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ABSTRACT OF THE DISSERTATION 

Role of the ARF Tumor Suppressor in Osteoclasts 

by 

Crystal Lynn Winkeler 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Cell Biology 

Washington University in St. Louis, 2011 

Dr. Jason D. Weber, Chairperson 

 

 The ARF tumor suppressor is upregulated upon oncogenic stress. ARF can 

suppress cell proliferation in both p53-dependent and -independent mechanisms. We 

have focused on ARF’s ability to suppress protein synthesis in a p53-independent 

manner. Given that protein synthesis and the cell cycle are coordinately controlled, this 

arm of ARF tumor suppression also contributes to the restraint of cell proliferation. Our 

lab has recently shown that basal ARF suppresses protein synthesis in mitotic cells. The 

focus of my dissertation has been to determine whether basal ARF regulates cell growth 

in a post-mitotic setting.  

 We used the osteoclast (OC) as a model for post-mitotic growth. We attempted to 

generate osteoclast-specific Arf loss using a Cre-expressing mouse, in which Cre is 

controlled by the Cathepsin K promoter (CtskCre/+). Surprisingly, we generated Arf -/- mice 

as demonstrated by genotyping, loss of ARF expression in the testis, and a phenotype  
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comparable to traditional Arf -/- mice. Furthermore, both Cathepsin K and Cre are  

expressed in reproductive tissues, which results in Cre activity within gametes as 

confirmed by crossing CtskCre/+ mice with ROSA reporter mice. Finally, we found that 

Cathepsin K loss enhances serum estradiol levels. Together, this data suggests that 

Cathepsin K-driven Cre will not consistently result in OC-specific gene loss and may 

lead to misinterpretation of phenotypes generated to study the function of OC genes.  

In parallel, we have analyzed the role of ARF during osteoclastogenesis in vitro 

and found that Arf loss enhances osteoclastogenesis as demonstrated by OC number and 

size, protein markers of osteoclastogenesis, and increased bone resorption. Enhanced 

osteoclastogenesis upon Arf loss is independent of both proliferation and p53. 

Furthermore, we demonstrated enhanced protein synthesis and ribosome activity during 

osteoclastogenesis in Arf -/- cells. As an alternative approach to studying Arf loss in vivo, 

we generated radiation chimeras and challenged them with RANKL. We found that Arf 

loss results in elevated bone resorption due, at least in part, to increased 

osteoclastogenesis in vivo. This data collectively suggests that ARF regulates 

proliferation-independent cell growth, a function that is physiologically relevant both in 

vitro and in vivo. 
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1.1 Unrestrained growth: a hallmark of cancer 
 
There is no precise formula that drives a normal cell to become neoplastic. However, 

there are certain characteristics common among cancerous cells that have been described 

by Hanahan and Weinberg as the hallmarks of cancer. The founding hallmark capabilities 

include the ability to sustain proliferative signaling, evade growth suppressors, activate 

invasion and metastasis, enable replicative immortality, induce angiogenesis, and resist 

cell death (Hanahan and Weinberg, 2000). A decade later, additional hallmarks have been 

added to the original six, including reprogramming of energy metabolism and evading 

immune destruction. It is now also clear that genetic alterations largely underpin the 

ability of normal cells to acquire these characteristics. Furthermore, we must not only 

consider the individual cell but also the surrounding cells and tissues, known as the tumor 

microenvironment (Hanahan and Weinberg, 2011). My dissertation largely centers 

around two of the original cancer hallmarks: the ability to sustain proliferative signaling 

and the ability to evade growth suppression. Throughout this introduction, I will focus on 

cell growth (i.e. protein translation) as an essential and distinct component of 

proliferation. It will be important to remember that growth is just as necessary to 

proliferation as is the completion of mitosis; for without an increase in cell mass, 

daughter cells would become progressively smaller until they conceivably become 

nonfunctional and die.   

 
Instructing a cell to grow via mTOR 
 

In a normal cell, growth is only initiated when the proper nutrients and signals are 

present. The target of rapamycin (TOR) is a cellular sensor for signals that instruct a cell 

to grow. TOR (mTOR in mammals, also known as FRAP, RAFT, RAPT, or SEP) is an 
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evolutionarily conserved serine/threonine kinase and member of the phosphatidylinositol 

3-kinase (PI3K)-related kinase (PIKK) superfamily (Brown et al., 1994; Chen et al., 

1994; Chiu et al., 1994; Keith and Schreiber, 1995; Sabatini et al., 1995; Sabers et al., 

1995). As its name suggests, TOR is bound by the bacterial compound rapamycin 

(Sehgal, 2003). In mammals, the binding of rapamycin to its target suppresses 

proliferation, emphasizing the importance of the mTOR pathway in regulating this 

process. To promote growth, mTOR shuttles from the cytoplasm to the nucleus, where it 

regulates two major proteins involved in translation: S6 kinase 1 (S6K1) and 4E-BP1 

(eukaryotic initiation factor 4E (eIF4E)-binding protein, also known as PHAS-1) (Kim 

and Chen, 2000).     

 Phosphorylation of S6K1 by mTOR results in the subsequent phosphorylation of 

40S ribosomal protein S6 (Jeno et al., 1988). It has been suggested that the 

phosphorylation of S6 is important for the enhanced translational efficiency of 5'-TOP 

(terminal oligopyrimidine)-containing mRNAs (Jefferies et al., 1997; Jefferies et al., 

1994; Terada et al., 1994). Importantly, many components of the translational machinery 

contain a 5'-TOP sequence, thus the phosphorylation of S6K1 may result in an overall 

enhancement of protein synthesis. While this is an intriguing hypothesis, it has also been 

questioned by results demonstrating that S6K1 activity and S6 phosphorylation are 

dispensable in the upregulation of 5'-TOP mRNA translation. Furthermore, S6K1 is 

known to have other, albeit less-well studied, substrates that may contribute to enhanced 

protein synthesis (Fingar and Blenis, 2004; Ruvinsky and Meyuhas, 2006). So, while it is 

clear the S6K1 is important for cell growth, we do not yet fully understand the 

mechanism by which it exerts its functions.   
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 In the absence of mTOR activation, 4E-BP1 binds tightly to eIF4E and inhibits its 

association with eIF4G to prevent the eIF4F complex from forming and thus protein 

synthesis from occurring. Upon phosphorylation by mTOR, 4E-BP1 releases eIF4E and 

allows for binding of eIF4E with eIF4G (Marcotrigiano et al., 1999), which is a 

scaffolding protein that recruits additional members of the initiation complex to promote 

cap-dependent translation. Clearly, 4E-BP1 and S6K1 are important modulators 

downstream of mTOR that instruct a cell to grow. As I mentioned above, cell growth is 

the production of macromolecules, and thus, in the next section I will give an overview of 

how the machinery for protein synthesis comes together. 

 

The machinery for protein synthesis 

 Protein translation begins in nucleoli with the production of ribosomes. Nucleoli 

are composed of three structural regions: the fibrillar center, the dense fibrillar 

component, and the granular component. RNA polymerase I (Pol 1), HMG1 box 

architectural upstream binding factor (UBF), and the selectivity complex (SL1, also 

known as TIF-IB) are located in fibrillar centers, and this is where the transcription of 

ribosomal DNA (rDNA) occurs. With the exception of the 5S rRNA , all rRNAs all 

encoded in a polycistronic message (Fatica and Tollervey, 2002). The 5S subunit is 

separately transcribed by RNA polymerase III.  The rRNA is then modified and 

processed by small nucleolar RNAs (snoRNAs), which guide both 2'-O-methylation and 

pseudouridylation (with the enzyme dyskerin) of individual nucleotides (Kiss, 2001). 

Subsequent cleavage by RNases eventually results in the mature ribosomal components. 

The 18S rRNA combines with ribosomal proteins to form the 40S ribosomal subunit 
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while the 60S subunit is formed by the joining of ribosomal proteins with 5S, 5.8S, and 

28S subunits. The granular component is the site at which preribosomal subunits 

assemble with ribosomal proteins (Ruggero and Pandolfi, 2003). Finally, the small (40S) 

and large (60S) ribosomal subunits are ready to be transported to the cytoplasm for 

protein translation (Figure 1.1).   

 

The ARF tumor suppressor: a sensor and modulator of cell growth 

 Given the importance of cell growth to tumor progression, it is important to 

understand the mechanisms by which a cell regulates ribosome production and protein 

synthesis. The ARF tumor suppressor is a key sensor of signals that instruct a cell to 

grow and is appropriately localized in nucleoli to limit unrestrained growth. In the 

following sections, I will introduce the ARF tumor suppressor, explain its known 

relevance in cancer, and highlight what is known about how it responds to cell growth 

signals. 

 

1.2 ARF expression 

The INK4a/Arf locus: organization and regulation 

 ARF is encoded on chromosome 9p21 as part of the CDKN2a, which includes 

both INK4a  and Arf (Figure 1.2). The locus also contains INK4b (also known as 

CDKN2b), which lies upstream of Arf and INK4a. INK4b is its own genetic entity, while 

INK4a and Arf share two of their three exons (Quelle et al., 1995; Sherr, 2000). It is also 

worth noting that a non-coding RNA, ANRIL (also known as CDKN2b antisense or 

CDKN2BAS), has recently been discovered at the INK4b-Arf-INK4a locus. It has been 
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proposed that ANRIL regulates the expression of the locus (Pasmant et al., 2007). Due to 

splicing events, unique promoters, and unique first exons, the transcription products of 

INK4a and Arf contain distinctive first exons (INK4a is encoded by exon 1α and Arf is 

encoded by exon 1β) but identical second and third exons. The two shared exons result in 

almost 70% sequence homology at the DNA level. However, Arf is translated in an 

alternative reading frame, for which it is named, from that of INK4a (Quelle et al., 1995). 

This results in two proteins that are distinctive following translation.  

 Both p15INK4b and p16INK4a bind and inhibit the cyclin-dependent kinases, CDK4 

and CDK6 (Serrano et al., 1993; Sharpless, 2005). These kinases are important for the 

hyperphosphorylation of the retinoblastoma (Rb) tumor suppressor. When CDK4/6 are 

inhibited by p15INK4b and p16INK4a, Rb is in a hypophosphorylated state, allowing it to 

bind and inhibit transcription factors of the E2F family (Sherr, 1996). Thus, p15INK4b and 

p16INK4a effectively halt the progression from G1 to S in the cell cycle. The first 

discovered role for ARF was also in regulating cell cycle progression as I will discuss 

further in the next section.  

 

Regulating the Arf locus 

 Under normal conditions, it is important to keep Arf (and other members of the 

locus) repressed. This is primarily accomplished by polycomb repressive complexes 

(PRC). Generally speaking, the PRC2 complex first specifically methylates histone H3 at 

lysine 27, a process catalyzed by EZH2. The chromatin mark is then recognized by 

PRC1, which subsequently ubiquitinates histone H2A (Cao et al., 2002; Wang et al., 

2004). The importance of this process in repressing Arf is evident by studies 
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demonstrating that overexpression of polycomb group (PcG) members retards senescence 

(Dietrich et al., 2007; Gil et al., 2004; Jacobs et al., 1999). In the case of Bmi-1 (a PcG 

member) overexpression, mouse embryonic fibroblasts (MEFs) become immortalized in 

culture. Furthermore, bmi-1-/- MEFs have heightened levels of ARF (and p16INK4a) and 

are unable to enter S phase (Jacobs et al., 1999) . Upon oncogenic stress, it is important 

that a cell quickly be able to respond by upregulating the expression of ARF. This seems 

to be accomplished by a coordination of various factors and the exact mechanism may be 

different for different types of tissues or dependent upon the type of stress. For example, 

the expression of the methylating protein EZH2 can be downregulated (Bracken et al., 

2007). Histone H3 can also be demethylated by demethylase enzymes such as JMJD3, 

which is upregulated in response to oncogenic Ras (Agger et al., 2009; Barradas et al., 

2009). Finally, in selective tissues, oncogenic stress can cause the derepression of Arf by 

upregulating members of the chromatin remodeling SWI/SNF complex (Young and 

Jacks).  

 

Arf loss in cancer 

 Mice containing individual loss of each of the three aforementioned genes have 

revealed that all are important in tumor suppression. p16INK4a and ARF have synergistic 

tumor suppressive functions as mice containing loss of both are more tumor prone than 

those with the loss of only one or the other (Sharpless et al., 2004). Given the scope of 

my work, I will focus on alterations to Arf in cancer. 

 In order to specifically determine the role of Arf in tumor suppression, Sherr and 

colleagues selectively disrupted exon 1β in mice. These mice began developing tumors as 
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early as 8 weeks. After one year, 80% of the mice had died from spontaneous tumor 

development, with a mean survival latency of 38 weeks. Heterozygous mice also 

developed tumors, albeit after a longer latency compared to Arf -/- mice. Upon 

examination of Arf +/- mice, it was noted that tumor formation was accompanied by loss 

of the remaining allele. The tumor spectrum in Arf -/- mice included sarcomas (43%), 

lymphoid malignancies (29%), carcinomas (17%), and tumors of the nervous system 

(11%) (Kamijo et al., 1999). Consistent with this data is the work showing that mouse 

embryonic fibroblasts taken from Arf -/- mice are immortal and transformed upon the 

ectopic expression of oncogenic Ras (Kamijo et al., 1997). Furthermore, as wild-type 

cells are passaged, the expression of ARF increases, implying a role for ARF in limiting 

the proliferation of cultured cells.  

 In human cancers, one of the most frequent cytogenetic events is the homozygous 

loss of the INK4b-Arf-INK4a locus. In fact, the frequency of mutation at this locus is 

second only to the p53 locus (Hainaut et al., 1997; Hall and Peters, 1996). In most cases 

of human cancer, all three proteins of the INK4b-Arf-INK4a locus are lost, making it 

difficult to determine their individual roles in human tumor suppression. However, there 

are specific examples in which only Arf appears to be affected in human cancer, and these 

cases appear to be most common in melanoma patients. Gene deletions in family with 

melanoma-neural system tumor syndrome have been shown to occur specifically in exon 

1β (Randerson-Moor et al., 2001). Deletion of exon 1β has also been reported in 

members of a family predisposed to melanoma (Laud et al., 2006). In addition to 

melanoma cases, it has been reported that nine of fifty glioblastoma patients had specific 

deletion of Arf (Nakamura et al., 2001). Aside from deletions, mutations of exon 1β that 
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impair ARF function have been reported in a case of melanoma (Rizos et al., 2001). 

Furthermore, the Arf promoter contains a CpG island, and ARF expression can 

consequently be downregulated by promoter methylation (Robertson and Jones, 1998) 

(Furonaka et al., 2004; Kominami et al., 2009; Konishi et al., 2002; Melendez et al., 

2000; Zemliakova et al., 2004; Zheng et al., 2000). 

 

Arf transcription and translation 

 Arf transcription is upregulated in response to a host of oncogenic signals 

including c-Myc, Ras, E2F-1. E1A, and v-Abl (Sherr, 2001) . Perhaps the two most well-

studied of these events, upregulation by c-Myc and Ras, were directly demonstrated in 

vivo using a construct in which GFP is controlled by the Arf promoter (Zindy et al., 

2003). Given that oncogenic Ras plays an integral role in regulating cell growth, I will 

focus my attention on the upregulation of Arf transcription by RasV12. Research into the 

transcriptional regulation of Arf was initiated by searching the promoter for known 

binding sites of transcription factors. The Arf promoter contains a binding site for the 

DMP1 (cyclin D-binding Myb-like protein) transcription factor, namely a nonameric 

DNA consensus sequence containing G-G/T-A cores (Hirai and Sherr, 1996). The DMP1 

transcription factor was a likely candidate for Arf regulation given that it is known to 

arrest mouse fibroblasts upon overexpression, and human DMP1 is frequently deleted in 

myeloid leukemia (Bodner et al., 1999; Inoue and Sherr, 1998). In 1999, Inoue and 

colleagues demonstrated that DMP1 binds and activates the Arf promoter. Moreover, 

infection of wild-type MEFs with DMP1 induces ARF expression and a cell cycle arrest. 

Importantly, in the absence of Arf, DMP1 overexpression had no effect on the cell cycle, 
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indicating that DMP-1-induced arrest is dependent upon ARF (Inoue et al., 1999). 

Subsequent studies have now shown that DMP1 is a key mediator of Ras-induced ARF 

expression (Sreeramaneni et al., 2005). Until recently, ARF induction downstream 

oncogenic Ras has largely been considered a transcriptionally-activated process. 

However, Miceli and colleagues have demonstrated that RasV12 can induce ARF levels in 

the absence of Dmp1. By signaling through the Ras/PI3K/TSC/mTOR pathway, this 

induction in Dmp1-null cells occurs in the absence of enhanced ARF mRNA levels 

(Miceli et al., 2011). Taken together, we now know that ARF is upregulated both 

transcriptionally and translationally in response to oncogenic Ras to induce cell cycle 

arrest.  

 

ARF's structure, cellular location, and stabilization 

 The structure of ARF is important to consider when studying the protein's 

localization, stabilization, and binding partners. Mouse ARF (p19ARF) contains 169 amino 

acids, while human ARF (p14ARF) contains 132. Of this relatively small protein, nearly 

20% of the residues are arginines, making ARF a highly basic protein. The basic nature 

of ARF renders it highly insoluble and is likely the reason for its lack of structure. 

Moreover, this property also renders ARF a very "sticky" protein, which makes it 

difficult to discern which of its proposed binding partners are physiologically relevant. It 

is likely that ARF requires consistent binding with another protein to bring its charge to a 

more neutral pH in order to function in vivo (Ozenne et al.; Quelle et al., 1995; Sherr, 

2006). In fact, owing to a nucleolar localization signal, ARF is typically found within 

nucleoli bound in high molecular weight complexes with other proteins (Bertwistle et al., 
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2004) . In consideration of ubiquitination on lysine residues, it is interesting that mouse 

ARF contains only one lysine (Lys26) while human ARF has none.  ARF has a half-life 

of about 6h, at which point it is degraded by ubiquitin-mediated proteasomal degradation. 

However, studies have shown that the ubiquitin moiety is not added to the sole lysine in 

mouse ARF as removal of that lysine still results in ARF's degradation. Instead, both 

mouse and human ARF undergo N-terminal ubiquitination, which signals them for 

destruction (Kuo et al., 2004). 

 

1.3 p53-dependent ARF tumor suppression 

 ARF's classical role as a tumor suppressor is to activate p53. Given that p53 is the 

most commonly mutated gene in human cancers, this is clearly a significant role of ARF. 

p53 can induce both cell cycle arrest and trigger apoptosis in response to oncogenic 

stimulation, DNA damage, and other cellular stressors. p53 exerts its functions by 

transactivating target genes such as p21 and PUMA. Interestingly, another target of p53 

transactivation is its own negative regulator, murine double minute 2 (MDM2, HDM2 in 

humans) (Sherr and Weber, 2000). In the absence of cellular stress, p53 is bound by 

MDM2. When MDM2 is bound to p53, p53 is physically unable to bind to target genes 

and exert its function as a transcription factor (Momand et al., 1992; Oliner et al., 1993). 

MDM2 also results in the nuclear export and eventual proteasomal degradation of p53 

(Roth et al., 1998). Furthermore, MDM2 contains a RING domain, allowing it to act as 

an E3 ubiquitin ligase and contribute to the ubiquitination of p53 (Haupt et al., 1997; 

Honda et al., 1997; Kubbutat et al., 1997). The importance of the MDM2-p53 interaction 
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is underscored by work demonstrating that mdm2-/- mice are embryonic lethal but can be 

rescued by concomitant deletion of p53 (Jones et al., 1995).  

 When prompted by oncogenic signals such as RasV12 (Palmero et al., 1998) or 

Myc overexpression (Zindy et al., 1998), ARF is upregulated. ARF then binds MDM2 

via amino acids 1-14 and sequesters it in the nucleolus (Weber et al., 1999). The residues 

important for the nucleolar localization of ARF are also within the first 37 residues of 

exon 1β, and only these residues are necessary for fully functional ARF (I will later 

discuss other roles of these residues). MDM2 likely also contributes to the nucleolar 

localization of the complex as binding to ARF reveals MDM2's nucleolar localization 

signal (Lohrum et al., 2000). Nucleolar localization prevents the binding of MDM2 to 

p53 and the ability of MDM2 to shuttle between the nucleus and cytoplasm, thereby 

impeding its ability to transport p53 to the cytoplasm for degradation (Tao and Levine, 

1999). As is the case for Mdm2, Arf is a transcriptional target of p53, adding to the 

negative feedback loop of p53 activation (Stott et al., 1998). 

 The importance of the ARF-MDM2 interaction is highlighted by studies 

demonstrating that oncogenic insult is incapable of inducing p53 responses when ARF is 

lost (Kamijo et al., 1997; Palmero et al., 1998). This suggests that ARF activity could be 

mimicked by generating therapeutics to inhibit MDM2 in p53-positive cancers. A 

synthetic class of molecules, called nutlins, was perhaps the most promising of MDM2 

inhibitors, especially in the absence of ARF. They free p53 from MDM2's negative 

regulation via binding a hydrophobic pocket of MDM2 that is critical for its interaction 

with p53 (Vassilev et al., 2004). Initially, nutlins seemed as though they would be a 

successful cancer therapy; upon nutlin treatment, p53-positive cancer cells either became 



 

13 
 

senescent or underwent apoptosis. Nutlins also seemed promising in vivo when they were 

successfully used to reduce tumor xenograft growth in mice (Vassilev et al., 2004). 

Unfortunately, it became evident that nutlins would be too toxic due to prolonged p53 

activity. The embryonic lethality of Mdm-2 mice supported this theory. When 

considering that p53/Mdm2-null mice are viable, the Mdm2-null phenotype indicates that 

unchecked p53 is deleterious during development (Jones et al., 1995; Montes de Oca 

Luna et al., 1995). Furthermore, when p53 activity was conditionally upregulated in 

Mdm2-null mice, the mice died within 1 week (Ringshausen et al., 2006). While this data 

was unfortunate, it may have heightened the interest in identifying other, p53-

independent targets of the ARF tumor suppressor that could lead to additional therapeutic 

targets in the absence of functional ARF. 

 

1.4  p53-independent functions of ARF 

 It was not initially clear that ARF tumor suppression went beyond the scope of 

p53. The first clue presented when mice were engineered to overexpress c-Myc. These 

mice developed B-cell lymphomas with a mean survival of 6 months (Eischen et al., 

1999). It was previously known that oncogenic c-Myc activates the p53-MDM2-ARF 

pathway in culture (Zindy et al., 1998). Therefore, the authors examined this pathway in 

the mouse tumors. As may have been expected, a number of tumors either displayed p53 

mutation, biallelic Arf  loss, or MDM2 overexpression. Interestingly, some tumors also 

presented either p53 mutations or biallelic Arf loss in conjunction with MDM2 

overexpression (Eischen et al., 1999), which could be interpreted as MDM2 having p53-

independent tumor suppressive properties. However, it was also suggested that ARF may 
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have p53-independent tumor suppressive functions based on this data. In 2000, Weber et 

al. published their results of genetically engineered mice that were nullizygous for p53, 

Mdm2, and Arf (known as triple knock-out, or TKO, mice). When compared to mice 

lacking either p53 or Arf alone, mice lacking both p53 and Arf  (with or without loss of 

Mdm2) displayed a wider tumor spectrum and an increase in the number of primary 

tumors (Weber et al., 2000). If ARF only exerted its tumor suppressive functions through 

p53, we would have expected the TKO mice to display the same types of tumors as  p53-

null mice. Furthermore, the results demonstrated that MDM2 antagonizes the p53-

independent tumor suppressive functions. Ectopically expressed ARF was unable to 

arrest p53/Arf-null MEFs. However, ARF was able to rescue to these cells with 

concomitant deletion of Mdm2. This phenomenon was explained by results showing that 

an Arf mutant lacking amino acids 1-14, which are necessary for ARF's ability to bind 

MDM2, are required for ARF to arrest TKO cells. In other words, ARF is unable to arrest 

p53/Arf-null cells in the presence of antagonistic MDM2. Moreover, the amino terminal 

14 amino acids of ARF are necessary for both its p53-dependent and -independent tumor 

suppressive functions. In future sections, I will touch upon some of the reported ARF-

interacting proteins that have emerged since the genetic evidence of p53-independent 

ARF tumor suppression was presented.  

 

Arf-interacting proteins beyond the realm of p53-dependent tumor suppression 

 In 2006, at least 30 proteins had been reported to interact with ARF (Sherr, 2006). 

For a majority of the reported ARF-interacting partners, it is still too early to determine 

whether their interaction is physiologically relevant, partially due to the promiscuity of 
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ARF's binding.  Interestingly, ARF is known to interact with another E3 ubiquitin ligase 

aside from MDM2: ARF-BP1. ARF-BP1 contains a HECT domain and has been shown 

to ubiquitinate p53. When bound to ARF, the ubiquitin ligase activity of ARF-BP1 is 

inhibited (Chen et al., 2005). ARF is also known to interact with DP1, a binding partner 

of the E2F family of transcription factors. The ARF-DP1 interaction inhibits the ability of 

DP1 to activate the dhfr gene, which promotes cell cycle arrest (Datta et al., 2005). ARF 

has also been shown to interact with MYC. Two studies were simultaneously published 

that demonstrated the ability of ARF to block transcriptional activation by MYC in a p53-

independnet manner (Datta et al., 2004; Qi et al., 2004). One group further reported that 

ARF exerts this function by sequestering MYC in the nucleolus (Datta et al., 2004). 

UBC9 is another ARF-interacting protein (Rizos et al., 2005). UBC9 is a SUMO 

conjugating enzyme that is of particular interest given recent reports demonstrating the 

ability of ARF to promote protein sumoylation. Finally, I will highlight the ARF-NPM 

interaction in forthcoming sections of this chapter as NPM is an important component of 

my dissertation. 

 

The relationship between ARF and NPM 

 One of the most well-studied and relevant ARF-interacting proteins is 

nucleophosmin (NPM; also known as B23, numatrin, and NO38). NPM was first 

identified as an ARF-interacting protein by four independent laboratories, all of which 

reported slightly different stories on the physiological function of the interaction. Itahana 

and colleagues reported that ARF-binding induces the ubiquitination and proteasomal 

degradation of NPM (Itahana et al., 2003). This theory is somewhat tantalizing given 
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that, at the time, ARF had published roles in inhibiting ribosomal RNA processing 

(Sugimoto et al., 2003) while others had already published that NPM promotes this 

process (Savkur and Olson, 1998). So, the authors suggested that their data provided the 

mechanism by which ARF negatively regulates NPM's pro-growth properties (Itahana et 

al., 2003). However, none of the other laboratories were able to reproduce the 

ubiquitination and subsequent degradation of NPM by ARF.  A few months later, 

Bertwistle and colleagues reported that ARF interacts with NPM using the same amino-

terminal 14 amino acids that are required for its interaction with MDM2. Furthermore, 

they suggested that NPM's interaction with ARF compromises ARF's ability to  prevent 

ribosomal processing (Bertwistle et al., 2004). Brady and colleagues proposed a model in 

which ARF binds NPM, and inhibits its shuttling from the nucleus to the cytoplasm, 

resulting in cell cycle arrest. Their data went on to verify that amino acids 1-14 of ARF 

were necessary for binding NPM as an ARF mutant lacking this domain (ARF ∆1-14) did 

not coimmunoprecipitate NPM (Brady et al., 2004).   Furthermore, the ARF-NPM is 

MDM-2-sensitive as reintroduction of MDM2 releases NPM from ARF (Brady et al., 

2004). The final group again verified that ARF's interaction with NPM was dependent 

upon its first 14 amino acids. However, they suggest that the interaction is important to 

prevent ARF from exerting its p53-dependent tumor suppressive functions (Korgaonkar 

et al., 2005). This data is in direct contrast to the aforementioned results that 

demonstrated a preferential binding of ARF to MDM2. If we can gather one thing from 

the four individual reports, it is that NPM is a bona fide interaction partner of ARF. 

Given this interaction and that my work has centered on the p53-independent growth 
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regulatory properties of ARF, I will now focus on what we have since learned about 

NPM in promoting cell growth. 

 

NPM and cell growth 

 NPM is a highly conserved 37kDa phosphoprotein. Although originally described 

as a nucleolar resident, NPM is capable of shuttling between the nucleoplasm and 

cytoplasm (Kang et al., 1974; Kang et al., 1975), a function that is important for ribosome 

export as will be discussed later. NPM is highly expressed under basal conditions, and its 

expression is exacerbated upon mitogenic stimulation. Work from our lab has shown that 

oncogenic Ras signals through mTOR to upregulate the translation of NPM (Pelletier et 

al., 2007). Furthermore, the upregulation of NPM protein was independent of changes at 

the mRNA level (Pelletier et al., 2007). Olanich and colleagues have since shown that the 

3'-UTR of NPM is sufficient to mediation upregulated translation through mTOR 

(Olanich et al.). Both studies have additionally demonstrated that the translational 

upregulation of NPM via mTOR results in higher rates of protein synthesis and enhanced 

proliferation in the absence of p53 (Olanich et al.; Pelletier et al., 2007). Furthermore, 

NPM is progrowth as its overexpression has been shown to increase cell size in Arf -/- 

MEFs and transform p53-/- MEFs in soft agar (Brady et al., 2009). Npm1-null mouse 

models have demonstrated the importance of NPM in the maintenance of cell growth and 

proliferation as they are embryonic lethal (Grisendi et al., 2005). Furthermore, in highly 

proliferative and tumorigenic cells, NPM expression is elevated compared to normal 

cells. These data were some of the first to suggest a role for NPM in regulating cell 

growth and proliferation (Borer et al., 1989; Yun et al., 2003). Since then, multiple 
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groups have reported that NPM is overexpressed in a variety of human tumors (Bernard 

et al., 2003; Brady et al., 2009; Nozawa et al., 1996; Shields et al., 1997; Skaar et al., 

1998; Subong et al., 1999; Tanaka et al., 1992; Tsui et al., 2004). On the other hand, 

NPM expression is known to be reduced in a number of human cancers as a result of 

either gene deletion or genetic alterations. Considering this data alone, it is not surprising 

that NPM has been ascribed both oncogenic and tumor suppressive roles (Grisendi et al., 

2006). In future sections, I will largely focus on oncogenic NPM as it is directly related to 

NPM's role in ribosome biogenesis and cell growth.  

 NPM's nucleocytoplasmic shuttling is CRM-1 dependent and required for the 

export of ribosomal components (Borer et al., 1989; Maggi et al., 2008; Yu et al., 2006). 

Ribosomal protein L5 (rpL5) is a chaperone for the 5S rRNA and the first reported 

component of the ribosomal machinery to be exported by NPM (Yu et al., 2006).  In this 

study, the authors created a shuttling-deficient mutant of NPM, in which two leucines 

within the nuclear export sequence of NPM were mutated to alanines. The mutation 

completely abrogated the nucleocytoplasmic shuttling ability of NPM, blocked the export 

of both rpL5 and 5S rRNA, and ultimately resulted in cell cycle arrest (Yu et al., 2006). 

In an effort to determine if NPM interacted with other components of the ribosome 

machinery, Maggi et al. generated a polyclonal NPM affinity column. Their efforts 

resulted in a list of 10 components of the 40S and 60S subunits and an additional 9 

proteins known to be important in translation (Maggi et al., 2008). NPM was also 

demonstrated to be required for protein synthesis by use of the shuttling-deficient mutant 

as well as siRNA-mediated kncokdown of NPM (Maggi et al., 2008). Furthermore, the 

importance of NPM's role in shuttling ribosomal components out into the cytoplasm is 
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highlighted by electron micrographs of the nuclear/cytosol boundary from Npm hy/hy 

(hypomorphic NPM alleles that express nearly undectectable levels of NPM) (Grisendi et 

al., 2005) MEFs, where one can clearly see the accumulation of ribosomes along the 

inside perimeter of the nucleus (Maggi et al., 2008). NPM mutations in acute myeloid 

leukaemia underscore the importance of NPM's shuttling function (Falini et al., 2005). 

The NPM mutation causes a frameshift that results in an additional NES and concomitant 

loss of NPM's nucleolar localization motif (Bolli et al., 2007; Falini et al., 2006). These 

changes result in the cytoplasmic localization of NPM and thus, this mutant has been 

designated NPM cytoplasmic positive or NPMc+. Cheng and colleagues subsequently 

demonstrated that NPMc+ is an oncogene in that it can transform mouse embryonic 

fibroblasts in cooperation with E1A  in soft agar assays (Cheng et al., 2007). Cheng et al. 

went on to show that oncogneic potential of NPMc+ was relevant in vivo by creating 

transgenic mice that express the NPMc+ mutant. The mutant mice developed 

myeloproliferation in bone marrow and spleen whereas expression of wild-type NPM did 

not result in disease (Cheng et al.). This NPM mutation also brings forth an important 

aspect of the ARF-NPM interaction. NPM has been demonstrated to maintain the 

stability of ARF within the nucleolus (Colombo et al., 2005; Colombo et al., 2006; 

Korgaonkar et al., 2005). In fact, the NPMc+ mutant takes ARF along as it aberrantly 

shuttles to the cytoplasm, which reduces the stability of ARF and interferes with both 

p53-dependent and p53-independnet tumor suppressive functions of ARF  (Colombo et 

al., 2006; den Besten et al., 2005). Given the importance of the ARF-NPM interaction in 

cell growth, I will outline future experiments in Chapter 4 to determine the role of NPM 

in post-mitotic cells. 
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1.5 What is basal ARF doing? 

 While ARF is primarily recognized as a protein upregulated in the face of 

oncogenic distress, there has been recent data suggesting important roles for basal ARF. 

It is becoming increasingly clearer that even thought ARF is nearly undetectable in many  

cells lines, it plays an integral role based on studies analyzing the effects of its loss. This 

emerging field is of particular importance to my project as we have studied the effects of 

basal Arf loss during osteoclastogenesis. In this section, I will cover the known roles of 

basal ARF in regulating mouse eye development, male germ cell production, and protein 

synthesis. In the following section, I will discuss what we know about the role of basal 

ARF in osteoblasts.  

 

The role of ARF in mouse eye development 

 Initially, Arf -/-mice seemed developmentally normal despite the fact that their 

eyes were slightly smaller compared to the eyes of wild-type mice (Kamijo et al., 1999; 

Kamijo et al., 1997; McKeller et al., 2002). Upon closer examination, McKeller and 

colleagues noticed that Arf -/- mice had a funnel-shapped mass of cells in the vitreous of 

their eyes just behind the lens. During postnatal day 1 through 10, this mass of cells is 

present and at least some of the cells are dividing. Although the authors did not notice an 

increase in the overall size of the cell mass as the mice aged, they did record its presence 

through 8 months of age. Notably, this retrolental mass of cells was not present in wild-

type or Arf +/- mice (McKeller et al., 2002). Wild-type mice are born with elements of the 

hyaloid vascular system (HVS), including endothelial cells, perivascular cells forming the 
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hyaloid artery, and several other types of perivascular cells that form the structures of the  

vasa hyaloidea propria (VHP), the tunica vasculosa lentis, which surrounds the lens, and 

the pupillary membrane. Normally, the HVS will regress by postnatal day 14 (Ito and 

Yoshioka, 1999). Although the HVS was still present in Arf -/- P10 mice, the authors did 

not detect any cellular components of the HVS by postnatal day 10 in wild-type mice 

(McKeller et al., 2002). Expression of ARF mRNA was examined in gross sections of the 

eye and found primarily in the vitreous. Given the localization of ARF and that most of 

the retrolental mass was centered within the region of the VHP, the authors suggested 

that ARF might regulate VHP regression (Ito and Yoshioka, 1999). Regression of the 

HVS, which includes the VHP,  is important for normal eye development; failed 

regression results in a human eye disease known as persistent hyperplastic primary 

vitreous or PHPV and results in microphthalmia (abnormally small eyes) (Goldberg, 

1997; Haddad et al., 1978). Arf -/-mice were examined for two primary characteristics of 

PHPV: retrolental fibrovascular tissue lining the inner neuroretina resulting in retinal 

abnormalities and retrolental fibrovascular tissue that adheres to the posterior of the lens 

(Haddad et al., 1978). For the most part, the neuroretina and lens of Arf -/-mice appeared 

normal through P10. However, beginning at P14, Arf -/-mice displayed both defects in the 

neurorentina and the lens, which ultimately results in blindness (McKeller et al., 2002). 

Importantly, the characteristics of PHPV were not observed in p53 -/- mice, indicating that 

the role of ARF in hyaloid vascular regression is independent of p53 (McKeller et al., 

2002). To better understand the molecular mechanisms by which ARF regulates HVS 

regression, Silva and colleagues examined Arf Gfp/+ mice. In these mice, one allele of Arf 

is replaced by Gfp, allowing for a more sensitive means of detecting tissues and cells in 
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which Arf expression occurs in vivo (Zindy et al., 2003). Results showed that ARF was 

expressed in the vitreal perivascular structures between embryonic day 11.5 (E11.5) and 

E18.5. Postnatally, GFP-positive cells were detected in mural cells expressing Pdgfrβ 

(Silva et al., 2005). In normal development, endolthelial cells within the vitreal HVS 

secrete PDGF-β, which then binds to cognate receptors on pericyte-like mural cells to 

support the developing lens (Gerhardt and Betsholtz, 2003; Ito and Yoshioka, 1999; 

Lindahl et al., 1997; Zhu et al., 1999). We now know that ARF regulates the proliferation 

of pericyte-like mural cells that express the PDGF-β receptor; and without ARF, these 

cells abnormally proliferation, resulting in lack of complete HVS regression, and 

ultimately, blindness (Gromley et al., 2009; Silva et al., 2005). 

 

The role of ARF in male germ cell development 

 In addition to ARF expression within the eye, the Arf Gfp/+ mice also revealed 

expression of ARF in one other normal cell: male spermatogonia (Zindy et al., 2003). 

Using a more sensitive system that is capable of detecting transient expression of ARF, 

Gromey and colleagues confirmed ARF's presence during male germ cell development 

(Gromley et al., 2009). In mice, spermatogenesis occurs within the first month of life. 

Spermatogonia are cells that line the basement membrane of each seminiferous tubule; 

these are the cells that express ARF (Gromley et al., 2009). Spermatogonia will enter 

meiosis I, moving toward the lumen of the tubule as they progress, during P7-P10. 

During this stage the cells are known as spermatocytes and undergo homologous 

recombination between homologous chromosomes. By P18, meiosis I is complete and the 

spermatocytes move directly into meiosis II to form haploid cells. Spermatogenesis is 
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complete once the spermatocytes differentiate into mature spermatozoa around P35  

(Cole et al.) Arf -/-mice have reduced sperm number compared to that in wild-type mice 

due to an increase in apoptosis during germ cell development (Churchman et al.; Cole et 

al.). Notably, there was no increase in the proliferation of spermatogonia during germ cell 

development upon Arf loss (Churchman et al.). While the apoptosis of these cells is 

dependent upon p53, the functions of ARF that regulate apoptosis are independent of 

p53. Cells void of Arf display increased levels of phosphorylated histone H2AX 

(Churchman et al.). H2AX is normally phosphorylated at the leptene stage of meiosis, but 

disappears by early pachytene upon synapsis of homologous chromosomes (Inagaki et 

al.; Mahadevaiah et al., 2001). Thus far, the data suggest that persistent phosphorylated 

H2AX signals cells for apoptosis, although this has not been convincingly demonstrated. 

Importantly, deletion of p53 was unable to rescue the defect in H2AX phosphorylation 

(Churchman et al.). Taken together, this role of ARF in male germ cell development is 

counterintuitive given what we already know about the ARF-p53 interaction; ARF 

actually prevents p53 from inducing apoptosis in primary spermatocytes (Churchman et 

al.).  

 

Basal ARF regulates nucleolar structure and function 

 Given the nucleolar localization of ARF and its interaction with NPM, Apicelli 

and colleagues examined the role of basal ARF in maintaining nucleolar structure and 

limiting protein synthesis (Apicelli et al., 2008). Arf loss resulted in an increase in both 

the number and size of AgNORs in mouse embryonic fibroblasts (MEFs) (Apicelli et al., 

2008). AgNORs highlight argyrophilic proteins that surround nucleoli. An increased 



 

24 
 

AgNOR index has classically been associated with poor prognoses in cancer (Pich et al., 

2000) and, thus, this data suggested that ARF maintains the structure and likely function 

of proteins within nucleoli. This data was corroborated by in situ AgNOR staining on 

tissues from Arf -/- mice. Both intestine and liver tissue exhibited an increase in total 

AgNOR area in the absence of Arf (Apicelli et al., 2008). In low-passage MEFs, Arf  loss 

also enhances protein synthesis as assessed by 35S-methionine incorporation, resulting in 

a increase in both protein content and cell volume (Apicelli et al., 2008). Importantly, 

enhanced protein synthesis in these cells was shown to be independent of proliferation as 

the total cell number did not increase over 7 days. Again, the increases in protein 

synthesis upon Arf loss was supported by in vivo results demonstrating that  

Arf loss in liver tissue also causes an increase in protein synthesis by 35S-methionine 

incorporation (Apicelli et al., 2008). To determine if enhanced protein synthesis could, at 

least partially, be attributed to an increase in protein output, Apicelli and colleagues 

isolated cytosolic fractions from WT and Arf -/- MEFs, ran the fractions over a sucrose 

gradient, and monitored the RNA absorption. An increase in ribosome output upon Arf 

loss was observed in vitro and supported by identical experiments done using liver tissue 

from Arf -/-mice (Apicelli et al., 2008). Together, this data demonstrates that basal Arf loss  

profoundly enhances cell growth in mitotic cells over time. To determine if acute Arf loss 

would have the same effects on mitotic cell growth, Apicelli and colleagues knocked 

down ARF by lentiviral transduction with an shRNA against exon1β. Again, the authors 

observed an increase in the number of AgNORs upon Arf loss as well as an increase in 

total AgNOR area (Apicelli et al., 2008). In fact, these changes were even more 

pronounced than those observed with chronic loss of Arf, which suggests that cells with 
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chronic Arf loss may have a means in which to compensate and control nucleolar 

morphology. Acute Arf loss also resulted in enhanced protein synthesis and ribosome 

output (Apicelli et al., 2008). Taking a step back in the production of ribosomes, the 

authors examined the transcription of rDNA and the processing of rRNA given that 

previous studies had demonstrated a role for ARF in both of these processes (Ayrault et 

al., 2006; Ayrault et al., 2004; Qi et al., 2004; Sugimoto et al., 2003). Furthermore, it is 

conceivable that ARF could simultaneously dampen multiple aspects of ribosome 

biogenesis as serial immunoprecipitation experiments have shown that only some of the 

ARF protein in the cell is bound to NPM (Apicelli et al., 2008). Loss of Arf resulted in a 

significant increase in newly transcribed 47S transcripts as demonstrated by quantitative 

RT-PCR, a result that was independent of shRNA-mediated knockdown of Myc.  The 

data further suggests that Arf loss results in enhanced processing of the newly transcribed 

47S rRNA, which supports previous findings (Apicelli et al., 2008; Sugimoto et al., 

2003). Specifically, in accordance with previously published data from Sugimoto and 

colleagues, the data suggested that ARF impedes processing of the 47S rRNA into the 

32S rRNA intermediate (Apicelli et al., 2008; Sugimoto et al., 2003). The final step of 

ribosome biogenesis is the export of the ribosomal subunits. By radioactively labeling the 

rRNA subunits with 3H-methyl methionine, it was demonstrated that Arf -/- MEFs export 

ribosomal subunits into the cytoplasm at a faster rate than that observed in wild-type cells 

(Apicelli et al., 2008). This result is in accordance with previously published data 

showing that ARF interacts with NPM, which is known to be important for shuttling 

ribosomes from the nucleus to the cytoplasm (Maggi et al., 2008; Pelletier et al., 2007; 

Yu et al., 2006). Importantly, Apicelli and colleagues made the point that the enhanced 
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export of ribosomes is not solely reflective of the fact that Arf loss enhances the 

transcription and processing of rRNA; instead, Arf loss amplifies each of the three steps 

in ribosomal biogenesis: transcription, processing, and export (Apicelli et al., 2008). 

Finally, the authors used shRNA-mediated knockdown of NPM to determine if the 

enhanced protein synthesis observed in Arf -/- MEFs was due to unrestrained NPM 

activity. Upon testing the three steps in ribosomal biogenesis, it was determined that 

unrestrained NPM activity could explain the enhanced export of ribosomal subunits upon 

Arf loss. Furthermore, knockdown of NPM in Arf -/- MEFs brought overall rates of protein 

synthesis back to levels observed in wild-type cells (Apicelli et al., 2008). Taken 

together, the work from Apicelli and colleagues, in association with other groups, 

suggests that basal ARF limits the amount of protein synthesis in mitotic cells by 

impeding multiple steps of ribosome biogenesis (Figure 1.3).  

 

1.6  Modeling proliferation-independent growth  

 Given the aforementioned role of basal ARF in regulating ribosome biogenesis 

and protein synthesis, Apicelli and colleagues initiated the study of ARF in osteoclasts. 

The goal of this work was to demonstrate the physiological relevance of ARF's growth 

control. The osteoclast is a unique model in which to focus on cell growth regulation  

because they require protein synthesis to differentiate and be fully functional, and they 

are post-mitotic in their mature state. Before discussing the results of this initial study, I 

would first like to review osteoclast differentiation and the features of mature osteoclasts. 
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Osteoclast differentiation 

 Osteoclasts are the bone resorbing cells of the body. They are essential for normal 

bone turnover or remodeling as evidenced by skeletal diseases such as osteoporosis that 

occur when they dysfunction. Skeletal diseases may also result due to enhanced or 

delayed differentiation of osteoclasts. Osteoclasts are derived from the 

monocyte/macrophage family in the hematopoietic lineage (Coccia et al., 1980). The use 

of animal models has revealed important factors during osteoclastogenesis (Figure 1.4). 

The earliest known transcription factor important for osteoclastogenesis is PU.1. In the 

absence of PU.1, mice do not generate bone marrow macrophages resulting in 

osteopetrosis (Henkel et al., 1996; Scott et al., 1994; Tondravi et al., 1997). PU.1 is 

important for the transcription of lineage-specific cytokine receptors including the 

macrophage colony-stimulating factor (M-CSF) receptor, c-fms (Singh et al., 1999) and 

the receptor activator of NF-κB (RANK) (Kwon et al., 2005). In conjunction with other 

transcription factors, PU.1 also induces the transcription of two of the most well-

characterized OC-specific target genes: Cathepsin K and tartrate-resistant acid 

phosphatase (TRAP) (Matsumoto et al., 2004; Partington et al., 2004). Clearly, PU.1 is 

important throughout osteoclast development, which explains why its levels nearly triple 

during osteoclastogenesis (Tondravi et al., 1997). Another early transcription factor that 

collaborates with PU.1 is MITF, which is encoded by the microphthalmia (mi) locus. 

Loss of Mitf results in osteopetrosis as a result of inadequate osteoclasts (Hershey and 

Fisher, 2004). This is due to the fact that MITF is necessary for the transcription of 

essential osteoclast genes including TRAP and carbonic anhydrase II (CAII) (Luchin et 
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al., 2000; Luchin et al., 2001). However, Mitf-null mice do form macrophages, placing 

MITF downstream of PU.1 in osteoclastogenesis (Thesingh and Scherft, 1985).  

 M-CSF, which is expressed by osteoblasts, plays a pivitol role in 

osteoclastogenesis. M-CSF-deficient (op/op) mice are osteopetrotic due to insufficient 

osteoclasts (Yoshida et al., 1990). M-CSF promotes differentiation,  the proliferation and 

survival of precursors, and cytoskeletal reorganization (Insogna et al., 1997; Sherr et al., 

1988; Tanaka et al., 1993; Woo et al., 2002). In order to carry out its functions, M-CSF 

must bind to its reception, c-Fms.  Thus, loss of c-fms also results in osteopetrosis in mice 

as a result of an osteoclast deficiency (Dai et al., 2002). Upon binding to c-Fms, M-CSF 

exerts a number of downstream intracellular events including the induction of genes 

necessary for the cell to respond to interleukins and RANKL (Cappellen et al., 2002). In 

particular, M-CSF upregulates the expression of RANK (Cappellen et al., 2002), which is 

the receptor for RANKL and the only other cytokine that , together with M-CSF, is 

required for osteoclast differentiation in vitro (Lacey et al., 1998; Yao et al., 2002; 

Yasuda et al., 1998). Notably, upon binding its ligand, c-Fms autophosphorylates, which 

leads to the recruitment of adaptor molecules. One of the most well-studied and important 

of these adaptor proteins is c-Src, which is discussed further in this section (Feng et al., 

2002). 

 Perhaps the most essential component of osteoclastogenesis is RANKL, also 

known as TNF-related activation-induced cytokine (TRANCE), osteoprotegrin ligand 

(OPGL), or OC differentiation factor (ODF). As one of the alternative names suggest, 

RANKL is a member of the tumor necrosis factor (TNF) family. A major discovery in 

delineating the molecular events promoting osteoclastogenesis came when Suda and 
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colleagues demonstrated that osteoclast precursors must come in contact with osteoblasts 

(or their precursors) for osteoclastogenesis to ensue (Udagawa et al., 1990). This finding 

paved the way for the understanding that RANKL is produced by osteoblasts and then 

binds to RANK on the surface of macrophages to induce osteoclastogenesis. The 

importance of this interaction is underscored by the fact that knockout mice of either the 

ligand or the receptor do not make osteoclasts and are severely osteopetrotic (Dougall et 

al., 1999; Lacey et al., 1998; Li et al., 2000). RANK activation recruits adaptor molecules 

of the TNF receptor-associated family (TRAFs) (Darnay et al., 1999; Galibert et al., 

1998). TRAFs relay the RANKL  signal to activate all three MAP kinase pathways, 

including ERK, p38, and JNK, as well as PI-3K and NF-κB (Del Fattore et al., 2008). 

Finally, it is important to note that in addition to advancing osteoclastogenesis, RANKL 

both induces osteoclast resorption and promotes osteoclast survival (Burgess et al., 1999). 

One of the most well-characterized and important downstream effectors of RANKL is the 

transcription factor, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). NFATc1 

belongs to a family of NFAT transcription factors and is the major NFAT found in 

osteoclasts (Day et al., 2005). Osteoclastogenesis is halted in the absence of NFATc1 

(Takayanagi et al., 2002). More importantly, overexpression of NFATc1 can rescue 

RANKL deficiency, indicating that it is the primary transcription factor downstream of 

RANKL that is responsible for osteoclast differentiation (Takayanagi et al., 2002). In 

cooperation with other transcription factors, namely Fos and Jun proteins, NFATc1 

induces genes critical for osteoclast function, such as the calcitonin receptor, cathepsin K, 

and β3 integrin (Crotti et al., 2005; Ikeda et al., 2004; Kim et al., 2005a; Kim et al., 

2005b; Matsumoto et al., 2004).  
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 As previously mentioned, NF-κB is one of the primary pathways activated by 

RANKL. NF-κB is family of five transcription factors that includes p50 (NF-κB1), p52 

(NF-κB2), p65 (RelA), c-Rel, and RelB. The Rel domains in each of these proteins 

allows for dimerization and DNA binding (Thanos and Maniatis, 1995). In the absence of 

RANKL, NF-κB is bound by IκB proteins, keeping it inactive in the cytosol. Upon 

RANKL activation, IκB is phosphorylated by IKK (IκB kinase), leading to its 

degradation. NF-κB is then free to translocate to the nucleus and promote the 

transcription of OC-specific genes (Thanos and Maniatis, 1995). Without the NF-κB 

pathway, mice are osteopetrotic as a result of insufficient osteoclastogenesis (Abu-Amer 

et al., 2001).  

 In corroboration with NF-κB, AP-1 induces the transcription of genes important 

for osteoclastogenesis. There are two primary components of AP-1: Fos and Jun proteins 

(Wagner and Eferl, 2005). RANKL promotes the induction of c-Fos (David et al., 2002). 

Mice lacking c-Fos do not produce osteoclasts and are therefore osteopetrotic 

(Grigoriadis et al., 1994; Johnson et al., 1992; Wang et al., 1992). One of the most 

notable targets of Fos transcription is NFATc1. In fact, overexpression of NFATc1 can 

rescue loss of Fos (Matsuo et al., 2004). Loss of c-Jun activity also results in deficient 

osteoclastogenesis and resultant osteopetrosis (Ikeda et al., 2004). As with c-Fos, 

RANKL stimulation results in the activation of c-Jun (Kim et al., 1999). In summary, 

RANKL induces the activation of various downstream transcription factors including 

NFATc1, NF-κB, and AP-1, and results in a cell committed to the osteoclast lineage. In 

the next section, I will discuss the final steps in becoming a fully functional osteoclast. 

  



 

31 
 

The making of a fully functional osteoclast 

 Once committed to the osteoclast lineage, the initial step in bone resorption is 

binding the bone. The formation of a tight seal to bone requires integrins. Integrins such 

as αvβ3 bind actin complexes within the osteoclast and proteins in the bone matrix 

containing RDG (ArgGlyAsp) motifs (Aubin, 1992). Itgb3-/- (β3 integrin-null) mice have 

an enhanced number of osteoclasts. However, the osteoclasts are unable to resorb bone, 

resulting in increased bone mass by 4 months of age. Upon closer examination, 

researchers found that the osteoclasts in these mice do not adhere to bone, have an 

abnormal cytoskeletal arrangement, and do not form a ruffled border, all of which are 

important for osteoclast function (McHugh et al., 2000). Src is also an important mediator 

of these functions, namely cytoskeletal rearrangements and ruffled border formation. 

Similar to Itgb3-/- mice, Src-/- mice have adequate numbers of osteoclasts (Soriano et al., 

1991). However, they have faulty bone resorption due to defective osteoclast spreading 

and  a reduction in the number of H+-ATPases at the resorptive front (Boyce et al., 1992). 

In terms of osteoclast spreading, Src is believed to be important for transmitting signals 

emanating from the bone matrix and mediated through αvβ3 to the cytoskeleton 

(Teitelbaum and Ross, 2003). Cytoskeletal rearrangements are important for the vesicular 

trafficking of bone resorptive components to the cell-bone membrane interface, known as 

the ruffled border. The ruffling of the membrane is formed at the site of active resorption 

as a result of the insertion of many H+-ATPases. Hence, without Src to mediate the 

cytoskeleton and allow for trafficking of the proton pumps, there are fewer H+-ATPases 

at the resorptive front and  a ruffled border is not formed (Boyce et al., 1992).  
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 The bone matrix is composed of both a mineralized component and an organic 

component, both of which are resorbed by the osteoclast (Blair, 1998). Importantly, the 

resorptive lacunae is the area of active resorption and can be locally acidified without 

affecting the pH of the surrounding area due to the tight seal formed by the 

aforementioned integrin and actin contacts with the bone. The importance of acidification 

in bone resorption explains the need for trafficking of many H+-ATPases to the ruffled 

border (i.e. the part of the osteoclast membrane contact the resorptive lacunae). A 

lowered pH (around 4.5) is sufficient to dissolve the mineralized component of the bone. 

Furthermore, as verified by mouse models, acidification of the resorption lacunae is also 

necessary for the activation of bone-degrading enzymes. In mice lacking a necessary 

component of the proton pump, enzyme activity was diminished and resorption was 

reduced (Scimeca et al., 2000). While the presence of a fully functioning proton pump is 

critical to osteoclast function, it is meaningless without an adequate supply of protons 

from within the cell. To generate protons, enzymatic carbonic anhydrase II (CA-II) 

converts H2O and CO2 into H2CO3. The H2CO3 then dissociates to form HCO3
- and the 

necessary protons (Sly and Hu, 1995). Thus, CA-II is critical for osteoclast function and 

without it, mice have a trabecular bone volume that is 50% greater than that in wild-types 

(Margolis et al., 2008). Importantly, the  HCO3
- ions are exchanged on the cell membrane 

for Cl- ions; this occurs on a portion of the membrane outside of the sealing zone. The Cl- 

ions are important because they are subsequently exported into the resorption lacunae as 

protons are being pumped out, which allows the intracellular pH to remain neutral 

(Kornak et al., 2001; Schlesinger et al., 1997). 
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 Cathepsin K is arguably the most important enzyme in the degradation of the 

organic components of the bone. It is localized within lysosome of osteoclasts and 

secreted in the resorption lacuae. Humans lacking Cathepsin K have pycnodysostosis, 

which is characterized by short stature, dense bones, and other bone malformations (Gelb 

et al., 1996). These defects are recapitulated in CtsK-/- mice, which are also osteopetrotic 

(Saftig et al., 1998). While the mice have normal numbers of osteoclasts, they are unable 

to properly resorb bone (Nishi et al., 1999; Saftig et al., 1998). Cathepsin K is further 

discussed in Chapter 2. Matrix metalloproteinases (MMPs) are also important to the 

functioning osteoclast. They are known to cleave cytokines and growth factors in 

addition to the organic matrix of bone (Krane and Inada, 2008). MMP13-null mice  

exhibit increase bone density as a result of decreased osteoclast function (Kosaki et al., 

2007; Stickens et al., 2004). Additionly, both  MMP13 and MMP9 have been shown to 

regulate osteoclast recruitment and invasion, which may highlight the more important 

roles of MMPs in osteoclast function (Inada et al., 2004; Vu et al., 1998). One final 

enzyme that is a canonical marker of osteoclast function is tartrate-resistant acid 

phosphatase (TRAP). TRAP is expressed in both macrophages and osteoclasts and has 

long been used as a histochemical marker for osteoclasts (Burstone, 1959; Minkin, 1982). 

TRAP is a secreted protein, although its exact function is somewhat unclear (Kirstein et 

al., 2006). The most well-characterized function of TRAP is the hydrolysis of the 

phosphoprotein, osteopontin (OPN) (Suter et al., 2001). OPN is a protein important for 

osteoclast attachment to the bone. It has been proposed that TRAP dephosphorylates 

OPN, which would then allow the osteoclast to migrate to another area for resorption 

(Ek-Rylander et al., 1994). The importance of TRAP to osteoclast function is emphasized 
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by the phenotype of mice lacking TRAP. TRAP-/- mice display a myriad of skeletal 

malformations including mild osteopetrosis and increased bone density (Hayman et al., 

1996).  

 

The role of Arf in bone   

 Finally, I would like to discuss the known roles of ARF in bone turnover. First, 

given the physiological communication between osteoclasts and osteoblasts, it is 

important to consider the role of ARF in osteoblasts. 

 

The role of Arf in osteoblasts 

 Under osteogenic conditions, bone marrow stromal cells can be differentiated into 

osteoblasts (OBs). Arf -/- stromal cells exhibit enhanced osteoblastogenesis compared to 

wild-type counterparts when assessed by alkaline phosphatase (ALP) expression and 

mineralization in vitro (Rauch et al.). Data also suggests that ARF regulation of 

osteoblastogenesis is relevant in vivo. Long bones taken from 8-week-old Arf -/- displayed 

elevated levels of OB differentiation markers compared to bones from wild-type mice. 

This is correlated to increased bone formation as quantified by double calcein labeling as 

well as elevated serum osteocalcin levels, which is a biomarker of mature OBs. Finally, 

when comparing Arf -/- mice to wild-types, the authors observed an overall increase in 

trabecular bone volume in conjunction with higher levels of bone mineral density, 

trabecular number, and trabecular thickness as assessed by microCT (Rauch et al.). 

Importantly, Hurchla and colleagues subsequently determined that enhanced 
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osteoblastogenesis was at least partially due to enhanced proliferation of osteoblast 

precursors upon Arf loss (unpublished communicated data).  

  

Initial study of ARF in osteoclasts 

 As previously mentioned, the study of ARF in osteoclasts was initiated to 

determine if the changes in protein synthesis upon loss of basal Arf were physiologically 

relevant; in other words, would loss of Arf have an impact on the function of a cell with 

obvious protein synthesis demands? Apicelli and colleagues first differentiated bone 

marrow-derived macrophages from wild-type or Arf -/- mice in the presence of M-CSF 

and RANKL. After three days in the osteoclastogenic media, they observed an increase in 

the number of TRAP-positive (via staining with a TRAP substrate) multinucleated 

osteoclasts in the absence of Arf (Apicelli et al., 2008). Arf loss also appears to enhance 

the activity of mature osteoclasts. Upon plating equal numbers of TRAP-positive cells, 

day 4 WT osteoclasts were compared to day 3 Arf -/- osteoclasts. Arf -/- osteoclasts had 

nearly twice as much TRAP activity as WT osteoclasts as assessed by the addition of a 

TRAP substrate (Apicelli et al., 2008). Furthermore, the authors assessed in vivo activity 

of osteoclasts by serum TRAP activity. Arf -/- mice exhibited a significant increase in 

serum TRAP activity relative to that observed in WT mice (Apicelli et al., 2008). 

Importantly, BrdU incorporation experiments done using bone marrow macrophages in 

vitro did not show a difference in proliferation upon Arf loss (Apicelli et al., 2008). 

Together, this suggests that Arf loss enhanced osteoclast activity both in vitro and in vivo 

and is independent of precursor proliferation (Figure 1.5). Finally, Apicelli and 

colleagues demonstrated that loss of NPM by shRNA-mediated knockdown abrogates the 
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enhanced osteoclastogenesis observed in Arf -/- cells (Apicelli et al., 2008). This data 

suggests that ARF may be regulating osteoclastogenesis by impeding protein synthesis 

(Figure 1.6). 

 

1.6 Dissertation objectives  

At the onset of this project, the ARF field was well aware that ARF levels are 

induced in the presence of oncogenic stress to impede cell proliferation. The mechanism 

of ARF tumor suppression has long been appreciated to include the sequestration of 

MDM2 and thus, the activation of p53 activity. As demonstrated by the myriad of ARF-

interacting targets aside from MDM2, it is clear that the ARF field has embraced the idea 

of p53-independent ARF tumor suppression. Our lab has largely focused on the ability of 

ARF to bind NPM and prohibit its nucleocytoplasmic shuttling, which certainly 

contributes to decreased protein synthesis and cell growth. Given that cell growth is 

intimately tied to the progression of the cell cycle, one of the primary questions of my 

project was to determine if ARF regulates protein synthesis in a proliferation-independent 

context. Furthermore, the ARF field has more recently focused on the function of basal 

ARF. While the importance of enhanced ARF levels upon oncogenic stress is becoming 

overwhelmingly clear, the significance of basal ARF is still in its infancy. There have 

been minimal reports demonstrating a physiologically-relevant function of basal ARF 

including the role of ARF in eye development, male germ cell development, osteoblast 

activity. Our lab has most recently demonstrated a role for basal ARF in the maintenance 

of nucleolar structure and function, which ultimately results in the regulation of protein 

synthesis. These studies were done using mitotic cells. Therefore, we were inclined to 
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study this function of ARF in a post-mitotic setting such that we could satisfy the first 

goal of the project: does ARF regulate protein synthesis in a proliferation-independent 

context?  Importantly, we also wanted to choose a physiologically-relevant setting. We 

choose the osteoclasts as a model given our preliminary published results and realizing 

that osteoclasts have a demand for protein synthesis to properly function. Using this 

system, we additionally satisfied a second goal of the project: to determine if basal ARF 

regulation of protein synthesis is physiologically-relevant. Finally, we anticipated that the 

completion of this project would allow the field to better understand the teleological 

function of ARF, namely that ARF is first and foremost a regulator of protein production. 
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Figure 1.1 
 
Ribosome production. Ribosome production begins with the transcription of the 

ribosomal DNA. The transcript is then modified, a process that is guided by small 

nucleolar RNAs (snoRNAs). RNases cleave the transcript to produce the mature 18S, 
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5.8S, and 28S rRNAs. These rRNAs further associate with ribosomal proteins to 

ultimately form the small (40S) and large (60S) ribosomal subunits. The subunits are then 

exported to the cytoplasm for protein synthesis. Adapted from Ruggero and Pandolfi, 

2003. 
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Figure 1.2 
 
Organization of the INK4a/Arf locus. INK4a and ARF share exons 2 and 3. Exon1α is 

unique to INK4a, while exon1β is unique to ARF. The first exons of INK4a and ARF 

splice into exon 2 in alternative reading frames such that the light green portion encodes 

for INK4a and the dark green portion encodes for ARF. Adapted from Saporita et al. 

2007.  
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Figure 1.3 
 
Basal ARF is known to regulate multiple steps in the control of protein synthesis. Arf 

loss results in increased transcription of ribosomal DNA (rDNA), suggesting that ARF 

impedes rDNA transcription in the nucleolus. Within the nucleolus, ARF also inhibits the 

processing of the newly transcribed 47S rRNA into the mature 28S, 5.8S, and 18S 

ribosomal subunits. In the nucleus, ARF impedes NPM-mediated export of mature 
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ribosomal subunits to the cytoplasm. The role of ARF in limiting these steps of ribosomal 

biogenesis results in the overall maintenance of protein synthesis in the cytoplasm. 

Adapted from Saporita et al. 2007. 
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Figure 1.4 
 
Osteoclastogenesis. Osteoclasts are members of the monocyte/macrophage family. 

Specific genes are sequentially activated as macrophages differentiate into mature, 

resorbing osteoclast. Notably, RANKL, which is largely found on the membrane of 

osteoblasts induces the commitment of cells to the osteoclast lineage. Adapted from 

Teitelbaum and Ross, 2003. 
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Figure 1.5 
 
Arf loss affects osteoclastogenesis in vitro. (A) BrdU incorporation suggests there is no 

difference between wild-type and Arf -/- macrophages. (B). BMMs differentiated for 3 

days in the presence of M-CSF (1/20 vol) and 100ng/mL RANKL and then TRAP 

stained. (C) Quantification of TRAP-positive cells with greater than five nuclei from day 

3 osteoclast images (p = 0.01). (D) TRAP solution assay from equal numbers of day 4 
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wild-type osteoclasts and day 4 Arf -/- osteoclasts. Cells were lysed and incubated in a 

colorimetric assay with a substrate for TRAP (p =0.01) (E) Levels of serum TRAP from 

age-matched wild-type and Arf -/- mice (p = 0.03, n=5). Adapted from Apicelli et al. 2008. 
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Figure 1.6 
 
Loss of NPM reverses the Arf -/- osteoclast phenotype. (A) NPM is knocked down by 

lentivirus-targeted shRNA in wild-type and Arf -/- macrophages and confirmed by 

immunoblotting. (B) Macrophages with or without NPM knockdown are differentiated is 
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osteoclastogenic media for 6 days and then stained for TRAP. (C) TRAP activity is 

quantified in day 6 osteoclasts. Loss of NPM reverses the Arf -/- osteoclast phenotype 

such that they are equivalent to wild-type osteoclasts (p < 0.01). Adapted from Apicelli et 

al. 2008. 
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2.1 Abstract 
 

Cathepsin K-driven Cre is reported to be active solely in osteoclasts and is the 

most relevant tool for generating osteoclast-specific gene loss. We generated CtskCre/+; 

ROSA+ mice and found Cre activity present in gametes, resulting in germline deletion of 

genes upon breeding with floxed-gene mice. Together with our finding that CtskCre/+ mice 

display enhanced estrogen levels, these results raise concerns regarding in vivo bone 

phenotypes created using CtskCre/+ mice.  
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2.2 Introduction and Results 
 

Cathepsin K is a lysosomal cysteine protease of the papain family that is secreted 

by osteoclasts during bone resorption and functions as the primary protease in the 

degradation of type I collagen (Georges et al., 2009; Troen, 2004; Zaidi et al., 2001).  In 

partially replacing the Ctsk locus with Cre, one allele of Ctsk is lost; however, Ctsk+/- 

mice are capable of maintaining normal bone turnover (Saftig et al., 1998). During mouse 

development, Cathepsin K expression is highest in musculoskeletal tissues and 

predominantly expressed in osteoclasts (Rantakokko et al., 1996). Furthermore, 

expression of Cre mRNA in CtskCre/+ mice was demonstrated to be unique to bone, with 

Cre activity evident only in osteoclasts (Nakamura et al., 2007).  

In lieu of generating our own osteoclast-specific genetic mouse models, we first 

sought to confirm that Cre activity was unique to osteoclasts in CtskCre/+ mice.  Thus, we 

crossed CtskCre/+ mice with Rosa+ reporter mice. Ovary and testis tissues from Rosa+; 

CtskCre/+ mice were analyzed for Cre activity by LacZ staining. In ovaries of 

CtskCre/+;Rosa+ mice, Cre activity was primarily detected in the oocytes and granulosa 

cells, whereas Cre activity was not detected in Ctsk+/+;Rosa+ female mice (Figure 2.1a). 

In testes, abundant staining was evident in spermatozoa, which are the haploid and 

mature gametes. Again, Cre activity was not detected in Ctsk+/+;Rosa+ male mice (Figure 

2.1b). This data demonstrates that Cathepsin K-driven Cre activity is present in gametes 

of both female and male mice. Of note, only one Cre allele was necessary for DNA 

excision at the Rosa locus. Given this data, we investigated the presence of Cre and 

Cathepsin K mRNAs in ovary and testis tissues. We isolated ovary and testis RNA and 

quantified Cathepsin K and Cre mRNA by qRT-PCR. In ovaries of 10-week-old wild-
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type mice, we detected Cathepsin K mRNA. Cathepsin K mRNA decreased as Ctsk was 

replaced by Cre. Accordingly, we detected increasing amounts of Cre mRNA as 

Cathepsin K mRNA decreased (Figure 2.2a,b). Similar results for Cathepsin K mRNA 

were obtained using testes RNA from 8-week-old mice, albeit at much lower levels 

relative to that observed in ovaries. Importantly, we again detected a dose-dependent 

decrease in Cathepsin K mRNA as Cre mRNA levels increased in testes (Figure 2.2a,b). 

Given the presence of Cathepsin K mRNA in ovaries, we analyzed ovary tissues from 16-

week-old mice for the presence of Cathepsin K by immunohistochemistry (IHC). Our 

results indicate that Cathepsin K is expressed at the protein level in ovaries and is 

primarily localized to oocytes within the developing follicles (Figure 2.2c). Furthermore, 

we noted that follicles expressing Cathepsin K were primarily those in the early stages of 

maturation. As a control, adjacent tissue sections were stained with or without primary 

antibody. Sections incubated without antibody were negative for Cathepsin K in positive 

areas of the adjacent section that was incubated with primary antibody (Figure 2.2c). 

These results indicate that Cathepsin K is present in mouse ovaries and may be expressed 

at a specific stage during follicle development. 

 To determine if CtskCre/+ mice would produce germline loss of a floxed gene, we 

crossed CtskCre/+ mice with mice containing floxed exon1β of the ARF tumor suppressor 

(Gromley et al., 2009). A primer set used to detect the presence of the 5’ loxP site in tail 

DNA of Arf fl/fl mice was unable to amplify a product, suggesting the loss of template 

(Figure 2.3). We next confirmed the presence of DNA using control primers. Again, the 

results suggest that although DNA is clearly present in all samples, the primers we used 

to detect the 5’ loxP site are unable to recognize a template. We therefore reasoned that 
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exon1β of Arf was not present in the tail DNA. To test this, we used two different primers 

sets that each contained a forward and reverse complementary sequence to a region of 

DNA outside of the loxP sites (Figure 2.3). Both sets of primers resulted in products that 

suggested the loss of exon1β (Figure 2.3). All results were repeated using DNA generated 

from ear tissue (data not shown). To confirm germline Arf loss, we exploited the fact that 

the testis is the only tissue in which others and we have been able to detect ARF protein 

by IHC (Gromley et al., 2009). Testes from mice, in which exon1β of Arf had seemingly 

been excised, were analyzed by IHC for ARF protein expression. While we detected ARF 

in wild-type mice, we were unable to detect ARF protein expression in a mouse showing 

loss of exon1β at the DNA level (Figure 2.4a). These results imply that one copy of Cre 

under the control of the Ctsk promoter is sufficient to cause non-specific recombination 

and result in germline Arf loss. Germline deletion of Arf in the mouse results in a 100% 

penetrant spontaneous tumor formation phenotype.  To confirm germline Arf loss, we 

followed CtskCre/+; Arf fl/fl mice whose genotype indicated a loss of Arf to determine if 

they would develop spontaneous tumors reminiscent of germline Arf-null animals. All 

mice (100% penetrant) displayed a tumor type with the onset and tumor type comparable 

to those published for traditional Arf-/- mice (Kamijo et al., 1999) (Figure 2.4b,c). This 

data demonstrates that crossing mice containing a floxed gene with CtskCre/+ mice can 

result in germline loss of the floxed gene. Finally, given that we observed Cathepsin K 

expression in ovaries, we assessed whether loss of Ctsk in CtskCre/Cre mice would alter 

serum estrogen levels. We examined the levels of estrogen (as measured by serum 

estradiol) in wild-type and CtskCre/Cre (Ctsk-/-) mice. In the absence of Ctsk, estrogen 
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levels doubled that observed in wild-type mice (Figure 2.5), implying that Cathepsin K 

counteracts the production and/or release of estrogen into the blood of female mice.  
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2.3 Discussion 

Together, our results demonstrate that Cathepsin K is expressed in gametes and 

this expression can result in germline excision of a floxed allele when using CtskCre/+ 

mice. Within the ovary, we observed Cathepsin K protein expression primarily in 

oocytes. Data from Chiu et al. showing expression of Cathepsin K mRNA in mouse 

ovaries supports this finding (Chiu et al., 2004). Expression of Cathepsin K has also been 

noted in human ovary samples (Bromme and Okamoto, 1995). While there is no 

published role for Cathepsin K in ovaries, our data showing that Cathepsin K may be 

expressed during early stages of oocyte development suggests a possible role for 

Cathepsin K during oocyte maturation. Moreover, other Cathepsins have also been shown 

to be expressed during specific stages of follicle development in teleosts (Fabra and 

Cerda, 2004).  In testis, Cre activity was noted within seminiferous tubules and was 

largely localized to mature spermatozoa. To support this finding, when creating 

transgenic mice that express Cre driven by the Ctsk promoter, Chiu et al. published the 

expression of Cre expression in the testis of multiple mouse lines (Chiu et al., 2004).  

Upon crossing CtskCre/+ mice with Arf fl/fl mice, we generated germline Arf loss as 

demonstrated by PCR, IHC for ARF in testis, and disease phenotypes that mimic 

traditional Arf-null mice (Kamijo et al., 1999). These findings place into question 

previous data that has been generated using mice containing Cre driven by the Ctsk 

promoter to create osteoclast-specific knockouts (Chiu et al., 2004; Nakamura et al., 

2007).  We are not suggesting that all animal models with Cre under the control the Ctsk 

promoter will result in a genomic knockout as neither every follicle nor seminiferous 

tubules was positive for Cre activity. However, our data clearly indicate that careful 
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testing is necessary when using this mouse model to ensure that the intended gene 

excision has occurred only in osteoclasts and that results are correctly interpreted. It is 

especially important to consider a genotyping result in which both alleles appear to be 

floxed (based on a tail DNA sample); it is possible that this result reflects one floxed 

allele and one null allele (Figure 2.6). Finally, our results indicate that loss of Cathepsin 

K results in significantly increased circulating levels of estradiol, a well-studied regulator 

of bone physiology (Manolagas et al., 2002). Given that estrogen suppresses osteoclast 

activity while enhancing osteoblast activity, enhanced estrogen upon loss of Cathepsin K 

in ovaries may inadvertently affect the bone phenotype of an intended conditional 

knockout mouse.   
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2.4 Methods 
 

Generation of CtskCre/+;Rosa+  and CtskCre/+;Arf fl/fl  mice. 

 All animals were used in protocols that were reviewed and approved by the 

Washington University Animal Studies Committee.  CtskCre/+ mice and the Rosa+ 

reporter mice have been described previously (Nakamura et al., 2007; Soriano, 1999).  

Cathepsin K-Cre “knockin” heterozygous mice (CtskCre/+; maintained on a C57BL/6 

background) were crossed with mice heterozygous for an R26R allele, where a 

constitutively active chromosomal gene was manipulated to insert the lacZ gene such that 

the β-galactosidase protein is produced only following the removal of a “stuffer” 

fragment flanked by loxP sites (Rosa+; maintained on a C57BL/6 background) to 

generate CtskCre/+; Rosa+ mice. Ctsk+/+; Rosa+ mice served as controls. CtskCre/+ mice 

were also crossed with mice homozygous for a floxed allele of Arf where exon1β is 

flanked by loxP sites (Arf fl/fl; maintained on a mixed background of C57BL/6 and 

129SvJae, a kind gift from C. Sherr, St. Jude Children’s Research Hospital) to generate 

CtskCre/+; Arf fl/+. Subsequent rounds of matings of these offspring eventually yielded 

CtskCre/+; Arf fl/fl mice. Cohorts of these mice as well as other siblings consisting of 

various combinations of Cre and floxed Arf alleles were viable and fertile and also used 

for breeding in our studies. Tail and/or ear snips were used to prepare DNA for PCR-

based genotyping as previously described (Truett et al., 2000). Ctsk wild-type and Cre-

knockin alleles were detected using primers Ctsk-P1 5’-

TTATTCCTTCCGCCAGGATG-3’, Ctsk-P2 5’-TTGCTGTTATACTGCTTCTG-3’ and 

Ctsk-P3 5’-TAGTTTTTACTGCCAGACCG-3’.  When used together in a PCR reaction, 

a wild-type allele generates a 135bp fragment whereas the presence of Cre  produces a 
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300bp fragment.  Arf wild-type and floxed alleles were determined by using primers 

SpeLxF-30 5’-TTGCTACTTTACTGCAGCCAGACCACTAGG-3’ and SpeLxR-30 5’-

CTCGGAGATTGAGAAAGCGGGAAGTCAAGC-3’ in which the wild-type allele 

generates a 260bp product and the floxed allele generates a 360bp product.  The presence 

of the R26R allele was assessed by amplification of a 320bp fragment using primers 

R26Rfwd 5’-AAAGTCGCTCTGAGTTGTTAT-3’ and R26Rrev 5’-

GCGAAGAGTTTGTCCTCAACC-3’.  See Figure 2.3a for a list of primers and product 

sizes used to determine Arf recombination. 

 

Tissue harvest and histology.  

 Testis and ovary tissues were taken from mice that were cardiac perfused with 

formalin, then fixed using a rapid microwave fixation technique (Lu et al., 2007). Fixed 

tissues were PBS washed then processed through graded alcohols and xylenes then 

embedded in paraffin.  5-μm tissue sections were immunostained.  Alternatively, frozen 

testis and ovary tissues were prepared from sucrose-perfused mice, embedded in OCT 

over liquid nitrogen, sectioned at 5-μm and LacZ stained. 

 

Immunostaining. 

 All sections were deparaffinized, rehydrated, washed in PBS, and blocked with 

serum-free Protein block (Dako) for 30min at room temperature.  All immunostaining 

required antigen retrieval which was performed in a food steamer using a 1X Reveal 

decloaker buffer (pH 6.0, Biocare Medical). Antibodies for the following markers were 

diluted in Antibody diluents (Dako) and applied overnight at 4°C: rat anto-p19ARF (1:400, 
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Abcam) and rabbit anti-Cathepsin K (1:200, Abcam). A secondary antibody conjugated 

to Alexa Fluor 488 was incubated on tissue sections for 1hr at room temperature (1:300, 

Invitrogen). Nuclei were counterstained using SlowFade Gold Antifade reagent with 4’,6-

diamidino-2-phenylindole (DAPI) (Invitrogen). 

 

Quantitative real-time PCR.   

Ovary and testis tissues were isolated, flash-frozen in liquid nitrogen, and 

homogenized in RNA-Solv (Omega Bio-Tek).  The SuperScript III first-strand synthesis 

system (Invitrogen) was used to generate first strand cDNA.  Real-time PCR was 

performed with iQ SYBR Green Supermix (Bio-Rad) on an iCycler thermal cycler (Bio-

Rad).  

  

LacZ staining. 

 Frozen sections were air-dried for 30min at room temperature, then fixed in 2% 

paraformaldehyde/0.125% glutaraldehyde in 1x PBS pH 7.4 for 5min.  Sections were 

then washed sequentially in 2mM MgCl2 /PBS and 2mM MgCl2, 0.02% Nonidet P40, 

0.01% deoxycholate in PBS.  Tissue sections were then washed briefly in LacZ staining 

buffer (5mM potassium ferrocyanide, 5mM potassium ferricyanide, 2mM MgCl2, 1xPBS) 

and incubated in LacZ staining buffer supplemented with 1mg/ml X-Gal overnight at 

37oC with gentle shaking.  Tissue sections were washed in diH2O briefly and nuclei were 

counterstained with Nuclear Fast Red (Dako). 

 

Microscopy and imaging. 
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 Gross pathological images were captured using a Sony Cyber-shot 12.1 megapixel 

digital camera equipped with a Carl Zeiss 5x optical zoom wide (28mm) lens.  

Microscopy images for histology were obtained with a BX61 microscope (Olympus 

America), using the following objectives: UPlan Apochromatic 20X/NA 0.70 and UPlan 

Apochromatic 40X/NA 0.85. Tissue sections stained with LacZ were mounted with 

Krystalon (EMD) and coverslipped.  Histological microscopy images were obtained with 

a DP70 color Bayer mosaic digital camera, Peltier device cooled to -10oC (Olympus 

America).  These images were captured with MicroSuite Biological Suite version 5 

software (Olympus Soft Imaging Solutions) and resized and formatted with Adobe 

Photoshop CS3 software (Adobe Systems Incorporated).  Fluorescence microscopy 

images were obtained with an Eclipse 90i microscope (Nikon) using the following 

objectives: Plan Apochromatic 10x/NA 0.45, Plan Apochromatic 20x/NA 0.75, and Plan 

Apochromatic Oil 100x/NA 1.40. Tissue sections for fluorescence microscopy images 

were mounted with SlowFade Gold Antifade reagent with DAPI (Invitrogen), 

coverslipped, and images were obtained using a CoolSnap HQ2 monochrome digital 

camera, Peltier cooled to -30oC (Photometrics). Fluorescence images were captured with 

MetaMorph version 7.6 software, (MDS Analytical Technologies) and resized and 

formatted with Adobe Photoshop CS3 software (Adobe Systems Incorporated). 

 

Estradiol Analysis.  
 

Serum estradiol was measured using the Estradiol EIA Kit (Cayman Chemical). 

The developed color intensity is inversely proportional to the amount of free hormone in 

each sample and was quantified using an iMARK microplate reader (Bio-Rad).  
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Statistical analysis. 

 Data were analyzed using Excel (Microsoft Office). Results are expressed as the 

mean ±SD, and statistical significance was determined using a two-tailed t-test. 
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Figure 2.1.  

Cre activity is present in the gametes of CtskCre/+ mice. Reproductive organs of 

indicated genotypes were analyzed for Cre activity by LacZ staining. (A) In ovaries of 

Rosa+; CtskCre/+ mice, Cre activity was detected in oocytes and cells surrounding the 

developing oocytes (left panel). Controls were negative for LacZ staining (right panel). 

Scale bar = 50μM. (B) In testes of Rosa+; CtskCre/+ mice, Cre activity was detected 

primarily in spermatozoa (left panel). Controls were negative for LacZ staining (right 

panel). Scale bar = 100μM. 

 

Rosa+;CtskCre/+ Rosa+;Ctsk+/+

Rosa+;CtskCre/+ Rosa+;Ctsk+/+

O
va

ry
T

es
ti

s

A 

B 



 

80 
 

 
 
 
 
 
 

 
 
 

.5 kb

.1 kb

Female

C
ts

k+
/+

C
ts

k+
/+

C
ts

kC
re

/+

C
ts

kC
re

/+

C
ts

kC
re

/C
re

C
ts

kC
re

/C
re

Male

A 

B 



 

81 
 

 
 
 

 

Figure 2.2.  

Cathepsin K and Cre are detected in ovary and testis tissues. (A) Quantitative RT-

PCR was used to quantify the presence of Cathepsin K mRNA (blue) and Cre mRNA 

(red) in ovary (left) and testis (right) for all indicated genotypes (n=3). Histone 3.3 was 

used as a control. Data are represented as means ±SD. A two-tailed t-test was used to 

generate indicated p values. (B) DNA was extracted from the tails of mice used for 

quantitative RT-PCR analysis to verify their genotypes. The top bands indicate the 

presence of Cre. The bottom band is indicative of a wild-type Cathepsin K allele. (C) 

Ovaries from WT mice analyzed by IHC for Cathepsin K. Top panels, scale bar = 

200μM. Bottom, left panel shows staining without primary antibody. An adjacent section 
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to the control (bottom, middle) was incubated with primary antibody (scale bar = 

100μM). Red box indicates positively-stained oocyte (bottom, right scale bar = 20μM). 
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Figure 2.3.  

Crossing Arf fl/fl mice with CtskCre/+ mice results in germline Arf loss. (A) Three sets of 

primer pairs were designed to detect the presence of floxed exon 1beta, which is unique 

to Arf. Controls are mice that were never crossed with CtskCre/+ mice. (B) PCR products 

were not detected upon genotyping new mice for the presence of the 5’ loxP site using 

the first set of primers: LoxF/LoxR-1 (far left panel). This cannot be attributed to an 

absence of DNA as control primers detect DNA in all lanes (left middle panel). Two sets 

of primer pairs were used to detect the presence of exon 1beta. LoxF/ArfR results in a 

product size of 298bp in new mice, indicating a loss of exon1β (left middle panel).  
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LoxF/LoxR-2 results in a product size of 445bp when genotyping new mice, indicating a 

loss of exon1β (far right panel).  (C) Primer sets used to detect the presence of exon 1beta 

in wild-type mice give a product of 1798bp (LoxF/LoxR-2, left) or 1651bp (LoxF/ArfR, 

right). 
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Figure 2.4. 

Crossing Arf fl/fl mice with CtskCre/+ results in germline Arf loss. (A) 

Immunofluorescent staining for ARF in testis tissues indicates the loss of exon 1β at the 

protein level (scale bar = 100μM). (B,C) CtskCre/+; Arf fl/fl mice phenocopy traditional Arf -

/- mice, displaying both (B) lymphomas and (C) fibrosarcomas.    
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Figure 2.5.  

Homozygous loss of Cathepsin K enhances serum estradiol levels. Serum from Ctsk+/+ 

(wild-type, n=3) and CtskCre/Cre (Ctsk -/-, n=3) mice was analyzed for estradiol. Data are 

represented as means ±SD and p value was generated using a two-tailed t-test.  
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Figure 2.6.  

Genotyping results can be misinterpreted when breeding floxed mice with CtskCre/+ 

mice. (A) DNA was extracted from tails of mice and genotyped for the presence of the 

exon 1β loxP site. The presence of a loxP site results in a 362bp band. In the absence of 

loxP (i.e. WT Arf), the band is 262bp (refer to Figure 2.3a for map). Controls are mice 

that were not bred with CtskCre/+ mice. Mice of interest are highlighted in yellow. Note 

that left mouse of interest appears to be Arf +/+ and right mouse of interest appears to be 

Arf  fl/fl. (B) DNA from mice of interest are genotyped to detect the presence of exon 1β 

using LoxF/ArfR primers, which generate a band of 298bp if exon 1β is absent (refer to 

Figure 2.3a for map). Genotyping results indicate that exon 1β is absent on at least one 

allele. Thus, the mice of interest are actually Arf +/-(left) and Arf  fl/- (right). 
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Chapter 3 

 

The Role of ARF in Osteoclasts 
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3.1 Abstract 

The ARF tumor suppressor is upregulated upon oncogenic stress and can halt 

proliferation in both p53-dependent and -independent mechanisms. With a focus on p53-

independent ARF tumor suppression, we have previously demonstrated that basal ARF 

can suppress ribosome biogenesis, in part through the negative regulation of 

nucleophosmin, to ultimately suppress protein synthesis . Importantly, these findings 

were demonstrated using dividing mouse embryonic fibroblasts. Given that protein 

synthesis and the cell cycle are coordinately controlled, we questioned whether basal 

ARF regulates protein synthesis in a proliferation-independent context.  Here we use the 

osteoclast as a model to study post-mitotic growth in a physiologically-relevant setting 

where protein synthesis is necessary for proper function. 

Our results show that Arf loss enhances osteoclastogenesis in vitro as 

demonstrated by increased OC number and size, protein markers of osteoclastogenesis, 

and increased bone resorption relative to wild-type osteoclasts. Notably, enhanced 

osteoclastogenesis upon Arf loss is independent of both proliferation and p53. 

Furthermore, we demonstrated that ARF and NPM colocalize in wild-type osteoclasts, 

suggesting that ARF may be stiffening protein synthesis to maintain either 

osteoclastogenesis, osteoclast function, or both. Subsequent data revealed enhanced 

protein synthesis and ribosome activity during osteoclastogenesis upon Arf/ loss relative 

to wild-type. To determine if ARF regulation of osteoclastogenesis has an impact on bone 

resorption in vivo, we generated radiation chimeras and challenged them with RANKL. 

We found that Arf loss results in elevated bone resorption as determined by a decrease in 

trabecular bone volume and bone mineral density. We confirmed that the increase in bone 
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resorption is due, at least in part, to increased osteoclastogenesis in vivo. This data 

collectively suggests that ARF regulates proliferation-independent cell growth, and is a 

function that is physiologically-relevant both in vitro and in vivo. 
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3.2 Introduction 

 The locus encoding the ARF tumor suppressor is unique in that it also encodes the 

p16INK4a tumor suppressor protein. In fact, these two tumor suppressor share two of their 

three exons and thus significant homology at the DNA and mRNA level. However, the 

first exon of Arf (exon1β) is distinctive and splices into the shared exons 2 and 3 such 

that Arf is translated in an alternative reading frame (hence the ARF moniker) (Quelle et 

al., 1995; Sherr, 2000). Given the arrangement of these two potent tumor suppressors, it 

is important that the cell tightly regulate this locus. Under normal conditions, the locus is 

repressed by polycomb repressive complexes (Aguilo et al.). However, in a state of 

oncogenic stress, the locus is turned on to regulated cell growth and proliferation.  

 ARF and INK4a are also distinctive in their mechanisms of tumor suppression. 

INK4a inhibits the cyclin D-dependent kinases, Cdk4 and Cdk6, from phosphorylating 

the retinoblastoma (Rb) tumor suppressor. In a hypophosphorylated state, Rb remains 

bound to E2F transcription factors, which prohibit them from transcriptionally instructing 

the cell to enter S phase (Serrano et al., 1993; Sharpless, 2005; Sherr, 1996). The ARF 

tumor suppressor is classically known to bind and sequester MDM2 in the nucleolus 

(Weber et al., 1999). This prevents MDM2 from interacting with p53, which is known to 

result in the shuttling of p53 into the cytoplasm, and act as an E3 ligase in the 

ubiquitination and targeting of p53 for proteasomal degradation (Haupt et al., 1997; 

Honda et al., 1997; Kubbutat et al., 1997; Roth et al., 1998). Interestingly, it was 

subsequently demonstrated that ARF overexpression can arrest p53/Mdm2-null and 

Arf/p53/Mdm2-null (designated triple knock-out or TKO) mouse embryonic fibroblasts 

(MEFs) (Weber et al., 2000a). Moreover, TKO mice develop a wider spectrum of tumors 
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and at a greater frequency compared to mice lacking both p53 and Mdm2 or p53 alone 

(Weber et al., 2000a). These data were the first to genetically demonstrate that ARF can 

act as a tumor suppressor independently of its ability to regulate p53 activity. Since this 

study, a flurry of work has amounted to a list of around 30 ARF-interacting proteins that 

are believed to be important for ARF’s p53-independent tumor-suppressive functions 

(Sherr, 2006). Among this list is nucleophosmin (NPM), which is known to be important 

for growth and development in mice (Grisendi et al., 2005) and has been attributed a 

variety of roles in cancer progression (Bernard et al., 2003; Brady et al., 2009; Grisendi et 

al., 2006; Nozawa et al., 1996; Shields et al., 1997; Skaar et al., 1998; Subong et al., 

1999; Tanaka et al., 1992). NPM is one of the most characterized ARF-interacting 

proteins. It is well-known for its ability to shuttle between the nucleus and cytoplasm 

(Kang et al., 1974; Kang et al., 1975). In doing so, NPM transports key components of 

the ribosomal machinery to the cytoplasm for translation (Maggi et al., 2008; Yu et al., 

2006). In fact, NPM is known to be a rate-limiting factor for protein translation as its loss 

results in decreased protein output and a build-up of ribosomes at the interior perimeter of 

the nucleus (Maggi et al., 2008). Importantly, ARF has been shown to counteract the 

nucleocytoplasmic shutting of NPM and, in this manner, acts as a p53-independent tumor 

suppressor (Brady et al., 2004).  

 The importance of ARF as a tumor suppressor is evident given that mice in which 

exon 1β has been specifically deleted begin developing tumors as early as 8 weeks of age 

(Kamijo et al., 1999). After one year, 80% of the mice succumb to spontaneous tumor 

development, namely sarcomas and lymphoid malignancies. Arf +/- mice also develop 

tumors, albeit after a longer latency relative to Arf -/- mice (Kamijo et al., 1999). In 
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humans, the locus encoding Arf is the second most commonly mutated locus (Hainaut et 

al., 1997; Hall and Peters, 1996). While it is often difficult to determine the individual 

roles of the multiple tumor suppressor encoded by the locus in human cancer, there are 

specific cases in which only Arf is affected. For example, deletion or mutation of Arf has 

been reported in glioblastoma patients, melanoma patients, and a family with melanoma-

neural system tumor syndrome (Laud et al., 2006; Nakamura et al., 2001; Randerson-

Moor et al., 2001; Rizos et al., 2001). Furthermore, the Arf promoter is known to be 

methylated and consequently silenced in many human cancers (Furonaka et al., 2004; 

Kominami et al., 2009; Konishi et al., 2002; Melendez et al., 2000; Zemliakova et al., 

2004; Zheng et al., 2000). 

 As previously mentioned, normal conditions require that ARF levels be kept low, 

and thus ARF is nearly undetectable in the absence of oncogenic stress. Still, various 

functions have recently been ascribed to these basal levels of ARF. One of the first 

described roles of basal ARF was initiated based on the observation that Arf -/- mice have 

eyes that are slightly smaller than their wild-type counterparts (Kamijo et al., 1999; 

Kamijo et al., 1997; McKeller et al., 2002). Studies have since demonstrated that the 

hyaloid vascular system (HVS) in the vitreous of the eye fails to regress in the absence of 

Arf (McKeller et al., 2002). Using Arf Gfp/+ mice to more closely examine the localization 

of ARF within the developing eye, it was determined that ARF was expressed in mural 

cells expressing platelet-derived growth factor receptor β (Pdgfrβ) (Silva et al., 2005). In 

the absence of Arf, these cells abnormally proliferate, which causes the persistent HVS 

and ultimately leads to blindness in Arf -/- mice (Gromley et al., 2009; Silva et al., 2005). 

Notably, p53-/- mice have normal vision (McKeller et al., 2002), and thus the role of basal 
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 ARF in eye development is independent of its ability to regulate p53 activity. The use of 

Arf Gfp/+ mice also revealed the expression of ARF in male spermatogonia, which are the 

cells that line the basement membrane of each seminiferous tubule and differentiate into 

mature spermatozoa as they progress through meiosis I and meiosis II  moving toward the 

lumen of the tubule (Cole et al.; Gromley et al., 2009). In the absence of Arf, 

spermatogonia have heightened levels of apoptosis, which limited data suggests is the 

result of an increase in phosphorylated histone H2AX (Churchman et al.). Ultimately, the 

enhanced apoptosis during germ cell development upon Arf loss results in reduced sperm 

number compared to that in wild-type mice (Churchman et al.; Cole et al.). While the 

apoptosis of these cells in p53-dependent, ARF's regulation of H2AX phosphorylation is 

independent of p53 (Churchman et al.).  

 Basal ARF has also been shown to regulate osteoblastogenesis and osteoblast 

activity. Osteoblasts are the bone-forming cells of the skeleton. Thus, the role of ARF in 

osteoblasts is especially important given that our work here has focused on the role of 

ARF in osteoclastogenesis and the regulation of bone resorption in vivo. In the presence 

of osteogenic media in vitro, Arf -/- stromal cells exhibit enhanced osteoblastogenesis 

compared to wild-type stromal cells (Rauch et al.). This finding can, at least partially, be 

attributed to an increase in the proliferation of osteoblast precursor cells (unpublished 

communicated data). ARF's ability to regulate osteoblastogenesis is also relevant in vivo 

as long bones from Arf -/- mice have heightened levels of osteoblast differentiation 

markers, which correlates to increased bone formation (Rauch et al.). Furthermore, Arf -/- 

mice display an overall increase in trabecular bone volume and bone mineral density 

when assessed by microCT (Rauch et al.).  
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 Given the nucleolar localization of ARF and its previously reported roles in 

regulating the nucleocytoplasmic shuttling of NPM, our lab has recently examined the 

role of basal ARF in regulating nucleolar structure and function to limit protein synthesis 

in mouse embryonic fibroblasts (MEFs). We have shown that Arf loss results in an 

increase in both the size and number of AgNORs, which is indicative of abnormal 

nucleolar function (Apicelli et al., 2008). Given that nucleoli house the proteins required 

for the initial steps in ribosome biogenesis, Apicelli and colleagues examined protein 

synthesis upon basal Arf loss beginning with the transcription of ribosomal DNA 

(rDNA). Data suggest that Arf loss not only enhances the transcription of rDNA but also 

the processing of the newly transcribed 47S transcript into intermediate precursors that 

lead to the final 5.8S, 18S, and 28S subunits, both of which are functions that have 

previously been ascribed to ARF (Apicelli et al., 2008; Ayrault et al., 2006; Ayrault et al., 

2004; Qi et al., 2004; Sugimoto et al., 2003). Furthermore, in accordance with ARF's 

ability to bind and restrain NPM, loss of basal Arf exacerbated the export of ribosomes 

from the nucleus to the cytoplasm (Apicelli et al., 2008). Ultimately, the increases in 

ribosomal biogenesis upon Arf loss resulted in enhanced protein synthesis relative to that 

observed in wild-type MEFs (Apicelli et al., 2008). In an effort to translate these findings 

into a physiologically-relevant cell model with a requirement for protein synthesis, 

Apicelli and colleagues initiated the study of basal ARF function in osteoclasts. The data 

show that Arf loss appears to enhance overall osteoclastogenesis after 3 days of treatment 

with M-CSF and RANKL . In the absence of Arf, there were a greater number of TRAP-

positive osteoclasts with more than five nuclei (Apicelli et al., 2008). Arf loss also 

appears to enhance the function of osteoclasts in vitro as wild-type bone marrow 
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macrophages (BMMs) allowed to differentiated one day longer than Arf -/- BMMs in 

osteoclastogenic media still did not exhibit as much TRAP activity as the Arf -/- 

osteoclasts (Apicelli et al., 2008). These differences translate into what is observed in 

vivo, where serum TRAP levels are elevated in the absence of Arf. This change could not 

be attributed to an increase in the number of macrophages upon Arf loss as assessed by 

BrdU incorporation in vitro (Apicelli et al., 2008). Here, we expanded upon these initial 

findings to definitively determine if basal ARF regulates osteoclasts and whether this 

regulation is relevant in vivo. Additionally, we aimed to determine the mechanism 

through which ARF acts in this post-mitotic setting.  

After 5 days of culturing bone marrow macrophages (BMMs) in the presence of 

M-CSF and RANKL, we quantified an increase in both the size and number of mature 

osteoclasts in absence of Arf. Enhanced osteoclastogenesis was also confirmed by TRAP 

and Cathepsin K protein levels and pit staining. Importantly, we could not attribute the 

difference between wild-type and Arf-null osteoclasts to enhanced proliferation either 

before (as previously shown) or after the addition of RANKL. Furthermore, this is a p53-

independent function of ARF as BMMs isolated from p53-null mice did not phenocopy 

those from Arf-null mice when differentiated in vitro. Instead, p53-/- osteoclasts closely 

resembled wild-type osteoclasts, which is in accordance with previously published 

findings (Wang et al., 2006). Given the known roles of ARF in regulating protein 

synthesis, we questioned whether ARF might be regulating osteoclastogenesis by limiting 

protein synthesis during differentiation. Our data demonstrate that Arf loss results in 

enhanced protein production, especially in pre-OCs (day 3 of differentiation) and mature 

OCs (day 5 of differentiation). In part, this appears to be due to increased ribosome 
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output upon Arf loss in pre-OCs. Finally, we wanted to know if our in vitro results would 

translate to increased bone resorption upon Arf loss in vivo. We generated radiation 

chimeras, in which wild-type mice either received wild-type or Arf -/- bone marrow. Our 

results demonstrate that Arf loss causes a significant increase in bone resorption and bone 

mineral density compared to mice with wild-type osteoclasts. Taken together, these 

results point towards a physiologically-relevant role of basal ARF in regulating 

proliferation- and p53-independent cell growth. 
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3.3 Methods 

Mice 

 Arf -/- mice were maintained on a 129X1/SvJ x C57BL/6 background. Age-

matched wild-type controls on the same background were used except where noted. All 

mice were housed in a pathogen-free animal facility, fed standard chow ad libitum, and 

treated following animal protocols approved by the Washington University Animal 

Studies Committee. 

 

Osteoclast culture 

 Whole bone marrow was isolated from the femurs and tibias of wild-type, Arf -/-, 

and p53-/- mice. Macrophages were grown in α-minimal essential medium (α-MEM) 

containing 10% fetal bovine serum (FBS) and CMG14-12 culture supernatant (1/10 vol) 

as a source of M-CSF. Osteoclasts were generated from bone marrow macrophages using 

CMG14-12 supernatant (1/100 vol or 1/50 vol) and recombinant GST-RANKL 

(50ng/mL). To assess for RANKL hypersensitivity, all wells were identically treated 

except for the indicated amounts of RANKL (12.5, 25, 50, or 100 ng/mL). In 48-well 

tissue culture dishes, BMMs were plated at 1.5 X 104 cells per well. Osteoclasts were 

fixed and visualized by histochemical staining for tartrate-resistance acid phosphatase 

according to the manufacturer’s protocol (Sigma).  

 

quantitative RT-PCR, and Immunoblotting 

 RNA and protein were isolated from all cells using the illustraTM  triplePrep kit 

(GE Healthcare) as described in the manufacturer’s protocol. For qRT-PCR, first-strand 
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cDNA was prepared using the SuperScript III first-strand synthesis system (Invitrogen). 

Real-time PCR was performed with iQ SYBR Green Supermix (Bio-Rad) according to 

the manufacturer's protocol. Primer sequences TRAP forward: 5’-

CAGCTCCCTAGAAGATGGATTCAT-3’ and reverse: 5’-

GTCAGGAGTGGGAGCCATATG-3’ and Cathepsin K forward: 5’-

ATGTGGGTGTTCAAGTTTCTGC-3’ and reverse: 5’-

CCACAAGATTCTGGGGACTC-3’  Protein was eluted in 7M Urea and further diluted 

to 3M Urea such that protein concentration could be quantified by Bradford assays. 

Antibodies used included rabbit anti-Cathepsin K (Abcam) and goat anti-TRAP (Santa 

Cruz).  

 

Proliferation analysis 

 Macrophages were cultured in the absence of RANKL or in the presence of 

50ng/mL RANKL for 24h on glass coverslips in 24-well plates. Cells were labeled with 

bromodeoxyuridine (BrdU) for 24h, fixed, and then stained with DAPI and an antibody 

against BrdU. BrdU-positive cells were blindly counted for each experiment. 

 

Apoptosis analysis 

 Macrophages were seeded at 5000 cells/well in 96-well dishes and differentiated 

in the presence of M-CSF and 50ng/mL RANKL. Cell death was assessed by cell death 

detectio ELISAPLUS kit (Roche Applied Sciences), which detects cytoplasmic histone-

associated DNA fragmentation. Absorbance was measured at 405nm.  
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In vitro bone resorption 

 Bone marrow macrophages from either wild-type or Arf -/- mice were 

differentiated in vitro on bovine bone slices in the presence of M-CSF and 50ng/mL 

RANKL. After 8 days in the presence of osteoclastogenic media, cells were removed 

from bone by mechanical agitation. Bone slices were then incubated with peroxidase-

conjugated wheat germ agglutinin (Sigma) followed by 3,3-diaminobenzidine (Sigma) to 

visualize areas of bone Resorptive area was blindly quantified by determining the average 

of four fields from each bone slice.  

 

Immunofluorescence 

 Wild-type bone marrow macrophages were cultured in the presence of M-CSF 

and 50ng/mL RANKL for 6 days on glass coverslips in 24-well plates. Cells were then 

fixed with ice-cold methanol:acetone (1:1 vol) and stained with rat anti-ARF and rabbit 

anti-NPM followed by FITC-conjugated anti-rabbit and rhodamine-conjugated anti-rat. 

Nuclei were visualized with DAPI.   

 

35S-methionine incorporation assays 

 Bone marrow macrophages were plated in 6-well dishes in the presence of only 

M-CSF (BMMs) or M-CSF and 50ng/mL RANKL (pre-OCs and OCs). All cells were 

starved of methionine and cysteine for 30min prior to labeling at the appropriate time 

point during differentiation (3 days post-RANKL for pre-OC and 5 days post-RANKL 

for OCs). Following starvation, cells were pulsed with 150 μCi of  35S-mehtionine for the 

indicated times (2, 4, or 8 hours). The first time point (t=0) was harvested immediately 
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after the pulse. Following the pulse, cells were washed with cold phosphate-buffered 

saline and then lysed with 1% Triton X-100 buffer. Protein was precipitated from cell 

lysates using 10% tricholoroacetic acid and pellets were analyzed by liquid scintillation 

counting to quantify the incorporated counts per million. 

 

 

Ribosome fractionation 

 3 x 106 cells per condition were treated with 50ug/mL cycloheximide for 10min. 

Cells were then mechanically lifted and lysed. Cytoplasmic fractions were separated by 

centrifugation and layered over a continuous sucrose gradient. Gradients were 

fractionated and RNA absorbance was monitored at 254nm. 

 

Histology 

 Bones were isolated within 24h following the final dose of RANKL and fixed in 

formalin overnight. Fixed bones were then decalcified for 14 days in 14% EDTA and 

subsequently dehydrated in increasing amounts of EtOH. Paraffin-embedded sections 

were stained for tartrate-resistant acid phosphatase and quantified using Bioquant Osteo 

(Bioquant Image Analysis).  

 

AgNOR staining 

 Bone marrow macrophages were seeded on glass coverslips and assessed for 

AgNORs at the indicated times according to a modified protocol that was originally 

presented by Aubele et al. (Aubele et al., 1994). Briefly, cells were first fixed in 2% 
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glutaraldehyde and then 3:1 ethanol-acetic acid solution. Cells were subsequently stained 

using a 0.33% formic acid-33.3% silver nitrate solution in 0.66% gelatin and then 

mounted on slides using Vectashield. AgNOR numbers were blindly quantified.  

 

Generation of radiation chimeras 

 7 week-old wild-type mice on a 129X1/SvJ x C57BL/6 background were lethally 

irradiate (1000 rads). After 24 hours, 1 x 106 donor whole bone marrow cells (either from 

wild-type or Arf -/- mice) were intravenously transferred into the tails of recipient mice. 

Hematopoietic reconstitution with the donor genotype was confirmed by PCR of 

peripheral blood.  

 

viva CT analysis 

 Tibias were scanned from the proximal epiphysis to the tibia-fibula junction by in 

vivo microCT (VivaCT 40, Scanco Medical, calibrated at regular intervals by single 

individual).We assessed bone parameters by blindly contouring 30 sections below the 

growth plate of each tibia to exclude cortical bone. For all measurements, a threshold of 

180 (on a 0-1000 scale) was maintained. 
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3.4 Results 

 

Arf loss accelerates osteoclastogenesis in vitro 

To definitively determine whether Arf loss was affecting osteoclastogenesis in 

vitro, we first isolated bone marrow macrophages (BMMs) from WT and Arf -/- mice. 

After five days in the presence of M-CSF (1/100 vol) and 50ng/mL RANKL, we 

confirmed that the osteoclasts were either WT or Arf-null by PCR (Figure 3.1a) and 

Western analysis (Figure 3.1b). The cells were TRAP-stained for quantification (Figure 

3.2a), and we observed an increase in the number of TRAP-positive multinucleated 

osteoclasts (Figure 3.2b), indicating that Arf loss enhances osteoclastogenesis in vitro. 

The total area quantified was also greater in the absence of Arf (Figure 3.2c), indicating 

that Arf -/- osteoclasts are larger than their wild-type counterparts (Figure 3.2d). 

Furthermore, when differentiating BMMs under various concentrations of RANKL, we 

found that loss of Arf permitted osteoclastogenesis even in the presence of very low 

RANKL concentrations (Figure 3.3a). Furthermore, in these osteoclast differentiation 

experiments, Arf loss resulted in an increase in the number, area covered by osteoclasts, 

and osteoclast size at all concentrations of RANKL relative to wild-type cells (Figure 

3.3b-d). During differentiation, we noted that osteoclasts were forming much earlier in 

the absence of Arf (observation not quantified). To affirm this observation, we isolated 

cells on each day during osteoclastogenesis for five days and assessed both the mRNA 

and proteins levels of two well-characterized markers of osteoclastogenesis: tartrate-

resistant acid phosphatase (TRAP) and Cathepsin K (Zhao et al., 2007). Interestingly, the 

mRNA levels did not appear any earlier in the absence of Arf, but they were significantly 
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increased in the absence of Arf relative to wild-type (Figure 3.4), which suggests that Arf 

loss may also enhance osteoclast function in addition to exacerbating osteoclastogenesis.   

The protein levels of both Cathepsin K and TRAP support accelerated osteoclastogenesis 

in the absence of Arf.  Cathepsin K protein levels were 19-fold greater by 4 days post-

RANKL and 31-fold greater by day 5 compared to the levels on day 3 in WT cells. In 

comparison, Arf -/- cells had an 8-fold increase in Cathepsin K on day 3 compared to WT 

day 3 and by 4 days post-RANKL, the Arf -/- cells already exhibited levels of Cathepsin K 

(30-fold)  that were comparable to that of day 5 WT cells (Figure 3.5). Similarly, TRAP 

levels observed after 5 days post-RANKL in WT cells were comparable to those seen 

only 4 days post-RANKL treatment in Arf -/- cells (Figure 3.5). Taken together, this data 

suggests that loss of Arf enhances osteoclastogenesis in vitro, resulting in both increased 

number and size of osteoclasts. It is possible that Arf loss results in increased osteoclast 

size as a result of enhanced fusion of mononuclear precursors. To evaluate this, we 

counted the number of nuclei per cell in WT and Arf -/- osteoclasts. Blinded quantification 

results suggest that there is no difference in the numbers of nuclei between WT and Arf -/- 

osteoclasts, implying that enhanced fusion does not explain the increase in size upon Arf 

loss (Figure 3.6). As I will discuss later in this section, the increased size may be a result 

of enhanced protein synthesis during osteoclastogenesis as a result of Arf loss. Finally, to 

determine whether the increased osteoclastogenesis in Arf -/-cells results in more bone 

resorption in vitro, WT and Arf -/- macrophages were differentiated on bovine bone slices 

in the presence of M-CSF and RANKL for 8 days. The bone slices were then analyzed 

for resorption by staining and quantifying pit area (Figure 3.7a). After 8 days, less than 

5% of the bone slices were covered in pits when plated with WT BMMs. However, we 
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found that Arf loss results in approximately 25% of the bone slice being covered with pits 

(Figure 3.7b). This data compliments our previous results suggesting that Arf loss results 

in enhanced osteoclastogenesis. More importantly, it suggests that while Arf loss 

accelerates osteoclastogenesis, differentiation still proceeds properly and results in active 

and functional osteoclasts in vitro.  

 

Enhanced osteoclastogenesis: analyzing proliferation, apoptosis, and p53 

 To determine if Arf loss results in increased osteoclast number and size as a result 

of enhanced precursor proliferation, we quantified BrdU-positive nuclei before and after 

the addition of RANKL. In accordance with previously published data analyzing the 

proliferation of BMMs upon Arf loss (Apicelli et al., 2008), we did not observe an 

increase in proliferation in Arf -/- cells relative to WT (Figure 3.8a). As a control, we also 

assessed proliferation on days 3 and 4 of osteoclastogenesis. As expected, our results 

show that there is very little proliferation occurring by day 3 of osteoclastogenesis 

(Figure 3.8b). An increase in either osteoclast number or size could also be a result of 

decreased apoptosis. To assess whether Arf loss alters apoptosis in vitro, we examined 

cells 4, 5, 6, and 7 days after RANKL treatment as this is the timeframe in which we 

typically observe cell death. Apoptosis was quantified by an ELISA assessing histone-

associated DNA fragmentation. On days 4, 5, and 6, we observed slight decreases in 

apoptosis in Arf -/- cells relative to WT. The most striking difference was observed on day 

7; Arf loss significantly decreases the levels of fragmented DNA nearly 2-fold compared 

to that observed in WT osteoclasts (Figure 3.9). These data suggest that Arf loss results in 

a decrease in apoptosis during osteoclastogenesis in vitro. This result may, at least 
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partially, explain why we observe enhanced osteoclast number and/or size upon Arf loss. 

Finally, given the well-characterized p53-dependent role of ARF tumor suppression, we 

wanted to know if enhanced osteoclastogenesis upon Arf loss is dependent upon p53. We 

hypothesized that if Arf loss results in enhanced osteoclastogenesis as a result of 

decreased p53 activity, then p53-/- cells will phenocopy Arf -/- cells. Therefore, we isolated 

bone marrow macrophages from p53-/- mice and differentiated them alongside Arf -/- 

macrophages. As we expected, Arf loss resulted in enhanced osteoclast number compared 

to WT cells. However, p53 loss had no affect on the number of osteoclasts as they were 

comparable to WT (Figure 3.10). 

  

Protein synthesis upon Arf loss during osteoclastogenesis 

 As previously mentioned, it is possible that Arf loss results in increased osteoclast 

number and size as a result of enhanced protein synthesis. Given that we have observed 

enhanced protein synthesis following Arf loss in mitotic cells, we wanted to determine if 

Arf -/- cells exhibit elevated levels of protein synthesis during osteoclastogenesis. We 

began addressing this question by determining whether ARF colocalizes with 

nucleophosmin (NPM) in WT osteoclasts, as previous reports show that ARF’s ability to 

interact with NPM plays a significant role in controlling protein synthesis. In Figure 3.11, 

we demonstrate that ARF and NPM do, in fact, colocalize in WT osteoclasts. Therefore, 

we moved forward by measuring the incorporation of 35S-methionine into newly-

synthesized proteins. In macrophages, we observed no differences in protein synthesis 

(except at t=4h) between wild-type and Arf -/- cells (Figure 3.12a). However, in both pre-

osteoclasts and osteoclasts, protein synthesis was significantly enhanced upon Arf loss 
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relative to WT cells (Figure 3.12b,c). In mature osteoclasts (day 5), Arf  loss 

approximately doubled the amount of protein synthesis by 8 hours post-35S pulse (Figure 

3.12c). In pre-osteoclasts, we again measured nearly a 2-fold increase in protein synthesis 

by 8 hours post-35S pulse (Figure 3.12b). Furthermore, we noted that the overall highest 

levels of protein synthesis, regardless of genotype, were occurring during the pre-

osteoclast stage of differentiation (day 3) (Figure 3.12b). Therefore, we decided to focus 

our attention on the differences between WT and Arf  -/- pre-osteoclasts when assessing 

ribosome output. The relative amount of actively-translating ribosomes was measured by 

freezing mRNAs onto actively-translating ribosomes with cycloheximide treatment, 

separating pre-osteoclast cytosolic fractions over a sucrose gradient, and reading the 

amount of RNA at an absorbance of 254nm.  Using this technique, the actively-

translating ribosomes or polysomes, appear on the far right of the trace. As shown in 

Figure 3.13, we noted a slightly larger pool of polysomes in Arf -/- pre-osteoclasts relative 

to WT pre-osteoclasts. To verify the significance of this slight change in the two profiles, 

we report the ribosome profiles between WT cells on a pure B6 background and Arf -/- 

cells on a mixed B6/129 background. Previous data from our lab has shown that even a 

change in the genetic background can dramatically alter the ribosome profiles in mice of 

the same genotype (unpublished data). Our profiles demonstrate that there is no 

difference in ribosome output between WT (B6) and Arf -/- (B6/129) BMMs (Figure 

3.14a), pre-osteoclasts (Figure 3.14b), and osteoclasts (Figure 3.14c), indicating that the 

difference we observed in Figure 3.13 is biologically meaningful. Taken together, the 

data suggests that we are, at least in part, observing enhanced levels of protein synthesis 

upon Arf loss as a result of an increased pool of actively-translating polysomes. More 
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importantly, this data supports the idea that Arf loss enhances osteoclastogenesis as a 

result of elevated protein synthesis. Finally, we have previously made a correlation 

between an increase in the number of AgNORs and enhanced protein synthesis upon Arf 

loss in mitotic mouse embryonic fibroblasts (Apicelli et al., 2008). Therefore, we wanted 

to determine if the number of AgNORs per nucleus is increased upon Arf loss during 

osteoclastogenesis. Results show that Arf loss does not alter the number of AgNORs in 

BMMs (Figure 3.15a), pre-osteoclasts (Figure 3.15b), and osteoclasts (Figure 3.15c) 

relative to WT cells.  

 

Examining the effects of osteoclast Arf loss in vivo 

 Finally, we wanted to determine if the effects we had observed upon Arf loss in 

vitro translated to differences in bone resorption in vivo. Initially, we planned to create an 

osteoclast-specific knockout of Arf by breeding Arf fl/fl and Ctsk Cre/+ mice. However, our 

breedings resulted in germline loss of Arf (see Chapter 2). As an alternative approach, we 

generated radiation chimeras by lethally irradiating WT mice and subsequently 

transplanting them with WT or Arf -/- bone marrow. This allowed us to examine Arf -/- 

osteoclasts in the presence of WT osteoblasts, which was necessary given the previously 

published data demonstrating that germline Arf loss enhances osteoblastogenesis and 

osteoblast activity in vivo resulting in an overall increase in bone volume (Rauch et al.). 

Three weeks following the transplant, bone resorption was assessed by vivaCT (Figure 

3.16). Initial vivaCT results showed no difference in bone volume between mice that 

received WT bone marrow and mice that received Arf -/- bone marrow (Figure 3.17). We 

therefore decided to challenge our radiation chimeras by injecting them with RANKL to 
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stimulate bone resorption. Our method of RANKL injection was based on a recent study 

demonstrating that three consecutive daily doses of various concentrations of RANKL 

was enough to cause significant bone resorption (Tomimori et al., 2009). To confirm this 

method, we first injected WT mice with either PBS or 2mg/kg RANKL for three 

consecutive days. The mice were imaged before beginning the series of injections and 

1.5h following the final injection to assess bone loss. Our data demonstrate that three 

consecutive daily doses of 2mg/kg RANKL causes nearly 50 % bone loss (Figure 3.18). 

Ultimately, we decided to challenge our radiation chimeras with three consecutive daily 

doses of 1mg/kg RANKL and imaged them before the series of RANKL injections and 

1.5h following the final injection as outlined in Figure 3.19. Representative 3D images of 

reconstructed tibias before and after RANKL stimulation are shown in Figure 3.20a. 

These images demonstrate that mice with Arf -/- osteoclasts resorb more bone compared to 

mice with WT osteoclasts. The difference in trabecular bone volume (reported as bone 

volume/total volume) following RANKL stimulation between mice that received a WT 

transplant and mice that received an Arf -/- transplant was blindly quantified based on 

vivaCT images of tibias. The data show that Arf loss results in a significant decrease in 

bone volume relative to WT, suggesting that Arf loss in osteoclasts enhances bone 

resorption upon RANKL stimulation in vivo (Figure 3.20b). Furthermore, Arf  loss causes 

a corresponding decrease in trabecular number following RANKL stimulation, which is 

indicative of enhanced bone resorption (Figure 3.20c). An increase in trabecular number 

is often correlated with a decrease in trabecular spacing given that the more bone within a 

defined area, the less space there is between the bones. Our results follow this logic and 

demonstrate a significant increase in trabecular spacing in mice that received an Arf -/- 
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transplant relative to mice that received a WT transplant (Figure 3.20d). Finally, vivaCT 

analysis indicates that there is a significant decrease in bone mineral density in the 

absence of Arf (Figure 3.20e). To determine if there are more osteoclasts in mice 

receiving an Arf -/- transplant, tibias of mice were removed and TRAP-stained following 

the final vivaCT scan. The number of osteoclasts in a defined area of the tibias was 

blindly quantified. Our data show that Arf loss significantly increases the number of 

osteoclasts in vivo, which supports our in vitro results (Figure 3.21). As a whole, our in 

vivo data suggests that Arf loss enhances bone resorption due, at least in part, to an 

increase in osteoclast number.   
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3.5 Discussion 

ARF has long been appreciated as a protein that is upregulated in response to 

oncogenic stress (Sherr, 2001). Upon induction, ARF is known to impede the ability of 

MDM2 to negatively regulate the p53 tumor suppressor (Weber et al., 1999), a function 

originally thought to be the sole mechanism of ARF tumor suppression. However, we 

now know that ARF also suppresses tumorigenesis by mechanisms that are independent 

of its ability to regulate p53 (Weber et al., 2000a). In fact, there are nearly 30 purported 

ARF-interacting proteins that may well be playing a role in advancing cell growth and/or 

proliferation, and it will be exciting to see future results that further define the 

significance of their interactions with ARF (Sherr, 2006). Our lab has focused on the 

ARF-interacting protein, nucleophosmin (NPM). We have demonstrated that ARF’s 

ability to impede the nucleocytoplasmic shuttling of NPM is also a means by which cell 

cycle progression in limited (Brady et al., 2004). NPM is necessary for the export of 

newly transcribed and processed ribosomes to the cytoplasm for translation (Maggi et al., 

2008; Yu et al., 2006). Thus, ARF is able to limit the growth of a cell by prohibiting the 

transport of ribosomes from the nucleus to the cytoplasm in a p53-independent manner. 

Given that cell growth (i.e. protein synthesis) is necessary to maintain proper cell 

division, our lab questioned whether ARF also regulates cell growth in non-dividing 

cells. We hypothesized that the ability to limit protein synthesis might be more of a 

teleological role of ARF even though it is more commonly recognized as a tumor 

suppressor.   

In parallel to questioning the role of ARF in non-dividing cells, a number of 

reports were surfacing that outlined roles for basal ARF. These included studies 
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demonstrating ARF’s p53-independent role in limiting the proliferation of mural cells 

within the developing eye and ARF’s p53-independent role in regulating the survival of 

spermatocytes during male germ cell development in mice (Churchman et al.; Gromley et 

al., 2009; McKeller et al., 2002; Silva et al., 2005). The importance of basal ARF in 

regulating these two functions is underscored by the fact that Arf -/- mice are blind and 

males have a low sperm count. Given our previous work showing that ARF acts a tumor 

suppressor by inhibiting NPM and thus protein synthesis, we were first interested in 

determining whether basal ARF can also regulated these functions. We have since 

demonstrated that basal ARF limits ribosomal DNA (rDNA) transcription, rRNA 

processing, and ribosomal export to the cytoplasm via NPM to ultimately maintain a 

proper rate of protein synthesis in dividing cells (Apicelli et al., 2008). Given this finding, 

we were poised to answer the following question: does basal ARF regulate protein 

synthesis in non-dividing cells?  

Here, we used osteoclasts as a model because they are fully differentiated, non-

dividing cells. In route to becoming mature and functional, osteoclasts are signaled to 

upregulated the production of proteins required for bone degradation, implying a 

requirement for protein synthesis even as they near maturation (Teitelbaum and Ross, 

2003). In vitro, osteoclasts can be differentiation from bone marrow macrophages. In this 

study, we demonstrate that bone marrow macrophages derived from Arf -/- mice and 

allowed to differentiate in vitro result in the production of more and bigger osteoclasts 

when plated at the same density as wild-type macrophages, a finding that is supported by 

previous studies using slightly different concentrations of osteoclastogenic cytokines and 

an alternative approach to quantification (Apicelli et al., 2008). We further show in this 
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report that enhanced osteoclastogenesis upon Arf loss is complimented by the premature 

appearance of two proteins important that are necessary for proper osteoclast function: 

tartrate-resistant acid phosphatase (TRAP) and Cathepsin K. In fact, in the absence of 

either TRAP or Cathepsin K, mice are osteopetrotic, emphasizing their functional 

importance (Hayman et al., 1996; Saftig et al., 1998). Interestingly, while mRNA levels 

of TRAP and Cathepsin K are elevated during osteoclastogenesis, they do not appear any 

earlier during differentiation in the absence of Arf. This suggests that ARF may be 

regulating the timing of translation of these proteins. To support this hypothesis, we have 

demonstrated that Arf loss results in increased protein synthesis during osteoclastogenesis 

(observed in BMMs, pre-osteoclasts, and osteoclasts). This is, at least in part, due to 

elevated amounts of actively-translating ribosomes in pre-osteoclasts upon Arf loss. By 

isolating the mRNAs from the polysomes of pre-osteoclasts, we plan to determine 

whether Arf loss alters the amount of TRAP and Cathepsin K mRNA translation at a 

specific time point during osteoclastogenesis.  

Our in vitro data also suggests that enhanced osteoclastogenesis upon Arf loss is 

independent of ARF’s ability to regulate p53. This finding is supported by a previous 

report suggesting that osteoclastogenesis is only enhanced by p53 loss in vivo due to the 

coupling of osteoblast and osteoclasts (Wang et al., 2006). Specifically, it has been 

reported that p53 regulates the osteoblast transcription factor osterix (Wang et al., 2006). 

Osterix is important for the upregulation of M-CSF transcription, a cytokine known to be 

important for cell proliferation and survival during osteoclastogenesis. However, in vitro 

studies have shown that the effects of p53 on osteoclastogenesis are not cell autonomous 

(Wang et al., 2006); in fact, we found that p53-/- osteoclasts appear no different than wild-
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type osteoclasts in vitro. This finding follows the other functions that have been reported 

for basal ARF in that they are all p53-independent and suggests that ARF only exerts its 

p53-dependent functions in the presence of oncogenic stress. We also show that ARF’s 

ability to limit osteoclastogenesis is independent of proliferation. While we initiated this 

study knowing that any observed effects of Arf loss on the function of mature osteoclasts 

would intrinsically be independent of proliferation, given that mature osteoclasts do not 

divide, it remained unclear whether enhanced osteoclastogenesis in the absence of Arf 

was due in part to increased proliferation of osteoclast precursors. Of the proliferation 

experiments we show here, the most important in this regard is the finding that there is no 

difference in proliferation of osteoclast precursors following the addition of RANKL. 

This data suggests that we do not see enhanced numbers of osteoclasts on day 5 of 

osteoclastogenesis as a result of enhanced precursor proliferation after seeding the cells 

for differentiation. In contrast, we did observe a decrease in apoptosis in the absence of 

Arf, which was most prominent on day 7 of osteoclastogenesis, suggesting that Arf loss 

extends the lifespan of osteoclasts in vitro. It is possible that the small, yet significant, 

changes in apoptosis on days 3 and 4 of osteoclastogenesis contribute to the enhanced 

numbers of mature osteoclasts on day 5 as well as the increases we have observed in 

protein synthesis on days 3 and 5 of osteoclastogenesis. However, it is unlikely that the 

observed differences in apoptosis completely explain enhanced osteoclastogenesis or 

protein output given that the levels of apoptosis are very low on days 3 and 4 of 

osteoclastogenesis relative to day 7. To confirm this, we will need to assess protein 

synthesis and day 5 osteoclast numbers after lifting and reseeding equal numbers of 

osteoclast precursors on day 3 of osteoclastogenesis. Finally, it will be important to 



 

120 
 

determine whether Arf loss enhances the function of osteoclasts on a per cell basis, and 

we are currently designing experiments to assess this in vitro by quantifying actin rings 

and bone resorption of osteoclasts that have been lifted and reseeded as pre-osteoclasts. 

Finally, we have now demonstrated that Arf loss in osteoclasts results in increased 

bone resorption in vivo. Given that basal ARF has also been demonstrated to limit 

osteoblastogenesis and osteoblast activity in vivo (Rauch et al.), we assessed the effects 

of in vivo Arf loss in osteoclasts in the context of wild-type osteoblasts by generating 

radiation chimeras. The radiation chimeras have allowed us to assess cell autonomous 

effects of Arf loss in osteoclasts in the sense that we can exclude any effects due to the 

coupling of osteoblasts and osteoclasts. Furthermore, we have observed an increase in the 

number of osteoclasts present in mice that received bone marrow transplants from Arf -/- 

mice relative to those that received bone marrow from wild-type mice. This in vivo data 

supports the enhanced osteoclastogenesis and increased osteoclast number that we have 

observed in vitro.  Taken together, our in vivo data suggests that the effects of Arf loss 

during osteoclastogenesis we observed in vitro are physiologically-relevant.  

These findings represent a new role for basal ARF in regulating 

osteoclastogenesis. More importantly, they are the first to demonstrate a role for basal 

ARF in regulating cell growth in a p53-independent and proliferation-independent 

context. It will be important to determine whether this function of ARF in 

osteoclastogenesis is relevant in other cell types and is representative of a teleological 

role for ARF. In terms of tumorigenesis, it also suggests that basal ARF may be limiting 

protein synthesis and, upon induction by oncogenic stress, shifts its focus to regulating 

p53 activity. Our lab has previously demonstrated that ARF preferentially binds to 
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MDM2 over NPM (Brady et al., 2004). Moreover, ARF uses the same resides to interact 

with both MDM2 and NPM (Brady et al., 2004; Weber et al., 2000b). With that in mind, 

it remains to be determined how, in the absence of oncogenic stress, such low levels of 

ARF are regulating protein synthesis if at least a partial pool of ARF is bound by MDM2. 

This might partially be explained by recent studies suggesting that ARF can regulate the 

sumoylation of NPM (Kuo et al., 2008; Tago et al., 2005) . It is possible such a 

modification controls the activity of NPM rather than needing ARF to constantly be 

bound to NPM .  Alternatively, the cell might somehow signal ARF to focus its attention 

on protein synthesis regulation under normal conditions and restrain MDM2 during 

oncogenic stress. Furthermore, the role of basal ARF in regulating protein synthesis could 

conceivably be important in preventing tumorigenesis in the face of oncogenic 

stimulation. We would hypothesize that a cell with unrestrained protein synthesis 

becomes more transformable over time as it increases its levels of unwarranted proteins, 

and our lab is currently designing experiments to test this possibility both in vitro and in 

vivo. 
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Figure 3.1.  

Genotyping and immunoblotting confirm the presence of ARF in wild-type 

osteoclasts. Bone marrow macrophages (BMMs) were isolated from wild-type and Arf -/- 

mice and differentiated in vitro in the presence of M-CSF and RANKL for 5 days. Both 

DNA and protein were isolated from day 5 osteoclasts. (A) The absence of exon1β by 

genotyping confirms that mature OCs are void of Arf. (B). Day 5 OCs derived from wild-

type and  Arf -/- BMMs immunoblotted for ARF. Cyclin D is loading control. 
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Figure 3.2.   

Arf loss enhances osteoclastogenesis in vitro. Bone marrow macrophages were isolated 

from either wild-type or Arf-null mice. Equal numbers of macrophages were plated in 48-

well dishes in the presence of M-CSF (1/100 vol) and RANKL. After 5 days in the 

presence of osteoclastogenic media, cells were fixed and TRAP-stained. WT = blue bars 

and Arf -/- = red bars (A). Three representative 4X images from both wild-type and Arf -/- 

day 5 TRAP-stained osteoclasts. (B) Multinucleated TRAP-positive osteoclasts were 

blindly counted  in three fields of each well and averaged. There are significantly more 

osteoclasts present in the absence of Arf ( p  ≤ 0.05). (C) Three fields in each well of 

TRAP-stained multinucleated osteoclasts were blindly assessed for the percent area 

covered by osteoclasts and averaged. The absence of Arf results in a significantly greater 

area covered by osteoclasts relative to wild-type ( p  ≤ 0.05). (D) Average osteoclast size 

was determined by dividing the total area covered by osteoclasts by the total number of 

osteoclasts in that field (inches^2). The absence of Arf results in significantly larger 

osteoclasts relative to wild-type ( p  ≤ 0.05). 
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Figure 3.3  
 
Arf-null macrophages are hypersensitive to RANKL. Bone marrow macrophages were 

isolated from either wild-type or Arf-null mice. Equal numbers of macrophages were 

plated in 48-well dishes in the presence of M-CSF and varying concentrations of 

RANKL. After 5 days in the presence of osteoclastogenic media, cells were fixed and 

TRAP-stained. WT = blue bars and Arf -/- = red bars (A) Representative 4X images of 

wild-type and Arf-null cells under each tested concentration of RANKL. (B) 

Multinucleated TRAP-positive osteoclasts were blindly counted in three fields of each 

well. At all concentrations of RANKL, there are significantly more osteoclasts present in 

the absence of Arf ( p  ≤ 0.05 at all concentrations). (C) Three fields in each well of 

TRAP-stained multinucleated osteoclasts were blindly assessed for the percent area 

covered by osteoclasts. At all concentrations of RANKL, the absence of Arf results in a 
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significantly greater area covered by osteoclasts relative to wild-type ( p  ≤ 0.05 at all 

concentrations). (D) Average osteoclast size was determined by dividing the total area 

covered by osteoclasts by the total number of osteoclasts in that field (inches^2). At all 

concentrations of RANKL, the absence of Arf results in significantly larger osteoclasts 

relative to wild-type ( p ≤ 0.05 at all concentrations). 
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Figure 3.4. 

Arf loss results in increased levels of Cathepsin K and TRAP mRNA during 

osteoclastogenesis. Bone marrow macrophages from either wild-type or Arf -/- mice were 

differentiated in vitro with M-CSF and 50ng/mL RANKL. RNA was isolated from bone 

marrow macrophages (before RANKL addition) and each day after the addition of 

RANKL for 5 days. Equal amounts of RNA were used to generate cDNA by reverse 

transcription. Equal amounts of cDNA were used to assess the levels of Cathepsin K 

mRNA (left figure) and TRAP mRNA (right figure) by quantitative RT-PCR. WT = blue 

bars, Arf -/- = red bars. On days 4 and 5 (post-RANKL), loss of Arf significantly increases 

the amount of both Cathepsin K mRNA (left) and TRAP mRNA (right) ( p ≤ 0.05 on 

days 4 and 5 only).  
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Figure 3.5. 

Arf loss results in increased protein levels of Cathepsin K and TRAP during 

osteoclastogenesis. Bone marrow macrophages from either wild-type or Arf -/- mice were 

differentiated in vitro with M-CSF and 50ng/mL RANKL. Total protein was isolated 

each day after the addition of RANKL for 5 days. Equal amounts of protein were 

separated by SDS-PAGE. Membranes were probed for Cathepsin K, TRAP, and β-

tubulin (control). Protein bands were quantified by densitometry. Levels of Cathepsin K 

were first normalized to β-tubulin and fold changed was subsequently assessed 

calculating the fold change for each day relative to WT day 3. Levels of TRAP were first 

normalized to β-tubulin and fold changed was subsequently assessed calculating the fold 

change for each day relative to WT day 3.  
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Figure 3.6. 

Enhanced fusion during osteoclastogenesis does not explain the increase in 

osteoclast size upon Arf loss. Bone marrow macrophages from either wild-type or Arf -/- 

mice were differentiated in vitro on glass coverslips in the presence of M-CSF and 

50ng/mL RANKL. After 6 days in the presence of osteoclastogenic media, cells were 

fixed and stained with DAPI to demarcate nuclei. Nuclei numbers were blindly counted 

in 100 osteoclasts of each genotype. WT = blue bars, Arf -/- = red bars. Difference is not 

statistically significant.  

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
uc

le
i p

er
 c

el
l

WT Arf ‐/‐



 

134 
 

 

 

 

 

 

 

 

 

 

WT  Arf‐/‐

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Arf ‐/‐WT

Pi
t a
re
a/
to
ta
l a
re
a

A 

B 



 

135 
 

Figure 3.7. 

Arf loss increases bone resorption by osteoclasts in vitro. Bone marrow macrophages 

from either wild-type or Arf -/- mice were differentiated in vitro on bovine bone slices in 

the presence of M-CSF and 50ng/mL RANKL. After 8 days in the presence of 

osteoclastogenic media, cell were removed and bone slices were incubated with 

peroxidase-conjugated wheat germ agglutinin followed by 3,3-diaminobenzidine to 

visualize areas of bone resorption. (A) Two representaive fields from each genotype 

(dark brown indicates areas of bone resorption) (B) Resorptive area (pits) were blindly 

quantified by determining the average of four fields from each bone slice. Difference is 

statistically significant ( p  ≤ 0.05). 
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Figure 3.8. 

Proliferation of osteoclast precursors in not enhanced upon Arf loss. Bone marrow 

macrophages from either wild-type or Arf -/- mice were differentiated in vitro on glass 

coverslips either in the presence of M-CSF (BMMs) or M-CSF and 50ng/mL RANKL 

(osteoclasts). Cells were incubated for 24h with BrdU to assess proliferation. (A) Cells 

were fixed as macrophages (pre-RANKL) and 24h after RANKL addition (post-

RANKL). (B) Cells were fixed 3 and 4 days post-RANKL as proliferation controls. All 

fixed cells were then incubated with an antibody recognizing BrdU and DAPI to 

demarcate nuclei.  At least100 nuclei were blindly assessed for BrdU for each genotype 

and at each time point. WT = blue bars, Arf -/- = red bars. All differences are not 

statistically significant.  

 

 

  



 

138 
 

 

 

 

 

Figure 3.9. 

Arf loss extends the lifespan of osteoclasts in vitro. Bone marrow macrophages from 

either wild-type or Arf -/- mice were seeded at 5000 cells/well in 96-well dishes and 

differentiated in the presence of M-CSF and 50ng/mL RANKL. On days 4, 5, 6, and 7 

after the addition of RANKL, cell death was assessed by an ELISA, which detects 

cytoplasmic histone-associated DNA fragmentation  Absorbance was measured at 

405nm. WT = blue bars and Arf -/- = red bars. Arf loss results in a statistically significant 
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decrease in apoptosis on days 4, 5, and 7 ( p ≤ 0.05). The difference observed on day 6 is 

not statistically significant. 
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Figure 3.10. 

p53 loss does not phenocopy Arf loss during osteoclastogenesis in vitro. Bone marrow 

macrophages from either wild-type, Arf -/- , or p53-/- mice were differentiated in 48-well 

dishes in the presence of M-CSF and 50ng/mL RANKL. After 5 days in the presence of 

osteoclastogenic media, cells were fixed and TRAP-stained. (A) Osteoclast number was 

blindly quantified by counting TRAP-positive multinucleated cells in two fields of each 

well at a 4X magnification. The two fields were averaged for each well and reported as 

number of osteoclasts per 4X image. There were significantly more osteoclasts derived 
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from Arf -/- macrophages relative to both wild-type and p53-/- ( p ≤ 0.05). The difference 

in osteoclast number between wild-type and p53-/- is not statistically significant. (B) 

Representative TRAP-stained 4X images are shown below their respective genotypes.   
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Figure 3.11. 

ARF colocalizes with NPM in nucleoli of wild-type osteoclasts. Bone marrow 

macrophages from either wild-type mice were differentiated in vitro on glass coverslips 

in the presence of M-CSF and 50ng/mL RANKL. After 6 days in the presence of 

osteoclastogenic media, cells were fixed and stained for ARF and NPM followed by 

FITC- and rhodamine-conjugated secondary antibodies. DAPI was used to demarcate 
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nuclei. ARF is visualized in red channel (top images). NPM is visualized in green 

channel (middle images). Merged images (bottom) represent the red, green, and blue 

channels. 
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Figure 3.12. 

Loss of Arf results in enhanced protein synthesis during osteoclastogenesis. Bone 

marrow macrophages from either wild-type or Arf -/- mice were plated in 6-well dishes in 

the presence of only M-CSF (BMMs) or M-CSF and 50ng/mL RANKL (pre-OCs and 

OCs). All cells were starved of methionine and cysteine for 30min prior to labeling at the 

appropriate time point during differentiation (3 days post-RANKL for pre-OC and 5 days 

post-RANKL for OCs). Following starvation, cells were pulsed with 150 μCi of  35S-

mehtionine for the indicated times (2, 4, or 8 hours). The first time point (t=0) was 

harvested immediately after the pulse. Following the pulse, cells were washed with cold 

phosphate-buffered saline and then lysed with 1% Triton X-100 buffer. Protein was 

precipitated from cell lysates using 10% tricholoroacetic acid and pellets were analyzed 

by liquid scintillation counting to quantify the incorporated counts per million. WT = 
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blue, Arf -/- = red. (A) Protein synthesis in bone marrow macrophages (Arf -/- only 

statistically higher than wild-type at t = 4h, p  ≤ 0.05). (B) Protein synthesis in pre-

osteoclasts (Arf -/- statistically higher than wild-type at t = 4h and t = 8h, p  ≤ 0.05). (C) 

Protein synthesis in osteoclasts (Arf -/- statistically higher than wild-type at t = 2, t = 4h, 

and t = 8, p  ≤ 0.05).  
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Figure 3.13. 

Loss of Arf results in enhanced ribosome output in pre-osteoclasts. Bone marrow 

macrophages from either wild-type or Arf -/- mice were differentiated in 100mm dishes 

for 3 days in the presence of M-CSF and 50ng/mL RANKL. Cells were then treated with 

50ug/mL cycloheximide to freeze actively-translating ribosomes onto mRNAs. 3 x 106 

cells were lysed and cytosolic fractions were separated by centrifugation over a 

continuous sucrose gradient. RNA absorbance was continuously monitored at 254nm to 

detect ribosomal subunits.  WT = blue bars, Arf -/- = red bars.  
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Figure 3.14. 

Ribosome output is not different between wild-type and Arf -/ - cells during 

osteoclastogenesis when mice are on different backgrounds, indicating the sensitivity 

of generating ribosome profiles to assess ribosome output. Bone marrow macrophages 

from either wild-type mice on a B6 background or Arf -/- mice on a B6/129 background 

were differentiated in 100mm dishes either in the presence of M-CSF alone (BMMs) or 

both M-CSF and 50ng/mL RANKL. Cells were then treated with 50ug/mL 

cycloheximide to freeze actively-translating ribosomes onto mRNAs at the appropriate 

days following the addition of RANKL ( 3 days post-RANKL for pre-osteoclasts and 5 

days post-RANKL for osteoclasts, BMMs not given RANKL but harvested 24h after 

plating in the presence of M-CSF). 3 x 106 cells were lysed and cytosolic fractions were 

separated by centrifugation over a continuous sucrose gradient. RNA absorbance was 
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continuously monitored at 254nm to detect ribosomal subunits.  WT = blue bars, Arf -/- = 

red bars. (A) Ribosome profiles of BMMs (B) Ribosome profiles of pre-osteoclasts (C) 

Ribosome profiles of osteoclasts 
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Figure 3.15. 

Arf loss does not alter the number of AgNORs per nucleus during 

osteoclastogenesis. Bone marrow macrophages from either wild-type or Arf -/- mice were 

differentiated in 100mm on coverslips in the presence of M-CSF alone (BMMs) or both 

M-CSF and 50ng/mL RANKL (pre-osteoclasts and osteoclasts). At the appropriate time 

during osteoclastogenesis (24h post-plating for BMMs, 3 days post-RANKL for pre-

osteoclasts, and 5 days post-RANKL for osteoclasts) cells were fixed and processed to 

visualize AgNORs, and mounted on slides. AgNOR numbers in at least 50 nuclei on each 

coverslip for each genotype were blindly quantified. WT = blue bars, Arf -/- = red bars. 

(A) Average number of AgNORs per nucleus in BMMs (difference is not statistically 
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significant). (B) Average number of AgNORs per nucleus in pre-osteoclasts (difference is 

not statistically significant). (C) Average number of AgNORs per nucleus in osteoclasts 

(difference is not statistically significant). 
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Figure 3.16. 

Outline of initial experimental set-up to determine the role of ARF in osteoclasts in 

vivo. 24 hours after irradiating 28 7 week-old wild-type  male mice, whole bone marrow 

was harvested from either wild-type or Arf -/- mice and 1 x 106 cells were injected 

intravenously into the irradiated mice. 13 mice received wild-type bone marrow, 13 

received Arf -/- bone marrow, and 2 did not receive a transplant to control for the success 

of lethal irradiation. Mice that did not receive a transplant died 2 weeks following the 

irradiation. The remaining 26 mice were imaged by vivaCT 3 weeks following the 

irradiation and transplant. 
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Figure 3.17. 

Initial BV/TV results indicate that radiation chimeras must be challenged with 

RANKL. Radiation chimeras were subjected to vivaCT 3 weeks following the transplant 

to determine bone volume. There is no significant difference between wild-type mice that 

received bone marrow from wild-type donors and wild-type mice that received bone 

marrow from Arf -/- donors. 
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Figure 3.18. 

Three consecutive daily doses of 2mg/kg RANKL given intraperitoneally causes a 

significant reduction in bone volume. Pre-RANKL bone volume was assessed by 

vivaCT anlysis for both groups less than 1 week prior to the initial injection of RANKL 

(blue bars). Three age-matched wild-type male mice were subsequently intraperitoneally 

injected daily with 2mg/kg RANKL for 3 consecutive days. Controls (n = 3) received 

daily intraperitoneally injections of equivalent volumes of PBS (based on individual 

weights) for 3 consecutive days. Post-RANKL bone volume was assessed by vivaCT 

analysis 1.5h following the final injection (red bars). The difference between pre-

RANKL and post-RANKL BV/TV (bone volume/total volume) is not statistically 
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significant following PBS injections. The difference between pre-RANKL and post-

RANKL BV/TV is statistically significant ( p ≤ 0.05) 

 

  



 

158 
 

 

 

 

 

 

 

Figure 3.19. 

Outline of final experimental set-up to determine the role of ARF in osteoclasts in 

vivo. (A) 24 hours after irradiating 28 7 week-old wild-type  male mice, whole bone 

marrow was harvested from either wild-type or Arf -/- mice and 1 x 106 cells were injected 

intravenously into the irradiated mice. 13 mice received wild-type bone marrow, 13 
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received Arf -/- bone marrow, and 2 did not receive a transplant to control for the success 

of lethal irradiation. Mice that did not receive a transplant died 2 weeks following the 

irradiation. The remaining 26 mice were subjected to a pre-scan by vivaCT 3 weeks 

following the irradiation and transplant (pre vivaCT). One week following the pre-scan, 

mice were challenged with RANKL and subsequently imaged by vivaCT (post vivaCT). 

(B) Beginning at 11 weeks of age, mice were intraperitoneally injected with 3 

consecutive daily doses of 1mg/kg RANKL (8 mice received WT bone marrow and 

RANKL, 8 mice received Arf -/- bone marrow and RANKL). Control mice were 

intraperitoneally injected with 3 consecutive daily doses of PBS (5 mice received WT 

bone marrow and PBS, 5 mice received Arf -/-bone marrow and PBS). 1.5h following the 

last RANKL (or PBS) injection, mice were imaged by vivaCT (post vivaCT).  
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Figure 3.20. 

Loss of Arf in osteoclasts results in increased bone resorption in vivo following 

RANKL stimulation. Pre-RANKL bone parameters were assessed by vivaCT analysis 

for both groups less than 1 week prior to the initial injection of RANKL. All mice were  

subsequently intraperitoneally injected daily with 1mg/kg RANKL for 3 consecutive days 

(n = 8 per group). Controls received daily intraperitoneally injections of equivalent 

volumes of PBS (based on individual weights) for 3 consecutive days. Post-RANKL 

bone parameteres were assessed by vivaCT analysis 1.5h following the final injection. 

For each animal, the difference between their pre-RANKL scan and post-RANKL scan 

was quantified and presented as present loss or gain. Animals receiving a WT bone 

marrow transplant are represented by blue bars and animals receiving an Arf -/- bone 
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marrow transplant are represented by blue bars. There were no statistically significant 

differences between WT and Arf -/-bone marrow recipients injected with PBS (data not 

shown). (A) Representative 3D images generated by vivaCT analysis show the trabecular 

bone in the tibia of a WT (top) and Arf -/- (bottom)  bone marrow recipient before and 

after RANKL injection. (B) Animals receiving Arf -/- bone marrow lost significantly more 

bone volume following RANKL injections relative to animals receiving WT bone 

marrow ( p ≤ 0.05). (C) Animals receiving Arf -/- bone marrow had a significant decrease 

in trabecular number following RANKL injections relative to that in animals receiving 

WT bone marrow ( p ≤ 0.05). (D)  Animals receiving Arf -/- bone marrow had a 

significant increase in trabecular spacing following RANKL injections relative to that in 

animals receiving WT bone marrow ( p ≤ 0.05). ). (E) Animals receiving Arf -/- bone 

marrow had a significant decrease in bone mineral density following RANKL injections 

relative to that in animals receiving WT bone marrow ( p ≤ 0.05). 
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Figure 3.21. 

Loss of Arf in osteoclasts results in an increase in osteoclast number in vivo following 

RANKL stimulation. Radiation chimeras were intraperitoneally injected daily with 

1mg/kg RANKL for 3 consecutive days (n = 8 per group). Following the final injection 

of RANKL and vivaCT scan, tibias were harvested and formalin-fixed. Bones were then 

decalcified and incubated in increasing amounts of EtOH. Decalicified histological 

sections of proximal tibias were TRAP-stained and the number of OCs were blindly 

quantified in each section. Mice receiving WT bone marrow are represented by the blue 

bar and mice receiveing Arf -/- bone marrow are represented by the red bar. Difference is 

statistically significant ( p ≤ 0.05). 

 

 

0

5

10

15

20

25

30

35

WT Arf‐/‐

N
u
m
b
e
r 
o
f O

st
e
o
cl
as
ts

*p = 0.006



 

165 
 

3.6 References 

Aguilo, F., Zhou, M.M., and Walsh, M.J. Long Noncoding RNA, Polycomb, and the Ghosts 
Haunting INK4b‐ARF‐INK4a Expression. Cancer Res 71, 5365‐5369. 
 
Apicelli, A.J., Maggi, L.B., Jr., Hirbe, A.C., Miceli, A.P., Olanich, M.E., Schulte‐Winkeler, C.L., 
Saporita, A.J., Kuchenreuther, M., Sanchez, J., Weilbaecher, K., et al. (2008). A non‐tumor 
suppressor role for basal p19ARF in maintaining nucleolar structure and function. Mol Cell Biol 
28, 1068‐1080. 
 
Aubele, M., Biesterfeld, S., Derenzini, M., Hufnagl, P., Martin, H., Ofner, D., Ploton, D., and 
Ruschoff, J. (1994). Guidelines of AgNOR quantitation. Committee on AgNOR Quantitation 
within the European Society of Pathology. Zentralbl Pathol 140, 107‐108. 
 
Ayrault, O., Andrique, L., Fauvin, D., Eymin, B., Gazzeri, S., and Seite, P. (2006). Human tumor 
suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription 
factor phosphorylation. Oncogene 25, 7577‐7586. 
 
Ayrault, O., Andrique, L., Larsen, C.J., and Seite, P. (2004). Human Arf tumor suppressor 
specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 23, 
8097‐8104. 
 
Bernard, K., Litman, E., Fitzpatrick, J.L., Shellman, Y.G., Argast, G., Polvinen, K., Everett, A.D., 
Fukasawa, K., Norris, D.A., Ahn, N.G., et al. (2003). Functional proteomic analysis of melanoma 
progression. Cancer Res 63, 6716‐6725. 
 
Brady, S.N., Maggi, L.B., Jr., Winkeler, C.L., Toso, E.A., Gwinn, A.S., Pelletier, C.L., and Weber, J.D. 
(2009). Nucleophosmin protein expression level, but not threonine 198 phosphorylation, is 
essential in growth and proliferation. Oncogene 28, 3209‐3220. 
 
Brady, S.N., Yu, Y., Maggi, L.B., Jr., and Weber, J.D. (2004). ARF impedes NPM/B23 shuttling in an 
Mdm2‐sensitive tumor suppressor pathway. Mol Cell Biol 24, 9327‐9338. 
 
Churchman, M.L., Roig, I., Jasin, M., Keeney, S., and Sherr, C.J. Expression of arf tumor 
suppressor in spermatogonia facilitates meiotic progression in male germ cells. PLoS Genet 7, 
e1002157. 
 
Cole, F., Keeney, S., and Jasin, M. Evolutionary conservation of meiotic DSB proteins: more than 
just Spo11. Genes Dev 24, 1201‐1207. 
 
Furonaka, O., Takeshima, Y., Awaya, H., Ishida, H., Kohno, N., and Inai, K. (2004). Aberrant 
methylation of p14(ARF), p15(INK4b) and p16(INK4a) genes and location of the primary site in 
pulmonary squamous cell carcinoma. Pathol Int 54, 549‐555. 
 
 
Grisendi, S., Bernardi, R., Rossi, M., Cheng, K., Khandker, L., Manova, K., and Pandolfi, P.P. 
(2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147‐
153. 



 

166 
 

 
Grisendi, S., Mecucci, C., Falini, B., and Pandolfi, P.P. (2006). Nucleophosmin and cancer. Nat Rev 
Cancer 6, 493‐505. 
 
Gromley, A., Churchman, M.L., Zindy, F., and Sherr, C.J. (2009). Transient expression of the Arf 
tumor suppressor during male germ cell and eye development in Arf‐Cre reporter mice. Proc 
Natl Acad Sci U S A 106, 6285‐6290. 
 
Hainaut, P., Soussi, T., Shomer, B., Hollstein, M., Greenblatt, M., Hovig, E., Harris, C.C., and 
Montesano, R. (1997). Database of p53 gene somatic mutations in human tumors and cell lines: 
updated compilation and future prospects. Nucleic Acids Res 25, 151‐157. 
 
Hall, M., and Peters, G. (1996). Genetic alterations of cyclins, cyclin‐dependent kinases, and Cdk 
inhibitors in human cancer. Adv Cancer Res 68, 67‐108. 
 
Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of 
p53. Nature 387, 296‐299. 
 
Hayman, A.R., Jones, S.J., Boyde, A., Foster, D., Colledge, W.H., Carlton, M.B., Evans, M.J., and 
Cox, T.M. (1996). Mice lacking tartrate‐resistant acid phosphatase (Acp 5) have disrupted 
endochondral ossification and mild osteopetrosis. Development 122, 3151‐3162. 
 
Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for 
tumor suppressor p53. FEBS Lett 420, 25‐27. 
 
Kamijo, T., Bodner, S., van de Kamp, E., Randle, D.H., and Sherr, C.J. (1999). Tumor spectrum in 
ARF‐deficient mice. Cancer Res 59, 2217‐2222. 
 
Kamijo, T., Zindy, F., Roussel, M.F., Quelle, D.E., Downing, J.R., Ashmun, R.A., Grosveld, G., and 
Sherr, C.J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative 
reading frame product p19ARF. Cell 91, 649‐659. 
 
Kang, Y.J., Olson, M.O., and Busch, H. (1974). Phosphorylation of acid‐soluble proteins in 
isolated nucleoli of Novikoff hepatoma ascites cells. Effects of divalent cations. J Biol Chem 249, 
5580‐5585. 
 
Kang, Y.J., Olson, M.O., Jones, C., and Busch, H. (1975). Nucleolar phosphoproteins of normal rat 
liver and Novikoff hepatoma ascites cells. Cancer Res 35, 1470‐1475. 
 
Kominami, K., Nagasaka, T., Cullings, H.M., Hoshizima, N., Sasamoto, H., Young, J., Leggett, B.A., 
Tanaka, N., and Matsubara, N. (2009). Methylation in p14(ARF) is frequently observed in 
colorectal cancer with low‐level microsatellite instability. J Int Med Res 37, 1038‐1045. 
 
Konishi, N., Nakamura, M., Kishi, M., Nishimine, M., Ishida, E., and Shimada, K. (2002). 
Heterogeneous methylation and deletion patterns of the INK4a/ARF locus within prostate 
carcinomas. Am J Pathol 160, 1207‐1214. 
 
 



 

167 
 

Kubbutat, M.H., Jones, S.N., and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2. 
Nature 387, 299‐303. 
 
Kuo, M.L., den Besten, W., Thomas, M.C., and Sherr, C.J. (2008). Arf‐induced turnover of the 
nucleolar nucleophosmin‐associated SUMO‐2/3 protease Senp3. Cell Cycle 7, 3378‐3387. 
 
Laud, K., Marian, C., Avril, M.F., Barrois, M., Chompret, A., Goldstein, A.M., Tucker, M.A., Clark, 
P.A., Peters, G., Chaudru, V., et al. (2006). Comprehensive analysis of CDKN2A 
(p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at 
heightened risk of melanoma. J Med Genet 43, 39‐47. 
 
Maggi, L.B., Jr., Kuchenruether, M., Dadey, D.Y., Schwope, R.M., Grisendi, S., Townsend, R.R., 
Pandolfi, P.P., and Weber, J.D. (2008). Nucleophosmin serves as a rate‐limiting nuclear export 
chaperone for the Mammalian ribosome. Mol Cell Biol 28, 7050‐7065. 
 
McKeller, R.N., Fowler, J.L., Cunningham, J.J., Warner, N., Smeyne, R.J., Zindy, F., and Skapek, 
S.X. (2002). The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse 
eye development. Proc Natl Acad Sci U S A 99, 3848‐3853. 
 
Melendez, B., Malumbres, M., Perez de Castro, I., Santos, J., Pellicer, A., and Fernandez‐
Piqueras, J. (2000). Characterization of the murine p19(ARF) promoter CpG island and its 
methylation pattern in primary lymphomas. Carcinogenesis 21, 817‐821. 
 
Nakamura, M., Watanabe, T., Klangby, U., Asker, C., Wiman, K., Yonekawa, Y., Kleihues, P., and 
Ohgaki, H. (2001). p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain 
Pathol 11, 159‐168. 
 
Nozawa, Y., Van Belzen, N., Van der Made, A.C., Dinjens, W.N., and Bosman, F.T. (1996). 
Expression of nucleophosmin/B23 in normal and neoplastic colorectal mucosa. J Pathol 178, 48‐
52. 
 
Qi, Y., Gregory, M.A., Li, Z., Brousal, J.P., West, K., and Hann, S.R. (2004). p19ARF directly and 
differentially controls the functions of c‐Myc independently of p53. Nature 431, 712‐717. 
 
Quelle, D.E., Zindy, F., Ashmun, R.A., and Sherr, C.J. (1995). Alternative reading frames of the 
INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle 
arrest. Cell 83, 993‐1000. 
 
Randerson‐Moor, J.A., Harland, M., Williams, S., Cuthbert‐Heavens, D., Sheridan, E., Aveyard, J., 
Sibley, K., Whitaker, L., Knowles, M., Bishop, J.N., et al. (2001). A germline deletion of p14(ARF) 
but not CDKN2A in a melanoma‐neural system tumour syndrome family. Hum Mol Genet 10, 55‐
62. 
 
Rauch, D.A., Hurchla, M.A., Harding, J.C., Deng, H., Shea, L.K., Eagleton, M.C., Niewiesk, S., 
Lairmore, M.D., Piwnica‐Worms, D., Rosol, T.J., et al. The ARF tumor suppressor regulates bone 
remodeling and osteosarcoma development in mice. PLoS One 5, e15755. 



 

168 
 

Rizos, H., Puig, S., Badenas, C., Malvehy, J., Darmanian, A.P., Jimenez, L., Mila, M., and Kefford, 
R.F. (2001). A melanoma‐associated germline mutation in exon 1beta inactivates p14ARF. 
Oncogene 20, 5543‐5547. 
 
Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T., and Levine, A.J. (1998). Nucleo‐cytoplasmic 
shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by 
the human immunodeficiency virus rev protein. EMBO J 17, 554‐564. 
 
Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J.D., Schu, 
P., and von Figura, K. (1998). Impaired osteoclastic bone resorption leads to osteopetrosis in 
cathepsin‐K‐deficient mice. Proc Natl Acad Sci U S A 95, 13453‐13458. 
 
Serrano, M., Hannon, G.J., and Beach, D. (1993). A new regulatory motif in cell‐cycle control 
causing specific inhibition of cyclin D/CDK4. Nature 366, 704‐707. 
 
Sharpless, N.E. (2005). INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576, 22‐
38. 
 
Sherr, C.J. (1996). Cancer cell cycles. Science 274, 1672‐1677. 
 
Sherr, C.J. (2000). The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60, 3689‐3695. 
 
Sherr, C.J. (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2, 731‐
737. 
 
Sherr, C.J. (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6, 663‐673. 
 
Shields, L.B., Gercel‐Taylor, C., Yashar, C.M., Wan, T.C., Katsanis, W.A., Spinnato, J.A., and Taylor, 
D.D. (1997). Induction of immune responses to ovarian tumor antigens by multiparity. J Soc 
Gynecol Investig 4, 298‐304. 
 
Silva, R.L., Thornton, J.D., Martin, A.C., Rehg, J.E., Bertwistle, D., Zindy, F., and Skapek, S.X. 
(2005). Arf‐dependent regulation of Pdgf signaling in perivascular cells in the developing mouse 
eye. EMBO J 24, 2803‐2814. 
 
Skaar, T.C., Prasad, S.C., Sharareh, S., Lippman, M.E., Brunner, N., and Clarke, R. (1998). Two‐
dimensional gel electrophoresis analyses identify nucleophosmin as an estrogen regulated 
protein associated with acquired estrogen‐independence in human breast cancer cells. J Steroid 
Biochem Mol Biol 67, 391‐402. 
 
Subong, E.N., Shue, M.J., Epstein, J.I., Briggman, J.V., Chan, P.K., and Partin, A.W. (1999). 
Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4‐216) recognizes 
nucleophosmin/B23. Prostate 39, 298‐304. 
 
Sugimoto, M., Kuo, M.L., Roussel, M.F., and Sherr, C.J. (2003). Nucleolar Arf tumor suppressor 
inhibits ribosomal RNA processing. Mol Cell 11, 415‐424. 
 



 

169 
 

Tago, K., Chiocca, S., and Sherr, C.J. (2005). Sumoylation induced by the Arf tumor suppressor: a 
p53‐independent function. Proc Natl Acad Sci U S A 102, 7689‐7694. 
 
Tanaka, M., Sasaki, H., Kino, I., Sugimura, T., and Terada, M. (1992). Genes preferentially 
expressed in embryo stomach are predominantly expressed in gastric cancer. Cancer Res 52, 
3372‐3377. 
 
Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and 
function. Nat Rev Genet 4, 638‐649. 
 
Tomimori, Y., Mori, K., Koide, M., Nakamichi, Y., Ninomiya, T., Udagawa, N., and Yasuda, H. 
(2009). Evaluation of pharmaceuticals with a novel 50‐hour animal model of bone loss. J Bone 
Miner Res 24, 1194‐1205. 
 
Wang, X., Kua, H.Y., Hu, Y., Guo, K., Zeng, Q., Wu, Q., Ng, H.H., Karsenty, G., de Crombrugghe, B., 
Yeh, J., et al. (2006). p53 functions as a negative regulator of osteoblastogenesis, osteoblast‐
dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172, 115‐125. 
 
Weber, J.D., Jeffers, J.R., Rehg, J.E., Randle, D.H., Lozano, G., Roussel, M.F., Sherr, C.J., and 
Zambetti, G.P. (2000a). p53‐independent functions of the p19(ARF) tumor suppressor. Genes 
Dev 14, 2358‐2365. 
 
Weber, J.D., Kuo, M.L., Bothner, B., DiGiammarino, E.L., Kriwacki, R.W., Roussel, M.F., and Sherr, 
C.J. (2000b). Cooperative signals governing ARF‐mdm2 interaction and nucleolar localization of 
the complex. Mol Cell Biol 20, 2517‐2528. 
 
Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J., and Bar‐Sagi, D. (1999). Nucleolar Arf 
sequesters Mdm2 and activates p53. Nat Cell Biol 1, 20‐26. 
 
Yu, Y., Maggi, L.B., Jr., Brady, S.N., Apicelli, A.J., Dai, M.S., Lu, H., and Weber, J.D. (2006). 
Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 26, 3798‐3809. 
 
Zemliakova, V.V., Strel'nikov, V.V., Zborovskaia, I.B., Balukova, O.V., Maiorova, O.A., Vasil'ev, 
E.V., Zaletaev, D.V., and Nemtsova, M.V. (2004). [Abnormal methylation of p16/CDKN2A AND 
p14/ARF genes GpG Islands in non‐small cell lung cancer and in acute lymphoblastic leukemia]. 
Mol Biol (Mosk) 38, 966‐972. 
 
Zhao, Q., Shao, J., Chen, W., and Li, Y.P. (2007). Osteoclast differentiation and gene regulation. 
Front Biosci 12, 2519‐2529. 
 
 
Zheng, S., Chen, P., McMillan, A., Lafuente, A., Lafuente, M.J., Ballesta, A., Trias, M., and 
Wiencke, J.K. (2000). Correlations of partial and extensive methylation at the p14(ARF) locus 
with reduced mRNA expression in colorectal cancer cell lines and clinicopathological features in 
primary tumors. Carcinogenesis 21, 2057‐2064. 
 

 
 



 

170 
 

 

 

 

 

 

Chapter 4 

Future Directions 

  



 

171 
 

4.1 Short-term future directions 

 

Determine whether wild-type BMMs eventually “catch-up” with Arf -/- BMMs during 

osteoclastogenesis. 

Our data from Chapter 3 suggest that Arf loss enhances osteoclastogenesis 

resulting in an increase in osteoclast number 5 days post-RANKL. In some cases, I have 

allowed both wild-type and Arf -/- macrophages to differentiate in osteoclastogenic media 

for 6 or more days. During these experiments, I have never observed a wild-type 

osteoclast phenotype that resembles that of Arf -/- osteoclasts. Specifically, I have not 

observed wild-type day 6 osteoclasts that phenocopy Arf -/- day 5 osteoclasts. However, 

this experiment remains to be formally completed and quantified. In thinking about how 

the results of this experiment might affect overall osteoclast number, we must also 

consider our results demonstrating that Arf loss extends the lifespan of osteoclasts in 

vitro. Therefore, even if wild-type BMMs eventually “catch-up” on day 6 to phenocopy 

their Arf -/- counterparts, they will still undergo apoptosis before the Arf -/- cells. 

Ultimately, this means that at any given time, there will always be more Arf -/- osteoclasts. 

Furthermore, the number of osteoclasts is one component in the overall output of 

osteoclast activity (the other being the function of osteoclasts on a per cell basis as will be 

discussed in the following section), which means that in the context of equal numbers of 

precursors and identical concentrations of osteoclastogenic cytokines, there should 

always be more osteoclast output in the absence of Arf. 
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Determine whether Arf loss results in increase osteoclast function in vitro 

As mentioned above, there are two components to overall osteoclast output (i.e. 

bone resorption): osteoclast number and osteoclast function. It remains to be determined 

whether Arf loss increases the function of osteoclasts on a per cell basis. Our lab has 

previously published that Arf -/- cells 3 days post-RANKL have more TRAP activity than 

equal numbers of wild-type cells post-RANKL (Apicelli et al., 2008), suggesting that Arf 

loss results in enhanced osteoclast function on a per cell basis. To further support this 

finding, I propose to monitor osteoclast function in vitro by quantifying actin rings and 

bone resorption. Specifically, day 3 wild-type and Arf -/- pre-osteoclasts can be lifted and 

replated at equal densities on bovine bone slices. After 24h, the osteoclasts can be fixed 

on bone and stained for actin rings. Actin rings are areas of active bone resorption. There 

may be multiple actin rings per osteoclasts. One can quantify total area of active 

resorption per total cell area to get a percentage of active area resorption. While useful, 

this experiment does not necessarily take into account the amount of enzymes being 

secreted in each area of active resorption. Therefore, we must assess bone resorption in 

parallel. This could be quantified by either determining the area of bone resorption after 

removing the osteoclasts (pit assay), by quantifying the amount of collagen fragments 

released into the culture media, or both.  

 

Further examine the effects of Arf loss on mononuclear precursor fusion 

 One of the most prominent in vitro phenotypes of Arf -/- osteoclasts is their size. 

There are two main possibilities for why Arf loss would result in an increase in osteoclast 

size: (i) enhanced fusion of mononuclear precursors and (ii) excessive protein synthesis. 
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It is also possible that both contribute to increased size. Our data show that Arf -/- 

osteoclasts do not have more nuclei than wild-type osteoclasts, suggesting that increased 

size is not due to enhanced fusion in the absence of Arf. As an alternative and more 

precise way of assessing fusion, we could label the nuclei of wild-type bone marrow 

macrophage with one color and the nuclei of Arf -/- bone marrow macrophages with 

another color. The nuclei from each genotype could then be plated together in different 

ratios for osteoclastogenesis. Nuclei from mature osteoclasts could then be assessed. For 

example, if we label wild-type nuclei red and Arf -/-nuclei green and plate wild-type: Arf -/- 

nuclei at a ratio of 2:1, then each mature osteoclasts should have 2 red nuclei for every 1 

green nucleus. This result would suggest that Arf loss does not affect mononuclear 

precursor fusion. However, if mature osteoclasts present with a ratio of 2 red: 2 green, 

then it would suggest that Arf loss enhances nuclear fusion. In parallel, one might also 

assess DC-STAMP levels, particularly in pre-osteoclasts, as this is a protein necessary for 

the fusion of precursors (Kukita et al., 2004; Yagi et al., 2005). 

 

Determine whether the translation of TRAP and Cathepsin K mRNAs are altered in the 

absence of Arf 

We have shown in Chapter 3 that TRAP and Cathepsin K protein levels appear 

24h early during osteoclastogenesis in the absence of Arf in vitro. Additionally, we now 

know that Arf loss enhances protein synthesis during osteoclastogenesis (Apicelli et al., 

2008). It is therefore possible that Arf loss is allowing for the premature translation of 

TRAP and Cathepsin K mRNAs. To test this possibility, we can isolate mRNAs from 

various peaks of our pre-osteoclast ribosome profiles. mRNAs undergoing higher rates of 
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translation will be shifted to the right on the polysome profiles in Arf -/- pre-osteoclasts 

relative to wild-type pre-osteoclasts. It may also be necessary to assess the levels of 

TRAP and Cathepsin K mRNAs on the polysome during day 2 of osteoclastogenesis 

since we first begin to see levels of both proteins appear on day 3 of osteoclastogenesis. It 

is possible that using day 2 ribosome profiles, we may detect TRAP and Cathepsin K 

mRNAs on the polysome only in the absence of Arf.  

 

Genetically determine whether enhanced osteoclastogenesis upon Arf loss is dependent 

on NPM 

 Our lab has previously reported that ARF can inhibit the nucleocytoplasmic 

shuttling activity of nucleophosmin (NPM) (Brady et al., 2004). We also know that NPM 

is essential for ribosome export and protein synthesis (Maggi et al., 2008; Yu et al., 

2006).  Apicelli et al. demonstrated that when NPM is knocked down in Arf -/- 

macrophages, the Arf -/- in vitro osteoclast phenotype is reverted to that of wild-type 

osteoclasts (Apicelli et al., 2008). Initially, we hoped to examine the role of NPM during 

osteoclastogenesis in wild-type and Arf -/- cells by taking advantage of a recently 

published small molecule inhibitor (Qi et al., 2008). The authors reported that this 

inhibitor disrupts the oligomer formation of NPM, which is hypothesized to be critical for 

its function given that NPM is found as an oligomer under native conditions (Herrera et 

al., 1996; Namboodiri et al., 2004). Preliminary results suggested that NPM is important 

for wild-type osteoclastogenesis (Figure 4.1). However, our lab has been unable to verify 

by native gel electrophoresis that the small molecule inhibitor of NPM disrupt its 

oligomer formation. Still, it is promising to see such a dramatic phenotype upon the 
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suspected loss of NPM function. Therefore, I propose an alternative approach to 

determining the role of NPM during osteoclastogenesis in both wild-type and Arf -/- cells.   

 To genetically determine the role of NPM in enhanced osteoclastogenesis upon 

Arf loss, we have crossed Npm+/- mice with Arf -/- mice and generated the following 

genotypes: Npm+/-; Arf +/+, Npm+/+; Arf -/-, and Npm+/-; Arf -/-. I would first examine the 

osteoclastogenesis phenotype of all three of these genotypes in vitro to determine if loss 

of one Npm allele reverses the Arf -/- osteoclastogenesis phenotype. Future studies could 

also examine protein synthesis in each of these genotypes by 35S-methionine 

incorporation. First of all, we need to know the osteoclastogenesis phenotype of Npm+/-; 

Arf +/+ bone marrow macrophages. It has been reported that Npm+/-  mouse embryonic 

fibroblasts (MEFs) have lower rates of proliferation compared to wild-type MEFs at early 

passage and are haploinsufficient in their control of genetic stability (Grisendi et al., 

2005). Furthermore, Npm+/- mice have accelerated oncogenesis and develop a 

hematological syndrome (Grisendi et al., 2005). However, there have been no reports 

demonstrating changes in osteoclastogenesis upon loss of Npm. Given that we have 

shown relatively low levels of ribosome output (compared to that observed in MEFs), it 

is possible that Npm+/-; Arf +/+ cells will have no defect in protein production or 

osteoclastogenesis. If this is true, then we can directly compare the other two genotypes. 

If unrestrained NPM activity is at least partially responsible for elevated levels of protein 

synthesis observed during osteoclastogenesis upon Arf loss, then we would expect to see 

a decrease in protein synthesis in Npm+/-; Arf -/- mice relative to Npm+/+; Arf -/- mice. One 

could additionally examine ribosome output as well as the nucleocytoplasmic shuttling of 
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ribosomes in all of these mice. Finally, it would be interesting to know if loss of one 

allele of Npm in Arf -/- mice reverses the in vivo osteoclast phenotypes.  
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Figure 4.1 

A small molecule inhibitor of nucleophosmin (NPM) retards osteoclastogenesis in 

vitro. (A) Wild-type bone marrow macrophages were plated in osteoclastogenic media in 

the presence of either DMSO or a small molecule inhibitor of NPM (NPMi) and allowed  

DMSO 1.5uM NPMi

D
ay
 6
 W

T 
O
st
eo
cl
as
ts

0

2

4

6

8

10

12

DMSO 1.5uM NPMi

N
u
m
b
e
r 
o
f 
o
st
e
o
cl
as
ts
 i
n
 4
X
 im

ag
e

A 

B 



 

178 
 

to differentiate for 6 days. Osteoclasts are stained with TRAP. (B) Multinucleated TRAP-

positive osteoclasts were quantified after 6 days. Three 4X fields were averaged from 4 

individual wells. Difference is statistically significant ( p ≤ 0.05). 
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Genetically demonstrate that enhanced osteoclastogenesis in the absence of Arf is a 

result of increase protein synthesis 

 One of the major goals of this thesis has been to understand the role of ARF in 

regulating protein synthesis. While the previous experiment would strongly implicate 

ARF in impeding protein synthesis through the regulation of NPM, it does not rule out 

the possibility that ARF is prohibiting other functions that have been attributed to NPM 

and are not directly related to shuttling ribosomes and promoting protein synthesis 

(Grisendi et al., 2006; Okuwaki, 2008). Therefore, we have also crossed Arf -/- mice with 

mice containing a mutated allele of ribosomal protein L24. These mice are noted for their 

characteristic white belly spot and kinked tail  and are thus referred to as the Belly Spot 

and Tail (Bst) mice (Oliver et al., 2004). Rpl24Bst/+ cells have decreased rates of protein 

synthesis and proliferation relative to wild-type cells (Oliver et al., 2004). Aside from the 

aforementioned characteristics, the most notable phenotype of Rpl24Bst/+ mice is a retinal 

defect (Rice et al., 1997; Rice et al., 1995; Smith et al., 2000; Tang et al., 1999). 

Interestingly, they also have some skeletal deformities including a triphalangeal first 

digit, an extra preaxial digit, a sixth lumbar vertebrae, and fused or wedge-shaped 

hemivertebrates, which result in the kinked tail phenotype (Oliver et al., 2004). 

Furthermore, homozygous loss of Rpl24 is lethal (Oliver et al., 2004).   

 We now have the following genotypes: Rpl24+/+; Arf -/-, Rpl24Bst/+; Arf +/+, and 

Rpl24Bst/+; Arf -/-. The first experiment should be to isolate bone marrow macrophages 

from each of these mice and differentiate them into osteoclasts in vitro to determine if 

mutation of one Rpl24 allele can reverse the Arf -/- osteoclast phenotype. I would expect 

that these osteoclasts would look more like wild-type osteoclasts and have decreased 
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protein synthesis and ribosome output relative to the Arf -/- cells. If this is true, it would be 

genetic evidence demonstrating a role for ARF in regulating protein synthesis during 

osteoclastogenesis. Moreover, bone marrow from Rpl24Bst/+; Arf -/- could be used to 

generate radiation chimeras to compare wild-type mice receiving either wild-type or     

Arf -/- bone marrow transplants as we have done in Chapter 3. 

 

Determine whether enhanced osteoclastogenesis upon Arf loss is dependent on p68 

 Our lab has recently isolated wild-type and Arf -/- nuclei in order to identify 

proteins whose nucleolar location is altered upon loss of Arf. This screen identified p68 

(DDX5), which is an RNA helicase excluded from the nucleolus in the presence of ARF 

(Saporita et al., 2011). ARF prevents DDX5 from promoting ribosome biogenesis. 

Furthermore, the overall role of DDX5 in protein synthesis is demonstrated by the fact 

that its knockdown mimics ARF overexpression in TKO MEFs in terms of ribosome 

output (Saporita et al., 2011). In vitro and in vivo transformation experiments underscore 

the importance of the ARF-p68 interaction. In soft agar, Arf -/- MEFs are transformed in 

the presence of oncogenic Ras. However, knockdown of p68 in Arf -/- MEFs prohibited 

their transformation by Ras. Similarly, MEFs transduced with Ras and shp68 did not 

form tumors when inoculated into the flanks of nude mice whereas tumors did form in 

the presence of p68 (Saporita et al., 2011). Given that ARF limits protein synthesis in part 

by antagonizing the function of p68 in mitotic cells, it is possible that the ARF-p68 

relationship is important during osteoclastogenesis. As a preliminary experiment, I have 

knocked down p68 in wild-type and Arf -/- cells during osteoclastogenesis. The data 

suggest that p68 is important for enhanced osteoclastogenesis upon Arf  loss as there are 
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significantly less osteoclasts in the absence of Arf when p68 is knocked down relative to 

Arf -/- cells transduced with a control shRNA (Figure 4.2). Future studies could further 

examine the importance of p68 in enhanced osteoclastogenesis upon Arf  loss by probing 

the steps of ribosome biogenesis, assessing ribosome output, and quantifying protein 

synthesis to determine if loss of p68 ultimately reverses the Arf -/- osteoclastogenesis 

phenotype.  
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Figure 4.2. 

Enhanced osteoclastogenesis upon in the absence of Arf is dependent on p68 

(DDX5). (A) Representative 10X  images of wild-type or Arf -/- day 5 osteoclasts that 

were lentivirally-transduced with either shSCRAMBLE or shDDX5. (B) Images were 

blindly quantified. Asterisks represent statistically significant differences between 

WT+shSCR and WT+shDDX5 or Arf -/-+shSCR and Arf -/-+shDDX5 (p ≤ 0.05). 
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4.2 Long-term future directions 

 

Examine the role of miRNAs during enhanced osteoclastogenesis upon Arf loss 

 Our lab has observed that Arf loss results in the selective translation of specific 

mRNAs in mouse embryonic fibroblasts (MEFs). In an effort to identify regulatory 

factors that may be controlling the translation of mRNAs upon Arf loss, we have initiated 

high throughput screens to assess the differences in miRNAs upon Arf loss in MEFs. 

Changes in the miRNA signature of a cell could significantly modulate the translation of 

various mRNAs as miRNAs are known to imperfectly base pair with target mRNAs and 

repress their translation (Calin and Croce, 2006). Upon observing differences in the 

miRNA prolife in MEFs, we first assessed day 5 wild-type and Arf -/- osteoclasts to see if 

any of the same miRNA changes exist between both mitotic and post-mitotic cells 

(Figure 4.3a). Of the tested miRNAs in day 5 osteoclasts, we were most interested in 

miRNA 223, as it has been reported to downregulated in both MEFs and osteoclasts, 

although it was only slightly downregulated in osteoclasts. However, it is also 

particularly interesting given that a recent study has shown that is downregulated in 

response to RANKL during osteoclastogenesis (Sugatani et al.). Furthermore, pre-miR-

223 overexpression has been shown to block the formation of TRAP-positive 

multinucleated osteoclasts in vitro (Sugatani and Hruska, 2007). Together with  published 

results, our data indicate that Arf loss may downregulate miR-223 to promote 

osteoclastogenesis. This hypothesis could be tested by overexpressing pre-miR-223 in Arf 

-/- macrophages upon plating in osteoclastogenic media. If the hypothesis is correct, I 

would expect to see a decrease in osteoclastogenesis with the overexpression relative to 
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what we have observed in Arf -/- cells. Additionally, we assessed the levels of two other 

miRNAs that have been reported in the osteoclast literature: miR-155 and miR-21 (Mann 

et al.; Sugatani et al.). We found that both of these miRNAs were slightly elevated in pre-

osteoclasts upon Arf loss (Figure 4.3b). This would suggest that they may positively 

regulate osteoclastogenesis. In agreement with our results, Sugatani and colleagues have 

published that both of these miRNAs are upregulated in response to RANKL during 

osteoclastogenesis (Sugatani et al.). It would therefore be interesting to overexpress these 

in wild-type macrophages to see if they enhance osteoclastogenesis. Additionally, I 

would hypothesize that if they are knocked down in Arf -/- macrophages, then the 

enhanced osteoclast number and size may be, at least partially, reversed. 
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Figure 4.3 

Changes in miRNAs during osteoclastogenesis. (A) Select miRNAs were assessed in 

wild-type and Arf -/- day 5 osteoclasts. Fold change is Arf -/- relative to wild-type. This is 

compared to results from a Taqman array done using wild-type and Arf -/- MEFs, in which 

the fold change represents Arf -/- MEFs relative to wild-type MEFs. (B) Taqman assays 

suggest that both miR-155 and miR-21 are elevated in Arf -/- pre-osteoclasts (day 3) 

relative to wild-type pre -osteoclasts. 
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Analyze the translatome of wild-type and Arf -/-osteoclasts 

 A central theme of this work is that Arf loss enhances protein synthesis to 

accelerate osteoclastogenesis, which begs the question: which mRNAs are being 

selectively translated (or not translated) when Arf is lost. Our lab and others have 

observed that some mRNAs are translated at rates that do not correspond with their levels 

of transcription (Pelletier et al., 2007; Rajasekhar et al., 2003). Furthermore, our lab has 

assessed the translatome (see Figure 4.4 for a description of the methods used in 

translatome analysis) of wild-type and Arf -/-MEFs and found 109 mRNAs that are 

preferentially loaded (or unloaded) on the polysomes upon Arf loss. Additionally, we plan 

to perform the same assessment using Arf -/- prostate epithelial cells. It would be 

interesting to analyze the translatome of wild-type and Arf -/- pre-osteoclasts, as this is 

point at which we have observed significant changes in both ribosome output and protein 

synthesis during osteoclastogenesis. Not only would this data aid in the understanding of 

how Arf loss enhances osteoclastogenesis, but it would also be helpful to compare the 

translatomes of mitotic and post-mitotic cells. With such a comparison, we may be able 

to identify mRNAs whose translation is specifically important for cell growth 

independent of proliferation.  
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Figure 4.4 

Schematic of methods used to determine mRNAs preferentially loaded or unloaded 

onto polysomes. mRNAs are "frozen" onto ribosomes by treating equal numbers of cells 

with cycoleximide. The cells are then lysed and the cytosolic fractions are separated 

using a sucrose density gradient. Polysome peaks will be collected and RNA from these 

peaks will be isolated. The RNA is then used in a microarray analysis (Illumina Mouse 8 

array analysis done at Washington University). Each of the 8 arrays contains 24,000 

known genes. The data is then statistically analyzed by the Microarray Core Facility at 

Washington University. All changes at the polysome are compared to changes at the total 

RNA level. Figure courtesy of Len Maggi. 
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