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ABSTRACT

When using random clone overlap based methods to make DNA maps, fragment matching mistakes,
the incorrect matching of similar length restriction fragments, are a common problem that produces
incorrect maps. This technical report discusses techniques for fragment splitting and fragment combining,
which attempt to correct maps containing a fragment matching mistake, given that the lecation of the mis-
take is known. These techniques are based on aperations that decompose and merge virtual fragments (a
collection of matched real fragments), add virtual fragments to existing groups in the map and insert virtual
fragments between existing groups in the map. Examples of applying these techniques to both contrived
and actual DNA maps are presented.
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1. Introduction to the Fragment Splitting Problem

1.1. An Overview of DNA Mapping

DNA is the genetic material which supplies the blueprint for an organism’s development. A DNA
molecuie is composed of nucleotides, with each nucleotide consisting of a sugar, a phosphate, and a
"base". There are four bases: A (Adenine), T (Thymine}, C (Cytosine), and G (Guanine). Nucleotides are
distinguished by the base they contain. Sugar-phosphate bonds bind the nucleotides into strands, and a
base on one strand can “pair* with a base on another strand. However, only certain base pairings are
allowed: A bonds with T, and C bonds with G. Thus, A and T are known as complementary bases, as are
Cand G. A DNA molecule is made of two complementary DNA nucleotide strands bound together by this
base pairing, the base sequence on one strand determining the complementary sequence on the other strand.

DNA restriction mapping -deals with determining the positions of specific sites of interest along a
given DNA strand, or genome, The sites of interest are called restriction sites, and consist of a specific
subsequence of DNA, often six nucleotides long. These restriction sites are recognized by specific
enzymes, known as restriction enzymes; a restriction enzyme cleaves (or cuis) DNA that it encounters at
exactly these restriction sites. Thus, a restriction enzyme reacting with a strand of DNA will produce frag-
ments of DNA whose lengths are exactly the distance between two successive restriction sites along the
original DNA. The process of electrophoresis can be used to measure the approximate lengths of these
fragments, which are known as restriction fragments. If it were possible to (a) identify each restriction
fragment present in the genome, {b) determine the length of each restriction fragment, and (¢) determine
the order of the restriction fragments in the genome, then it would be possible to construct the map of the
restriction sites.

The mechanism for obtaining this information is somewhat indirect. Ordering of the restriction frag-
ments is achieved by fracturing multiple copies of the original DNA at random positions to produce ran-
domly overlapping strands of DNA, known as clones. Each clone is digested by the restriction enzyme (of
interest), and electrophoresis is used to determine the Iengths of the resiriction fragments within it. This list
of restriction fragment lengths is known as the fingerprint of the clone, Overlap beiween the clones is
inferred based on the similarity of the fingerprints of the restriction fragment lengths, and the order of the
clones is inferred based on multiple clone overlap. As overlap between the clones is inferred due to a
significant number of restriction fragments of similar (within measurement error bounds} lengths, the exact
order of the restriction fragments within each clone may remain unknown; only the relative (partiat) order
of large groups of fragments may be inferrable. As more clones are found to overlap a specific region of
the original genome, the random positions of the clone ends are used to refine the original partial order (of
the restriction fragments} by reducing the size of the groups for which the fragment order is unknown.

This process of DNA restriction mapping is analogous 1o solving a large jigsaw puzzle. However,
the uncertainty of where a clone should be placed can be significant, due to measurement error (produced
during electrophoresis), experimental error (produced during cloning or digestion with the restriction
enzyme), and certain biological properties of the DNA being mapped (e.g., two fragments of the same
length do not necessarily contain the same sequence of nucleotides). When putting together a jigsaw puz-
zle, the pieces of the puzzle have several cues (shape, color, patlern on the surface) which can be used to
guide their ultimate positioning in the final solution. In DNA restriction mapping, the clones have no shape
or color, but the fingerprint information can be viewed as a "pattern” to be matched against potentially
overlapping clones. The objective is 1o find a consistent positioning of clones with respect to one another
in which fragments in different clones can be identified with one another while all fragments of each clone
remain contiguous and no "gaps" or unpaired fragments are present internally. There may be multiple
"soluticns" to this restriction map puzzle, and the one (or ones} which is most compact is preferred.
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1.2, Some Details of DINA Mapping

This section presents a more in-depth discussion of the process described in the previous section.

1.2.1, Data Collection

The type of data considered in DNA mapping is the fingerprint clone data. Prior to any mapping, the
original genome to be mapped is duplicated using traditional biological means. Then, the DNA is ran-
domly cleaved into smaller sections by partially digesting it with a restriction enzyme; this produces ran-
dom clone inserts. The partial digestion process causes different copies of the DNA 1o be cleaved at some
(randomly selected) restriction site, but not all restriction sites. This tends to produce clone inserts which
have random overlap with one another. These clone inserts are then inserted into a biclogical organism
known as a lambda phage. The size of these inserts is limited to roughly between 10,000 and 25,000 base
pairs (bp); these length restrictions are caused by the packaging mechanism used by the lambda phage.

The combination of the lambda phage and the inserted DNA is known as a clone.

During the creation of this initial biological data, enough lambda clones are created so that a redun-
dancy of approximately five is produced, i.¢., any region of DNA from the original genome is likely to
appear in about five clones. Since the inserts of DNA are the result of random cleavings, each insert may
or may not contain some overlap with another insert from roughly the same region. This overlap may
range from partial overlap, where each insert contains DNA besides the region of overiap, to total over-
lap, where one insert is simply a subsection of another. The success of DNA mapping depends on the fact
that the clones contain these overlapping regions of DNA, It is this overlap which will allow the clones to
be rejoined in the order in which they existed in the original genome.

After the clones are formed, further processing is done on them. First, the clones are separated by a
multi-level dilution process, and colonies resulting from a single clone are grown to produce enough DNA
for subsequent processing. For each clone, the clone DNA extracted from this angmentation process is
completely digested by a restriction enzyme (the restriction enzyme being mapped), producing fragments
of DNA called restriction fragments. The lengths of these fragments (in base pairs) are then measured
using electrophoresis gel technology. Upon placing an electric current through an agarose gel in which
DNA fragments have been placed, the fragments will migrate down the gel. It is easier for smaller frag-
ments to move through the gel than larger ones, so the fragments arrange themselves in order of decreasing
length. This creates lanes of DNA fragments in which bands of DNA of the same length have migrated to
the same position on the gel. After staining the gel, these bands can be detected and their positions on the
gel determined. Reference lanes, containing DNA fragments of known length, also are present on the gel.
Using the positions of the bands present in these reference lanes and the process of interpolation, it is possi-
ble to estimate the lengths of restriction fragments in the data lanes. Unfortunately, electrophoresis tech-
nology is incapable of accurately detecting fragments whose lengths are cutside the range of 400 bp to 7.5
kilobase pairs (kb). However; since the majority of the restriction fragment length data falls in this range,
this is not a serious problem.

There are (at least) two sources of error which create uncertainty about the data produced by electro-
phoresis. The first is the classical problem of measurement error. From experimental evidence, there is
approximately a 3% error window around the true length of the fragment, 1.5% on either side of the actual
length. Because of this, a fragment which is 1000 bp in length may be measured anywhere from 985 bp to
1015 bp. The second deals with determining the muitiplicity of fragments of similar length. Two frag-
ments of identical or nearly identical length will migrate to the "same” location on the gel. Thus, it is pos-
sible for two (or three, or four, etc.) fragments to be in the same band when the gel is stained. If this is not
taken into account, the list of fragment lengths will not accurately reflect the number of fragments which
exist in the clone. It is possible but difficult to identify this situation. The intensity of the stained DNA
bands should decrease along the expanse the gel, due to the fact that there is less DNA material to stain in
smaller {ragments. Deviation from this expected intensity distribution can be used to estimate the number
of multiple restriction fragments present in a band.
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Both of these sources of error complicate the process of DNA mapping. If something will not map
together, but there is a high likelihood that it should, it is possible that data extracted from the gel were
incorrectly handled in the data gathering process. By going back and examining the original gel, the incon-
sistency may be explained and/or resolved.

1.2.2, Mapping Two Clones Together

The reason that clone data can be used to create a map of a genome is the fact that fragments which
come from a single clone must be contiguous in the original DNA sequence. Given just one clone, it is
impossible to know the ordering of the fragments within it; it is simply known that they are contignous in a
certain region of the original DNA. A maore refined view of that area can be created by considering other
clones which are suspected to overlap the same region. Consider one clone with fragment lengths {5000,
4000, 3000, 2000, 1000} and another with fragment lengths {6000, 5000, 3000, 2000, 1000, 900, 800}.
Since these two clones share four fragments of the same lengths (5000, 3000, 2000, and 1000), it is highly
probable that they are partially overlapping clones from the same general region of the original DNA.
However, it is impossible to be sure these two actually do overlap without doing more biological work.
Simply because they contain four fragments of the same lengths is no guarantee that they actually overlap,
since two fragments of the same (apparent) length are not necessarily the same fragment. One of the ways
that this is taken into account while mapping is to require multiple apparent overlap before assuming an
actual overlap is present. Often, the minimum number of fragments which must seem to overlap (before
actual overlap is inferred) is taken to be four. This increases the probability that the two clones actually
share some region of the underlying genome.

Returning to the example, it is known that the five fragments in the first clone are contiguous (in
some order). Similarly, the seven fragments of the second clone must be contiguous. This is all that can be
determined from examining the clones independently of each other. However, more information can be
extracted by examining the two clones in concert.

The four fragments which overlap also must be contiguous. This means that each clone can be
divided into two sets, one set containing the fragments which overlap and the other set containing all the
remaining fragments in the clone. In the first clone, these two sets are {4000] {5000, 3000, 2000, 1000},
while in the second clone they are {5000, 3000, 2000, 1000} {6000, 900, 800}. Since each of the two
clones contains an overlapping region with the other clone, it is possible to fit the two back together into
one partial sequence. This sequence is:

{4000} {5000, 3000, 2000, 1000} {6000, 900, 800}

Second clone

This ordering contains more information than either of the original two clones provided. Namely, it
is now known that there is a restriction site 4000 bp in from one end of the first clone. Similarly, there is a
restriction site 7,700 (6000 + 900 + 800) bp in from the other end of the of the second clone, The informa-
tion about this particular region of the genome is still refatively unrefined. It is known that there are three
sets of fragments, with one fragment in the first set, four fragments in the second set, and three in the last
set. These subdivisions, or sets, will be referred 10 as groups. 1tis known how the three groups are posi-
tioned in relation to each other. It is not known, however, what the exact ordering of the fragments is in
any one of the groups. To gain a higher level of refinement, more clones would need to be added to the

map.

The previous example is a trivial one. It ignored many of the problems which can occur while map-
ping, but its intent was to provide a first level of understanding about the basic process. With that under-
standing, it is possible to approach the mapping of 2 more complex, more realistic example.
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1.2.3. Mapping a Set of Clones

Figure 1 presents a set of clones suspected of coming from the same region of the genome. The frag-
ment lengths of each clone are sorted from longest to shortest, but this is for convenience only. Prior to
mapping, no knowledge about the ordering the fragments in any of the clones is known.

The first consideration is to determine which two clones should be mapped together initially. This is
one area where intnition and experience are useful. A poor choice will result in problems with mapping
later clones. Although intuition plays a large role in this initial choice, there are some guidelines which
may be followed. One of the easiest is to make the initial choice based on the number of fragments in the
clones, starting with the two clones which have the most fragments. In this case, these are Clones #1 and
#3.

One way to approach clone-clone mapping is to scan through the fragments of each clone searching
for a match (i.e., two.fragments-whose lengths are within 3% of each other), starting with the largest frag-
ments first. Using thig approach, the first match discovered between Clones #1 and #3 would be 6198—
6109. (Although not the same length, the two fragment lengths are within the 3% error window.) After
creating a match with two fragments, neither fragment is available for subsequent matches. Having paired
6198 with 6109, the process of scanning for matches continues in the two lists of fragment lengths. 4082
and 4087 are within 3%, so they are matched. Next, although there is a fragment of length 1614 in Clone
#1, there is no corresponding fragment in Clone #3, Thus, 1614 does not match with anything, It is possi-
ble to use the ordering of the fragments by size to cut down on the amount of work performed in finding a
match. If 1614 is under consideration, as soon as a fragment smaller than 1614 is found in the second
clone (keeping in mind that "smaller than" must take into account the 3% window), no further searching for
a match to this fragment is required. In this example, the search for a match for 1614 can stop as soon as
the fragment 1139 is seen in Clone #3,

As with 1614, 1592 is unable to match with anything in Clone #3. This means that the next match
that does occur is fragment length 1150 with fragment length 1139, This is followed by matching 1092
with 1078, and 637 with 630. There is now only one fragment lefi to examine in Clone #1 and two left to
consider in Clone #3. The fragment with length 513 is the only unexamined one in Clone #1. The problem
with matching it is that there are two possible matches. It might match with 527, or it might match with
515. Both are within the 3% error window. (A dual match like this is referred to as a similar match.) The
513—3515 match might be considered "better” since there is just a two base pair difference in these lengths,
whereas there is a fourteen base pair length difference between 513 and 527. Consequently, 513 is chosen
to match with 515, and 527 remains unmatched.

Since there are no more fragments to consider, the mapping of Clone #1 with Clone #3 is complete.
There is now a matchlist (i.e., 6198—6109, 4082—4087, 11501139, 1092—1078, 637—630, 513—

#1 #2 #3 #4 #5
6198 8567 6109 8644 4087
4082 7605 4087 6110 1085
1614 1605 1139 1600 529
1592 1586 1078 1573 517
1150 1139 630 1146 406
1092 623 527 72—

637 = eemeeaee 515 ———————-

513 e

Figure 1: Set of clones to map
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515) which describes the matches which exist between the two clones. It is also known which fragments
in each clone did not pair. Using these data, the two clones can be put together as shown in Figure 2. Itis
no longer proper to call this finished structure a clone, since it is not that anymore. The term map unit is
used to refer to the result of a mapping, such as this one. Map units can be formed from mapping (or fus-
ing) any two structures together: two clones, a clone with an existing map unit, or two map units. Map
units generally contain more structure than the objects used to produce them. Note that it is always possible
to identify a contiguous sequence of groups in a map unit which corresponds to an individual clone, as Fig-
ure 2 illustrates, because the fragments present in a clone must always remain contiguous.

In a map unit, some of the fragment lengths are not the lengghs of the original fragments present in
the clones. Instead, they are the average lengths of the fragments which matched. To emphasize this dis-
tinction, the term virtual fragment is used to describe a fragment which is the result of some maiching.
This is in contrast to real fragments, which are the actual fragments in the clones. The distinction often is
irrelevant, and the blanket term fragment is used in most cases. The notation vf <rf1,...,7f s> is used to
denote a virtual fragment composed of the real fragments rf.1, . . ., #f . Given two different map units
consiructed (in different ways) from the same set of clones but-containing a different number of fragments,
the map unit containing the fewer number of fragments will be considered more compact than the map unit
containing the larger number of fragments.

Now that the first two clones are fused, it is time o map the remaining ones. Both #2 and #4 have
the same number of fragments, so either could be considered next. In this example, Clone #4 is chosen to
continue the mapping process with the map unit just produced (Figare 2). This mapping will not be
presented in as much detail, but the same ideas as previously presented are being followed. The 1614 and
1600 match, as do the 1592 and 1573. Continuing, the 6154 and 6110 malch, as do the 1145 and 1146,
and the 634 and 632. The map unit, as it now stands, is shown in Figure 3.

Clone #2 is chosen as the next one to add. The fragments with lengths 8644 and 8567 match. Other
matches are 1607—1605, 1583--1586, 1145—1139, and 633—623. Figure 4 shows the current state of
the map unit being produced from the original set of data.

Finally, the last clone (#5) is added to the map. The 4085 and 4087 match, the 1085 and 1085 match,
the 514 and 517 maich, and the 527 and 529 match. The final completed mapping of these five clones is
shown in Figure 5.

New clones can be incorporated into a map unit in two ways, i.e., by extension or by assimilation.

An extension has occurred if the number of fragments in the resulting map unit is greater than the number
of fragments in the previous map unit, i.e., some fragment of the clone extends beyond the boundaries of

clone #1

clone #3

1=
<
e v]
wn

Figure 2: Map unit produced from mapping Clone #1 and #3
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Figure 4: Clones 1, 2, 3,and 4
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Figure 5: Completed mapping of clone set

the original map unit. Each one of the clone incorporations performed in the previous example was an
extension. An assimilation has occurred if the number of fragments in the resulting map unit is equal to
the number of fragments in the previous map unit, i.e., every fragment in the clone matched with an
already existing fragment in the original map unit. In the previous example, the sequence of clone incor-
porations was <#1, #3, #4, #2, #5>, If instead, the order had been <#1, #3, #2, #4, #5>, then clone #4
would have been incorporated as an assimilation instead of as an extension.

It might be possible to incorporate a clone into a map unit in more than one way. Such a situation is
referred to as ambiguous. As an example, assume that there is a sixth clone, Clone #6 with fragment set
{6142, 4081, 1115, 629}, which is suspected to be from the same region of the genome as Clones #1
through #5. This new clone can be assimilated into the map unit shown in Figure 5. In fact, it can be
assimilated in two different ways. The two possible matchlists are (631629, 6139—6142, 4085—4081,
1085—1115) and (11441115, 631—629, 61396142, 4085—4081). Both of these are topologically
feasible, and the corresponding map units are shown in Figure 6.

The structure of these two map units is significantly. different. For instance, the map unit in Figure
6(a} contains one more group than the map unit in Figare 6(b). Also the map unit in Figure 6(a) restricts
fragment 1144 to be adjacent to the group containing fragments 1584 and 1606, whereas the map unit in
Figure 6(a) does not. Making a decision now about where a fragment must reside (when the decision is
clearly in question) can have significant ramifications to the incorporation of subsequent clones not yet
introduced. In such a case of ambiguous incorporation, a conservative approach is taken. That approach is
to defer the incorporation of the clone, putting it aside to be addressed later. It is possible that the subse-
quent incorporation of other clones may add enoungh structure to the map unit that the deferred clone can be
unambiguously incorporated later.

There are several forms of ambiguity. External ambiguity occurs when it is possible to incorporate
a clone into a map unit in distinctly different regions (i.e., sequence of groups) of the map unit. Internal
ambiguity occurs when the clone can be incorporated in the same region in a number of different ways.
There are two forms of internal ambiguity. The first is similar match ambiguity, which occurs when mul-
tiple matchlists allow map units of different structure to be constructed. This is illustrated by the example
associated with Figure 6. The second is subset ambiguity, which occurs during assimilation when a clone
is assimilated into a single group of a map unit and the fragments of the clone are a proper subset of the
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{a)
matchlist (631—-629, 6139-6142, 40854081, 1085-1115)

#l

I
!
!
[
- | #4
I
|
|
i

o
et
o~
=

{b)
matchlist (1144-1115, 631-629%, 6139-6142, 4085-4081)

Figure 6; An ambiguous assimilation

fragments of the group, As an example of this type of ambiguity, assume the state of clone mapping is as
depicted in Figure 2, i.e., only Clones #1 and #3 have been incorporated. Consider attempting to incor-
porate a new Clone #7, having fragment lengths {6158, 1151, 1079, 638). This clone assimilates within
the middie group of the map unit with matchlist (6154—6158, 1145—1151, 1085—1079, 634—638).
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Even though there is no fragment confusion involved, there are four different map units which can be con-
strucled, as shown in Figure 7. Each of these map units represents a significantly different set of underly-
ing realities, and none of the map units are compatible with one another.

This example was complex enough to demonstrate the general nature the DNA mapping process. At
first glance, DNA mapping may not appear to be a complex problem. However, the uncertainty about the
validity of the fragment length data along with the problem of determining the order in which a set of
clones should be mapped together make the procedure a difficult one to automate effectively.

1.3. Important Properties of Map Units

In this section, some properties of map units that are particularly important for fragment splitting are
discunssed.

Recall that a virtual fragment is a set of real fragments, each real fragment coming from some
specific clone. The active clone set (or ACS) of vf is defined to be the set of clones from which the reat
fragments composing vf come, All virtual fragments within a particular group have the same ACS. This
is & result of the way that clone overlap is used to build map units. Thus, the ACS of a group is defined 10
be the ACS of any of the virtual fragments contained in the group, [ACS(x) denotes the ACS of an object
x]

Using the style of map unit building described in §1.1 and §1.2, it is impossible for two different
groups in 4 map unit to have the same ACS. This is a result of the way clone overlap is used to build map
units and the fact that ambiguous mappings are not used. (The fact that mappings with subset ambiguity
are not used is particularly important.)

1t is assumed that all clones used in mapping contain two or more fragments, because, for the most
part, clones containing less than two fragments are not useful. The primary reason is that regardless of the
minimum required overlap, a clone with less than two fragments cannot refine the fragment ordering of a
map unit upon fusing., Another reason that clones with less than two fragments are not useful is related to
the fragment overlap requirement used during mapping. In order to fuse a clone with a map unit, the
rnumber of fragments that match must be above some predetermined threshold x. IF this is the case, a clone
with Iess than x fragments can never be fused with a map unit. Thus, all clones with less than x fragments
can be discarded before any mapping occurs. So given a map unit m created using the threshold x, one
knows that all clones in m contain at least x fragments. Thus if the threshold is more than one, no clones
with less than two fragments are ever fused into the map unit. Using a threshold of one is possible, but it is
very impractical, Consequently, in this paper, it is assumed that the threshold is high enough so that no
clones with less than two fragments are used in the mapping process.

1.4. The Fragment Matching Mistake

This section attempts to expose, by example, the fundamental fragment confusion error that often
occurs during mapping, for which a fragment splitting algorithm is needed to resolve. Consider the simple
case in which two clones are being considered for possible overlap. In this situation, the primary criterion
for determining whether the two clones actually overlap is the maximum namber of real fragment matches
that can be constructed from the fingerprints of the two clones, i.e., the apparent overlap between the two
clones. If this tumber is greater than or equal to some predetermined threshold (four is a typical value},
then actual overlap is declared and the real fragment matches are used to produce virtual fragments within
the resulting map unit.

It is natural to use the matchlist containing the most matches as the best approximation of the true
overlap relationship between the clones. In this situation there is usually no reason to believe that a partic-
uiar match is incorrect, since the desire is to produce the most compact map possible, given the data. How-
ever, just because two real fragments match (within 3%} does not imply they do actually come from the
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{a}

{b)

{cl

{d)

Figure 7: Subset ambiguity

exact same section of the original genome. A fragment matching mistake can occur when two real
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fragments of similar length occur in the genome roughly one clone length apart. Consider the example
llustrated in Figure 8.

The top horizontal line in Figure 8 represents a section of a genome. The middle horizontal line indi-
cates the portion of the genome that Clone ¢ spans, and the boitom horizontal line indicates the portion of
the genome that Clone ¢, spans. The small vertical lines on all of these horizontal lines represent restric-
tion sites for the restriction enzyme being mapped. A number between two restriction sites indicates the
number of base pairs between those two restriction sites, i.¢., the length of the restriction fragment.

Given that Figure 8 represents reality, Figure 9 gives two fingerprints that might be obtained from gel
elecrophoresis with Clones ¢ and ¢, (Some random measurement error has been introduced.) Note that
there are two different fragments of length 700 roughly one clone length apart which have the potential to
be confused with each other. The two fragments that are of primary concern are labelled f; and f ».

It is the data in Figure 9 that is used to determine if Clones ¢ and ¢ 2 overlap. The maximum size
matchlist is: (505--497,610—601,705—692,912—902,1021—1002). (In this example the maximum size
matchlist is unigue, but in general there may be more than one maximum size matchlist,) There is no infor-
mation available to indicate that real fragments f; and f» do not come from the same position of the
genome, and thus should not be matched. Thus this maximum matching would be used to form the Map
unit m in Figure 10, where f; and £, are incorrectly matched together to form a virtual fragment of length
699,

Suppose that the mapper suspects that there is something wrong with m, and in particular with the
virtual fragment vf <f |,f2>. If the mapper suspects that vf <f ,f 2> is the result of an incorrect match, he

1 1 1 1 1 1 1 3
5 71 2650 9 5 6 4 7 0
0 00 0000 0 O 0 0 0 0
6 00 0000 O O 0 0 0O 0
genome \/\l I T A | l [ 1 L~
fy

¢ N N I I S

1)
2 [ T | I [

[¢F] Ca
505 497
610 601

705 (fy) 692 (f2)
912 902
1021 1002
1111 1411
1223 1523

1630

Figure 9: The fingerprints of the clones in Figure 8
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Vf<f1,f2>
1 1 l 1 i 1 1
1 2 S 6 6 9 0 4 3 6
1 2 0 0 9 0 1 1 2 3
1 3 1 6 9 7 2 1 3 0

[ 1 1 | I |

!

Figure 10: Map unit built from the fingerprints in Figure 9

or she would want 1o decompose, or split, it into two virtual fragments, in order to undo the effects of the
incorrect match. The only way to split vf <f |,f 2> is to create virtual fragments vf <f 1> and vf <f2>. In
the process of splitting this virtual fragment, vf <f |,f 2> is taken out of the map unit, and the resulting frag-
ments, vf <f 1> and vf <f »>, must be incorporated in some manner. The appropriate place to put a virtual
fragment vf is in a group whose virtual fragments are composed of real fragments from the same set of
clones as vf. Thus, vf <f > is placed in, or added to, the leftmost group, since both have an ACS of {¢,].
Likewise, vf <f 2> is added to the rightmost group, since both have an ACS of {¢,}. These modifications
produce the map unit given in Figure 11. Note that this map unit corresponds to the underlying reality.

The previous example is very straightforward. A slightly more complicated example is now
presented. Suppose Figare 12 represents the underlying reality. Figure 13 gives possible fingerprints for
the three clones. (Again, random error has been introduced.) Fusing Clones ¢ and c first, followed by
Clone ¢ 3, produces the Map unit m given in Figure 14. When ¢ and ¢, are fused, £, incorrectly matches
with f,. Because of this, when Clone c 5 is fused, any matchlist that matches f 3 with vf <f 1.f 2> will not
be topologically valid. Thus, any successful fusion of ¢3 does not maich f 3 with vf <f (,f 2>.

Suppose that the mapper suspects that vf <f1,f 2> in m needs to be split. As in the previous exam-
ple, there is only one way to split vf <f 1,f 2>. After vf <f1,f 2> is removed from m, virtual fragments
vf <f 1> and vf <f 3> must be incorporated into the map unit. The proper place for vf <f 1> is in the left-
most group of m. As in the previous example, vf <f ;> could be added to the group with an ACS of {c3}.
However, since vf <f 5> was incorrectly matched, one should look for fragmenits that it could have
matched had the mistake not occured. There is a virtual fragment nearby of similar length, namely
vf <f 3>. Thus vf <f 5> is removed from m, and is matched with vf <f o> to make a new virtual fragment,
vf <f 2.f 5. Thatis, vf <f 5> and vf <f 3> are combined o form vf <f 2.f a>. Then the proper place for

vi<f> vi<fy>
l 1 1 1 \L 1 1 1
7 1 2 5 6 9 0 6 4 5 6
0 1 2 0 0 0 1 9 1 2 3
5 1 3 1 6 7 2 2 1 3 0

Figure 11: Map unit resulting from a split and two adds
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1 2 1 1 1 1 2 1 I 11
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00 0 00 0 O 0 0 0 0 0 0 0 O
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Figure 12: Three overlapping clones
Cy Ca C3
598 506 608
741 557 892
989 752 993
1092 904 1091
1292(f,) 1009 1295(f3)
1585 1110 1711
2481 1303(f2) 2103
1605
1707
1913
2113
Figure 13: The fingerprints of the clones in Figure 12
vi<f 1.52> vi<fa>
2 1 1 1 1 1 2 i 1
5 4 1 2 5 5 5 9 8 7 1 69 0 2
9 8 490 9 9 [0 5 1 9 0 0 D9 9 9
g 1 1 8 5 (6 7 3 8 9 8 83 1 5

Figure 14: Map unit built from the fingerprints in Figare 13

vf <f 2.f 5> is in the group with an ACS of {c¢;,c3}. The map unit that resulis is given in Figure 15. Note
that this map unit corresponds to the underlying reality.
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vi<f;> vi<hs, >
1 2 1 1 1 1 1 2 1
52 4 9 1 5 5 9 8 2 7 1 .6 9 0
9 90 8 49 0 9 |0 5 1 9 9 0 0 109 4
§ 2 1 9 1 5 |6 7 3 g8 9 9 8 18§ 3 1

Figure 15: Map unit resulting from-a split, combine and two adds

The two examples presented here are relatively simple. However, even in more complex situations,
the same type of mistake can occur and the same type of actions may help resolve the situation. In the
more complicated situations, a virtual fragment formed by a combination (such as vf <f ,,f 3>) may have
no group to which it could be added. Instead of declaring the attempt to fix the map unit a failure, one
should split this virtual fragment into several virtual fragments and then iry to incorporate these fragments
mnto the map unit. Thas, the original split may lead to a second split, which in turn may lead to a third split,
and so on. This "rippling” effect is an important feature of the algorithm that is 10 be presented.

Thus there are two major issues that mast be confronted:
(1) How does one detect when and where a fragment matching mistake has occured?
(2} How does one "fix" a map unit once a fragment matching mistake has been detected?

Issue (2) will be addressed in this paper. In §2, four basic operations on virtual fragments: add,
insert, split and combine, are presented. These operations form the basis for the General Fragment
Splitting Algorithm (alternatively called the General Splitting Algorithm or GSA), which finds /i map
units that result from splitting a virtual fragment. The GSA is described, primarily through examples, in
§3. However, the GSA is not practical (computationally) and is difficult to implement. To resolve these
problems, the operations in §2 are modified, by introducing the concepts of directionality and operation
bias, to create a new set of operations which form the basis for the Restricted Fragment Splitting Algo-
rithm (alternatively called the Restricted Splitting Algorithm or RSA). The intent of the RSA is to find
only the more desirable map units that result from splitting a virtual fragment, instead of finding all of
them. (Only the RSA has actually been implemented.) The RSA is described, using psuedocode and exam
ples, in §4. Issue (1) will be the subject of a future paper.

2. Basic Operations in the General Fragment Splitting Algorithm

The goal is to develop an algorithm which takes a map unit containing a fragment matching mistake
and generates the map unit {or map units) that would have been built if the mistake had not occured. In
addition, the algorithm should accomplish this without having to start the mapping process from the begin-
ning. The second property is desirable because a large map unit containing many clones can take a long
time to build, and the part of the map unit affected by the fragment matching mistake may be very small in
comparison to the size of the map unit.

Such an algorithm can be built on top of a set of four operations that manipulate virtual fragments
within a map unit: add, insert, split and combine. The following sections describe these operations.
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2.1, The add Operation

Recall that 2 group is a set of virtual fragments in a map unit whose relative order is unknown., That
is, the order of the virtual fragments within the group is unknown. In the examples in §1.4, it can be seen
that when attempting to fix a fragment matching mistake, one may want to place a virtual fragment within a
particular group. This is the purpose of the add operation. The psuedocode for the add operation is given
in Figure 16. {All of the functions and procedures used in the psuedocode are described in Appendix A.)
Add takes a virtual fragment vf and a group g in a map unit ¢ and attempts to place vf in g. However,
one cannot place a specific virtual fragment in an arbitrary group. The placing of vf must not violate cer-
tain consiraints placed on m by the previously inferred clone overlaps.

It was stated in §1.3 that all virtual fragments within a group must have the same ACS. Conse-
quently, the add operaticn succeeds if and only if ACS{vf ) is equal to ACS(g).

If ACS(vf ) is equal to ACS(g), then vf is added to the set of fragmenis contained in g n., (the group
in the newly created map corresponding to g), and the new map unit created is returned. If the ACSs are
not equal, then a special token FAIL is returned indicating that the add did not succeed.

Note that add does not use any of the other three operations: insert, split or combine. Thus add is
called a primitive operation. Operations that use the other operations are called nonprimitive operations.
Also note that add does not change the sequence of groups in the map unit in any way, it merely changes
the contents of one group.

2.2, The insert Operation

The insert operation is very similar to the add operation. With add, a group with the proper ACS
had to exist for a particular virtual fragment. Insen is like an add that creates a (empty) group where the
fragment will be placed. Although neither example in §1.4 required this type of modification to the map
unit, it wili become clear later why such an operation is necessary. The psuedocode for insert is given in
Figure 17.

add(vf,g,m)
VIRTUAL FRAGMENT vi;
GROUP Q;
MAP_UNIT m;

{
GROUP Onew;
MAP_UNIT Mpew;
if (acs(vf) = acs(q))

then
Mpew < M,

Onew <— group_with_acs{acs(g),Mnew);
vis_of(Gnew) «— vIs_of{gnew) L {Vi};
return{Mpew);
else
return(FAIL);
fi

Figure 16: Psuedocode for the GSA version of add
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insert(vf,gies, Gright, M}

VIRTUAL _FRAGMENT vi;
GROUP Gleit.Qrights
MAP_UNIT m;
{
GROUP Qleftnew,Jins,
MAP_UNIT Mhew;
if (acr?(vf) < acs(gleft) \ aCS(Gright) and acs{gien) M acs(Grignt) < acs(vf))
then
Mnew < M;
Olefinew <~ group_with_acs{acs(Qien), Mnew);
Qins ¢ Create_new_group_right_of(Qiefinew):
vis_of{gQins) « {vi};
return{Mpew);
else
return{FAIL};
fi
}

Figure 17; Psuedocode for the GSA version of insert

Insert takes a virtual fragment vf and two consecutive groups gicq and grigi in a map unit m (it is
assumed gen s to the left of g sw) and attempis to create a new group between gicn and g s, With an ACS
such that vf can be placed in the new group. (Le., the ACS of the new group is ACS{vf).)

Just as one cannot add a specific virtual fragment to an arbitrary group, one cannot create a new
group with a specific ACS at an arbitrary position in a map unit. The existing clone structure cannot be
violated. In order to examine the situation in more detail, assume one wanis to create a group g between

giefe ANA g right.

First, suppose there is a clone ¢ that is an element of both ACS(gcx) and ACS(grgn). This means
any virtnal fragment in either group containg a real fragment from ¢. Then any virtual fragment in g must
contain a real fragment from ¢. If the virtual fragment in g did not, then ¢ would have two physically
separate pieces. However, any clone is contiguous in the genome. Therefore, ¢ must be an element of
ACS(g). This restriction can be concisely expressed as the constraint (1) ACS(g1e) N ACS(g righ) ©
ACS(g).

Now, suppose ¢ 1s an element of ACS(g)en} but not of ACS(g sg). This means that the right end of
¢ is somewhere to the right of the rightmost virtual fragment in gie. (Note that it may not be known which
virtual fragment in gy.q is rightmost, and it does not matter.) Thus, when g is created, the question is
whether or not the virtual fragments in g contain real fragments from ¢. Either situation is possible,
because ¢ might extend into g or it might not. Thus, it is valid for ¢ to be a member of ACS(g), and it is
valid for ¢ not to be a member of ACS(g). A similar argument holds in the case where ¢ is in ACS(ggn)
but not in ACS(ge5). Thus, the ACS of g can contain any combination of the clones that are in the ACS of
only one of the neighboring groups.

Finally, suppose ¢ is not of a member of ACS8(g1n) or ACS(g5gm). Can ¢ be a member of ACS(g)?
First two facts should be mentioned. The first fact is that the GSA does not create or destroy real frag-
ments; it merely rearranges the real fragments into a different configuration of virtual fragments. The
second fact is that clones with less than two fragments are not used in mapping. (See §1.3.) If ¢ is an ele-
ment of ACS(g ), then there will be exactly one real fragment from ¢ in g. (This is because only one virtual
fragment is to be placed in g.) Thus, there must be another real fragment from ¢ somewhere else in the
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map unit. However, this other real fragment is not in a virtual fragment in either gien OF grigh, since ¢ is
1ot in ACS(g1en), nor is it in ACS(g sign). Thus, it must be in some other group. This implies there are two
real fragments from ¢ which are non-contiguous. However, ¢ must be contiguous in the genome. There-
fore, ¢ cannot be in ACS{g). These restrictions can be concisely expressed as the constraint (i2) ACS(g)
< ACS(g1en) W ACS(g rign)-

H constraints i, and i, are satisfied, then a new copy .. of the map unit m is created. The group
In M yew corresponding 10 gier is found and assigned the NAME g epnew. A NEW EIOUP gins is created immedi-
ately to the right of giepsew. Finally, vf is assigned to be the only fragment in g, and m peyw is returned. If
iy and i3 are not satisfied, then FAIL is returned to indicate that the insert operation did not succeed.

Note that, like add, insert is primitive. However, unlike add, insert does change the structure of
the map unit it is given.

Insert can easily be extended to create a new group. at either end of the map unit. If one perceives
there to be a "phantom" group at both ends of the map unit-that contains no virtual fragments and has an
empty ACS, then the operation requires no madification,

For a particular virtual fragment, there may be more than one pair of consecutive groups where an
insert could succeed. This is not contradictory with the previous claim concerning the uniqueness of a
group where an add could succeed. It merely means that each place where an insert succeeds must be
considered as a separate option,

2.3. The split Operation

A fragment maltching mistake produces a virtual fragment that contains iwo or more real fragments
that are incorrectly matched. An operation is needed that repairs the effects of such a mistake. Such an
operation would decompose the virtual fragment into two or more virtual fragments where the real frag-
ments that have been incorrectly matched are in separate virtual fragments. (Note that this occured in both
examples in §1.4.) The split is this operation. Spilit takes a virtual fragment vf , a partition p (with more
than one block) of the set of real fragments that compose vf , and a map unit m.

First, vf is taken out of m. The partition p determines how vf will be decomposed; each block of
real fragments in p forms a new virtual fragment. These new virtual fragments will be called virtual sub-
fragments {or just subfragments). Note that since there is a one-to-one correspondence between the real
fragments of vf and the clones from which those real fragments come, using a partition of clones is
equivalent to using a partition of real fragments. Split then must incorporate the subfragments of vf into
m. Since no subfragment has the same ACS as vf, none of them belong in the group that contained vf.
This is where the other three operations come into play.

Split must try to add, insert and combine each subfragment in all valid ways. Specifically, split
should attempt to add each subfragment to any group in m. If all add operations for a particular subfrag-
ment fail, then split should attempt to insert the subfragment between any two groups in m. Along with
attempting add or insert, split should attempt to combine each subfragment with all other virtual frag-
ments in m. (The details of combine will be discussed in §2.4.) Obviocusly, split is a nonprimitive opera-
tion.

The split operation is successful if and only if a combination of the other three operations that suc-
cessfully places each subfragment in the map unit can be found. For example, suppose split is given a par-
tition that decomposes vf into virtual subfragments vf ; and vf . If there is a group in m such that add is
successful with vf ; and a pair of groups such that insert is successful with vf 5, then the split is successful.
Split will return a st of solution map units. There will be one solution for each such combination that is
successful.
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When the virtual fragment being split is contained in the map unit, the split is said to occur at the
group containing that virtual fragment. A situation exists where the virtual fragment being split is not actu-
ally contained in the map unit, and will be discussed in §4.3.3.3. In that case, the place where the split
occurs must be defined a little differently.

The psuedocode for the GSA version of split is not given. In the RSA, there will be a set of split
operations. At that point, psuedocode will be given for each type of split operation.

2.4, The combine Qperation

The split is intended to separate incorrectly matched real fragments into different virtual fragments,
but the opposite operation may be appropriate also. (This is seen in the second example in §1.4.) There
may be real fragments in different virtual fragments which really should be placed in the same virtual frag-
ment. This is the function of the combine operation.

The combine operation takes two virtual fragments vf'; and vf 5, and a map unit m. It attempts to
make a new virtual fragment vf 3 which is composed of all the real fragments from vf ; and all the real
fragments from vf,. This new virtual fragment is called a combined virtual fragment {or just combined
fragment). However, one cannot always constract a valid combined virtual fragment from two arbitrary
virtual fragments. There are three properties which vf; and vf 2 must satisfy to merge together and form a
valid combined virtual fragment.

The first property concemns the clone compaositions of vf; and vf». Remember that a virtual frag-
ment is a coliection of real fragments that are believed to come from the same section of the genome.
Therefore, it is meaningless 10 have two real fragments from the same clone within the same virtual frag-
ment. Thos, ACS(vf ) and ACS(vf 5) must be disjoint.

The second property concerns the lengths of the real fragments composing v/, and vf;. When one
fuses clones with a map unil, virtual fragments are constructed one real fragment at a ime. Any time a real
fragment is added to an existing virtual fragment, the length of the real fragment must be the same (within
some experimental error bounds) as the length of the virtual fragment. Thus, for vf 3 to be a valid virtnal
fragment, it must be ensured that it could have been built one real fragment at a time, This means there
must be a way to order the real fragments of vf 3 such that selecting one at a time, in that order, allows one
io reconstruct vf 3 using the same (error bound) matching criteria nsed in the building of m. It is easy to see
that if such an ordering exists, then using the real fragments in ascending or descending order by length
will successfully reconstruct vf 3 as well,

The third property is concemned with whether or not the combine is accomplishing its intended pur-
pose. The reason for using the combine operation on vf | and vf ; is that one believes there is some real
fragment in vf ; from some clone ¢4 that should be matched with some real fragment in vf ; from some
clone ¢3. If it can be deduced that there is no place in the map unit that a virtual fragment containing real
fragments from ¢, and ¢ could be placed, then there is no reason to construct vf s.

If there is a group with ¢, and ¢ in its ACS, then this group is a potential spot for a virtual fragment
containing the matched real fragments. If there are two consecutive groups where one group contains ¢ in
its ACS and the other group contains ¢ in its ACS, then a new group that is a potential spot could be
created. Otherwise, there is no place in the map unit that any virtual fragment containing real fragments
from ¢ and ¢ could be placed, and thus it is useless to construct ¥f 3.

However, when a combine is performed, it may not be known which real fragments are the ones that
are intended to match. Thus, the above condition cannot be checked only with some specific ¢ and ¢2, but
must be checked with all ¢ in ACS(vf ) and all ¢z in ACS(vf2). If any such pair of clones can be found
to satisfy the condition, then the combine should proceed.
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For the sake of clarity, the three properties discussed above are summarized below.
()] ACS(vf 1) n ACS(vf2) = @.

(p2) There is an order of the real fragments of vf | and vf 2 such that, together, they can be maiched
with the same criteria used during the construction of the original map unit.

(ps3) There mustexistc; € ACS{vf 1) and ¢ € ACS(vf ) such that either (1) there is a group g
where ¢, ¢2 € ACS{(g) or (2) there are consecutive groups g, and g, where ¢, € ACS{g,)
and co € ACS(g2).

If either py, p; or ps is not satisfied, then combine returns FAIL, indicating that the combine did not
succeed. If py, p2 Or p; are satisfied, then vf; and vf 5 are removed from m and vf 3 is created. Now, vf 3
must be incorporated into m,

Combine attempts to add vf 3 10 each group in m. If an add succeeds, then the map returned by
add is one solution. If all add operations fail, then combine attempts to insert vf 3 between each pair of
two consecutive groups in /n. Any map onits returned by insert are solutions.

In additicn to the add or insert, combine attempis to split vf 3 with all possible partitions of the real
fragments of vf 3, except the partition that results in subfragments vf; and v 2. Any maps returned by split
are solutions. Combine collects all the solutions and returns them. If no solutions are found, then FAIL is
returned.

The psuedocode for the GSA version of combine is not given. In the RSA, there will be a set of
combine operations. At that point, psuedocode will be given for each type of combine operation.

3. The General Fragment Splitting Algorithm

3.1. A High Level Description

The four operations and a small amount of external control over the sequence of these operations
form an algorithm that computes the map units that would have been built if a fragment matching mistake
had not occured. If one suspects that a virtual fragment contains two or more incorrectly matched real
fragments, all that needs to be done is to select that virtual fragment and the partition that decomposes the
fragment as desired, and call the split operation. Split will use the other operations (which may in turn call
split } 1o compute and return all possible solutions. - If none are found, FAIL is returned.

However, it must be ensured that the call 1o split does not cause the operations to call each other in
such a way that an infinite cycle of operations occurs. A sequence of operations could lead to a
configuration of the current map unit and operation which appeared previously during that sequence. Thus,
the sequence would then repeat, starting an infinite cycle of operations, Simply keeping a history of all the
configuraticns encountered during the sequence of operations is one mechanism that can prevent infinite
cycles. More efficient mechanisms may exist, but for now assume that an unspecified mechanism that
prevents infinite cycles exists. Also, an external mechanism that prevents the fragment originally split
from being placed back into the map unit is assumed to exist.

The four operations and the two external mechanisms described above form the General Fragment
Splitting Algorithm. The GSA is not implemented in the DNA Mapping software. However, examining its
functionality, advantages and disadvantages, serves as a basis for the discussion of the Restricted Fragment
Splitting Algorithm.
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3.2, Examples of the General Fragment Splitting Algorithm

The GSA has been described in a high level fashion, and thus it may not be clear exactly how it com-
putes solutions. In this section, some examples of the application of the GSA are given with the hope that
it will clarify the way it works.

3.2.1. Example One

The first example is the simplest example possible. Suppose Figure 18 represents the underlying
reality. The horizontal and vertical lines have the same meanings ag in Figure 8. The only difference is
that in Figure 18, not all restriction sites are explicitly denoted. Only the sites which form the real frag-
ments that are of interest are denoted. It is assumed that there is enough real fragment overlap between
clones ¢ and ¢ to declare actual overlap. ‘It is also assumed that the measured lengths of real fragments
f 1 and f 2 are close enough to-allow them to match and that no other real fragments in the two clones have
lengths in that range.

Given these assumptions, the Map unit s constructed using the maximum matching is given in Fig-
ure 19, First, some of the conventions concerning the display of map units in this report should be men-
tioned. The ACS of a group may be given below the group. Only the virtual fragments of interest are
explicitly denoted. Although not all virtual fragments are displayed, it is assumed there is at least one vir-
tual fragment in each group.

genome N [ i |1 N

fy

Cy fl

f2

C2 | I

Figure 18: Clone configuration for Example one

vi<f,, >

.| i

' fei) {er.e2} {c2}

Figure 19: Map unit built from clones in Figure 18
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Map unit s, contains a fragment matching mistake because of the similarity in the lengths of £1 and
f2. Suppose it is determined that vf <f 1,f 2> should be split. There is only one partition of the set {f1,/2)
with more than one block, namely ({f1}.{f2}]. Thus, our only option is to call split with parameters

vf <f1f 2>, {({(f1},{f2)} and m.

The fragment vf <f 1.f »> is removed from m, and the subfragments vf <f ;> and vf <f > are
created. Now both subfragments must be placed. First, an add with vf <f > is attempted with each group.
The add will succeed only with the group whose ACS is {c1}. Second, an add with vf <f 2> is attempted
with ¢ach group. This add will succeed only with the group whose ACS is {c2}. Thus one solution is
computed, and is given in Figure 20.

Since the add operations were successful, the insert operation is not attempted. The combine
operation still must be attempted. However, there are no other virtual fragments whose length is near
enough to the length of vf <f 1>, and thus it does not successfully combine with any other virtual frag-
ments. The same is true for vf <f 5>, and thus it does not successfully combine with any other virinal
fragments. Therefore, there are no solutions other than the one shown in Figure 20. An examination of the
map unit in Figure 20 reveals that it corresponds to the underlying reality in Figure 18.

3.2.2, Example Two

The second example is slightly more complicated and shows how the combine helps produce solu-
tions. Suppose Figure 21 represents the underlying reality. This is basically the same as the previous
example, except one mare clone is involved. Assume that real fragments f 1,/ 2 and f 3 are of similar length
and that no other fragments in the three clones have lengths in that range. If one fuses Clones ¢, and ¢
first, and then Clone c3, the Map unitm in Figure 22 is produced.

Suppose it is determined that vf <f 1,f o> should be split. Then vf <f,f 2> is removed from m and
subfragments vf <f ;> and vf <f 2> are created. The add operation is successful with both vf <f 1> and
vf <f 2> just as in the previous example, and thus one solution is the map unit given in Figure 23.

However, in this example, not all combine operations fail. Consider attempting to combine
vf <f 1> and vf <f 3>, The conditions py, p2 and p; must be checked. First, the ACS of vf <f 1> is {1},
and the ACS of vf <f 9> is {c3). These sets are disjoint, so p is satisfied. Second, f; and f 3 match, and
thus p is satisfied. However, p is not satisfied, because there is no group in m that contains ¢, and ¢3 in
its ACS, nor are there two consecutive groups where one contains ¢ in its ACS and the other contains ¢4
in its ACS. Consequently, combine with vf <f 1> and vf <f 3> fails,

Now consider atiempting to combine vf <f »> and vf <f 5>. Itiseasy to sec thatp, and p; are
satisfied. This time, p3 is satisfied because there is a group in m with an ACS of {c2,c3). Thus,

vi<f> vi<f>

{c1} {cr.ca} {2}

Figure 20: Map unit resulting from the split
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genome N | | A
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Figure 21: Clone configuration for Example two

vi<f), > vi<fs>

{c1) {ci.c2) {ca} {caca} {ca}

Figure 22: Map unit built from clones in Figure 21

vi<f> vi<f> vi<fy>

{1} {c1.ca) {c2) {ca,c3} {ca}

Figure 23: The first map unit resuliing from the split

vf <f 2.f 3> is formed and must be incorporated into m. Note that vf <f 3> is taken out of the map unit, but
that vf <f 5> is not because it was never in the map unit to begin with.

The add operation succeeds with vf <f 2,f 3> at the group with an ACS of {c2,c3}. Soasecond
solution is found, and is given in Figure 24. Since the add operation was successful, insert is not
attempted. Now combine calls split on vf <f 2,f 3> using all possible partitions of {f 1./ 3} containing
more than one block. However, there is only one such partition, and it results in subfragments vf <f 2> and
vf <f 3>, the fragments that formed vf <f 3,f s>. Thus, this partition is not used. So there are no partitions
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vi<ty> vi<iy, f3>

{c1) {c1,e2} {c2} {c2,c3} {cs)

Figure 24: The second map unit resulting from the split
to try, and thus there are no more solutions to the original split.

Only one of the solutions (in this case, Figure 24) corresponds to the underlying reality in Figure 21.
So why does the solution in Figure 23 exist? It exists because it corresponds to another configuration of
restriction sites that is consistent with the original clone data. If Figure 25 represents the underlying reality,
fusing the clones in the same order as before will produce the same map unit, i.e., Figure 22. Since Figure
23 corresponds to the underlying reality i Figure 25, Figure 23 is considered a valid solution. Note that
there is less actual real fragment overlap in Figure 25 than in Figure 21. This will become important in the
RSA. (Sec §4.1.1.)

3.2.3. Example Three

The third and final example is an extension of the second example. In this example, the need for the
combine to call split becomes clear. Suppose Figure 26 represents the underlying reality. Assume real
fragments f 1, f2, f 3 and f4 are of similar length and that no other real fragments in the four clones have
lengths in that range. If Clones ¢ and ¢ are fused first, followed by ¢ 5 and then finally ¢ 4, the Map unit m
in Figure 27 is prodaced. It is important to note that because f 2 was incorrectly matched with f;, the real
fragment f 4 was Ieft in a position such that it was incorrectly matched with f 4. The first matching mistake

genome N [ | L L A

[&] L]

fa

Ca i |

fa

C3 1

Figure 25: An alternate clone configuration for Example two
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genome N | | [ AN
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Figure 26: Clone configuration for Example three

Vf<f1 ,f2> Vf<f3 ,f4>

o ]

I {ci1} ‘ {e1.c2} ’ {ca} f {c2:ca} , {cs} ’ {esica) ‘ {ca} ‘

Figure 27: Map unit built from clones in Figure 26
caused another to occur during later fusion (i.¢., this is not a case of two independent matching mistakes).

Suppose it is determined that vf <f 1,f 2> should be split. There is only one partition of interest,
namely {{f1}.{f2}}. Sosubfragments vf <f ;> and vf <f o> are created and must be placed. Like Exam-
ple one, add succeeds with vf <f 1> and vf <f >. The map unit that results is m, in Figure 28(a). How-
ever, there are more solutions to be found.

Split attempts to combine vf <f 1> with some other virtual fragment. The only virtual fragment
whose length is similar is vf <f 3,f 4>, but p4 is not satisfied. Thus, all combine operations with vf <f 1>
fail,

Then split attempts to combine vf <f »> with some other virtual fragment. As with vf <f 1>, the
only virtual fragment whose length is similar enough is vf <f 3,f 4>. However, there is a group whose ACS
is {£2,¢3}, and thus the combined virtual fragment vf <f 2.f 3.f 4> is formed. Now something must be done

with vf <f 2.f 3. 4>.
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There is no group with an ACS of {¢2.c3,04}, and thus any add with vf <f 2.f s.f > fails. There are
not two consecutive groups between which a group with an ACS of [c2,c3,c4) can be created, so any
insert with vf <f o.f 3.f 4> fails. Then vf <f 2.f 3.f 4> is split using all partitions of {f 2,f a.f 4} containing
more than one block. There are three such partitions: {{f2}.{f3.f4}}), {{Ff2.f3}.{f4}} and
{{f21.0F3).{7 4]}

The partition {{f2},(f 3./ 4}} recreates the virtual fragments that originally created vf <f 2.f 3.f 4>,
and thus is not used. The partition { {f 2,/ 1}.{f4}] creates subfragments vf <f 2.f 3> and vf <f s>. The
add operation succeeds with both of these fragments to produce the Map unit »5 in Figure 28(b). (Now,
one can see how the combine operation’s call to split allows more solutions to be found.) Now that the
add operations are complete, combine operations are attempted. The only virtual fragment that could
combine with vf <f 5,f 3> is vf <f ;>. Conditions p1, p2 and p3 are satisfied, and thus vf <f ;,f 2.f 3> is
formed. However, vf <f 1.f 2.f 3> does not successfully add or insert, and the only way to split it causes
vf <f 1.f 2> to be placed back into the map unit. Consequently, this combine fails. The only virtual frag-
ment that might combine with vf <f s> is vf <f >, but p3 is not satisfied. Thus, no combine operations
with vf <f 2.f 3> or vf <f 4> lead to solutions. This means that all sclutions produced as a result of the split
with the partition {{f 2./}, {f4}} have been found.

The last partition to use with splitis {{f 2}.{f3}.{f 4}). which creates subfragments vf <f o>,
vf <f 3> and vf <f &>. The add operation succeeds with each subfragment to produce the Map unit i3
given in Figure 28(c). The only virtual fragment that vf <f 2>, vf <f 3> or vf <f 4> can combine with is
vf <f1>. When using fragments vf <f s> and vf <f 4>, p3 is not satisfied, although when using vf <f 2>, it
is. However, a combine with vf <f ;> and vf <f o> causes vf <f 1.f 2> (the fragment that was originally
split ) to be placed back into the map unit. Consequently, none of these combine operations result in solu-
Hons,

There are no more partitions of {f 2,f 5.f 4} to use, and so all solutions have been found as shown in
Figure 28. All the solutions in Figure 28 are valid because each comresponds to an underlying reality that
could have produced the initial map unit.

3.3. Problems with the General Fragment Splitting Algorithm

As a practical tool for helping a mapper fix common mistakes easily and quickly, the GSA leaves
much to be desired. There are difficultics conceming (1) run time, (2) the number of solutions obtained,
(3) preventing the undoing of work, (4) preventing infinite sequences of operations, and (5) finding solu-
tions multiple times.

First, it should be apparent that the GSA is tremendously time-consuming. If a combine must call a
split with a virtnal fragment vf that is composed of a large number of real fragments, the number of calls
1o split can be very large because the number of partitions of the real fragments of vf is very large. In
addition, combine may be called many times in a long map unit that contains many fragments of ronghly
equal length. To make matters worse, it is the real fragments of similar length that occur repeatedly in the
same area of the genome that are most likely to be involved in incorrect matches.

Second, the number of solutions generated can be very large. When the map unit is long, there are
potentially many virtual fragments that can participate in a combine, and add and insert operations are
more likely to succeed. Many of the solutions that are retumed correspond Lo underlying realities that are
ot likely. (Although all indeed are possible.) It would be burdensome to the mapper to have to sort
through all the solutions to pick out one that appears appropriate.

Third, the undoing of the effects of operations occurs. For example, suppose a combine is called
with virtual fragments v, and vf 5 to form vf 5. The reason vf; and vf ; are combined is that it is believed
that a real fragment from vf; should be matched with a real fragment from vf ;. If subsequent calls to split
break up the real fragments in vf 3 so that all real fragments originally in vf ; are separated from all the real
fragments originally in vf,, then the effect of the combine is completely gone. Essentially, it means the
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Figure 28: Map units resulting from the split
combine was useless. If this occurs often, the GSA will waste an enormous amount of time.

Fourth, as mentioned earlier, an infinite sequence of operations can occur if sieps to prevent it are not
taken. It was assumed that a mechanism existed to detect and terminale such sequences. Indeed a mechan-
ism exists, but it is very time and space consuming. It is likely that any such scheme will either be very
time and space consuming, or it will require very complex coding.

Fifth, without outside intervention, it is possible that a particular solution could be found more than
once. Ina way, this is related to the infinite sequence problem, because there needs to be some mechanism
which can recognize a state that has been encountered before. It may be the case that both problems can be
solved using the same mechanism. In any case, this multiplicity of solutions is a problem to be dealt with
which will result in either space/time consumption or complex coding.
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4. TFhe Restricted Fragment Splitting Algorithm

In order to overcome some of the drawbacks of the GSA, a new algorithm that searches for solutions
in a more restricted way is needed. This new algorithm is the Restricted Fragment Splitting Algorithm, or
RSA. The RSA will not be as time and space consuming as the GSA. In addition, the RSA will be easier
10 implement. Naturally, the RSA will not return all possible solutions. The intent is to use the concepts of
directionality {(where one side of the map unit is treated differently than the other) and operation bias
(where certain operations are given precedence over others) to find only those solutions which are “desir-
able" in some respect.

§4.1 discusses the characteristics that make one solution more desirable than another. §4.2, presents
some general characteristics of RSA operations. The RSA operations are discussed in great detail in §4.3.
The RSA, as a whole, is discussed briefly in §4.4. In §4.5, §4.6, and §4.7, examples of the usage of the
RSA are presented. Finally, §4.8 considers some implementation issues.

4.1. Desirable Map Unit Characteristics

4.1.1. Compactness

During the discussion about the construction of map units (see §1.2), it was stated that more compact
map units are preferred. The philosophy underlying this preference is the following: If there are two real
fragments that can be matched, then it is believed that they really are from the same section of the gencme
unless there is evidence to the contrary. That is, one uses the maximum amount of overlap possible. The
more overlap that is used, the more compact the resulting map unit.

In fragment splitting, the preference for compact map units still exists. This may seem inappropriate,
since it is this preference that creates the fragment matching mistake in the first place. However, the initial
call to split repairs the fragment matching mistake, and thus anything that occurs subsequently should use
the compactness philosophy.

4.1.2. Single Mistake Fixing

In order to reduce the scope of the problem that the algorithm has to solve, a philosophy of single
mistake fixing is used. This means that the RSA is designed 1o repair the effects of only one fragment
matching mistake. For example, suppose Figure 29 represents the underlying reality. Assume fragments
F1,f2 f3and f ¢ are of similar length, and no other fragments in the four clones have lengths in that range.
The map unit that resalts from fusing Clones ¢, .and ¢, first, followed by Clone ¢3 and then Clone ¢4, is
given in Figure 27. The important thing to notice is that.two completely independent fragment matching
mistakes occur. Fragment £ incorrectly matches with f,, and fragment f 3 incorrectly matches with f 4.
However, neither mistake has any effect on the other. Itis not the case that the first mistake leads to a
situation that produces the second. The RSA is not intended to repair the effects of both mistakes in one
applicadon. Thus, the RSA is not expected to find the correct map in this situation. (Whereas the GSA
would obtain the correct map unit.)

4.2, New Characteristics of the Basic Operations
The primary difference between the GSA and the RSA is in the definition of the operations. The

differences can be divided into three categories: The introduction of directionality, the introduction of
operation bias and the restriction to bipartite splits.
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Figure 29: A possible clone configuration

4.2.1. Directionality

The operations in the GSA can be described as lacking in direction. For example, a virtual fragment
can combine with another virtual fragment just about anywhere in the map unit. This combined fragment
can then be used by an add or insert any place in the map unit where the appropriate ACS structure exists.
Furthermore, the virtual subfragments resulting from a split can combine, add or insert just about any-
where in the map unit.

It is this lack of restrictiveness (among other things) that allows all solutions to be obtained. How-
ever, it also makes the GS A difficult to control and consumes a lot of time. In the RSA, some of the opera-
tions will have a direction associated with them. This will restrict the way in which these operations call
other operations, and it will restrict the region of the map unit to which an operation is applicable. For
example, a split that has direction will call certain operations that apply to the porlion of the map unit to the
left of where the split occurs, but it will call slightly different operations to apply to the portion of the map
unit to the right of where the split occurs..

It will become clear that the incorporation of direclionality into the operations makes controlling the
sequence of RSA operations easier and aides in solving the previously discussed problems with infinite
sequences of operations, preventing the undoing of previous work and the multiplicity of solutions.

4,2.2, Operation Bias

In the GSA, all of the operations are roughly of equal importance. That is, there is no preference to a
solution based on the sequence of operations that was used to compute that solution, (Since all solutions
computed are used.)

In the RSA, a bias toward particular operations is introduced. For example, suppose a subfragment
resulting from some split can add successfully to a group and can combine {in some form) successfully
with another virtual fragment. The solution generated by the combine will be preferred over the sclution
generated by the add. The combine will be attempted first, and if it results in a solution, the add operation
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will not even be attempied. Thus, there is a bias toward combine (over add and insert } when trying to
place subfragments of a split. The bias is toward the combine because more compact solutions will be pro-
duced.

4.2.3. Bipartite Splits

In the GSA, a virtual fragment vf can be split into two or more virtual subfragments. The GSA
consames a tremendous amount of time when it must split vf using all possible partitions of more than
one block, because the number of partitions to use increases exponentially as the number of real fragments
in vf increases. To make matters worse, vf is usnally a combined virtual fragment, which typically con-
tains more real fragments than most virtual fragments actually in the map unit.

In order to reduce the run time, split operations. will be restricted 1o breaking virtaal fragments into
iwo subfragments.- That is, vf. will be:decomposed:with a bipartition of the set of real fragments compos--
ing it. Even thoogh this will greatly reduce the number of split operations required, the number of biparti-
tions also increases exponentially as the number of real fragments in vf increases.

The intuitive reason for using only bipartitions is as follows. There is some sequence of operations
which occurs to the left of where the split occurs to produce a solution. These operations require certain
real fragments from vf, It should not matter whether those real fragments are grouped together in a single
virtual fragment or as several virtual fragments. The subsequent operations should manipulate (using split,
combine, etc.) those real fragments as needed to produce a solution. A similar statement can be made
about the sequence of operations occuring to the right of where the split occurs. Thus, it is adequate to split
vf into two subfragments. One of the subfragments will start the sequence of operations to the left of
where the split occurs, and the other subfragment will start the sequence of operations to the right of where
the split occurs.

Unfortunately, this intuition is not exactly correct. There are solutions that will not be found if only
bipartitions are used, but it is believed that these solutions represent more complex mistakes than the kind
that the RSA is intended Lo resolve. Suppose Figure 30 represents the underlying reality. It is assumed that
real fragments f1, f» and f 5 are of similar length and no other fragments in the three clones have lengths in
that range. The map unit constructed by fusing Clones ¢, and ¢, first, followed by ¢ 3 is given in Figure 31.

genome e I 1 L1 [ N

3

C1 I |

Ca2 I !

f3

C3 [ | !

Figure 30: A possible clone configuration
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vi<fy, fh, i3>

I P S
l

{c1} l {c1.62}

{erca,e3) ‘ {c2,03} ‘ {cs}

Figure 31: Map unit built from clones in Figure 30

First, note that vf <f 1,f 2,f5> is the only virtual fragment in the group with an ACS of {¢i,c2.c3}. If
vf <f 1.f 2.f 3> is split with the partition {{f1].{f2}.(f3}}. the add operation succeeds with the subfrag-
ments vf <f 1> and vf <f s>, and the insert operation succeeds with vf <f 2>. The resulting map unit then
corresponds to the underlying reality.

The problem is that there is no biparrition such that one split of vf <f 1.f 2/ 5> resulls in the correct
map unit. However, it took more than just one simple fragment matching mistake to arrive at this state.
There are three separate real fragments, roughly one clone length apart, which result in two independent
matching mistakes. First f1 and f; are incorrectly matched, and then f 5 is incorrectly matched with
vf <f1.f 2>. These mistakes are independent of each other, because even if £ and f 2 had not been
incorrectly matched, f 3 would have incorrectly matched with f;. In §4.2.2, it was stated that the RSA is
not intended to correctly repair map units containing more than one fragment matching mistake. Thus, it is
of no concern that the correct map unit is not obtained when using only bipartitions, in this particular situa-
tion.

In this case, it is possible io obtain the correct map unit using only bipartitions, but it requires that a
second split operation be called on the result of the first. (In addition, the second must be called with
slightly different parameters than the first.)

Another reason to use only bipartitions is that it conforms with the philosophy of favoring mere com-
pact map units. The number of subfragments created is minimized, and consequently the solutions pro-
duced will tend to be more compact.

4.3. Basic Operations in the Restricted Fragment Splitting Algorithm

Now the operations that exist in the RSA will be discussed in more detail. Hopefully, it will become
apparent how the ideas in §4.2 are incorporated into the definitions of the operations. The operations will
be described in a conceptual manner, The psuedocode is written o describe the effects the operations have
on the map unit while minimizing the presentation of implementation details. There are some significant
differences between the psuedocode 1o be presented and the actual implementation of these operations in
the DNA Mapping software. (Some of these differences are discussed in §4.7.) However, the basic idea
behind each operation is specified by the psuedocode.

4.3.1. The add Operation

The add operation in the RSA is not much different than the add operation in the GSA. However, it
will prove useful to (hink differently about the way in which it is called. The psuedocode for add is given
in Figure 32. Asinput, the RSA add takes a virtual fragment vf , two groups gien and gggn, and a map unit
m. (g1r is assumed to be to the left of g sg..) If there is a group between g and gy (not including
either) with the proper ACS, then vf is placed in that group and the new map unit is returned. If no such
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group is found, then FAIL is returned. The parameter g could be a special token representing the left
end of the map, and g, could be a special token representing the right end of the map.

4.3.2, The insert Operation

The RSA version of the insert aperation is similar to the GSA version. The same rules for creating a
new group as in the GSA apply in the RSA, As with add, it is useful to view inseri as taking a range of
groups to search for a Jocation to create the new group. The psuedocode for insert is given in Figure 33.
In this, as in later psuedocode, [ denotes the empty list, [0] denotes the list containing the object o, and || is
the list concatenation operator. As input, the RSA insert takes a virtual fragment vf , two groups gie and
& righ, and @ map unit m. (grx is assumed 1o be to the left of gugw.) The insert operation searches for two
consecutive groups (between gion and grgm) between which a group with an ACS of ACS(vf ) can be
created. Note that the new group can be created directly to the right of g, or directly to the left of g g

Recall that in-§2.2, it was noted that there could be more than one pair of consecutive groups in a

map unit between which a particular virteal fragment could be inserted. Soinsert returns either a list of
map units or the FAIL token.

add(vf,Gieft, Gright, M)

VIRTUAL_FRAGMENT vi;
GROUP Qieit, Jrights
MAP_UNIT m;

{
GROUP 9.9new;
MAP_UNIT Mnew;

g < group_right_of(gien);

while (g # Grigm) do
if (acs{g) = acs{vl))
then
Magw ¢ M;
Onew <~ group_with_acs(acs{(g),Mnew);
vis_of{Qnew) & vIS_0f{Qnew} w {Vi};
return{Mpew);
else
g « group_right_of(g);
fi
od

return(FAIL);

Figure 32: Psuedocode for the RSA version of add
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insert(vf et Gright, M)

VIRTUAL FRAGMENT vi;
GROUP Qiefty Tright;
MAP_UNIT m;

{
GROUP 01,92,9new1.0ins;
MAP_UNIT Mpew;
LIST solutions;

solutions «[];
gt & Qiems

while (g: # gyighy) do
G - group_right_of(gy);
i (acs(vf) c acs(q:) v acs(gs) and acs(g;) m acs{g;) < acs(vi})
then
Mpew < M,
Onew1 < group_with_acs({acs{gi),Mnew);
Qins < Create_new_group_right_of{Gnew:);
vis_of{gins} < {Vi};
solutions « solutions || [Mnew];
fi
a1 « group_right_of(g,);
od

if (solutions = [])
then return({FAIL);
else return{solutions);
fi

Figure 33: Psuedocode for the RSA version of insert

4.3.3. The Split Operations

The concepts of directionality and bias complicate the split operation in the RSA. The result is that,
in the RSA, there are actually four different split operations: undirected_split, directed_split,
internai_split and top_level_split. All RSA split operations have a bias toward combining over add and
insert, and directionality exists to a varying degree.

4.3.3.1. The undirected_split Operation

Of the four types of splits, the undirected_split is most similar to the split operation in the GSA.
However, the concepis of bias and directionality cause undirected_split to be slightly different from spilit.

The psuedocode for undirected_split is given in Figure 36. In the psuedocode, (x,y) denotes the
pair with left element x and right element y. As input, undirected_spilit takes a virtual fragment vf , the
group g in which vf is located, an ordered pair 5p and a map unit m2. The ordered pair bp represents a
bipartition of the set of real fragments that compose vf. The left element of bp is a set of real fragments
that form one subfragment, and the right clement is a set of real fragments that form the other subfragment.
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Using bp, vf is decomposed into two subfragments subvf ior and subvf sign. The real fragments in
the left element of bp form subvf 1x, and the real fragments in the right element of bp form subvf sgm. The
fragment subvf er: is called the left virtual subfragment (or just left subfragment), and subvf gg is called
the right virtual subfragment (or just right subfragment). (Because undirected_spilit does not attempt
swapping the elements of bp, the {op_level_split operation has this responsibility.)

A major problem with the GSA is that a sequence of operations may jump all over the map unit, and
thus it is difficult to predict or control where subsequent operations are going to occur. In the RSA, limita-
tions are placed upon where operations can occur. For instance, any operation using subvf 1. must occur
to the left of g. Furthermore, the sequence of operations triggered by subvf .n must move progressively
toward the left end of m. Thus, these operations will have left directionality. Similarly, any operation
using subvf sign must occur to the right of g, and operations triggered by subvf sign must move toward the
right end of m, and thus these operations will have right directionality. These concepts are illustrated in
Figure 34.

In particular, what happens to the left subfragment? In the GSA, split attempts to combine and add
{or insert ) the subfragment. All solutions that result are returned. However, with a bias toward combine,
if a solution can be found using a combine, then the add (or insen ) operation is not attempted. This tends
to produce more compact solutions,

First, m is searched for virtual fragments that satisfy the three conditions for combining in the RSA
(pi’. p2 and p3") with subvf 1. and that are to the left of g, (In the RSA, the conditions for combining are
slightly different from those in the GSA. This is discussed in more detail in §4.3.4.) This means the Ieft
subfragment is not allowed to combine with any virtual fragments in or to the right of g. When the list of
fragments that satisfy the conditions is obtained, a directed_combine with left directionality (a left
directed_combine ) is attempted with each member of this list. A left directed_combine is used because
all operations triggered by subvf 1.n must have left directionality. If any of the left directed_combine
operations return map units, then these map units are placed in the list mapsien, and attention is focused on
the right subfragment.

If all left directed_combine operations return FAIL, then an add with subvf eq is attempted over
the range of groups to the left of g. If the add fails, then an insert is attempted over the range of groups to
the left of g. Any map units that are returned by these operations are placed in mapsiep.

If directed_combine, add or insert could not successfully place the left subfragment, then
undirected_split returns FAIL, Otherwise, undirected_split attempts to place the right subfragment.

When the left subfragment is placed successfully, a similar sequence of operations is attempted with
the right subfragment. The left and right subfragments are treated similarly because the undirected_split
has no direction. First, m is searched for virtual fragments that, with subvf ;gn, satisfy p1’, p2”and p3’.

subviies I subvf,igm
| | I ‘

g

All operations have left directionality All operations have right directionality

Figure 34: Subfragment placement and directionality constraints
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Then a directed_combine operation with right directionality (a right directed_combine ) is attempted
with each. If none are successful, then an add with subvf ;g over the region of m to the right of g is
attempted. If the add is unsuccessful, then an insert to the region of m to the right of g is attempted. Any
map units returned by these operations are placed in mapsigy. If none are returned, then undirected_split
returns FAIL.

Assume that both the left and right subfragments are successfully placed. The elements of the list
maps .y, are the map units that result from placing the left subfragment, and the elements of the list
maps ggie ar¢ the map units that result from placing the right subfragment. However, a true solution to the
undirected_split has both the left and right subfragment placements. Thus, the elements of mapsier and
Maps gy Must be merged in some way.

Suppose mieq is an clement of mapsien and Mgy is an element of maps sgn. Due to the nature of the
RS A operations, the placement of the left subfragment affects only groups to the left of g. Likewise, the
placement of the right subfragment affects-only groups to the right of g. Thus, any placement of the left
subfragment s independent. of any placement of the right subfragment. So one can take the portion of # .-
to the left of and including g, and remove vf. Then, take the result of this and the portion of m gy to the
right of g, and "concatenate” them Lo form a valid solution, # e, 1o the undirected_spilit. This process is
illustrated in Figure 35. The fragment v/ is not removed before the call w directed_combine because its
location serves as a convenient marker in the directed_combine.

If this process is performed using all possible pairings of an element in maps . with 2n element in
maps sgm, then all possible solutions to the undirected_split are generated. Thus, if there are {1 elements
of mapsien and I elements of maps gy, then there are 7,/ solutions to the undirected_split.

4.3.3.2. The directed_split Operation

The second type of split operation in the RSA is the directed_split operation. A directed_split has
either left of right directionality. (It is said the operation is a right directed_split or a left directed_split.
)} The effect that direction has upon the behavior of an operation should now become clear.

Like the undirected_split, directed_split creates a left and right subfragment. The
undirected_split operation treats the Jeft and right subfragments similarly. This is not the case with the
directed_split. The subfragment with the opposite directionality of the operation, called the opposite
direction subfragment, is not allowed to participate in any type of combine operation. (For example, the
left subfragment in a right directed_split is the opposite direction subfragment.) So the opposite direction
subfragment must add or insert in order to be placed. The subfragment with the same directionality as the
operation, called the same direction subfragment, can be placed with a directed_combine, add or
insert, just like the subfragments in undirected_split.

Because of this restriction, there is more control over the sequence of operations than existed in the
GSA. It was stated earlier that an operation with left directionality causes subsequent operations (0 move
progressively toward the left end of the map unit. This is accomplished by the left directed split becanse
it is known that only one operation (a single add or insert } occurs to the right of the group where the left
directed_split occurs. Thus, the only direction a sequence of more than one operation could lead is toward
the left end of the map unit. Similarly, it is known that only one operation occurs to the left of the group
where a right directed_split occurs. Thus, the only direction a sequence of more than one operation could
lead is toward the right end of the map unit.

The psuedocode for the directed_spilit is similar to the psuedocode for undirected_split, and it is
given in Figure 37,

Note that the convention is that the real fragments in the left element of bp form the same direction
subfragment, and the real fragments in the right element form the opposite direction subfragment.
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Figure 35: Construction of a solution map unit in undirected_split
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undirected_split{vf,g,bp,m)

VIRTUAL_FRAGMENT vf;
GROUP g;
PAIR bp;
MAP_UNIT m;
{
VIRTUAL_FRAGMENT subviign,subviignt Vicoms;
MAP_UNIT Madd;
LIST maps,mapsiat,MapPSright, M&PScomb.ViScomb:

{subvfigg.subviggm) « vi_split{vi,bp);
mapsign « [I;
VfScomb ¢ combining_vis{subvfi:, LEFT_END g);

for vieomp € Visgomg To
MaPSeomb — directed combine(subviig, Vieams, 3.9roup_of(Visms ), LEFT,m);
if (Mapsgemy # FAIL) then mapsien «— mapsisy | Mapsqomo. fi

rof

if (mapsgn = [1)
then
Madd - add(subvijgy,LEFT_END,g,m};
if {madd = FA!L)
then mapsey « insert(subvfiey LEFT_END,g,m};
; else mapsjei «— [Magdl;
|
fi

if {maps;er = FAIL}
then return{FAIL);
else
mapsgn « [I:
Viscomy +— combining_vfs(subvfygy, g, RIGHT_END);

for vicoms € ViScoms dO
mapsgoms « directed_combine{subvingn.vicome.g.group_of{vicoms ) RIGHT,m});
if (mapscom, # FAIL) then mapsgh « Mapsight | Mapscomy: fi

rof

if (mapsgy = 1)
then
Magd « add{subviygn,g,RIGHT_END,m);
if {mgge = FAIL)
then mapsghy « insert(subvfygm,g, RIGHT_END,m);
else maps.;ght + [Magal;
fi

if (mapsygnt = FAIL) then return(FAIL); fi
fi

maps « concatenate_left_and_right_parts_of_maps(mapsen,mapsign.vf,g);

return{maps);

Figure 36: Psuedocode for undirected_split
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directed_split{vf,g,bp,dir,m)

VIRTUAL_FRAGMENT vf;
GROUP o
PAIR bp;
DIRECTION dir;
MAP_UNIT m;
{
VIRTUAL_FRAGMENT subViopp, sUbVEsame.Vcomo:
MAP_UNIT Mydd,
LIST MaPS,MAPS ypp,MAPSsame, MAPS comb. VIS comts:

{sUbVgame,SUbVa) — VI_split(vi,bp);

if (dir = LEFT)
then mygg & add(subviep,,g, RIGHT_END,m);
else myqq « add(subvie, LEFT_END,g,m);
fi

it {magg = FAIL)
then
if {cfir = LEFT)
then mapsepp «— insert(subviogy,g, RIGHT_END,m);
else mapsqpp « inseri{subvioa,, LEFT_END,g,m);
fi
else mapsqpy « [Magal;
fi

if {mapsgnp = FAIL)
then return(FAIL};
else
Mapsgame « (1
if (dir = LEFT)
then visgoms «— combining_vfs{subvfzame LEFT_END,g,m);
else visgomy «— combining_vis(subvfzame,g,RIGHT _END,m);
fi

for vigomp € ViScomp do
Mapscomy «— directed combine{subvfsame,¥feomb, 8.group_of(vieomp).dir.m);
if (Mmapscemy # FAIL) then mapsgame « Mapssame || MaPScomb: fi

rof

if (mapssame =[]}
then
if (dir = LEFT)
then myeq «— add(subvfsame, LEFT_END,g.m);
else Mgy «— add(subvfzame, g RIGHT_END,m);
fi

if {(magg = FAIL)
then
if (dir = LEFT)
then mapsgame « insert(subvfzame, LEFT_END,g,m);
else mapsgame ¢ iNsert{subvisam,g,RIGHT_END,m);
fi
else mapssamo « [Magd):
fi
if {mapssame = FAIL) then return(FAIL); fi
i
if {dir = LEFT)
then maps « concatenate_left_and_right_parts_of _maps(mapssame,Mapsepp,vi.g)
else maps « concatenate_feft_and_right_parts_of _maps{mapsgpp,mapssame.vl.g);
fi

return{maps);

Figure 37: Psuedocode for directed_spilit
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4.3.3.3. The internal_split Operation

The directed_split and undirected_split operations are intended to perform the initial split of the
RSA. Typically, these operations will be splitting a virtual fragment that was chosen by the user or some
DNA Mapping application program. Recall that in the GSA, it is sometimes necessary to perform several
split operations within some sequence of operations. This occurs when the combine operation calls the
split. A type of RSA split operation which performs this "non-initial" split is needed. This is the purpose
the internal_split operation.

Two key ideas behind the internal_split operation are (1) it is (almost always) called only after some
other split operation has been called, and (2) it is called only by a directed_combine. The internal_split
operation uses the location of the most recent split in the sequence of operations which lead to it to restrict
the range of the map unit where its subfragments can be placed. In addition, internal_split always has
directionality. It inherits the direction from the directed_combine that calls it, because this sequence of
operations should be progressing toward one-end of the map unit.

The psuedocode for the internal_split operation is almost identical to that of the directed_split.
Therefore, only the portion containing the differences is given in Figure 38. Each line containing a differ-
ence is followed by three asterisks. As input, internal_split takes a virtual fragment vf , a group g where
the split is 1o occur, a pair bp representing the bipartition of the real fragments composing vf , a map unit
m , a direction dir and a group gy that is the location of the previons split operation (the one that called
the directed_combine that called the internal_split ).

To examine the behavior of internal_split in more detail, consider Figure 39. Suppose vf and vf 3
are virtnal fragments which have been merged to form vf 5 by a right directed_combine. The fragment
vf 1 is a subfragment of some split operation { undirected_spilit, directed_split or internal_split) that
occured at the group g;. The fragment vf 2 is from the group g2 Furthermore, suppose that the right
directed_combine then calls internal_split in its effort to place vf3. In this situation, the internal_spilit is
said o occur at g2,

It can be shown that not all biparitions of the real fragments composing vf 5 need to be attempted. In
particular, any bipartition which results in a real fragment originally in vf, ending ap in the same direction
subfragment in the internal_split need not be attempted. (Generating the bipartitions to attempt is the
responsibility of directed_combine, and thus the reasoning for this restriction is deferred until §4.3.4.1.)
For now, assume directed_combine is calling internal_split with some bipartition that is worth attempt-
ing. As in directed_split, vf 5 is broken into two subfragments: the opposite direction subfragment v opp
and the same direction subfragment vf same. This means that in this case, vf op, must be placed somewhere
to the left of g5, and vf gume must be placed somewhere to the right of g2. Internal_split then behaves
exacltly like directed_split, with one exception. Consider the placement of vf o5, the opposite direction
subfragment, which is only allowed to add orinsert. It can be shown that an add or insert with vf opp can
only succeed between groups g and g3.

Let R, be the region of the map unit to the left of and including g, Let R, be the region of the map
unit between, but not including, groups g, and g,. Let Rs be the region of the map unit to the right of and
including g,. Recall that vf 3 is a combined virtual fragment formed from vf 1 and vf 2. Thus, ACS(g1)
and ACS(g2) are disjoint. (Note that this is slightly different than in the GSA.) Therefore, the ACS of any
group in R; is disjoint from ACS(g2), and the ACS of any group in R3 is disjoint from ACS{g1).

Because no real fragments originally in vf ; are in vf same, all of the real fragments originally in vf';
must be in vf opp. Thus, there is at least one real fragment in vf opp that was originally in vf . (Otherwise
vf 3 is broken inlo the subfragments that formed it.) This means that any add or insert with vf o, will fail
in Ry, since no elements of ACS(g3) exist in R;. Likewise, any add or insert with vf oo will fail in Rg,
since no elements of ACS(g ) exist in Ry. Thus, one need only attempt add or insert operations with vf oo
in R;. This is why the group where the previous split occured is important. It helps define the region of the
map unit where vf opp can be placed.
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internal_split{vf,a,gprev.Dp,dir,m) ***

VIRTUAL_FRAGMENT vif;
GROUP 9.0prevs ™"
PAIR bp;
DIRECTION dir;
MAP_UNIT m;
{
VIRTUAL_FRAGM ENT su beopp,Subesame,Vfcomb;
MAP_UNIT Magdq;
LIST maps,MapSepp, MaPSsame, MaPScomb, ViScomb:

(subvisame,suUbvigpp) « vi_split(vi,bp);

it {dir = LEFT)
then Madg < add(subviopp,g.Gprev,M):
else Mgy « add(subviapp.Jprev.9,M);

ek

kA

fi

if (madd = FA”.)
then
if (dlir = LEFT)
then mapsgpp « insert(subviapp,g.Gprev.M);
else mapSQpp — inseﬂ(SUbeopp,gprev,g,m);

*hk

dedd

fi
else mapSepp « [Madd};
fi

same as directed_spiit

Figure 38: Psuedocode for internal_split
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Figure 39: A typical internal_split
4.3.3.4. The top_level_split Operation

The top_level_split operation acts primarily as an interface to the splitting functionality impie-
mented by the directed_split, undirected_split and internal_split operations. This is the operation that is
called by the user or DNA Mapping application program. One specifies the virtnal fragment to be split, the
bipartition determining how the viriual fragment should be decomposed, the direction the initial split
should have (if any) and the map unit containing the virtual fragment. The psuedocode for top_level_split
is given in Figure 40. In the actual implementation, it is more complicated, but these details are discussed
in §4.7.2.

The top_level_split operation has a special responsibility. Recall that the directed_split and
undirected_split operations take an ordered pair as the representation of the bipartition that determines
how the virtual fragment is to be decomposed. These operations use the elements of the pair in a specific
manner. For example, when undirected_split takes a pair bp, it always uses the left element of bp to
construct the left subfragment and the right element of bp to construct the right subfragment. However,
there may be a solution psing the same subfragments, but sending them in the opposite directions. (Le., a
solution might be obtained where the left element of bp is the right subfragment and the right element of
bp is the left subfragment.} Thus, undirected_split should be called twice, once with bp and once with the
left and right element of bp swapped. Then all the solutions for a given bipartition are found. A similar
argument can be made with directed_split. Therefore, it is the responsibility of top_level_split to call the
appropriate split operation twice and to concatenate the lists of solutions it receives from the two calls.

4.3.4. The Combine Operations

Like the split, the concepts of directionality and operation bias complicate the combine operation in
the RSA. The result is that now there are actually three different combine operations: directed_combine,
undirected_combine and top_level_combine.

The conditions for combining two virtual fragments are slightly different in the RSA than those the
GSA (ie., p1, p2 and p3). Suppose one wants to know if virtual fragments vf | and vf ; can form a valid
combined virtual fragment vf 3. Let g, be the group that vf ; is in or the group where the split that creates
vf 1 occurs. Let g2 be defined similarly for vf ;. Like the GSA condition ps, the real fragments composing
vf 1 must have some ordering that allows them to be matched one at a time using the same matching criteria
used to build the map unit. (This is p,".) Like the GSA condition pa, for some ¢ in ACS{vf ) and some ¢4
in ACS(vf 2), there must be a group g where {c1,¢,) is a subset of ACS(g) or there must be two consecu-
tive groups where one contains an element of ACS(vf 1) and the other contains an element of ACS(vf 2).

(This is p3".)

The condition that is different is the one concerning ACS disjointness. In the GSA condition p,, it is
required that ACS(vf 1) and ACS(vf ») be disjoint. In the RSA condition py’, it is required that ACS(g ;)
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top_level_split(vf,bp,dir,m)

VIRTUAL_FRAGMENT vi;
PAIR bp;
DIRECTION dir;
MAP_UNIT m;
{
GROUP g;
LIST solutions,sol;,sol;;

solutions « [J;
g « group_of(vf);

if (dir = NONE)
then
sol; « undirected_split{vi,g,bp,m);
sol; « undirected_split{vf,g,swap(bp),m);
eglse
sol; « directed_split{vf,g,bp,dir,m);
soly « directed_split(vf,g,swap{bp),dir,m);
i

if (sol; = FAIL and soly = FAIL)
then solutions « FAIL;
else
if (sol; = FAIL and sol, # FAIL)
then solutions « sol; |] soly;
else
if (soly = FAIL)
then solutions « soly;
else solutions « sol;;
fi
fi
fi

return{solutions};

Figure 40: Psuedocode for top_level_spilit

and ACS(g ) be disjoint. The distinction is subtle, but important. If both vf ; and vf , are actually in the
groups g and g2, respectively, there is no difference between the conditions because the ACS of the frag-
ment is the same as the ACS of the corresponding group. However, if the fragment is actually a subfrag-
ment from a split occuring at the group, then the ACS of the fragment is a proper subset of the ACS of the
group. Thus, this new requirement is more difficult to satisfy than the old one. Fragments vf; and vf »
could be composed of real fragments from completely different sets of clones and still not allowed 1o com-
bine, because the ACSs of the groups are not disjoint.

The condition p” creates a number of nice properties which help alleviate problems concerning the

undoing of previous work. Naturally, this also reduces the number of solutions that will be found. For the
sake of clarity, the three conditions in the RSA are summarized below,

1) ACS(g1) M ACS(gn) =@
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(p2) There is an order of the real fragments of vf ; and vf 2 such that, together, they can be matched
with the same criteria used during the construction of the original map unit.

{(r3") There mustexist ¢; € ACS{vf ) and ¢z &€ ACS(vf2) such that either (1) there is a group g
where ¢1, c2 € ACS(g) or (2) there are consecutive groups g and g, where ¢ € ACS(g1)
and ¢z € ACS(g2).

4.3.4.1. The directed_combine Operation

The directed_combine is similar 10 the combine operation in the GSA. It is primarily intended to
be called by split operations. (This should be evident from the psuedocode for directed_split,
undirected_split and internal_split Directed_combine merges a subfragment from a split with a virtual
fragment that exists in the map unit.-If a directed_split or internal_spiit calls directed_combine, then
directed_combine inherits its direction so that the sequence of operations continues toward one end of the
map unit. If an undirected_split calls directed_combine, then the direction is based upon which subfrag-
ment of the undirected_split is being combined. A left subfragment causes a left directed_combine, and
a right subfragment causes a right directed_combine.

The psuedocode for directed_combine is given in Figure 41. As input, directed_combine takes
two virtual fragments vf 1 and vf 2, two groups g, and g2, a direction dir and a map unit m. The fragment
vf 1 is assumed to be a subfragment resulting from a split occuring at g1. The fragment vf 2 is assumed to
existin m in the group gz. If v/ and vf ; satisfy p,", p2” and p+’, the combined virtual fragment vf 5 is
formed.

In the split operations, there is an operation bias toward combining. In the combine operations, there
is an operation bias toward add and insert. This is because of the preference for compact map units. A
solution that requires vf 3 to be split tends to be less compact than a solution obtained when vf 3 can add or
insert, because two virtual fragments must be placed in the map unit instead of only one.

Directed_combine first attempts to add vf 3. If the add is successful, the map unit that results is
placed in the list maps. If the add fails, then directed_combine attempts to insert vf 3. If the insertis
successful, the map units that result are placed in the list maps. It can be shown that the only region where
the add or insert operation can succeed is between gy and go. This is true for basically the same reasons
that the opposite direction subfragment in the internal_split can only add or insert within a certain region
of the map unit. Assume, without loss of generality, that g; is to the left of go. Let Ry be the region of the
map unit to the left of and including g4. Let Ry be the region of the map unit between but not including
groups g and g2. Let R be the region of the map unit to the right of and including g». It is known that
ACS(g,) and ACS(g,) are disjoint. Thus, the ACS of any group in R; and ACS(g5) are disjoint. Also, the
ACS of any group in Rs and ACS(g,) are disjoint. Since ACS(vf3) contains at least one element of
ACS(g 1) and of ACS(g4), directed_combine cannot possibly add or insert vf 3 in R; or Rs. Therefore,
an add or insert with vf 5 can only succeed in Ro.

If both the add and insen fail, then vf 5 must be split. Since this is not the first split 10 occur, an
internal_split is used. In the GSA, the combine operation calls the split operation using all partitions of
the set of real fragments composing vf 3 containing more than one block. In the RSA, only bipartitions are
used. In addition, there are some bipartitions which need not be tried.

Let vf same be the same direction subfragment of the internal_split to be performed at g;. Then
Vf same must be placed somewhere in region Rs. Since the ACS of any group in Rs is disjoint from
ACS(vf 1), any bipartition that puts a real fragment originally in vf ; into vf ;ume can be skipped. Otherwise,
a real fragment from some clone ¢ is being sent into a region of the map unit where it is known that ¢ does
not exist.

Thus, directed_combine calls internal_split using all bipartitions where all of the real fragments
originally in v/ ; are put in the opposite direction subfragment. All the golutions obtained from the
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directed_combine(vf; vfy,g,.9,,dir,m)
VIRTUAL_FRAGMENT vy vl
GROUP Q:,92
DIRECTION dir;
MAP_UNIT m;

VIRTUAL _FRAGMENT Vioomb;

GROUP Gistt:Jright;

PAIR bp;

SET MSsamerfSopp:
LIST Maps,mapssoi;
MAP_UNIT mMapPnew

dient « leftmost_group_of{g;,02);

Grigh  rightmost_group_of(g,.g2):
maps « [J;

if (vfs_might_combine(vf,,vf2,g;.g,,m})
then
Vieomb & vi_combine(vf, via);
Ma&Pagq < add{vis,m,gien,Jrignt);

it {map gy = FAIL)
then )
maps « insert{vicomp.MGiett.Gright):

if {maps = FAIL)
then
maps « [|;

for Msgame € {X | x € rfs_of{vf,)} do
if5op + Hfs_of{vi ) {fs_of(vfy) — rfScame);

if (fs_have_maiching_order{rfs,y) and
rfs_have_matching_order(rfssama)}
then
bp « (Msgpp.MScamal;
mapsgpi « internal_split{(vfoomp, 92,01, bp,dir,m);
if (mapsgpin = FAIL)
then maps < maps || Mapsspli;

fi

fi

rof
fi
else maps « [mapagd);

fi

if (maps = [])
then return{FAIL);
else
for mappew € maps do remove_vi{vf; mappew); rof
return(maps);

Figure 41: Psuedocode for directed_combine

internal_split operations are collected in the list maps. Finally, if any solutions are in maps, then vf 2 is
removed from each map unit in maps ., and maps is returned. (Note that since vf ; is a subfragment, it is
not actually in /. and thus does not have to be removed.) Otherwise, FAIL is returned.
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4.3.4.2. The undirected_combine Operation

The directed_combine fits nicely into the scheme of splitting a virtual fragment because the initial
split creates two sequences of operations. In one sequence, the operations have left directionality, and in
the other sequence, the operations have right directionality, However, it may be that the user wishes to
take two virtual fragments in a map unit, merge them into a single virtual fragment, and see if this new
fragment can be incorporated in the map unit somehow.

The directed_combine performs this kind of action, except that there is a difference in the way the
left and right regions of the map unit are treated. In the context of a fragment split, this difference has a
purpose. However, if a combine is used as the initial operation, there may be no reason {0 treat one region
of the map unit differently than the other. Thus, a combine operation that lacks directionality is necessary.
This is the purpose of the undirected_combine operation. The psuedocode for undirected_combine is
given in Figure 42,

How does the undirectedcombine work? Suppose virtual fragments v/ and vf 5 are located in
the map unit m in the groups g, and g, respectively. If vf | and vf 5 satisfy conditions p, p2” and p3’,
then the combined virtual fragment vf 5 is formed,

Like in the directed_combine, first an add with vf 3 is attempted. If the add fails, then an insert
with vf 3 is atempted. For the same reasons as in the directed_combine, the add or insert can only
succeed between g1 and g». If add and insert both fail, then vf 5 must be split.

However, this split is not as straightforward as a split in a directed_combine. To begin with, at
what group does this split occur? Since there is no directionality an undirected_combine, there is no rea-
son o favor one group over the other. Also, are there any limits on where the subfragments can be placed?
Fortunately, there are some observations that simplify the situation. As with any split, the fragment vf 4 is
broken up into two subfragments vf 4 and vf 5 using some bipartition, except the bipartition that creates
subfragments vf | and vf,. Assuming that g, is to the left of go, define the regions R;, Rz and Rs as in
§4.34.1.

There may be virtual fragments in R that satisfy p,’, p2’ and p3” with either vf 4 or vf 5. However,
combines will not be allowed in that region because if the combined virtual fragment that is formed cannot
add or insert, once again a virtual fragment must be split where there is no directionality and no limita-
tions on where the subfragments may be placed. (Le., nothing has been gained.) Therefore, subfragments
may only add or insert in R.

Given this, it is impossible for both vf 4 and vf s to add or insert to R;. To show that this is true,
assume that vf 4 and vf 5 successfully add or insert in R, Let g4 be the group containing vf 4 and let gs be
the group containing vf's. (Note that ACS(g4) N ACS(gs) = @.) Assume that g 4 is to the left of gs. Then
either (1) ACS(ga) « ACS(g1) (i.e., vf 4 is composed of real fragments originally in vf 1), (2) ACS(gs)
ACS(g2) (i.e., vf s is composed of real fragments originally in vf 2) or (3) ACS(g4) N ACS(g1) # 3,
ACS(ga) N ACS(g2) = &, ACS{gs) n ACS(g ) = & and ACS(gs) n ACS(g7) = & (i.e., vf 4 and vf 5 con-
tain real fragments originally in vf; and vf,), In case (1), there exists a clone ¢ such that ¢ € ACS(g)
and ¢ € ACS(gs). Since g4 is between g, and g5, then ¢ € ACS{g4). Thus, ACS{g4) n ACS(gs) =&,
which is impossible. In case (2), essentially the same argument holds as in case (1) (with gaand g5
switched). In case (3), the same argument holds as in case (1). Therefore, it is impossibie for both vf 4 and
vf 5 to add or insert to Ra.

It is also impossible for one subfragment to be placed in Ry while the other subfragment is placed in
Rs. To show that this is true, suppose vf 4 is placed in Ry and vf s is placed in R3. The ACS of any group
in R, is disjoint from ACS(g2). Thus, vf 4 contains no real fragments originally in vf ;. The ACS of any
group in R4 is disjoint from ACS(g,). Thus, vf s contains no real fragments originally in vf,. However,
the only subfragments that satisfy these two constraints are vf ; and vf ,, and the bipartition that creates
these subfragments is not used. Therefore, no bipartition (of interest) creates subfragments such that one is
placed in Ry and the other is placed in Rj.
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undirected_combine(vf;,vi2,01,g2,m)

VIRTUAL_FRAGMENT viy,vio;
GROUP 91,92
MAP_UNIT m;
{
MAP_UNIT Mnew;
LIST maps, mMapsef, MapS:igh;

if {not(vis_might_combine(vf; vis,g:,G2.m)))
then return(FAIL};
fi

maps « [};
mapsign < directed_combine(vt;,vl,q;,gz, RIGHT,m);

if {Mapsrign # FAIL)
then
for Mapnew € Maps gn do remove_vi(vly,mapnew); rof
maps < maps || mapsSeght:
fi

mapsien « directed_combine{viz,vi1,g2,0:,LEFT,my);

it (mapsier = FAIL)
then
for mapnew € Mapsier do remove_vi(viz, mapnew}; rof
maps < maps || mapSien;
fi

it (maps = [J)
then return{FAIL};
else
remove_equivalent_maps{maps);
return(maps);
fi

Figure 42: Psuedocode for undirected_combine

Therefore, exactly one subfragment of the split must always be placed in Rz, So there are really two
possibilities. The first possibility is where one subfragment is placed in R; and the other in Ry, This place-
ment can be obtained by performing a left directed_split at g,. This is what a left directed_combine at
g1 will do if vf 5 does not successfully add or inser. The second possibility is where one subfragment is
placed in R and the other in Ro. This placement can be obtained by performing a right directed_split at
g2. This is what a right directed_combine at g, will do if vf 5 does not successfully add or insert.

Thus, undirected_combine consists of a left directed_combine at g, and a right
directed_combine at g,. Most solutions, but not all, obtained by each directed_combine are different.
A solution where add or insert succeeds with vf 3 can be obiained by both directed_combine operations.
Thus, undirected_combine must eliminate the duplicate solutions before returning.
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In addition, undirected_combine must remove vf 1 and vf 2 from the map units it returns, The
undirected_combine assumes that both vf 1 and vf ; are actually in the map unit. However, the
directed_combine operation assumes that one of the virtual fragments being combined is not actually in
the map unit, and thus undirected_combine is responsible for removing the virtual fragment that
directed_combine does not remove.

4.3.4.3. The top_level combine Operation

Like top_level_split, top_level_combine is primarily an interface to the combining functionality.
The virtual fragments to combine, the direction of the combine and the map unit must be specified.
Although it may not seem that one would ever want an initial combine to have direction, it should be
allowed if the user really wishes. (The user may have outside information that compels him or her to do
$0.)

The top_level_combine operation determines which fragment and group is o the left and to the

right, calls the appropriate combine operation and makes minor modifications to the solutions when neces-
sary. The psuedocode is given in Figure 43,

top_level_combine(vf;,vfs,dir,m)

VIRTUAL_FRAGMENT vy, vis;
DIRECTION dir;
MAP_UNIT m;

{
VIRTUAL_FRAGMENT Vet Vright:
GROUP Diett,Jright,
LIST maps;
MAP_UNIT MaPrew;

Vienr < lefimost_frag of{vf,vi;);
Vgt < rightmost_frag_of(vf;,vfy);
Qieit ¢ group_of(vhen);

Qright ¢ group_of(vfigny);

if (dir = NONE)
then
maps « undirected_combine (Vi Virignt,Qieft Jright,M);
else
maps ¢« directed_combine{vfin,Viighs Olettrighr.dir,my);
it {(maps = FAIL)
then for mapew € Maps do remove_vi(viies, MapPnew) rof
fi
fi

return{maps);

Figure 43;: Psuedocode for top_level_combine
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4.3.5, Calling Relationship between the Operations

Figure 44 illustrates the relationship between the operations described in §4.3. Each circle represents
an operation and an arrow from circle x to circle y means that operation represented by x calls the opera-
tion represented by y. One can now see how the internal_split and directed_combine form the mechan-
ism that allows a sequence of operations to continue and move toward the end of the map unit. In addition,
one can see how all the operations eventually lead te add and insert, the two primitive operations.

4.4. High Level Description

The GS A operations form the core of the GSA, but there is some external control that is necessary 10
prevent infinite sequences of operations. Because of their design, the RSA operations do not require such
external control. Thus, it can be said that the RSA operations really are the RSA. The user or application
program simply calls the top_level split or fop_level _combine operation to start the RSA.

4.5. Examples of Using fop_level split

In order to better illustrate how the operations in the RSA work together to produce solutions, some
examples of splitting virtual fragments using the top_level_split operation are now presented.

4.5.1. Example One

The first example is the same situation as the example in §3.2.1. This is the simplest possible situa-
tion involving a fragment matching mistake. Suppose Figure 18 represents the underlying reality. Then
the Map unit m produced is given in Figure 19.

The fragment vf <f |,f 2> should be split. There is only one bipartition of the set of real fragmenits
that compose vf <f 1,f 2>, namely ({f1],{f2]}. Thus, the initial call is: top_level_split
f <f 1 f 2.0 1).{F2)).NONE,m). Since the parameter dir has the value NONE, the undirected_split is
called twice.

In the first call to undirected_split, the pair ({f},{f 2}) determines how to decompose vf <f 1.f 2>.
So vf <f 1.f 2> is decomposed into the left subfragment vf <f 1> and the right subfragment vf <f >, Let g
be the group containing vf <f 1.f 2>. First, undirected_split attempts to place the lefl subfragment in the
region of the m between the Ieft end and the group g. Undirected_split attempts a left directed_combine
with the left subfragment. It searches for virtual fragments in the region of interest that satisfy p,”, p2" and
73" with vf <f 1>, In this case, no such virtual fragments are found. Thus, undirected_split attempts to
perform an add with vf <f 1> in the region of interest. The lefimost group of m, which has an ACS of
{c1},is in this region. Thus, the add with vf <f 1> succeeds here.

Now that the left subfragment is placed, undirected_split attempts to place the right subfragment.
The region of interest now is between the right end of m and the group g. Undirected_split attempts a
right directed_combine. It searches for virtual fragments that satisfy p,", p2” and p1” with vf <f 2> in the
region of interest. Again, no such virtual fragments are found. Then, undirected_split attempts to per-
form an add in the region of interest. The rightmost group of m, which has an ACS of {c,}, isin this
region. Thus, the add with vf <f ;> succeeds here.

Since the left and right subfragment are successfully placed, a solution has been found and is given
in Figure 20,

In the second call to undirected_split, the pair ({f2).{f1]}) determines how to decompose
vf <f 1.f 2>. The same subfragments are created, but this time vf <f 1> is the right subfragment and
vf <f 2> is the left subfragment. First, undirected_split attempts to find virtual fragments that can
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Figure 44: Calling relationship between the RSA operations

combine with vf <f »> in the region of m between the left end and g. None are found, and thus
undirected_split attempts to add vf <f 2> in the same region. Since no group in that region has an ACS
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of {c»}, the add fails. Next, undirected_split attempts to insert vf <f 2> in the region. However, there is
no place to create a group with an ACS of {c») in that region, and thus insert fails. The left subfragment
could not be placed. Consequently, the second call to undirected_split returns FAIL.

So top_level_spiit obtains one solution (the one in Figure 20) from the two calls to
undirected_split. It then returns this solution to the nser. Note that this is the same solution obtained by
the GSA.

4.5.2. Example Two
The second example is more complicated than the first and shows how the RSA tends to return more

compact map units as solutions. Suppose Figure 45 represents the underlying realily, Fusing in the order
€2, €3, ¢4 and ¢ produces the Map unitm in Figure 46.

genome 2 | [ i N
fy
C1 | l
fa
Cz [ i
f5
C3 I |
fs
Ca | I

Figure 45: Clone configuration for Example two

vi<f,> vi<fy, 2> vi<i>

I I A U S

l {1} ’ {ci.e2} ‘ {ca} ’ {c2cs} ‘ {cs) ’ {ca.cal l {ca) '
g

Figure 46: Map unit built from clones in Figure 45
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The virtual fragment to be splitis vf <f 2.f 3>. There is only one bipartition, and thus the initial call
is: top_level_split (vf <f 2.F 2,({f 2},{f 3} ),NONE m). As in the first example, this results in two calls to
undirected_split.

The first call has ({f2},{f 1}) as the value of the parameter bp. Thus, vf <f 2> is the left subfragment
and vf <f 3> is the right subfragment. Let g be the group containing vf <f 5.f 3>. First, undirected_split
searches for virtual fragments in the region of m between the left end and g to combine with vf <f »>. The
virtual fragment vf <f 1> is the only one that satisfies p1”, p2" and p3’ with vf 5. Thus, a left
directed_combine with vf <f ;> and vf <f 2> is attempted, and the combined virtual fragment vf <f 1,/ 2>
is formed. Then, directed_combine can successfully add vf <f 1.f 2> to the group with an ACS of
{c1.c2}. Since the add is successful, directed_combine returns the new map unit to undirected_split.

Since undirected_split successfully placed the left subfragment, it next attempts to place the right
subfragment. The placement of the right subfragment is similar to that of the left subfragment.
Undirected_split searches for virtual fragments in the region of m between the right end and g to combine
with vf <f 1>, The virtual fragment vf <f 4> is the only one that satisfies p’, p2” and p3” with vf 3. A right
directed_combine is attempted and the combined virtual fragment vf <f 3,f 4> is formed. Then, add is
successful with vf <f 3./ 4> The map unit that results is returned to undirected_split. Undirected_split
uses the map units resulting from the placement of the left and right subfragments to form a single solution
{using the process illustrated in Figure 35), given in Figure 27.

The second call to undirected_split has ({fs},{f2}) as the value of the parameter bp. Thus, vf <f 2>
is the right subfragment and vf <f 3> is the left subfragment. There are no virtual fragments in the region
of m between the leftend and g that satisfies py’, po” and p3y” with vf <f 3>. (Note that vf <f ;> and
vf <f 5> do not satisfy p3’.) So undirected_split attempts to add vf <f 5> in that region, but no group with
an ACS of {¢3) exists there. The ingert fails for similar reasons, and thus the left subfragment cannot be
placed. Consegquently, the second call to undirected_split returns FAIL.

So as in Example one, top_level_split obtains one solution (the one in Figure 27) from the two calls
to undirected_gsplit. This is the solution returned to the user. The GSA obtains more than one solution in
this situation. The additional solutions that it obtains are given in Figure 28. However, note that each of
these solutions is less compact than the one found by the RSA. Thus, out of all the map uonits that could
have resulted from fixing the fragment matching mistake, the RSA returns the preferred map unit. The pri-
mary reason that the less compact solutions are not found is because the operation bias toward
directed_combine in the directed_split operation prevented add operations with vf <f »> and vf <f 5>
from occuring.

4.5.3. Example Three

There are some structural similarities between the second and third example, Here the need for the
internal_split should become clear. Suppose Figure 26 represents the underlying reality. Then the Map
unit m produced by asing the clone order ¢, ¢4, c3 and ¢4 is given in Figure 27. Let g, be the group con-
taiming vf <f1f 2>, and let g» be the group containing vf <f 3.f 4>.

Here, it is not clear which virtual fragment should be split. Both vf <f1.f 2> and vf <f 3.f 4> are can-
didates. It turns ont that in this case, the cutcome is the same regardless of which is chosen. For now,
assume that vf <f 1,f 2> is chosen as the fragment to split. Again, there is only one bipartition, so the initial
call is: top_level_split (vf <f 1.f 2.({f 1}.{f 2} .NONE,m).

The first call to undirected_split uses the pair ({f1}.{f 2}) to decompose the fragment. The left sub-
fragment is vf <f 1>, and the right subfragment is vf <f »>. First, undirected_split searches for virtual
fragments in m between the left end and g, to combine with vf <f ;>. However, no fragments with the
correct Jength exist, and thus undirected_split attempis to add vf <f > in the region of interest. The add
is successful at the group with an ACS of {c¢,}. Next, undirected_spli{ attempts o place the right subfrag-
ment. The virtual fragment vf <f 3,f 4> is the only fragment gatisfying p,’, p2” and p3” with vf <f ,>. Thus,



DNA Mapping -51- Fragment Splitting and Combining

aright directed_combine is attempted with vf <f o> and vf <f s.f 4>, and the combined virtual fragment
vf <f 2.f 3.f 4> is formed. Then directed_combine atiempis to add vf <f 2.f 3.f 4>, bui this fails, Next, it
attempis to insert vf <f 2,f 5.f 4>, but this fails as well, Thus, directed_combine calls a right
internal_split on vf <f 2.f 5.f 4>, using all pairs {i.e., bipartitions} of interest. In this case, the pairs that are

tried are ({f 2./ 3).{f 4}) and ({f 2/ 4}, [F3}).

In calling internal_split using ({f 2./ 2},{f 1)), opposite direction subfragment vf <f z,f 3> and same
direction subfragment vf <f 4> are created. Internal_split first attempts to add vf <f 2.f 5> between g1 and
g2. This is successful because a group with an ACS of {c2,c3} exists. Next, internal_split searches for
fragments to the right of g, to combine with vf 4. None exist, and thus internal_split attempts to add
vf <f 4> to the right of g5. This is successful, because a group with an ACS of {¢4} exists. So one solution
is found, and it is given in Figure 47,

Calling internal_.split using the pair ({f 2.f 4},{f3}) creates opposite direction subfragment
vf <f 2.f 4> and same direction subfragment vf <f 3>. The opposite direction subfragment vf <f .f 4> fails
to add or insert between g, and g,. Because the opposite direction subfragment is only allowed to add or
insert, internal_split now fails. So the two calls to internal_split result in a single solution.

The second call to undirected_split uses the pair ([ 2},{f1]}) to decompose vf <f 1.f 2>. Now, the
left subfragment is vf <f 2>, and the right subfragment is vf <f ;>. Obviously, there are no fragments to the
left of g with which vf <f o> can combine. Neither add nor insert are successful with vf <f ;> to the left
of g1, and so the second call o undirected_split fails.

Thus, the only solution returned by top_level_split is the one in Figure 47. Like Example two, the

GSA obtains more than one solution. FHowever, the solution found by the RSA is more compact than any
obtained solely by the GSA.

4.5.4. Example Four

The fourth example demonstrates the need for the insert operation. Suppose Figure 48 represents
the underlying reality, Assume | and f ; are of similar length and that no other fragments in the three
clones have lengths in that range. Note that the right end of ¢ and the left end of ¢ 3 are in the same sec-
tion of the genome as f ». Fusing with the clone order ¢y, ¢» and ¢ 3 produces the Map unitm given in Fig-

ure 49. Let g, be the group with an ACS of {¢,c2), and let g, be the group with an ACS of {cg,c3).

The virtual fragment vf <f |,/ 2> should be split. The initial call is: top_level_split
(f <f 1.f 22,({f1}.{f 2}).NONE,m).

vi<f> vi<f,, > vi<f>

SPLNS [N T I A N

{es} ’ {ea,ca) l {ca} ‘

l {e1}) t {ci,cal l {c2} ‘ {caie3}

Figure 47: Map unit resulting from the top_level_split
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genome A [ 1 | AN

£

£

Figure 48: Clone configuration for Example four

vi<f) fy>
m [ | ;
{c1) {er.e2} {caica} {cs} ‘
&1 22

Figure 49: Map unit built from clones in Figure 48

The first call to undirected_split uses the pair ({f1},{f2}), which means vf <f ;> is the left subfrag-
ment and vf <f > is the right subfragment. Since there are no virtual fragments to the Ieft of g, that satisfy
1, p2’ and p3” with vf <f 1>, undirected_split attempts to add vf <f 1> to the left of g;. The add opera-
tion successfully places vf <f 1> in the group with an ACS of {¢,;}. There are no virtual fragments to the
right of g1 to combine with vf <f 3>, so an add is attempted. The add operation fails, since there is no
group with an ACS of {c¢2]. However, the insert operation succeeds, because a group with an ACS of
{c2) can be created between groups g, and g,. Thus, the first call to undirected_split results in one solu-
tion, given in Figure 50.

The second call 1o undirected_split uses the pair ({f2}.{f1)), and so vf <f 2> is the left subfragment
and vf <f > is the right subfragment. It is easy to see that there are no fragments to the left of g, that
satisfy 1", p2” and p3” with vf <f »>. Also, add and insert operations with vf <f 5> to the left of g, fail.
Consequently, the second call to undirected_split fails. Therefore, the only solution found by
top_level split is the one in Figure 50. In this case, the GSA returns only this solution as well,



DNA Mapping -53- Fragment Splitting and Combining

vi<fi> vi<fy>

ll‘ ‘il !

{c1} l {ereal ] {ca} {caica} {ca) I

g1 22

Figure 50; Map unit resulting from the top_level_split
4.5.5. Example Five

In the first four examples, all of the initial splits were undirected. (L.e., the dir parameter was set o
NONE.) The fifth and final example is intended to show why one would use a directed split as the initial
split. Suppose Figure 25 represents the underlying reality. Fusing with the clone order ¢4, ¢2 and ¢35 pro-
duces the Map unit m; given in Figure 51.

Using the call fop_level_split (vf <f 1of 22({f 1}.{f 2}),NONE,m ) results in one solution, m2, given
in Figure 52. However, this solution does not correspond to the underlying reality. In this case, the most
compact map unit is not the correct map unit. Suppose at some point in time, it is determined that

vi<f, B> vi<fz>
m, ‘ [ | ‘ ‘ ‘ [ 1 ‘
[ {e1} ’ {102} | {ca2} ! {c2,c3} l {cs} I
Figure 51: Map unit bailt from clones in Figure 25
vi<f;> vi<hy, f>
{eu} {cr.ca} ’ {ea} {cases} ‘ {ca)

Figure 52: Map unit resulting from the top_level_split
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something is wrong with m and that vf <f »,f 2> should be split.

If vf <f 2.f 3> (in m2) is split with no direction, one solution is obtained. Unfortunately, that solution
is my. Thus, a top_level_split with no direction is inadequate 10 fix m2. The problem is that when
vf <f 2.f 3> is split, the subfragment vf <f ;> combines with vf <f ;> to form vf <f|,f 2>, a fragment that is
known to be the result of an incorrect maich. Somehow, the splitting of vf <f ».f 3> must be done in such a
way that vf <f 1,f 2> is not formed. The use of direction with the top_level_split accomplishes this.

Remember that in a directed_split, the opposite direction subfragment is not allowed to participate
in a combine operation, In this example, the left subfragment vf <f ;> must not be allowed to combine.
Thus, the split should have right directionality. To get the correct map unit, the call is: top_level_split
(vf <f 2.f 2=.({F 2}.[F 3}).RIGHT m ). Then add is successful with vf <f »> and vf <f 3> to produce a sin-
gle solution, ma, given in Figure 53.

What is important {o note is that the use of direction in top_level_split gives the user finer control
over the sequence of operations that occurs. -This is helpful when the user has some outside knowledge or
intuition about what the final map unit should look like.

4.6. Example of Using top_level _combine

One example of the use of top_level_combine operation is now presented. Suppose Figure 54
represents the underlying reality. In actuality, f1, f2 and f 5 are the same fragment, but suppose that due to
measurement error, f 1 and f; are just beyond the error threshold for maiching. Then, fusing with the clone
order ¢1, ¢z and ¢3 produces the Map unit m given in Figure 55. Let g, be the group containing vf <f >,
and let g be the group containing vf <f 3.f 3>.

Later on, one may suspect that a matching should have been made involving fragments with lengths
in the range of f;, f2 and f5. Thus, one might attempt o combine vf <f 1> and vf <f 2,f 3>. The initial
call is: top_level_combine (vf <f 1>vf <f 2.f 3> NONE,m ). Top_level_combine cails
undirected_combine, which in trn makes two calls to directed_combine.

The first call to directed_combine has right directionality and occurs at the group g2. The com-
bined virtual fragment vf <f ;.f 2/ 3> is formed because the three real fragments do have a matching order:
F1.faand fo. (This is true because £ and f ; are very close to having equivalent lengths.) First,
directed_combine attempts 1o add vf <f 1.f 2.f 3> between g, and go. The add succeeds because a group
with an ACS of {c;.c2.c3) exists in that region. This results in the solution given in Figure 31.

The second call to directed_combine has left directionality and occurs at the group g;. Like the
first call, the combined virtual fragment vf <f | ,f 2.f 3> is formed, and the add operation succeeds, resulting

vi<fi> vi<h> vi<fa>

S E I A

{1} ‘ {c1c2} I {ca} l {caics} ’ {ca}

ma3

Figure 53: Map unit resulting from the top_level_split with direction
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genome Va [ | A
f

1 I ]
f2

C2 ] l
f3

Ca I I

Figure 54: Clone configuration for the top_level_combine example

vi<f;> vi<hy,f3>
m L | ’ L1 I
‘ {1} {enea) {cr.e2,63} {eaics} } {cs}
& 22

Figure 55; Map unit built from clones in Figure 54

in the solution in Figure 31. So undirected_combine obtains the same solution from each call to
directed_combine. It then returns the solution to top_level_combine, which returns it to the user. Note
that the solution in Figure 31 comresponds to the underlying reality.

4.7. Examples on Real Map Units

The examples presented in §4.4 and §4.5 are very small examples intended to illustrate certain
features of the RSA. The real test for the RSA is to use it on actnal DNA restriction site maps. Thus, three
examples of its performance on real DNA maps are presented. The maps used in this section were
obtained from the yeast mapping project of Dr. Maynard Olson at the Washington University School of
Medicine, Department of Genelics.

4.7.1. Map Unit CONTG309

iIn Figure 56, the Map units CONTG309 and MERGO0542 are given. Also displayed is a matchlist
that is almost wpologically valid. The numbers in Figure 56 are virtual fragment lengths (in base pairs),
and the horizontal lines represent group boundaries. In this representation of the map unit, the group at the
top is considered to be the "lefimost” group. A solid line going from a virtual fragment in one map unit to
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1089 1684
1466 1892
800 976
427 1036
1892 2439
5214 461
1781 1100
559 468
1583 5529
2270 503
555 3803
3373 1083
2760 1462
3654 1560
423

797

1897

CONTG309 MERG0542

Figure 56: Map units CONTG309, MERGO0542 and a matchlist

a virtual fragment in the other map unit represents a malck. There is a large amount of apparent overlap
between these two map units, but they do not quite fuse.

The ends of the map units fit together well, except for the virtual fragment of length 1560 in
MERGO0542. There is no virtual fragment with a length in that range at an appropriate spot in CONTG309.
However, in the middle of CONTG309, there is a virtual fragment of length 1583 (call this vf). The frag-
ment vf is about the length that is needed. Thus, splitting v/ may result in a map unit with a virtual frag-
ment in the 1560 bp range in a proper location.

Instead of guessing which bipartition of the real fragments of vf would give the desired result, a
top_level_split is made with each possible bipartition. Using this technique, seventeen solutions are
returned, three of which fuse with MERGO0542. One of those three, CONTG309*, is given in Figure 57
(along with the matchlist that allows the two map units to fuse) and corresponds exactly to the modification
that Dr. Oison’s Laboratory made to CONTG309 to allow it to fuse with MERG0342.

‘When the RSA is run with the insert operation disabled (see §4.7.2.), the only solution returned is
CONTG300*.
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1089 1684
1466 1892
1577 976
800 1036
427 2439
1892 461
5214 1100
1781 468
559 5529
2270 503
555 3803
1585 1083
3373 1462
2760 1560
3654 423

797

1897

CONTG309* MERGO0542

Figure 57: Map units CONTG309*, MERGO0542 and a matchlist
4,7.2. Map Unit MERG0515

In Figure 58, the Map units MERG0515-and MERG(0411 are given. Again, there is a large amount
of apparent overlap, but they do not quite fuse. The problem here is that MERGO0515 has no virtual frag-
ment to match with the fragment of length 2163 in MERG0411. (MERGO0515 has a fragment of length
2163 but it is not in an appropriate location.) However, near the middle of MERGO0515, there is a virtual
fragment of length 2174. This fragment is a candidate for splitting.

Calling top_level_split using all bipartitions, the RSA generates nine solutions, two of which fuse
with MERGO0411. One of those two, MERG0515*, is given in Figure 59 and corresponds exactly to the
modification made by the Laboratory. If the insert operation is disabled, then the RSA returns three solu-
tions, of which only one (MERG0515*) fuses with MERG0411.
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2296
10362
446
1861
2992
848
1633
2163
1715

1857
445
852

1649
421

1000

1730

2163
521

1997

2174
772

1523

1711
728

2708

2358

1263

1190
962
668

2149

W

MERGO0515 MERG0411

Figure 58: Map units MERGO0515, MERGO0411 and a maichlist



DNA Mapping -59- Fragment Splitting and Combining

2296
10362
446
1861
2992
848
1633
2163
1715

__Egg;___
445
852
1649
2183
421
1000
1730
2163
521
1997
772
1523
1711
728
2170
2708
2358
1263
1190
962
668
2149

U

MERG0515% MERG0411
Figure 59: Map units MERGO0515*%, MERG0411 and a matchlist
4.7.3. Map Units MERG0615 and MERGO0576

In Figare 60, the Map unit MERGO0615 and a portion of the Map unit MERG0576 are given. Again,
4 large amount of apparent overlap exists, but the two map units do not fuse. Here, the problem is a little
more complicated than the previous examples. In fact, there are really two problems. The virtual fragment
of length 2525 at the top of MERGO0S576 (call this vf 1} and the virtual fragment of length 2651 in the fifth
group from the top of MERGO576 (call this vf ) have nothing to match with in MERGO0615. Fragment vf;
is composed of one real fragment, and thus a top_level_split is not applicable. However, there is another
fragment of nearly the same length further down MERGOQ576; specifically, it is the virtual fragment of
length 2557 (call this vf 3).
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997 2525
1799 446
414 3275
455 512
766 1230
1114 2651
2051 582
446 614
614 986
2663 1062
4596 1600
3309 508
496 513
607 1171
1061 2557
1228 2259

1119

MERG06135 MERGO0576

Figure 60: Map units MERG0615, MERGO0576 and a matchlist

If vf | and vf 5 successfully combine, then vf ) will be taken out of the map unit and hopefully the
combined virtual fragment will be placed in a location that allows more clones to fuse. A
top_level_combine of vf ; and vf 5, with no direction, succeeds and the Map unit MERGO576*, given in
Figure 61, is the only solution returned. Also given in Figure 61 is a new matchlist, and one can see that
the problem with vf 5 still exists.

A top_level_split of vf » might fix the problem, but it will create a left subfragment that must be
placed somewhere to the left of (i.e., above) the group containing vf ;. This subfragment will probably
interfere with fusion in the same way that vf; does. So maybe the problem lies within MERGO0615. In the
middle of MERG0615, there is a virtual fragment of length 2663 (call this vf 4). If vf 4 is split, its right
subfragment may be placed in a position where it can match with vf ;. Calling top_level spliton vf 4
using all bipartitions and with the insert operation disabled resulls in a single solution, MERG0615%,
which is given in Figure 62. A matchiist between MERG0615*% and MERG(0576* that is topologically
valid is also given in Figure 62. Using this matchlist, MERGO0615* and MERG0576* successfully fuse.
The new map unit obtained corresponds to the one produced by the Laboratory.
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997 446
1799 3275
414 512
455 1230
766 2651
1114 582
2051 614
446 986
614 1062
2663 1600
4596 508
3309 513
496 1171
607 2548
1061 2259
1228 1119
MERGO0615 MERGO576*

Figure 61: Map units MERGO0615, MERGO0576* and a matchlist
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997 446
1799 3275
414 512
455 1230
766 2651
1114 582
2051 614
2694 686
446 1062
614 1600
4596 508
3309 513
496 1171
607 2548
1061 2259
1228 1119
2633
MERGO615% MERGO0576*

Figure 62: Map units MERG0615*, MERG(0576* and a matchlist
4.8, Implementation Considerations

The psuedocode of the operations is intended to describe how the operations behave in a conceptual
mannet, so that the reader knows what kind of solutions one-should get when using them. In the.actoal
implementation of these operations (which is in the C language), the code is different than is indicated by
the psuedocode. There are statements in the C code and are not in the psuedocode that have less to do with
fragment splitting and more to do with software engineering conventions that exist in the DNA Mapping
software as a whole. Some differences that are more relevant to fragment splitting witl now be discussed.

4.8.1. Bipartitions of Clones

In the psuedocode, a bipartition is represented as a pair of sets of real fragments. It was stated earlier
that using bipartition of clones is equivalent o using bipartition of real fragments. In fact, the implementa-
tion does not use real fragments. Instead, a character string, which is the internal name of the clone that a
real fragment comes from, is used. This is done to increase efficiency.



DNA Mapping -63- Fragment Splitting and Combining

4.3.2. Actions

In the psuedocode, changes (o the map unit (such as adding a virtual fragment to a group} are made
during the operation. Then the modified map unit(s} is returned to the calling operation. This means that
many copies of the original map unit (gach with small modifications) might exist. This approach consumes
quite a bit of memory space if the original map unit is large.

In the GSA, it is difficult to do anything else. However, in the RSA, there is a way of greatly reduc-
ing the space requirements. The basic idea is to construct a list of actions that indicate what changes need
10 be made to the original map unit, instead of making a new copy of the original map unit and actually
making the changes. Any solution map can be constructed from the original map unit through the use of
three types of actions: ADD, INSERT and REMOVE. Keep in mind that these actions (as used here) are
data stroctures, not functions.

ADD{(vf ) indicates that thevirtual fragment v/ should be placed in a group in the map unit. Since
there is at most one group in.the map.unit that v/ can legally be placed in, it is not necessary to store the -
group in the action. However, depending on the nature of the implementation, it may be more efficient to
do so. REMOVE(yf ) indicates that the virtual fragment vf should be removed from the map unit. If a
virtual fragment can be uniquely identified without specifiying the group it is contained in, then it is not
necessary {o store the group in the action. Again, it may be more efficient to do so. INSERT(vf , 2) indi-
cates that a new group should be created immediately to the right of the existing group g in the map unit.
Then, the virtual fragment vf should be placed in the new group. Depending on the nature of the imple-
mentation, one may need a special code to indicate when the insertion should occur at the end of the map
unit. However, if clone ends are explicitly stored in the map unit, then this should not be necessary.

All the operations ( add, insert, and the various splits and combines) simply pass the original map
unit and refer to it. Whenever an operation must make a modification to the original map unit, it creates the
appropriate action {or list of actions). Thus, the operations really do not return maps. Instead, they return
lists of actions, where each list contains the modifications to the original map unit that produce the desired
map unit. The responsibility for actually creating the new map units from the actions is given to
top_level_split and top_level_combine. Afier collecting the lists of actions, each is applied to the origi-
nal map unil to generate a solution, With this mechanism, the number of copies of the original map unit is
kept 10 & minimunm.

One may question whether the RSA works correctly if all operations refer 10 the original map unit.
The reason it still works is that an operation never refers to a portion of the map unit modified by the opera-
tions before it. A closer examination reveals that this is true. A group is affected if an operation in the
current sequence has created an action that pertains to that group. (Ie., that group has been “modified".)

The directed_split, undirected_split and undirected_combine are called before any actions are
created. So no groups in the map unit are affected, and these operations can legally refer to the original
map unit,

Some actions are created by the time a directed_combine is catled, when it is called by an
internai_split. Suppose an internal_split occuring at a group g, creates a subfragment vf; and then
attempts a directed_combine with another virtnal fragment vf 5, which is in the group g». This situation
1s illustrated in Figure 63. The combined virtual fragment vf 3 is formed. First, directed_combine
atiempts to add or insert vf 3 between groups g1 and go. Although g1 and g2 are obviously affected
because of the internal_split, the groups in between are not affected. Thus, directed_combine can refer
io the original map unit when attempting to add or insert. If the add and insert fail, then
directed_combine calls internal_split on vf3. Thus, the question now is whether this second
internal_split can legally refer to the original map unit.

Let vf o5 be the opposite direction subfragment, and 1et vf same be the same direction subfragment
created by the internal_split. In order for the internal_split to succeed, add or insert must succeed with
vf opp elween g, and g2. However, it has already been demonstrated that the groups in that region of the
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I v l Vf2
L| A

g1
’ ~—— not affected — ~— not affected —>

|

internal_split dir -
Figure 63: Regions of a map unit not affected

map unit are not affected. In addition, directed_combine, add or insernt must succeed with vf game beyond
&> However, note that g5 is the furthest affected group, and thus groups beyond it are not affected. Thus,
internal_split can legally refer to the original map unit.

The add and insert operations can refer to the original map unit as long as the range of groups they
are called upon are not affected. It has been shown that directed combine and internal_split call them
appropriately, and it is easy to see that directed_split, undirected_split and undirected_combine cail
them appropriately as weli.

4.8.3. User Options

There are some options available in the implementation of the RSA that are not expressed in the
psuedocode, in order to keep it as simple as possible, These options will be discussed in this section. The
options are (1) attempting all bipartitions, (2) disabling the insert operation, and (3) requiring a unique
solution.

The first option is concerned with the bipartitions used to decompose virtual fragments into subfrag-
ments. In the psuedocode for lop_level_split, the user is required to give the bipartition by which the vir-
tual fragment should be split. However, in a realistic mapping situation, it can be difficult for the user to
see which bipartitions will lead to the desired results, The user may not ¢ven have a clear idea of what the
desired results are. The user may.merely know that a particular fragment seems out of place and suspects a
top_level_split may be in order. Consequently, in the implementation, one can specify a particular biparti-
tion to top_level_split; or one can ask that each possible bipartition of the real fragments composing the
virtal fragment be attempted.

The second option concerns the insert operation. In map units where the number of real fragments
in a typical virtual fragment is high, it is relatively easy for insert operations to succeed. Thisleadstoa
large number of solutions. Although there are times when the insert operation is necessary (o generate the
correct solution, one may favor a solution that does not require insert operations. Obtaining a solution that
does not require the insert operation indicates that the group structure of the original map unit is correct,
and only a rearrangement of fragments is necessary. Oblaining a solution that does require the insert
operation indicates that the group structure of the original map unit is slightly incorrect. Thus, one may
favor solutions not requiring the insert operation, because it implies less of a departure from what was con-
sidered to be the true situation. Therefore, in the implementation, the top_level_split and
top_level_combine operations have a Boolean parameter that allows the user to specify whether or not
insert operations are to be used. The implementation of this option is fairly easy. Statements are added
that check the Boolean parameter any time an insert operation is about o be attempted.
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The third option concerns the number of solutions returned. If a top_level_spiit or
top_level _combine operation returnsg more than one solation, the user must select which one to use, or
discard all of them. However, the user may know beforehand that ail solutions will be discarded if more
than one is returned. Given this, it would be convenient if the algorithm stopped once more than one solu-
tion has been found, This is particularly time-saving when one is using all bipartitions of the virtual frag-
ment in the initial split (i.e., the first option). Consequently, in the implementation, top_level_split and
top_level_combine have a Boolean parameter that specifies whether or not a unique answer is desired. If
this is set to TRUE, then the algorithm stops and returns with failure once more than one solution has been
found.

In Figure 64, the header of the top_level_split operation (called fs_split in the C code) in the
implementation js given. In Figure 65, the header of the top_level_combine (called £s_combine ) is
siven.

5. Conclusion

In this report, four basic operations on virtual fragments ( add, insert, split and combine ) are
defined and form the basis for the GSA, an algorithm that computes all the possible map units that result
from the correction of a fragment matching mistake. However, the GSA is difficult to implement and does
not promise 10 be of much use in constructing DNA maps. Thus, the operations of the GSA are modified to
give new operations that form the basis for the RSA, an algorithm that computes only the most compact
map units that result from the correction of a fragment matching mistake. The RSA is implementable and
has the potential to be a useful aide in constructing DNA maps.

However, the RSA must be told the virtual fragment to split, or which two fragments to combine.
Therefore, it depends on human intuition or on other software, A future report will discuss the automatic
detection of fragments to split and fragments to combine.

Some relaied topics that may be the focus of future work are (1) using the RSA to identify mistakes
in the interpretation of electropheresis gels, (2) developing strategies so that map units containing more
than one independent matching mistake can be corrected, (3) adjusting the operations in the RSA so that it

fs_split(vf_node,bipart,mu,dir, unique, inserting)

TREE_TYPE vi_node;
PAIR TYPE bipart;
TREE_TYPE mua;
DIRECTION TYPE dir;
BOOLEAN unique,
inserting;

Figure 64: Header in the implementation of the top_level_split operation

fs_combine (vf_nodel,vf nodeZ,mu,dir,unique, inserting)

TREE _TYPE

vf nodel,
vf nodeZ2,

1 ;
DIRECTION TYPE dir;
BOOLEAN unique,

inserting;

Figure 65: Header in the implementation of the top_level_combine operation
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finds the correct solution more frequently and (4) extending the RSA to work on a broader range of map
units (e.g., map units where two or more distinct groups with the same ACS exist).
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APPENDIX A

Description of Functions and Procedures in the Psuedocode

SET
acs{x)

VIRTUAL _FRAGMENT x;
or

GROUP X:

Returns the active clone set of the object x.

LIST

concatenate_left_and_right_parts_of maps(l;,l.,vi.q)
LIST 1,y
VIRTUAL_FRAGMENT vi;
GROUP a;

Retumns the list of map units generated using the process illustrated in Figure 35. The portion of each map
in l; to the left and of including g is paired with the portion of each map in I to the right of g. The virtual
fragment vf is removed from the maps constructed before returning.

VOID
create_new_group_right_of(g)
GROUP g.

Creates a new group immedialely to the right of g in the map unit that g is contained in. Nothing is
returned.

LIST

combining_vis{vf,g;,.q2)
VIRTUAL_FRAGMENT wf;
GROUP Qi,92;

Returns a list of the virtual fragments, in the map unit containing g; and ¢, that satisfy the conditions p1’,
p2 and p3” with vi. In addition, these virtual fragments must be in groups that are between ¢; and go.

GROUP
group_of{vi)
VIRTUAL_FRAGMENT vf;

Returns the group that contains vf,

GROUP

group_right_of{g)
GRQOUP q;

Returns the group, in the map unit containing ¢, that is immediately to the right of g.
GROUP
group_with_acs(s,m)

SET s;
MAP_UNIT m;

Returns the group in m that has the active clone set S,
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VIRTUAL_FRAGMENT
leftmost_frag_of(vf,,vfa)
VIRTUAL_FRAGMENT wi;,vis;

Assuming vi; and vf, are contained in the same map unit but not in the same group, vf; is returned if it is to
the left of vis, and vi; is returned otherwise.

GROUP
leftmost_group_of(9;,92)
GROUP 01,92;

Assuming g; and g, are distinct and are contained in the same map unit, g is returned if it is to the feft of
gz, and g is returned otherwise,

VOID
remove_equivalent_maps(l)
LIST |

Duplicate map units in the given list of map units | are eliminated, Nothing is returned.

VOID

remove_vi(vi,m)
VIRTUAL_FRAGMENT vf;
MAP_UNIT m;

Removes vf from the map unit m, Nothing is returned.

BOOLEAN
ris_have_matching_order(l)
LIST |I;

Given a list | of real fragments, TRUE is returned if the real fragments can match, otherwise FALSE is
returned.

SET
rfs_of{vf}
VIRTUAL_FRAGMENT wf;

Returns the set of real fragments that compose vf.

VIRTUAL_FRAGMENT
rightmost_frag_of{vi, vis)
VIRTUAL_FRAGMENT vi,vis;

Assuming vf; and viz are contained in the same map unit but not in the same group, vf; is retumed if it is to
the right of vf,, and vi, is returned otherwise.

GROUP

rightmost_group_of(0:,92)
GROUP d1,02;

Assuming ¢; and g are distinct and are contained in the same map unit, g; is returned if it is to the right of
O, and Qp is returned otherwise.
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PAIR
swap(p)
PAIR p;
Returns a new pair whose left element is the right element of p and whose right element is the left element
of p.

VIRTUAL_FRAGMENT
vi_combine{vfi,vfy)
VIRTUAL_FRAGMENT vf;,vfy;

Returns a virtual fragment created by merging the real fragments composing vi; with the real fragments
composing via.

PAIR

vi_split(vi,p)
VIRTUAL_FRAGMENT wf;
PAIR p;

Given a virtual fragment vf and a pair of sets of real fragments p, two virtual fragments are created by
breaking up the real fragments in vf as determined by p. The two virtual fragments are placed in a pair and
returned.

BOOLEAN

vis_might_combine(vi, vf2,81.02.m)
VIRTUAL_FRAGMENT vy, viy;
GROUP 91,9z
MAP_UNIT m;

TRUE is returned if the conditions p{’, p2’ and p4’ are satisfied, otherwise FALSE is returned. vf; and vf;
are the virtoal fragments to combine. The group g is the group that vi; is from or where the split creating
vi; occured. The group g, is defined similarly for vf,. All groups and fragments are contained in the map
unit m.

SET
vis_of{g)
GROUP g;

Returns the set of virtual fragments contained in g.
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