional
cohorts of humans analyzed are given in SI Text.
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line built using the PyCogent toolkit6, to address the problem of 
taking sequencing data from raw sequences to interpretation and 
database deposition. QIIME, available at http://qiime.sourceforge.
net/, supports a wide range of microbial community analyses and 
visualizations that have been central to several recent high-pro-
file studies, including network analysis, histograms of within- or 
between-sample diversity and analysis of whether ‘core’ sets of 
organisms are consistently represented in certain habitats. QIIME 
also provides graphical displays that allow users to interact with the 
data. Our implementation is highly modular and makes extensive 
use of unit testing to ensure the accuracy of results. This modularity 
allows alternative components for functionalities such as choosing 
operational taxonomic units (OTUs), sequence alignment, infer-
ring phylogenetic trees and phylogenetic and taxon-based analysis 
of diversity within and between samples (including incorporation of 
third-party applications for many steps) to be easily integrated and 
benchmarked against one another (Supplementary Fig. 1).

We applied the QIIME workflow to a combined analysis of pre-
viously collected data (see Supplementary Discussion) for distal 
gut bacterial communities from conventionally raised mice, adult 

QIIME allows analysis of high-
throughput community sequencing data
To the Editor: High-throughput sequencing is revolutionizing 
microbial ecology studies. Efforts like the Human Microbiome 
Projects1 and the US National Ecological Observatory Network2 are 
helping us to understand the role of microbial diversity in habitats 
within our own bodies and throughout the planet.

Pyrosequencing using error-correcting, sample-specific barcodes 
allows hundreds of communities to be analyzed simultaneously in 
multiplex3. Integrating information from thousands of samples, 
including those obtained from time series, can reveal large-scale 
patterns that were inaccessible with lower-throughput sequencing 
methods. However, a major barrier to achieving such insights has 
been the lack of software that can handle these increasingly massive 
datasets. Although tools exist to perform library demultiplexing and 
taxonomy assignment4,5, tools for downstream analyses are scarce.

Here we describe ‘quantitative insights into microbial ecology’ 
(QIIME; prounounced ‘chime’), an open-source software pipe-

Figure 1 | QIIME analyses of the distal gut microbiotas of conventionally raised and conventionalized mice, gnotobiotic mice colonized with a human fecal 
gut microbiota (H-mice), and human adult mono- and dizygotic twins. (a) Principal coordinates analysis plots for mice, H-mice and twins. Colors correspond 
to separate samples by species and time point, and are consistent throughout the panels. (b) Unweighted UniFrac distance histograms between the data 
for fecal microbiota of human twins; human donors for the H-mice study; day 56 post-transplant H-mice on a low-fat (LF) and plant polysaccharide–rich 
(PP) diet; day 1 H-mice (LF and PP diet); and day 0 H-mice. Taxonomic classifications are presented at the class level. (c) Alpha diversity rarefaction 
plots of phylogenetic diversity for the H-mice samples. (d) OTU network connectivity of H-mice time series data. CONV-D, conventionalized mice; CONV-R, 
conventionally raised mice; and GF, germ-free mice.

Unweighted UniFrac distance

PC1 (18%)

Time (d)

PC2 (9.1%)

PC1 (17%)

Time (d)

PC2 (15%)

Euclidean distance

14

12

10

8

6

4

2

0P
hy

lo
ge

ne
tic

 d
iv

er
si

ty
 (

w
ho

le
 tr

ee
)

10
0

35
0

60
0

85
0
1,

10
0
1,

35
0
1,

60
0
1,

85
0
2,

10
0
2,

35
0

Sequences per sample

Raw

14

12

10

8

6

4

2

0P
hy

lo
ge

ne
tic

 d
iv

er
si

ty
 (

w
ho

le
 tr

ee
)

10
0

35
0

60
0

85
0
1,

10
0
1,

35
0
1,

60
0
1,

85
0
2,

10
0
2,

35
0

Sequences per sample

Denoised

1.0

0.8

0.6

0.4

0.2

0N
or

m
al

iz
ed

 c
ou

nt
s 

of
 p

ai
rs

 in
 g

ro
up

0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0
Distance

Actinobacteria
Bacteroidetes:Bacteroidetes
Other Bacteroidetes
Cyanobacteria
Deferribacteres
Firmicutes: Bacilli
Firmicutes: Clostridia
Firmicutes: Erysipelotrichi
Other Firmicutes
Fusobacteria: Fusobacteria
Lentisphaerae: Lentisphaerae
β-Proteobacteria
δ-Proteobacteria
ε-Proteobacteria
γ-Proteobacteria
Other Proteobacteria
Verrucomicrobia
Other bacteria
Unclassified

Day 0: H-mice 8 h after transplant of 
    human fecal microbiota

Day 1: H-mice on LF and PP diet

Day 7: H-mice on LF and PP diet

Day 14: H-mice on LF and PP diet

Day 21: H-mice on LF and PP diet

Day 28: H-mice on LF and PP diet

Day 35: H-mice on LF and PP diet

Day 42: H-mice on LF and PP diet

Day 42: H-mice on western diet

Day 49: H-mice on LF and PP diet

Day 49: H-mice on Western diet

Day 56: H-mice on LF and PP diet

Day 56: H-mice on Western diet

CONV-R and CONV-D controls for H-mice

Human donors for H-mice

Twins (variable region 6)

Twins (variable region 2)

GF and CONV-D mice

a b

c d

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



336 | VOL.7 NO.5 | MAY 2010 | nature methods

correspondence

human monozygotic and dizygotic twins and their mothers, and a 
time series study of adult germ-free mice after they received human 
fecal microbiota (Fig. 1, Supplementary Table 1 and Supplementary 
Discussion). This analysis combined ten full 454 FLX runs and one 
partial run, totalling 3.8 million bacterial 16S rRNA sequences from 
previously published studies, including reads from different regions 
of the 16S rRNA gene.

QIIME is thus a robust platform for combining heterogeneous 
experimental datasets and for rapidly obtaining new insights about 
various microbial communities. Because QIIME scales to millions 
of sequences and can be used on platforms from laptops to high-
performance computing clusters, we expect it to keep pace with 
advances in sequencing technology and to facilitate characterization 
of microbial community patterns ranging from normal variations to 
pathological disturbances in many human, animal and other envi-
ronmental ecosystems.

Note: Supplementary information is available on the Nature Methods website.
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Intensity normalization improves color 
calling in SOLiD sequencing
To the Editor: Applied Biosystems’ SOLiD system1 is a commonly 
used massively parallel DNA sequencing platform for applications 
from genotyping and structural variation analysis1 to transcriptome 
quantification and reconstruction2. Like other sequencing technolo-
gies, it measures fluorescence intensities from dye-labeled molecules to 
determine the sequence of DNA fragments. Ultimately, sequences are 
determined by complicated statistical manipulations of noisy inten-
sity measurements, and systematic biases may mislead downstream 
analysis3. Several proposed methods improve base calling and qual-
ity metrics for other sequencing technologies3–5, and we now present 
Rsolid, software implementing an intensity normalization strategy for 
the SOLiD platform that substantially improves yield and accuracy at 
small computational costs (6% increase in total matches, 13% increase 
in perfect matches, 5% reduced error rate and a substantial reduction 
in false positive single-nucleotide polymorphism (SNP) calls in an 
Escherichia coli genomic DNA sample).

In the SOLiD system, the proportions of color calls across sequenc-
ing cycles are extremely variable (Fig. 1a), even though they should be 
equal across sequencing cycles and proportional to the dinucleotide 
content of the library (Supplementary Methods). This bias can be 
traced to the fluorescence intensity measurements used to make the 
color calls (Supplementary Fig. 1). The distributions of intensities 
are similar across channels in early sequencing cycles, but a color bias 
starts to appear in later cycles. The Rsolid method uses a simple and 
computationally efficient procedure to normalize the color-channel 
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Figure 1 | Effect of normalization on color proportions and SNP calling.  
(a) Color proportions in sample of E. coli genomic DNA on each sequencing 
cycle. Color calls as reported by the SOLiD 2 system (left) and after 
normalization by Rsolid (right). FTX, TXR, Cy3 and Cy5 are dyes used by SOLiD. 
(b) Number of false positive SNPs called in E. coli at various coverage. After 
normalization, fewer SNPs were called even at high coverage (30 M reads 
correspond to ~100-fold coverage).
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SUMMARY

Disruption of homeostasis between the host immune
system and the intestinal microbiota leads to inflam-
matory bowel disease (IBD). Whether IBD is insti-
gated by individual species or disruptions of entire
microbial communities remains controversial. We
characterized the fecal microbial communities in
the recently described T-bet�/�3Rag2�/� ulcerative
colitis (TRUC) model driven by T-bet deficiency in
the innate immune system. 16S rRNA-based analysis
of TRUC and Rag2�/� mice revealed distinctive
communities that correlate with host genotype.
The presence of Klebsiella pneumoniae and Proteus
mirabilis correlates with colitis in TRUC animals,
and these TRUC-derived strains can elicit colitis in
Rag2�/� and WT adults but require a maternally
transmitted endogenous microbial community for
maximal intestinal inflammation. Cross-fostering
experiments indicated a role for these organisms
in maternal transmission of disease. Our findings
illustrate how gut microbial communities work in
concert with specific culturable colitogenic agents
to cause IBD.

INTRODUCTION

The human intestine is populated with up to 1012 microbes per

gram of lumenal contents. Coexistence with this microbial

community (microbiota) demands a well-regulated homeostasis

between the host immune system and the microbiota (Duerkop

et al., 2009; Hill and Artis, 2009). Inflammatory bowel disease

(IBD) can occur when this homeostasis is disrupted (Sartor,

2009). Whether individual pathogenic species or entire microbial

communities instigate inflammation still remains controversial

(Frank and Pace, 2008; Hansen et al., 2010). Defining features

of the microbiota and host that are associated with or initiate

IBD is critical.

In the absence of adaptive immunity, loss of the transcription

factor T-bet in conventionally raised T-bet�/� 3 Rag2�/�

knockout mice results in a spontaneous and highly penetrant

colitis that shares histologic features with ulcerative colitis

in humans. T-bet�/� 3 Rag2�/� ulcerative colitis (TRUC) is

associated with altered colonic barrier function, elevated

TNF-a levels, and dysfunctional dendritic cells (DCs) (Garrett

et al., 2007, 2009). It is transmissible to WT hosts when they

are cross-fostered or cohoused with TRUC mice (Garrett

et al., 2007). TRUC mice provide an opportunity to probe the

host-microbe relationship in a model that displays both the

immunodeficiency and hyperimmunity observed in humans

with IBD.

Here, we show that the presence of Proteus mirabilis and

Klebsiella pneumoniae correlates with colitis in TRUC mice

and that TRUC-derived strains, in conjunction with an endoge-

nous microbial community, incite colitis in WT mice. These

studies revealed the utility of using both culture-independent

and -dependent approaches to interrogate the contribution of

community members to disease pathogenesis. This model also

provides a foundation for defining how gut microbial communi-

ties work in concert with specific culturable colitogenic agents

to cause IBD and creates an opportunity to evaluate preventative

or therapeutic measures directed at components of the gut

microbiota and/or host.

RESULTS

16S rRNA-Based Time Series Analysis of TRUC versus
Rag2–/– Fecal Microbiota
A pilot experiment—using offspring of conventionally raised,

specified-pathogen-free (SPF) T-bet�/�3 Rag2�/� and Rag2�/�

mothers—analyzed fecal samples collected from mothers at a

single time point and from their female pups (n = 3/genotype)
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at 2 week time intervals from 2 to 10 weeks. A culture-

independent survey of their fecal microbiota by multiplex

pyrosequencing of V2 region amplicons of bacterial 16S rRNA

genes (n = 32 samples; 2348 ± 343 reads/sample) analyzed

by principal coordinates analysis (PCoA) plots based on

unweighted UniFrac measurements disclosed a correlation

between host genotype and community phylogeny at all ages

surveyed (Figure 1A). A total of 69 species-level phylogenetic

types, belonging to four major bacterial phyla, exhibited signifi-

cant differences at various ages in the fecal communities of

mice of the two genotypes (Table S1). Compared to Rag2�/�

controls, TRUC mice had a significantly higher proportional

representation of species-level operational taxonomic units

(OTUs) belonging to the order Bacteroidales (phylum Bacteroi-

detes; p = 0.00643) and significantly lower proportional

representation of OTUs belonging to the orders Clostridiales

(phylum Firmicutes; p = 0.0201) and Deltaproteobacteria

(phylum Proteobacteria; p = 0.0299) (p values by Mann-Whitney

test with Bonferroni correction) (Figure 1B).

Figure 1. 16S rRNA-Based Time Series

Analysis of TRUC versus Rag2–/– Fecal

Microbiota

(A) Principal coordinates analysis (PCoA) of un-

weighted UniFrac distances from 2- to 10-week-

old TRUC (n = 3) andRag2�/� (n = 3) mice and their

mothers. Host genotype influences microbial

community structure. Abbreviations: A, B, C, indi-

vidual pups colored by genotype, followed over

time (A.2, A.4, A.6, A.8, and A.10 refer to mouse

A sampled at 2, 4, 6, and 10 weeks of age).

(B) Distribution of order-level phylotypes in TRUC

and Rag2�/� fecal microbial communities. Rela-

tive abundance (%) is plotted for each age group.

K. pneumoniae and P. mirabilis

Correlate with the Presence
of Colitis in TRUC Mice
We also performed quantitative cultures

to obtain independent verification of

differences in bacterial burden for defined

species and to have culturable isolates

available to test the specific effects of

individual strains on disease initiation

and progression. A total of 57 bacterial

species were recovered and identified

from fecal pellets obtained from three

TRUC and three Rag2�/� mice surveyed

at 2, 4, 6, 8, and 10 weeks of age

and from their mothers (Figure 2A and

Table S2).

Experiments administering oral antibi-

otics (Abx) helped further refine potential

classes of colitogenic commensal organ-

isms. Gentamicin (gent) or metronidazole

(metro) but not vancomycin (vanco) were

highly effective in ameliorating TRUC

colitis and resulted in clinically and statis-

tically significant changes in colitis scores

(mean colitis score 0.5 ± 0.52, p < 0.0001

compared to water control) (Figure 2B). This result pointed us to

a role for Gram-negative facultative organisms in TRUC.

The in vitro Abx resistance profiles of the commensal strains

selectively recovered from TRUC but not Rag2�/� fecal samples

(Figures 2A and 2B, lower panel) corresponded to the in vivo

Abx sensitivity of the colitis (Figure 2B, upper panel) since

K. pneumoniae and P. mirabilis, both facultative enterics, were

sensitive to gent but resistant to vanco (Figure 2B, lower panel).

A more extensive, culture-based survey of a larger number of

TRUC and Rag2�/� mice to determine if these bacteria were

present in afflicted but absent from healthy mice revealed that

K. pneumoniae and P. mirabilis were culturable in all TRUC

mice tested (n = 126) at every time point (Figure 2C). In contrast,

both species were below our limit of detection (<4.4 log10 cfu/g

fecal material) in Rag2�/� mice at each time point (Figure 2C).

We treated 4-week-old TRUC mice with Abx using the

protocol shown previously to ameliorate colitis and cultured

feces obtained 1 day before and 1 day after Abx administra-

tion. K. pneumoniae and P. mirabilis fecal levels fell below our
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limit of detection when mice were treated with gent or metro,

but treatment with vanco neither abolished colitis nor reduced

levels of these bacteria (Figure 2D).

To test the hypothesis that K. pneumoniae and P. mirabilis

play a role in TRUC pathogenesis, we determined the physical

location of these species using 16S and 23S rDNA fluorescence

in situ hybridization (FISH) oligonucleotide probes on whole

colonic sections. We focused on the degree of colonization in

the lumen, the mucus layer over the epithelium, and the mucosa.

As has been reported in IBD patients using a universal bacterial

16S rRNA FISH probe (Swidsinski et al., 2005), we observed that

the colonic mucus of colitic TRUC mice harbored numerous

bacteria and that there was a consistent loss of a ‘‘bacterial-

free zone’’ adjacent to the colonic epithelium (Figure 2E). Healthy

Figure 2. The Presence of K. pneumoniae and P. mirabilis Correlates with the Presence of Colitis in TRUC Mice

(A) Culture-based identification of bacteria present in fecal samples from Figure 1 mice and time points. Species observed in >1 mouse or in 1 mouse at >1 time

point are shown. Summary of species-level differences in the fecal microbiota of TRUC versus Rag2�/� mice is observed in the inset.

(B) Upper panel: In vivo Abx sensitivities of TRUC colitis. Each dot represents one mouse treated for 4 weeks with the indicated Abx. VMNA: vanco, metro,

neomycin, and ampicillin. Horizontal bars represent the mean. p value % 0.0001 by Mann-Whitney test. Lower panel: Summary of in vitro Abx sensitivities for

species selectively detected in TRUC fecal microbiota.

(C) Culture-based survey of Gram-negative aerobes in fecal samples from TRUC (shaded circles) and Rag2�/� (open circles) at 2–20 weeks of age.

(D) In vivo sensitivity of K. pneumoniae (squares) and P. mirabilis (circles), as defined by culture-based surveys of TRUC fecal samples collected 1 day before

(shaded symbol) and 1 day after (open symbol) Abx treatment. Each dot represents data from a fecal sample obtained from onemouse. Horizontal bars represent

the mean value.

(E) FISH using an Oregon-Green 488-conjugated ‘‘universal bacterial’’ 16S rRNA-directed oligonucleotide probe (EUB338) demonstrates the presence of

bacteria in the mucus layer and directly adjacent to the epithelium in TRUC mice. Upper panels, TRUC; lower panels, Rag2�/�. A 10 mm scale bar for the panel

is shown in the lower left of the first image.

(F) Enterobacteriaceae (red), Klebsiella (red), and Proteus (red) were visualized adjacent to the epithelium in TRUCmice using Fluor-conjugated 16S rRNA or 23S

rRNA oligonucleotide probes (pB-00914 [Enterobacteriaceae], pB-00352 [Klebsiella pneumonia], pB-02110 [Proteus mirabilis]). Sections were also hybridized

with the EUB338 universal bacterial probe (green). Scale bars (10 mm) are shown for each image.

(G) Enterobacteriaceae (red), Klebsiella (red), and Proteus (red) probe signals are seen adjacent to or along the epithelium in TRUCmice. Epithelial cell nuclei were

stained with DAPI. White star symbols mark bacteria in (F) and (G). Scale bars (10 mm) are shown for each image.
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(noncolitic) Rag2�/� mice did not exhibit any of these pheno-

types (Figure 2E). Using a set of probeBase consortium 23S

and 16S rDNA probes to detect K. pneumoniae and P. mirabilis

(Loy et al., 2007), we visualized a small number of organisms

adjacent to the epithelium (Figures 2F and 2G). Hence, K. pneu-

monia and P. mirabilis may have invasive potential, or the

proximity of their bacterial products to the apical epithelial

surface may trigger inflammatory responses without frank inva-

sion. Either could explain their role in TRUC colitis, as access

to the mucosa would increase the opportunity for eliciting a

host proinflammatory response.

K. pneumoniae and P. mirabilis Elicit Colitis but Require
a Maternally Transmitted Endogenous Microbial
Community for Maximal Intestinal Inflammation
Following postnatal exposure to a TRUC dam, WT and Rag2�/�

mice develop histopathologic features of colitis (penetrance of

phenotype:94%at8weeksof age) (Garrett et al., 2007).Weasked

if this maternally transmitted disease had a pattern of Abx sensi-

tivity similar to spontaneous TRUC colitis. We cross-fostered

TRUC, Rag2�/�, and WT pups on TRUC mothers who received

water, gent, metro, or vanco from preconception through wean-

ing. Gent and metro markedly improved the colitis score for all

mice in a statistically significant fashion, while vanco did not,

similar to what we observed in spontaneous TRUC colitis (n = 2

foster mothers/genotype; 2–4 pups/litter surveyed) (Figure 3A).

We cultured fecal samples from WT and Rag2�/� mice that

developed transmissible colitis from cross-fostering (Figure 3B).

K. pneumoniae and P. mirabilis were detected in all fecal

samples obtained from 8-week-old TRUC-fostered Rag2�/�

and WT pups at levels comparable to age-matched TRUC-

fostered TRUCmice. In contrast, neither organismwas detected

in any control Rag2�/�-fostered Rag2�/� or WT-fostered WT

animals (n = 2 foster mothers/genotype; 2–3 pups/litter

surveyed) (Figure 3B). Neither TRUC mice fostered on Rag2�/�

nor WT mothers had histologic evidence of colitis or K. pneumo-

niae or P. mirabilis at 8 weeks of age (Figures S2 and 3B).

The presence of K. pneumoniae and P. mirabilis in colitic

TRUC mice and TRUC fostered Rag2�/� and WT mice and the

lack of detectable bacteria in the fecal microbiota of healthy

Rag2�/�, WT, and WT or Rag2�/�-fostered TRUC provided

additional evidence for an association between the presence

of these bacteria and colitis.

One possibility is that the presence of K. pneumoniae and

P. mirabilis is a consequence rather than a cause of inflamma-

tion. Intestinal inflammation caused by Citrobacter rodentium

may drive blooms of Enterobacteriaceae, although this result is

controversial (Hoffmann et al., 2009; Lupp et al., 2007). To inves-

tigate the effects of inflammation on intestinal colonization by

K. pneumoniae and P. mirabilis, we treated 8-week-old WT

and Rag2�/� mice with the mucosal toxin dextran sulfate

sodium to induce colitis (n = 8 mice/genotype). We did not

detect culturableK. pneumoniae orP.mirabilis in the fecal micro-

biota of any of these mice during our period of surveillance

(n = 8 mice/genotype; samples collected before and 1 day after

completion of a 1week treatment) (Figure S1), arguing against an

inflammatory response causing expansion of K. pneumoniae

and P. mirabilis in the TRUC gut microbiota.

To directly test the colitogenic potential of K. pneumoniae and

P. mirabilis, we rederived conventionally raised TRUC mice as

germ-free and cocolonized the mice with these two Enterobac-

teriaceae at 8 weeks of age for 8 weeks (n = 5 mice). Both

organisms established themselves in the guts of all recipients

(mean value 1011.29 ± 0.46 cfu/microbial species/g dry weight

of feces; assayed 48 hr and weekly after the initial gavage)

(Figure S2). Colonic inflammation did not develop in these

cocolonized gnotobiotic TRUC mice, suggesting that interac-

tions among K. pneumoniae, P. mirabilis, and other members of

a gut microbial community are required to ignite the immunoin-

flammatory cascade that leads to colitis. To evaluate this possi-

bility, we colonized 2 week SPF WT and Rag2�/� mice with

K. pneumoniae, P. mirabilis, or a combination of K. pneumoniae

and P. mirabilis (recovered from feces from the female TRUC

mother in Figure 2A and administered by direct oral instillation

of 107 cfu and by addition of 107 cfu to the drinking water every

other day for 8 weeks; n = 5–18 mice/treatment group). Control

groups of mice received a TRUC-derived E. coli strain. Both

K. pneumoniae and P. mirabilis established themselves in the

gutmicrobiota of bothRag2�/� andWT (as defined by cfu assays

of feces obtained 2 days after the completion of 8 weeks of

treatment [Figure 3C]). Feces fromWTandRag2�/�hosts contain

E. coli, but we did not have the tools to distinguish these indige-

nous strains from the exogenously administered TRUC-associ-

ated E. coli strain. While no colonic inflammation was observed

after inoculation with E. coli (Figure 3D), treatment with P. mirabi-

lis, K. pneumoniae, or a combination of the two organisms

induced inflammation in both WT and Rag2�/� mice, with colitis

severity being significantly greater in Rag2�/� mice exposed to

both species compared to P. mirabilis alone (Figure 3D). We

conclude that two Enterobacteriaceae, in concert with members

of themicrobiota, are able to elicit colitis, even in mice not genet-

ically predisposed to developing immunopathologic responses.

The penetrance and severity of colitis observed in the cocolo-

nization experiments with K. pneumoniae and P. mirabilis

were decreased compared to that observed in the spontaneous

TRUC model (e.g., Figure 2C) and in neonatal cross-fostering

experiments (TRUC-fostered Rag2�/� mean colitis score 5.6 ±

1.14 and TRUC-fostered WT 3.17 ± 0.75) (Figure 3A). Instead,

it resembled experiments where adult TRUC mice were co-

housed with adult Rag2�/� or WT mice (Garrett et al., 2007),

speaking to a possible role of maternal/foster bacterial and

nonbacterial factors in structuring microbial communities in the

neonate. Consistent with this, we found that TRUC milk has

a proinflammatory cytokine profile (Figure S5) and that the

microbiota of 2-week-old TRUC mice clusters in a distinct

group, as judged by PCoA plots of UniFrac measurements of

16S rRNA-defined communities (Figure 1A).

K. pneumoniae and P. mirabilis Colonization Patterns
Change in Response to Immunotherapy, and Both
Strains Induce TNF-a Production in T-bet–/– Rag2–/–

MyD88–/– Bone Marrow-Derived DCs
We next asked whether K. pneumoniae and P. mirabilis

colonization patterns might change in response to two immuno-

therapeutic interventions previously shown to cure TRUC colitis,

i.e., TNF-a neutralization and T-regulatory cell (T-reg) transfer

(Garrett et al., 2007). We used quantitative culture-based
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Figure 3. K. pneumoniae and P. mirabilis Elicit Colitis but Require a Maternally Transmitted Endogenous Microbial Community for Maximal

Intestinal Inflammation

(A) The Abx sensitivities of colitis transmitted via TRUC cross-fostering are the same as spontaneous TRUC colitis. Abx-treated pregnant TRUC females were

used as foster mothers and treated with Abx in their water until weaning. Histologic colitis scores are shown for the fostered mice at 8 weeks of age.

(B) K. pneumoniae (squares) and P. mirabilis (circles) are detected in the fecal microbiota of TRUC cross-fosteredRag2�/� andWTmice at 8 weeks of age but not

in 8-week-old TRUCmice fostered byRag2�/� orWTmice. TRUC-fostered TRUC,Rag2�/�-fosteredRag2�/�, andWT-fosteredWT are shown as controls. Limits

of detection: 104.4 cfu/g dry weight of feces. Each symbol represents a fecal sample from a different mouse.

(C) Left panel: Fecal bacterial counts for cocolonized gnotobiotic TRUCmice. Mean values ± 1 SD are shown for K. pneumoniae (squares) andP.mirabilis (circles)

(n = 5 mice). Right panel: Histologic colitis scores of germ-free TRUC and germ-free TRUCmice cocolonized with K. pneumoniae and P. mirabilis from the TRUC

mother in Figure 1.
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methods to assay K. pneumoniae and P. mirabilis levels in feces

prior to treatment of 4-week-old TRUC mice with anti-TNF-a,

during weekly treatment for 4 weeks, and for 6 weeks after the

last dose (Figure 4A) (n = 10 mice, anti-TNF-a; n = 10, isotype

control) (histologic colitis scores in Figure S3). Significant differ-

ences in fecal K. pneumoniae levels between the TNF-a neutral-

ization and isotype control groups were observed after 7 weeks

of treatment (age 11 weeks; p = 0.0172; Mann-Whitney test) and

for P. mirabilis after a shorter period of treatment (p = 0.008, p =

0.0012, p = 0.0004, and p = 0.0403 at 7, 8, 9, and 10 weeks of

age). Two-way ANOVA revealed that anti-TNF-a neutralization

accounted for 10.7% of the total variance observed in fecal P.

mirabilis levels (adjusting for matching: F = 22.83, DFn = 1,

DFd = 18, p = 0.0002). TNF-a did not directly affect the growth

kinetics of either K. pneumoniae or P. mirabilis under in vitro

monoculture conditions (Figure S4).

We performed a similar analysis in TRUC mice that had

received 75,000 purified WT T-reg cells at 4 weeks of age (histo-

logic colitis scores at 12 weeks of age in Figure S3). Surprisingly,

while T-reg infusion ameliorated this colitis (Garrett et al., 2007),

it did not affect fecal levels of either of these two bacterial

species (Figure 4B). These results demonstrate that K. pneumo-

niae and P. mirabilis levels are not simply associated with inflam-

mation, as both these modalities reduced host inflammation

but did not uniformly alter Enterobacteriaceal representation.

Our results illustrate that certain host-directed treatments may

exert their effects not only by altering host inflammatory

pathways but also by directly impacting the microbiota.

To begin to identify cell-based mechanisms by which TRUC-

derived Enterobacteriaceae elicit a host immune response,

TNF-a production wasmeasured in T-bet�/�Rag2�/�MyD88�/�

bone marrow-derived DCs cocultured with the K. pneumoniae

and P. mirabilis TRUC strains, as DCs and TNF-a production

are key features of the immunopathogenesis in TRUC mice,

and the TRUC inflammatory response is independent of

MyD88 (Garrett et al., 2007, 2009). Both live and heat-killed

bacteria stimulated TNF-a production from T-bet-, Rag2-, and

MyD88-deficient DCs (Figure 4C). These latter findings set

the stage for future bacterial cell fractionation experiments

where the microbial molecular determinants of host responses

can be characterized using in vitro systems composed of

genetically manipulated immune cells.

DISCUSSION

Defining microbial features that are associated with or initiate

IBD is complicated by host genetics, inflammatory state, and

diet (Peterson et al., 2008). Designing prospective studies in

human IBD to identify microbial communities that instigate

inflammation has not been feasible, even in genetically suscep-

tible populations. Thus, we performed a time series screen in a

mouse model of IBD that shares several pathophysiologic

features of human IBD, including immunodeficiency, compro-

mised host barrier function, and hyperimmunity, to characterize

a colitogenic microbiota. We established that host genotype

influenced the global structure of the associated microbial

community detected in feces and observed a number of

significant order- and species-level differences. Combined

with culture-dependent methods, we were able to identify

bacterial species whose role we could test in the development

of disease. Our experiments demonstrate that K. pneumoniae

and P.mirabilis, together with other members of the endogenous

microbiota, can elicit colitis even in WT mice. It will be important

to determine if significant associations are noted between these

Enterobacteriaceae species and ulcerative colitis or Crohn’s

disease in ongoing (e.g., Qin et al., 2010) and future metage-

nomic studies of gut microbial ecology in various populations

of patients with IBD.

K. pneumoniae and P. mirabilis can colonize mouse and

human intestine (Lau et al., 2008). Notably, we only recovered

these microbes from TRUC mice in our colony, not in Rag2�/�

or WT animals. While there was individual variation in bacterial

counts, the colonization pattern of these species across the

TRUC population over time was not significantly different and

did not vary as colitis worsened with age. Inciting inflammation

with dextran sulfate sodium in WT mice in the colony did not

result in an emergence of these bacteria. In contrast, Abx treat-

ment had a dramatic effect on the degree of host colonization

with K. pneumoniae and P. mirabilis, as expected. The increased

counts observed in response to vanco suggest that in the

untreated host, members of the Gram-positive flora affect the

degree of colonization by members of the Enterobacteriaceae.

A key feature of the colonic inflammation in TRUC mice is

elevated TNF-a. While both neutralizing antibodies and T-reg

infusion reduce mucosal TNF-a levels, these interventions had

disparate effects onK. pneumoniae and P. mirabilis fecal counts.

Cytokinesmay interactwith bacteria, and TNF-a has been shown

to affect Salmonella typhimurium replication in vivo (Romanova

et al., 2002).While TNF-adid not appear to affect the proliferation

of TRUC-derived K. pneumoniae and P. mirabilis in vitro, in vivo

there were significant effects in response to TNF-neutralizing

antibodies. Neutralizing antibodies and infusion of T-regs both

lower TNF-a levels in TRUC mice, but through different mecha-

nisms. T-regs also produce both IL-10 and TGF-b (Izcue et al.,

2009). T-regs and neutralizing antibodies may have direct but

distinct effects on microbial populations or indirect effects

through their differential effects on colonic DCs.

Opportunistic infection with K. pneumoniae and P. mirabilis is

well recognized in the respiratory and urinary tracts. However,

Klebsiella oxytoca but not K. pneumoniae has been tied to intes-

tinal pathology (Högenauer et al., 2006). Klebsiella and Proteus

species are observed more frequently in the stool of ulcerative

colitis patients than healthy controls (Dorofeyev et al., 2009;

Kanareykina et al., 1987), and elevated titers of Enterobacteriaceal

antibodieshavebeen reported in IBDpatients (Cooper et al., 1988;

Ibbotson et al., 1987; Tiwana et al., 1998). Genome sequencing of

these isolates and comparisons to other sequenced isolates ob-

tained from other body and environmental habitats could yield

(D) Left panel: K. pneumoniae and P. mirabilis fecal cfu in Rag2�/� and WT mice treated every other day from 2 to 10 weeks of age with 107 cfu of E. coli,

P. mirabilis, K. pneumoniae, or a combination of both P. mirabilis and K. pneumoniae added to their drinking water (all strains isolated from the TRUC mother

in Figure 1). Right panel: Histologic scores for colitis as assayed at sacrifice at 10 weeks of age. Each circle represents a separate animal in the treatment group.

p values shown were calculated by the Mann-Whitney test.
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testablehypothesesabout genetic determinants thatmayunderlie

their ability to drive development of an IBD phenotype. Future

studies can take advantage of the fact that both heat-killed and

live K. pneumoniae and P. mirabilis induce TNF-a in T-bet�/�

Rag2�/�MyD88�/�DCs to identify the responsible bacterialmole-

cules and their host receptors. However, it is important to also

emphasize that an endogenous microbial community is required

forK.pneumoniaeandP.mirabilis toexert their colitogeniceffects.

Figure 4. K. pneumoniae and P. mirabilis

Colonization Patterns Change in Response

to Immunotherapies, and Both Strains

Induce TNF-a Production in T-bet–/–

Rag2–/– MyD88–/– Bone Marrow-Derived

DCs

(A) Immunotherapy by TNF-a blockade alters

levels of culturable fecal Enterobacteriaceae.

TRUC mice were treated with anti-TNF-a

(15 mg/kg every week) (open circles) or isotype

control (shaded circles) for 4 weeks, and then

therapy was stopped. Enterobacteriaceae levels

were defined by culture of fecal samples obtained

1 day before, during, and after treatment (up to

14weeks of age). Circles represent themean value

of anti-TNF-a mice (n = 10) and isotype controls

(n = 10). Error bars represent 1 SD.

(B) Immunotherapy by T-reg infusion does not

produce statistically significant differences in the

levels of culturable Enterobacteriaceae species

compared to vehicle-treated controls. TRUC

mice were injected once with 75,000 T-regs

(n = 10) or PBS (n = 9).

(C) TNF-a production from T-bet�/� Rag2�/�

MyD88�/� bone marrow-derived DCs cocultured

with heat-killed and live K. pneumoniae and

P. mirabilis strains. Bars represent the mean value

of triplicate determinations/sample. Error bars

are 1 SD. Data are representative of three inde-

pendent experiments.

Gut microbes help to structure the

mucosal immune system, and the

mucosal immune system shapes micro-

bial community structure (Smith et al.,

2007; Hooper and Macpherson, 2010).

Microbial community members may be

needed for the development of particular

immune subsets or appropriate localiza-

tion of immune cell subsets within the

mucosa to generate proinflammatory

responses to K. pneumoniae and

P. mirabilis. For example, adherent cecal

segmented filamentous bacteria have

recently been shown to play a central

role in the development of IL-17-

producing CD4+ T helper cells in mice

(Ivanov et al., 2009; Gaboriau-Routhiau

et al., 2009). CD11c+ DCs are necessary

for TRUC colitis (Garrett et al., 2007,

2009), and lamina propria CD11c+

CX3CR1+ DCs are markedly reduced in

germ-free mice (Niess and Adler 2010).

In addition, interactions between K. pneumoniae and P. mirabilis

and microbial community members may result in the acquisition

of traits by these two Enterobacteriaceae (e.g., invasion) or by

other community members that elicit intestinal inflammation.

Convergence of host genetic susceptibility and microbial

community features could also affect the behavior of these En-

terobacteriaceae and the immune response to them, as we

have observed in the TRUC model.
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Elevated TNF-a and beneficial responses to TNF-a-neutral-

izing antibodies are common to both human IBD and several

experimental colitis models. Host factors, like elevated TNF-a,

may have virulence-promoting effects on these microbes. This

notion is not without precedent, as the Pseudomonas aeruginosa

protein OprF binds the proinflammatory cytokine IFN-g, resulting

in expression of PA-I lectin, a quorum sensing-dependent

virulence determinant (Wu et al., 2005).

In summary, future studies need to be directed at defining

the genomic features of TRUC-associated K. pneumoniae and

P. mirabilis strains, identifying co-occurring culturable members

of the microbiota that contribute to disease pathogenesis in

conventionally raised and gnotobiotic mousemodels, character-

izing host factors that drive these microbes to become colito-

genic, and determining the microbial-associated molecular

patterns and pattern recognition receptors involved in sponta-

neous and transmitted TRUC colitis. Together, these efforts

may provide mechanistic insights about how gut microbial

communities, working in concert with specific colitogenic

agents, contribute to initiation and perpetuation of IBD in

susceptible human hosts and provide the foundation for proof-

of-concept tests of preventative or therapeutic measures. An

additional benefit may be to help elucidate the association

between IBD and increased risk for tumorigenesis, since the

majority of TRUCmice spontaneously develop colonic dysplasia

and rectal adenocarcinoma (Garrett et al., 2009).

EXPERIMENTAL PROCEDURES

Husbandry of Conventionally Raised Mice

Rag2�/�, T-bet�/�3 Rag2�/�, andMyD88�/�3 T-bet�/�3Rag2�/�mice and

their genotyping have been described (Garrett et al., 2009). Mice were housed

inmicroisolator cages in a barrier facility at the Harvard School of Public Health

under a 12 hr light cycle.

16S rRNA-Based Analyses of Fecal Microbial Communities

Community DNA Preparation

Fecal samples were flash frozen on collection and stored at �80�C before

processing. DNA was extracted by bead-beating as described (Turnbaugh

et al., 2009).

Sequencing and Analysis of 16S rRNA Gene Amplicons

The V2 region (primers 8F-338R) of bacterial 16S rRNA genes was targeted for

amplification and multiplex pyrosequencing with error-correcting barcodes

(Hamady et al., 2008). A total of 75,145 high-quality reads were generated

from 32 samples (2348 ± 343 reads per sample). See also Supplemental

Experimental Procedures.

Culture-Based Studies of Fecal Microbial Community Structure

Stool Collection

A minimum of three fecal pellets was collected from each mouse in a laminar

flow hood. Each mouse (three females/genotype; TRUC and Rag2�/�) was

sampled every 2 weeks at the same time of day from 2 to 10 weeks of age.

Mothers were sampled once when their pups were 2 weeks old.

Culture

Fecal pellets were collected into tubes of PBS with 0.05% cysteine HCl.

Serial 10-fold dilutions were made and plated on nonselective media and

selective media. Anaerobes were incubated at 37�C in a Coy Anaerobic

chamber for a minimum of 5 days. Aerobes were incubated for 24–48 hr

at 37�C.

Fecal Collection and Culture of Gram-Negative Aerobes

Mice were singly placed in autoclaved plastic cages. Four to six pellets were

collected/ mouse/ time point. Rag2�/�mice in Figure 2F were sampled twice

over a 3 day period for each weekly time point. Pellets were resuspended in

sterile PBS; 10-fold serial dilutions were generated, plated on MacConkey’s

medium, and incubated in ambient air at 37�C overnight. The lower limit of

detection for these studies was 104.4 cfu/gram fecal dry weight.

Histology

Colons were harvested and prepared for histology as described (Garrett et al.,

2007). See Supplemental Experimental Procedures for more detail.

Antibiotic Treatment

Mice were treated with the following Abx dissolved in their autoclaved drinking

water as indicated: ampicillin (1 g/l; Roche), vancomycin (500 mg/l; Sigma),

neomycin sulfate (1 g/l; Sigma), metronidazole (1 g/l; Sigma; solubilized with

15 ml of 0.1 N acetic acid/l), and gentamicin (2 g/l; Cell Gro). Fluid intake

was monitored.

Fluorescence In Situ Hybridization

Colons harvested from 16 Rag2�/� and 15 TRUC (3- to 8-week-old) mice were

fixed in Carnoy’s solution overnight and embedded in paraffin, and 5 mm thick

sections prepared (Swidsinski et al., 2005). The sequences of the following

FISH probes were obtained from probeBase (http://www.microbial-ecology.

net/probebase/) (Loy et al., 2007): the ‘‘universal’’ bacterial probe-EUB338

(pB-00159), Enterobacteriaceae targeted probe (pB-00914), K. pneumoniae-

directed probe (pB-00352), and P. mirabilis probe (pB-02110).

Cross-Fostering

On the day of birth, themother was removed from the birthing cage and placed

in a clean cage. A litter of pups with the designated genotype was then put into

the cage. Pups were weaned on postnatal day 21 (Garrett et al., 2007).

Gnotobiotic Mouse Experiments

All protocols related to the generation and husbandry of germ-free mice were

approved by the Washington University (Wash U) Animal Studies Committee.

Conventionally raised SPF T-bet�/� 3 Rag2�/� mice were rederived as germ-

free in the gnotobiotic facility at Wash U. Subsequent experiments were

carried out at the Harvard Digestive Disease Center (HDDC) gnotobiotic

facility. Five mice were maintained germ-free, and another five mice (3 female

and 2 male) were cocolonized by introducing 4.8 3 108 cfu of K. pneumoniae

and 9.2 3 108 cfu of P. mirabilis into their oral cavity and simultaneously

spreading an equivalent amount of organisms on their fur and anus. See

Supplemental Experimental Procedures for more detail.

Invasion Experiments

K. pneumoniae,P.mirabilis, E. coli, or bothK. pneumoniae andP.mirabilis (23

107 cfu each; all isolated from the TRUC mother in Figure 1) were instilled into

the oral cavity of each mouse using a sterile pipette tip, and 1 3 107 cfu was

placed into a new container of their drinking water every other day.

Anti-TNF-a Treatment

Mice were injected with anti-TNF-a (clone TN3-19.12), a hamster anti-mouse

TNF-a-neutralizing IgG1 antibody, and control Ab (hamster anti-GST IgG1)

(Leinco Technologies, St. Louis) (15 mg/kg) once a week for 4 weeks (Garrett

et al., 2007).

Adoptive Transfer of T-Regulatory Cells

FACS-sorted lymph node CD4+ CD62Lhi CD25+ cells (T-reg, 75,000 cells) or

PBS were injected per mouse at 4 weeks of age (n = 10 for T-regs; n = 9 for

PBS) (Garrett et al., 2007). This experiment was terminated by euthanasia at

12 weeks because two control group mice became moribund from colitis.

Coculturing Bone Marrow-Derived Dendritic Cells

and Bacterial Strains

Mouse bone marrow-derived DCs were generated as described (Garrett et al.,

2007) and purified using anti-mouse CD11c-coupled magnetic beads.

K. pneumoniae or P. mirabilis was cocultured with DCs at a ratio of 1 cfu/DC

for 4 hr at 37�C in a cell culture incubator at 5% CO2. Gent (50 mg/ml) was

then added to the media for 1hr, and cells were collected, washed, and incu-

bated with medium containing gent (20 mg /ml) for an additional 16 hr. Bacteria

were also heat-killed (incubation at 100�C for 3 min followed by plating to
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confirm killing) and added to cultures of DCs at ratios of 1:1, 10:1, and 100:1.

Cells were cocultured for 20 hr. TNF-a levels in supernatants collected from

centrifuged live and heat-killed cocultures were determined using the mouse

OptEIA ELISA kit (BD Biosciences) and expressed as ng/ml/1 3 106 DCs.

Statistical Analysis

The Prism graphing and analysis program was used for calculation of

statistical measures including mean values, standard deviations, p values

(Mann-Whitney test), and two-way ANOVA.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental References, two tables, and four figures and can be found

with this article online at doi:10.1016/j.chom.2010.08.004.
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Here we present a standard developed by the Genomic 
Standards Consortium (GSC) for reporting marker gene 
sequences—the minimum information about a marker 
gene sequence (MIMARKS). We also introduce a system for 
describing the environment from which a biological sample 
originates. The ‘environmental packages’ apply to any genome 
sequence of known origin and can be used in combination  
with MIMARKS and other GSC checklists. Finally, to establish 
a unified standard for describing sequence data and to provide 
a single point of entry for the scientific community to access 
and learn about GSC checklists, we present the minimum 
information about any (x) sequence (MIxS). Adoption of MIxS 
will enhance our ability to analyze natural genetic diversity 
documented by massive DNA sequencing efforts from myriad 
ecosystems in our ever-changing biosphere.

Without specific guidelines, most genomic, metagenomic and marker 
gene sequences in databases are sparsely annotated with the infor-
mation required to guide data integration, comparative studies and 

knowledge generation. Even with complex keyword searches, it is 
 currently impossible to reliably retrieve sequences that have origi-
nated from certain environments or particular locations on Earth—
for example, all sequences from ‘soil’ or ‘freshwater lakes’ in a certain 
region of the world. Because public databases of the International 
Nucleotide Sequence Database Collaboration (INSDC; comprising 
DNA Data Bank of Japan (DDBJ), the European Nucleotide Archive 
(EBI-ENA) and GenBank (http://www.insdc.org/)) depend on author-
submitted information to enrich the value of sequence data sets, we 
argue that the only way to change the current practice is to establish 
a standard of reporting that requires contextual data to be deposited 
at the time of sequence submission. The adoption of such a standard 
would elevate the quality, accessibility and utility of information that 
can be collected from INSDC or any other data repository.

The GSC has previously proposed standards for describing genomic 
sequences— the “minimum information about a genome sequence” 
(MIGS)—and metagenomic sequences—the “minimum informa-
tion about a metagenome sequence” (MIMS)1. Here we introduce an 
extension of these standards for capturing information about marker 
genes. Additionally, we introduce ‘environmental packages’ that stan-
dardize sets of measurements and observations describing particular 
habitats that are applicable across all GSC checklists and beyond2. We 
define ‘environment’ as any location in which a sample or organism 
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is found, e.g., soil, air, water, human-associated, plant-associated or 
 laboratory. The original MIGS/MIMS checklists included contextual 
data about the location from which a sample was isolated and how 
the sequence data were produced. However, standard descriptions 
for a more comprehensive range of environmental parameters, which 
would help to better contextualize a sample, were not included. The 
environmental packages presented here are relevant to any genome 
sequence of known origin and are designed to be used in combination 
with MIGS, MIMS and MIMARKS checklists.

To create a single entry point to all minimum information checklists 
from the GSC and to the environmental packages, we propose an over-
arching framework, the MIxS standard (http://gensc.org/gc_wiki/index.
php/MIxS). MIxS includes the technology-specific checklists from the 
previous MIGS and MIMS standards, provides a way of introducing addi-
tional checklists such as MIMARKS, and also allows annotation of sample 
data using environmental packages. A schematic overview of MIxS along 
with the MIxS environmental packages is shown in Figure 1.

Development of MIMARKS and the environmental packages
Over the past three decades, the 16S rRNA, 18S rRNA and internal 
transcribed spacer gene sequences (ITS) from Bacteria, Archaea and 
microbial Eukaryotes have provided deep insights into the topology of 
the tree of life3,4 and the composition of communities of organisms that 
live in diverse environments, ranging from deep sea hydrothermal vents 
to ice sheets in the Arctic5–16. Numerous other phylogenetic marker 
genes have proven useful, including RNA polymerase subunits (rpoB), 
DNA gyrases (gyrB), DNA recombination and repair proteins (recA) 
and heat shock proteins (HSP70)3. Marker genes can also reveal key 
metabolic functions rather than phylogeny; examples include nitrogen 
cycling (amoA, nifH, ntcA)17,18, sulfate reduction (dsrAB)19 or phos-
phorus metabolism (phnA, phnI, phnJ)20,21. In this paper we define all 
phylogenetic and functional genes (or gene fragments) used to profile 
natural genetic diversity as ‘marker genes’. MIMARKS (Table 1) comple-
ments the MIGS/MIMS checklists for genomes and metagenomes by 
adding two new checklists, a MIMARKS survey, for uncultured diver-
sity marker gene surveys, and a MIMARKS specimen, for marker gene 
sequences obtained from any material identifiable by means of speci-
mens. The MIMARKS extension adopts and incorporates the standards 
being developed by the Consortium for the Barcode of Life (CBOL)22. 
Therefore, the checklist can be universally applied to any marker gene, 
from small subunit rRNA to cytochrome oxidase I (COI), to all taxa, and 
to studies ranging from single individuals to complex communities.

Both MIMARKS and the environmental packages were developed 
by collating information from several sources and evaluating it in the 
framework of the existing MIGS/MIMS checklists. These include four 
independent community-led surveys, examination of the parameters 
reported in published studies and examination of compliance with 
optional features in INSDC documents. The overall goal of these activi-
ties was to design the backbone of the MIMARKS checklist, which 
describes the most important aspects of marker gene contextual data.

Results of community-led surveys
Four online surveys about descriptors for marker genes have been 
conducted to determine researcher preferences for core descriptors. 

The Department of Energy Joint Genome Institute and SILVA23 
surveys focused on general descriptor contextual data for a marker 
gene, whereas the Ribosomal Database Project (RDP)24 focused on 
prevalent habitats for rRNA gene surveys, and the Terragenome 
Consortium25 focused on soil metagenome project contextual data 
(Supplementary Results 1). The above recommendations were com-
bined with an extensive set of contextual data items suggested by an 
International Census of Marine Microbes (ICoMM) working group 
that met in 2005. These collective resources provided valuable insights 
into community requests for contextual data items to be included 
in the MIMARKS checklist and the main habitats constituting the 
environmental packages.

Survey of published parameters
We reviewed published rRNA gene studies, retrieved from SILVA 
and the ICoMM database MICROBIS (The Microbial Oceanic 
Biogeographic Information System, http://icomm.mbl.edu/microbis/) 
to further supplement contextual data items that are included in the 
respective environmental packages. In total, 39 publications from 
SILVA and >40 ICoMM projects were scanned for contextual data 
items to constitute the core of the environmental package subtables 
(Supplementary Results 1).

In a final analysis step, we surveyed usage statistics of INSDC source 
feature key qualifier values of rRNA gene sequences contained in 
SILVA (Supplementary Results 1). Notably, <10% of the 1.2 million  
16S rRNA gene sequences (SILVA release 100) were associated with 
even basic information such as latitude and longitude, collection date 
or PCR primers.

The MIMARKS checklist
The MIMARKS checklist provides users with an ‘electronic labora-
tory notebook’ containing core contextual data items required for 
consistent reporting of marker gene investigations. MIMARKS uses 
the MIGS/MIMS checklists with respect to the nucleic acid sequence 
source and sequencing contextual data, but extends them with further 
experimental contextual data such as PCR primers and conditions, 
or target gene name.

For clarity and ease of use, all items within the MIMARKS check-
list are presented with a value syntax description, as well as a clear 
definition of the item. Whenever terms from a specific ontology are 
required as the value of an item, these terms can be readily found in 
the respective ontology browsers linked by URLs in the item defi-
nition. Although this version of the MIMARKS checklist does not 

Specification
projects

EU BA
PL VI

ORG

Shared
descriptors

Checklists

Checklist-
specific

descriptors

Applicable
environmental

packages
(measurements

and
observations)

MIGS MIMS

metagenomes

collection date, environmental package, environment (biome),
environment (feature), environment (material),

geographic location (country and/or sea, region),
geographic location (latitude and longitude), investigation type,

project name, sequencing method, submitted to INSDC

assembly, estimated size,
finishing strategy,

isolation and growth condition,
number of replicons, ploidy,

propagation,
reference for biomaterial

Air
Host-associated

Human-gut
Human-oral

Human-associated

Human-skin
Human-vaginal

Microbial mat/biofilm

target gene

Miscellaneous natural or artificial environment
Plant-associated

Sediment

Wastewater/sludge
Soil

Water

survey specimen e.g., pan-genomes

MIMARKS
New

checklists

Figure 1 Schematic overview about the GSC MIxS standard (brown), 
including combination with specific environmental packages (blue). 
Shared descriptors apply to all MIxS checklists; however, each checklist 
has its own specific descriptors as well. Environmental packages can be 
applied to any of the checklists. EU, eukarya; BA, bacteria/archaea;  
PL, plasmid; VI, virus; ORG, organelle.
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Table 1 The core items of the MIMARKS checklists, along with the value types, descriptions and requirement status

Item Description

Report type

MIMARKS 
survey

MIMARKS 
specimen

Investigation
 Submitted to INSDC [boolean] Depending on the study (large-scale, e.g., done with next-generation sequencing  

technology, or small-scale) sequences have to be submitted to SRA (Sequence Read 
Archives), DRA (DDBJ Sequence Read Archive) or through the classical Webin/Sequin 
systems to GenBank, ENA and DDBJ

M M

 Investigation type [mimarks-survey or mimarks-specimen] Nucleic Acid Sequence Report is the root element of all MIMARKS compliant  
reports as standardized by Genomic Standards Consortium (GSC). This field is  
either MIMARKS survey or MIMARKS specimen

M M

 Project name Name of the project within which the sequencing was organized M M

Environment
  Geographic location (latitude and  

longitude [float, point, transect and region])
The geographical origin of the sample as defined by latitude and longitude.  
The values should be reported in decimal degrees and in WGS84 system

M M

  Geographic location  
(depth [integer, point, interval, unit])

Please refer to the definitions of depth in the environmental packages E E

  Geographic location (elevation of  
site [integer, unit]; altitude of sample [integer, unit])

Please refer to the definitions of either altitude or elevation in the environmental  
packages

E E

  Geographic location (country and/or  
sea [INSDC or GAZ]; region [GAZ])

The geographical origin of the sample as defined by the country or sea name.  
Country, sea or region names should be chosen from the INSDC list (http://insdc.
org/country.html), or the GAZ (Gazetteer, v1.446) ontology (http://bioportal.bioontology.
org/visualize/40651)

M M

 Collection date [ISO8601] The time of sampling, either as an instance (single point in time) or interval. In case 
no exact time is available, the date/time can be right truncated, that is, all of these are 
valid times: 2008-01-23T19:23:10+00:00; 2008-01-23T19:23:10; 2008-01-23; 
2008-01; 2008; except for 2008-01 and 2008, all are ISO6801 compliant

M M

 Environment (biome [EnvO]) In environmental biome level are the major classes of ecologically similar communities  
of plants, animals and other organisms. Biomes are defined based on factors such as 
plant structures, leaf types, plant spacing and other factors like climate. Examples 
include desert, taiga, deciduous woodland or coral reef. Environment Ontology (EnvO) 
(v1.53) terms listed under environmental biome can be found at http://bioportal.
bioontology.org/visualize/44405/?conceptid=ENVO%3A00000428

M M

 Environment (feature [EnvO]) Environmental feature level includes geographic environmental features.  
Examples include harbor, cliff or lake. EnvO (v1.53) terms listed under  
environmental feature can be found at http://bioportal.bioontology.org/visualize/ 
44405/?conceptid=ENVO%3A00002297

M M

 Environment (material [EnvO]) The environmental material level refers to the matter that was displaced by the 
sample, before the sampling event. Environmental matter terms are generally mass 
nouns. Examples include: air, soil or water. EnvO (v1.53) terms listed under envi-
ronmental matter can be found at http://bioportal.bioontology.org/visualize/44405/
?conceptid=ENVO%3A00010483

M M

MIGS/MIMS/MIMARKS extension
  Environmental package [air, host-associated, human-

associated, human-skin, human-oral, human-gut, human- 

vaginal, microbial mat/biofilm, miscellaneous natural or 

artificial environment, plant-associated, sediment, soil,  

wastewater/sludge, water]

MIGS/MIMS/MIMARKS extension for reporting of measurements and observations 
obtained from one or more of the environments where the sample was obtained. All 
environmental packages listed here are further defined in separate subtables. By giving 
the name of the environmental package, a selection of fields can be made from the 
subtables and can be reported

M M

Nucleic acid sequence source
 Isolation and growth conditions [PMID, DOI or URL] Publication reference in the form of PubMed ID (PMID), digital object identifier (DOI) 

or URL for isolation and growth condition specifications of the organism/material
– M

Sequencing
  Target gene or locus (e.g., 16S rRNA, 18S 

rRNA, nif, amoA, rpo)
Targeted gene or locus name for marker gene study M M

  Sequencing method (e.g., dideoxysequencing, 
pyrosequencing, polony)

Sequencing method used, e.g., Sanger, pyrosequencing, ABI-solid M M

Items for the MIMARKS specification and their mandatory (M), status for both MIMARKS-survey and MIMARKS-specimen checklists. Furthermore, “–” denotes that 
an item is not applicable for a given checklist. E denotes that a field has environment-specific requirements. For example, whereas “depth” is mandatory for the 
environments water, sediment or soil, it is optional for human-associated environments. MIMARKS-survey is applicable to contextual data for marker gene sequences, 
obtained directly from the environment, without culturing or identification of the organisms. MIMARKS-specimen, on the other hand, applies to the contextual data 
for marker gene sequences from cultured or voucher-identifiable specimens. Both MIMARKS-survey and specimen checklists can be used for any type of marker gene 
sequence data, ranging from 16S, 18S, 23S, 28S rRNA to COI, hence the checklists are universal for all three domains of life. Item names are followed by a short 
description of the value of the item in parentheses and/or value type in brackets as a superscript. Whenever applicable, value types are chosen from a controlled  
vocabulary (CV) or an ontology from the Open Biological and Biomedical Ontologies (OBO) foundry (http://www.obofoundry.org/). This table only presents the very core 
of MIMARKS checklists, that is, only mandatory items for each checklist. Supplementary Results 2 contains all MIMARKS items, the tables for environmental pack-
ages in the MIGS/MIMS/MIMARKS extension and GenBank structured comment name that should be used for submitting MIMARKS data to GenBank. In case  
of submitting to EBI-ENA, the full names can be used.
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contain unit specifications, we recommend all units to be chosen from 
and follow the International System of Units (SI) recommendations. 
In addition, we strongly urge the community to provide feedback 
regarding the best unit recommendations for given parameters. Unit 
standardization across data sets will be vital to facilitate compara-
tive studies in future. An Excel version of the MIMARKS checklist 
is provided on the GSC web site (http://gensc.org/gc_wiki/index.
php/MIMARKS).

The MIxS environmental packages
Fourteen environmental packages provide a wealth of environmental 
and epidemiological contextual data fields for a complete descrip-
tion of sampling environments. The environmental packages can be 
combined with any of the GSC checklists (Fig. 1 and Supplementary 
Results 2). Researchers within The Human Microbiome Project26 con-
tributed the host-associated and all human packages. The Terragenome 
Consortium contributed sediment and soil packages. Finally, ICoMM, 
Microbial Inventory Research Across Diverse Aquatic Long Term 
Ecological Research Sites and the Max Planck Institute for Marine 
Microbiology contributed the water package. The MIMARKS working 
group developed the remaining packages (air, microbial mat/biofilm, 
miscellaneous natural or artificial environment, plant-associated and 
wastewater/sludge). The package names describe high-level habitat 
terms in order to be exhaustive. The miscellaneous natural or artificial 
environment package contains a generic set of parameters, and is 
included for any other habitat that does not fall into the other thirteen 
categories. Whenever needed, multiple packages may be used for the 
description of the environment.

Examples of MIMARKS-compliant data sets
Several MIMARKS-compliant reports are included in Supplementary 
Results 3. These include a 16S rRNA gene survey from samples 
obtained in the North Atlantic, an 18S pyrosequencing tag study of 
anaerobic protists in a permanently anoxic basin of the North Sea, 
a pmoA survey from Negev Desert soils, a dsrAB survey of Gulf 
of Mexico sediments and a 16S pyrosequencing tag study of bac-
terial diversity in the western English Channel (SRA accession no. 
SRP001108).

Adoption by major database and informatics resources
Support for adoption of MIMARKS and the MIxS standard has spread 
rapidly. Authors of this paper include representatives from genome 
sequencing centers, maintainers of major resources, principal inves-
tigators of large- and small-scale sequencing projects, and individual 
investigators who have provided compliant data sets, showing the 
breadth of support for the standard within the community.

In the past, the INSDC has issued a reserved ‘barcode’ keyword 
for the CBOL7. Following this model, the INSDC has recently 
 recognized the GSC as an authority for the MIxS standard and 
issued the standard with official keywords within INSDC nucleotide 
sequence records27. This greatly facilitates automatic validation of 
the submitted contextual data and provides support for data sets 
compliant with previous versions by including the checklist version 
as a keyword.

GenBank accepts MIxS metadata in tabular format using the 
sequin and tbl2asn submission tools, validates MIxS compliance and 
reports the fields in the structured comment block. The EBI-ENA 
Webin submission system provides prepared web forms for the sub-
mission of MIxS compliant data; it presents all of the appropriate 
fields with descriptions, explanations and examples, and validates 
the data entered. One tool that can aid submitting contextual data is 

MetaBar28, a spreadsheet and web-based software, designed to assist 
users in the consistent acquisition, electronic storage and submis-
sion of contextual data associated with their samples in compliance 
with the MIxS standard. The online tool CDinFusion (http://www.
megx.net/CDinFusion) was created to facilitate the combination of 
contextual data with sequence data, and generation of submission-
ready files.

The next-generation Sequence Read Archive (SRA) collects and 
displays MIxS-compliant metadata in sample and experiment objects. 
There are several tools that are already available or under develop-
ment to assist users in SRA submissions. The myRDP SRA PrepKit 
allows users to prepare and edit their submissions of reads gener-
ated from ultra-high-throughput sequencing technologies. A set 
of suggested attributes in the data forms assist researchers in pro-
viding metadata conforming to checklists such as MIMARKS. The 
Quantitative Insights Into Microbial Ecology (QIIME) web appli-
cation (http://www.microbio.me/qiime) allows users to generate 
and validate MIMARKS-compliant templates. These templates can  
be viewed and completed in the users’ spreadsheet editor of choice (e.g., 
Microsoft Excel). The QIIME web-platform also offers an ontology 
lookup and geo-referencing tool to aid users when completing the 
MIMARKS templates. The Investigation/Study/Assay (ISA) is a soft-
ware suite that assists in the curation, reporting and local management 
of experimental metadata from studies using one or a combination 
of technologies, including high-throughput sequencing29. Specific 
ISA configurations (http://isa-tools.org/tools.html) have been 
developed to ensure MIxS compliance by providing templates 
and validation capability. Another tool, ISAconverter, produces  
SRA.xml documents, facilitating submission to the SRA repository. 
MIxS checklists are also registered with the BioSharing catalog of 
standards (http://biosharing.org/), set to progressively link minimal 
information specifications to the respective exchange formats, ontolo-
gies and compliant tools.

Further detailed guidance for submission processes can be found 
under the respective wiki pages (http://gensc.org/gc_wiki/index.php/
MIxS) of the standard.

Maintenance of the MIxS standard
To allow further developments, extensions and enhancements of 
MIxS, we set up a public issue tracking system to track changes and 
accomplish feature requests (http://mixs.gensc.org/). New versions 
will be released annually. Technically, the MIxS standard, includ-
ing MIMARKS and the environmental packages, is maintained in 
a relational database system at the Max Planck Institute for Marine 
Microbiology Bremen on behalf of the GSC. This provides a secure 
and stable mechanism for updating the checklist suite and versioning. 
In the future, we plan to develop programmatic access to this database 
to allow automatic retrieval of the latest version of each checklist for 
INSDC databases and for GSC community resources. Moreover, the 
Genomic Contextual Data Markup Language is a reference implemen-
tation of the GSC checklists by the GSC and now implements the full 
range of MIxS standards. It is based on XML Schema technology and 
thus serves as an interoperable data exchange format for infrastruc-
tures based on web services30.

Conclusions and call for action
The GSC is an international body with a stated mission of working 
towards richer descriptions of the complete collection of genomes and 
metagenomes through the MIxS standard. The present report extends 
the scope of GSC guidelines to marker gene sequences and environ-
mental packages and establishes a single portal where experimentalists 
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can gain access to and learn how to use GSC guidelines. The GSC is 
an open initiative that welcomes the participation of the wider com-
munity. This includes an open call to contribute to refinements of the 
MIxS standards and their implementations.

The adoption of the GSC standards by major data providers and 
organizations, as well as the INSDC, supports efforts to contextually 
enrich sequence data and complements recent efforts to enrich other 
(meta) ‘omics data. The MIxS standard, including MIMARKS, has 
been developed to the point that it is ready for use in the publication of 
sequences. A defined procedure for requesting new features and stable 
release cycles will facilitate implementation of the standard across the 
community. Compliance among authors, adoption by journals and use 
by informatics resources will vastly improve our collective ability to mine 
and integrate invaluable sequence data collections for knowledge- and 
application-driven research. In particular, the ability to combine micro-
bial community samples collected from any source, using the universal 
tree of life as a measure to compare even the most diverse communities, 
should provide new insights into the dynamic spatiotemporal distribu-
tion of microbial life on our planet and on the human body.

Note: Supplementary information is available on the Nature Biotechnology website.
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