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Abstract

Mosl parser generators arc programs that take 2 context-{ree grammar specification for a language
and generate a parser (or that language. Usually, the parsers generated by these parser generators
are based on some variation of LL{k) or LR(k) parsing algorithms. The parser generator dis-
cussed in this paper creatcs parscrs based on Earley’s Algorithm. This parser generator creales
parsers from any arbitrary context-free grammar specification; even from ambiguous, cyclic, and
unbounded lookahead grammars, Thesc parsers arc more powerful than LL(k) and LR(k) parsers
and cnable the user 1o ¢reate many new applications,
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1. Introduction

Context-frec grammars (CFGs) have been used extensively for describing the syntax of
programming and natural languages. They are often called BNF grammars when used for
programming languages. The analysis of the syntax (parsing) of programs or sentences is a
crucial part in the implementation of compilers and interpreters for programming languages.
Therefore, the development of automatic parser generators (APGs) for CFGs has importance in
these areas of computer science. Any computer analysis of natural languages also involves
parsing. Thercfore, APGs are also useful in the study of natural languages.

An APG is useful in compiler-writing or similar applications that deal extensively with
syntax considerations [or many reasons, The main reason is the convenience of having to supply
onty the BNF grammar of the language in order to obtain a parser. The popularity of YACC is an
indication of the worth of such 100ls 1o programmers.

The algorithm proposed by Jay Clark Earlcy is a powerful parsing method capable of
parsing strings in a contexi-frec language, given any CFG that generates that language. An APG
based on Earley's Algorithm provides many new and exciting applications, and will be beneficial
in the study of languages.

This paper presents an APG based on Earley’s Algorithm, called PEG (Earley’s Parser
Generator). PEG is a parser gencrator that accepts any arbitrary CFG, and generales a parser
based on that CFG. Like YACC, semantic aclions can be attached to the productions of a CFG;
the semantic actions of a production arc cxccuted when that production is used in the derivation
of an input string. Unlike YACC, PEG is ablc 1o generale parsers cven from ambiguous, cyclic,
and disconnecied CFGs. Furthermore, PEG can generate parsers from CFGs of any lookahead,
including those with unbounded lookahcad. The parser generated by PEG is more powerful than
parsers based on LL(k) and LR(k) parsing algorithms.

If the CFG on which the PEG parser is based is unambiguous and does not have cycles, then
every string in the language defined by the CFG has a degree of ambiguity of 1 (only 1 derivation
tree). If the CFG has cycles, then the siring being parsed can have an unbounded degree of
ambiguity. No matter what the degree of ambiguity of the CFG is, the parser generates a
derivation graph (an extension of the concept of a derivation tree) that encodes all the possible
derivations trecs of a string. Morcover, funclions arc provided that enable the user to manipulate
this derivation graph.

The PEG parscr provides special functions o the user so that the CFG on which the parser
18 based can be changed at cxccution time. This allows the user to implement syntactically
extendible [anguages (the abilily 10 syntactically change the language at execution time).

This paper is divided into eleven main scction. Section 2 gives an introduction to the
theory of languages and parsing, with emphasis on CFGs. Section 3 gives an introduction to
Earley’s Algorithm. It describes how parsing is done in Earley’s Algorithm, the idea of state sets
and states, and the three [unctions (predictor, scanner, and completer) used in the algorithm.
Section 4 describes the usage of PEG. The structure of the grammar specification that PEG uses
to generate a parser is described. Scetion 5 describes the implementation of PEG. It describes the
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data structures used to implement the parser. Section 6 presents some applications that illustrate
the power of the parsers generated by PEG. Section 7 describes the structure of the derivation
graph generated by these parsers. Section 8 describes the derivation graph manipulation routines
made available to the user by PEG. Section 9 gives statistics on the execution time performance
displayed by a few sample parsers. Section 10 gives the grammar specification for PEG. Finally,
Section 11 highlights the issues discussed in the previous sections.
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2. Languages and Parsing

This section is an introduction to the computer science concept of languages and parsing.
The subject is introduced in a fairly informal manner. For a more detailed exploration of the
concepis, please refer 1o the bibliography.

2.1. Languages and Context-free Grammars (CFGs)

A language is a sct ol strings (sentences), the strings being composed of the finite
concatenation of symbols from some predefined alphabet. The empty string is represented by A.
The symbols of this alphabet are called terminal symbols. Languages can be finite (i.c., contain
a finite number of strings) or infinite. Languages are syntactic entities; they have no intrinsic
meaning by themselves. Of course, meaning (semantics) can be attached to the strings in a
language. However, this in an interpretation and is not intrinsic to the language itself; it is
instead an external property of the language which the interpreter chooses to attach to the
language. In general, the language being described is called the object language, and the
language by which the object language is described is called the metalanguage.

There is a sct of symbols that do not appear in the strings of the object language but instead
give information about the sequence in which the crminal symbols can appear. These are called
the nonterminal symbols, and arc represented by uppercase letters (e.g. A, B, C). Sequences of
terminal and nonterminal symbols (including A) are represented by Greek letters (e.g. o, B. .

Since languages arc sets of strings, some mechanism is needed to specify which strings are
in these sets. CFGs arc onc such mechanism. A CFG has a finite set of productions or rewriting
rules of the form "A — y'. The metasymbol "=’ can be read as "goes 10". A special nonterminal
is designated as the root of the grammar; by default this is taken to be the nonterminal on the
lefi-hand side of the lirst production of the grammar. The preductions with a particular
nonterminal on the lelt-hand side arc called the alternatives of that left-hand side nonterminal.
For convenience, Lthe various alternatives of a nonierminal may be written together by separating
them with the mctasymbol °|’.

As an example of @ CFG, Grammar 2.1 gencrates all strings of well-formed parentheses and
only such strings:

Grammar 2.1

A CFG may be completely specified by the 4-tuple: <T,N,S,P> Where T is the set of
terminal symbols, N is the sct of nonterminal symbols, S is the start/root symbol of the grammar,
and P is the set of productions. For example, Grammar 2.1 = < {(,)} , (S}, S, {S = (S) 8$.85-
r} >
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2.1.1. Derivations

A production is treated as a rewriting rule in which the nonterminal on the left-hand side is
replaced by the symbols on the right-hand side of the production. Consider a CFG one of whose
productions is 'E — — E’. It means that a single 'E’ can be replaced by ’— E’. This action of
replacement can be described by writing

E=-E

which is read as "E derives — E". A sequence of such replacements is called a derivation. Ina
more abstract selting, one can say 0Ep = ¢y} only if E — 7 is a production of the grammar.
The strings oEP and oy are called working strings. For convenience, =" is defined to read as
"derives in one or more steps”. Taking Grammar 2.1, a derivation for the string *( () )’ would be:

§=(S=((S)S)S=(08)S=(0)S=0())

where the underlined nonterminal in a working string is replaced by the overlined symbols in the
next working string; if the nonterminal is substituted by the empty string (A) then that
nonterminal is simply climinated from the next working string.

Usually, the start symbol ’S” of the grammar is taken as the first working string. If a
working string consisting of only terminal symbols can be derived from °S’, then that working
string is a member of the language gencrated by the grammar. The derivation given above is
called the left-most derivation of the string (the le[t-most nonterminal is chosen for substitution
in a working string). In gencral, a string can have many possible derivations depending on the
order in which the nonterminal symbols arc chosen for replacement.

2.1.2. Derivation Trees and Ambiguity

It would be uscful 1o have some mechanism to equate similar derivations, i.e., derivations in
which the same productions are applicd 1o the sume nonterminals in the working strings, the
specific order of application being unimportant. The concepl of the derivation tree is one such
mechanism.

The derivation tree filiers out or hides the choice regarding replacement order. It supplies
an cequivalence relation over the set of all derivations of a string. For example, given the
language {a™b" m,n = 1} and Grammar 2.2 (hat generates this language

B —- b B | b

Grammar 2.2
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the derivation tree for the string ‘aabb’ is given in Figure 2.1. The string derived can be read
from the derivation tree by recading the lcal-nodces of the tree from left to right. Note that this
string has one and only onc derivation tree under this grammar.

Consider the following grammar which specifies a subset of the arithmetic expressions.
E-E*E[E-E|val[(E)
Grammar 2.3

Using Grammar 2.3, there are two distinct derivation trees of the siring *9-7-5". These are given
in Figure 2.2 and Figure 2.3,

A grammar is called ambiguous if there exists a string in the language described by the
grammar that has more than onc derivation (ree. Otherwise, the grammar is called
unambiguous. Ambiguily that is introduced due to cycles in a grammar {see Section 2.3) will be
referred to as indirect ambiguity in this paper. On the other hand, ambiguity that is not due to
cycles will be referrcd 1o as direct ambiguity.

Why is ambiguity undesirable? Within a language processing system, the meaning or
interpretation is often based on the structure of the derivation tree. Two different derivation trees
may imply two diffcrent meanings. In the example of Figure 2.2 and Figure 2.3, a compiler

would not be able to decide without making assumptions about what the programmer probably
intended, whether the semantics of the string *9—7-5" should be the value 7 or -3.

If there is no unambiguous CFG that defines a language, then the language is called

A/ \B
VANV
| |

i b

Figure 2.1: Derivation Tree of "aabb’ under Grammar 2.2
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2
/N

val(9) E

| |

val(7) val(s)

Figure 2.2: First Derivation Tree of '9—7-5" under Grammar 2.3

/TN

val(®) vai(7)

Figure 2.3: Second Derivation Tree of "9—7-5" under Grammar 2.3

inherently ambiguous. Natural languages are inherently ambiguous. As an example of the
syntactic analysis performed in human speech processing, consider the English sentence "The
man saw the boy with the binoculars”. There are at least two interpretations of this sentence, as
implied by the abstract syntax structure diagrams shown in Figure 2.4. The syntax structure
presented in Figure 2.4(a) implies that thc binoculars were the mechanism used to perform the
seeing. The symax structure presented in Figure 2.4(b) implies that the binoculars were
possessed by the boy. One of these (wo synlactic structures must be selected before any
semantics or meaning can be extracted from the senience.
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wilh the binoculars

(a)

The

with the binoculars

(b)

Figure 2.4: Abstract Syntax Structures for "The man saw the boy with the binoculars’
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It has been proven that there is no algorithm that can determine whether an arbitrary CFG is
ambiguous or not. Therefore, writing a correct grammar to define a language is a matter of
experience, and some insist it is an art.

2.2. Lookahead

During parsing, it may be nccessary for a parser to look ahead a certain £ number of
symbols, the next & input lokens (sec Section 4), in order to make its parsing decisions. These &
symbols that the parser nceds are called the lookahead symbols. Consider the following
grammar:

A - a

Grammar 2.4

If an LR(k) parser is constructed bascd on Grammar 2.4, then it will need at least 2
lookahead symbols for parsing. In other words, an LR(0) or LR(1) parser cannot be constructed
based on Grammar 2.4. For example, YACC will not be able to generate a parser for Grammar
2 4 because the parsers generated by YACC use a lookahead of 1. Clearly, a parsing algorithm
that is designed to work with any arbitrary CFG will either have to compute additional lookahead
symbols "as they are needed” or use some other stralegy to "get around" the problem.

2.3. Cycles in Grammars
If a CFG has no derivations ot the [orm
E=*E

for any nontcrminal E, then the grammar is said 10 be acyclic. QOtherwise, the grammar is said to
be cyclic. Each derivation of the form E =7 E, [or any nonterminal E, is called a cycle. The
starting nonterminal of a cycle is called the head of the cycle, and the nonterminal preceding the
last nonterminal of a cycle is called the tail of the cycle. For example, in the cycle

E=AB=B=E

the head is "E’ and the tail is *B’. A grammar may contain more than one cycle. Cycles are
useless in the sensc that they do not conuribute any terminal symbols towards the derivation of a
string. A cyclic grammar may or may not be ambiguous. Consider the following example of a
cyclic grammar which is unambiguous:
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S —- a | B
B - C
C —= B

Grammar 2.5

Grammar 2.5 has a cycle, B =% B. This grammar is unambiguous because for the only string in
the language generated by this grammar, 'a’, there is one and only one derivation tree. The
following is an example of an ambiguous grammar with a cycle:

S —- B
B s C
¢ -» S5 | a

Grammar 2.6

In fact, Grammar 2.6 gencrates an infinite number of derivation trees for the string 'a’. This is
because the cycle can be followed an arbitrary number of times to generate different derivation
trees for the only string in the language.

2.4. Concept of a Derivation Graph

An ambiguous grammar gencralcs more than one derivation tree for certain strings.
Furthermore, a cyclic grammar may gencrate an infinite number of derivation trees for certain
strings. Therefore, a mechanism is needed to encapsulate the possibly infinitle number of
derivation trees {(and ambiguity) into a structure that can be stored in a linite amount of space and
time. A derivation graph is such a mechanism. A derivation graph is an encoding of all the
possible derivation trees of a string under a CFG. The structure of a derivation graph is similar to
the structure of a derivation tree. However, (o encode cycles and ambiguity the derivation graph
contains certain additional structures.

2.4.1. Backward Arc Structure to Encode Indirect Ambiguity

To encode the indircel ambiguily (see Scction 2.1.2), the derivation graph contains the
backward arc structure. Given the grammar
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A - 5 | ()

Grammar 2.7

the conceptual picture of the derivation graph for the string '( )’ is given in Figure 2.5. The
backward arc identifics the cyclic construct of the grammar; it connects the tail of the cycle to its
head. This graph cncapsulates an infinite number of derivation trees.

2.4.2, Alternatives Structure to Encode Direct Ambiguity

As defined so far, the derivation graph is a powerful encapsulation mechanism. However,
the backward arc only cncapsulates cycles (indirect ambiguity), and for certain grammars may
not suffice in encoding all the derivation trees of a string. Consider the following ambiguous and
acyclic grammar.

A - C | D
B — E | F
C - 4

F — b

Grammar 2.8

)
N

Figure 2.5: Conceptual Derivation Graph of *()” under Grammar 2.7
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The only string in the language described by Grammar 2.8 is *ab’.

To encode the direct ambiguity (see Section 2.1.2) of Grammar 2.8, an alternatives
structure is used. The conceptual derivation graph of the string *ab’ under Grammar 2.8 is given
in Figure 2.6. In the internal representation of derivation graphs, every nonterminal node in the
derivation graph has an alternatives structure associated with it. The alternatives structure is
represented by a list, and the cardinality of this list gives the number of alternative paths
available from that particular nonterminal node. If the cardinality of an altematives structure
associated with a nonterminal node is I, then there is only one path available from that
nonterminal node. In other words, in a derivation of the input string, only one production can be
applied to that particular nonterminal (see Section 2.1.1). On the other hand, if the cardinality of
an alternatives structure is grealer than 1, then any one of a number of productions could be
applied to the associated nonterminal node in a derivation of the input string.

Pictorially, an altcrnatives structurc with a cardinality greater than 1 is represented by
dashed lined. In Figure 2.6, the nonterminals A’ and "B’ are connected to their children nodes
by dashed lines. These dashed lincs identily the alternative paths that could be followed from A’
and "B’ in a derivation of the string 'ab’. In other words, in a derivation of the string "ab’, the
nonterminal "A’ could be replaced by cither 'C” or 'D’, and Lhe nonlerminal B’ could be replaced
by either "E” or 'F’. If the cardinality ol the aliernatives structure associated with a nonterminal
is 1, then that nonterminal is connccted o its children nodes by solid lines. Notice that Figure 2.6
is an encodement of four derivation trees.

Ignoring the backward arc construct for the moment, a derivation graph may be thought of
as an AND/OR tree. AND/OR trees are (requently used in artificial intelligence (AI) for problem
solving. The AND construct is used (0 break down a problem into smaller more manageable
sub-problem(s), and the OR construct is used 0 identify the altemate solutions to a problem.
Figure 2.7 shows a pictorial representation of an AND/OR tree.

S
A B
2z N 2z N
C D E F
i il b b

Figure 2.6: Conceptual Denvauon Graph of "ab’ under Grammar 2.8



Universal Parser Generator -12- Section 2.4.2.

Figure 2.7: AND/OR Tree Corresponding to Derivation Graph of Figure 2.6
In the AND/OR tree of Figure 2.7 the original problem 'S’ may be solved by breaking it up
into sub-problems A’ and 'B’ and (inding solutions o these sub-problems. Problem A’ is
solved by solving sub-problem *C’, or "'D’. Problem "B’ is solved by solving sub-problem 'E’, or
'F’. Problems C’ and 'D" arc both solved by solving the sub-problem 'a’, and 'E’ and 'F’ are
both solved by solving the sub-problem "b’. Note that sub-problems "a’ and ’b’ can be visualized

as being linked to their parent nodes by cither AND or OR links (since there is only one link,
AND and OR links would bc semantically identical),

Nolice the correspondence between the derivation graph of Figure 2.6 and the AND/OR tree
of Figure 2.7. Thc derivation graph of Figure 2.6 could be interpreted as an AND/OR tree as
follows: the dashed lines represent the OR construct and the solid lines represent the AND
construct. [t would scem that derivation graphs and AND/OR trees are isomorphic (one-to-one
correspondence ¢xists between the two). However, the backward arc construct of a derivation
graph makes it conceptually more poweri{ul than AND/OR trees.

2.5, Recognizers and Parsers

Itis olten of interest 10 verily whether a given string is in the language under consideration.
To put it another way, given a CFG for a language it is of interest to verify whether a string has a
derivation under that grammar. A recognizer is an algorithm which takes a string as input and
cither accepts or rejects it, depending on whether or not the string is a sentence in the language
generated by the grammar on which the recognizer is based. A parser, besides recognizing
strings in 4 language, also outputs the set ol all legal derivation trees [or the strings that it accepis.
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2.6. Parsing Algorithms

A substantial effort has been devoted to developing efficient parsing algorithms. Among
others, two important ways to approach parsing are Top-Down and Bottom-Up. Perhaps the most
common and well-studied of these algorithms are LL(k) and LR(k) respectively. Both LL(k) and
LR(k) algorithms scan the input string from left to right. LL(k) algorithms reconstruct the left-
most derivation, and LR(k) algorithms reconstruct the right-most derivation of a string. The £ in
the LR(k) and LL(k) specifics the number of lookahead symbols used by the parser. Of these two
parsing algorithms, LR(k) is more powerful because more languages can be described using LR-
grammars than LL-grammars.

Most computer programming languages fall into the category that the LR(k) algorithm can
parse. However, neither of these algorithms can parse strings using ambiguous grammars, and
considerable modification of a grammar may be nccessary to remove all ambiguity. Moreover, if
the language under consideration is inherently ambiguous, then any CFG written for this
language will be ambiguous.

Much work has been done Lo create universal parsing algorithms that can use any arbitrary
CFG 1o parsc strings. Earley’s Algorithm is onc such well-known algorithm.
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3. Earley’s Algorithm

This section presents an informal description of Earley’s Algorithm, used as a recognizer.
The algorithm is presented by giving a grammar and showing how a string can be recognized as a
member of the language generated by te grammar. The time and space complexity of the
algorithm, and its potential uses arc also discussed.

3.1, Overview of Eariey’s Algorithm

Earley’s Algorithm is a universal parsing algorithm in the sense thal it can take any
arbitrary CFG and parse a string to determine whether the string is in the language generated by
the grammar. It does not require the input grammar (0 be in any special form.

Suppose that the input grammar is G = <T,N,S,P> where T is the sct of terminal symbols, N
is the set of nonterminal symbols, S is the stan symbol of the grammar, and P is the set of
productions. As a first sicp, Earley's Algorithm augments G o create G = <T NS ‘P >.
Two new symbols, $ and V, arc sclecied such that {T w N} m {$,V] = Then grammar G is
augmented in the lollowing way (o create G°

T = T U (V)
N’ = N v {$}
S’ = §

P = P U ({$55'V)

Earley’s Algorithim scans an input string of terminal symbols X ... X, from lelt to right,
looking ahead some £ lixed number of symbols, As each X is scanned a state set S; is created.

Each state is a 4-wple. The tuples are (1) a production such that an instance of its right-
hand side is polentially being scanned, (2) a point in the production that shows how much of the
right-hand side has been scanned so far (pictorially represented by a dot), (3) a pointer back to the
state set wherce the scarch for this production started (where it was predicted) (4) a k-symbol
string which can legally occur alier thal instance of the production (lookahead).

Parsing is donc with the help of three functions. Depending on the form of a state, one of
these three functions is applicablc on it.

The first of these functions is called the predictor. Depending upon the state of the parsing
aclivity, it predicls what syniactic classes might follow the string parsed so far. Inwitively, the
predictor specilies which nonterminals 1o look for next. The predictor is applicable on states in
which the dot precedes a nonterminal symbol. The predictor adds to the current state set (S;) one
state for each alternative of the nonterminal afler the dot.
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The second function is the scanner. The scanner is applicable on states in which the dot
precedes a terminal symbol. For example, suppose the scanner is applied to a state in which the
dot is before a terminal symbol, If the tcrminal symbol after the dot maiches the next input
symbol, then the scanner moves the dot over the terminal symbol, and adds this modified state 10
the next state set (Si1).

The third function is called the completer. The completer checks state set S; for states that
indicate that the right-hand side of a production has been derived. The completer is applicable on
states in which the dot is after the last symbol on the right-hand side. It adds states to S; to
indicate that the particular instance of the nonterminal on the lefi-hand side of these productions
has been found.

3.2. Earley’s Algorithm as a Recognizer

This section presents Earley's Algorithm used as a recognizer. In general, processing on a
state set S; is performed as [ollows: The states in the state set are scanned in order, and one of the
three operations, predictor, scanner, or completer is applied to each stale depending on the form
of the stale. These operations may add more states 1o Si and may also put states in a new state set
S;+1. A state set can contain only one instance of a particular state (duplicate states are not
added). These three operations are described by example. Consider the language {a" n = 1}.
One grammar that describes the language is

S —- A

Grammuar 3.1

Suppose that a lookahcad of 0 is being used, and the input string is 'a’. The original
grammar, Grammar 3.1, is augmented with the Production '$ — S V. The first state set Sp is
initialized with the following state: <§ — S V, 0, 0, A>. Pictorially, this state will be displayed in
the following way:

s 5 S VvV 0

Notc the lollowing uboul the state given above. The dot *." is a metasymbol and represents
the second component of the state. It is & marker that shows how much of the right-hand side of a
production has been scanncd so far. The third component of the state is st {0 0, to indicate that
the search for this production started in state set Sy, Since a lookahead of 0 is being used, there is
no k-symbol string contained in the siale.

Initially, state sct Sg contains only one stae § — .S V 0, and the predictor operation is
applicable 1o this stue because there is a nonterminal (3) to the right of the dot. The predictor
operalion causes one new stle 10 be added o Sy lor cach altemative of S. The dot is put at the
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beginning of the produclion in these new states because none of their right-hand side symbols
have been scanncd yet. The pointer in these new states is set to 0, since they were created
(predicted) in Sg. In this cxample, the two stales added (0 Sq are:

These two new statcs are now scanned. The predictor is not applicable to either of these
two states because in both of them there is a terminal symbol to the right of the dot. However,
the scanner operation is applicable. In this example, the two states added to Sy by the scanner
are:

The predictor is applicable 1o the first ol these new states, and the completer is applicable to
the second. From the predictor, the two states added to Sy are:

The completer is applicable 10 a state where the dot is at the end of the production. If it
linds such a state and the lefi-hand side of the production is some nonterminal E, it compares the
lookahead string of the statc with symbols Xiy ... X of the input string (& is the number of
lookahead symbols being used). 1 they match, it goes back o the state set S; indicaled by the
pointer (j is the third component of a stale), and adds 1o the current state set all states from §;
which have the nontcrminal E 1o the right of the dot. It moves the dot over the E in these new
states. Inwitively, S; is the staie sct where that E was predicied. Since that K has now been
scanned, the dot is moved over the K in all the staies of state sct S; which caused that K 1o be
predicted. A state on which the completer is applicable is called a finai state. Since a lookahead
of 0 is being used in this cxample, no lookihcad comparison is done. In this example, the
completer adds the following stae 10 5

$ —- S vV QO

The only operation now applicable 10 the staies in Sy is the scanner. Since the input string
is exhausted, the next token retumed by the lexical analyzer is V. Therefore, the only new state
added to S» i
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3 - S V. 0

The compleler is applicable to this state, but no new states are added to S; by the completer.
The parsing halts. This final state shows that the S that was predicted in state set Sp has been
successfully scanncd, and the input string is exhausted. So the parse is finished, and the string is
a sentence of the language generated by Grammar 3.1,

The algorithm described above carries along all the possible parses of a string under the
given CFG. That, in essence, is the power of this algorithm. It allows the algorithm (o handle any
arbitrary CFG. With cxicnsions to the recognizer described above, a parser can be created. With
the parser it is possible 10 produce a derivation graph (see Section 1.4) that encapsulates all the
derivation trees (see Section 1.1.2) of a string under a CFG.

3.3. Time and Space Complexity

Given the fact that Earley's Algorithm is a universal parsing algorithm and can handle any
arbitrary CFG, it is cssential that the issuc of lime and space requirements is addressed. Unlike
LL(k) and LR(k) parsing algorithms, Earley's Algorithm is not table driven. All possible parses
of a string are carried along simultancously at parse time.

Earley proves in his thesis that his algorithm has a bound of the form Cn3+O(n?) on the
number of steps required (o parsc a string of length n for any lookahead k. Thus, this algorithm is
an O(n®) recognizer in general. However, a large class on grammars can be parsed in time O(n);
they seem to include most unambiguous grammars. Space requirements for Earley’s Algorithm
are O(n?) in gencral. However, as with the time requirements a large class of grammars can be
parsed in space O(n), possibly all unambiguous grammars.

Obviously, the actual time and space used would depend on the particular implementation
of the algorithm. Earley’s thesis merely shows thal it is possible 1o achieve the stated time and
space bounds. Hec also shows that the same time bounds hold for the parser based on his
algorithm, though for the parser the space requirements are Cn3+0(n?) (to hold the derivation
graph),

The tradcofTl is between the power and the performance of the various algorithms. The
LL{k) and LR(k) algorithms arc both time O(n) algorithms (with a lower coelficient of n than
Earley's Algorithm). Because ol their celficiency they have been used in numerous compiler
development tools. However, they are not as powerlul as Earley’s Algorithm. These algorithms
cannot handle ambiguous grammars, or a grammar which requires a lookahead greater than k.
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4, Using the Universal Parser Generator

This section provides documentation about the usage of PEG. The syntax for specifying the
grammar to PEG is almost identical to that provided by YACC. This syniax was adopted because
of its popularity and casc of usc.

4.1. Conceptual Input to PEG

PEG provides a gencral tool for imposing structure on the input to a cOmputer program.
The user prepares a specilication that includes:

o A setof rules to describe the syntax of the input (productions)

¢ Code 1o be invoked when a rule is recognized (semantic actions)

PEG then tums the specifications into a C language routine that examines the input stream.
This routine, called a parscr, works by calling a lexical analyzer. The lexical analyzer extracts
tokens from the input stream. Tokens arc the terminal symbols defined by the grammar and used
in the productions. When one of the productions is recognized (reduced or determined to be part
of the derivation ol the input string), the semantic action supplied for this production are
executed. Semantic actions arc fragments of C language code. They can communicate values of
the attributes of terminal and nonterminal symbols, and make use of the values communicated by
other semantic aclions.

4,2, Basic Specifications

Every specification file hcorctically consists of the three sections: Lhe declarations,
(grammar) rules, and subroutincs. The scctions arc scparated by double percent signs, %%. A
full specification tile looks like

declarations
GTe

rules
subroutines

when all the scctions are used. The subroutines scetion is optional. User comments may appear
anywhere in (he file. Comments are C language comments limited 1o a single line,
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4.3. Declaration Section

Several things go into the declaration section. PEG maintains a table of tokens and
nonterminal symbols along with various information associated with them. These tables are
essential to the implementation of PEG. 1t is possible for the user to expand the size of these
tables by including the following statements as the first statement(s) in the declaration section

%termtable size
%ononttable size

where size is an integer number. It is advisable 10 use prime numbers for the sizes because it
makes hashing more eflicient (see Section 5.3). These two statements are optional.

Next, the user can include a statement that explicitly tells the parser what symbol to use as
the rool (start symbol) of the grammar. This is donc by the stalement

Yestart name

where name is a nonterminal symbol, This statement is optional. By default, the nonterminal on
the left-hand side of the first production in the grammar is taken o be the root of the grammar.

Next, the user can explicitly choose between using a lookahead of 0 or 1. This is done by
the statemcnt

%lookahead number
where number is cither O or 1. This stalement is optional. By defaull, a lookahead of O is used.

Communication between the parser and the lexical analyzer is done by “"agreeing” on a data
structure that both routines can access. This data structure is defined o the parser by the
statemenl

Zounion

{

body of union {as in the C language) ...

This usage is identical o YACC. The union declaralion stuiement can appear before the
lookahcad declaration statement in the declaration seetion. The union declaration is optional; if
the union is not explicilly declared by the user then PEG creates a union with one integer field
ival” in it

Nexl, the token (terminal symbols) names arc declared. Names representing tokens must be
explicitly declared. Associated with cach token is an integer number that uniquely identifies that
token. Tokens are the means ol communication between the lexical analyzer and the parser. The
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lexical analyzer scans the inpul stream and retums an integer value (and possibly other values)
representing the type of token found to the parser; this integer value tells the parser which token
was scanned. The way Lo declare tokens is the following

Yetoken <rype> name number

in the declaration scction. The name is the token identifier and the number is the integer assigned
to that token. Every namc used in the productions of the grammar, but not declared as a token, is
assumed (0 bc a nonterminal symbol. The rype is one of the fields from the union declared by the
Jounion statemcent discussed carlier; it is optional. The type of the token is used to determine the
correct Lype ol the attribute of the tokens (sce Section 4.4.1). The number may be omitted from
the declaration; tokens without a number are assigned a default token number, starting at 256.

If more than one oken is of the samc type and delault token numbering is being used, then
these tokens can be conveniently declared in the {following way

token <type> namel name? ...

where each of the token in the list is assigned a different defaull token number, and every token
declared in this list has the same rype; the rype declaration is optional. Any number of stalements
declaring the tokens may be given in any ol the two [ormats presented above.

The nonterminals uscd in the productions may have a fype associated with them. These are
declared to PEG in the following manner

Gtype <nwe> namel name? ...

where the names are the names of nonterminat symbols, and the type is one of the fields declared
in the %union slatemeni. Any number of rype stalecments may be given.

Any other C language code can be inserted a this point into the declaration section. For
example, the user may want o define variables o be used by the semantic actions. C Language
declarations and definitions can appecar in the declarations scction. The syntax for specifying
these declarations and definitions is the Tollowing:

%{ C language declarations and delinitions }

These declarations and dedinitions have global scope, so they are visible inside the semantic
actions.
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4.4. Rules Section

The rules section is made up of one or morc grammar productions. A production has the
form

A : BODY ;

Note that this format has a close correspondence to CFGs. The symbol A represents a
nonterminal symbol, the ’:* corresponds to the *—’ of CFGs, and BODY is a sequence of tokens
and nonterminals (possibly separated by the vertical bar '|").

Names of terminals and nonterminals may be of any length and may be made up of letters,
digits, and underscores although the first characicr of a name must be a letter. Uppercase and
lowercase letters are distinct. The names used in the body of a production may represent tokens
or nonterminal symbols. They arc dillcrentiated by explicitly declaring the tokens in the
declarations section as previously described.

If there are scveral productions with the same left-hand side nonterminal symbol, the
vertical bar '[’ can be usced 10 avoid rewriting the lefl-hand side. In addition, the semicolon at the
end of a production is dropped belore a vertical bar. Thus, the grammar productions

A g2 C D
A E F ;
A 5
could also be given 1o PEG as
A B C D
! E F
| G

by using the vertical bar. It is not necessary that alf grammar productions with the same left side
appear together in the rules scction, although it makes the input more rcadable and easier 10
change. I a nonterminal A" matches the emply striing (A), this can be indicated by the
production ruic
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where the right-hand side of the production contains only white spaces followed by a semicolon.

4.4.1. Semantic Actions

Semantic actions may be given as pan of a production, If given, they must appear at the
end of a production. The attributes of the symbols of a production are accessed in exactly the
same manner a3 in YACC (sce below). The semantic actions are simply C language statements
that are exccuted cach time the production to which they are atlached is reduced during parsing.
For example, assumec that "semi’ is a 1oken returned by the lexical analyzer during parsing. If the
following production is part of the grammar

A : semi

printf ("Found a Semicolon!™);:

and this production is reduced, the aclion routine will be invoked and the message will be printed.
At execution time, if the parser generated by PEG deteets that the string being parsed will have
multiple derivation trees then it stops cxecuting the semaniic actions associated with the
productions of the grammar. Howcever, the parsing continues.

The dollar sign symbol, $, is uscd o facilitate communication of information between the
semantic actions and the parser. The pscudo-variable $$ represents the value of the attribute of
the nonterminal symbol on the left-hand side of a production. The pseudo-variables $1, $2, ..$n
represent the valucs of the auributes ol the symbols on the right-hand side of a production. $k
refers to the attribute of the kM symbol on the right-hand side of a production. For example, if the
production is

then $2 refers to the auribute of C, and $3 1o the attribute of D.

Consider a grammar for describing arithmetic cxpressions, Let one of the productions of
the grammar describe addition of lwo intcger numbers. Suppose that the lexical analyzer (see
Section 4.9) scans the input and retwrns Lo the parser the integer value of the numbers (2 34" in
the input rewnims an attribute ol integer 34) as the autribute of the token ’intval’. Furthermore,
supposc that the oken *plus’ is retumed when a *+' is scen in the input. Now, productions that
look like
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E : NUMBER plus NUMBER
{
printf ("Answer = %4",5$1+$3)
}
NUMBER : intval
{
$% = $1
}

will print the result of adding 1two integers. Notice that if a derivation tree (graph) of the string
being parsed was constructied, then the auribules of a node in the tree would be defined in terms
of the auributes of its children nodes. The autribuic evaluation would be bottom-up, from the
teaves to the root. These Lypes ol autributes are called synthesized attributes and are also the
mechanism used by YACC.

PEG has some significant differences in ils action routine specifications compared to
YACC. In YACC, scmantic actions do not have 1o be placed at the end of a production. They
may appear between two symbols on the right-hand side of a production. This sometimes causes
parsing problems in YACC. In PEG semantic actions are not allowed in the middle of
productions. PEG places one other restriction on semantic actions. No 'return’ statement is
allowed in the semantic actions. Instead, a special function is provided to accomplish the same
effect (sce Seclion 4.4.2).

In YACC, it is legal to have productions of the form

T
sl
~
+
~

B;

where instead of declaring a token for the "+ symbol, it is used directly in the production. PEG
does not allow this. In PEG ull wokens have 1o be cxplicitly declared.

The algorithm used by PEG cncourages the so called "left-recursive” productions over
"right-recursive” productions. Lefi-recursive productions have the form

A A rest_of _rule;
while right-recursive productions have the [orm
Asrest_ol_rule A;

Even though both forms of productions arc "legal” (acceptable to PEG), right-recursive rules may
result in less efficient parsers (also sce Scetion 9).
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4.4.2. Special Functions

PEG provides [our special functions that can be part of the semantic actions of any
production. These functions enable the user 10 exploit the special functionality available as a
result of using Earley’s Algorithm.

earley_stop(): This function is like a return’ Statement. It causes the parser o
immediatcly stop all parsing activities, and make a top-level return to the
function that called iL.

EarleY delete_production("pl p2 .. pn™): This routine deletes productions
pl, p2, ..., pn [rom the grammar. Any punctuation can be used as a delimiter
between the pl through pn. The productions and their associated numbers can
be referenced from the filc earley.tab.h (see Section 4.8). This function returns a
1 if all the deletions are successful, a 2 if some production number is out of
range, and a 3 if some production has already been deleted by a previous action.

Earle\’_udd_production("LHSI: RHSI; .."): This function adds new
production(s) 1o the grammar. LHS1 is any nonicrminal symbol (ncw or old}.
The RHS1 is like any RHS of a produciion rule consisting of nonterminals (new
or old) and tokens (declared in the original grammar). There can be multiple
alternatives in RHS, cach separated by the vertical bar °|". Each alternative may
also have Transfer Semantics associated with it. Transfer semantics is a
specification of the semantics for this new production in terms of the semantics
of one of the original productions. The specifications of the transfer semantic
actions (i any) of the ncw production are recast in terms of the semantics of an
original production. The scmantic specification of new productions always has
the format

{Number, $A; = $A2 ... 3Ay= $An)

where Number is the production number of a production in the original grammar,
whosc semantic actions will be cxccuted for this new production. A, through
A, arc relerence reassignments.  For example, the transfer semantics L3 =
$2;}" mcans the following to the parser: For this new production do the same
semantic actions as production 1 of the original grammar. However, whenever
the awributes of the third symbol were being referenced in the scmantic actions,
now refer 1o the autributes ol the sccond symbol. No restriction is placed on
these reassignments (see Section 6.1). This function relums a -2 il there is a
syntax crrot in one ol the production specifications, a -1 if a production has a
woken on the lefi-hand side, a 0 if '$’ appears anywhere in the new production
(except the semantic actions), and a 1 if no errors occur.

EnrleYﬁdelete_udd_pruductiun(S;, S,): This function combines deletion and
addition of productions in one function call. Sy is the string containing the
numbers ol the productions Lo be delcted, and S is the string that gives the
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productions that are to be added (see EarleY_add production(), and
EarleY_delete_production() above). The values returned by this function are a
union ol the values returned by ils composite functions.

These four special functions may appear anywhere in the semantic action of a production.
One final note about these functions. The three functions EarleY_delete_production(),
EarleY_add_production(), and EarleY_delete_add_production() alter the original grammar,
and if a lookahead of 1 is being used then they cause the lookahead to be recomputed. This
lookahead computation can significantly increase the parse time. Some careful programming can
help to minimize the adverse cffect on the parse time. For example, if one production is to be
deleted and another one added at the same point in the parse, then
EarleY_deIete_ad(l-_production() is the most efficient way to do it

Consider the grammar for well-formed parentheses, G2.1. Let the terminal symbols *(C and
") have the token names 'LP’ and *RP’, and let the loken numbers be 7 and 8 respectively.
Figure 4.1 gives the medilication o the data structures if a new production is added or an old
production is deleted.

4.5. Subroutines Section

in this last scction of the specilications, the user can include any C code that he/she wishes
(0 be availablc 1o the parser for use by the semantic actions. There is no restriction placed on the
content of this scetion and any crrors arc reported at compile time by the compiler (hopefully).

4.6. Error Messages

The crror messages produced by PEG are meant to be explicit and self-explanatory. These
error messages are divided into two categorics, Warnings and Errors, by level of severity.

Warnings are messages indicating a non-fatal crror, and usually parsing continues after a
waming. On the other hand, an crror message indicates a severe error condition. PEG tries to
continue parsing whenever possible, but usually an crror lerminates the parsing.

4,7. Naming Convention

The parser generated by PEG contains data and supporting routines Lo implement the parser.
As a naming convention, all routines whose names start with the string "EarleY” are external
routincs. The user can modily the name ol any variable or routine whose name does not start
with the string 'EarfcY'. To avoid name clashes, the user should also avoid creating new
routines, mMacros, types. or variables with names starting with the strings "EarleY” or ‘carley’.
Needless to say, the user should avoid using names that might cause a name clash. See Scction
6.3 for more on the nauming convention.
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Original Grammar
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Figure 4.1: Modilications 10 Original Grammar
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4.8. Output Files

PEG scans the grammar specification file and generates two files from the grammar
specification.

earley.c: This lile contains all the user routines and other supporting routines needed 1«©
impiement the parser.

earley.tab.h: This filc contains the various definitions specified by the user. For
example, il contains the woken definitions, translated to the #define statements of the
C language. It also contains (as comments) all the productions of the original grammar
and their internal numbering; this numbering is essential to using the special functions
provided by PEG (sce Scction 4.4.2),

4.9. Interface to Lexical Analyzer

When the parser created by PEG requires the next token it calls the lexical analyzer
supplied by the uscr. This lexical analyzer is assumed to follow certain conventions. It must
return a O when it cncounters the end-of-file. Otherwise it should return an integer that identifies
the token that was scanned, Note that these arc the conventions [ollowed by the lexical analyzer
created by the program LEX under the Unix opcrating sysiem.

It may be that the user wants some other attributes of the tokens Lo be computed by the
lexical analyzer and passed to the parser. The union structure declared in the Declarations
Section is the mechanism used 1o communicate these attributes to the parser. The values of these
attributes are explicitly set by the user in the LEX program that he/she provides to PEG. The file
earley.tab.h may be consulied to sce which are the legitimate iokens expected by the parser. The
name of the lexical analyzer must be earley_userlex().

The union strecture declared in the Declarations Section is alse declared in the lexical
anafyzer. Space is allocated lor this union in the lexical analyzer and a variable earley _userival
is declared to be a union of this Lypc.

4,10, Invoking PEG
PEG is invoked by the lollowing command

peg [FLAGS] fileneune

where filename is the name ol the grammur specification lile. The FLAGS allow the user control
over the execution and output behavior of the parser generated by PEG. The FLAGS are the
following (all of them are optional):

-CYCLEQ: Do noet check lor cycles at parse time,
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-GRAPH: Print the unatributed derivation graph to the default output device.

-PARSEQ: Do not perform semantic actions or build the derivation graph; just
recognize.

-PRINTQ: Do not print anything at the end of the parse.

-PRINT1: Print whether the string is in the language (default).

-PRINT?2; Print detailed information about the parse (State Sets and States).
-PRUNE: Perform garbage collection on unneeded states during parse.

By default, the only {lag used is -PRINTT".

The parser gencrated by PEG rctums it pointer to the attributed derivation graph of the
string parsed. If the string had multiple derivations or cycles in the derivation graph, then the
derivation graph that is rctumced is not auributed. The parser also writes out an unatiributed
version of the derivation graph to the {ile “carley.graph’. II the parser name has been changed by
global substitution, then the derivation graph file name is also changed accordingly (see Section
6.3). This unattributed derivation graph can be recreated and printed by using two routines
supplied with the PEG library (sce Section 7.2). Note that if the string being parsed is not a
member of the language deflined by the CFG on which the parser is based, then the parser returns
a 'EarleY_MEM_NULL’ pointer (scc Scetion 8) at the end of the parse.

4.11. The Main Procedure

PEG docs not provide a main procedure with the parser; the user can write any main
procedure that he/she wishes. The name of the parser generaled by PEG is earley parse().
Before calling the parser the user must initialize variables and data structures by calling the
routine earley_init(). For example, supposc that i parscr has been created using PEG. Then the
following is the smallest main procedure that can be written o call the parser:

#include ‘earley.tab.h"
main}
{

EarleY NODE TYPE p;

earley inic (};

p = earley parse():

/* Earle¥Y node_destroy(ap): */
}

Note that the main routine given above does not deallocate the space used by the derivation
graph; if the commentied statement in the main routine was compiled, then the space used by the
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derivation graph would be deallocated.

4,12, Compiling and Linking

The file, contains the parser generated by PEG. Suppose that the main program is in the
file 'main.c’. Furthcrmore, suppose that the lexical analyzer created by the user for the PEG
parser is in file ’lexical.c’. The executable file, can be created from the main program, the PEG
parser, and the lexical analyzer, by the following compilation steps:

cc ~C main.c
cc -c earley.c
cc -¢ lexical.c

cc -0 earley main.o earley.o lexical.o -learley

Notice that all the compiled modules are linked with the PEG library. The PEG library
contains routines that are neeessary (o implement the parsers gencrated by PEG. The routines in
this library arc the static routines; they are the same for all parsers generated by PEG. On the
other hand, thc routines in the lile "carley.c’ are the dynamic routines; these depend on the
grammar which is used W gencrate the parser. I the user wants the executable to be linked with
other libraries or modules, then these must be specilicd also. The code given above is only meant
to illustrate the process that is nccessary 10 successfully compile the code generated by PEG.
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3. Implementation of PEG

This section describes the major design featurcs of PEG. The data structures used, and the
efficiency measurcs incorporated into the design of PEG are discussed.

5.1. Abstract Data Types (ADTs)

One of the most important decisions regarding the implementation of any software is the
choice of the undertying data strucwures. In the implementation of PEG, the data structures were
chosen on the criteria of reliability, flexibility, and the ability to easily exiend and modify the
software. This scction gives description of the data structures used by PEG, and discusses the
advantages of these dala structures.

Suppose onc wants o implement a stack data structure in a programming language like C.
If the stack is implemented using an array, then all the elements that are pushed on the array must
be of the same fype. Implementing a gencric stack data structure on which arbitrary data types
may be pushed becomes difficull. Of course, one may implement the stack using an array whose
elements are some pre-defined structure or union. Still, the programmer would have to predict all
the possible data types that may be pushed onto the stack. One would like a generic data
structure that could hold any data type. The obvious solution is to push not the object onto the
stack but a pointer o it. This pointer in tumn could point {o any arbitrary dala object. The left
stack in Figure 5.1(a) can hold homogencous data objects and the one on the right can hold
arbilrary data objects (the ™7 indicates a single dalit Lype and the ™ multiple data Lypes) .

An ADT is a data structure that is implemented using pointers into memory. The
programmer describes the data structure (o the system by defining the structure of the ADT and
the access functions that are applicable on this ADT (Figure 5.1(b). For cxample, a PAIR_TYPE
may be deseribed as an ADT that holds (points 10) two objects along with the access functions 10
access the two objects.

The programmer is required Lo define certain operations on ADTs 1o the system. Routines
that create, destroy, print, and copy an ADT must be defined. Besides these required routines, the
programmer can define uny arbitrary functions on an ADT.

Al execution lime when an ADT is created Lhe system creates a tag that identifies the object
lype and attaches the tag to the ADT. By accessing the tag of an ADT the system can determine
how to manipulate the ADT. This tagging mechanism is completely transparent to the user and
critical to the implementation of ADTs. Since the tag is created al execution time and not at
compile time, the ADTs are generic in the sense that an ADT can reference any other ADT. This
nation of defining data objects and the operations application on them is catled object oriented
programming (OOP). The ADT system used by PEG is not a truc OOP methodology because
inheritance is not supported. Sce Scction § for more details about specific ADTs.
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Figure 5.1: Abstract Data Types (ADTs)
5.2. ADT Representation of Grammar

Consider the grammar for well-lormed parentheses, G2.1. PEG would augment this
grammar by adding the production '$ — S V' as the first step in the generation of the parser.
Therelore, the grammar that would be used 1o create the parser would be the following
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Grammar 5.1

The conceptual representation of Grammar 5.1 in the ADT paradigm is given in Figure 5.2.
In LHS Xdeq (Xdcq slands for "extended double ended queue™), all the nonterminals of the
grammar are represented by the left element of one and only one Pair. The left element of a Pair
in LHS Xdeq contains the string representation of a nonterminal, and the right element is a
pointer 1o 2 RHS Xdeq. In RHS Xdeq a list of Pairs is held, the Ieft element of a Pair contains
the integer production humber of the alternative that the Pair represents, and the right element is a
pointer o a PROD Xdeg. A PROD Xdeq represents the right-hand side of a specific production,
and i1s clemenis arc made up of terminal (Term) and nonterminal (Nont) symbols.

Suppose that the terminal symbols '(" and ')’ are represented by the tokens 7 and 8
respectively. That is to say, the user has explicitly declared these tokens in the Declarations
Section of the PEG specification file. By convention, the end-of-file is represented by the
reserved token number O (sce Scclion 4.9). Also by convention, in PEG the empty string (A) is
represented by a nonterminal whose string representation is "*". Given these conventions, the
actual -representation of Grammar 5.1 is given in Figure 5.3. This is how PEG stores the input
grammars in the ADT paradigm. In this represcriiation, the placing of the elements in the various
Xdegs depends entirely on the order in which they are encountered in the grammar file. For
example, if the alternatives of & nontecrminal "A’ arc written before the aliernatives of another
nonterminal 'B’, then "A’ will appear before "B’ in LHS Xdeq. During parsing if a new
nonierminal is inserted into the grammar, then it will be inserted at the right end in the LHS

LHS Xdeq

Pair

RHS Xdeq

0 1 2

PROD Xdeq
Term Nomt Term Nom> l Nont
{ —H S ) S - A

Figure 5.2: ADT Represemtation of Grammar 5.1 (Conceptual)

Nont  Toerm
S v




Urniversal Parser Generator -33- Section 5.2.
LHS Xdeq
Pair
3 S
RHS Xdeg
0 1 2
PROD Xdeg

Nont Term Term Nont Term Nom)( Nont
S 0 77— SH 8 H § *

Figure 5.3: ADT Representation of Grammar 5.1 {Actuat)

Xdeq. If a new alternative is added for an cxisting nonterminal, it is added at the end of the
corresponding RHS Xdeg. This provides a natural representation of the grammar as a data
structure.

5.3. Efficiency Considerations

The three operations (Predictor, Scanner, and Completer) that implement Earley's
Algorithm access the productions in the grammar being used (sec Section 3). To cut down the
scarch time required o oaceess & nonterminal and s alternatives or 10 access a particular
production, a hash table is maintained. The associaled hashing function takes the string
representation of a nonterminal and retwms the integer hash table position. Among other
information Lhis hash table contains 4 pointer 1o the nonterminal in the LHS Xdeq. Accessing a
particular nonterminal in the LHS Xdeg during parsing, is done in two steps. In Step 1 the hash
function is applied to the nonterminal name, giving the index into the hash table. In Step 2 the
pointer (o the nonterminal in LLHS Xdeq is read rom the hash wble. This procedure climinates
scarching for {the nontcrminal in LHS Xdcy, making (he required scarch time much less
dependent on the sive ol the grammar. A conceptual picture of this two stlep search procedure is
given in Figure 5.4, A simitar hash table is maintained lor the terminal symbols.

In a2 RHS Xdeq the productions are stored in ascending order by the production number.
This information is utilized when scarching {or a specilic production. In Figure 5.5, suppose that
production 5 is 10 be deleted from the grammar al some point during the parse. The special
function EarleY_delete_production can siop scarching RHS Xdeq 2 as soon as production 8 is
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Figure 5.4: Accessing a Nonterminal and Its Allemnatives

encountered (searching from left w righty, and proceed to the next RHS Xdeq.
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Figure 5.5: Scarching for a Specific Production
54. ADT Representation of State Sets and States

As dictated by Earley’s Algorithm. State Scis and States arc created as the inpul string is
parsed. Referring to Figure 5.6, State Set Xdeq conaing all the State Sets that are created during
parsing. As a new State Setis created, it is inserted at the right end of State Set Xdeq. Each Siate
Set is a pointer 1o a State Xdeq, which in wrn containg all the States belonging o that particular
State Sel.

In a recognizer based on Earley’s Algorithm, cach State contains four entries. On the other
hand, a parser based on Earley’s Algorithm requires more space (e.g. for the derivation graph). In
PEG a State has ten components, as shown in Figurc 5.6. Components 1-4 are the same as
spectfied by Earlcy [or the recognizer. Components 5 and 7 are used by PEG to implement
synthesized attributes, and Component 6 is used 1o determine which semantic action (o execute
(sce Scction 4.4.1). The other components are used 10 generate the derivation graph, and achieve
efficiency in parsing.

Each of the three operations (Predicior, Scanner, Completer) require a State 1o be in a
particular form belore the operation can be applicd w the State. To find the States that are of the
correct form in a State Sct requires a linear scarch of the State Set. Instead of this costly search,
PEG does the [ollowing: whenever a now Stale is inserted into a State Set, depending upon the
form of this State it’s position in the State Sct is inscried into onc of three lists, Predictor Xdeq,
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Scanner Xdeq, or Completer Xdeq. The three operations check the appropriate list to find States
that are of the correct form: search time is reduced (compared to a linear search).

5.5, Deferred Semantic Actions

Suppose that during parsing a particular production has to be reduced (i.e. a Completer
action). In LL(k) and LR(k) parsers the scmantic actions associated with this production can
immediately be exceuted. In LL(k) and LR(k) parsers every time a production is reduced it is
indeed going lo be in the final parse. On the other hand, Earley’s Algorithm carries out all the
possible parses of a string under a grammar. Therefore, it is possible that the parser generated by
PEG will make many parsing decision (Compleler operations) which later tum out to be
extrancous. For this reason, some semantic actions may have to be deferred until the parser can
determine whether the parsing decision is indecd going to be part of the final parse.

If a state sct contains only onc final statc (sce Section 3), then that state is indeed going to
be part of the final parsc. Otherwise, il there are two or more final states, then the states that they
produce by the completer is marked and the parsing continues. Later, as soon as a state set is
reached that contains only states which were produced by one of those linal staies, then that final
state is the onc which represented the correct parsing decision, and is going (o be in the final
parse. As soon as it is determined that a final staie is going to be in the final parse, the semantic
aclion associated with il can be exccuted. Of course, it may be that many scmaniic actions have
been deferred, beginning at the point in the parse where local ambiguity first appeared. All these
semantic actions are cxecuted in the correct order once that ambiguity is resolved. If the local
ambiguily is ncver resolved, or as soon as it is determined that the string being parsed has
multiple derivation Lrees, semantic actions are not executed.

This feature gives PEG a unique capability. Deferred semantic actions mean that a parsing
decision is postponed until later: this is the same (conceptually) as using an unbounded lookahead
(see Scction 2.2). Therelore, the parser generaied by PEG has the advantage of having an
unbounded lookahead without actually computing any lookahcad sets.
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6. Examples of the Unique Features of PEG

This section gives threce examples that illustrate the unique features of PEG. The first
example illustrates the implementation of syniactically extendible languages. The second
example shows how deferring semantic action cnables the parsers generated by PEG to parse
CFGs with unbounded lookahead. The third cxample shows how multiple parsers generated by
PEG can be linked together in a single exccutable. In all the examples, the lexical analyzer
specification is given using LEX.

6.1. Syntactically Extendible Languages

The following cxample illustrates the ability to change the syntax of the language being
parsed at execution time in a parser gencrated by PEG. It also shows how one can transfer the
semantics of an original production of the grammar 10 a new production that is added to the
grammar (see Scction 4.2).

Suppose a# languagc contains inlix arithmetic expressions. Furthermore, suppose the
application should allow the uscr 1o change the language at execution time so that the language
contains only postiix arithmelic expressions. For example, il the following input is given to the
application:

13+5*7;
CHANGE ;
13 5 7 * +;

then the desired outlpul would be:

48
Switching to Fostfix
48

That is, when the keyword "CHANGE” is encountered in the input then the language should be
changed from infix arithmetic cxpressions o postlix arithmelic cxpressions.

The above application can be casily implemented in PEG. The f(ollowing grammar
specification file:

ilookahead

Funion |

char *swval;

int ival;

i

ttoken <sval> DECNUM
Ftoken LP

“token RP
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$token SEMI

ttoken PLUS

ttoken MINUS

%¥token MULT

%token IDIV

$token CHANGE

stype <ival> Prog State Exp Fact Term Change Top

c o

Prog:State Prog |
State:Top SEMI | Change SEMI ;

Exp:Exp PLUS Term { $$ = $1 + $3; }
| Exp MINUS Term { $$ = $1 - 53; }
| Term { $3 = S1: )

’

Term:Term MULT Fact { $35 = $1 * $3; }
| Term IDIV Fact { $$ = $1 / $3; }
| Fact { $$ = S51; )

2

Fact:DECNUM { $$ = earley_ eval int($1,10,"0123456789"); }
| LP Exp RP { $$ = 32; }

r

Change : CHANGE
{
printf {("\nSwitching to Postfix"}:
earley_delete procuction{("S 6 7 8 9 10 11 12");
earley_add_production("Exp: Exp Exp PLUS {5; $3 = $2;}:"};
earley add production("Exp: Exp Exp MINUS {6; $3 = $2;}:");
earley_add production("Exp: Exp Exp MULT {8: $3 $2:1:")
carley add production("Exp: Exp Exp IDIV {9; $3 = $2;}:");
earley_add production{"Exp: DECNUM {11; $1 = $1;};"):
}

s

Top:Exp { printi("\nzdY,S1); }
and the following lexical analyzer:

D [C-8]
{

o0
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#include "“earley.tab.h"
%
(" {return(LP);!

"y {return{RPx; }

"+ {return (PLUS};}

M-t {return (MINUS);}

wEN {return (MULT) ;

H/% {return (IDIV);}

et {return (SEMI) ;}

{D}+ {earley_userlval.sval=concat(YYtext,"“);return(DECNUM);}
"CHANGE" {return {CHANGE) :}

[ \t\nl+ {}

e
o

implement the desired application. In the specification files given above, function concat(sl,s2)
makes a copy of string s1, appends a copy of string s2 at its end, and rctumns a pointer to the
resulting string. Function earley_eval_int(sl,base,bdigits) takes a string of digits sl and
computes the numeric value of the string by interpreting the digits in a user-specified number
base. The sccond parameter Lo the [unction specifics the number base, and the third parameter
gives the digits of thal numbcer base.

Somc caution has 1o be cxcercised in using the extendible language [eature of the parser
generaled by PEG: deferred semantic actions (sce Scction 5.5) means that some scmantic actions
may not get executed at the time (parse time) that one would intuitively expect them 10,

The cxampie presented here is static in the sence that the new productlions to be added
the grammar, and the productions to be deleted from the grammar, are fixed by the writer of the
PEG specification file. A more robust application would allow the user 10 specify what the
changes 10 the syntax of the language should be. This can be accomplished through the use of
productions that build the call to the special functions (sce Scction 4.4.2) by getting tokens from
the input stream. Through appropriate seiting ol the auributes (character strings) of these tokens,
the parameters 10 the special functions could be constructed.

6.2, Deferred Semantic Actions

In generad, il a CFG is lookahcad m (m>k) then LL(k) and LR(k) parser generators will not
be able to generate parsers Lo parse it. Morcaover, if the CFG has unbounded lookahead then it
cannot be parsed by any LL(K) or LR(k) purscrs. The cxample in this scction presents a grammar
that has unbounded lookuhcad.

Suppose that an application accepts u list ol numbers and interprels them as decimal, octal,
or hexadecimal depending on the keyword that follows the list of numbers. Specifically, if the
list of numbers is followed by the keyword "d+” then the numbers in the list are interpreted as
decimal, and their sum is printed. Similarly, the keyword "o+’ results in interpreting the numbers
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as octal, and the keyword *h+’ results in hexadecimal addition. For example, if the input to the
application is the lollowing:

4 35 d+
4 35 o+
4 35 h+

then the desired outpul is:

39
33
57

An implementation of this application is now shown. The following grammar specification:

tstart prog

sunion {

char *sval;

int ival:

1

%token <sval> NUM

%stoken OPLUS

%token DPLUS

%token HPLUS

itype <ival> prog evals eval oladd dladd hladd ol dl hl

prog:evals

evals:evals eval (printf ("\n%d", $2);}
[ eval {printf("\nzd",$1);}

eval:cladd ¢ 3% = 51;}

| dladd { $5 = §1:; }
| hladd | $5 = S1: }

oladd:ol OPLUS { 5% = S$1; }
dladd:dl DPLUS { $$ = $1; 1}

hladd:hl HPLUS

i
W
1
iy

oliol NUM : §5 = $1 - <carley eval int($2,8,"01234567");
[ NUM - 5% = carley eval int($1,8,"01234567"); }

’

}
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dl:dl NUM { 35 = S1 + earley eval int ($2,10,"0123456789"); |
| NUM { $$ = earley eval int($1,10,"0123456789"}); }

’

hl:hl NUM { $5 = $1 + earley_eval_int($2,16,"0123456789abcdef");
| NUM { $% = earley eval int($1,16,"0123456789abcdef™); }

3%
and the following lexical analyzer specification:

D [0-9]

#{

finclude "earley.tab.h"

%}

"o+" {return(CPLUS):;}

"d+" {return(DPLUS):}

"h+" {return(HPLUS):;}

{D}+ ({earley_userlval.sval=concat(yytext,"");return(NUM);}
[ \eAnl+ {}

1]

S
o

implement the desired application.

As the parscr gets the '"NUM’ token ftom the input stream (through the lexical analyzer), it
cannot decide which ol the three lists it is scanning, decimal, octal, or hexadecimal, Every state
set, except the [irst, has more than one [inal state (sce Section 3). As a conscguence, semantic
actions are defcrred (sce Section 5.5). Finally, when the parser scans one of the three keywords,
then it can determine how (o interpret the numbers in the list. At that point in the parse the local
ambiguity is resolved, and the deferred semantic actions are exccuted. The reader can verify that
prior 10 the keyword being scanned cvery state set has more than one final state, by crealing the
parser based on the PEG specilication file given in this scction, using the *-PRINT2’ flag (see
Section 4.10), and parsing any onc ol the three string given in Lthis example.

6.3. Linking Multiple Parsers

Section 4.7 discussed the naming convention [ollowed by PEG. The motivation for
imposing a naming convention is o cnable the user to link multiple parsers in a single
executable. Supposc two parsers arce gencraicd by PEG. Both these parsers will have routines
and variables with identical names. Obviously, an aitempt to link these two parsers in a single
exccutable will tail due 1o the multiple declarations.

Having a uniform naming convention makes it casy to link multiple parsers together. To
link two parsers in a single executabie the [ollowing steps might be lollowed:
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o Change all names starting with the siring "earley’ 1o "earleyl’ in the first parser.

e Change all names starting with the string ’earley’ to ‘earley2’ in the second
parscr.

e Change the name of the lexical analyzer provided with the first parser 1o
‘earleyl_userlex’ and the name of the union in this lexical analyzer 1
‘carleyl_userlval’ (see Scetion 4.9).

e Change thc name of the lexical analyzer provided with the first parser to
‘carley?2_usericx” and the name of the union in this lexical analyzer to
carley2_userlval’.

Now the two parscrs may be linked together without any naming conflicts. This simple procedure
casily generalizes 1o the linkage of more than Lwo parscrs.,

Consider the grammar specilication tile given below:

ttoken A

%token C

prog: sub A C {printf("\nSeen ‘aac’"):}
I A A {printf("\nSeen ‘aa’"}:}

Supposc the {pllowing lexical analyzer is provided with this grammar:

;s,{

finclude "earley.tab.h"
%}

"a" {returni{d). !

"o {return(C); !

[\n] i{returni{C) ;i

[ hel ¢

Notice that the above lexical analyzer retums an end-ol-file on cncountering a newline character
(sce Scclion 4.9),

Now supposc 1wo parsers are created, onc using the grammar specification given in this
section and the other using the grammoar specification given in Scction 6.1. Let these two parsers
be in files “carleyl.c’ and carley2.c” respectively. Furthermore, let the lexical analyzers
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(generated by LEX) for the two parsers be in files "carleyl_userlex.c’ and 'earley2_userlex.c’,
respectively. To make the changes (1o the two parsers and lexical analyzers) specified at the
beginning of this scction the following shell {ile could be executed, where *tmp’ is a temporary
file:

cp earleyl.c tmp

sed -e "s/earley/earleyl/g® tmp > earleyl.c

cp earleyZ.c tmp

sed -e "s/earley/earley2/g" tmp > earley2.c

cp earleyl userlex.c tmp

sed -e "s/yy/earleyl user/g" tmp > earleyl userlex.c¢
cp earley2 userlex.c tmp

sed -e "s/yy/earley2 user/g" tmp > earley? userlex.c

Suppose the main procedure is the lollowing:

main ()}

{

/*

extern FILE *earleyl userin, *earley?Z userin;
earleyl userin = fopen("earleyl.in™,"r"};
earley?2 userin = fopen(Mearley2.in","r"};

*/

earleyl init {);
earleyl parse():

earley? init ()

earley? parsel();

If the two parsers and lexical analyzers are linked together with the main procedure and the
following inpul is provided:

aac

13 + & % 7;
CHANGE;
13 5 7 * +;

then the output {rom the program is the following:

Seen ‘aac’

48

Switching to Postiiwx
48
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It may be the case that the user wants the input to come from file(s). In that case, the file
pointer(s) of the lexical analyzer(s) must bc set to the desired input files. In the example
presented in this scction, if the commented lines of code were compiled, then the input for the
first parser (earleyl_parse) would come from the file 'earleyl.in’, and the input for the second
parser (earley2_parsc) would come from the file ‘earley2.in’. This particular method of
redirecting input is a {cature of lexical analyzers generated by LEX.
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7. Derivation Graph

This section illustrates the derivation graph generation features of the parsers generated by
PEG. During parsing a derivation graph is created by the parsers. This derivation graph
encapsulates all the possible derivations of the string being parsed. These parsers write an
unattributed version of the derivation graph to a [ile (see Section 4.10), and return a pointer to an
attributed version at the end of the parsc. See Scction 8 for a description of the ADTs and
routines necessary 1o manipulate the derivation graph.

7.1. Internal Structure of the Derivation Graph

The derivation graph created by the PEG parsers contains two types of nodes: nonterminal
and terminal. The structure of the nonterminal nodcs is given in Figure 7.1, and Figure 7.2 gives
the structure of the terminal nodes.

If the string being parsed has only onc derivalion tree then the parser creates an attributed
derivation graph of the string. That is, the nonterminal nodes contain the attribute information
that was compuled by the semantic action routines (sce Scction 4.4.1). Otherwisc, the parser
creates an unattributed derivation graph. The unauribuled derivation graph is identical to the
attributed derivation graph, cxcept thar the unattributed derivation graph does not contain
attribute information for the nonterminal nodes.

A B C D E F G
Pair ADT Tail ADT
A: Nonterminal symbol E: 1 il node is al lail of a cycle

B: A pointer 1o xdeg of allemamives  F: Pointer 10 cycle head if E = 1
C: 1il'node is at head ol a cycie G: Atlribules of nenierminal symboi

D: Label of cycle head if C = |

Figure 7.1: Nonwcrminal Node
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Pair ADT

A: Terminal symbol  B: Attributes of terminal symbol

Figure 7.2: Terminal Node

Consider the [ollowing grammuar specification file for PEG (see Section 4):

kstart Exp
ttoken PLUS
Sunion |
char *s;

}

%%

Exp: A B;

B: D
D: B | PLUS;
%%

This grammar is cyclic. The only string in the language is "++’. Assume that the associated
lexical analyzer retums the token PLUS when il sces a "+’ in the input, along with the character
string *+° as the attribute of the token. Then, the derivation graph created by the PEG parser
bascd on this grammar is given in Figure 7.3,

Supposce thal a parser was generited by PEG. based on a specification lile corresponding to
Grammar 2.8. Furthermore, suppose that this parser was used 10 parse the string 'ab’. Then,
Figure 7.4 gives the inemal representation of the derivation graph of the string "ab’ under G2.8.
Note that the cardinality of the allernatives xdegs for the nonterminal nodes "A’ and B’ is 2,
corresponding o the Lwo distinct paths that may be followed from each of these two nodes in the
derivation of the string "ab’.
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Nonterminatl Node

Exp 0 0

Alternatives Xdeg

)

¥

PLUS

¥

PLUS

+

Terminal Node

Figure 7.3: Intemal Representation of Derivation Graph of "++°
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Nonterminal Node

S 010

Altematives Xdeq

Allernatives Xdeq

G oo
C D) C )

c 0 0 DI |0 10 E| [0 |0 F|{0 |0

Allcrmatives
Xdeq

GO CoD CoD
COCTD Coo Coo

Terminal

a Node i b b

Figure 7.4: Intcmal Representation of Derivation Graph of "ab’ under G2.8

Notice that in Figure 7.3 and Figurc 7.4 some of the fields in the nodes of the derivation
graphs are empty. This is mecant 10 indicate that the information held.in thosc ficlds is "garbage”.
For example, if the pair ADT in a nonerminal node (sce Figure 7.1) has a 0 in il and nothing else,
then it means that the nonterminal is not at the head ol a ¢ycle and that the field for the label of
the cycle head contains "garbage™.



Universal Parser Generator - 50 - Section 7.1.

7.2. Printing the Derivation Graph

The PEG library provides routines to manipulate the derivation graph created by the PEG
parsers (see Scction 8). Specifically, the routine EarleY display parse graph prints the
derivation graph returmned at the end of the parse, using spacing and metasymbols to display the
structure of the derivation graph.

All nonterminal symbols are bracketed between *<” and '>. If a nonterminal has multiple
derivations, then cach of its derivations is bracketed between [’ and ’}’. If a nonterminal is at the
head of a cycle, then an integer label is printed along with the nonterminal to uniquely identify
the cycle. For exampile, if the nonterminal "A’ is alL the head of a cycle then it will be printed as
'<A>:label’. If a nonterminal is at the tail of a cycle, then the label of the corresponding head of
the cycle is printed along with the nonterminal. For example, if the nonterminal 'C’ is at the tail
of a cycle then it will be printed as "':<e>:label’. The ecmpty string (A) is printed as ™',

The label for the head and the il ol a cycle is an encoding of the backward arc discussed
carlier (sec Section 2.4.1). The altematives xdeq is the intemal representation of the concept of
the alternalives structure (sce Scction 2.4.2). For the grammar of the previous section, a
conceptual picture of the derivation graph created by Lhe parser for the string *++" is given in
Figure 7.5. Supposc the [ollowing main program was provided for the parser based on the
grammar of the previous section:

#include "earley.tab.h"
main (}
{
earley init ()
EarleY display parse graph{earley_parse());

Exp
/\
A B
C D
+ +

Figure 7.5: Conceplual Representation of Derivation Graph of "++°
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The main program (given above) prints the derivation graph that is retumned at the end of
the parse, using thc cncoding scheme given in the previous paragraph. Notice the close
correspondence between Lhe derivation graph printed by the parser, given in Figure 7.6, and the
structure of the conceptual derivation graph, given in Figure 7.5.

<Exp>
<A>:0
<C>
(
PLUS

Figure 7.6: Printout of Derivation Graph of “++°

7.3. Interpreting the Derivation Graph Printout

By "looking al" the printout of the derivation graph one should be able 1o determine the
structure of the derivation trees) encoded by the derivation graph. In other words, by "looking
a” the derivation graph the user should be able w determine the string that was parsed. If the
CFG on which the PEG parser is based, is unambiguous, then “reading" the printout of the
derivation graph for any string that is parsed is casy; the derivation graph is basically a single
derivation tree. However, il the derivation graph cncodes direct or indirect ambiguity (see
Section 2.1.2) then it may not be casy o determine what (lcgal) derivation trees are encoded by
the derivation graph.

Consider Grammar 7.1, This grammar is ambiguous, and the conceptual derivation graph
for the input string "u” is given in Figure 7.7. The derivation graph in Figure 7.7 encodes four
derivation trees. However, two of the derivation trees encoded by this derivation graph are not
valid (for the input surings X and 'aa’). The printout of this derivation graph also displays four
derivation trees. Clearly, some algorithm is needed 10 assist the user in "decoding” the printout
of the derivation graph (o determine the siring that was actually parsed.

Due 1o certain implementation characteristics of PEG, the rule (o determine the string that
was parsed, from the printout of a derivation graph, is very simple. A depth-first traversal of
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B — a | A

srammar 7.1

Figure 7.7: Conceptual Derivation Graph of *a” under Grammar 7.1

the printout of the derivation graph is perlormed, cycles in the derivation graph are ignored, and
for each nonterminal nodc in the derivation graph the first of iis allernatives is chosen. This
algorithm is outlined in Figure 7.8.

The algorithm given in Figure 7.8 identilies the string that was parsed (the scquence of
tokens recognized during parsing). Once the sequence ol the Lokens that were recognized during
parsing is determined the user can casily prune out the invalid derivation trees from the printout
of the derivation graph. '

procedure visit (n:node)

begin
if n is a terminal ncde then
print n;
return;
else
pick the first non-cyclic alternative of n, m;
for each child 1 of m (from top-to-bottom)
visit{l):;
end

Figure 7.8: Algorithm to Determine the String Parsed {rom Printout of Derivation Graph
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8. Abstract Data Types (ADTs) Used in Derivation Graph

This section gives the structure of somc important ADTs and the operations applicable on
them. If the user wants to manipulate the derivation graph generated by the parser then some
knowledge of the ADTs used 1o create the derivation graph is necessary. The ADTS necessary to
manipulate the derivation graph are described in this chapter.

8.1. Extended Double Ended Queue (Xdea)

An xdeq is cssentially a list. The clements of this list are pointers to other ADTs. Eiements
may be accessed at cither end of this list, or at any position within the list. Three pointers are
maintained o access the elements of an xdeq: onc pointer points to the left end of the xdeq, the
second pointer points (o the right cnd of the xdeq, and the third pointer poinis (o the current
position within the list. The important operations applicable on an xdeq are the following:

EarlcY _PNT_XDEQ_NODE_TYPEEuarlcY_xdeq_create(parent)
EarleY_MEM_TYPE parent:

This function creates an empty xdeq. The pointer ‘parent’ is the parent of this
newly created xdeq (EarleY _MEM_NULL if no parent information is available).

voidEarle Y _xdeq_move_to_lelt_cnd(p)
EarleY_PNT_XDEQ_NODE_TYPE p;
This function moves the current position pointer to the left end of the xdeq p.

EarleY _MEM_TYPEEuwicY _xdeq_get_data(p)
EarleY _PNT_XDEQ_NODE TYPE p:
This function retums the clement pointed to by the current pointer of the xdeq p.

EarleY_MEM_TYPEEuwrleY _xdeg_get_data_go_right(p)

EarlecY _PNT_XDEQ_NODE_TYPE p.

This function retums the clement pointed to by the current pointer of the xdeq p
ind move the current pointer one position W the right.

EarleY _MEM_TYPEEarlcY _xdeg_cxtract_data(p)
EarleY_PNT_XDEQ_NODE_TYPE p;

This function returns the element pointed o by the current pointer of the xdeq p
and removes the clement Irom the xdeq.

int Earle Y _xdeg_cardinality(p)
EarlcY_PNT_XDEQ_NODE_TYPE p;

This function retuims the number ol ¢lements in the xdeg p.
voidEarleY _ger_data_at_pos_i{p.i)
EarlcY_PNT_XDEQ_NODE_TYPE p;

int i:
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This function retums the ith clement of the xdeq p.

voidEarleY _inseri_data_al_pos_i(p.i.data)

EarleY _PNT_XDEQ_NODE_TYPE p;

int i;

EarleY _MEM_TYPE data;

This function insert the data at the ith posilion in the xdeq p.

voidEarleY _insert_data_at_lelt_cnd(p,data)
EarleY_PNT_XDEQ_NODE_TYPE p;
EarleY_MEM_TYPE data;

This function inserts the data at the left end of the xdeq p.

voidEarle Y _insert_data_al_righi_end(p,data)
EarlecY_PNT_XDEQ_NODE_TYPE p;

EarleY _MEM_TYPE dala;

This function insents the data at the right end of the xdeq p.

voidEarleY _xdey_destroy(p)
EarlcY _PNT_XDEQ_NODE_TYPE *p;
This function destroys the xdeq p.

EarleY _PNT_XDEQ_NODE_TYPEEarleY_xdeq_copy(parent,p)
EarleY_MEM_TYPE parent;

EarlcY_PNT_XDEQ_NODE_TYPE p;

This functions creates a copy of the xdeq p and retuns a pointer to the copy. The
parent argument should be "EarleY_MEM_NULL’ if no parcnt information is
available,

voidEarleY _xdeq_pprinip)
EarleY _PNT_XDEQ_NODE_TYPE p;
This function prints the xdeq p.

To step Lthrough the clements of the xdeq p the [ollowing C language code might be used:

EarleY xdeg move_to_left_end(p);
j = EarleY w=deq cardinality(p):
for{i=1;i<=3;1++)
elemsnr = EarleY =xdeq get_data_go_right (p)’
= Jrher statements </
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8.2, EarieY_PAIR_TYPE ADT

An EarleY_PAIR_TYPE is an ADT that hold two data objects, a left object and a right
object. The following operations are defined on this ADT:

EarleY_PAIR_TYPEEarleY _pair_create(left,right)

EarlcY _MEM_TYPE left, right;

This funclion creates a pair ADT and sets the left and right elements of this
newly crcated pair.

EarlcY_MEM_TYPEEarlcY_pair_gect_left_clement(p)
EarlcY_PAIR_TYPE p;
This function retums the lelt clement of the pair p.

EarlcY _MEM_TYPEEarleY _pair_get_right_eclement(p)
EarlecY_PAIR_TYPE p;
This [unction retums the right element of the pair p.

EarleY _MEM_TYPEEarleY _pair_scl_lelt_clement(p,data)
EarleY_PAIR_TYPE p:

EarlcY _MEM_TYPE dala;

This function scts the felt clement of the pair p.

EarlecY_MEM_TYPEEarleY _pdir_sct_right_clement(p.data)
EarleY_PAIR_TYPE p;

EarlcY_MEM_TYPE data:

This function scts the right clement of the pair p.

voidEarile Y _pair_destroy(p)
EarlcY_PAIR_TYPE *p;
This function destroys the pair p.

EarleY_PAIR_TYPEEarleY _pair_copy(parent,p)

EarlcY_MEM_TYPE parcnt;

EarlcY_PAIR_TYPE p;

This [unction makes a copy of the pair p and retumns a pointer to the copy. The
parcnt argument should be 'EarleY _MEM_NULL’ if no parent information is
available,

voidEarleY _pair_pprinl(p)
EarlcY_PAIR_TYPE p;
This lunction prints the pair p.
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8.3. EarleY _TAIL _TYPE ADT

An EarleY_TAIL_TYPE is an ADT that hold two data objects. The following operations
are deflined on this ADT:

EarleY_TAIL_TYPEEarleY_tail_create(left,right)

EarleY_MEM_TYPE lelt, right;

This unction creates a tail ADT and sets the left and right elements of this newly
created tail,

EarlecY _MEM_TYPEEarleY_1ail_get_lchi_element(p)
EarlcY_TAIL_TYPE p;
This function retums the lelt clement of the tail p.

EarlcY _MEM_TYPEEurlcY_tail_gel_right_clemeni(p)
EarleY_TAIL_TYPE p;
This function returns the right clement of the tail p.

EarleY _MEM_TYPEEarleY _tail_sct_lcft_element(p,data)
EarlcY_TAIL_TYPE p;

EarlcY _MEM_TYPE dala;

This [unction sets the lelt clkement of the tail p.

EarleY MEM_TYPEEurleY_tail_sct_right_clement(p,data)
EarleY_TAIL_TYPE p;

EarlcY _MEM_TYPE dalu;

This [unction sets the right clement of the tail p.

voidEarle Y _tail_destroy(p)

EuarleY_TAIL_TYPE #*p:

This [unction destroys the @il p (the right clement of a tail ADT is not
destroyed).

EarleY_TAIL_TYPEEarleY _tail_copy(purent,p)

EarleY_MEM_TYPE parcnt:

EarleY_TAIL_TYPE p;

This function makes a copy ol the tail p and retums a pointer to the copy. This
routine does not copy the right clement of the tail p; it might lead to infinite
copying. The parent argument should be 'EarleY_MEM_NULL’ if no parent
information is avaitable.

voidEurie Y _tail_pprint{p;

EarleY_TAIL_TYPE p;

This routine prints the il p. Since the right clement of a tail is (possibly) a
pointer that could result in infinite looping, only the left element of the tail is
printed.



Universal Parser Generator -57- Section 8.3.

Notice thal two of the access functions provided with this ADT, EarleY_tail_copy and
EarleY'_tail_pprint, arc not functionally complete. The reason for this drawback is that a tail
ADT has (possibly) a pointer that could induce an infinite looping in the access functions. The
user can supply his/her own copy and print routines for this ADT, and maybe a second version of
PEG will remedy this drawback.

8.4. EarleY NODE_TYPE ADT

A node is an ADT that holds five clements. The nonterminal nodes in the derivation graph
are created using the EarleY _NODE_TYPE ADT (see Section 7). The operations applicable on
an EarlecY_NODE_TYPE ADT arc the [ollowing:

EarleY_NODE_TYPEEarleY _node_create(p1, p2, p3, p4, p5)

EarlecY MEM_TYPE pl, p2, p3, p4, p5;

This function creates a node and sets its five elements. A pointer to this newly
created node is retumed.

votdEarleY _node_destroy(p)
EarlcY_NODE_TYPE *#p;
This [unction destroys the node p.

EarleY_MEM_TYPEEarle Y_node_get_ith_element(i,p)
inti;

EuarlcY_NODE_TYPE p;

This function retums the ith element of the node p.

voidEarleY _node_sel_ith_clement(i,p,data)

int i;

EarlcY_NODE_TYPE p:

EarlcY _MEM_TYPE dawa:

This function seis the ith ciement ol the node p to data.

EaleY_NODE_TYPEEarleY _node_copy(parent, p)

EarleY _MEM_TYPE purent:

EarlecY_NODE_TYPE p;

This routine makes a copy of the node p, and returns a pointer Lo the copy. The
parcnt argument should be "EarleY MEM_NULL’ if no parent information is
available.

voidEarle Y _node _pprintp)
EarleY _NODE_TYPE p:
This outine prints the node p.
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8.5. Integer and Character ADTs

In the ADT paradigm all data types are coded as ADTs. That means, even basic data types
such as integer and character have a corresponding ADT defined for them. The following is a list
of functions and macros that arc used to manipulate these basic data types:

EarlcY_PNT_INT_TYPEEarlcY _ini_create(i)

int i;

This function creates an integer ADT, sets its value to i, and retums a pointer to
this newly created ADT.

EarleY_ PNT_STRING_TYPEEarleY _string_create(s)

char *s;

This function creates an string ADT, sets its value to s, and returns a pointer to
this newly created ADT.

voidEarlcY _int_destroy(p)
EarleY_PNT_INT_TYPE *p;
This function destroys the intcger ADT p.

voidEarle Y _string_destroy(p)
EarlcY_PNT_STRING_TYPE #p;
This function destroys the string ADT p.

int EarleY _INT_VAL(p)
EarlcY _PNT_INT_TYPE p;
This macro retwms (he integer stored in the integer ADT p.

char*EarlcY _STNG_VAL(p)
EarleY _PNT_STRING_TYPE p;
This macro retums the character string stored in the string ADT p.

8.6. Accessing the Tag of an ADYT

An ADT is a tagged daia structure (sce Scction 5.1). This wag identifies the type of the
ADT. To access the tag the following macro may be used:

EarleY _TAG_TYPEEuarleY_TAG_OF(p)
EarlecY_MEM_TYPE p;
This [unction retums the tag ofan ADT. EarlcY_TAG_TYPE are the following:

EarleY _xdeqg_tag
EarleY _node_tag
EarleY _pair_1ag
EarleY _tail_tag
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EarleY_int_tag
EarlcY_string_lag

8.7. earley SEM_VAL Macro

Every parser generatcd by PEG has an unique semantic ADT defined for it. This ADT is
used to handle the attributes of the symbols of the grammar during parsing. The attributed
derivation graph gives Lhe user access Lo these auributes. For each parser generated by PEG a
"earley_SEM_VAL’ macro is defined. This macro retums a pointer to the union of attributes for
a node in the derivation graph (see Section 4.3). For example, if the user wanted to access the
attributes of a terminal node "anode’, then the following code would suffice 1o get a pointer 1o the
union structure of this terminal node:

earley_sem_typeunion_p;
union_p = earlecy_SEM_VAL((carlcy_SEM_TYPE) EarlcY _pair _get_right_element(anode));

Notice that the macro name starts with the string ‘earley’. If multiple parsers are linked
together then cach parser will have its own macro, and lype, for accessing the attributes of the
nodes ol its derivation graph. Therclore, this macro name is not static (see Section 6.3).

8.8. Derivation Graph Manipulation Routines

The following routines arc provided Lo manipulate the unattributed derivation graph that is
wrilten Lo a file (sce Section 4.10):

voidEarleY _initialize_parsc_graph_routines()

If the derivation graph is to be manipulated from a different executable than the
parscr, lhen this routine must be called before any other graph manipulation
Foutine.

struct EarleY _graph_info EarleY _recreate_parse_graph(file)
char #file;
typedel struct EarleY_graph_info {
int Lokens_parsed:
EarlcY _NODE_TYPE graph;
)i
This routine reads in the unauributed derivation graph from a file and builds the
data structures necessary to store the graph. The structure returned by this
routine holds the number ol Wkens that were parsed, and the derivation graph.

voidEarleY _display_parse_graph(p)
EarleY _NODE_TYPE p
This routine prints out the unauributed derivation graph whose starting node is p.
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9. Performance of PEG Parsers

In this section statistics about the parse times of some parsers generated by PEG are given.
The objective is Lo give somce idea of the time complexily of this implementation. [n particular,
the objective is to verify that this implementation’s timing behavior is no more than O(?),
because Earley’s Algorithm is, in general, a O(n®) parsing algorithm (see Section 3.3). These tests
were done on a Sun SPARC-2. All the parsers were created using the -PARSEQ’ flag (see
Section 4.10). Grammars G9.1 and G9.2 are the grammars of Section 6.1 and Section 6.2
respectively. Grammars G9.3 and G9.4 are waken from Earley's thesis. Notice, G9.3 is a very
ambiguous grammar, and G9.4 is lookahead 2.

Grammar G9.3

S —» 4 | a § a

Grammar ¢9.4

The tables and graphs on the following pages give the statistics of the timings displayed by
the parscrs bascd on the above four grammars. All the times are in seconds and were obtained
using the time command available under the UNIX operating system (the user and system times
were added o get the figures given in the wibles). Note that superseripts in the String column of
the tables arc used to indicaled repetition of a character string. For example, [3+]2%° means that
the string '3+ is repeated 250 times in the input, and 339 means that the string '3’ is repeated
250 times in the input. Each Figure consists of two graphs, one for the parser using a lookahead
of 0, and the other for the parser using & lookahead of 1.



Universal Parser GGenerator -61- Section 9,

Table 1 (Lookahead Q)

Grammar String Time
Gl [3+]1253; 1.9
Gi [3+]2503; 3.7
Gl [3+]3%03; 72
Gl [3+]10003; 14.9
G2 3504+ 2.3
G2 3500 44 4.5
G2 3 O gy 90
G2 3200 Gy 18.2
G3 ab!62¢ 1.1
G3 ab32%c 2.3
G3 ab®2¢ 5.5
G3 abt?#82¢ 14.1
G4 as! 0.2
Ga at3 0.8

| G4 at? 4.2
G4 al?? 227
Table 9.1

Parse Times (Lookahead ()
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Table 2 (Lookahead 1)
Grammar String Time
Gl [3+]1253; 23
Gl [3+]2303; 46
Gl [3+]5%03; 9.1
Gi [3+]10003; 18.1
G2 3204+ 2.7
G2 3500 4+ 55
G2 3 W00 gy 10.9
G2 32000 gy 219
G3 ab16%¢ 1.3
G3 ab’22¢ 29
G3 ab®2¢ 6.6
G3 ab!282¢ 15.8
G4 a?! 0.2
G4 atd 0.9
G4 a% 46
G4 al™ 249
Table 9.2

Parse Times (Lookahead 1)
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G9.1 (Lookahead 0)

Section 9.
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Figure 9.1: Performarice of Grammar G9.1
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G9.2 (Lookahead ()
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Figure 9.2: Performance of Grammar G9.2

(9.2 (Lookahead 1)
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G9.3 (Lookahead )]
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G9.3 (Lookahead 0)
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Figure 9.4: Perlformance of Grammar G9.3 (Square Root of Parse Times)
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G9.4 (Lookahead 0)
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Figure 9.5: Perlformance of Grammar G9.4
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G9.4 (Lookahead 0)
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Figure 9.6: Performance of Grammar G9.4 (Square Root of Parse Times)

G9.4 (Lookahead 1)

5 : : f

4.5

3.5 _ ................. e ................... ....................................... _

1.5 O Pl . P . PR

o
Lh
T

0 40 60 80 100 120 140 160 180

String Length



Cube Root of Parse Time (Seconds)

Cube Root of Parse Time (Seconds)

Universal Parser Generator -69- Section 9.
(9.4 (Lookahead ()
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Figure 9.7: Performance of Grammar G9.4 (Cube Root of Parse Times)
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For Grammars G9.1 and G9.2, the parsers arc linear. This result is not surprising because
these two grammars are unambiguous, and Earley’s Algorithm is O(n) for most unambiguous
grammars. Figures 9.1, and 9.2 give the graphs for Lhese two parsers.

The parser for Grammar G9.3 is also linear. The graphs of this parser are displayed in
Figure 9.3. Note that Figure 9.4 shows that the parser has a better performance than O(n?). This
result is surprising because Grammar G9.3 is highly ambiguous. However, this result is the same
as the one obtained by Earley in his thesis for this grammar.

The parser for Grammar G9.4 is O(n?). The graphs for this parser are given in Figure 9.5.
The graphs of the string length versus the square root of the parse times are given in Figure 9.6,
confirming the conjecture that this parser is O(n?). Note that the graphs given in Figure 9.7 show
that the parser definitely has a better performance than O(n?). Again, this result is exactly the
same as obtained by Earley for this grammoar.

As the above results show, using a lookahcad of 1 actually improves the order of the timing
behavior of the parsers. In fact, there are grammars [or which using a lookahead is necessary ©
get O(n) timings. Onc type of grammar that deserves special mention is a right-recursive
grammar. Consider Grammar 9.5. I a PEG parser is created based on Grammar 9.5 using a
lookahead of 1, then the parser has timing O(n). Howcever, if no lookahead is used then the parser
for Grammar 9.5 has timing between O(n?) and O(n3).

S—alasS

Grammar 9.5
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This section gives
specification file for PEG.
LEX generated lexical ana
of PEG, there arc scmantic
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a pseude YACC specification for the structure of the grammar

The regular cxpressions that are used to identify the tokens, by the
lyzer, are also given (as comments). In the actual YACC specification
actions attached to the productions; these semantic actions are omiued

from Lhe listing given here.

%¥token
%Ftoken
%token
%token
$token
ttoken
%token
stoken
ttocken
%t oken
stoken
%token
%token
%token
ttoken
ttoken
ttoken
itoken

gram_st

QR /* ¥ W =/

LB /i’ |'|<" -k/

RB /* Il>!l */

ZERQ /* "Qnu */

SEMI /* w,wn =/

COLON /* 'm.uw =/

PERCENT /% mwgn =/
DELIMIT /* U"as" =/

TOKEN /=~ " token"™ */
TYPES /* “stype" */
START /* "4start" */
UNION /* "SJunion®™ */
TSIZE /* "%termtable! */
NSIZE /* "“nonttable" */

TOKEN_ VAL /* [1-9] [0-8]+ */
LOOKAHEAD /=~ "“$lookaheag" */
C CODE /7% "{C language codel}™ */
[a-zA-z] (_ [a-zA-Z20-9])] (a-zA-20-9])* =/

ICENT /»

art:

tables start_sym look union tckens nont_types
header_code DELIMIT production_set user_routines

I

tables:

’

table d
|

table d
I
|
!

’

table defs

table def

efs:

ef:
NSIZE
TSIZE
NSIZE

TSIZE TOKEN VAL NSIZE TOKEN VAL
TOKEN VAL TSIZE TOKEN VAL
TOKEN VAL

TOKEN VAL
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tokens: tokens TOKEN types IDENT TOKEN_ VAL
| TOKEN types IDENT TOKEN VAL
| tokens TOKEN type tokens
| TOKEN type tokens

’

type tokens: types name_list

+

nont_types: nont_type
l

t

nont type: nont_type TYPES LB IDENT RB name_list
| TYPES LB IDENT RB name 1list

2

name list: name_list IDENT
[ IDENT

+

types: LB IDENT RB
|

’

look _union: lookahead union_type
| union_type lookahead
| lockahead
| unicn_ type
|

‘

start_sym: START IDENT
|

lookahead: LOOKAHEAD TOKEN VAL
i LOOKAHEAD ZERO

Fl

union_type: UNION C_CODE

¢

header code: PERCENT C_CODE
|

r
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production_set: production_set production_item
| production item

*

production_item: lhs COLON rhs SEMI

’

lhs: IDENT

7

rhs: alternate OR rhs
| alternate

2

alternate: nonnull alt sem_action
I null alt sem_action

’

nonnull zlt: nonnull alt neonnull item
| nonnull_item

nonnull item: IDENT
null alt:

’

sem_action: C_CODE

user_ routines: DELIMIT C CODE
| DELIMIT

!

B

o
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11. Conclusions

Most automaltic parser generators generate parsers {rom CFG specifications provided by the
user. Usually these parscr generators arc based on LL(k) or LR(k) parsing algorithms. These
parsers generators exhibit the disadvantages that are inherent in the parsing algorithms on which
they are based. For cxample, ambiguous and cyclic grammars cannot be parsed by these
algorithms. Furthcrmore, a parser gencrator based on LL(k) or LR(k) algorithms cannot parse
CFGs that are lookahcad greater than k.

Earley’s Algorithm is a general parsing algorithm capable of parsing any arbitrary CFG. A
parser generator based on Earley’s Algorithm is a very powerful tool. In particular, the
implementation discussed in this paper (PEG) is powerful because of the folowing reasons:

¢ PEG cun creale parsers {rom any arbitrary CFG of any lookahead, including
cyclic and ambiguous grammars. Therelore, the programmer can write a
grammar that is most natural 10 him/her and not have 1o change it in any way.

¢ Dclerred semantic actions cnable PEG 1o create parsers from non-LR(k)
grammars that have an unbounded lookahead.

e A derivation graph is created during the parse and made available to the user.
This derivation graph is u factored representation of all the possible derivation
trees of a string under a CFG.

s Syntactically extendible languages can be implemented, by adding and deleting
productions it cxecution ime,

PEG is a parser gencrator that allows scmantic actions to be embedded within the CFG
specification. In that respect it is similar 10 YACC. However, PEG generales parsers that are
fundamentally different [rom the parsers that YACC produces. As with any new tool, the real
validation for PEG will come from the users as they experiment with applications that are made
possible with this new parser generaior,
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