Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-43

1991-07-01

Composition, Superposition, and Encapsulation in the Formal
Specification of Distributed Systems

Kenneth J. Goldman

Composition, superposition, and encapsulation are important techniques that work well
together for designing large distributed software systems. Composition is a symmetric operator
that allows system components to communicate with each other across module boundaries.
Superposition is an asymmetric relationship that allows one system component to observe the
state of another. Encapsulation is the ability to define the reason about the behavior of a module
in terms of a well-defined boundary between that module and its environment, while hiding the
internal operations of that module. In this paper, the I/0 automation model of Lynch and Tuttle is
extended to permit... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Goldman, Kenneth J., "Composition, Superposition, and Encapsulation in the Formal Specification of
Distributed Systems" Report Number: WUCS-91-43 (1991). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/661

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/661?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/661

Composition, Superposition, and Encapsulation in the Formal Specification of
Distributed Systems

Kenneth J. Goldman

Complete Abstract:

Composition, superposition, and encapsulation are important techniques that work well together for
designing large distributed software systems. Composition is a symmetric operator that allows system
components to communicate with each other across module boundaries. Superposition is an asymmetric
relationship that allows one system component to observe the state of another. Encapsulation is the
ability to define the reason about the behavior of a module in terms of a well-defined boundary between
that module and its environment, while hiding the internal operations of that module. In this paper, the I/0
automation model of Lynch and Tuttle is extended to permit superposition of program modules. This
results in a unified model that supports composition, superposition, and encapsulation. The extended
model includes a formal specification mechanism for layered systems that allows the sets of correct
behaviors of each layer to be expressed in terms of the states of the layers below it. To illustrate the
ideas, we use the extended model to specify the global snapshot problem and prove the correctness of
the global snapshot algorithm of Chandy and Lamport.

https://openscholarship.wustl.edu/cse_research/661?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/661?utm_source=openscholarship.wustl.edu%2Fcse_research%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages

Composition, Superposition, and Encapsulation in
the Formal Specification of Distributed Systems

Kenneth J. Goldman

WUCS-91-43

July1991, revised April 1992
previously, “A Compositional Model for Layered Distributed Systems”

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130--4899

Composition, Superposition, and Encapsulation in the
Formal Specification of Distributed Systems !

Kenneth J. Goldman 2

Department of Computer Science
Washington University
St. Louis, MO 63130-4899
kjg@cs.wustl.edu

April 1, 1992

Portions of this work have appeared elsewhere in preliminary form {g].

*Part of this research was conducted at the Massachusetts Institute of Technology Laboratory for Com-
puter Science and was supported in part by the National Science Foundation under Grant CCR-86-11442, by
the Office of Naval Research under Contract N00014-85-K-0168, by the Defense Advanced Research Projects
Agency (DARPA) under Contract N00014-83-K-0125, and part of this research was conducted at Washington
University and supported in part by the National Science Foundation under Grant CCR-91-10029.

Abstract

Composition, superposition, and encapsulation are important techniques that work well together
for designing large distributed software systems. Composition is a symmetric operator that allows
systemn components to communicate with each other across module boundaries. Superposition is
an asymmetric relationship that allows one system component to observe the state of another.
IEncapsulation is the ability to define and reason about the behavior of a module in terms of a well-
defined boundary between that module and its environment, while hiding the internal operations
of that module.

In this paper, the [/O automaton model of Lynch and Tuttleis extended to permit superposition
of program modules. This results in a unified model that supports composition, superposition, and
encapsulation. The extended model includes a formal specification mechanism for layered systems
that allows the set of correct behaviors of each layer to be expressed in terms of the states of the
layers below it. To illustrate the ideas, we use the extended model to specify the global snapshot
problem and prove the correctness of the global snapshot algorithm of Chandy and Lamport.

Keywords: composition, compositionality, distributed algorithms, encapsulation, formal mod-
els, global snapshot, I/0 automata, layered systems, specification, superposition

1 Introduction

The structure of a system design is often the single most important factor in the success of a design,
because the details of the system implementation must fit within that structure. It is important
that the structure of a design be “natural” so that the details “fall into place.” This notion applies
at all levels, from the design of intricate distributed algorithms to the design of large heterogeneous
systemns. Just as the mechanisms available in a programming language for structuring a program can
have a great impact on the way one thinks about writing software in that language, the mechanisms
available for specifying a problem or an algorithm in a formal model can influence the way in which
one thinks about the problem itself. Although a case can be made for keeping models as simple
as possible, it is important that a formal model support a range of structuring techniques so that
different aspects of a problem can be modeled naturally and appropriately.

In this paper, we are concerned with ways to support structured design of distributed systems
within formal models. Specifically, we are interested in ways to support composition, superposition,
and encapsulation within a single unified model. Composition, superposition, and encapsulation
are important techniques that work well together for designing large distributed software systems.
Composition is a symmetric operator that allows system components to communicate with each
other across module boundaries. Superposition is an asymmetric relationship that allows one
system component to observe the state of another; it permits modular descriptions of distributed
algorithms in terms of several program layers, in which higher layers are allowed to make use of
lower layers, but lower layers are unaware of the higher layers. Encapsulation is the ability to
define and reason about the behavior of a module in terms of a well-defined boundary between that
module and its environment, while hiding the internal operations of that module.

Our approach to developing a unified model that supports composition, superposition, and
encapsulation is to start with two existing models, each supporting only some of these features, and
then to develop extensions to one of the models to support the features of the other. The two models
we study are UNITY [3], which provides a superposition operator, and /O Automata [13], which
provides composition and encapsulation. The result of this work is an extended I/O automaton
model that supports all three of these features and includes a formal specification mechanism for
layered systems that allows the set of correct behaviors of each layer to be expressed in terms of
the states of the layers below it.

The I/O automaton model of Lynch and Tuttle {14] is particularly natural for describing dis-
tributed systems. It permits the writing ol precise problem specifications, clear algorithm descrip-
tions, and careful correctness proofs. In this model, complex systems are described as the compo-
sition of simpler system components (modules). Communication takes place entirely in terms of
actions shared across module houndaries. [Bach module has its own local state variables, unseen by
other modules. This encapsulation, which gives rise to the compaositionality results of the model,
makes it possible to reason locally about system components in order to prove properties about
executions of the entire system. However, the I/O automaton model does not provide a mechanism
for constructing layered systems in which higher level modules can observe the states of lower level
ones.

In the UNITY model, defined by Chandy and Misra [3], a program consists of a set of state-
ments that access a global shared memory. At each step in the execution, a statement is selected
and executed, possibly updating the memory. Superposition in UNITY is defined to be a program
transformation that adds a layer on top of a program, while preserving all the properties of the un-
derlying program. Essentially, the transformation modifies the underlying program by augmenting
it with a set of new variables and additional statements. In order to preserve the properties of the
underlying program, the additional statements must not write to the original variables (although

they may read them). Unfortunately, encapsulation is lacking in UNITY because the interfaces be-
tween program modules are not described in terms of well-defined sets of actions, but only in terms
of the program variables that they access. A union operator is provided for combining modules (by
taking the union of the statements and the varjables over all modules to be combined). However,
one cannot reason about resulting program in terms of actions that occur at module boundaries,
bui must reason in terms of the memory locations that modules read and write. That is, one
cannot treat a module as an abstraction with a certain set of behaviors, but must must always be
concerned with the internal state of the module. Furthermore, unlike the I/0 automaton model,
UNITY has no notion of an action being an output of one component and an input to another. We
would like such a separation for describing distributed systems.

Thus, UNITY has a superposition mechanism but no encapsulation, while I/0Q automata pro-
vides composition and encapsulation but no superposition mechanism. Therefore, in this paper,
we extend the I/O automaton model to permit superposition of program modules. Rather than
viewing superposition as a program transformation, we view it as a particular method for com-
bining separate program modules. When one module is superposed on another, the higher level
module is allowed to observe (but not modify) the state of the underlying module, while the state
of the higher level is unknown to the underlying module. We define an operator for superposing
one [/O automaton on another, and show that superposition does not affect the set of executions
of the underlying module, thus preserving all properties of that module. A formal specification
mechanism is presented that allows the set of correct behaviors of the higher level module to be
expressed in terms of the state of the underlying module.

Recently, there has been growing interest in unified models that support superposition. For
example, Bougé and Francez [1] argue in favor of the use of superposition as a language construct by
describing a number of important applications for its use, and they offer a compositional approach
to superposition with a syntactic representation in CSP. In [6], Francez and Forman present a formal
semantics for superposition that, like ours, treats superposition as a way of combining programs,
rather than a transformation of programs. In [5], the combination of composition and superposition
is used for program verification in UNITY [3]. Since UNITY does not provide encapsulation, the
verification method presented in [5] lacks compositionality properties, but it is modular in the sense
that it is based on separate verification of each component.

A different approach to adding superposition to the I/0O automaton model is presented by
Nour [16]. In that work, a restricted class of I/0Q antomata, called UNITY automata, is defined
in order to express UNITY programs as /O automata. A superposition operator is defined for
this restricted class. Since UNITY automata are restricted to have output actions only, it is not
possible to model a superposition in which the higher level module may share actions with the
lower level module. In the present work, we do not need such restrictions. In fact, our example
algorithm makes important use of shared actions between layers.

The I/0 automaton model has been extended previously by Goldman and Lynch to permit
automata to make make atomic accesses to shared variables [7]. The variables are modeled as
being completely external to the automata sharing them, so an automaton must be prepared to
observe any value in the memory whenever it executes an access. In the model presented here,
variables are also shared, but the sharing relationship is different from that described in {7]. The
higher level module sees the variables of the lower level module at all times. It is not necessary
for the higher level automaton to execute a particular action in order to observe the values of
those variables. Therefore, the set of actions “enabled” in the higher level module may change as
the lower level module updates its variables. This sort of relationship cannot be modeled using
the atomic shared memory extensions of Goldman and Lynch. However, since the two extensions
are fully compatible, we have a unified model in which it is possible to construct systems of I/Q

automata that use both superposition and shared memory.

The remainder of this paper is organized as follows. In Section 2, we provide a brief introduction
to the I/O automaton model. Then, in Section 3, we introduce extensions to that model that enable
it to be used for describing problems and algorithms for which layering is the most natural structure.
In Section 4, we illustrate the ideas by using the extended model to describe and prove correct the
global snapshot algorithm of Chandy and Lamport [2]. In this example, cornposition, superposition,
and encapsulation each play an important role.

2 The I/O Automaton Model

The I/O Automaton model [14] encourages one to write precise statements of the problems to be
solved by modules in concurrent systems, allows very careful algorithm descriptions, and can be
used to construct rigorous correctness proofs. In addition, the model can be used for carrying out
complexity analysis and for proving impossibility results. The I/0 automaton model is significantly
different from CCS [15] and CSP {9] in that input and output actions in the I/O automaton model
are distinguaished, and an I/O automaton cannot block an input action from occurring. In that
sense, I/O automata are similar to I/O-systems [10, 11, 12]. The following introduction to the
model is adapted from [14], which explains the model in more detail, presents examples, and
includes comparisons to other models. Readers already familiar with the I/O automaton model
may skip this section without loss of continuity.

2.1 I/O Automata

I/0 automata are best suited for modeling systems in which the components operate asynchronously.
Fach system component is modeled as an I/O automaton, which is essentially a nondeterministic
(possibly infinite state) automaton with an action labeling each transition. An automaton’s actions
are classified as either ‘input’, ‘output’, or ‘internal’. An automaton can establish restrictions on
when it will perform an output or internal action, but it is unable to block the performance of an
inpui action. An automaton is said to be closed if it has no input actions; it models a closed system
that does not interact with its environment.

Formally, an action signaiure S is a partition of a set acts(S§) of actions into three disjoint
sets n(.5), out(S), and int(S) of input actions, oulpui aclions, and internal actions, respectively.
We denote by ezi(S) = in(5) U out(.S) the set of external actions. We denote by local(5) =
out{.S)U int(S) the set of locally-controlled aciions. An 1/0 automaton consists of five components:

e an action signature sig(A),

a set states(A) of states,
s a nonempty set stari(A} C states{ A) of stari stales,

o a transition relation siteps{A) C stales{A) x acts(A) X states(A) with the property that for
every state s and input action 7 there is a transition (s, 7,s) in steps(A), and

an equivalence relation part(A) partitioning the set local(A} into at most a countable number
of equivalence classes.

The equivalence relation part(A) will be used in the definition of fair computation. Each class of
the partition may be thought of as a separate process. We refer to an element (s, 7, s) of steps(A)
as a step of A. If (s, 7,3) is a step of A, then = is said to be enabled in s'. Since every input action

is enabled in every state, automata are said to be input-enabled. This means that the automaton

is unable to block its input.

An ezecutionof A is afinite sequence g, 71, 81,-. . ,7n, S OF an infinite sequence sg, 71, 51, T2, - - -
of alternating states and actions of A such that (s;, Tit1,8i41) is a step of A for every 7 and
s € start{A). The schedule of an execution « is the subsequence of a consisting of the actions
appearing in o. The behavior of an execution or schedule & of A is the subsequence of & consisting
ol ezternal actions. The sets of executions, finite executions, schedules, finite schedules, behav-
iors, and finite behaviors are denoted ezecs(A),it finexecs(A), scheds(A), finscheds(A), behs(A), and
finbehs(A), respectively. The same action may occur several times in an execution or a schedule;
we refer to a particular occurrence of an action as an event.

2.2 Composition

We can construct an automaton modeling a complex system by composing automata modeling the
simpler system components. When we compose a collection of automata, we identify an output
action m of one automaton with the input action = of each automaton having = as an input action.
Consequently, when one automaton having = as an output action performs 7 , all automata having
7 as an action perform 7 simultaneously (automata not having 7 as an action do nothing).

Since we require that most one system component controls the performance of any given action,
we must place some compatibility restrictions on the collections of automata that may be composed.
A countable collection {§;},c; of action signatures is said to be strongly compatibleif for alli,5 € I
satisfying 1 £ 7 we have

1. out(S;) N ouwt(S;) = 0,
2. int(S;) Nacts(S;) = B, and
3. no action is contained in infinitely many sets acts(S;).

We say that a collection of automata are strongly compatible if their action signatures are strongly
compatible.

The eomposition S = [[;; 5i of a countable collection of strongly compatible action signatures
{Si}ies is defined to be the action signature with

o n{5) = Uierin{.5i) — Uigrout(S;),
e oul(S)= Userout(S;), and
o ni{5) = Uierint(S;).

‘The composition A = [[;; A; of a countable collection of strongly compatible automata {Ai}ie ;18
the automaton defined as follows:!

o sig(A) = [Ties sig(A.).
o states{A) = [];g; states(A;),

o start(A) = [T;e, start(A;),

'"Here start(A) and states{A) are defined in terms of the ordinary Cartesian product, while sig(A) is defined in
terms of the composition of actions signatures just defined. Also, we use the notation 3[z] to denote the ith component
of the state vector §.

4

o steps(A) is the set of triples (§1, 7, §3) such that, for all i € I,
if ™ € acts(A;) then (si[i],m, $2[t]) € steps(A;), and if v & acts(A;) then §i[7] = $3[d], and

o part(A) = Userpart(A;).

Given an execution o = §ym &) ... of A, let a|A4; (read “a projected on A;”) be the sequence
obtained by deleting 7;§; when #; ¢ acts(A;) and replacing the remaining §; by ;4.

2.3 Fairness

Of all the executions of an I/0O automaton, we are primarily interested in the ‘“fair’ executions —
those that permit each of the automaton’s primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system’s
primitive components. In the model, therefore, being fair to each component means being fair to
each equivalence class of locally-controlled actions. A fair ezecution of an antomaton A is defined
to be an execution a of A such that the following conditions hold for each class C of part(A):

L. If « is finite, then no action of ' is enabled in the final state of a.

2. If a is infinite, then either o contains infinitely many events from C, or « contains infinitely
ntany occurrences of states in which no action of C is enabled.

We denote the set of fair executions of A by fairezecs(A). We say that § is a fair behavior of A if 8
is the behavior of a fair execution of 4, and we denote the set of fair behaviors of A by fairbehs(A).
Similarly, 7 is a fair schedule of A if 3 is the schedule of a fair execution of A, and we denote the

set of fair schedules of A by fairscheds(A).

2.4 Problem Specification

A ‘problem’ to be solved by an [/O automaton is formalized as a set of (finite and infinite) sequences
of external actions. An aulomaton is said to solve a problem P provided that its set of fair behaviors
is a subset of P. Although the model does not allow an automaton to block its environment or
eliminate undesirable inputs, we can formulate our problems (i.e., correctness conditions) to require
that an automaton exhibits some behavior only when the enviromment observes certain restrictions
on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule module H to consist of two components, an action signature sig(H), and a set
scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of actions of H.
Subject to the same restrictions as auiomaita, schedule modules may be composed to form other
schedule modules. The resulting signature is defined as for automata, and the schedules scheds(H)
is the set of sequences 3 of actions of /T such that for every module #’ in the composition, 3|H’ is
a schedule of H'.

I is often the case that an automaton behaves correctly only in the context of certain restrictions
on its input. A useful notion for discussing such restrictions is that of a module ‘preserving’ a
property of behaviors. A set of sequences P is said to be prefiz-closed if § € P whenever both 3
is a prefix of & and o € P. A module M (either an automaton or schedule module) is said to be
prefiz-closed provided that finbehs(M) is prefix-closed. Let M be a prefix-closed module and let P
be a nonempty, prefix-closed set of sequences of actions from a set ¢ satisfying ® N int(M) = @.

We say that M preserves P if fn|® € P whenever §|® € P, w € out(M), and B=|M € finbehs(M).
Informally, a module preserves a property P iff the module is not the first to violate P: as long
as the environment only provides inputs such that the cumulative behavior satisfies P, the module
will only perform outputs such that the cumulative behavior satisfies . One can prove that a
composition preserves a property by showing that each of the component automata preserves the

property.

3 Superposition Extensions

In this section, we present definitions that extend the I/O automaton model for superposition of
program modules. We begin by defining what it means for an automaton to be “unconstrained”
for a particular set of variables, and use this definition to state the requirements for one automaton
to be “superposable” on another. We then define the superposition operator, and show that the
superposition of one I/0 automaton on another produces a new I/0 automaton. Therefore, all the
standard definitions and results for I/O automata (for fairness, compositionality, etc.) immediately
carry over to superposed automata. Furthermore, we show that any fair execution of a superposed
automaton, when projected on the underlying module, is a fair execution of the underlying module.
In addition, if no output actions of the higher level module are input actions of the underlying
module, then every execution of the underlying module is a projection of some execution of the
superposed automaton. These results correspond 1o the UNITY notion that superposition preserves
all properties of the underlying algorithm. In addition, we show that when an automaton A is
superposed on some other automaton, then the set of schedules of the resulting automaton when
projected on the signature of A is a subset of the schedules of 4 alone. Finally, we present a new
problem specification mechanism that is analogous to schedule modules for ordinary I/0 automata,
but that allows one to specify the allowable behaviors of a higher level module in terms of the state
of the lower level module. An example illustrating these extensions is presented in Section 4.

Throughout this paper, we refer to the state of an automaton as being divided into sets of
variables, where each set of variables takes on values from a particular domain. For example, we
may say that the state of automaton A is divided into two sets of variables X and Y with domains
dom(X) and dom(Y'), respectively. In this case, we use an ordered pair (z,y) to name a particular
state of A, where 2 € dom(X)} and y € dom(Y), and we take the set of possible states of A to be
the cartesian product dom(X) x dom(Y). If s is a particular state of A, we let s}X denote the
values of the variables of X in state s.

All extensions defined in the section are simply additions to the /O automaton model. We do
not redefine any concepts of the original model, so all of its properties carry over to the extended
model.

3.1 Unconstrained Automata

When we superpose one module on another, we would like the higher level module not to interfere
with the lower level one. In particular, we do not want the higher level module to place constraints
on how the lower level module may modify its own variables. Therefore, we will define superposition
to apply only when the higher level module is “unconstrained” for the variables of the lower level
module. We first define formally what it means for an automaton to be unconstrained for a set of
variables. Let X be a set of variables with domain dom(X). An unconstrained automaton A for X
is an I/O automaton such that there exists a set P of variables with a set of possible initial values

init(P) such that:

o states(A) = dom(P) x dom(X),
o start(A) = init(P) x dom(X), and

o for every step ((p',2'),7,(p,2)) in steps(A), for all & € dom(X), ((#/,2"),n,(p,&)) is in
steps(A).

One may think of P as the set of private variables of the higher level automaton, and of X
as the variables of the underlying automaton. Informally, the extra condition on the transition
relation says that automaton A places no restrictions on the values of the variables in X following
any action. Note, however, that the set of locally-controlled actions enabled in a given state of A
may depend on the values of the X variables in that state.

Since an unconstrained automaton is an I/O automaton, all the standard I/0 automaton defini-
tions for executions, schedules, behaviors, and composition carry over to unconstrained automata.
One may think of an “ordinary” I/0 automaton as an unconstrained automaton for X = 0.

One way to model a layered multicomponent system is to individually superpose pairs of au-
tomata and then compose. An equally valid method is to create two entire system layers through
composition, and then superpose. In using the latter method, we would like the composition of an
unconstrained antomaton for X and an unconstrained automaton for Y, with X NY =0, to be an
unconstrained automaton for X U ¥ . However, this is not the case. Even if the components of the
higher layer are each appropriately unconstrained, their composition is not.2 Therefore, we define
a relaxation operator U that builds an unconstrained automaton from an ordinary one. Let A be
an I/O antomaton whose state is divided into two sets of variables P and X with domains dom(P)
and dom(X) respectively. We define the relazation of A with respect to X, denoted U(A, X), to be
the automaton B as follows:

o sig(B) = sig(A),
o states(B) = states(A),
o stari(B) = {(p,&): & € dom(X) A 3z € dom(X),(p,z) € start(A)},

o sieps(B) = {((¢/s2"), 7, (p,8)) & € dom(X) A Tz € dom(X), (', "), 7, (p,)) € steps(A)},
and

o part(B) = part(A).

The relaxation operator I simply constructs the new automaton by adding enough start states
and steps to make it unconstrained for X. The following lemma follows immediately from the
definitions.

Lemma 1: Let A be an I/O automaton whose state is divided into two sets of variables, P and

X. Then U(A, X) is an unconstrained automaton for X.

The following result allows us to prove properties of the schedules of individual unconstrained
automata with the knowledge thai these properties will carry over to all schedules of the relaxation
of the composition.

*For example, suppose Ay is an unconstrained automaton for X and Ay is an unconstrained automaton for Y.
in the composition of Ax and Ay, the values of the variables of X are changed only in steps involving actions of
Ax. Therefore, any action of Ay that i1s not an action of Ax is constrained to leave the values of the variablesin X
unchanged. Thus, the composition of Ax and Ay is not unconstrained for X UY.

-1

Lemma 2: Let {X;},.; be a set of disjoint sets of variables, and let {4;};.; be a collection of
strongly compatible automata, where each A; is unconstrained for X;. Let A be the composi-
tion Il;ezA;, and let A, be the automaton U(A,|J;c7 X;). Then scheds(A,) = scheds(A) and
fairscheds(Ay) = fairscheds(A).

Proof: We know that scheds(A) C scheds(A,), since start(A) C start(A,) and steps(A) C
steps(Ay) by definition. We show that scheds(A,) C scheds(A) using the following construction.
Let e, be an execution of A,. TFor each state s, of a,, and for each 7 € Z, let next-step;(s,) be
the state of o, immediately preceding the first action of A; that occurs in e, after state s. (If no
action of 4; follows s,, then nezt-step;(s,) is the state immediately after the last action of A; in
ay. If no action of A; occurs in a,, then nexi-step;(s,) is the initial state of «,,). We construct «
to be identical to a,, except that Vi € Z,Vn > 0, if s, is the »*® state of o, and s is the n'" state
of o, then s{X; =next-step;(s, }|X;. Note that the value of 3| X; is identical for all states s between
to successive actions of A; in a, and is equal to the value of X; just before the next step of A; in
Oy

Clearly sched(a) = sched{ay,). To show that « is a schedule of A, we must show that (1) if sg is
the first state of o, then sg € start(A4), and (2) every step (s, 7,s) in a is in steps(A4). For condition
(1), since each component A; is unconstrained for X;, we know that the initial value for &; may be
any value in dom(X;). Therefore, sy € start(4). For condition (2), we note that if (s’,7,s) is the
n'® step of «, we know from the construction that if 7 € acts(4;), then §']4; = & |A4;, where s/,
is the n" state of oy, and that 7 is enabled in state s!. Therefore, w is enabled in state s’. And
since A; is unconstrained for X, any value is possible for X; in the resulting state. Furthermore,
we know from the construction that if # & acts(4;), then s|4; = §'|A;. Thereflore, (s, %,5) is a step
ol A.

The fairness result follows from the above arguments and the fact that part(4,) = part(4) by
definition of the relaxation operator. |

3.2 Superposition

In this section, we define the conditions under which one module may be superposed on another,
and then define the superposition operator itself.

Requirements for Superposition: In order to provide a sensible semantics for the superposi-
tion operator, we define the superposition of one automaton on another only when the two automata
satisfy certain compatibility conditions, defined as follows. Let X be a set of variables with domain
dom{X). We say that automaton A is superposeble on automaton B with respect to X iff

1. A is unconstrained for X,
2. states(B) = dom(X), and
3. sig{4) and sig(B) are strongly compatible.

Loosely speaking, the first condition ensures that module B may freely modify its own variables
in the superposition. The second condition says that the set of states of the underlying automaton
must match the domain for the set of variables on which A is unconstrained. The third condition
is the usual restriction for composition of automata.

Superposition Operator: We would like superposition to capture the idea that the higher level
automaton is allowed to observe (but not modify) the state of the lower level automaton, and that

the lower level automaton is unaware of the variables of the higher level automaton. We want the
actions of the superposed automaton to include the actions of both the high level and low level
automata, and we wish to allow the possibility of actions that are shared by both automata. This

motivates the following definition.
Let X be a set of variables with domain dom{X), and let A and B be automata such that A

is superposable on B with respect to X. We define the superposition of A on B with respect to X,
denoted C = S(A, B, X), as follows:

o s5ig(C') = sig(A) x sig(B) {usual signature composition},
o states(C) = states(A),
o start(C) = {(p,z) € start(A) : z € start(B)},

o steps(C') = all steps ((p,2’),7,(p, 2)) such that the following conditions hold:

1. = € sig(C)

2. i w € sig(A), then ({(p/,2'), 7, (p,) € steps(A)
3. if m € sig{B), then (2,7, z) € steps(B)

4. if = & sig(A), then p = p'

5. if 7 ¢ sig(B), then = 2/, and

o part(C) = part(A) U part(B).

Informally, the signature of the superposed automaton C is the composition of the signatures
of A and B. The states of C' are the same as the states of A, and the set of start states of C is the
set of all start states of A such that the values of X agree with some start state of B. The most
interesting part of the superposition definition is the construction of the set of steps. It says that
any step of C' for an action of A must also be a step of A. Similarly, any step of C' for an action of
B must be a step of B, when projected on the variables in X. Essentially, the actions of 4 and B
are enabled just as before, with automaton B controlling the values of the variables in X. The last
two conditions of the steps(C') construction simply prevent steps involving only B from modifying
the private variables of A, and steps involving only A from modifying the variables in X. That is,
if a step of C' does not involve an action of A, then the private state variables of A must not be
modified by the step. Similarly, if a step of C does not involve an action of B, then the values of
the variables in X are unchanged by the step.

In a step for an action shared by A and B, the private state of A is modified according to the
transition relation of A, while the state of X is modified according to the transition relation of B.
This should agree with one’s intuition about the semantics for such shared actions.

The following [emma. states that a superposition of one I/0 automaton on another results in a
new I/O automaton. This implies that all the standard definitions and results for I/0 automata,
notably for composition and fairness, immediately carry over to superposed automata.

Lemma 3: Let X be a set of variables with domain dom(X), and let 4 and B be automata such
that A is superposable on B with respect to X. Then C' = S(A, B, X) is an I/0 automaton.

Proof: We must show that inputs of C' are always enabled. That is, we must show that for all
states s' € states(C') and for all actions © € in(C), there exists a state s € states(C') such that
(s,7,8) € steps(C'). Let s’ = (p,2"). There are three cases for 7 € in(C). For each case, we exhibit
an appropriate new state s:

1. 7 € sig(A) and 7= ¢ sig(B). Since A is an unconstrained automaton, we know that 3p ¢
private(A) such that V& € dom(X), ((¢/,2'),7,(p,&)) € steps(A). Specifically, if we let
& = ', then we are done.

2. m ¢ sig(A) and « € sig(B). Since B is an 1/0 automaton, we know that 3z € states(B) such
that (¢, 7,2) € steps(B). Therefore, since 7 ¢ sig(A4), ((p',2'), 7, (p',2)) € steps(C).

3. m € sig(A) and 7 € sig(B). Since A is an unconstrained automaton, we know that Jp €
private(A) such that V& € dom(X), ((p',2'),7,(p, %)) € steps{A). Furthermore, since B is
an I/O automaton, we know that Jz € states(B) such that (2’,7,2) € steps(B). Therefore,
letting & = 2 completes the proof.

In each case, 7 is enabled from s’. [|

The following two results formalize the notion that properties of the underlying algorithm are
preserved in the superposition.

Lemma 4: Let X be a set of variables with domain dom{X). Let A and B be automata such that
A is superposable on B with respect to X, and let C = S{A, B, X). Then ezecs(C}|B C ezecs(B)
and feirezecs(CY B C fairezecs(B).

Proof: Let o be a (fair) execution of C. By definition of superposition, if (s',7,s) is a step of &
and 7 & acts(B) then s|X = &'|X. Therefore, a|B is a (fair) execution of B. (The fairness result
follows from the fact that part(B) C part(C), so any execution fair to the classes of C must also
be fair to the classes of B.) |

In general, it is not the case that every execution of the lower level automaton is a projection
of an execution of the superposed automaton. For example, lower level automaton B may have 7
as an input action, so its set of executions include executions in which = occurs multiple times. If
automaton A is defined to have © as an output action such that = occurs at most once in every
execution of A, then none of the executions of B in which # occurs more than once are projections
of executions of the superposition of A on B. However, when no output actions of the higher level
automaton are inputs to the lower level automaton, the converse of Lemma 4 holds, and we have

the following resuit.

Lemma 5: Let X be a set of variables with domain dom(X). Let A and B be automata such that
A is superposable on 2 with respect to X, and let C = §(A, B, X). If in{(B) N oui(A) = §, then
evecs(C)| B = execs(B) and fairezecs(C')|B = fairevecs(B).

Proof: Lemma 4 tells us that ezecs(C)|B C ezecs(B) and fuirezecs{(C)|B C fuirezecs(B). Let
B be a (fair) execution of B. Since in(B) N out(A) = @, we know that the higher level component
A has no control over which actions of acts(B) occur in an execution of €. Furthermore, only
the actions of B may change the variables in X in the superposition. Therefore, since a locally-
controlled action of B is enabled from state s in C iff it is enabled from state s|X in B, there
must exist some (fair) execution v of C such that y|B = 8. Thus, ezecs(B) C ezecs(C)|B and
Jairexees{ B} C fuirezecs{C')| B.]

The next result says that when an automaton A is superposed on some other automaton, then
the set of schedules of the resulting automaton, when projected on the signature of A, is a subset
of the schedules of A alone. This is very important because it allows us to prove safety properties
about A alone with the knowledge that these properties will hold when A is superposed on some
other automaton.

10

Lemma 6: Let X be a set of variables with domain dom(X). Let A and B be automata such
that A is superposable on B with respect to X, and let C' = 8(A4, B, X). Then scheds(C)|sig(A) C
scheds(A).

Proof: Let «v be an execution of C. We construct o from v by the following steps:

I. Remove from 7 all actions not in sig(A). This may create sequences of states not separated
by actions.

2. Replace the sequence of states between each pair of successive actions by the last state in
that sequence.

Clearly, a is an alternating sequence of states of A4 and actions of A. To show that o € ezecs(A4),
we must show that the first state of « is in start(A) and that if ¢ = ((p,2'),7,(p,z)) is a step in
@, then o € steps(A). For both of these, we use the following fact.

Fact: If a sequence of states from ~ is replaced in step 2 of the construction by the
single state (p,x), then every state in that sequence has p as the value of the private
state of A.

Proof of Fact: In v, each of these states is separated by an action not in the signature
of A. From the definition of superposition, we know that any step in v not involving
an action of A does not change the values of the private variables of A. Since (p,z)
is the last state in the sequence, every state in the sequence must have p as its first
component.

From the above fact, we know that the first state of v and the first state of a agree on the
values of the private variables of A. Since A is unconstrained, any value in dom(X) is an allowable
value for the second component of the start state. Therefore, the first state of a is a start state of
A.

If o= ({p,2'),7,(p,z)) is a step in 7, then we know that = occurs from state (p’,2’) in <.
Furthermore, from the above fact, we know that 7 results in state (p, &) in y for some & € dom(X).
So, we know that steps(A) contains the step ((p/,2’),7,(p, %)) for some & € dom(X). Therefore,
since 4 is unconstrained for X', we know that steps(A) contains the step ((p',2"),7,(p,)} for all
& € dom(X), and specifically for & = . This completes the proof. [|

Note that not all schedules of A are necessarily possible in the superposition, since certain states
reachable in A alone may not be reachable in the superposition. For example, suppose a particular
action 7 of A is enabled only when a variable z € X has a particular value v, and suppose that
the automaton B on which A is superposed is defined to never set x = v. Since A alone may set z
to any value (by the definition of unconstrained for X}, the action # may occur in behaviors of A.
IHowever, by the definition of superposition, there is no step of S{A, B, X') that results in z = v, so
7 is never enabled. This is a perfectly natural and desirable property of superposition, for it says
that the state of the lower layer affects the behavior of the higher layer.

Another interesting fact is that fairscheds(C)|sig(A) and fairscheds(A) are incomparable. We
know from the above paragraph that feirscheds(A) € fairscheds(C)|sig(A). But it is also the case
that fairscheds(C)|sig(A) € fairscheds(A), as witnessed by the following example. Suppose that A
has only two actions, m; and 79, each in its own class of the partition. Furthermore, suppose that
both events are enabled exactly when 2 = 0. Now, suppose that B has exactly one action w3, that
toggles the value of z between 0 and 1, and is always enabled. In the superposition of A on B, a
fair schedule would be 71, 73, 73, 71, 73, T3, 71, .. ., in which the class containing 72 is given a chance
to take a step only when @ = 1. However, the infinite schedule 7y, 7,71, ... is not a fair schedule

L1

of A alone: Since the schedule consists of infinitely many #; actions, it must he that 7y is enabled
from every state of the corresponding execution. Therefore, z = 0 in all states of that execution.
But w9 is also enabled whenever z = 0, yet the class containing w9 is never given a chance to take
a step, so the schedule is not fair.

The reason for the above fact is that the preconditions for the locally-controlled actions of A
are allowed to depend upon the values of the variables in X. Keeping this in mind, consider the
following additional condition on unconstrained automata. If A is an unconstrained automaton
for X, then A is said to be completely unconstrained for X iff for for all actions = € sig(A4), if
((p',2"),7,(p,z)) € steps(A) then for all & € dom(X), there exists a state (5, z) € states(A) such
that ((p', &), 7, (P, 2)) € steps(A). In other words, whether or not an action of A is enabled can
depend only upon the values of its private variables. The only way for A to make any use of the
variables of X would be for it to modify its own local variables according to what it observes in X,
causing other actions of A to become enabled or disabled. Modifying the definition of superposable
to require the higher level automaton to be completely unconstrained for X would allow us to
prove that fairscheds(C')|sig(A) C fairscheds(A), but would result in a significant loss of expressive
power. So, rather than require this condition outright, we state the following lemma, which says
that if an automaton happens to be completely unconstrained, then the containment result holds
for its fair schedules. This gives us more flexibility in the use of the model.

Lemma 7: Let X be a set of variables with domain dom(X). Let A and B be automata such
that A is completely unconstrained for X and A is superposable on B with respect to X. Let
C = 8(A,B,X). Then fairscheds(C)|sig(A) C fairscheds(A).

Proof: Analogous to that of Lemma 6, but noting that the actions of A are enabled indepen-
dently of the value of X and applying the definition of fairness. [|

The definition of an unconstrained automaton A for X requires that the value of X may be
changed arbitrarily with each step of A. However, a more natural way to describe the behaviors of
a module to be superposed on another module might be to allow the values of X to change befween
the steps of A as well. For this, we define the notion of an “extended execution” in which several
states may occur between two successive actions. If 4 is an unconstrained automaton for X, we
define an ezxtended ezecution of A to be a sequence « of states in states(A) and actions in acts(A),
beginning with a state in star{(A4), such that:

L. if a state-action-state sequence s'ms appears in a, then (s',7,s) is in steps(A4),
2. if two states s’ and s appear consecutively in «, then they differ only in the value of X, and
3. no two actions appear consecutively in a.

We define fairness for extended executions exactly as for ordinary executions. We let extevecs(A)
and faireriezecs(A) denote the sets of extended executions and fair extended executions of A,
respectively. If a is a sequence of states and actions and Il is a set of actions, we define the
notation oIl to be the sequence that results from deleting from o exactly those actions not in II.
Using extended executions instead of ordinary executions, we get the desired fairness result:

Lemma 8: Let X be a set of variables with domain dom(X). Let A and B be automata such
that A is superposable on B with respect to X, and let C' = §(A, B, X). Then ezecs(C)||sig(A) C
exterecs(A) and fairexecs(C)|isig(A) C fairestexecs(A).

Proof: Let a be an execution of C'. From the definition of superposition, we know that o begins
with a state in starf(A), and that any step (s',7,s) occurring in a with 7 € sig(A) must be a step

12

of A. Also by the definition of superposition, for any step (s’,7,s) where 7 is not in sig(4), &'
and s must differ only in the value of X. Therefore, o|sig(A) is an extended execution of A by
definition. If o is fair, then since « and a|sig{A) contain the same sequence of states, and since
part(A) C part(C), we know that «afsig(A) is a fair extended execution of A. |

3.3 Partial Execution Modules

It is important to have a formal mechanism for specifying the problem to be solved by an antomaton.
Schedule modules, as described in Section 2.4, permit us to specify the allowable schedules of
a module in terms of the actions that occur the boundary with its environment. However, if
an aufomaton A is to be superposed on top of some underlying automaton B, then we would
like to specify the allowable behaviors of A not only in terms of the actions that occur at its
external interface, but also in terms of the internal state of B. To accomplish this, we define a new
specification mechanism called a “partial execution module.”

Let X be a set of variables with domain dom(X), and let II be a set of actions. A partial
execution for IT and X is defined to be a sequence of states and actions, beginning with a state,
such that each state is in dom{X), each action is in II, and each action is immediately followed by
a state. Note that a partial execution may contain several states beiween two consecutive actions.

A partial execulion module H consists of

s sig(), an external action signature,
o vars(f), a set of variables with domain dom(vars(H)), and
o pezecs{ H), a set of partial executions for sig(H) and vars(H).

A partial execution module H defines a problem to be solved by an unconstrained automaton for
vars(H) with external signature sig(H). In order to define what it means for an automaton to
“solve” fI, we need a way to extract partial executions from extended executions. Let X be a set
of variables with domain dom(X), let II be a set of actions, and let & be an extended execution of
any automaton that is unconstrained for X. We define al(Il, X), the partial execution for Il and
X in a, to be the same as «, except that each state s is replaced by its projection on X and each
action not in II is deleted. I A is an unconstrained automaton for X with external signature II,
we define pezecs(A, X) to be the set {«|(Il, X) : a € fairexterecs(A)}.

An antomaton A is said to solve a partial execution module H iff pezecs(A,vars(H)) C
pexecs(H).

3.4 Superposition for Partial Executions

Lynch and Tuttle define composition for both automata and schedule modules. So far, we have
defined the superposition of one automaton on another, but have not yet defined an analogous
operator for superposing a partial execution module on another module. We now complete the
theory by defining the superposition of a set of partial executions on a set of ordinary executions.
Let X be a set of variables and let Il and A be sets of actions. Let d be a set of partial
executions for Il and X, and let ® be a set of alternating sequences of states in of dom(X) and
actions in A. Let U be the set of all alternating sequences of states of X and actions of JUA. We
now define the superposition of & on ¢ with respect to X. Overloading the S notation, we define

S(3,2.X)={acU:a|ll € FAalA e 0}

13

In other words, for each element a of §(@,®, X), deleting all actions from @ except those in IT
results in a partial execution in 8, and projecting & on the actions of A results in an execution in
.

The following result says that the set of fair behaviors of a superposition of A on B with respect
to X is the same as the set of behaviors resulting from the superposition of pexecs(A, X) on the
fair executions of B.

Lemma 8: Let X be a set of variables. If automaton A is superposable on automaton B with
respect to X, then fuirbehs(S(A, B, X){(II, X)) = behs(S(pexecs(A), fairezecs(B), X)).

Proof: If # is a fair behavior of (4, B, X'}, let & be the corresponding execution. By Lemma 8,
a||sig(A) is a fair extended execution of A, so of(sig(A),X) € pezecs(4). And by Lemma 4,
al|B € fairezecs(B), so fairbehs(S(A, B, X)|(I, X)) C behs(S(pexecs(A), fairezecs(B), X)).

To show the other direction, let o be an element of S{pezecs(A), fairezecs(B), X). From the
definition of superposition of partial executions, we know that oIl € pezecs(A). Therefore, there
exists a fair extended execution o’ of A such that a = o'|(ext(A),X). Also from the definition of
superposition of partial executions, we know that a|A € fairezecs(B). Since the states of o and
o are identical with respect to X, we know that {or each step (s',7,s) of a|A, there exists in o’ a
pair of consecutive states 8 and § such that s/|.X = & and 3]X = s. We construct a” by inserting
each action of @|A between the corresponding pair of states in a’. To complete the proof, we must
show that a” is a fair execution of $(A4, B, X). We know that o begins with an initial state of A.
Now, we consider the four possible cases for each step (s, 7,s) in a”:

1. I = € sig(A), then (&', 7, 8) € steps(A), since o' is an extended execution of A.

2. If m € sig(B), then (s'|X, 7, s|X) € steps(B), because of our construction of a” from « and
the fact that a|A is an execution of B.

3. I m & sig(A), then ¢ and s differ only in the value of X, by definition of an extended
execution.

4. If = & sig{), then s'|.X = s|X, again because a|A is an execution of B.

Therefore, o is an execution of S(A4, B, X). To show that a” is fair, we note that part(S(4, B, X)) =
part(A) U part(B) by the definition of superposition, and we consider the classes of A and B sepa-
rately. We know that o' is a fair extended execution of A. Therefore, since o”|[A = o/, o” is fair
to the classes of A. Similarly, since a|A is a fair execution of B, and o”|B = a|A, we know that o
is fair 1o the classes of B. [

4 Example: Global Snapshot

Extended with the superposition operator, the I/O automaton model can now be used to model
algorithms for problems in which layering is the most natural structure. In this section, we use
the extended model to describe and prove correct the global snapshot algorithm of Chandy and
Lamport [2]. We begin by defining the global snapshot problem as a partial execution module G.
Then we describe the global snapshot algorithm as an automaton to be superposed on an arbitrary
application program. Finally, we give a complete proof that the global snapshot algorithm solves
partial execution module G.

Both composition and superposition are important in this example because the snapshot au-
tomaton is, in {fact, the composition of a collection of automata, one superposed on each component

14

of the distributed application. Each of these automata acts as a “filter” of the incoming and out-
going messages of the application program. Since superposition permits each of these automata to
observe the state of the corresponding component of the application, the existence of the global
snapshot algorithm is entirely transparent to the application program. Without the superposition
operator, it would have been necessary to modify the application program to explicitly communicate
its state to the snapshot algorithm at the appropriate point in the global snapshot protocol. The
correctness proof shows that the global snapshot automaton solves the partial execution module
and makes important use of the compositionaliiy results of the model.

4.1 Problem Specification

We consider systems of processes that communicate by sending messages over a network. The
network guarantees eventual one-time delivery of each message such that messages sent from a given
process to each other process arrive in the order sent (pairwise FIFO). The goal of a distributed
global snapshot protocol is to produce a global state of a system (states of all processes and the
set of messages in transit) during an ongoing computation. The snapshot algorithm is not allowed
to interfere with the computation of the rest of the system. For example, the snapshot algorithm
cannot halt the system. In addition, the snapshot obtained must be both consistent and recent. By
this we mean that if the snapshot protocol is initiated in a system state iniliation, terminates in the
system state terminalion, and produces the snapshot state snapshot, then there is some execution
of the system containing the stales inilialion, snapshot and {ermination, in that order (possibly
with other states in between) in which the same set of messages was sent and received by each
process. Note that the state snapshol may not ever actually occur. The requirement is only that
it “could” have occurred between the initiation and termination states by a suitable reordering of
the actions.

The global snapshot problem, and protocols for solving it, are neatly specified using the super-
position definitions defined in the previous section. We view the snapshot algorithm as a layer to
be superposed on top of the application layer. We begin by specifying the signature for each of
the underlying application processes and a schedule module for the network. Then, we present a
partial execution module GG that formalizes the problem statement given above.

4.1.1 Application Processes

Let Z be a finite set of names for the communicating processes in the application program. Let
M be a universal set of messages that contains a special marker symbol (#) used by the snapshot
protocol but never sent as a message by the application. Tor each ¢ € Z, we fix a corresponding
application process u;. Iach process u; is modeled as an automaton having a set of state variables
X; with domain stetes(u;), and the following signature:

Input actions: RCV(m,j,¢), me M ~ {#},7€T
OQutput actions: SEND(m,i,7), me M —~ {#},7 €T

The input actions represent u; receiving a message m from u;, and the output actions represent
w; sending a message m to u;. Associated with u; are two sets, oul-chans(i) and in-chans(i),
both subsets of Z. One may think of oui-chans(i) as identifying those application processes to
which u; may send messages, the “outgoing channels” of w;. Similarly, in-chans(i) identifies the
application process from which u; may receive messages, the “incoming channels” of u;. More
precisely, let CHANS(V, I) be a strongly connected graph with |Z| vertices uniquely labeled by the

15

elements of 7. For each 7 € Z, we let out-chans(i) = {j € Z| (4,7} € £} and we let in-chans(i) =
eTIi) e B}

A sequence # of actions of u; is said to be well-formed for ¢ iff for all m € M, and for all j,k € Z,
if SEND(m,¢,7) occurs in 8, then j € oul-chans(i) and m # #, and if RCV(m, k,%) occurs in 3,
then & € in-chans(i).

We require that u; preserve well-formedness for 7, but make no other restrictions on the allowable
behaviors of u;. We make no restrictions on the domain states(u;).

4.1.2 Correspondence Relations

In specifying the network, as well as the global snapshot problem, we use a correspondence relation
technique similar to that of [4]. Let ¢ denote a text string. We define a message action for { to
be any action of the form #(m,%,7), where m € M and 7,7 € Z. Let § be a sequence of actions,
and let = and y be text strings. Let I, be the set of events for message actions for z in g, and
let 11, be the set of events for message actions for y in f. Let C be a binary relation on the set of
events in an execution onto itself, and let us say that two events in an execution correspond iff the
relation is true for that pair of events. We say that C is a correspondence relation for 2 and y in §
iff the first four of the following conditions hold, and is a live correspondence relation iff all of the
following conditions hold.

1. Corresponding events have identical arguments.

2. Each event 7, € II, corresponds to exactly one event m, € Il;, and 7, precedes 7 in 3.

3. Each event w; € II;; corresponds to at most one event in II,.

4. 10 z(m,i,) precedes z(m/,i,7) in @B, and y(m,i, 7) and y(m',i,7) are their corresponding
events, then y(m, 1,) precedes y(m’,4,7) in 3.

5. I'or each event 7, € II;, there exists a corresponding event in II,,.

An intuitive explanation of these conditions follows their use in specifying the network. The fol-
lowing [emma stafes a transitivity property of correspondence relations.

Lemma 10: Let 8 be a sequence of actions, and let z, y and z be text strings. If Cyy is a (live)
correspondence relation for x and y in 3, and C,; is a (live) correspondence relation for y and z in
3, then there exisis a (live) correspondence relation C;; for @ and z in 5.

Proof: Let C,. be defined as follows. T'wo events 7, and 7. in 3 correspond iff there exists an
event w, in @ such that =, corresponds to », according to C,, and 7, corresponds to 7, according
to Cy.. The properties of a (live) correspondence relation follow immediately. |

4.1.3 The Network

Rather than modeling the network as an explicit I/O automaton, we define an action signature
for the network and then define a well-formedness property of sequences of those actions that
characterizes the desired behaviors of the network. The signature of the network is as follows:

Input actions: SEND(m,2,5), me M,,7 €1
Output actions: RCV(m,i,j), me M,{,j €1

if 7 is a sequence ol actions, then 8 is nelwork cdmissible il there exisis a live correspondence
relation for SEND and RCV in 8. This means that (1) a SEND and RCV correspond only if

16

they match on the arguments m, ¢, and 7, (2) each RCV corresponds to exactly one SEND, and
the SEND occurs earlier, (3) to each SEND event there corresponds at most one RCV event, (4)
messages between pairs of processes are delivered in the order sent, and (5) each message sent is
eventually received. The fifth condition is the liveness property we assume to be guaranteed by the
network.

4.1.4 The Application System

In defining our correctness condition for the global snapshot algorithm, we would like to express
the notion that the application processes should not be able to tell whether they are running in a
system with the snapshot protocol, or in a system without the snapshot protocol. Therefore, we
explicitly define the set of allowable behaviors of the “system without the snapshot protocol” to
form the basis of our correctness condition.

Let U = Ilieru;, the composition of all the application processes. We define the set of fair
behaviors of the application system, denoted fairbehs(Sqpp) to be the set of behaviors of all network
admissible fair executions of . We will state the correctness conditions for a global snapshot
protocol in terms of fuirbehs(S,y). In doing so, it will be helpful to have the following definitions.
Let segs{M) be the set of all sequences of elements of M, including the empty sequence ¢. Let
a be element of fairbehs(S,.pp), and let C be a correspondence relation for SEND and RCV in
« (we know there is one, by the definition of network admissible). If o' is a prefix of a, we
define in-transily ¢ : (Z x I) — seqs(M) as follows. For each pair 4, € I, in-lransity (4,) is the
sequence of messages m such that SEND(m,7,7) occurs in o, but the corresponding RCV(m,7,1)
does not, ordered according to the SEND events. In other words, for each 7,7 pair, we have the
sequence ol messages sent from u; to u;, but not yet delivered to u;. We define in-transit analogously
for the schedule of «, and for executions or partial executions whose schedules, projected on U, are

in fairbehs(Sapp).

4.1.5 Partial Execution Module &

In this section, we specily the global snapshot problem by defining a partial execution module G.
Let chans name the set of all possible functions from elements of Z to elements of segs(M), and
let all-chans name the set of all possible functions from elements of 7 to elements of chans. The

signature sig(G) is as follows:

Input actions: START;, 1€ Z
SEND(m,z,7), me M,i,j €T
MSG.RCV(m,7,7), me M,i,j €T

Output actions: MSG.SEND(m,:,7), me M,,j €T
RCV(m,i,j), me M,i,j €T
DONE;(a,c), t € I, ¢ € slates(u;), ¢ € chans

Let a be a sequence of stales(U) and actions of G. If a START action (for any) occurs in
o and exactly one DONE; action occurs in a for each ¢ € 7, then we let o = ajasas, where ag
begins with the first START action and ends with the last DONE action. Furthermore, we define
snap(a) to be the pair (s € states(U), ¢ €all-chans) such that Vi € Z, if DONE;(a;, ¢;) occurs in «,
then slu; = a; and c(4) = ¢;. In other words, snap() is the collective state of the system (including
messages in transit) reported in the DONE; actions that occur in a.

Since the snapshot algorithm has no control over its input actions, we require that G' behave
properly only when its environment, namely the network and the application processes, is well-

17

behaved. Let « be a sequence of states(U) and actions of G. We say that « is admissible iff
(1) there exists a live correspondence relation . for MSG_SEND and MSG_RCV in «, and (2)
Vi € T,alu; € exees(u;). We place constraints on the behavior of &' only for admissible partial
executions.

Let a be a sequence of states(U) and actions of G. Then a € pezecs(G) iff the following
condition holds. If « is admissible, then

1. sched{a)jU € fuirbehs(Sqpp), and
2. if a START action occurs in a, then

(a) Vi€ Z, exactly one DONE; occurs in «, and

(b) 3B = B1B25B3B4, an execution of U, with correspondence relation Cg for SEND and RCV
in 4, such that
i. Vi € T, Blu; = alu,,
il. the last state of ay is the last state of 81, and in-lransily, ¢, = in-transily, c,,
iii. snap(a) = (s, in-transilg, g, ¢,), and
iv. the first state of a3 is the first state of B4, and in-transitg, g,sp,,c5 = N-transila, oy Cq -

Condition (1) captures the idea that the computation of the application processes in the sys-
tem with the snapshot algorithm should be a legal computation in the application system alone.
Condition (2) concerns the snapshot itself. It says that if a snapshot is requested, then (a) snap-
shot information eventually is reported for each application process u; € Z, and (b) the snapshot
produced must be a consistent recent state of the system. Note the similarity of part (b) to the
informal statement of the global snapshot problem given at the beginning of this section, where
the “initiation” state refers to the last states of oy and A1 and the “termination” state refers to the
first states of az and gy.

In the specification of the global snapshot problem, we used the states of the underlying algo-
rithm to express the recency condition. This would not have been possible with an ordinary schedule
module specification, and points out the need for partial execution modules in conjunction with

superposition.

4.2 The Algorithm

In this section, we use the I/ O automaton model with superposition extensions to describe the global
snapshot algorithm of Chandy and Lamport [2]. In the original paper by Chandy and Lamport, the
snapshot algorithm is described being “superimposed” on top of the application program. However,
the algorithm is actually presented as a modification to the underlying application program, and
care is taken to ensure that the modification does not disrupt the application. Chandy and Misra [3]
describe the algorithm in UNITY, and Nour [16] recasts that work using I/O automata. In both of
these presentations, however, the distinctions between the snapshot algorithm and the underlying
application become blurred. That is, the UNITY program resulting {from superposing the snapshot
algorithm on the application is monolithic; it does not preserve the essential separation of actions
under the control of the snapshot protocol and the actions under the control of the application. This
is partly due to the lack of separation of inputs and outputs, but is largely due to the absence of a
mechanism for partitioning the actions of a program into separate processes. Using I/0O automaton
superposition, we are able to achieve a formal separation of the application program from the global
snapshot protocol. The “built-in” partition of Jocally-controlled actions of an I/0 automaton allows

18

us to model the actions of the snapshot protocol and the actions of the application as being under
the control of differeni processes.

To model the global snapshot algorithm, we define a snapshot automaton p; foreachi € I. In a
sense, p; encapsulates the corresponding application automaton u;, acting as a buffer between the
application processes and the network. Because of this structure, the SEND and the RCV actions
of the application are no longer shared with the network, but are instead shared with the snapshot
automaton. The snapshot automaton, in turn, interacts with the network using MSG_SEND and
MSG_RCV actions to avoid naming conflicts. We postulate a renamed network, where the SEND
actions are renamed to be MSG_SEND actions and the RCV actions are renamed to be MSG_.RCV
actions. In this way, the encapsulation structure is supported without renaming the actions of the
application processes.

Fach snapshot automaton p;, ¢ € I has several state components. The components staie-
snapped and chan-snapped{j], j € T are boolean variables, initially false, that record whether or
not the state of u; and the states of the various *incoming channels” adjacent to u; have been
recorded for the snapshot. The components in-queuve[j] and out-queue[f], for each j € Z, are queues
of messages, initially empty. These contain messages that are waiting to be delivered to (or sent
from) application process u;. Recall that a message for process u; from process u; is not delivered
directly to process u; from the network. Instead, the message is delivered to the snapshot automaton
pi, which places the message in in-queue[j] for later delivery. Similarly, when process u; sends a
message (o process u;, the SEND action is not shared with the network automaton. Instead, the
snapshot automaton p; puts the message in out-queuve[j] and later sends out the message. The
component snapshot, initially undefined, takes on values in states(w;), and is used to record the
snapshot of the application’s state at ;. Similarly, chan-state[j], for § € Z is an initially empty
queue of messages that is used to record the state of the incoming channel from process 7. Finally,
the state component doneis a boolean variable indicating whether or not p; has reported the results
of its local snapshot in a DONE; action.

The signature and transition relation are shown in Figure 1. In the code, if ¢ is a queue, then
head(q) refers to the first item in the queue (i.e., the one that would be dequeued next), or nilif the
queue is empty. The function tail{¢) refers to the queue that results from dequeuning head(gq). If ¢
lias zero or one elements, then tail(g) = nil. The notation goa refers to the queue that results from
enqueueing element @ in the queue ¢. Since the snapshot automaton p; is designed to be superposed
on top of the application process automaton u;, we use the state component app to refer to the state
of the application process automaton u;. One can easily check thal p; is unconstrained (in fact,
completely unconstrained) for {app}. (See Lemma 11.) A step (s¢/,m,s) appears in the transition
relation for p; iff the precondition for & holds in state s/, and state s is derived from ¢ according
to the assignments in the effect of #. I no precondition is given, then it is assumed to be true in
all states.

The partition part(p;) is defined as follows. For each j € Z, there are two classes: all actions of
the form RCV(m,i,7), m € M, and all actions of the form MSG_SEND(m, i,7), m € M. Finally
the action DONE; is in a separate class.

The snapshot algorithm is initiated at p; either by a START; action from the environment or by
receipt of a marker message (#). The environment may generate any number of START messages
for any number of snapshot processes. However, we view the first START message in an execution
as the start of the global snapshot protocol. The first time a START; occurs or p; receives a marker,
p; records the local state of the underlying application automaton u; (and records the state of the
incoming channel on which the marker was received as being empty), places a marker in the queue
for all of its outgoing channels, and begins keeping track of all messages received on its incoming
channels in the chan-state variables. Any later START; message is ignored. Any later receipt of

19

Input actions: START;
MSG_RECEIVE(m, j,{), me M,jeT
SEND{m,4,j), me M,j el

Qutput actions: RCV(m,j, i), meM,je?
MSG_SEND(m,i,j), me M,j €7
DONE;(a,¢), s € states(u;), ¢ € chans

e START;
Effect: if s'.stale-snapped = false then
s.snapshot = s’ .app
s.stale-snapped = true
Vi € oul-chans(i), s.oul-quevelk] = &' out-queue[k] o #

o MSG_RCV(m,j,1)
Effect: if m = # then

if s'.state-snapped = false then
s.snapshot = s'.app
s.state-snapped = true
Yk € oul-chans(i), s.oul-quenelk] = s’ out-quene[k] o #

s.chan-snappedfj] = true

else

s.an-quenelf] = s’ .in-quenefj] o m

if s'.state-snapped = true A §'.chan-snapped[j] = false then
s.chan-state[j] = §'.chan-state[jl o m

¢ SEND{m,i,j)
Effect: s.out-queune[j] = ¢'.out-quene[j] o m

o RCV(m,j,i)
Precondition: m = head(s’.in-queue[s])
Effect: s.in-quene[f] = tail{s’. in-queune[;])
¢ MSG_SEND(m,1,j)
Precondition: m = &' .head{out-queune[j])
Effect: s.out-quevely] = tail(s’ oul-guewe[y])
L DONEi(CL,CJ

Precondition: s'.state-snapped = true
Vi € ¢'.in-chans, s'.chan-snapped[j} = true
§'.done = false
a = s'.snapshot
Vi eI, i) = s .chan-stale(7)
Effect: s.done = true

Figure 1: Global Snapshot Automaton p;.

20

a marker on a given “channel” j causes p; to set chan-snapped]j] to true, which prevents p; from
adding later messages to chan-state[j]. Once the state of u; and the states of all incoming channels
have been snapped, p; may issue a DON L action, reporting the snapshot information.

We now prove some simple properties of p;. The compositionality properties of I/O automata
will allow us to use these local results in proving properties of larger systems containing p;.

Lemma 11: Automaton p; is completely unconstrained for app.
Proof: By inspection of the code {for p;, app never appears in a precondition, and never appears
on the left hand side of an assignment in an effect. |

Lemma 12: Let o be a fair execution of p;. Then there exists a live correspondence relation for
SEND and MSG_SEND in «, and there exists a live correspondence relation for MSG_RCV and
RCV in a.

Proof: By definition, a SEND(m,%,j) action for p; places m into out-queue[j]. Only a
MSG.SEND(m,,j) action can remove m from that queue, and the only precondition for a
MSG_SEND(m,1,7) action is that m is at the head of out-queue[j]. Therefore, since « is a fair
execution, exactly one MSG SEND(m, ¢, 7) event eventually occurs for each element of out-gueue[j],
in the order of the SEND events. This implies that there is a live correspondence relation for SEND
and MSG_SEND in «. Similarly, by definition a MSG_RCV(m, j,%) action places m into in-queune[].
Since a is a fair execution, exactly one RCV(m,j,i) event eventually occurs for each element of
in-queue(7], in the order of the MSG.RCV events. Therefore, there is a live correspondence relation
for MSG_RCV and RCV in a. |

The following lemma states several properties of executions of p;.

Lemma 13: Let a be an execution of p; containing states s’ and s, in that order. Then ¥j € Z,
L. If §'.state-snapped = true, then s.stale-snapped = true.
2. If §'.chan-snapped(j) = true, then s.chen-snapped(j) = true.

3. If s'.done = true, then s.done = true.

4. If s.chan-snapped(j) = true, then s.stale-snapped = true.
5. If §'.state-snapped = true, then s.snapshot = &' .snapshot.
6. If s'.chan-snapped(j) = true, then s.chan-state(j) = s'.chan-state(7).

I START; occurs before state s, then s.state-snapped = true.

~3

8. If MSG_RCV(#.],i) occurs before state s, then s.chan-snapped(j) = true.

9. If state-snapped = false, then chan-stale(j) = .

Proof: Properties 1-3 are immediate from inspection of the code for p;, since no action of p; sets
those variables to false. Property 4 follows from Property 1 and the definition of MSG_RCV, the
only action that can set a chan-snapped variable to true. Property 5 follows from the definitions of
START; and MSG_RCV, which only modify snapshot if state-snapped is false. Similarly, Property
6 follows from the fact that a MSG_RCV action only modifies chan-state(j) if chan-snapped(j) is
lalse. Property 7 follows from the definition of START; and Property 1. Property 8 follows from the
definition of MSG_RCV and Property 2. Since chan-state(7) is initially empty and only modified
by a MS5G.RCV action when state-snapped = true, Property 9 follows from Property 1. =

21

In the following lemma, we use the above properties and invariants to show exactly what p;
reports in a DONE; action.

Lemma 14: Let o be an execution of p; containing a DONE;(a,¢) action, and let s be the first
state of o in which state-snapped = true. Then a = s.app, and for all j € Z, ¢(j) contains the
sequence of messages m appearing in all the MSG_RCV(m,j,7) actions between state s and the
first state &’ in which chan-snapped(j) = true.

Proof: From the precondition on DONE; we know that state s must exist. The only actions
that can cause state-snapped to become true are the START; and MSG_RCV actions. When either
of these actions sets slale-snapped = true, they also copy app into snapshot. Therefore, s.snapshot
= s.app. So, from Properties 1 and 5 of Lemma 13, we know that this value of snapshef remains
fixed for the remainder of . Therefore, by the definition of DONE;, ¢ = s.snapshot = s.app.

For all j € Z, we know from Property 9 of Lemma 13 that in all states s’ before s in «,
§'.chan-state[j] = ¢. When the first RCV.MSG(#,7,7) occurs in a, chan-snapped(j) is set to true,
and chan-state(j) becomes fixed by Properties 2 and 6. Then by the definition of MSG_RCV, the
sequence of messages m appearing in all the MSG_RCV(m, 7,7) actions between state s and the first
state s in which chan-snapped(j) = true is exactly the sequence of messages added to chan-state(s)

in a, and they are added in the order of occurrence in @. Therefore, by definition of DONE,, the

lemma holds.]

4.3 Proof of Correctness

Throughout the proof, we use subscripts to distinguish the state components of different processes.
For example, app; relers to the app component of p;.

Let automaton P be the composition of all p;, ¢ € Z, and let X be the set of variables app;,
i € Z. Let @ = U(P,X). We wish to show that @ solves partial execution module G. First,
we prove a statement about interprocess communication in €, and then turn directly to the main

result.

Lemma 15: Let & be an admissible [air extended execution of ¢J. Then there exists a live corre-
spondence relation for SEND and RCV in a.

Proof: Since a is admissible, there is a live correspondence relation between MSG_SEND and
MSG.RCV in . Therefore, by Lemmas 12 and 10, we have the desired result, |

Theorem 16: Automaton () solves partial execution module G.

Proof: The organization of the proof follows the definition of G. Let v be an admissible
fair extended execution of ¢}, and let o = v|(acts(G), X). For condition (1} of G, we wish to
show that sched(a)|U € fairbehs(Sepp). From the hypothesis (a admissible), we know that for all
i € T, alu; € feirbehs(u;). Therefore, from standard [/O automaton compositionality results, we
know that a € fairerecs{U). And from Lemma 15, we know that sched(«) is network admissible.
Therefore, sched(a)|U € fairbehs(Say,)-

For condition (2) of &G, suppose that a START action occurs in @. Tor (2a), we wish to show
that exactly one DONE; occurs in o for each ¢ € Z. For each ¢ € 7 when the first START; or
MSG.RCV(#.7,%), 7 € I, action occurs, a marker (#) is placed into every oui-queue[s] € out-
chans(i). Therefore, if a START; occurs or p; receives a marker, then for all j € out-chans(i), a
MSG_SEND(#,i, 7} eventually occurs. Since « is admissible, a MSG_RCV(#,,7) eventually occurs
for all 7 # <. We know that the graph CHANS is strongly connected. Thus, if a START; occurs in
«, then eventually a marker is received by each p; on each of its incoming channels. The first time
a START; occurs or a marker is received at p;, the state of wu; is recorded. Turthermore, when a

22

MSGRCV(#,4,1) occurs, p; records the state of incoming channel 7. Therefore, it is eventually the
case that for all ¢, € Z, state-snapped; = true and chan-snapped[j] = true. By Properties 1 and
2 of Lemma 13, we know that these are stable properties. Therefore, since the preconditions on
DONE; eventually become true and remain true until it occurs, a DONE; action must eventually
occur in o for each 1 € Z. By Property 3 of Lemma 13 at most one DONE; action can occur in «
for each ¢ € 7, since that action sets done; to true. This completes the proof of part (2a).

We prove part (2b) by a construction similar to the one presented by Chandy and Lamport [2].
For all ¢ € Z, let s¥ be the first state in « in which state-snapped; = true. (We have already shown
that such a state must exist.) Now, for all 7 € Z, mark all actions of a|u; after sT as distinguished.
Note that all actions in oy are not distinguished, all actions in a3 are distinguished, and a5 contains
a mixture of distinguished and undistinguished actions. We construct # = F18250384 as follows:

1. Let ph = ey|U.

2. Let B (3) contain the sequence of undistinguished (distinguished) actions of I/ in a3, where
each action w is followed by state sg € states(U') such that for all 1 € 7,

(a) if # € acts(u;) then sglu; = so|ui, where so is the state following 7 in «, and

(b) if m & acts(u;) then splu; = sp|u;, where s} is the previous state in g.
3. Let By = az|U.

Informally, we construct g from a| by “delaying” the actions of a process that has recorded its
local snapshot until all the remaining processes have also recorded theirs. The sequence 8, is the
prefix of @|U up to the first START action. The sequence B3 contains all the remaining actions of
a|U for processes that have not yet taken their local snapshots. The sequence f3 contains all the
“delayed” actions, up until the last process reports its snapshot. Finally, 8, is the suffix of o|U
after the global snapshot has been completed.

Clearly, for all ¢ € 7, Blu; = au;. Therefore, from standard I/Q automaton compositionality
results, we know that F is an execution of U. Next, we need to show that there exists a live
correspondence relation Cg for SEND and RCV in 5. We will show, in fact, that it is the same
correspondence relation as in «. We know that the same actions occur in J as in «. Therefore, the
only condition we need to show is that for each SEND action, the corresponding RCV occurs later
in 3

suppose (for contradiction) that there exists RCV(m,1,7) in B such that the corresponding
SEND(m,1,7) occurs later in 3. The only way this could happen is for the RCV to be an undis-
tinguished action in « and the SEND to be a distinguished action in «, or else they could not
have been reordered by the construction. However, if the SEND is a distinguished action, then the
message from that SEND must be preceded in the outgoing channel by a marker message from u;
lo uj, so the RCV for the marker occurs at the u; before the RCV for m, after which state-snapped;
= true. This means that any later actions of u; are distinguished, a contradiction. Therefore, the
live correspondence relation Cpg exists.

We now consider each of the four properties in condition {2b}. Property (i) holds immediately
from the construction, since the construction preserves the order of events at each automaton u;,
i € Z. We know that a; is the prefix of a up to the first START action. Since no process p; sets
state-snapped; = true until after the first START action occurs, we know from the construction
that oy |U = B|U. Therefore, the Property (ii) holds. Since (8, contains exactly the sequence
of undistinguished actions in «, we know that for all 7 € 7, s|u; is the state of u; in o when state-
snapped; first becomes true. Moreover, we know that for all ¢ € 7, in-transitg, g, ¢,(¢) maps each

23

J € J to the set of all messages sent by u; before stale-snapped; = true, but not received by u;
before state-snapped; = true. Whenever state-snapped; becomes true for the first time, p; places a
marker in all outgoing channels. Therefore, for all ¢ € Z, in-transitg, g, c,(7) maps each j € J to
exactly the sequence of messages m appearing in all the MSG_RCV(m, j,7) of o between the first
state in which staie-snapped; = true and the last state before a marker message is received by p;
along the channel from p;. Since receipt of a marker message from p; results in chan-snapped;(7)
= {rue (Property 8 ol Lemma 13), we know from Lemma 14 that Property (iii) holds. From the
construction Sy = as|U. Since the set of actions in a|U is exactly the set of actions in § and the
correspondence relations for SEND and RCV are the same, Property (iv) holds. [

5 Conclusion

In this paper, we have extended the I/O automaton model to permit superposition of program
modules. This provides a unified model that permits one to reason locally about components of
a distributed system, and to combine those modules through composition and/or superposition in
such a way that the essential properties of the components are preserved in the resulting system.

Acknowledgments

I thank Nancy Lynch for many useful comments, Hagit Attiya and Nissim Francez for helpful
discussions, and Ken Cox for his suggestions for improving the presentation.

References

[1] Luc Bougé and Nissim Francez. A compositional approach to superimposition. In Proceed-
ings of the 15th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 240~249, January 1988.

[2] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systerns, 3(1):63~75, February 1985.

(3] K. Mani Chandy and Jayadev Misra. A Foundation of Parallel Program Design. Addison—
Wesley, Reading, MA, 1988.

[4] A. Fekete, N. Lynch, Y. Mansour, and J. Spinelli. The data link layer: The impossibility of
implementation in face of crashes. Technical Memo MIT/LCS/TM-355.b, MIT Laboratory for

Computer Science, August 1989. Submitted for publication.

[5] Limor Fix, Nissimn Francez, and Orna Grumberg. Program composition and modular veri-
fication. In Proceedings of the 18th International Colloquium on Automeaia, Languages and
Programming, LNCS 510, pages 93-114. Springer—-Verlag, July 1991.

[6) Nissim Jrancez and Ira R. Forman. Superimposition for interacting processes. In Proceed-
ings of the Ist International Conference on Concurrency Theory, Theories of Concurrency:
Unification and Extension, LNCS 527, pages 230-245. Springer-Verlag, August 1990.

[7] Kenneth Goldman and Nancy Lynch. Modelling shared state in a shared action model. In
Proceedings of the 5th Annual IEFE Symposium on Logic in Computer Science, June 1990.

24

[8] Kenneth J. Goldman. A compositional model for layered distributed systems. In Proceed-
ings of the 2nd International Conference on Concurrency Theory, LNCS 527, pages 220-234.
Springer-Verlag, August 1991.

(9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey, 1985.

[10] Bengt Jonsson. A model and proof system for asynchronous networks. In Proceedings of the 4th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1985.

[11] Bengt Jonsson. Compositional specification and verification of distributed systems. Technical
Report SICS/R-90/90010, Swedish Institute of Computer Science, October 1990.

[12] Bengt Jonsson. Simulations between specification of distributed systems. In Proceedings of the
2nd International Conference on Concurrency Theory, LNCS 527, pages 346-360. Springer—
Verlag, August 1991.

[13] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 137-151, August 1987. A full version is available as MIT Technical Report
MIT/LCS/TR~387.

[14] Nancy A. Lynch and Mark R. Tuttle. An introduction to Input/Output Automata. CWI
Quarterly, 2(3), 1989.

[15] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[16] Magda F. Nour. An automata-theoretic model for UNITY. Technical Report MIT/LCS/TM-
400, MIT Laboratory for Computer Science, June 1989. Senior Thesis.

25

	Composition, Superposition, and Encapsulation in the Formal Specification of Distributed Systems
	Recommended Citation
	Composition, Superposition, and Encapsulation in the Formal Specification of Distributed Systems

	tmp.1455646060.pdf.Mzez9

