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ABSTRACT OF THE DISSERTATION

Implications of a Fully Nonlocal Implementation of the Dispersive Optical Model

by

MohammadHossein Mahzoon

Doctor of Philosophy in Physics

Washington University in St. Louis, 2015

Professor Willem H. Dickhoff, Chairperson

A fully nonlocal treatment for the dispersive optical model (DOM) is implemented for both

the real and imaginary part of the self-energy inspired by ab initio theoretical calculations

of this quantity. By means of the dispersion relation between the real and imaginary part

of the optical potential a link between the energy domain of nuclear reactions and nuclear

structure is established. The relevant scattering data for neutrons and protons on 40Ca are

described with the same quality as was accomplished with previous local versions of the

DOM. The solution of the Dyson equation at positive and negative energies is generated

with a complete treatment of the nonlocality of the potentials. The resulting propagator

has been utilized to explain and predict relevant quantities of the ground-state of the 40Ca

nucleus. In particular the charge density, spectral strength and particle number can, for the

first time, be accurately described. Moreover, due to the introduction of nonlocality in the

imaginary part of the self-energy it is also possible to describe high-momentum protons and

the contribution of the two-body interaction to the ground-state energy. The calculation of

the spectral density at positive energies allows for the determination of the spectral strength

of mostly occupied single-particle orbits in the continuum. Consistency of the resulting
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depletion numbers with the corresponding occupation numbers is studied and compared to

ab initio calculations for these quantities. Starting from the 40Ca self-energy, an extension

to the 48Ca nucleus is implemented focusing on the N − Z dependence of the nucleon self-

energy. Neutron scattering data can be described with even better quality than previous local

DOM calculations. The scattering properties for protons are of similar excellent quality

as for previous local results. From the solution of the Dyson equation for neutrons it is

possible to calculate the neutron distribution of this nucleus allowing for the determination

of the neutron skin which is relevant for the physics of neutron stars. The resulting value is

larger than most calculations previously reported including an ab initio one. An argument

supporting a large neutron skin is provided by analyzing proton elastic scattering data on

both 40Ca and 48Ca.
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1
Introduction

One of the most important quantities in nuclear physics is the interaction between a nucleon

and the nucleus. It characterizes the elastic and inelastic scattering of nucleons by nuclei and

also clarifies the nuclear channels in nuclear reactions. For elastic scattering this interaction

is traditionally described by a potential V (r) where the vector r is the distance between the

nucleon and the center of the target nucleus. Knowing the potential function, the elastic

scattering cross section can be extracted by using the formalism of quantum mechanics. It

was realized as early as 1959 [1] that the interaction should be considered to be nonlocal,

complex as well as energy dependent to generate all essential features both for scattering

and bound-states. The knowledge about the so-called self-energy enables the cross-section

calculation as a function of energy for nucleons on a required nuclear target. The corre-

sponding distorted wave function can be calculated which is useful for reaction calculations.

Therefore it is of great importance both theoretically and experimentally to determine the

interaction self-energy as precisely as possible [2]. The same self-energy can be used to gen-

erate the properties and motion of the bound nucleons in the nucleus. Thus this self-energy

or interaction can be considered as a mean-field that unifies the nuclear structure and nu-

clear reaction domain since it describes both the scattering and bound-state properties of

nucleons.

1



CHAPTER 1. INTRODUCTION

There are two major ways to determine the self-energy Σ∗`j(r, r
′;E). One is to employ theo-

retical methods where the nucleon-nucleus interaction is calculated by approximately solving

the many-body problem for a given nucleus and nucleon type. The other is the phenomeno-

logical approach in which a reasonable functional form for the self-energy is assumed. The

form should be physically appropriate and a set of parameters introduced characterizing the

self-energy. These are adjusted through a fit process to optimize the description of the avail-

able experimental data thereby generating the constrained self-energy, within the required

accuracy. Both methods have advantages and drawbacks. In the theoretical approach there

is always a computational challenge including the fact that many-body calculations cannot

yet accurately describe experiments at this time. In the latter approach there maybe var-

ious sets of parameters that can represent the data leading to ambiguities. In this work

we are concentrating on the phenomenological approach but use input from the theoretical

approach. There are different ways that the nuclear structure of the target nucleus can

affect the cross-section pattern. In the case of elastic scattering of a nucleon, the incident

nucleon at low energies can be captured by the target nucleus and form a compound system

which might decay in various ways. One of the decay channels could be the emission of the

incident nucleon at its initial energy. At higher energies the incident nucleon most probably

scattered directly, also leading to a loss of flux in the elastic channel. Nuclear structure

therefore affects the elastic scattering cross section in this case too.

The shell model or independent-particle model (IPM) calculations generate spectroscopic

factors (representing removal probabilities) comparable to unity whereas experiment e.g.

the (e, e′p) reaction generates spectroscopic factors of the single-particle excitations that

are less than unity. In other words even a low-lying single-particle excitation cannot be

considered as one unit particle added to or taken out from the ground state of the many-

body system. The (e, e′p) experiments show that the single-particle strength of IPM orbits

are highly fragmented. For the orbits close to the Fermi energy, the majority of the strength

2



CHAPTER 1. INTRODUCTION

is in the vicinity of the IPM level, but still a portion of the overall strength is distributed

over a broad energy range.

This reduction in the single-particle strength near the Fermi energy clearly establishes the

importance of correlations due to nuclear interactions beyond the IPM. These correlations

are mainly of two types. Short-range correlations (SRC) play an important role at higher

excitation energies. If two nucleons approach within 1 fm or less, they are considered as a

pair influenced by SRC. Their correlation is associated with high relative momenta of the

interacting nucleons. Studying SRCs can reveal the nature of short-range nucleon-nucleon

interaction and also the contributions of high-momentum nucleons to the nuclear ground

state and excited-state wave functions. The SRCs describe two major effects: 1) removing

strength from the mean-field orbits and 2) mixing high-momenta into the ground-state. The

long-range correlations (LRC) involve interactions of nucleons with low relative momenta

and are typically associated with low-energy physics near the Fermi energy.

By allowing the self-energy to be complex, the flux removed by all the channels from the

elastic one can be taken into account at positive energy. In this case solving the Schrödinger

equation with the complex potential generates the elastic scattering amplitude and therefore

all relevant observables. This method is identified with the optical model in analogy to

scattering of light that is governed by a complex index of refraction which incorporates both

reflection and absorption of light in the medium. Unlike the optical model, in the shell model

or IPM the interaction is described by a real potential. Both shell model and optical model

play an important role in describing nuclear structure and nuclear reactions. One of the

significant properties of the dispersive optical model (DOM) [2] is its ability to establish the

link between positive and negative energies. The imaginary and real part of the self-energy

are related through a Kramers-Kronig dispersion integral. This dispersion relation therefore

connects the nucleons propagating at positive energies to the ones at negative energies. The

3
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link between reaction and structure is therefore created and cross sections as well as bound-

state properties are forced to be described simultaneously.

In order to determine the nucleon propagator below the Fermi energy with access to the

expectation value of one-body operators (like the charge density), the one-body density

matrix with associated natural orbits, and complete spectral functions for removal strength,

introducing a generalized “nonlocal” HF potential to the DOM formalism is necessary. This

extension was accomplished in Ref. [3]. This extension of the DOM still does not generate

the proton charge density in agreement with experimental data. An appropriate convergence

could also not be achieved for the total proton numbers when including higher partial waves.

These results suggest the introduction of a fully nonlocal self-energy for volume, surface and

HF terms. The present nonlocal DOM self-energy allows us to reproduce the bound-state

properties (including charge density) as well as scattering data within reasonable errors [4,

5].

One of the questions in nuclear astrophysics is what determines the size of neutron stars. For

the so-called Schwarzschild stars the equation of state of the neutron-rich matter determines

the size of the neutron star [6]. The skin of a heavy nucleus with N > Z is also composed

of neutron-rich matter although at a much lower density [7]. Measuring the neutron skin

of heavy nuclei such as 208Pb may therefore have important applications in neutron star

properties [8]. A well constrained self-energy that can describe scattering data as well as

bound-state properties of the desired nucleus, can be used to extract the neutron skin of

that nucleus. This is a very important motivation to apply the nonlocal DOM for heavier

nuclei and study their structure.

Investigating the effect of the nonlocal DOM on transfer reactions is of both experimental

and theoretical interest. One of the effects of nonlocal DOM ingredients on the description

of transfer reactions is studied in [9]. The study shows that the overall effect on the transfer

4
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cross section is very significant when employing the nonlocal DOM. This study clearly moti-

vates further investigation of the consequences of the nonlocal DOM in analyses of transfer

reactions. In the future it may therefore be possible to generate a simultaneous description

of the bound-state and scattering aspects of transfer reactions thereby clarifying the nuclear

structure of target nuclei.

Most of the results presented in Secs. 3.5.1, 3.5.6 and 3.5.4 are published in Ref. [4]. Part of

the material in Sec. 2.8 as well as the corresponding results presented in Secs. 3.5.3 and 3.6

were published in Ref. [5].
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2
Formalism

2.1 Introduction

In this chapter we introduce the single-nucleon Green’s function and the physical quantities

that can be derived from this propagator. To understand the precise behavior of a many-

body system it is important to have access to the exact propagator which in practice is

not possible. In other words, just knowing how to calculate the propagator in a theoretical

framework is not sufficient, instead we may attempt to find a way to describe our system

as accurately as possible by either finding acceptable approximations or using constraints

provided by experimental data. The former procedure needs a detailed insight about the

many-body system. The latter is provided by the dispersive optical model (DOM) which

will be described in detail in this chapter. Derived from the propagator, spectral functions

are useful quantities to analyze the system and gain physical insight. These functions tell

us about the single-particle strength distribution in nuclei for example. The DOM, unlike

the traditional optical model, enables us to describe and predict nuclear correlations so we

can find spectral functions both below and above the Fermi energy to develop a complete

understanding of the system.
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2.2 Single-particle propagator in a many-body system

The time evolution of a single-particle state and the concept of a propagator can be studied

in the case of a quantum-mechanical treatment of a single particle. Consider the quantum

state of a particle |α, t0〉 at time t0. At a later time t, the evolved state |α, t0, t〉 will be

:

|α, t0, t〉 = e−
i
~H(t−t0)|α, t0〉 (2.1)

for the time-independent Hamiltonian H. The above equation satisfies the Schrödinger

equation:

i~ ∂t|α, t0, t〉 = H|α, t0, t〉 (2.2)

where ∂t is partial derivative ∂/∂t. The projection of Eq. (2.1) in coordinate space generates

the wave function which can be written as:

ψ(r, t) = 〈r|α, t0; t〉 = 〈r|e− i
~H(t−t0)|α, t0〉 (2.3)

=

∫
dr′〈r|e− i

~H(t−t0)|r′〉〈r′|α, t0〉

= i~
∫
dr′ G(r, r′; t− t0)ψ(r′, t0),

where G is the propagator or Green’s function:

G(r, r′; t− t0) = − i
~
〈r|e− i

~H(t−t0)|r′〉. (2.4)

Consider |ΨN
0 〉 to be the normalized Heisenberg ground state of the N -body system and EN

0

the corresponding eigenvalue:

Ĥ|ΨN
0 〉 = EN

0 |ΨN
0 〉 (2.5)
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with

Ĥ = T̂ + V̂ =
∑
α,β

〈α|T |β〉a†αaβ +
1

4

∑
α,β,γ,δ

〈αβ|V |γδ〉a†αa†βaδaγ (2.6)

representing the Hamiltonian of the the system using the definition 〈αβ|V |γδ〉 ≡ (αβ|V |γδ)−

(αβ|V |δγ). The single-particle (SP) propagator in the many-body system is defined as

[10]:

G(α, β; t− t′) = − i
~
〈ΨN

0 |T [aαH(t)a†βH(t′)]|ΨN
0 〉 (2.7)

where aαH(t) and a†βH(t) are the particle removal and addition operators of the α and β SP

states, respectively in the Heisenberg picture:

aαH(t) = e
i
~ Ĥt aα e

− i
~ Ĥt (2.8)

a†αH(t) = e
i
~ Ĥt a†α e

− i
~ Ĥt. (2.9)

T in Eq. (2.7) is the time-ordering operation for fermion operators with reordering including

an extra minus sign. It moves the operator with the earlier time to the right of the operator

with the later time:

T [aαH(t)a†βH(t′)] = θ(t− t′)aαH(t)a†βH(t′)− θ(t′ − t)a†βH(t′)aαH(t), (2.10)

where θ(x) is the step function which is zero for x < 0 and +1 for x > 0. Using the

time-ordering expansion Eq. (2.10) and the Heisenberg transformation for creation and

annihilation operators, Eq. (2.8), one can rewrite Eq. (2.7) as:

G(α, β; t, t′) = − i
~
θ(t− t′)

∑
m

e
i
~ (E

N
0 −EN+1

m )(t−t′) 〈ΨN
0 |aα|ΨN+1

m 〉〈ΨN+1
m |a†β|ΨN

0 〉

+
i

~
θ(t′ − t)

∑
m

e
i
~ (E

N
0 −EN−1

m )(t′−t) 〈ΨN
0 |a†β|ΨN−1

m 〉〈ΨN−1
m |aα|ΨN

0 〉

(2.11)

8
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by introducing complete sets of states and corresponding eigevalues of Ĥ for the N ± 1

systems. There are two contributions in Eq. (2.11). The first term is the so-called “particle”

term where first a particle is added to the many-body ground state and it is removed after

this state is evolved. The second contribution on the other hand is called a “hole” term as

first the particle is removed and the propagation of the “hole” is studied. The states |ΨN+1
m 〉

and |ΨN−1
n 〉 are the exact states of the N + 1 and N − 1 systems, respectively:

Ĥ|ΨN+1
m 〉 = EN+1

m |ΨN+1
m 〉 (2.12)

Ĥ|ΨN−1
n 〉 = EN−1

n |ΨN−1
n 〉 (2.13)

with corresponding eigenvalues EN+1
m and EN−1

n . Equation (2.11) is the t domain representa-

tion of the propagator. It turns out that the E domain form of the propagator provides even

more physical and practical insight. This is so because it makes the spectrum and the tran-

sition amplitudes appear explicitly. It corresponds to the Fourier transform of (2.11):

G(α, β;E) =

∫ +∞

−∞
dτ e

i
~ E τ G(α, β; τ) τ = t− t′. (2.14)

We will employ the integral representation of step function:

θ(τ) = − 1

2πi

∫
e−iE τ/~

E + iε
ε→ 0. (2.15)

We note that the derivative of the step function is the Dirac delta function:

d

dt
θ(τ) = δ(τ). (2.16)

9



CHAPTER 2. FORMALISM 2.2. SINGLE-PARTICLE PROPAGATOR IN A MANY-BODY SYSTEM

Using Eq. (2.15) the Fourier transform of the Green’s function to the E domain yields:

G(α, β;E) =
∑
m

〈ΨN
0 |aα|ΨN+1

m 〉〈ΨN+1
m |a†β|ΨN

0 〉
E − (EN+1

m − EN
0 ) + iη

+
∑
n

〈ΨN
0 |a†β|ΨN−1

n 〉〈ΨN−1
n |aα|ΨN

0 〉
E − (EN

0 − EN−1
n )− iη , (2.17)

where the completeness relation for the N ± 1 system is used. Equation (2.17) is referred to

as the Lehmann representation [10, 11]. The ±iη term comes from the Fourier transform of

the step function and its existence is necessary to ensure the convergence of the integral over

t− t′. The +iη term in the denominator of the first term in Eq. (2.17) is a consequence of

the condition that t > t′ , i.e. the particle travels forward in time. Similarly, the (−iη) term

is a consequence of the condition t < t′, which can be interpreted to mean that a particle

travels backward in time. For the case of a finite nucleus, it is convenient to define the hole

Fermi energy ε−F and the particle Fermi energy ε+F :

ε−F = EN
0 − EN−1

0 (2.18)

ε+F = EN+1
0 − EN

0 . (2.19)

The former corresponds to the energy required to remove a particle from the N system and

leaving the N − 1 system in its ground state, while the latter corresponds to the binding

energy associated with adding a particle to the N system and leaving the N + 1 system in

its ground state. The average Fermi energy εF is defined by

εF =
1

2
[ε+F + ε−F ]. (2.20)

We note that the poles of G as a function of E correspond to the exact excitation energies

of the interacting system. In the IPM only a single state connects to the ground state by
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either particle addition or removal (in the appropriate SP basis). On the contrary in the

interacting system many states can connect to the ground-state of the N ± 1 system by

particle addition or removal [12]. It is also clear that the Green’s function G is not analytic

in upper and lower E-plane. Although the above form is giving a better physical insight as

to its contents related to experimental quantities, to evaluate the propagator theoretically

we need to apply perturbation theory. We note that the one-body density matrix nαβ can

be obtained from the SP propagator using the Lehmann representation

nαβ =
1

2πi

∫
dEeiEη

∑
n

〈ΨN
0 |a†α|ΨN−1

n 〉〈ΨN−1
n |aβ|ΨN

0 〉
E − (EN

0 − EN−1
n )− iη

=
∑
n

〈ΨN
0 |a†α|ΨN−1

n 〉〈ΨN−1
n |aβ|ΨN

0 〉 = 〈ΨN
0 |a†αaβ|ΨN

0 〉 (2.21)

and the expectation value of any one-body operator in the ground state:

〈ΨN
0 |Ô|ΨN

0 〉 =
∑
α,β

〈α|O|β〉 = 〈ΨN
0 |a†αaβ|ΨN

0 〉 =
∑
αβ

〈α|O|β〉 nαβ (2.22)

can therefore be calculated. An example is provided by the charge density of a nucleus.

2.3 Perturbation expansion

The Lehmann representation is derived by using fundamental quantum mechanical princi-

ples. Although it gives us a useful physical insight, in practice we have to calculate G by using

perturbation theory for example in order to solve non-trivial many-body problems. Wick’s

theorem provides a practical way to evaluate the terms in the perturbation expansion of

the full propagator. G can then be expressed in terms of the non-interacting propagator G0

and the two-body interaction V . The procedure employs the Interaction picture instead of

the Heisenberg picture. For an arbitrary operator Ô the time dependence in the Interaction

11
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picture is given by:

OI(t) = eiĤ0t/~Oe−iĤ0t/~. (2.23)

Normally the full Hamiltonian H is written as:

Ĥ = Ĥ0 + Ĥ1 (2.24)

with the non-interacting Hamiltonian Ĥ0 = T̂ + Û . Here Ĥ1 = V̂ − Û is the residual

interaction and Û is a possible one-body auxiliary potential. The unperturbed propagator

is given by

G0(α, β; t− t′) = − i
~
〈ΦA

0 |T [aαI(t)a
†
βI(t

′)]|ΦA
0 〉 (2.25)

where ΦA
0 is the ground-state associated withH0. Starting from the time-dependent Schrödinger

equation, one can show that the exact propagator is given by [10]

G(α, β; t− t′) = − i
~

∞∑
n

(
i

~

)n
1

n!

∫
dt1...

∫
dtn

× 〈ΦA
0 |T

[
Ĥ1(t1)...Ĥ1(tn)aα(t)a†β(t)

]
|ΦA

0 〉connected. (2.26)

The subscript “connected” indicates that only connected Feynman diagrams should be in-

cluded in the calculations. All the operators are in the Interaction picture and Wick’s

theorem can be used to evaluate all terms in Eq. (2.26) [10]. The zeroth-order term, n = 0,

is just the non-interacting propagator. In the Feynman diagram language a dashed line

represents the interaction V̂ . Figure 2.1 shows examples of low-order diagram contributions

to the propagator. Figure 2.1a represents the Hartree-Fock (HF) approximation if summed

to all orders and calculated with a HF propagator in the loop. The HF method therefore

includes a self-consistent treatment of the internal loop and leads to a self-energy that does

not depend on the energy. The diagram in Fig. 2.1b represents the coupling of a particle to

12
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(a) Example of a first-order diagram.

 

 

 

(b) Example of a second-order diagram.

Figure 2.1: Some lowest order contributions to the propagator in the perturbation expansion.

either two-particle-one-hole states (2p1h) or two-hole-one-particle states (2h1p) which leads

to an energy dependent self-energy.

2.4 Dyson Equation

The Dyson equation is a particularly compact form for the exact propagator which summa-

rizes the Feynman-Dyson perturbation theory. Classifying different contributions of arbitrary

Feynman diagrams yields Dyson’s equation. Graphical analysis makes it clear that the full

propagator can be written in terms of the contribution of the free propagator plus a term

which connects the free and full propagator with a self-energy contribution which contains

all connected diagrams, as shown in Fig. 2.2 (see Refs. [10] and [12]). The bubble represents

the self-energy contribution and consists of all connected diagrams which cannot be cut in to

two separate parts by cutting a non-interacting SP propagator. This self-energy is called the

proper or irreducible self-energy Σ∗. One can think of the dressed propagator as representing

a particle being influenced by its average interaction with the nucleons in the system which

will depend on the energy with which it propagates. In practice only approximations can be

made in theoretical calculations that start from the interaction. The mathematical form of
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Fig. 2.2 or the Dyson equation can be expressed as:

G(α, β;E) = G0(α, β;E) +
∑
γ,δ

G0(α, γ;E) Σ∗(γ, δ, E) G(δ, β;E). (2.27)

The double line in Fig. 2.2 represents the dressed propagator and the single line the non-

interacting one. To start using the Dyson equation a certain approximation for the self-energy

is required by including certain diagrams. Inserting this self-energy into the Eq. (2.27)

yields the corresponding Green’s function. The power of Dyson’s equation is that for an

approximation for Σ∗ that fulfills the dispersion relation, an infinite-order approximation for

the propagator is generated. So Dyson’s equation makes it possible to sum an infinite class

of perturbation diagrams in a compact form. The solution of the Dyson equation generates

all discrete poles corresponding to bound N ± 1 states explicitly given by Eq. (2.17). In

addition relevant continuum solutions are generated for example describing elastic scattering

of nucleons from the target nucleus represented by its ground-state.

In the DOM formalism the self-energy is parametrized and the parameters are constrained

by fitting to data. The self-energy in general is a complex quantity. It is nonlocal and has

an energy dependence as well [10]. Schematically it can be written as:

Σ∗(α, β;E) = −i
∫
dE ′

2π

∑
γδ

〈αγ|V |βγ〉G(γ, δ;E ′) + Higher Order terms(E). (2.28)

The first term in Eq. (2.28) contains an integral over energy and therefore does not depend

on the energy. This energy independent term is the HF contribution to the irreducible

self-energy. It is also referred to as the static contribution Σs. The higher-order terms

explicitly depend on the energy and represent the dynamic contributions of the self-energy

and are denoted by Σd. This complex dynamic part of the self-energy explains the absorptive

properties of the many-body system and is required to be negative at least in the domain of
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Σ∗ + = 

Figure 2.2: Graphical representation of the Dyson equation for the dressed SP propagator
in terms of the noninteracting one and the irreducible self-energy.

coupling to the excitations in the N + 1 system. It leads to a loss of flux from the elastic

channel in that domain and the removal of SP strength from below the Fermi energy to that

domain. On the other hand it is positive for the coupling to the N−1 system excitations [10].

The real and imaginary part of the complex function Σd are related through the dispersion

relation since Σd is an analytic complex function

Re Σd(α, β;E) = −P
∫ ∞
ε+T

dE ′

π

ImΣd(α, β;E ′)

E − E ′ + P
∫ ε−T

−∞

dE ′

π

ImΣd(α, β;E ′)

E − E ′ , (2.29)

where P represents the principal value and applies when E occurs in the interval of integra-

tion. The dynamic parts start and end at corresponding thresholds in the N ± 1 systems

that have a larger separation than the corresponding difference between the Fermi energies

for addition and removal of a particle, given by Eqs. (2.18) and (2.19). This feature is par-

ticular to a finite system and generates possibly several discrete quasi-particle and hole-like

solutions of the Dyson equation in the domain where the imaginary part of the self-energy

vanishes. With Eq. (2.29), the total real part of the irreducible self-energy can be written
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as

Re Σ∗(α, β;E) = Σs(α, β) + Re Σd(α, β;E). (2.30)

In some cases it is useful to write the above equation in terms of some reference energy like

E = E0. If we choose E0 to be Fermi energy εF we have:

Re Σ(α, β;E) = Σs(α, β)− P
∫ ∞
ε+T

dE ′

π

ImΣ(α, β;E ′)

E − E ′

+P
∫ ε−T

−∞

dE ′

π

ImΣ(α, β;E ′)

E − E ′ (2.31)

Re Σ(α, β; εF ) = Σs(α, β)− P
∫ ∞
ε+T

dE ′

π

ImΣ(α, β;E ′)

εF − E ′

+P
∫ ε−T

−∞

dE ′

π

ImΣ(α, β;E ′)

εF − E ′
. (2.32)

Subtracting Eq. (2.32) from Eq. (2.31) we find:

Re Σ(α, β;E) = Re Σ(α, β; εF )− P
∫ ∞
ε+T

dE ′

π
ImΣ(α, β;E ′)

[
1

E − E ′ −
1

εF − E ′
]

− P
∫ ε−T

−∞

dE ′

π
ImΣ(α, β;E ′)

[
1

E − E ′ −
1

εF − E ′
]
. (2.33)

This form of the dispersion relation is known as the subtracted dispersion relation, and it is

in this form that it is used in the DOM.
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2.5 Titchmarsh’s theorem

The Titchmarsh theorem establishes a connection between the properties of an analytic

function in the complex plane and causality. Consider a function u can be expressed as:

u(E) =
1

π
P
∫ +∞

−∞
dE ′

v(E ′)

E − E ′ . (2.34)

This implies that:

v(E) = − 1

π
P
∫ +∞

−∞
dE ′

u(E ′)

E − E ′ . (2.35)

Equations (2.34) and (2.35) are the (inverse) Hilbert transforms and the result can be proved

by employing the properties of analytic functions in the complex plane. If the functions u

and v are both square integrable on the real axis then Titchmarsh’s theorem states that if

each of the following properties will automatically satisfy the other two:

First

The function w(E) = u(E) + iv(E) is analytic for E > 0 in the complex plane and the

quantity ∫ +∞

−∞
|w(z)|2dx z = x+ i y (2.36)

is uniformly bound for all positive values of y.

Second

The functions u and v be the Hilbert transform of each other:

u(E) =
1

π
P
∫ +∞

−∞
dE ′

v(E ′)

E − E ′ v(E) = − 1

π
P
∫ +∞

−∞
dE ′

u(E ′)

E − E ′ . (2.37)
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Third

The Fourier transform

ω(t) =
1

2π

∫ +∞

−∞
dE w(E) e−iEt (2.38)

vanishes for negative t values. This property is called the “causal” property of func-

tions. Consequently one can write:

ω(t) = Θ(t)G(t) (2.39)

where Θ(t) is the step function. The function G is also defined in Eq. (2.39). The

Titchmarsh theorem provides more physical insight to the dispersion relationship, an-

alyticity and causality [13].

2.6 Propagator in r-space

Mostly due to the presence of the Coulomb potential, the DOM potential is presented in co-

ordinate space. The corresponding integral-differential equation is then also solved in r-space

for positive energy by matching the interior wave functions with asymptotic solutions. Then

the S matrix and phase-shifts are calculated using the latter solutions of the Schrödinger

equation. Writing down the equations allows to visualize how the actual problem is solved

numerically. In a basis with good radial position r, orbital angular momentum (parity),

and total angular momentum j, the sum in Eq. (2.27) becomes an integral and the Dyson

equation takes on the following form

G`j(r, r
′;E) = G0

`j(r, r
′;E) +

∫
dxx2

∫
y2dyG0

`j(r, x;E)Σ∗`j(x, y, ;E)G`j(y, r
′;E). (2.40)
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The isospin and the projection of total angular momentum quantum numbers have been

suppressed. Beginning with the Dyson equation, one can show that for discrete states the

overlap function obeys a Schrödinger-like equation [10]. Introducing the notation

ψn`j(r) = 〈ΨA−1
n |ar`j|ΨA

0 〉 (2.41)

the overlap function for the removal of a nucleon at r with discrete quantum numbers n, `

and j will be obtained solving:

(
p2r
2m

+
~2`(`+ 1)

2mr2

)
ψn`j(r) +

∫
dr′r′2Σ∗`j(r, r

′; ε−n )ψn`j(r
′) = ε−nψ

n
`j(r). (2.42)

In coordinate space the radial momentum operator is given by pr = −i~( ∂
∂r

+ 1
r
). Equation

(2.42) is employed for discrete states in the N − 1 system. The solutions exist where the

imaginary part of the self-energy vanishes. By using the inhomogeneous term in the Dyson

equation, the solutions of the Schrödinger-like equation (2.42) are called the “quasihole”

states and are labeled by αqh. The normalization or the spectroscopic factor of these states

is given by Ref. [10] and reads:

Sn`j =

(
1− ∂

∂E
Σ∗`j(αqh, αqh;E)

∣∣∣∣
ε−n

)−1
. (2.43)

For continuum energies the spectral density can be obtained from Eq. (2.40) as follows:

S`jh (r, r′;E) =
1

π
ImG`j(r, r

′;E), (2.44)

after G is obtained from a complex matrix inversion. For positive energy Eq. (2.42) is

solved using the iterative method outlined in Ref. [14]. At these energies we incorporate

relativistic effects in lowest order following Ref. [15] as was also utilized in earlier local DOM
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calculations [16].

2.7 Reducible Self-Energy and the R-matrix

In this section we develop the formalism necessary to generate the spectral density at positive

energy. This is most easily accomplished by studying the solution of the Dyson equation in

momentum space in terms of reducible self-energies. The reducible self-energy satisfies the

corresponding Dyson equation:

Σ = Σ∗ + Σ∗G0Σ (2.45)

where Σ∗ is the irreducible self-energy (or optical potential). Explicitly, in momentum space

but supressing spin degree of freedom:

Σ(k, k′, E) = Σ∗(k, k′, E) +

∫
dq Σ∗(k, q, E) G0(q, E) Σ(q, k′, E) (2.46)

where G0 is:

G0(k,E) =
1

E − εk ± iη
=

P
E − εk

∓ iπδ(E − εk). (2.47)

If the irreducible self-energy has spherical symmetry, we can integrate the angular degrees

of freedom, hence write the Dyson equation in partial waves including a coupling to total

SP angular momentum:

Σ`j(k, k
′, E) = Σ∗`j(k, k

′, E) +

∫
q2dq Σ∗`j(k, q, E) G0(q, E) Σ`j(q, k

′E). (2.48)

The full propagator can also obtained from the Dyson equation in the following form [10]:

G`j(k, k
′;E) =

δ(k − k′)
k2

G(0)(k;E) +G0(k;E)Σ`j(k, k
′;E)G0(k;E). (2.49)
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The on-shell matrix elements of the reducible self-energy in Eq. (2.48) are sufficient to de-

scribe all aspects of nucleon elastic scattering like differential, reaction, and total cross sec-

tions as well as polarization data [17]. We separately write the Dyson equation above or

below the real axis, according to:

Σ`j(k, k
′;E + iη) = Σ∗`j(k, k

′;E + iη) (2.50)

+ P
∫
q2dq Σ∗`j(k, q;E + iη)

1

E − εq
Σ`j(q, k′;E + iη)

− iπµk0 Σ∗`j(k, k0;E + iη) Σ`j(k0, k
′, E + iη)

and

Σ`j(k, k
′;E − iη) = Σ∗`j(k, k

′;E − iη) (2.51)

+ P
∫
q2dq Σ∗`j(k, q;E − iη)

1

E − εq
Σ`j(q, k′;E − iη)

− iπµk0 Σ∗`j(k, k0;E − iη) Σ`j(k0, k
′, E − iη)

where k0 =
√

2µE will represent the implied dependence on the energy E. Due to causality

(or analyticity ) the irreducible self-energy satisfies the dispersion relations:

Re(Σ∗(E + iη)) = − 1

π
P
∫ ∞
−∞

dω
Im(Σ∗(ω))

E − ω

Im(Σ∗(E + iη)) =
1

π
P
∫ ∞
−∞

dω
Re(Σ∗(ω))

E − ω

and

Re(Σ∗(E − iη)) =
1

π
P
∫ ∞
−∞

dω
Im(Σ∗(ω))

E − ω

Im(Σ∗(E − iη)) = − 1

π
P
∫ ∞
−∞

dω
Re(Σ∗(ω))

E − ω .
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In addition if the real part of Σ∗ is the same below and above the real axes, then:

Im(Σ∗(E + iη)) = −Im(Σ∗(E − iη)). (2.52)

In order to solve the integral equation for the reducible self-energy, it is usual to define an

auxiliary matrix R called the reaction matrix (or R-matrix) which satisfies:

R`j(k, k
′;E ± iη) = Σ∗`j(k, k

′, E ± iη)

+ P
∫
q2dq Σ∗`j(k, q;E ± iη)

1

E − εq
R`j(q, k

′;E ± iη). (2.53)

We rewrite this equation as :

Σ∗`j(k, k
′, E ± iη) = R`j(k, k

′;E ± iη)

− P
∫
q2dq Σ∗`j(k, q;E ± iη)

1

E − εq
R`j(q, k

′;E ± iη). (2.54)

Here we note that the reaction matrix is different below and above the real axis because of

the difference in sign, (2.52), of the imaginary part of the potential Σ∗. When the potential

is not absorptive, the R-matrix integrated either above or below the real axes is the same.

Equation (2.54) can be considered as :

Σ∗ = AR (2.55)

where A is the integral operator acting on R, and the integral equation has the formal

solution:

R = A−1Σ∗ (2.56)
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provided A−1 exists. If we now compare the integral equation for R with the one that Σ

satisfies we notice that schematically :

AΣ = Σ∗ ∓ iπµk0Σ∗Σ

and if we multiply both sides by A−1 we find:

Σ =
(
A−1Σ∗

)
∓ iπµk0

(
A−1Σ∗

)
Σ (2.57)

or in terms of the reaction matrix:

Σ = R∓ iπµk0RΣ. (2.58)

More explicitly we can write:

Σ`j(k, k
′;E + iη) = R`j(k, k

′;E + iη)− iπµk0R`j(k, k0;E + iη)Σ`j(k0, k
′;E + iη) (2.59)

Σ`j(k, k
′;E − iη) = R`j(k, k

′;E − iη)− iπµk0R`j(k, k0;E − iη)Σ`j(k0, k
′;E − iη) (2.60)

whose solutions are:

Σ`j(k, k
′;E + iη) = R`j(k, k

′;E + iη)− iπµk0
R`j(k, k0;E + iη)R`j(k0, k

′;E + iη)

1 + iπµk0R`j(k0, k0;E + iη)
(2.61)

Σ`j(k, k
′;E − iη) = R`j(k, k

′;E − iη) + iπµk0
R`j(k, k0;E − iη)R`j(k0, k

′;E − iη)

1− iπµk0R`j(k0, k0;E − iη)
. (2.62)

The reducible self-energy is the equivalent to the transition matrix in scattering theory. The
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scattering amplitude is given in terms of the on-shell elements of Σ:

S`j(E) = 1− 2iπµk0 Σ`j(k0, k0;E + iη) (2.63)

from where we can find all the observables, the differential cross section, analyzing power

and spin rotation of the scattering in the nucleon-nucleus collision.

2.8 Spectral functions

Spectral functions tell us about the SP strength distribution of nucleons. There is a prob-

ability of finding a particle with a specific `j at a position in r-space at a specific energy

(it can be any space, such as momentum space; it does not need to be just position space).

After obtaining the propagator it is straightforward to find the spectral functions below the

Fermi energy. For positive energies it is not very straightforward and requires some special

considerations. A beautiful aspect of these calculations generating the spectral functions

is that they satisfy an important sum rule. It is also a very practical test for our method

and calculations. This section is mostly devoted to the method which is used to obtain the

particle spectral functions.

The formal definition of the spectral function is given by:

S`j(k, k
′;E) =

i

2π
[G`j(k, k

′;E + iη)−G`j(k, k
′;E − iη)] . (2.64)

Explicitly we require the evaluation of the difference in parenthesis between the retarded

and advanced propagators. The full propagator has the following form [10]:

G`j(k, k
′;E) =

δ(k − k′)
k2

G0
`j(k;E) +G0

`j(k;E)Σ`j(k, k
′;E)G0

`j(k;E). (2.65)
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We first define the free spectral function by:

S0
`j(k, k

′;E) =
i

2π

[
G0
`j(k, k

′;E + iη)−G0
`j(k, k

′;E − iη)
]
. (2.66)

The free propagator here is given by:

G0
`j(k, k

′, ;E±) =
δ(k − k′)

k2
1

E − εk ± iη
. (2.67)

We therefore find explicitly:

S0
`j(k, k

′;E) =
i

2π

δ(k − k′)
k2

[( P
E − εk

− iπδ(E − εk)
)
−
( P
E − εk

+ iπδ(E − εk)
)]

=
i

2π

(
−2iπδ(E − εk)

δ(k − k′)
k2

)
= δ(E − εk)

δ(k − k′)
k2

. (2.68)

Now we calculate the full spectral function in Eq. (2.64). Using the definition for the free

propagator, the full propagator can be written as:

G`j(k, k
′;E ± iη) =

δ(k − k′)
k2

1

E − εk ± iη
+

1

E − εk ± iη
Σ±`j(k, k

′;E)
1

E − εk′ ± iη
. (2.69)

Here the energy εk = k2/(2µ). The correlated terms in Eq. (2.69) for E + iη can be written
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as:

1

E − εk + iη
Σ`j(k, k

′;E + iη)
1

E − εk′ + iη

=

( P
E − εk

− iπδ(E − εk)
)
× Σ`j(k, k

′;E + iη)×
( P
E − εk′

− iπδ(E − εk′)
)

=
P

E − εk
Σ`j(k, k

′;E + iη)
P

E − εk′
− iπδ(E − εk)Σ`j(k, k

′;E + iη)
P

E − εk′
+
P

E − εk
Σ`j(k, k

′;E + iη)(−iπ)δ(E − εk′)

+(−iπ)δ(E − εk)Σ`j(k, k
′;E + iη)(−iπ)δ(E − εk′). (2.70)

Similarly, for the E − iη we find:

1

E − εk − iη
Σ`j(k, k

′;E − iη)
1

E − εk′ − iη
=
P

E − εk
Σ`j(k, k

′;E − iη)
P

E − εk′
(2.71)

+πδ(E − εk)Σ`j(k, k
′;E − iη)

P
E − εk′

+
P

E − εk
Σ`j(k, k

′;E − iη)(iπ)δ(E − εk′)

+πδ(E − εk)Σ`j(k, k
′;E + iη)(iπ)δ(E − εk′) (2.72)

then carry the difference in Eq. (2.64) and find:

S`j(k, k
′;E) = S0

`j(k, k
′;E)+

i

2π

{ P
E − εk

[Σ`j(k, k
′, E + iη)− Σ`j(k, k

′, E − iη)]
P

E − εk′

− iπδ(E − εk) [Σ`j(k, k
′, E + iη) + Σ`j(k, k

′, E − iη)]
P

E − εk′
− P
E − εk

[Σ`j(k, k
′, E + iη) + Σ`j(k, k

′, E − iη)] iπδ(E − εk′)

+ iπδ(E − εk) [Σ`j(k, k
′, E + iη)− Σ`j(k, k

′, E − iη)] iπδ(E − εk′)
}
. (2.73)
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2.8.1 Hole Spectral Function

For below the Fermi energy it is much easier to calculate the spectral function. Once we

have obtained the propagator the hole spectral function will be given by:

Sh`j(r;E) =
1

π
Im [G`j(r, r;E)]. (2.74)

The occupation number of a bound orbit is given by an integral over a corresponding folding

of the hole spectral density

Sn−`j (E) =

∫
drr2

∫
dr′r′2φn−`j (r)Sh`j(r, r

′;E)φn−`j (r′), (2.75)

where Sh`j(r, r
′;E) provides equivalent information below the Fermi energy as Sp`j(r, r

′;E)

above.

2.8.2 Particle spectral function

The spectral representation of the particle part of the propagator, referring to the N + 1

system, appropriate for a treatment of the continuum and possible open channels is given

by [2]

Gp
`j(k, k

′;E) =
∑
n

φn+`j (k)
[
φn+`j (k′)

]∗
E − E∗N+1

n + iη
+
∑
c

∫ ∞
Tc

dE ′
χcE

′

`j (k)
[
χcE

′

`j (k′)
]∗

E − E ′ + iη
. (2.76)

Overlap functions for bound N + 1 states are given by φn+`j (k) = 〈ΨN
0 |ak`j|ΨN+1

n 〉, whereas

those in the continuum are given by χcE`j (k) = 〈ΨN
0 |ak`j|ΨN+1

cE 〉 indicating the relevant channel

by c and the energy by E. Excitation energies in the N + 1 system are with respect to the

N -body ground state E∗N+1
n = EN+1

n − EN
0 . Each channel c has an appropriate threshold
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indicated by Tc which is the experimental threshold with respect to the ground-state energy of

the N -body system. The overlap function for the elastic channel can be explicitly calculated

by solving the Dyson equation while it is also possible to obtain the complete spectral density

for E > 0

Sp`j(k, k
′;E) =

∑
c

χcE`j (k)
[
χcE`j (k′)

]∗
. (2.77)

Unlike the hole spectral function, to find the spectral function for particle states, in prac-

tice, this requires solving the scattering problem twice at each energy so that one may

employ

Sp`j(k, k
′;E) =

i

2π

[
Gp
`j(k, k

′;E+)−Gp
`j(k, k

′;E−)
]

(2.78)

with E± = E±iη, and only the elastic-channel contribution to Eq. (2.77) is explicitly known.

Equivalent expressions pertain to the hole part of the propagator Gh
`j [2].

The calculations are performed in momentum space according to Eq. (2.48) to generate the

off-shell reducible self-energy and thus the spectral density by employing Eqs. (2.65) and

(2.78). Because the momentum-space spectral density contains a delta-function associated

with the free propagator, it is convenient for visualization purposes to consider a Fourier

transform to coordinate space (see Sec. 2.8.3)

Sp`j(r, r
′;E) =

2

π

∫
dkk2

∫
dk′k′2j`(kr)S

p
`j(k, k

′;E)j`(k
′r′), (2.79)

which has the physical interpretation for r = r′ as the probability density S`j(r;E) for

adding a nucleon with energy E at a distance r from the origin for a given `j combination.

By employing the asymptotic analysis to the propagator in coordinate space following e.g.

Ref. [10], one may express the elastic-scattering wave function that contributes to Eq. (2.77)
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in terms of the half on-shell reducible self-energy obtained according to

χelE`j (r) =

[
2mk0
π~2

]1/2{
j`(k0r) +

∫
dkk2j`(kr)G

(0)(k;E)Σ`j(k, k0;E)

}
, (2.80)

where k0 is related to the scattering energy in the usual way.

The presence of strength in the continuum associated with mostly-occupied orbits (or mostly

empty but E < 0 orbits) is obtained by double folding the spectral density in Eq. (2.79) in

the following way

Sn+`j (E) =

∫
drr2

∫
dr′r′2φn−`j (r)Sp`j(r, r

′;E)φn−`j (r′), (2.81)

using an overlap function √
Sn`jφ

n−
`j (r) = 〈ΨN−1

n |ar`j|ΨN
0 〉, (2.82)

corresponding to a bound orbit with Sn`j the relevant spectroscopic factor and φn−`j (r) nor-

malized to 1 [17]. The corresponding strength below the Fermi energy is obtained from

Sn−`j (E) =

∫
drr2

∫
dr′r′2φn−`j (r)Sh`j(r, r

′;E)φn−`j (r′), (2.83)

More specifically the wave functions φn`j(k) are the solution of the eigen-value problem:

k2

2µ
φn`j(k) +

∫
k′2dk′Re (Σ`j(k, k

′; ε))φn`j(k
′) = εφn`j(k) (2.84)

which we solve for the bound states (ε < 0) self-consistently. Their normalization condition

is: ∫
k2dk φn`j(k)φn`j(k) = 1. (2.85)
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Using the free (uncorrelated) contribution to the spectral function, we find:

Sn0`j (E) =

∫
k2dkφn`j(k)

∫
k′2dk′Sn0`j (k, k′, E)φn`j(k

′)

= µk0|φn`j(k0)|2. (2.86)

Integrals involving delta functions can be simplified yielding the following result:

Sn`j(E) = Sn0`j (E)

+
i

2π
P
∫
k2dk

φn`j(k)

E − εk
P
∫
k′2dk′ [Σ`j(k, k

′;E + iη)− Σ`j(k, k
′;E − iη)]

φn`j(k
′)

E − εk′

+
1

2
µk0φ

n
`j(k0)P

∫
k2dk [Σ`j(k, k0;E + iη) + Σ`j(k, k0;E − iη)]

φn`j(k)

E − εk
− 1

2
µk0φ

n
`j(k0)P

∫
k2dk [Σ`j(k0, k;E + iη) + Σ`j(k0, k;E − iη)]

φn`j(k)

E − εk
− i

π

2
(µk0)

2 |φn`j(k0)|2 [Σ`j(k0, k0;E + iη)− Σ`j(k0, k0;E − iη)] . (2.87)

2.8.3 Fourier-Bessel transformation to position space

To visualise correlations we can transform to position space:

S`j(r, r
′;E) =

2

π

∫
k2dkj`(kr)

∫
k′2dk′S`j(k, k

′;E)j`(k
′r′). (2.88)

Let us transform the free spectral function first:

S0
`j(r, r

′;E) =
2

π

∫
k2dkj`(kr)

∫
k′2dk′δ(E − εk)

δ(k − k′)
k2

j`(k
′r′)

=
2

π

∫
k2dkj`(kr)δ(E − εk)j`(kr′)

=
2

π
µk0j`(k0r)j`(k0r

′) (2.89)
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here k0 =
√

2µE. Then write:

S`j(r, r
′;E) = S0

`j(r r
′ E) + ∆S`j(r r

′ E). (2.90)

To save writing we are putting 2/π on the other side so that the correlated part (×π/2)

is:

π

2
∆S`j(r r

′ E) =

i

2π
P
∫
k2dp

j`(kr)

E − εk
P
∫
k′2dk′ (Σ`j(k, k

′;E + iη)− Σ`j(k, k
′;E − iη))

j`(k
′r′)

E − εk′

+
1

2

∫
k2dkj`(kr)δ(E − εk)P

∫
k′2dk′ (Σ`j(k, k

′;E + iη) + Σ`j(k, k
′;E − iη))

j`(k
′r′)

E − εk′

+
1

2
P
∫
k2dk

j`(kr)

E − εk

∫
k′2dk′ (Σ`j(k, k

′;E + iη) + Σ`j(k, k
′;E − iη)) δ(E − εk′)j`(k′r′)

− iπ

2

∫
k2dkj`(kr)δ(E − εk)

∫
k′2dk′ (Σ`j(k, k

′;E + iη)− Σ`j(k, k
′;E − iη))

× δ(E − εk′)j`(k′r′). (2.91)

Performing the integrals involving delta-function yields:

∆S`j(r, r
′;E) =

i

π2
P
∫
k2dk

j`(kr)

E − εk
P
∫
k′2dk′ (Σ`j(k, k

′;E + iη)− Σ`j(k, k
′;E − iη))

j`(k
′r′)

E − εk′

+
µk0
π
j`(k0r)P

∫
k′2dk′ (Σ`j(k0, k

′;E + iη) + Σ`j(k0, k
′;E − iη))

j`(k
′r′)

E − εk′

+
µk0
π
j`(k0r

′)P
∫
k2dk (Σ`j(k, k0;E + iη) + Σ`j(k, k0;E − iη))

j`(kr)

E − εk
− i (2µk0)

2 j`(k0r) (Σ`j(k0, k0;E + iη)− Σ`j(k0, k0;E − iη)) j`(p0r
′), (2.92)

involving similar principle value integrals as used in the solution of the reducible self-

energy.
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2.9 Connection to the Scattering

In the language of many-body theory, the elastic nucleon-nucleus scattering is determined

by the on-shell matrix element of the reducible self-energy Σ`j(k, k
′;E), since it is directly

related to the S-matrix by [10]

〈k0|S`j(E)|k0〉 ≡ e2iδ`j (2.93)

= 1− 2πi

(
mk0
~2

)
〈k0|Σ`j(E)|k0〉,

where k0 =
√

2mE/~, m is the nucleon mass, and E is the energy relative to the center-of-

mass. The phase shift, δ`j, defined by Eq. (2.93) is in general a complex number. Its real

part yields the usual phase shift and its imaginary part is associated with the inelasticity of

the scattering process and denoted by

η`j = e−2Im(δ`j). (2.94)

In general, the coupling to more complicated excitations in the self-energy implies a com-

plex potential responsible for the loss of flux in the elastic channel, characterized by the

inelasticities η`j.

For completeness we include some relevant results in terms of the phase shifts δ`j for the

quantities that will be discussed later. The scattering amplitude is given by

fm′s,ms(θ, φ) = −4mπ2

~2
〈k′m′s|Σ(E)|kms〉, (2.95)

with wave vectors of magnitude k0. The matrix structure is usually represented by

[f(θ, φ)] = F(θ)I + σ · n̂G(θ), (2.96)
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based on rotational invariance and parity conservation. The unit vector is given by n̂ =

k× k′/|k× k′|, and σ is formed by the Pauli spin matrices. The relation between F and G

and the phase shifts determined by Eq. (2.93), can now be worked out yielding

F(θ) =
1

2ik

∞∑
`=0

[
(`+ 1)

{
e2iδ`+ − 1

}
+ `

{
e2iδ`− − 1

}]
P`(cos θ) (2.97)

and

G(θ) =
sin θ

2k

∞∑
`=1

[
e2iδ`+ − e2iδ`−

]
P ′`(cos θ). (2.98)

We employ the notation δ`± ≡ δ`j=`± 1
2

and P ′` denotes the derivative of the Legendre poly-

nomial with respect to cos θ. The unpolarized cross section reads

(
dσ

dΩ

)
unpol

= |F|2 + |G|2. (2.99)

Employing the partial wave expansions Eqs. (2.97) and (2.98) and the orthogonality of the

Legendre polynomials, we find

σeltot =
π

k2

∞∑
`=0

∣∣(`+ 1)
{
e2iδ`+ − 1

}
+ `
{
e2iδ`− − 1

}∣∣2
2`+ 1

+
π

k2

∞∑
`=0

`(`+ 1)
∣∣e2iδ`+ − e2iδ`−∣∣2
2`+ 1

. (2.100)

We can define partial elastic cross sections such that

σeltot =
∞∑
`=0

σel` , (2.101)
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which for a given ` reads

σel` =
π

k2

[
(`+ 1)

∣∣e2iδ`+ − 1
∣∣2 + `

∣∣e2iδ`− − 1
∣∣2] . (2.102)

With complex potentials, and therefore complex phase shifts, it is possible to calculate the

total reaction cross section

σrtot =
∞∑
`=0

σr` , (2.103)

with

σr` =
π

k2

[
(2`+ 1)− (`+ 1)

∣∣e2iδ`+∣∣2 − ` ∣∣e2iδ`−∣∣2] . (2.104)

These results are derived by using the optical theorem that yields the total cross section

from the imaginary part of the forward scattering amplitude.

σT = σeltot + σrtot. (2.105)

The results presented here refer to neutron scattering when the self-energy has a finite

range.

Therefore, it is clear that at positive energies the problem is completely reduced to solving

the integral equation for the reducible self-energy given in Eq. (2.48). It should be noted

that the solution in momentum space automatically treats the non-locality of the reducible

self-energy in coordinate space. In practice, the integral equation is solved in two steps. First

the integral equation is solved by only including the principal value part of the noninteracting

propagator. Subsequently, it is straightforward to employ the resulting reaction matrix to

take into account the contribution of the δ-function associated with the imaginary part of

the noninteracting propagator.
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2.10 Aspects of optical potentials

In a nuclear reaction where a nucleon heads into a nucleus (target), there is a chance that

the target is excited and the initial quantum numbers such as energy, orbital and total

angular momentum of the incident nucleon are altered. This is referred to by Bethe as an

“absorption” process of the incoming nucleon [18]. The average effect of the absorption can

be incorporated by including an imaginary term in the mean field. The imaginary part of

the potential, W , is the main feature and building block of the optical potentials [19]. This

imaginary term will lead to a subtraction of the total probability current when writing the

continuity equation for the single-particle Schrödinger wave equation:

∇ · j +
∂ρ

∂t
=
Wρ

~
, (2.106)

where j is the probability current density and ρ is the probability density. Since ρ is ap-

proximately proportional to e2W/~, the lifetime of the system with the nucleon added to the

target is given by τ = −~/2W̃ . Here W̃ denotes the average of W (r) . In general W can

be a function of energy as well. Moreover, the size of the energy interval or width of the

domain where the single-particle strength is spread is given by Γ = −2W̃ . The single-particle

equation to be solved for an optical potential is the same as the Schrödinger equation where

the real potential is supplemented with an imaginary potential.

There is a lot more empirical information on the mean field available at positive than at

negative energies since data can be obtained for many incident energies and scattering angles.

Analyzing the scattering cross sections demonstrates that the real and imaginary parts of the

mean field both depend upon energy. As discussed in Sec. 2.4, the HF term of a microscopic

self-energy does not depend on the energy. The phenomenological mean field is usually
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assumed to be local and written in the following form:

U(r;E) = V (r;E) + iW (r;E). (2.107)

The experimental data require that W (r;E) be surface-peaked at low energy. The real part

of the potential V (r;E) can be expressed in terms of a Wood-Saxon form given by:

f(r, R, a) =
1

1 + exp
(
r−R
a

) , (2.108)

where R is the radius and a is the diffuseness of the Wood-Saxon potential. One often uses

the following parametrization:

V (r;E) = V 0(E)f(r, Rv, av), (2.109)

W (r;E) = WV (E)f(r, RW , aW )− 4aWW (E)
d

dr
f(r, RW , aW ), (2.110)

where the radius and diffuseness parameters are not necessarily the same for different po-

tential terms. Phenomenological optical-model analyses of the experimental scattering data

then involve nine adjustable parameters at each energy. In practice, the data cannot accu-

rately determine all these parameters. Nevertheless the volume integrals of these potentials

appear to be more uniquely determined. These volume integrals are given by:

JV (E) =

∫
V (r;E) d3r

JW (E) =

∫
W (r;E) d3r. (2.111)

Local optical potentials with an energy dependent depth and energy independent form factor

have proved able to give differential cross sections in good accord with the experimental data
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for many nuclei. Some of the parameters are almost independent of the target nucleus [20].

Several global potentials have been proposed and have been extensively compared with

experimental data [21, 22, 23]. The prediction of even the best global potentials shows

definite discrepancies with experimental data and these can be attributed to nuclear structure

effects. It is possible to improve the fits by adjusting the parameters for each nucleus, but

thereby the predictive advantage of the “global” potentials is lost. Mahaux and Sartor

realized that optical potentials could be used to extrapolate to negative energies by using

the appropriate dispersion relation which in principle connects the real and imaginary parts

of the potential. Phenomenological optical potentials in general do not fulfill this dispersion

relation. Mahaux and Sartor proposed to employ optical potentials that fulfill this dispersion

relation thereby linking positive energy and negative energy data. The resulting DOM

is extensively reviewed in Ref. [2]. Further confirmation of this approach is provided by

the analysis of single-particle energies; the gap between low-lying particle and hole states

is smaller than can be obtained with a static potential suggesting the need of dispersive

correction to the real part of the potential [2].

As discussed in Sec. 2.4, the self-energy has two terms, the static term does not explicitly

depend on the energy and the dynamic part that depend on the energy. The latter takes

into account the higher-order corrections to the self-energy (or Green’s function). The static

term is usually referred as the HF term. Both the static and dynamic part are in principle

nonlocal. In earlier DOM implementations the nonlocal HF term has been replaced by an

equivalent energy-dependent potential. This can have undesired consequences. In particular

the solutions to the Dyson equation, when the optical potential is interpreted as the self-

energy, suffer from a distortion of the normalization which can only be corrected properly

near the Fermi energy and plays no role at positive energies where only the real and imaginary

parts of the phase shift are required. We will see in Chs. 3 and 4 that a nonlocal version of

self-energy is necessary in particular for the description of data below the Fermi energy.
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A typical form to describe the nonlocality of the potential was proposed by Perey and Buck

[24]. An example is given for the energy independent contribution by:

VNL(r, r′) = U

( |r + r′|
2

)
H(|r− r′|). (2.112)

The factor U is parametrized with a Woods-Saxon potential. Using the approximation:

r̃ =
|r + r′|

2
≈ r + r′

2
(2.113)

U can be written as:

U(r̃) = V0f(r̃) (2.114)

where V0 is the potential depth and f represents a Woods-Saxon shape with the dependence

on the radius and diffuseness parameters implied. The factor H is a Gaussian function:

H(r− r′) =
1

π3/2β3
exp

[ |r− r′|2
β2

]
. (2.115)

The parameter β controls the degree of nonlocality of VNL, and empirically has been deter-

mined to be on the order of 1 fm [2]. The projection of H has an analytical solution due

to the relationship between the spherical Bessel functions j` and the Legendre polynomials

P`

j`(z) =
1

2 i

∫ +1

−1
eizx P`(x) dx. (2.116)

Using this result one finds:

V `
NL(r, r′) = U(r, r′)

1

π1/2β
exp

[
−r

2 + r′2

β2

]
K`(

2rr′

β2
) (2.117)
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where

K`(t) = 2(−i)` t j`(it). (2.118)

This type of nonlocality is employed in the next chapters to describe the real and imaginary

part of the self-energy for 40Ca and 48Ca.
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3
Calcium Forty

3.1 Introduction

Previous implementations of the dispersive optical model have mostly relied on employing

local potentials. When describing the properties of the ground-state of closed-shell nuclei it is

necessary to abandon this tradition. The energy dependence of the real HF term in the local

implementation of the DOM was used to represent its nonlocal character. Since this energy

dependence is not associated with the dispersion relation it distorts the normalization of the

solutions of the Dyson equation. Nonlocality was restored in Ref. [3] in a study of 40Ca.

Nevertheless, properties like particle number and the charge density cannot be described

when only the HF term is made nonlocal. Further evidence to support the introduction of

nonlocal imaginary potentials is provided by the work of Refs. [25, 17] for 40Ca. Inclusion of

long-range correlations in the self-energy using the FRPA approach clearly shows strong `-

dependence of the imaginary part of the nucleon self-energy [25] which implies the presence

of a substantial nonlocality. Even inclusion of short-range correlations in the self-energy

leads to nonnegligible `-dependence in the imaginary part of the self-energy as it is shown

in Ref. [17].
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In this chapter we introduce a comprehensive description of all SP properties associated with

the nucleus 40Ca employing a nonlocal representation of both real and imaginary part of the

self-energy which obey the relevant dispersion relation. Employing DOM potentials (as fully

described in previous chapters), all the relevant data below and above the Fermi energy can

be reproduced simultaneously. The connection between the potential below and above Fermi

energy is carried through using the dispersion relation.

3.2 Procedure

In order to build a fully nonlocal self-energy the appropriate starting point is to employ the

local DOM form which can describe available scattering data [20, 26, 16] and extend it to

a nonlocal version. Instead of the radial r-dependence of the local DOM used in Ref. [20]

we require a dependence of the potential on the vectors r and r′. Rotational invariance

implies this dependence only involves the magnitudes r and r′ and the angle between these

two vectors. This angular dependence leads to an `-dependent DOM potential. Including

this nonlocality makes the computation more expensive but allows us to evaluate properties

such as spectral functions that were not available in local DOM versions. The parametrized

nonlocal potential is then employed in the Schrödinger-like equation to generate bound-

state properties allowing us to constrain the self-energy. Further constraints on the self-

energy parameters are obtained by solving Dyson’s equation at negative energies. From

the resulting propagator, one can generate the charge density that can be compared to the

experimental data. The bound-state properties provided by the particle numbers, proton

charge density, energy levels and high missing momenta can then be included in the total

chi-squared analysis. At positive energies the elastic scattering cross sections for protons

and neutrons, the total cross section for neutrons and the reaction cross section for protons

and neutrons were generated from the self-energy to complete the remaining chi-squared
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ingredients. Since there are less data at negative energies we started the fit by considering

just bound-state properties. After these properties were generated in good agreement with

available data, within the assigned errors, the same procedure was repeated to obtain a

good representation of the scattering data at positive energies. A refit of the bound-state

properties was then necessary on account of the dependence on the properties of the self-

energy at positive energies associated with the dispersion relation. The link between the

self-energy at positive and negative energy, as well as the reduced number of available data

at negative energies, present a difficulty in constraining the self-energy and this process has

to be repeated several times.

3.3 Parametrization of the potentials

We provide a detailed description of the DOM functionals in order for the resulting potential

to yield a realistic description of the single-particle properties below and above the Fermi

energy. We use a simple Gaussian nonlocality in all instances. We restrict the nonlocal

contributions to the HF term and the volume and surface contributions of the imaginary

part of the potential. We write the HF self-energy term in the following form

ΣHF (r, r′) = Σnl
HF (r, r′) + δ(r− r′) [VC(r) + V so(r)] ,

with the Coulomb and local spin-orbit contributions. The nonlocal term is split into a volume

and a wine-bottle shape generating contribution

Σnl
HF (r, r′) = −V vol

HF (r, r′) + V wb
HF (r, r′),
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where the volume term is given by

V vol
HF (r, r′) = V 0

HF f
(
r̃, rHF , aHF

)
× [x1H (s; βvol1) + (1− x1)H (s; βvol2)] , (3.1)

allowing for two different nonlocalities with different weight (0 ≤ x1 ≤ 1). We use the

notation r̃ = (r + r′)/2 and s = r − r′. The wine bottle (wb) shape producing Gaussian

replaces the surface term of Ref. [16]

V wb
HF (r, r′) = V 0

wb exp
(
−r̃2/ρ2wb

)
H (s; βwb) . (3.2)

and is motivated by the work of [27]. Non-locality is represented by a Gaussian form

H (s; β) = exp
(
−s2/β2

)
/(π3/2β3).

As usual we employ Woods-Saxon form factors

f(r, ri, ai) =

[
1 + exp

(
r − riA1/3

ai

)]−1
. (3.3)

The Coulomb term is obtained from the calculated charge density and no longer by the

potential from a homogeneous sphere as in all previous work (see e.g. [16]). The local spin-

orbit interaction is given by

V so(r) =

(
~
mπc

)2

V so
0

1

r

d

dr
f(r, rso, aso) ` · σ, (3.4)

where (~/mπc)
2=2.0 fm2 as in Ref. [16].

The introduction of nonlocality in the imaginary part of the self-energy is well-founded the-

oretically both for long-range correlations [25] as well short-range ones [17]. Its implied
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`-dependence is essential in reproducing the correct particle number for protons and neu-

trons. As will be shown below, the assumed imaginary component of the potential has the

form

Im Σ(r, r′, E) = Im Σnl(r, r′;E) + δ(r− r′)Wso(r;E). (3.5)

The nonlocal contribution is represented by

Im Σnl(r, r′;E) = −W vol
0± (E)f

(
r̃; rvol± ; avol±

)
H
(
s; β±vol

)
+4asur± W sur

± (E)H
(
s; β±sur

) d
dr̃
f(r̃, rsur± , asur), (3.6)

where the ± notation refers to quantities above (+) and below (−) the Fermi energy. At

energies well removed from εF , the form of the imaginary volume potential should not be

symmetric about εF as indicated by the ± notation [17]. While more symmetric about εF , we

have allowed a similar option for the surface absorption that is also supported by theoretical

work reported in Ref. [25]. We include a local spin-orbit contribution with the same form as

in Eq. (3.4)

Wso(r, E) =

(
~
mπc

)2

W so(E)
1

r

d

dr
f(r, rso, aso) ` · σ, (3.7)

using the same geometry parameters as in Eq. (3.4) following Ref. [16]. Allowing for the

aforementioned asymmetry around εF the following form was assumed for the depth of

volume potential [16]

W vol
0± (E) = ∆W±

NM(E) +


0 if |E − εF | < Evol

p±

Avol±
(|E−εF |−Evol

p±)
4

(|E−εF |−Evol
p±)

4
+(Bvol

± )4
if |E − εF | > Evol

p± ,

(3.8)
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where ∆W±
NM(E) is the energy-asymmetric correction modeled after nuclear-matter calcu-

lations. The asymmetry above and below εF is essential to accommodate the Jefferson Lab

(e, e′p) data at large missing energy. The energy-asymmetric correction was taken as

∆W±
NM(E) =



αAvol+

[√
E +

(εF+E+
a )

3/2

2E
− 3

2

√
εF + E+

a

]
for E − εF > E+

a

−Avol− (εF−E−E−a )2

(εF−E−E−a )2+(E−a )2
for E − εF < −E−a

0 otherwise

(3.9)

To describe the energy dependence of surface absorption we employed the form of Ref. [20]

W sur
± (E) = ω4(E,A

sur
± , Bsur

±s1, 0)− ω2(E,A
sur
± , Bsur

±s2, C
sur
± ), (3.10)

where

ωn(E,Asur, Bsur, Csur) = Asur Θ (X)
Xn

Xn + (Bsur)n
,

(3.11)

and Θ (X) is Heaviside’s step function and X = |E − εF | − Csur. As the imaginary spin-

orbit component is generally needed only at high energies, we have kept the form employed

in Ref. [16]

W so(E) = Aso
(E − εF )4

(E − εF )4 + (Bso)4
. (3.12)

All ingredients of the DOM have now been identified and their functional form described.

In addition to the HF contribution and the absorptive potentials we also include the disper-

sive real part from all imaginary contributions according to the corresponding subtracted

dispersion relation.

Neutron and proton potentials are kept identical in the fit except for the Coulomb poten-
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Figure 3.1: Calculated and experimental elastic-scattering angular distributions of the dif-
ferential cross section. Panels shows results for n+40Ca and p+40Ca. Data for each energy
are offset for clarity with the lowest energy at the bottom and highest at the top of each
frame. References to the data are given in Ref. [16].
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tial. Included in the present fit are the same elastic scattering data and level information

considered in Ref. [16]. We refer to that paper for references to these data. In addition,

we now include the charge density of 40Ca as given in Ref. [28] by a sum of Gaussians in

the determination of the DOM parameters. The calculation of the charge density requires

a rescaling of the calculated density matrix from the A − 1 to the A-body system as in

Ref. [29]. From now on we denote with N the total neutron number, Z the proton one and

A = N + Z the nucleon number.

3.4 Screened Coulomb Potential

The calculation of the spectral functions for energies greater than zero is formulated in

momentum space. The treatment of the Coulomb potential for protons in momentum space

is a substantial numerical challenge. A possible solution is to employ a screened Coulomb

potential by introducing an exponential factor [30, 31]. The resulting contribution has a finite

range and the usual application of scattering theory in momentum space can be applied.

In the case of scattering from a Coulomb potential the scattering amplitude consists of

two contributions. The first one represents the point Coulomb amplitude and the second

includes the effect of the nuclear potential together with the correction due to the finite charge

distribution. The effect of the latter contribution can be properly calculated in momentum

space as it is of finite range as shown in Refs. [30, 31]. The screened Coulomb potential is

chosen to have the following form:

SnR(r) = S(r) e−( r
R)

n

(3.13)

characterized by two parameters R and n. The Coulomb potential is represented by S =

Zα/r with α ≈ 1/137 the fine structure constant. The parameter n controls the smoothness
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of the exponential term and the radius parameter R determines the range of the screened

Coulomb potential and therefore should be larger than the range of the nuclear potential.

The parameter n must be chosen large enough to allow a complete representation of the

Coulomb potential in the domain where the nuclear potential acts. In Ref. [30] it was shown

that n = 4 is a practical choice to obtain accurate phase shifts and we have also employed

this value. The use of the screened Coulomb potential makes it possible to calculate the

spectral functions for protons at E > 0 as will be shown in 3.5.3.

3.5 Results

3.5.1 Cross Sections

The final fit to the experimental elastic scattering data is shown in Fig 3.1 while the fits

to total and reaction cross sections are shown in Fig. 3.2. In all cases, the quality of the

fit is the same as in Refs. [16] or [26]. This statement also holds for the analyzing powers

which are shown in Fig. 3.3. It should be emphasized that the number of parameters has

not increased substantially compared to previous local calculations in [26] and [16] except

for the decoupling of the imaginary volume and surface potential strength below and above

Fermi energy as suggested by the theoretical work of Refs. [25, 17].

3.5.2 Spectral information below εF

The hole spectral density for energies below the Fermi energy is given by Eq. (2.74) in Sec.

2.8.1. The spectral strength at energy E for a given `j is given by

S`j(E) =

∫ ∞
0

dr r2 S`j(r;E). (3.14)
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Figure 3.2: Total reaction cross sections are displayed as a function of proton energy while
both total and reaction cross sections are shown for neutrons.
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Figure 3.3: Fitted analyzing powers for proton and neutron elastic scattering on 40Ca. For
clarity, successively larger energies have been shifted further up along the vertical axis. The
dashed lines indicate zero analyzing power for each energy.
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In Fig. 3.4 we display the spectral strength given in Eq. (3.14) as a function of energy for

the first few levels in the independent-particle model. The downward arrows identify the

experimental location of the levels near the Fermi energy while for deeply bound levels they

correspond to the peaks obtained from (p, 2p) [32] and (e, e′p) reactions [33]. The DOM

strength distributions track the experimental results represented by their peak location and

width. For the quasi-hole states we find spectroscopic factors of 0.78 for both the 1s1/2 and

0.76 for the 0d3/2 level. The location of the former deviates slightly from the experimental

peak which may require additional state dependence of the self-energy as expressed by poles

nearby in energy [34]. The analysis of the (e, e′p) reaction in Ref. [35] clarified that the

treatment of non-locality in the relativistic approach leads to different distorted proton

waves as compared to conventional non-relativistic optical potentials, yielding about 10-15%

larger spectroscopic factors. Our current results are also larger by about 10-15% than the

numbers extracted in Ref. [36]. It should be noted the traditional extraction of spectroscopic

factor from experimental data employs local optical potentials for the outgoing proton in the

(e, e′p) reaction. It will be interesting in future to employ our nonlocal optical potential to

describe this distorted wave as well as the overlap function for proton removal obtained from

the same nonlocal DOM potential at negative energy. Introducing local DOM potentials in

the analysis of transfer reactions has been shown to have salutary effects for the extraction

of spectroscopic information of neutrons [37] and nonlocal potentials should further improve

such analyses [9]. In Table 3.1 the calculated quasihole energies are compared with the

experimental data. Except for the 1s1/2 which shows about a 3 MeV discrepancy with

experiment, the other levels are in reasonably good agreement with the experimental result.

51



CHAPTER 3. CALCIUM FORTY 3.5. RESULTS

­140 ­120 ­100 ­80 ­60 ­40 ­20 0

­3
10

­2
10

­1
10

1

1/2
s

­140 ­120 ­100 ­80 ­60 ­40 ­20 0

1/2
p

­140 ­120 ­100 ­80 ­60 ­40 ­20 0

]
­1

S
p

e
c

tr
a

l 
fu

n
c

ti
o

n
[M

e
V

­3
10

­2
10

­1
10

1

3/2
d

­140 ­120 ­100 ­80 ­60 ­40 ­20 0

3/2
p

E [MeV]

­140 ­120 ­100 ­80 ­60 ­40 ­20 0

­3
10

­2
10

­1
10

1

5/2
d

E [MeV]

­140 ­120 ­100 ­80 ­60 ­40 ­20 0

7/2f

Figure 3.4: Spectral strength for protons in the `j orbits which are fully occupied in the
independent-particle model as well as the f7/2 strength associated with the first empty orbit
in this description. The arrows indicate the experimental location of the valence states as
well as the peak energies for the distributions of deeply bound ones.
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Table 3.1: Quasihole energies in MeV for neutron orbits in 40Ca near the Fermi energy
compared with experiment.

orbit DOM [MeV] Experiment [MeV]
1p3/2 -3.47 -4.20
1p1/2 -4.51 -5.86
0f7/2 -7.36 -8.36
0d3/2 -16.2 -15.6
1s1/2 -15.3 -18.3

3.5.3 Spectral information above εF

For the energies greater than zero, the spectral density has to be calculated using its formal

expression Eq. (2.64). This equation can be expressed in coordinate space as well. The differ-

ent contributions to the spectral density are calculated according to Eqs. (2.86) and (2.87).

The latter represents the contribution due to the presence of the potential. The spectral

density function S`j(r, r
′;E) is positive and real on the diagonal which is also numerically

confirmed. The different contributions to diagonal part of S`=2,j=3/2(r, r
′;E) in Eq. (2.92)

are plotted in Fig. 3.5 for two different energies E = 30 MeV and E = 50 MeV. The two

terms S2 and S3 contain negative contributions and are identical.

In Fig. 3.6 the total spectral function, its elastic contribution and their difference are plotted

in case of ` = 0 for different energies. Asymptotically at large distances, the influence of other

open channels is represented by a constant shift, whereas, inside the range of the potential, a

pattern related to the absorptive properties of the potential and the orbits that are occupied

emerges. To investigate more of the properties of the DOM potential, we plotted the 3-d plots

of S`j(r, r;E) for several energies and `j values. It should be mentioned that in the plots the

contribution of elastic channel (χelE`j in Eq. (2.80)) is subtracted. Figs. 3.7- 3.10 demonstrate

that the results for the difference of the spectral function with the elastic contribution as a

function of distance r and energy for different orbits exhibits a very characteristic pattern.

These patterns suggest that they are dominated by the presence of already occupied states
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Figure 3.6: The diagonal part of the difference (red curve) between the particle spectral func-
tion (green curve) and the contribution of the elastic-scattering wave function multiplied by
r2 (dashed blue curve), for s1/2 as a function of position for different energies. Asymptotically
with r, this difference is approximately constant and determined only by the inelasticity.
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Figure 3.7: Difference between the particle spectral function and the contribution of the
elastic-scattering wave function multiplied by r2, for s1/2 as a function of both energy and
position. Asymptotically with r, this difference is constant and determined only by the
inelasticity.
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Figure 3.8: Difference between the particle spectral function and the contribution of the
elastic-scattering wave function multiplied by r2, for d3/2 as a function of both energy and
position. Asymptotically with r, this difference is constant and determined only by the
inelasticity.
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Figure 3.9: Difference between the particle spectral function and the contribution of the
elastic-scattering wave function multiplied by r2, for f5/2 as a function of both energy and
position.
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Figure 3.10: Difference between the particle spectral function and the contribution of the
elastic-scattering wave function multiplied by r2, for g7/2 as a function of both energy and
position.
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in the ground state as they illustrate a two-node structure for s1/2 at low energy in Fig. 3.7

(two mainly occupied states), one node for d3/2 in Fig. 3.8 (one occupied state), and no node

for f5/2 and g7/2 (no occupied states) in Figs. 3.9 and 3.10. All patterns show the presence

of more nodes evolving at higher energies.

In Fig 3.11 the spectral function for ` = 0 is plotted for different energies and compared with

Figure 3.11: Spectral function (red curve) and its asymptotic behaviour (blue curve). The
green curve is the free propagator spectral function.
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its asymptotic behavior and also the free propagator. As one expects at larger distances the

spectral function and its asymptotic form must converge whereas for the interior the nuclear

structure accounts for the reduction of the spectral function compared to the asymptotic

behavior. This figure is included to illustrate the correct numerical implementation of various

solutions of the Dyson equation.

3.5.4 Charge density

In Fig. 3.12 we compare the experimental charge density of 40Ca (thick line representing a

1% error) with the DOM fit. The one-body density matrix can be obtained by integrating

the imaginary part of the propagator for a given `j up to the Fermi energy:

n`j(r, r
′) =

1

π

∫ εF

−∞
dE ImG`j(r, r

′;E). (3.15)

For protons the charge density can be calculated using the diagonal elements of the one-body

density matrix:

ρp(r) =
e

4π

∑
`j

(2j + 1) n`j(r, r). (3.16)

While some details could be further improved, it is clear that an excellent description of

the charge density is possible in the DOM. The correct particle number is essential for this

result, which in turn can only be achieved by including nonlocal absorptive potentials that

are also constrained by the high-momentum spectral functions. The resulting proton number

is 19.78 which corresponds to about a 1% error that was assigned to this quantity. With

a local absorption, we are not capable to either generate a particle number close to 20 or

describe the charge density accurately. We reiterate that for local absorptive potential, and

the HF term represented in a nonlocal form, it is not possible to obtain a good result for the

charge density [3]. We note that the introduction of the gaussian potential that generates a
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Figure 3.12: Comparison of experimental charge density [28] (thick red hashed line) with
the DOM fit (solid blue curve).
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wine-bottle shape in the HF term is also helpful in obtaining a correct charge density. This

wine-bottle potential was found necessary to describe overlap functions in Ref. [27].

3.5.5 High-momentum components

We compare in Fig. 3.13 the results for the high-momentum removal spectral strength with

the Jefferson Lab data [38, 39]. Since the data for Al and Fe per proton are essentially

equivalent [39] we have used their average to represent proton removal at high momenta for

40Ca. We note that the high-energy part of the data correspond to intrinsic nucleon exci-

tations and cannot be part of the present analysis. To further improve the description, one

would have to introduce an energy dependence of the radial form factors for the potentials.

Nevertheless we conclude that an adequate description is generated which corresponds to

10.6 % of the protons having momenta above 1.4 fm−1. The momentum spectral function

for a given `j is obtained from:

S`j(k;E) =
2

π2

∫ ∞
0

drr2
∫ ∞
0

dr′r′2 j`(kr) j`(kr
′) ImG(r, r′;E) (3.17)

by employing a double Fourier-Bessel transform of the imaginary part of the propagator

expressed in coordinate space. The momentum distribution can be obtained by integrating

the momentum spectral function up to the Fermi energy.

n`j(k) =

∫ εF

−∞
dE S`j(k;E). (3.18)

The total momentum distribution including the degeneracy factors 2j + 1 and weighted by

the factor k2 is plotted in Fig. 3.14 and compared with the momentum distribution of the

quasi-hole wave functions of the IPM demonstrating the charactristic tail at high momentum

that is not present in the mean-field.
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Figure 3.13: Spectral strength as a function of missing energy for different missing momenta
as indicated in the figure. The data are the average of the 27Al and 56Fe measurements from
Ref. [39] and are represented by solid curves containing full circles. The DOM results are
represented by dot-dashed curves.

3.5.6 Binding Energy

The SP propagator allows the calculation of the energy of the ground-state when only two-

body interactions are present. Such a calculation using the empirical hole spectral density

from the DOM therefore sheds light on the contribution of the three-body interactions to the

ground-state energy. It is practical to calculate the energy sum rule in momentum-space. For
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Figure 3.14: Momentum distribution for protons in 40Ca. The red line represents the DOM
calculation and the blue line the IPM.

instance the energy per proton of the ground state can be obtained by calculating [10]:

E

Z
=

1

2Z

∑
`j

(2j + 1)

∫ ∞
0

dk k2
k2

2m
n`j(k)

+
1

2Z

∑
`j

(2j + 1)

∫ ∞
0

dk k2
∫ εF

−∞
dE E S`j(k;E). (3.19)

We used the center-of-mass corrected form to evaluate the binding energy per nucleon as

in Ref. [40]. This yields a binding energy of 7.91 MeV per nucleon much closer to the

experimental 8.55 MeV than the 4.71 MeV found in Ref. [3]. The constrained presence of

the high-momentum nucleons is responsible for this change [41]. The 7.91 MeV binding per

nucleon obtained here represents the contribution to the ground-state energy from two-body
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interactions including a kinetic energy of 22.64 MeV per nucleon and was not part of the

fit implying a potential energy contribution of about 30 MeV attraction per particle. This

empirical approach therefore leaves about 0.64 MeV per nucleon for higher-body interactions

which compares reasonably with the 1.5 MeV per nucleon attraction needed in the Green’s

function Monte Carlo results of [42] for light nuclei.

3.6 Sum rule

We display in Fig. 3.15 the results of the DOM spectral function as calculated with Eq. (2.81)

for the most relevant bound orbits in 40Ca including the hole spectral function of Eq. (2.83).

Because the DOM analysis assumes that the imaginary part of the self-energy starts at εF ,

the spectral strength is a continuous function of the energy. The method of solving the

Dyson equation for E < 0 is very different than that for E > 0. The continuity of the curves

at E = 0 confirms the numerical aspects of both of these calculations. An important sum

rule is valid for the sum of the occupation number for the orbit nn`j and its depletion number

dn`j [10]

1 = nn`j + dn`j=

∫ εF

−∞
dE Sn−`j (E)+

∫ ∞
εF

dE Sn+`j (E), (3.20)

equivalent to a†n`jan`j + an`ja
†
n`j = 1. The average Fermi energy εF is given in Eq. (2.20).

Strength above εF , as expressed by Eq. (2.81), reflects the presence of the imaginary self-

energy at positive energies. Without it, the only contribution to the spectral function comes

from the elastic channel [42]. The folding in Eq. (2.81) then involves integrals of orthogonal

wave functions and yields zero. Because it is essential to describe elastic scattering with

an imaginary potential, it automatically ensures that the elastic channel does not exhaust

the spectral density and therefore some spectral strength associated with IPM bound orbits
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Figure 3.15: Calculated neutron spectral strength, both below and above the Fermi energy,
for bound orbits in 40Ca. The spectral strength is constrained by elastic scattering data,
level structure, charge density, particle number, and the presence of high-momenta below
the Fermi energy [4].
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Table 3.2: Occupation and depletion numbers for bound orbits in 40Ca. The dnlj[0, 200]
depletion numbers have only been integrated from 0 to 200 MeV. The fraction of the sum
rule in Eq. (3.20) that is exhausted, is illustrated by nn`j + dn`j[εF , 200]. We also list the
dnlj[0, 200] depletion numbers for the CDBonn calculation in the last column.

orbit nn`j dn`j[0, 200] nn`j + dn`j[εF , 200] dn`j[0, 200]
DOM DOM DOM CDBonn

0s1/2 0.926 0.032 0.958 0.035
0p3/2 0.914 0.047 0.961 0.036
1p1/2 0.906 0.051 0.957 0.038
0d5/2 0.883 0.081 0.964 0.040
1s1/2 0.871 0.091 0.962 0.038
0d3/2 0.859 0.097 0.966 0.041
0f7/2 0.046 0.202 0.970 0.034
0f5/2 0.036 0.320 0.947 0.036

also occurs in the continuum. Below the Fermi energy, the spectral strength contains peaks

associated with the 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, and 0d3/2 orbits with narrower peaks for

orbits closer to the Fermi energy. Their strength was calculated for the overlap functions

associated with the location of the peaks by solving the Dyson equation without the imagi-

nary part but with self-consistency for the energy of the real part [3]. The strength of these

orbits above the Fermi energy exhibits systematic features displaying more strength when

the IPM energy is closer to the continuum threshold as shown in Fig 3.15 for neutrons and

Fig. 3.16 for protons. The proton spectral functions are very similar to those for neutrons

except for the shift due to the presence of the Coulomb potential. We make the strength ob-

servation quantitative by listing the integrated strength according to the terms of Eq. (3.20)

in Table 3.2. For the depletion we integrate from 0 to 200 MeV which corresponds to the

energy domain constrained by data in the DOM. We also include the 0f7/2 and 0f5/2 spectral

functions in Fig. 3.15 and corresponding results in Table 3.2 noting that the strength in the

continuum from 0 to 200 MeV further rises to 0.202 and 0.320, respectively. From εF to 0
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Figure 3.16: Calculated proton spectral strength from a momentum space calculation with
a screened Coulomb potential both below and above the Fermi energy, for bound orbits in
40Ca. The spectral strength is constrained the corresponding elastic scattering data as the
results in Fig. 3.15.
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the strength for these states is also included in the sum and decreases from 0.722 to 0.591,

respectively. This illustrates that there is a dramatic increase of strength into the continuum

when the IPM energy approaches this threshold. Such orbits correspond to valence states

in exotic nuclei [43, 44, 45]. The 1p3/2 and 1p1/2 spectral functions are not shown as they

mimic the behavior of the 0f7/2 distribution but their presence causes the wiggles in the

0p3/2 and 0p1/2 spectral functions due to slight nonorthogonality. This sensitivity to the sep-

aration from the continuum is associated with the pronounced surface absorption necessary

to describe the elastic-scattering data in this energy range. At higher energies, volume ab-

sorption dominates and the strengths of the different orbits become similar as illustrated in

Fig. 3.17 [17]. This figure also includes the CDBonn predictions which highlight the notion

that SRC predominantly impact higher energies [46]. While the CDBonn spectral functions

are above the DOM results for energies larger than 100 MeV, it is quite likely that a some-

what harder interaction like Argonne V18 [47] would move some of this excess strength to

higher energy [48]. The fraction of the sum rule of Eq. (3.20) for the DOM in Table 3.2

indicates that a few percent of the strength occurs at energies higher than 200 MeV [17].

Theoretical work associates such strength with SRC [49]. No surface absorption is present in

the microscopic CDBonn results and their depletions in Table 3.2 correspond to a uniform

strength distribution for all orbits consistent with the SRC interpretation as illustrated in

Fig. 3.17.

3.7 Volume Integrals

In studying optical potentials, investigating the volume integral of real and imaginary poten-

tials is found to be useful. Although there is no unique fit for the self-energy in the standard

optical-model description, it turns out that volume integrals of the imaginary potential of

good fits are very similar [50]. In the case of the nonlocal DOM, the self-energy depends
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Figure 3.17: Calculated spectral strength for mostly occupied orbits in 40Ca from 0 to 200
MeV. The CDBonn spectral functions exhibit mainly volume absorption.

on the angular momentum `, so the contributions Σ`j(r, r′) can be studied and compared

to ab initio calculations such as Faddeev random phase approximation (FRPA) [25] and the

treatment of SRCs using the CDBonn interaction [17]. The plots in this section show volume

integrals as a function of energy with respect to the relevant Fermi energy.

The FRPA is a microscopic implementation of the Green’s function method that incorpo-

rates the low-energy or long-range correlations because only a finite size model space can

be treated. In this formalism the nucleons couple to low-lying collective states and giant

resonances [51, 52, 34]. First we compare the DOM volume integrals with the correspond-

ing FRPA results for 40Ca. We exclude the spin-orbit contribution by averaging it out [25]

and present only the volume integrals of the central part, Σ`
0(r, r

′) of the self-energy. These

71



CHAPTER 3. CALCIUM FORTY 3.7. VOLUME INTEGRALS

-800

-600

-400

-800

-600

-400

J V
 /

 A
  
 [

M
e
V

 f
m

3
]

-200 -100 0 100
E - E

F
 [MeV]

-600

-400

-200

-200 -100 0 100 200
E - E

F
 [MeV]

l = 3l = 2

l = 4

l = 0 l = 1

l = 5

Figure 3.18: Comparison of the real part of the volume integral of the potential for FRPA
(blue curves) and nonlocal DOM (red curves) calculations. The horizontal dashed green line
represents the static contribution of the FRPA self-energy.

72



CHAPTER 3. CALCIUM FORTY 3.7. VOLUME INTEGRALS

volume integrals are given by:

J `W (E) = 4π

∫
drr2

∫
dr′r′2 ImΣ`

0(r, r
′;E) (3.21)

J `V (E) = 4π

∫
drr2

∫
dr′r′2 ReΣ`

0(r, r
′;E). (3.22)

In Fig. 3.18 the real volume integral for different partial waves up to ` = 5 is plotted.

The solid red lines represent the nonlocal DOM results and the blue lines indicate the FRPA

results [25]. As indicated in Fig. 3.18 there is a reduction in the magnitude of the real volume

integral for higher `’s for both calculations. In the case of the FRPA calculations there is

a larger reduction of the magnitude for higher partial waves that can be explained by the

truncated model space. The agreement for the smaller ` values appears to be reasonable

for energies near the Fermi energy. The rise of the FRPA calculations with energy is also

due to the limited phase space because the accompanying imaginary part has a limited

energy domain (see Fig. 3.19). In the DOM calculation this rise takes place at much higher

energy because the complete phase space is taken into account. In Fig. 3.19 the volume

integral of the imaginary part of the potential is compared for the FRPA and DOM. FRPA

microscopic calculations emphasize the coupling to surface excitations and do not include

absorption at higher energies associated with volume physics as shown in Fig. 3.19. The

negative energy tail of the DOM calculation is attributed to the presence of high momenta

which constrain this part of the self-energy and are also not included in FRPA calculations.

The volume integral for small ` values in Fig. 3.19 compare reasonably well near the Fermi

energy while larger differences occur at higher energies and larger values of orbital angular

momentum.

In Fig. 3.20 the volume integral of the nonlocal DOM imaginary potentials and CDBonn [17]

are compared for different `. The CDBonn calculations emphasize SRCs and do not repre-

sents surface absorption as illustrated in Fig. 3.20. At large positive energies CDBonn results
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Figure 3.19: Comparison of the imaginary part of the potential volume integral for FRPA
(dashed blue curves) and nonlocal DOM (red curves) calculations.
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Figure 3.20: Comparison of the imaginary volume integral of the potential for the nonlocal
DOM (red curve) and CDBonn (dashed blue curve) calculations.

exhibit more volume absorption than DOM calculations. The latter feature is also reflected

in the corresponding spectral strength distribution shown in Fig. 3.17. At negative energies

the CDBonn volume integrals vanish more rapidly than the DOM calculations which reflects

the naive treatment of the two-hole-one-particle intermediate states in the calculation of the

self-energy in Ref. [17].

Unlike the local DOM self-energy the nonlocal DOM implementation generates volume in-

tegrals that depend on angular momentum. This is illustrated in Fig. 3.21 for the real and
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Fig. 3.22 for the imaginary part where a comparison with `-independent volume integral of

Ref. [16] is made. In the local DOM the nonlocality of the HF self-energy is replaced by a

spurious linear energy dependence term at negative energies which is reflected in Fig. 3.21.

Around the Fermi energy the local DOM appears to represent an average of the nonlocal

DOM volume integrals for lower ` values. At higher energies a similar result occurs but

involves higher ` values. In the local DOM prescription the HF term is given by:

VHF (r;E) = VHF (E)f(r, aHF , RHF ), (3.23)

where the energy dependence mimics the effect of treating nonlocality [2]. The energy deriva-

tive of VHF is a measure of that nonlocality which is related to the momentum-dependent

effective mass [2]:

m̃(r;E)

m
= 1− ∂

∂E
VHF (r;E). (3.24)

To compare local DOM potentials with a nonlocal self-energy it is necessary to correct for

this treatment of nonlocality [3, 2] by employing the following equation:

W =
m̃(r;E)

m
ImΣ. (3.25)

In other words, to compare the calculated volume integral in the nonlocal DOM as in Figs.

3.18 and 3.19 with the local version, the factor m/m̃ must be taken into account. For the

interior region of nuclei this factor is approximately 2 [26]. In Fig. 3.22 the local imaginary

potential volume integral is plotted with and without this effective mass correction. The local

DOM calculation below the Fermi energy (the solid yellow curve in Fig. 3.22) shows larger

absorption than the nonlocal one which is associated with the assumption of a symmetric

treatment of the surface absorption in that calculation [26] which has been abandoned in

the nonlocal DOM.
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Figure 3.21: Comparing the real part of the potential for local DOM (yellow curve) and
nonlocal DOM ( colored curves for ` = 0 to 4) calculations.
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Figure 3.22: Local (dashed yellow and yellow curves, the solid yellow curve calculated in-
cluding the mass correction) and the nonlocal DOM (for ` = 0 to 4) imaginary potential
volume integrals.

The neutron quasi-particle wave functions for 0d3/2 and 1s1/2 are compared for the nonlocal

and local DOM in Figs. 3.23 and 3.24. As one expects the bound-state wave functions are

rather similar especially for the 0d3/2. The 1s1/2 with one node exhibits a stronger surface

component compared to the local one which was already discussed in the analysis of the

transfer reactions in Ref. [37].
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Figure 3.23: Comparison of 40Ca bound-state wave function d3/2 multiplied by r for local
(dashed blue curve) and nonlocal (red curve) DOM calculations.
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Figure 3.24: Comparison of 40Ca bound-state wavefunction multiplied by r for the second
s1/2 for local (dashed blue curve) and nonlocal (red curve) DOM calculations.
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4
Calcium Forty-eight

4.1 Introduction

There is a considerable interest, some of which is astrophysical, in studying nuclei with a large

difference in neutron and proton number. Such nuclei can be studied at rare isotope facilities

like FRIB at MSU. In the sequence of calcium isotopes both 40Ca and 48Ca are considered

double closed-shell nuclei. It is therefore possible to apply the DOM to both these nuclei

simultaneously [20, 26, 16]. Such a fit allows for predictions of nuclei towards the drip line

by a suitable extrapolation from the fit to 40Ca and 48Ca. In addition by establishing the

N − Z dependency of the potential from the results of 48Ca it becomes possible to make

predictions for neutron properties in the ground state of 48Ca including the neutron skin.

It is therefore essential to implement a nonlocal version of the DOM for this neutron-rich

system. We also note that it has been hard to fit elastic neutron scattering data on 48Ca

with the local version of the DOM [16]. One of the most significant consequences of studying

and developing the self-energy for 48Ca is therefore extracting information about the neutron

distribution by calculating the neutron skin. This distribution impacts the number of nuclei

that can exist and the size of neutron stars [53].
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In this chapter we apply the nonlocal DOM to 48Ca. Building the self-energy for the new

isotope, we started from the 40Ca self-energy and included asymmetry terms in the potential.

Although there are eight neutrons added to 40Ca, the charge density radius for protons of

48Ca is the same as for 40Ca [28] (unlike the intermediate isotopes which have slightly larger

charge radii). To obtain the appropriate self-energy that can describe the available data,

we initiate the procedure by employing the well-constrained self-energy for 40Ca obtained

in the previous chapter. All those parameters are kept fixed except the radii for different

terms in the self-energy because the increase with A1/3 growth in the nuclear radius is not

a premise. Moreover the asymmetry term which carries N − Z dependence is included in

different terms of the potential. The parametrized self-energy is then constrained to represent

the available data at positive and negative energies. At negative energies, particle number,

quasi-particle energy levels and charge density were incorporated to constrain the self-energy.

At energies above the Fermi energy the available data for the total, elastic scattering cross

section and analyzing power for protons and neutrons were adopted to determine the self-

energy parameters through a similar fit process as for 40Ca.

4.2 Parametrization of the potentials for 48Ca

In the case of 48Ca the asymmetry factor (N − Z)/A is included as follows for the HF

term:

V vol
HF (r, r′) = V 0

HFf
(
r̃, rHF , aHF

)
× [x1H (s; βvol1) + (1− x1)H (s; βvol2)]

± αasymHF (p,n) ×
N − Z
A

f
(
r̃, rHF (p,n)

asym , aHFasym
)

×
[
x1H

(
s; βasymvol1(p,n)

)
+ (1− x1)H

(
s; βasymvol2(p,n)

)]
, (4.1)
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where the contribution of the first line of Eq. (4.1) is taken from Ref. [4]. The asymmetry

parameters αasymHF (p,n), r
HF (p,n)
asym , aHFasym, β

asym
vol1(p,n)

and βasymvol2(p,n)
are given in B.1 of App. B. For

the spin-orbit potential we employ a local form which is similar to what is implemented

in [16]:

V so(r) =

(
~
mπc

)2

×
(
V so
0 ± V so(p,n)

NZ × N − Z
A

)
× 1

r

d

dr
f(r, rso, aso) ~̀ · ~σ. (4.2)

For the imaginary part of the self-energy we add an asymmetry contribution to the original

surface potential with the same form with different parameters that are given in B.2 of

App. B:

W
sur(p,n)
asym± (E) = ω4

(
E,A

sur(p,n)
asym± , B

sur(p,n)
asym±s1, 0

)
(4.3)

− ω2

(
E,A

sur(p,n)
asym± , B

sur(p,n)
asym±s2, C

sur(p,n)
asym±

)

where Asur in Eq. (3.11) is changed to:

A
sur(p,n)
asym± ×

N − Z
A

. (4.4)

The imaginary volume part of the potential is modified to:

W vol
0± (E) = ∆W±

NM(E) (4.5)

+


0 if |E − εF | < Evol

p±(
Avol± ± Cvol(p,n)

asym × N−Z
A

)
(|E−εF |−Evol

p±)
4

(|E−εF |−Evol
p±)

4
+(Bvol

± )4
if |E − εF | > Evol

p± ,
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with the corresponding change for the Eq. (3.9):

∆W±
NM(E) = (4.6)



α
(
Avol+ ± Cvol(p,n)

asym × N−Z
A

)[√
E +

(εF+E+
a )

3/2

2E
− 3

2

√
εF + E+

a

]
for E − εF > E+

a

−
(
Avol− ± Cvol(p,n)

asym × N−Z
A

)
(εF−E−E−a )2

(εF−E−E−a )2+(E−a )2
for E − εF < −E−a

0 otherwise.

The imaginary part of the self-energy including the above consideration will have the follow-

ing form:

Im Σnl(r, r′;E) = − W vol
0± (E)f

(
r̃; rvol± ; avol±

)
H
(
s; β±vol

)
(4.7)

+ 4asur± W sur
± (E)H

(
s; β±sur

) d
dr̃
f(r̃, rsur± , asur),

+ 4asur± W
sur(p,n)
asym± (E)H

(
s; βasym±sur(p,n)

) d

dr̃
f(r̃, r

sur(p,n)
asym± , asur).

4.3 Parameters for 48Ca

The constraint of the number of particles was incorporated to include contributions from

` = 0 to 5. Such a range of `-values generates a sensible convergence with ` when short-

range correlations are included as in Ref. [17]. We obtain a total number of 27.9 neutrons

summing from ` = 0 to 5 partial wave terms including j = `± 1
2

and 19.8 for the number of

protons. This is within the error we assigned to the particle number of about 1%. If in the

future higher `-values are included, we expect a slight change in the fitted parameters.

The HF parameters are shown in Table B.1. The corresponding equations where these

parameters are introduced have also been listed in this table. The spin-orbit parameters are
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also gathered in Table B.1.

The parameters pertaining to volume absorption are displayed in Table B.1. Motivated by

the theoretical work of Refs. [25, 17], we allow for different nonlocalities above and below

the Fermi energy in the asymmetry terms. While we obtain small differences for the radii

parameters other parameters show very minor differences and could have been kept identical

above and below the Fermi energy in the fit. Surface absorption parameters are collected in

Table B.2.

4.4 Elastic scattering cross sections

Unlike for 40Ca there are few experimental data available for neutron elastic scattering for

48Ca. Two new data sets were recently acquired at the Triangle Universities Nuclear fa-

cility [16]. In Fig. 4.1 calculated reaction cross sections for proton and the experimental

data are plotted. The nonlocal DOM total and reaction cross sections for neutrons are also

plotted in the bottom part of Fig. 4.1. Total neutron cross sections were recently measured

and reported in Refs [16, 54]. Employing the nonlocal DOM made it possible to generate

the total and elastic scattering cross sections consistent with data. Because 40Ca and 48Ca

were not simultaneously fit, we find that the ratio of the difference of the total cross sections

to their sum is somewhat overestimated compared to the data of Ref. [54]. Judging from

Fig. 3.2 a slight increase of the 40Ca total cross section centered around 50 MeV would lead

to a good agreement. In Fig. 4.2 the elastic scattering data for protons and neutrons in 48Ca

are shown together with nonlocal DOM fits. In Fig. 4.2 the angular distributions for protons

for 48Ca for the nonlocal DOM are of the same quality as the local calculations [20, 26, 16].

The elastic scattering for neutrons fitted using the nonlocal DOM potential exhibits an im-

proved overlap with experimental data as one can see in Fig 4.3. The neutron scattering data
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Figure 4.1: Total reaction cross sections are displayed as a function of proton energy while
both total and reaction cross sections are shown for neutrons.
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Figure 4.2: Calculated and experimental elastic- scattering angular distributions of the dif-
ferential cross section. Panels shows results for n+48Ca and p+48Ca. Data for each energy
are offset for clarity with the lowest energy at the bottom and highest at the top of each
frame. References to the data are given in Ref. [16].
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Figure 4.3: Comparison of the local (on the left) and nonlocal (on the right) DOM fit for
neutron angular distributions on 48Ca.
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were not well represented by local version of DOM, and further flexibility of the nonlocal

potential provides a better description of the experimental data. In Fig. 4.4 the nonlocal

DOM fit and experimental data for analyzing powers for protons are plotted. The nonlocal

DOM fit for proton analyzing power is also of the same quality as the local DOM calculations

in [20, 26, 16].

4.5 Charge density of 48Ca

Comparing 48Ca with 40Ca, one realizes that the experimental charge density radius is not

obeying the A1/3 law. Specifically (40/48)1/3 is about 0.94 whereas the experimental charge

density ratio 3.48/3.51 is 0.99 [28]. It illustrates the complicated nature of the correlations

inside the nucleus. In Fig 4.5 the folded charge density calculated using the nonlocal DOM

self-energy, as well as experimental charge density are plotted. As we see the two charge

distribution curves are consistent and give rise to the same proton number and charge density

radius. The saturation density of nuclear matter ρ0 is usually inferred from the interior

charge distribution of heavier nuclei as obtained from elastic electron scattering. This density

corresponds to a Fermi moment of about 1.33 fm−1 if the experimental charge distribution

at the origin in 208Pb is multiplied by A/Z. For N 6= Z nuclei it is therefore of critical

importance to know the neutron distribution which is also shown in Fig. 4.5 together with

the weak charge distribution.

One of the important quantities that improves our understanding of the nuclear structure

of a heavy nucleus is played by this saturation density of nuclear matter ρ0 which is closely

related to the size of the nucleus. Thus an accurate measurement of the neutron distribution

rms radius Rn can give us a better understanding of ρ0 and the relevant properties. A

clean experimental method to determine the distribution of neutrons is by a parity-violating
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Figure 4.4: Fitted analyzing powers for proton elastic scattering on 48Ca target nuclei. For
clarity, successively larger energies have been shifted further up along the vertical axis. The
dashed lines indicate zero analyzing power for each energy.
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Figure 4.5: Comparison of calculated (red curve) and experimental (blue curve) folded charge
density for 48Ca. The calculated weak charge distribution (dashed green line) as well as
neutron matter distribution (turquoise curve) are plotted too. The reduction of the weak
charge distribution near the origin is the effect of proton accumulation in that region.
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elastic electron scattering measurement. At low-energy in parity violating electron-nucleus

scattering, the electrons interact primarily with neutrons through the exchange of the Z0

boson of the standard model [55]. The weak form factor FW is proportional to the fractional

difference in cross section of the positive and negative helicity electron cross section [55]:

ALR =
σR − σL
σR + σL

(4.8)

and the form factor itself is the Fourier transform of the weak charge density which is related

to the neutron density

FW (q2) =

∫
d3r j0(qr) ρW (r). (4.9)

This weak form factor calculated from the parameters of the nonlocal DOM is plotted in

Fig. 4.6. The projected location of the CREX data (q2 = 0.8 fm−1) for 48Ca is also shown

on Fig. 4.6. CREX (Calcium radius experiment) [56] can play an important role in revealing

the methods that can be used for calculations of heavier nuclei. It also provides informa-

tion about the importance of the three-body force and its importance in nuclear structure

calculations. The weak charge density distribution in Fig 4.5 is calculated through

ρW (r) = 4

∫
d3r′

[
GZ
n (|r− r′)ρn(r′) +GZ

p (|r− r′)ρp(r
′)
]

(4.10)

where GZ
p and GZ

n are the electric form factors for the coupling of a Z0 to the proton and

neutron respectively:

GZ
p =

1

g
(Gp −Gn)− sin2 θWGp −

1

4
GsG

Z
n =

1

g
(Gn −Gp)− sin2 θWGn −

1

4
Gs, (4.11)

where Gp and Gn are the proton and neutron electromagnetic form factors. The strange

quark form factor Gs assumed to be the same for protons and neutrons [55]. The weak
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Figure 4.6: Weak form factor as a function of transfered momentum q for 48Ca.
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charge attributed to the weak charge density is defined by:

QW = −N + (1− 4 sin2 θW )Z, (4.12)

for instance sin2 θW = 0.23 is used for 208Pb in Ref. [55]. In our DOM study since all the

parameters for both neutrons and protons are well constrained by data and can describe

them well in 48Ca, one can extract the neutron matter distribution as well as neutron skin

which is the difference of neutron and proton rms radii:

δR = Rn −Rp. (4.13)

The calculated neutron skin using the nonlocal DOM is δR = 0.249 ± 0.023 fm. In order

to calculate the error, we scramble the available elastic scattering data within the assigned

experimental errors. For each energy, the elastic scattering data at different angles were

scaled by a random number generated within the errors. A new fit was started using the

new randomly generated data sets. This process was done about 95 times to obtain a

reasonable and fairly reliable value for neutron skin error. In a recent study employing an

ab initio calculation, a prediction for the neutron distribution in the neutron-rich nucleus

48Ca was generated [53]. The calculated neutron skin of 0.12-0.15 fm is smaller than most

mean-field calculations and our DOM result. In Fig. 4.7 the results of many mean-field

calculation both relativistic and non-relativistic, for the neutron skin in 208Pb and 48Ca are

collected following Ref. [57]. There is a significant difference between the recent coupled-

cluster calculations [53] and the current nonlocal DOM result for the neutron skin in 48Ca.

The next task in studying the nonlocal DOM is to calculate the neutron skin for 208Pb after

fitting the relevant data and constructing the corresponding self-energy. The yellow line in

Fig. 4.7 represents the DOM calculation. A point for 208Pb will be added in the future when

a corresponding fit has been generated.
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DOM 

ab initio 

Figure 4.7: Different model calculations and predictions for 48Ca and 208Pb. Figure is
adapted from Ref. [58] and the DOM results and the ab initio result of Ref. [53] are added.
The nonlocal DOM calculation for 48Ca skin is represented by the horizontal yellow bar and
the calculation of Ref. [53] by the blue stripped area. The dashed box is associated with
the PREX-II experiment [59] and centered at the present value for 208Pb [60] but with the
expected error of PREX-II. The CREX error [56] represents the vertical width of the box
and its central value is arbitrarily chosen.
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4.6 Comparing 40Ca and 48Ca properties

4.6.1 Potentials

Studying potentials obtained from the fits to both 40Ca and 48Ca can reveal many properties

of interest, for instance the asymmetry dependence of the imaginary potential influences

the asymmetry dependence of occupation numbers and spectroscopic factors. The evolution

of the potential in different nuclei determines how correlations are changing by adding or

removing protons or neutrons. In this work the asymmetry dependence is incorporated by

employing the N − Z factor, starting from 40Ca. Traditionally the asymmetry term has

a positive sign for neutrons and a negative one for protons with the same absolute value,

however we allow these quantities to be different for protons and neutrons at both negative

and positive energies. In Fig. 4.8 the energy dependence of the proton volume terms of the

imaginary potential for 48Ca and 40Ca are compared. The presence of the additional eight

neutrons leads to more volume absorption for protons in 48Ca. A similar comparison of

surface part of the proton potential is plotted in Fig. 4.9. Comparing Figs. 4.1 and 3.2 for

protons, we note the data demand more absorption for positive energy 48Ca than 40Ca in

the surface domain which corresponds to the results shown in Fig. 4.9. Part of this increase

in asymmetry appears to be related to the tensor force which has a more significant effect

for the protons in 48Ca [25]. The surface absorption in 48Ca exhibits a little difference below

and above the Fermi energy as in the local DOM work [26, 20]. Comparison with the result

for 40Ca shows that the surface absorption at lower energy is larger for 48Ca. We note that

whereas for 40Ca the self-energy at negative energies is well constrained by experimental data

this is not the case for 48Ca. This shows a certain ambiguity in determining the shape of the

potential below Fermi energy. This can be resolved by further experiments at Jefferson lab

(Jlab) at high momenta for proton removal from 48Ca. There are also no experimental data
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for the deeply bound s1/2 width in 48Ca whereas it is measured for 40Ca. This is another

source of ambiguity in constraining the self-energy at negative energies for 48Ca. This can

also be removed by future experiments. Further clarification is provided by comparing the

volume integral of the imaginary potentials for 48Ca and 40Ca. These potentials are given in

Eqs. (4.8) and (3.5) which contain angular dependence. We therefore plot volume integrals

according to Eq. (3.22) which employs projected volume integrals. The results plotted for

protons for ` = 0 to ` = 5 are shown in Fig. 4.10. These plots include both surface and volume

contributions to the self-energy. In Fig. 4.10 the red curve represents the volume integral

of the 48Ca self-energy and exhibits more absorption in the domain of surface absorption

both at positive and negative energies. In the fit to obtain the parameters for the 40Ca

self-energy, the potential was constrained by the (e, e′p) data at high missing momenta. For

48Ca such data are not available and therefore the self-energy is not constrained at large

missing energies. As a consequence, the energy distribution of high-momentum protons is

not constrained and therefore it is not appropriate to evaluate the energy sum rule for this

nucleus as it is dominated by such terms as discussed in Ch. 3 for 40Ca. Although Figs 4.9

and 4.8 suggest more absorption for 48Ca than 40Ca, at these energies, Fig. 4.10 demonstrates

that is not the case in terms of the total volume integral of the potential. The constraint of

particle number and the charge density therefore forces the radius parameter to be smaller

in case of 48Ca compared to 40Ca. At positive energies a similar effect is demonstrated in

Fig. 4.10 because the elastic scattering data for protons constrain the volume integral above

the Fermi energy. In the domain of volume absorption of 48Ca and 40Ca, E > 50 MeV,

volume integrals are the same reflecting a fit to the scattering data in both nuclei. This

suggests that protons in both nuclei interact in the interior of the nucleus with a similar

composition of protons and neutrons. This is confirmed by comparing the interior densities

in Figs. 4.5 and 3.12. These figures shows that the main difference is in the domain of surface

absorption which argues for the larger skin for 48Ca as shown in Fig. 4.7. Such a conclusion
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can only be derived in the nonlocal DOM since proper results for densities can be obtained.

In Figs. 4.11 and 4.12 the neutron imaginary volume and surface potentials for 48Ca are

plotted respectively. There is less asymmetry dependence for neutrons than protons in 48Ca.

Consequently proton spectroscopic factors and occupation numbers are more affected than

for neutrons, moving from 40Ca to 48Ca due to increased correlation for protons with the

extra 8 neutrons. For completeness the corresponding results for neutrons are plotted

in Figs. 4.11-4.13 noting that neutron data provide considerably less restrictions on these

results compared to protons.

4.6.2 Spectral functions and spectroscopic factors

A comparison of the valence spectroscopic factors for 48Ca and 40Ca are given in Tables 4.1

and 4.2. As one can see in Table 4.1 the spectroscopic factors for the orbits near the Fermi

energy are smaller for protons in 48Ca. The above discussion of the volume integrals of the

imaginary potentials is consistent with these results. Neutron spectroscopic factors do not

follow the same trend, as we see in Table 4.2 the neutron spectroscopic factors remain almost

the same in these two isotopes. It confirms the higher correlation between proton-neutron

than neutron-neutron which can partially be explained by the tensor force [61, 25]. It is

Table 4.1: Comparison of proton spectroscopic factors in 40Ca and 48Ca.

orbit 48Ca 40Ca
0d5/2 0.64 0.80
0d3/2 0.65 0.79
0f7/2 0.58 0.73
1s1/2 0.71 0.82

also in agreement with the results in [20] which implies that protons with energies near the

Fermi surface experience larger correlations with increasing asymmetry for N > Z. The

98



CHAPTER 4. CALCIUM FORTY-EIGHT 4.6. COMPARING 40CA AND 48CA PROPERTIES

−150 −100 −50 0 50 100 150
E − εAF (p) [MeV]

0

5

10

15

20

W
v

[M
eV

]

proton
40Ca
48Ca

Figure 4.8: The energy dependence of the imaginary part of the proton volume potential
W vol,p(E).
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Figure 4.9: The energy dependence of the imaginary part of the proton surface potential
W sur,p(E).

100



CHAPTER 4. CALCIUM FORTY-EIGHT 4.6. COMPARING 40CA AND 48CA PROPERTIES

0

50

100

150

200

l=0 l=1

0

50

100

150

200

J
W
/A

[M
eV

fm
3
]

l=2 l=3

−100 −50 0 50 100

E − εAF (p) [MeV]

0

50

100

150

200

l=4

−100 −50 0 50 100

E − εAF (p) [MeV]

l=5

Figure 4.10: Comparison of the volume integral of the imaginary part of the potential for
protons in 48Ca (red) and 40Ca (blue).
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Figure 4.11: The energy dependent part of the neutron volume potential W vol,n(E).
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Figure 4.12: The energy dependence part of the neutron surface potential W sur,n(E).
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Figure 4.13: Comparison of the volume integral of the imaginary part of the potential for
neutrons in 48Ca (red) and 40Ca (blue).
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Table 4.2: Comparison of neutron spectroscopic factors in 40Ca and 48Ca.

orbit 48Ca 40Ca
1p3/2 0.78 0.78
1p1/2 0.77 0.80
0f7/2 0.80 0.72
0d3/2 0.77 0.79
1s1/2 0.80 0.82

proton spectral function of the bound orbits are plotted in Fig. 4.14 and for neutrons in

Fig. 4.15 . The numerical calculations to obtain the spectral functions are totally different

for negative and positive energies. The small discontinuity, which is more significant for f7/2,

seen in Fig. 4.14 is partially explained by the difficulty to include the Coulomb potential at

low energy. The plotted spectral functions in Fig. 4.14 can be compared to Fig. 3.4. The

difference in the width of the 0s orbit reflects the effect of the volume integral which is not

constrained by data in case of 48Ca. There is an increase in absorption in 48Ca that can be

seen in more detail in Fig. 4.16.

The spectral functions in Fig. 4.16 for protons and Fig. 4.17 for neutrons are shifted so that

the Fermi energy is at zero. It makes it easier to compare the proton spectral functions.

As one can see in Fig. 4.16 the 48Ca proton spectral functions exhibit more strength at all

energies except at the quasi-hole peaks. This fact accounts for the lower spectroscopic factor

and describe the correlations in the latter Ca isotope. Comparing the spectral functions in

Figs. 4.14 and 4.15 we can see there is more depletion to the continuum for protons in 48Ca.

This effect is more significant for the f7/2 orbit which is an occupied state for neutrons in

48Ca. In Fig. 4.18 the occupation numbers are plotted for protons and neutrons as a function

of the position of the quasi-hole or quasi-particle peaks. The most obvious observation is

the reduction of the proton occupation number from 40Ca (triangles) to 48Ca (squares). The

reduction is larger for orbits close to the Fermi energy reflecting the increased absorption.

It is no surprise that the proton and neutron occupation numbers are almost the same in
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Figure 4.14: Proton spectral functions for 48Ca.
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Figure 4.15: Neutron spectral functions for 48Ca.
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Figure 4.16: Comparison of proton spectral function for 48Ca (red) and 40Ca (blue) for the
first and second s orbits and the p and d spin-orbit partners.
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Figure 4.17: Comparison of neutron spectral functions for 48Ca (red) and 40Ca (blue) for the
same orbits as in Fig 4.16.

40Ca, since the only difference is the Coulomb energy shift (the shift in the triangles in Fig.

4.18). The occupation number slightly increases for neutrons in 48Ca compared to 40Ca. The

f7/2 neutron orbit is occupied in 48Ca is represented by the green square on the top right in

Fig. 4.18.
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Figure 4.18: Occupation numbers for the double closed-shell nuclei 48Ca and 40Ca.
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Figure 4.19: Comparison of experimental and fitted neutron single-particle levels for 40Ca.
Experimental data are taken from mass tables and relevant excitation energies in individual
nuclei.

Table 4.3: Neutron energy levels near the Fermi energy in 40Ca compared to experiment.

orbit DOM [MeV] Exp [MeV]
0f7/2 -7.36 -8.36
0d3/2 -16.2 -15.6
1s1/2 -15.3 -18.3
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4.6.3 Level structure

The positions of quasi-particle peaks near the Fermi energies for neutrons and protons for

both 40Ca and 48Ca are plotted in the Figs. 4.19-4.22. These fitted energy levels do not

exactly reproduce the experimental data but are reasonably consistent. It is useful to keep

in mind that these energy levels are just a couple of data points in the fit. We note for

example that the spin-orbit splitting calculated in the DOM tends to be smaller than the

experimental one for all cases. Comparing the number of data points associated with elastic

scattering with result near the Fermi energy in determining the chi-squared below and above

the Fermi energy one might conclude that it is not straightforward to get very good results

for all the energy level values at their experimental values. As expected the single-particle

energies look more squeezed close to Fermi energy for the DOM compared to the HF (role

of dispersive correction). As a future extension the tensor force can be directly incorporated

in the HF term. This can show how the protons and neutrons are influenced by the explicit

effect of the tensor force [61]. Figures 4.19 and 4.20 are the same except a shift in the levels

due to the Coulomb potential whereas for 48Ca eight more neutrons provide for a mostly

filled f7/2 state.
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Figure 4.20: Comparison of experimental and fitted for proton single-particle levels for 40Ca.

Table 4.4: Proton energy levels near the Fermi energy in 40Ca compared to experiment.

orbit DOM [MeV] Exp [MeV]
0d5/2 -11.8 -14.3
0d3/2 -7.8 -8.3
1s1/2 -7.1 -10.8
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Figure 4.21: Comparison of experimental and fitted for neutron single-particle levels for
48Ca.

Table 4.5: Neutron energy levels near the Fermi energy in 48Ca compared to experiment.

orbit DOM [MeV] Exp [MeV]
1p3/2 -3.5 -5.14
1p1/2 -2.0 -3.11
0f7/2 -8.3 -9.9
0d3/2 -14.6 -12.5
1s1/2 -13.9 -12.5
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Figure 4.22: Comparison of experimental and fitted for proton single-particle levels for 48Ca.

Table 4.6: Proton energy levels near the Fermi energy in 48Ca compared to experiment.

orbit DOM [MeV] Exp [MeV]
1p3/2 -5.4 -6.5
1p1/2 -4.2 -3.6
0f7/2 -9.9 -9.6
0d3/2 -17.8 -16.8
1s1/2 -15.9 -17.1
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5
Conclusions

The main purpose of this work was to implement a fully nonlocal DOM as an extension of

the research reported in [62]. In previous local DOM calculations, many properties of nuclei

were studied with emphasis on scattering data at positive energies. The energy dependence

contained in the HF self-energy leads to serious difficulties in describing the solution of the

Dyson equation at negative energies and requires the introduction of an energy-independent

nonlocal term. Nonlocality is also necessary to describe the imaginary part of the self-energy

in order to accurately represent particle number and the nuclear charge density. In Ch. 3

a completely nonlocal implementation of the DOM is presented for 40Ca. Contrary to lo-

cal versions of the DOM, the nonlocal DOM can represent particle number and the charge

density accurately for the first time. In addition, high-momentum protons constrained by

experimental data from Jefferson Lab can be adequately represented leading to a binding

energy of 40Ca ground-state of 7.91 MeV per particle. The latter value leaves only 0.64

MeV per particle binding for higher-body interactions which is of similar size as found in

Green’s function Monte-Carlo calculations for light nuclei. Furthermore it is shown that the

fit to elastic scattering data determines the amount of SP strength in this energy domain

associated with bound orbits providing a quantitative measure of the depletion of the Fermi

sea. By comparing the spectral functions at positive and negative energies for these bound
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orbits we have investigated the relevant sum rule describing depletion and occupation. The

nonlocal DOM self-energy is able to describe the available experimental data at positive en-

ergies for both protons and neutrons with the same quality as the local version. Overall, the

nonlocal DOM implementation was able to describe all available bound-state data for 40Ca

accurately. Starting from the constrained self-energy for 40Ca a nonlocal DOM implementa-

tion is presented for 48Ca in Ch. 4. It includes an additional N − Z term in the self-energy.

The same procedure used in Ch. 3 was applied and the relevant experimental data at posi-

tive as well as negative energies. At positive energies a substantial improvement is obtained

compared to the local DOM for the description of neutron elastic scattering data in this

nucleus. An important quantity with astrophysical implications is the neutron distribution

which leads to a neutron skin δR = Rn − Rp. The value we predict for the neutron skin is

δR = 0.249±0.023 fm. This value is larger than most mean-field calculations of this quantity

and substantially larger than the value of an ab initio calculation. A future experiment at

Jefferson Lab employing parity violating elastic electron scattering may clarify this situation.

More experimental data for proton knock-out from 48Ca especially at negative energies may

provide additional constraints related to high-momentum protons in this nucleus. Applying

the nonlocal DOM formalism for heavier elements like 208Pb should be a high priority for

future work. The nonlocal DOM generates different distorted waves than the local version

and a reanalysis of the (e, e′p) reaction is required to clarify the consistency of spectroscopic

factors extracted from such experiments and the present study.
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[48] H. Müther and W. H. Dickhoff. Phys. Rev. C, 72:054313, 2005.

[49] B. E. Vonderfecht, W. H. Dickhoff, A. Polls, and A. Ramos. Phys. Rev. C, 44:R1265,
1991.

[50] G. W. Greenlees, G. J. Pyle, and Y. C. Tang. Phys. Rev., 171:1115, 1968.

[51] C. Barbieri and W. H. Dickhoff. Phys. Rev. C, 63:034313, 2001.

[52] C. Barbieri and W. H. Dickhoff. Phys. Rev. C, 65:064313, 2002.

[53] G. Hagen and et al. Nature Physics, 2015.

[54] R. Shane, R.J. Charity, J.M. Elson, L.G. Sobotka, M. Devlin, N. Fotiades, and J.M.
ODonnell. Nucl. Instru. Meth. A, 614:468, 2010.

[55] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels. Phys. Rev. C, 63:025501,
2001.

120



Bibliography

[56] J. Mammei et al. CREX: Parity-violating measurement of the weak charge distribution
of 48Ca to 0.02 fm accuracy. 2015.

[57] C. J. Horowitz, Z. Ahmed, C.-M. Jen, A. Rakhman, P. A. Souder, M. M. Dalton,
N. Liyanage, K. D. Paschke, K. Saenboonruang, R. Silwal, G. B. Franklin, M. Friend,
B. Quinn, K. S. Kumar, D. McNulty, L. Mercado, S. Riordan, J. Wexler, R. W. Michaels,
and G. M. Urciuoli. Phys. Rev. C, 85:032501, 2012.

[58] F. J. Fattoyev and J. Piekarewicz. Phys. Rev. C, 86:015802, 2012.

[59] PREXII. http://hallaweb.jlab.org/parity/prex/prexii.pdf. 2015.

[60] A. Abrahamyan et al. Phys. Rev. Lett., 108:112502, 2012.

[61] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi. Phys. Rev. Lett.,
95:232502, 2005.

[62] Seth Waldecker. Improving the dispersive optical model toward a dispersive self-energy
method. Ph.D. thesis Washington University, 2011.

121



Appendices

122



A
40Ca parameters

The HF parameters are shown in Table A.1. We note that the number of parameters is the

same as for the local HF potential employed in Ref. [16]. The corresponding equations where

these parameters are introduced have also been listed in this table. The spin-orbit parameters

are gathered in Table A.2. We have kept the parameters of the imaginary component fixed

to the values found in Ref. [16] as indicated by the asterisk.

The parameters pertaining to volume absorption are displayed in Table A.3. Motivated by

the theoretical work of Refs. [25, 17], we allow for different nonlocalities above and below the

Fermi energy. While we observe small differences for the radius and diffuseness parameters

other parameters show very minor differences and could have been kept identical above and

below the Fermi energy in the fit.

Surface absorption parameters are collected in Table A.4. We have abandoned a strict

symmetry assumption for the surface-absorption parameters but the values displayed in

Table A.4 indicate that most parameters acquire very similar values above and below the

Fermi energy and a symmetric version may be restored in future work. Since the emphasis

of surface absorption is around the Fermi energy, it removes about as much single-particle

strength
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Table A.1: Fitted parameter values for the proton and neutron nonlocal HF potential in 40Ca.
The table also contains the number of the equation that defines each individual parameter.

parameter value Eq.

V 0
HF [MeV] 100.06 (3.1)
rHF [fm] 1.10 (3.1)
aHF [fm] 0.68 (3.1)
βvol1 [fm] 0.66 (3.1)
βvol2 [fm] 1.56 (3.1)
x1 0.48 (3.1)
V 0
wb [MeV] 15.0 (3.2)
ρwb [fm] 2.06 (3.2)
βwb [fm] 1.10 (3.2)

Table A.2: Fitted parameter values for the local HF and imaginary spin-orbit potentials in
40Ca. For those parameters indicated by an asterisk we kept the same values as in Ref. [16].
The table also contains the number of the equation that defines each individual parameter.

parameter value Eq.

V so
0 [MeV ] 6.03 (3.4)
rso [fm] 1.02 (3.4)
aso [fm] 0.66 (3.4)
Aso [MeV] -3.65(*) (3.12)
Bso[MeV ] 208(*) (3.12)
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Table A.3: Fitted parameter values for proton and neutron potentials in 40Ca that determine
volume absorption. The table also contains the number of the equation that defines each
individual parameter.

parameter value Eq.

r+vol [fm] 1.37 (3.6)
a+vol [fm] 0.68 (3.6)
β+
vol [fm] 0.64 (3.6)
r−vol [fm] 1.44 (3.6)
a−vol [fm] 0.50 (3.6)
β−vol [fm] 0.81 (3.6)
Avol+ [MeV] 7.74 (3.8)
Bvol

+ [MeV] 25.87 (3.8)
Evol
p+ [MeV] 13.59 (3.8)

Avol− [MeV] 9.50 (3.8)
Bvol
− [MeV] 27.29 (3.8)

Evol
p− [MeV] 5.50 (3.8)

α [MeV−1/2] 0.125 (3.9)
E+
a [MeV] 19.59 (3.9)

E−a [MeV] 120 (3.9)

Table A.4: Fitted parameter values for proton and neutron potentials in 40Ca that determine
surface absorption. The table also contains the number of the equation that defines each
individual parameter.

parameter value Eq.

r+sur [fm] 1.15 (3.6)
asur [fm] 0.60(*) (3.6)
β+
sur [fm] 0.94 (3.6)
r−sur [fm] 1.19 (3.6)
β−sur [fm] 2.07 (3.6)
Asur+ [MeV] 12.31 (3.10)
Bsur

+s1 [MeV] 13.87 (3.10)
Bsur

+s2 [MeV] 36.62 (3.10)
Csur

+ [MeV] 17.21 (3.10)
Asur− [MeV] 7.21 (3.10)
Bsur
−s1 [MeV] 14.34 (3.10)

Bsur
−s2 [MeV] 25.46 (3.10)

Csur
− [MeV] 17.33 (3.10)
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B
48Ca parameters

In the following table the parameters for the 48Ca self-energy are collected that optimize the

nonlocal self-energy for this nucleus.

Table B.1: All relevant parameters for the HF, volume and SO parts of the nonlocal DOM
self-energy for 48Ca are collected below.

parameter value Eq.

α
asym(p)
HF [MeV] 1.24 (4.1)

α
asym(n)
HF [MeV] 5.62 (4.1)

r
HF (p)
asym [fm] 1.53 (4.1)

r
HF (n)
asym [fm] 1.03 (4.1)
βasymvol1(p) [fm] 1.56 (4.1)

βasymvol1(n) [fm] 1.56 (4.1)

V
so(p)
NZ [MeV] -1.31 (4.2)

V
so(n)
NZ [MeV] -20.30 (4.2)

C
vol(p)
asym [MeV] 1.00 (4.7)

C
vol(n)
asym [MeV] 18.00 (4.7)
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APPENDIX B. 48CA PARAMETERS

Table B.2: The parameters that determine the surface asymmetry part of the nonlocal DOM
self-energy for 48Ca are collected below.

parameter value Eq.

βasym−sur,p [MeV] 1.87 (4.8)
βasym−sur,n [MeV] 0.56 (4.8)
βasym+
sur,p [MeV] 1.44 (4.8)
βasym+
sur,n [MeV] 0.61 (4.8)
Asur,pasym+ [MeV] 4.01 (4.4)
Asur,nasym+ [MeV] 4.04 (4.4)
Asur,pasym− [MeV] 4.50 (4.4)
Asur,nasym− [MeV] 1.00 (4.4)
Bsur,p
asym+s1 [MeV] 13.86 (4.4)

Bsur,n
asym+s1 [MeV] 15.86 (4.4)

Bsur,p
asym−s1 [MeV] 14.34 (4.4)

Bsur,n
asym−s1 [MeV] 14.34 (4.4)

Bsur,p
asym+s2 [MeV] 17.20 (4.4)

Bsur,n
asym+s2 [MeV] 15.08 (4.4)

Bsur,p
asym−s2 [MeV] 17.32 (4.4)

Bsur,n
asym−s2 [MeV] 17.32 (4.4)

Csur,p
asym+ [MeV] 36.62 (4.4)

Csur,n
asym+ [MeV] 40.46 (4.4)

Csur,p
asym− [MeV] 25.46 (4.4)

Csur,n
asym− [MeV] 25.46 (4.4)

r
sur(p)
asym+ [fm] 1.06 (4.8)

r
sur(n)
asym+ [fm] 1.45 (4.8)

r
sur(p)
asym− [fm] 1.29 (4.8)

r
sur(n)
asym− [fm] 1.19 (4.8)
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