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Abstract

We present the Spectrum Simulation System, a new research tool for the design and study of dis-
tributed algorithms. Based on the formal Input/Output Automaton model of Lynch and Tuttle,
Spectrum allows one to express distributed algorithms as collections of I/O automata and simulate
them directly in terms of the semantics of that model. This permits integration of algorithm spec-
ification, design, debugging, analysis, and proof of correctness within a single formal framework
that is natural for describing distributed algorithms. Spectrum provides a language for express-
ing algorithms as I/O automata, a simulator for generating algorithm executions, and a graphics
interface for constructing systems of automata and observing their executions.

We show that the properties of the I/O automaton model provide a solid foundation for algo-
rithm development tools. For example, using I/O automaton composition, Spectrum users may
define composed types hierarchically, study simulations at varying levels of detail, and create
specialized debugging and analysis devices. These devices, called spectators, are written in the
Spectrum language just as any other system component, and can monitor algorithm executions for
correctness and performance without interfering with the algorithm.

The system is designed to support experimentation with algorithms. For example, the system
separates algorithms from the system configurations in which they are to run, allowing users to
vary them independently. Also, the message system may be modeled explicitly as an automa-
ton, permitting users to study algorithms under different communications assumptions simply by
substituting one automaton for another.

Keywords: distributed computing, distributed algorithms, software development tools, specifi-
cation, input/output automata






1 Introduction

With continued advances in computer communications technology and the resulting proliferation
of distributed computing systems, methodologies and tools supporting the design of distributed
algorithms will become increasingly important. This is not only because more people will be
designing distributed algorithms, but also because the algorithms themselves are likely to become
more specialized and complex, tailored to particular distributed applications. And unlike sequential
algorithms, distributed algorithms must cope with arbitrary communication delays and both pro-
cessor and communication failures. The fact that communication delays are unpredictable means
that distributed algorithms must also cope with arbitrary interleaving of processor steps. There-
fore, a given program’s computation may unfold nondeterministically. This makes designing and
reasoning about distributed algorithms inherently difficult. Consequently, researchers have turned
to formal models of distributed systems in order o reason about their algorithms. For example,
the I/O automaton model of Lynch and Tuttle [26, 27] is particularly well suited for the study of
distributed algorithms; it allows one to state natural correctness conditions, give precise algorithm
descriptions, and construct careful correctness proofs.

We claim that formal models are important not only as a means to analyzing and proving the
correctness of distributed algorithms, but also as the basis of software tools for designing better
algorithms. The aim of this paper is to demonstrate how distributed algorithm specification, design,
debugging, analysis, and proof of correctness may be integrated within 2 single formal framework
that is natural for describing a wide range of distributed algorithms. Such integration not only
saves one from translation between different models and languages, but also allows facts discovered
during simulation and debugging to be more easily incorporated into the correctness proof, and
allows properties used in the proof to be checked mechanically during simulation.

We present the Spectrum Simulation System, a new research tool for the design and study of
distributed algorithms. Spectrum consists of a programming language and simulator based on the
I/O automaton model. Users express distributed algorithms as collections of I/O automata and
simulate them directly, in a way that is faithful to the semantics of the formal model. A graphical
user interface is provided for constructing systems of automata and visualizing their executions. In
presenting the system, we describe how the salient features of the I/O automaton model provide a
solid foundation for distributed algorithm development tools. For example, using I/O automaton
composition, Spectrum users may define composed types hierarchically, study simulations at varying
levels of detail, and create specialized debugging and analysis devices.

In the remainder of this introduction, we define the scope of the problem by clarifying what we
mean by a distributed algorithm and outlining those aspects of distributed computation that we
consider important to capture within a distributed algorithm development tool. We conclude this
discussion by describing the design philosophy behind Spectrum and listing a number of specific
design goals.



1.1 Preliminaries

A distributed system consists of a collection of geographically separated computers linked together
by a network. In general, the network topology, the arrangement of communication links between
processors, may be arbitrary. Processes, program threads running on the computers, may commu-
nicate with each other by sending messages over the network, but do not have any other means
of communication, such as a shared memory. Processes are autonomous, meaning that they deter-
mine when to send messages to other processes. That is, a process cannot prevent another process
from sending a message. Processes do not have synchronized clocks, and their instruction execu-
tion rates may differ. This implies that processes are asynchronous; their steps may be arbitrarily
interleaved. Network communication is also asynchronous, meaning that the acts of sending and
receiving a message are separated (often arbitrarily) in time.

Like any computer system, distributed systems are prone to failures. However, unlike centralized
systems, portions of a distributed system may continue to be useful while other portions are “down.”
We classify the types of failures that may occur in a distributed system into process failures and
communication failures. Process failures range from simple stopping faults (crashes) to malicious
faults, in which faulty processors attempt to corrupt the computation of the rest of the system
by sending incorrect or conflicting messages. If we assume that a communication link is supposed
to deliver each message exactly once and in the order sent, then communication failures may
involve losing messages, reordering messages, delivering messages that were never sent, or delivering
messages multiple times.

In order to coordinate the activities of processes in a distributed system, it is necessary to have
agreed-upon protocols. These protocols are called distributed algorithms. Typical problems solved
by distributed algorithms include leader election, distributed consensus, mutual exclusion, and
global snapshot. Distributed algorithms are usually designed with particular assumptions about
the underlying system in mind. For example, one might assume that the only process failures
are crash failures and that all messages sent eventually arrive. In addition to failure assumptions,
one might make assumptions about the network topology or about the existence of unique process
identifiers. The set of assumptions makes a great impact on the algorithmic solution. It is often
interesting to consider what happens when an algorithm’s assumptions are violated. For example,
consider a distributed algorithm designed with the assumption that messages are delivered in order.
Depending on the particular algorithm, delivering messages out of order might cause the algorithm
to produce an incorrect result, might have no effect whatsoever, or might cause the algorithm to
produce a correct result but with degraded (or superior!) performance.

The particular combination of process and communication failures that an algorithm must tol-
erate forms part of the problem specification. A specification is usually presented in terms of the
input/output relationship between the algorithm and its environment. Since an algorithm has no
control over its environment, a problem specification usually says that an algorithm will satisfy
certain safely and liveness conditions, provided that its inputs are well-formed. The safety condi-
tions essentially say that the algorithm never does anything “wrong,” and the liveness (progress)



properties essentially say that the algorithm eventually does something “right.” An algorithm is
said to be correct if it satisfies both the safety and liveness conditions (whenever its inputs from
the environment are well-formed).

We need formal models to help overcome the inherent difficulty of designing distributed al-
gorithms that stems from the arbitrary interleaving of process steps. Informal arguments and
software testing are inadequate substitutes for formal methods, since anything short of a complete
proof is likely to miss “bad” executions — executions in which the particular choice of process
step interleaving leads to the violation of safety or liveness requirements. Formal models, such
as the I/O automaton model, are useful for stating problem specifications, describing algorithms
precisely, and constructing careful proofs of correctness. However, formal proofs of correctness are
often long, hard, and tedious. If an algorithm is incorrect, much effort can be wasted in attempting
to prove its correctness. Testing can help one to discover many errors in algorithms quickly and
easily, before delving into a correctness proof. Furthermore, simply constructing a correctness proof
for an algorithm may not reveal enough intuition into how the algorithm works in order to lead
to improvements in the algorithm. For these reasoms, it is important to have research tools for
simulating distributed algorithms.

Simulation allows one to test and debug algorithms, and can reveal intuition that is helpful
in understanding algorithms and constructing correctness proofs for them. In conjunction with
appropriate graphical visualization techniques, simulation facilitates the study of algorithm perfor-
mance under varying conditions, something not easily done in the context of a proof. But because
successful testing alone is not sufficient cause to believe that an algorithm is correct, one must still
construct a correctness proof as part of the algorithm development cycle. Therefore, it is impor-
tant that the semantics of the simulation language be consistent with the formal model in which
the proof is to be constructed. In addition, using an appropriate formal model as the basis of a
simulation tool leaves open the possibility of integrating the entire algorithm development process:
specification, design, debugging, analysis, and proof of correctness.

1.2 Design Philosophy

Motivated by the ideas we have just described, the following design principles were used to guide
development of the Spectrum Simulation System.

The design must be faithful to a formal model. Since our aim is to integrate theoretical
modelling techniques with algorithm simulation, the simulation language and its semantics (as
well as the implementation of the simulator) must remain faithful to the formal model. Any
departure from the formal model jeopardizes effective integration of the two. For example, it is
only possible to mechanically check executions of an algorithm against properties stated in the
proof if the semantics of the simulation match the semantics of the model. By remaining faithful
to a theoretical model, we also benefit from having a well-defined semantics on which to base the
language and implementation.



The language should be natural for expressing a large class of distributed algo-
rithms. Of course, this means we must choose a sufficiently simple model so that the resulting
language mechanisms encourage writing straightforward algorithm descriptions, and so that the re-
sulting simulations are easily comprehended. But in addition, we want the model and language to
reflect the fact that processes in distributed systems generate output autonomously and may receive
input at arbitrary times. Also, since distributed algorithms can be designed with many different
communication assumptions, the system should provide support for varying these assumptions.
Therefore, one should be able to model communication mechanisms explicitly. Many distributed
algorithms make use of unbounded state, such as message counters or history information. In order
not to rule out such algorithms, we require that the language allow processes to have infinite state
sets (in principle). Finally, we require that the language have built-in data types and control flow
mechanisms that are convenient for describing distributed algorithms.

The simulation tool should facilitate the discovery of new insights about an algo-
rithm through experimentation and exploration. In general, support for experimentation
means that it should be easy to modify the algorithm and manipulate the simulation. User effort
should be focused on experimenting with algorithms rather than finding obscure program errors. In
addition, the language should provide mechanisms for modularity, so that algorithm components
may be studied individually or replaced with other components. This modularity should have a
hierarchical structure, so that simulations can be studied at different levels of detail. In addition,
the system should support writing user-defined debugging and analysis tools as separate modules,
50 as not to clutter up the algorithm or interfere with its execution. In fact, all logically indepen-
dent concerns should be orthogonal in the language. For example, it should be possible to modify
each of the following aspects of a simulation independently: the algorithm being studied, the sys-
tem configuration, the control of visualization, and the mechanisms for debugging and analysis.
And, of course, flexible mechanisms should be provided for controlling and studying executions.
Examples of such mechanisms include automatic detection of invariant violations, simple graphical
mechanisms for configuring systems and controlling visualization, a choice of scheduling options,
and the ability to go back to an earlier point in a simulated execution.

The design should achieve economy and integration. In general, a system is easier to
build, learn, and use when a small set of tools provide all the necessary functionality. Therefore, it
is desirable to use the same language mechanisms for writing programs, creating debugging tools,
specifying invariants, and setting up visualization. In addition, a single graphical interface should
be used for both constructing the system configuration and controlling the simulation.

The above design principles summarize the design philosophy for the Spectrum Simulation
System, and their influence is evident in the Spectrum design.

The remainder of the paper is organized as follows. In Section 2, we review the I/0 automaton
model, the theoretical foundation for our work. This is followed by the presentation of the Spec-
trum Simulation System. The tool consists of three main components, the programming language,
the simulator, and the user inerface. Central to the design of Spectrum is a clear separation of
automaton types, which are the different kinds of components in an automaton system, and the



configuration, which defines the number of instances of each of those types and the relationships
among them. The programming language, defined in Section 3, provides constructs for describing
distributed algorithms as I/O automaton types. The language provides constructs that support
algorithm visualization and mechanical checking of state invariants. /O automaton types are sep-
arately instantiated in order to form an automaton system configuration. The Spectrum simulator,
described in Section 4, provides facilities for generating executions of these automaton systems.
The graphical user interface, described in Section 5, is used both for defining the configuration and
for controlling the simulation. Spectrum is written entirely in C [17] and runs on DEC Microvax
workstations. The user interface is built on top of the X11 window system [32]. We conclude the
paper with an evaluation of Spectrum in terms of the design goals described above, and suggest a
number of directions for future research.

There are a number of other languages and systems based on formal models that support
the study of concurrent algorithms. These are not all designed for simulation and visualization of
distributed algorithms, but are sufficiently related that one might imagine using them (or extending
them) for that purpose. We do not include a survey of related languages and systems here, but a
detailed comparison of Spectrum with several of these langunages and systems (including Occam [16,
30], Unity [4], Statemate [12], and DEVS [35]), may be found elsewhere[8].

2 The Model

The I/O Automaton model [26, 27] has been chosen as the foundation of the Spectrum Simulation
System primarily because it is a natural model for describing distributed algorithms. Using a
variety of techniques, careful correctness proofs have been constructed in this model for a wide
range of distributed algorithms (for examples, see [3, 5, 10, 21, 23, 24, 25, 26, 33, 34]). In this
section, we present a review of the I/O automaton model adapted from [27]. Interested readers are

referred to that paper for more details, motivation, examples, and results.

2.1 I/O Automata

I/0 automata are best suited for modelling systems in which the components operate asyn-
chronously. Each system component is modeled as an I/O automaton, which is essentially a
nondeterministic (possibly infinite state) automaton with an action labeling each transition. An
automaton’s actions are classified as either ‘input’, ‘output’, or ‘internal’. An automaton can es-
tablish restrictions on when it will perform an output or internal action, but it is unable to block
the performance of an input action. An automaton is said to be closed if it has no input actions;
it models a closed system that does not interact with its environment.

Formally, an action signature § is a partition of a set acts(S) of actions into three disjoint
sets in(S), out(S), and int(S) of input actions, output actions, and internal actions, respectively.
We denote by ext(S) = in(S) U out(S) the set of esternal actions. We denote by local(S) =
out(S)int(5) the set of locally controlled actions. An1/O automaton A consists of five components:



e an action signature sig(A4),
o a set states(A) of states,
* a nonempty set start(A) C states(A) of start states,

e a transition relation steps(4) C states(A) X acts(A) x states(A) with the property that for
every state s’ and input action 7 there is a transition (s',7,s) in steps(4), and

o an equivalence relation pari(A) partitioning the set local{ A) into at most a countable number
of equivalence classes.

The equivalence relation part(A) will be used in the definition of fair computation. Each class of
the partition may be thought of as a separate process. We refer to an element (s, 7, s) of steps(A)
as a step of A. I (s, 7,s) is a step of A, then 7 is said to be enabled in 5. Since every input action
is enabled in every state, automata are said to be input-enabled. This means that an automaton is
unable to block its input.

An ezecutionof A is afinite sequence sg, 71, $1,...,7n, S, OT an infinite sequence sp, 7y, 81, T2, . ..
of alternating states and actions of A such that (8i,Mig1, 8ix1) is a step of A for every 7 and
so € start(4). The schedule of an execution « is the subsequence of « consisting of the actions
appearing in a. The behavior of an execution or schedule ¢ of A is the subsequence of a consisting of
ezternal actions. The sets of executions, finite executions, schedules, finite schedules, behaviors, and
finite behaviors are denoted ezecs(A), finezecs(A), scheds(A), finscheds( A), behs(A), and finbehs(A),
respectively. The same action may occur several times in an execution or a schedule; we refer to a

particular occurrence of an action as an event.

2.2 Composition

We can construct an automaton modelling a complex system by composing automata modelling
the simpler system components., When we compose a collection of automata, we identify an output
action 7 of one automaton with the input action = of each automaton having x as an input action.
Consequenily, when one automaton having  as an output action performs =, all automata having
7 as an action perform 7 simultaneously (automata not having 7 as an action do nothing).

Since we require that at most one system component controls the performance of any given
action, we must place some compatibility restrictions on the collections of automata that may be
composed. A countable collection {S;};c; of action signatures is said to be strongly compatible if
for all 7,5 € I satisfying i # 7 we have

1. out(S;) N out(S;) = @,
2. int(S;) N acts(S;) = 0, and

3. no action is contained in infinitely many sets acts(S;).



We say that a collection of automata is strongly compatible if the corresponding collection of action

signatures is strongly compatible.
The composition S = [[;c1 S; of a countable collection of strongly compatible action signatures

{Si};cr is defined to be the action signature with
o in(S) = Ujerin(S;) — Userout(S;),
o out(S) = Ujerout(S;), and
o int(S) = Userint(S;).

The composition A = [[;c; A; of a countable collection of strongly compatible automata {Ai}icr is

the automaton defined as follows:!
o sig(A) = [T;er sig(Ai),

states(A) = [1;; states(A;),

o start(A) = ;¢ start(A;),

steps(A) is the set of triples (41, §3) such that, for all i € I,if 7 € aets(4;) then (5][i], 7, & [1]) €
steps(A;), and if m ¢ acts(A;) then $i[f] = $3[i], and

part(A) = Ujerpart(A;).

Given an execution a = $ym8 ... of 4, let a|d; (read “a projected on A;”) be the sequence
obtained by deleting 7;$; when w; ¢ acts(A;) and replacing the remaining 5} by &i).

2.3 Fairness

Of all the executions of an I/O automaton, we are primarily interested in the ‘“fair’ executions —
those that permit each of the automaton’s primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system’s
primitive components. In the model, therefore, being fair to each component means being fair to
each equivalence class of locally controlled actions. A fair ezecution of an automaton A is defined
to be an execution o of A such that the following conditions hold for each class C of part(A):

1. If o is finite, then no action of C is enabled in the final state of a.

2. If « is infinite, then either @ contains infinitely many events from €', or @ contains infinitely
many occurrences of states in which no action of C is enabled.

'Here start{A) and states(A) are defined in terms of the ordinary Cartesian product, while sig{A) is defined in
terms of the composition of action signatures just defined. Also, we use the notation 3[i] to denote the ith component

of the state vector .



2.4 Problem Specification

A ‘problem’ to be solved by an I/0 automaton is formalized as a set of (finite and infinite) sequences
of external actions. An automaton is said to solve a problem P provided that its set of fair behaviors
is a subset of P. Although the model does not allow an automaton to block its environment or
eliminate undesirable inputs, we can formulate our problems (i.e., correctness conditions) to require
that an automaton exhibits some behavior only when the environment observes certain restrictions
on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule module I to consist of two components, an action signature sig(H), and a set
scheds(H) of schedules. Each schedule in scheds(H ) is a finite or infinite sequence of actions of H.
Subject to the same restrictions as automata, schedule modules may be composed to form other
schedule modules. The resulting signature is defined as for automata, and the schedules scheds(H)
is the set of sequences 3 of actions of H such that for every module H’ in the composition, 8| H’ is
a schedule of H'.

It is often the case that an automaton behaves correctly only in the context of certain restrictions
on its input. A useful notion for discussing such restrictions is that of a2 module ‘preserving’ a
property of behaviors. A set of sequences P is said to be prefiz-closed if 8 € P whenever both 3
is a prefix of & and @ € P. A module M (either an automaton or schedule module) is said to be
prefiz-closed provided that finbehs(M) is prefix-closed. Let M be a prefix-closed module and let P
be a nonempty, prefix-closed set of sequences of actions from a set @ satisfying ® N int(M) = 0.
We say that M preserves P if 87|® € P whenever 8|® € P, 7 € out(M), and S7|M € finbehs(M).
Informally, a module preserves a property P iff the module is not the first to violate P: as long
as the environment only provides inputs such that the cumulative behavior satisfies P, the module
will only perform outputs such that the cumulative behavior satisfies P. One can prove that a
composition preserves a property by showing that each of the component automata preserves the
property.

The I/0 automaton model is only one of a number of formal models that have been used for
reasoning about concurrent systems. As part of our presentation of the Spectrum programming
language, we highlight those features of the I/O automaton model that make it particularly well-
suited for our purposes. Readers interested in a more detailed discussion of our choice of the 1/
automaton model as the basis of this work, with a discussion of several alternative models (including
CSP [15], Unity [4], and Statecharts [13, 14]), may refer to [8]. A review of alternative models with
an emphasis on techniques for proving algorithm correctness is contained in [26].

3 The Language

The Spectrum programming language is the first executable language based on the I/O automaton
model. In the literature, the transition relations of I/O automata typically have been described
using variants of the “precondition/effect” notation of Lynch and Tuttle [27] based on Dijkstra’s



guarded commands. In this notation, each action has a precondition that maps each state of
the automaton to a boolean value, and the action is enabled in exactly those states in which the
precondition is true. (Since input actions are always enabled, their preconditions are taken to be
true in all states.) Similarly, each action has an effect that defines the new state of the automaton
based on the action and the state from which the action occurs. However, the notations used to
express these preconditions and effects have, until now, been rather ad hoc. Furthermore, authors
usually have resorted to prose to define the data types and initial values of state components, as
well as the partition of locally controlled actions. The Spectrum programming language provides
well-defined constructs for expressing each of the five basic components of an I/O automaton:
the signature, states, initial states, nondeterministic transition relation, and partition of locally-
controlled actions.

Traditionally, I/O automaton descriptions have treated action “arguments” as part of the ac-
tion name, allowing a given automaton to have infinitely many actions. Since we cannot evaluate
preconditions for infinitely many actions in finite time, Spectrum separates the traditional precon-
dition into two parts: a PRE (precondition) clause and a SEL (selection) clause. The PRE clause
determines if there exists an assignment to the arguments of the action that would result in an
enabled action, and the SEL clause is used to select the particular argument values for an enabled
action. This will become clear as we present the details of the language.

Linguistic support for verification, analysis, and visualization are also provided. The language
provides a means to express state invariants (predicates on the automaton state) to be checked after
each of its steps in an execution. We also present a mechanism called a spectator, a separate 1/0
automaton having only input actions, that is useful for mechanically verifying during simulation
that an automaton’s execution is among the set of executions permitted by its specification, as well
as for keeping track of various properties of an execution (such as the number of times a particular
component enters its critical section) for analysis purposes. In addition, a mechanism is provided
for defining pseudovarjables, which may be mapped to colors in a graphical display of the algorithm
execution. In keeping with our design goals, all of this extra language support is provided in such
a way as not to obscure the algorithm being studied. The “extra” pieces of code that are present
only for purposes of studying the algorithm are clearly separated from the algorithm itself. In spite
of this separation, the mechanisms themselves are well-integrated with the rest of the language:
the same sorts of expressions used to describe the algorithm are also used to define invariants,
spectators, and pseudovariables.

The language is interpreted, provides a convenient set of built-in data types, and is statically
type-checked. These features allow algorithm modifications to be made quickly, make it easier to
express algorithms at a high level, and permit users to concentrate on debugging their algorithms,
rather than on finding obscure errors in their programs.

The remainder of the section is organized as follows. We begin in Section 3.1 by highlighting cer-
tain aspects of the model that form a solid foundation for an implementable programming language,
as well as those that must be compromised slightly in order to achieve a practical implementation.
Then, in Section 3.2 we discuss a major design decision of the Spectrum Simulation System, namely



the separation of I/O automaton types from the I/O automaton system configuration. Following
this, Section 3.3 contains the details of specific language mechanisms for defining I/O automaton
types. Section 3.4 contains an example of an automaton type for LeLann’s leader election algo-
rithm [19]. Finally, Section 3.5 describes special language support for verification, analysis, and
visualization.

3.1 Theoretical Foundations

In the previous section, we reviewed the I/O automaton model on which the Spectrum programming
language is based. Certain features of the model can be used directly as the basis fora programming
language, but there are also some features of the model that must be compromised slightly in order
to produce an implementable language.

We begin with the model features that we capture directly in the language. As in the model,
automaton descriptions in Spectrum consist of five components: a set of states, a set of initial
states, a set of actions divided into input actions and output actions, a transition relation, and a
partition of the output actions into classes.? And the language, by prohibiting preconditions on
input actions, guarantees that these actions are always enabled. We also guarantee that output
actions are under the control of only one automaton. In this way, Spectrum we can describe
systems of autonomous components. And the semantics of a state transition in the language is
consistent with the model: every state transitions in each automaton’s transition relation is treated
as an atomic step. Therefore, since shared actions take place simultaneously at all the participating
automata, it is easy to reason about communication among the automata. We also permit automata
to be composed to form complex systems. This gives rise to flexible modularity and straightforward
encapsulation mechanisms. System modules can be composed in a variety of ways, and reasoning
about modules is accomplished in terms of the actions that occur at their boundaries. Although
the above is not a complete list of the features of the language, it should be clear that most of the
features of the model are suitable for an implementable programming language.

However, there are several aspects of the model that cannot be implemented directly. Obviously,
it is impossible to implement a truly infinite-state automaton on a digital computer with finite
storage. Nonetheless, we can support data structures that give the illusion of an infinite state set
and allow the state space of automata to be quite large — large enough for any practical algorithm.
Similarly, the model permits systems to have infinitely many automata, but our implementation
supports only a finite number.3

Since the implementation must run on a deterministic machine, we provide randomization in
the language and the scheduler in place of nondeterministic choice in the model. Fortunately, the
model does not rely on nondeterminism in the automata-theoretic sense. That is, nondeterminism
is not used in the model to “guess” a correct solution to be deterministically checked. Rather,

nondeterminism is merely present to permit a large number of possible executions of the algorithm.

2For simplicity, we treat internal actions as cutput actions that are not inputs to other components.
3We are considering the addition of langnage constructs for for creating new antomata and classes dynamically to

provide the illusion of an infinite set.

10



All of these executions are supposed to be correct, as opposed to the usual automata-theoretic case
where only one need be correct. This kind of nondeterminism is useful for program development.
One can first write a loosely structured program, prove it correct using the model, and then
“tune” it for performance by placing additional preconditions on locally controlled actions with the
knowledge that safety properties still hold. Since the intention is to build a tool that encourages
experimentation with algorithms, and since generating many different executions of an algorithm
is one way to achieve this, we provide randomization in the language rather than requiring that
algorithm designers transform their general solutions to ones that make fixed deterministic choices.

The notion of fairness is important in both the model and the implementation, but is only sec-
ondarily a language consideration. One might imagine various algorithms for scheduling automaton
classes, which may or may not satisfy the fairness requirement imposed by the model. However,
the only requirement for the language is that one be able to specify the set of classes to which one
must be fair. Fairness, then, becomes the responsibility of the scheduler.

3.2 A Separation of Concerns: Automaton Types vs. Configurations

The purpose of the Spectrum programming language is to express I/0 automaton types, the building
blocks of I/O automaton systems. An automaton type defines the signature, states, transition
relation, and action partition of potentially many different automata. Having defined a collection
of automaton types in the language, one separately supplies a configuration that defines the set of
instances of automaton types to be simulated. In other words, the language is not used to define
the entire system to be simulated, but only to define the different kinds of automata that may
exist in a system. This division is central to the design of the Spectrum Simulation System. It
separates the algorithm description from the system configuration in which the algorithm is to run,
and allows one to experiment with algorithms by varying the system configuration independently.

A configuration defines the automaton instances and relationships between them. Every con-
figuration specifies the automaton type of each instance, and includes a unique automaton id for
each instance (assigned automatically by the system). In addition, one may assign each instance a
name, and may specify a set of directed edges that organizes the instances into an arbitrary graph.
And one may create new automaton types by composing other automaton types; each instance of
such a type is then a composition of several instances of other types. If an instance’s type is such
a “composed type,” then we say that it is the “parent” of each of its instantiated components;
this hierarchical relationship is also included as part of the configuration data. One purpose of
the configuration is to break symmetry. It may be used in arbitrary ways to define the signatures
and transition relations of automata. For example, in a configuration of several instances arranged
in a ring, one might use directed edges between instances to specify which of the instances are
neighbors.

It is helpful to think of an automaton type as a program and an automaton instance as a
single invocation of that program. Each instance of a given automaton type has the same program,
but that program may reference information present in the configuration. Thus, two instances of
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the same automaton type may have different initial states, signatures, transition relations, and
partitions. Because of this, we say that an automaton type is parameterized by the configuration.

3.3 Language Constructs

In this section, we present the Spectrum programming language constructs for defining the states,
initial states, signatures, transition relations, and partitions for I/0 automaton types. The mech-
anisms for defining an I/0 automaton system configuration are presented in Section 5.

3.3.1 Data Types

The Spectrum programming language is strongly typed and statically type-checkable in order to
save users from wasting time searching for obscure errors in their code. The state components
of an antomaton, the arguments of actions, the parameters of classes (to be explained later),
and the values of expressions in the language all have associated data types that are checked for
compatibility when an automaton types file is loaded into the simulator.

There are four base types: integers, booleans, automaton id’s, and strings. In addition, the
language provides five type constructors for building more complicated structures from the base
types: tuples with named fields, sets, multisets, sequences, and mappings, each with the expected
set of operators. Constructed types may be arbitrarily nested and assigned mnemonic names. For

example, the line
DATA buffer multiset(tuple(msg: string,dest:automaton_id))

defines the type buffer to be a multiset of tuples, where each tuple has a string and an automaton_id,
with field names msg and dest, respectively. Our notion of type equality is structural equality, where
names of tuple fields are considered to be part of the structure of a type. One may think of a DATA
declaration as a macro definition. Recursive type declarations are not permitted. In addition to its
own type-specific operations, every data type, including ail constructed types, has operations for
comparison and assignment. Data types for the return values of type-specific operations are inferred
(statically) from the data types of the arguments. In order to prevent references to undefined
variables, each base type in the language has a default value, which is assigned to that variable by
the system when no initial value is specified by the programmer. Similarly, each type comnstructor
has a default value, defined recursively on the basis of the defaults for its component types.
Automaton id’s are special in that their operations provide the ability to access configuration
data. For example, if x is an automaton id, then neighbors(x) returns the set of automaton id’s
for the neighbors (in the configuration graph) of the automaton instance with id x. The function
self() returns the id of the automaton calling the function. An automaton id may also be used
to reference the following information about the associated automaton instance in a configuration:
its name (a user-supplied string), its parent in the composition hierarchy, its neighbors adjacent
to incoming edges in the graph, and its neighbors adjacent to outgoing edges in the graph. An
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operation is also provided for obtaining the set of automaton id’s for all instances of a given
automaton type in the configuration.

A complete description of the data types and their associated operations is provided in [8].
Currently, there is no provision in the language for writing user-defined operations. However,
the language implementation is such that new operations may be added easily. Note that (with
the exception of record notation) all of our syntax uses an applicative style; there are no infix
operators. This adds to the length of our programs and can impair readability somewhat, but is
not an inherent problem with the language. One might imagine “sugared” versions of the syntax
that could be preprocessed into our applicative style.

3.3.2 Action Types

Action types define the different kinds of actions that may be used in the signatures of automaton
types. Since a given action may be shared by many different automaton types, action types are
declared outside of the scope of any automaton type definition. Fach action is declared with a
name and an argument fype. The name is used to identify the action in the signatures of automata
and in executions. The argument type defines the data type for the argument of the action. For
example,

ACTION send tuple(msg:string, to:automaton-id)

declares an action with the name “send” and an argument that is a tuple consisting of a text
string (named msg) and an automaton-id (named to). In descriptions of the transition relations of
automaton types, the argument of an action is referenced by the name a, and record notation is
used to refer to the argument components. For example, in the context of an event for the action
above, one would refer to the first component of the argument by a.msg.

In addition to the user-defined argument for each action type, there is an implicit argument
a.owner of type automaton-id, which names the automaton for which the action is an output. This
argument may be referenced in the same way as the user-defined arguments. Having this argument
ensures that each action is under the control of a single system component, as required by the I/0O
automaton model.

Simply declaring an action type does not associate it with any particular automata. It is the
signature of an automaton that determines which are its input and output actions. When events
take place during a system execution, the set of participating automata is determined according
to the automaton signatures; each participant automaton takes a step according to its transition
relation, its current state, the action name, and the action argument values. Next we describe how
the states, signatures, and transition relations of automaton types are defined.

3.3.3 Automaton Types

There are two ways to define an automaton type. The first is to write an explicit textual definition
in the Spectrum programming language. The second is to compose several automaton types to
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form a new “composed” automaton type. In this section, we consider only the first method; the
second method is part of the configuration process, discussed in Section 5.

States The first part of an automaton type definition, following the automaton type name, is
the state declaration. The set of states for an automaton type is defined with a data type. For
example, the line

STATE tuple(status:integer, buff:set(tuple(msg:string, to:automaton-id)))

says that each instance of this automaton type has two state components: an integer status, and a
set buff of (string, automaton-id) pairs. The set of states for an automaton with this state definition
would consist of the set of all possible assignments to these components. Thus, an automaton
with this state definition would have infinitely many states. As we mentioned earlier, there are
physical limitations of the computer, such as the largest representable integer or the amount of
memory available for storing text strings, that prevent us from implementing a truly infinite state
automaton. However, the language gives us the power to express infinite state automata that may
be implemented up to the limitations of the physical architecture.

As in the I/O automaton model, an automaton’s state components are private; they may be
modified only by the occurrence of an action of that automaton. In the definition of a tramsition
relation, one refers to the state as s, and uses record notation to refer to particular state components.
For example, given the above state declaration, s.status would refer to the value of the first state

component.

Signatures The action signature of an automaton type consists of a set of input actions and a
set of output actions. Recall that action types are defined outside of the scope of any automaton
type. In order to add a particular action type to the signature of an automaton type, one simply
lists the action type name, indicating whether it is to be classified as an input action or an output
action. For example, recall the action type send defined earlier. The line

INPUT send

says that all actions of type send are input actions to automata of this type. However, for any
particular action type, we may not wish that an automaton have in its signature all the actions for
all possible values of the argument. Therefore, the language provides a mechanism for restricting
the argument values for each action type in the signature. Such restrictions are accomplished using
a WHERE clause. For example, instead of the previous line, we might write:

INPUT send WHERE set_el(neighbors{self()), a.to)

This line specifies that the automaton being defined does not have all actions of type send as input
actions, but only those where the “to” component of the argument is an element of the set of
neighbors of the automaton in the configuration. (Recall that a.to refers to the “to” component
of the action argument.)
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The above example illustrates one way that configuration data can be used to parameterize
the signature of an automaton type; each automaton instance of this type would have a slightly
different signature, according to its set of neighboring automaton instances in the configuration. A
WHERE clause can be any boolean expression involving the arguments of the action, constants,
and configuration data. Since the signature of an automaton is static, a WHERE clause cannot
tefer to values of state components. The set of output actions may be restricted using WHERE

clauses as well.

Transition Relations Spectrum provides language constructs for defining transition relations
that are similar to the “precondition-effect” notion of Lynch and Tuttle. However, there are im-
portant differences. In the precondition-effect notation, a precondition is defined for each possible
action name, where an action name is taken to include the values of the action arguments. That is,
Lynch and Tuttle allow the precondition to depend on the values of the arguments. This is rather
impractical for a real programming language, since this might require considering each possible
value of the action argument in order to determine which actions of an automaton are enabled.
Considering that the data types of action arguments may have infinite domains, it would be a costly
(if not impossible) procedure to evaluate the precondition for each possible action and determine
the set of enabled actions.

We solve this problem by splitting the traditional precondition for an action into two parts: the
precondition and the selection. In the precondition, we consider the action type as a single unit,
ignoring the values of the arguments. The purpose of the precondition is to answer the following
question: “Is there some assignment to the arguments of the action type that would give rise to an
enabled action in the current state?” That is, if we think of each action type as a set of actions,
the precondition in our language determines whether or not this set of actions contains at least one
action that is enabled in the current state. Given that the precondition is satisfied, the selection
clause is used to determine (possibly at random) the particular values that are assigned to the
arguments of the action. Separating the argument selection from the precondition in this way
avoids the impracticality of having unbound variables in the precondition. It also means that one
need not select action arguments whenever the precondition is tested, but only when that particular
action type is chosen for the next step of the execution.

S0, the transition relation for an automaton typeis defined by associating precondition, selection,
and effect clauses with the action types listed in the signature of the automaton. Output actions may
have all three kinds of clauses, while input actions have only effect clauses. To make programming
easier and enhance readability, the clauses for each action type immediately follow the corresponding
entry in the signature. We now say a few words about each of these three kinds of clauses. Examples
of each are contained in Section 3.4.

A precondition is a predicate (or conjunction of predicates) on the current state of the automa-
ton. Configuration data may be referenced in a precondition, but action arguments may not be
referenced. If the precondition of an action type evaluates to frue in a given state, then an output
action of that action type is said to be enabled in that state.

15



A selection is an assignment to the argument of the action. When the argument has several
components, they may be assigned separately within the selection clause. The assignments are
executed sequentially and may reference (but not modify) state and/or configuration data. In
addition, once an argument component has been assigned a value, it may be referenced in later
assignments within the selection clause. In the current implementation, one must assign to all
argument components, even though the WHERE clause on the output action may restrict some
argument components to a single possible value; after selection, the system simply checks that the
WHERE clause is satisfied by the argument selected.

An effect clause is used to derive the new state of the automaton from the old state, according
to the action argument. It consists of a sequence of assignments or modifications to all or part of
the state of the automaton. Again, the statements are executed sequentially and effects of earlier
modifications are observed by later ones. Of course, one may reference (but not modify) the action

argument in the effect clause.

Partitions So far, we have described how to define states, initial states, signatures, and transition
relations of I/O automaton types. We now consider the last of the five basic components of an I/0O
automaton, the partition of the locally controlled actions. Since we have restricted our signatures to
include only input and output actions, the locally controlled actions are simply the output actions.
We divide the output actions of an automaton type into classes by placing each output action type
in the signature within a CLASS block. For example, the lines

CLASS
OUTPUT send

CLASS
OUTPUT ack

QUTPUT grant

-

say that for each instance of this automaton type, all send actions are in one class of the partition
and all ack and grant actions are in another class. The class block construct is simple, and makes
the division of actions into classes obvious at a glance. However, as we have described it so far,
the construct is not quite general enough, since all output actions of a given type must belong to
the same class. Sometimes one wishes to place different actions of the same type into different
classes, according to their argument values. Therefore, we allow a class block to be parameterized
using configuration data. Each parameter may take on values from a fixed set, and the type of the
parameter is inferred to be the type of the elements of that set. Just as we use s to refer to state
components and a to refer to action arguments, we use c to refer to class parameters. For example,
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CLASS (dest:neighbors(self()))
OUTPUT send WHERE eq(a.to, c.dest)

declares several classes, one for each neighbor of the automaton instance in the configuration graph.
Since neighbors(self()) is a set of automaton id’s, dest has type automaton_id. Each class
contains a set of send actions with that neighbor as the “to” component of the argument. A
class may contain more than one type of action, and may be parameterized by more than one set.
Although the number of classes must be finite, the number of actions within a class may be infinite.

In defining a class, one may optionally specify a non-negative integer as the “weight” of that
class. In the current implementation, these weights are interpreted by the randomized scheduler as
the average relative speeds of the processes. For example, if two classes continually contain enabled
actions, and the weight of the first class is twice that of the second, then the first class will take
twice as many steps as the second, on average.

3.4 Example

As a simple example of the use of the language, we present an implementation of LeLann’s
algorithm for electing a leader in an asynchronous ring, where each process in the ring starts with
a unique identifier [19]. Essentially, each process passes a message containing its identifier to its
left neighbor in the ring. Processes forward only those messages containing identifiers greater than
their own. The process whose identifier travels all the way around the ring announces that it is the
leader. To model the asynchrony of message delivery, we place a channel automaton between each
pair of neighbors in the ring. The automaton types channel and process are shown in Figure 1. The
user-supplied names in the configuration are used as the process identifiers. {(In a configuration,
the default user-name of a process is its system-supplied automaton-id converted to a string.)

Each automaton has an input action called éinitially. The action is not an output of any
automaton, but the system causes an initially event to occur once at the beginning of each execution
toinitialize the state of each automaton. Uninitialized state components are assigned default values,
as described earlier.

In this example, each type of output action is in its own class. However, we could just as
easily place the send and leader actions in one class. Alternatively, one might parameterize the
class containing the send action as shown in Figure 2. In that figure, x is declared to be of type
automaton.id, since the all_of type function returns a set of automaton id’s. For each element of
all of_type(“process”), a separate class is created with x bound to that element. Thus, each possible
send action would be in its own class of the partition.

3.5 Support for Verification, Analysis, and Visualization

So far, we presented Spectrum language constructs that allow one to express algorithms as I/0
automaton types. But since the language is part of an algorithm development tool, we would like
more than just the ability to express algorithms. We would like the language to provide support
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DATA message tuple(msg:string, chan:automaton_id)
DATA buffer multiset(message)

ACTION initially ()

ACTIDN send message
ACTION receive message
ACTION leader string

AUTOMATON channel
STATE buffer
INPUT initially
EFF mset_init(s)
INPUT send WHERE eqg(a.chan,self())
EFF mset_insert(s,a)
CLASS
OUTPUT receive
PRE bool_not(mset_empty(s))
SEL assign(a,mset_random(s))
EFF mset_delete(s,a)

AUTOMATON process
STATE tuple(pending:set(string), status:string)
INPUT initially
EFF assign(s.pending,set_single(name(self())))
assign(s.status,"waiting")
INPUT receive WHERE set_el(in(self()),a.chan)
EFF ifthenelse(greater(a.msg,name(self())),
set_insert(s.pending,a.nmsg),
ifthen(eq(a.mag,name(self())),
assign(s.status,"elected")))
CLASS
OUTPUT send
PRE bool_not(set_empty(s.pending))
SEL assign(a.msg,set_random(s.pending))
assign(a.chan,set_random(out(self())))
EFF set_delete(s.pending,a.msg)
CLASS
QUTPUT leader
PRE eq(s.status,"elected")
SEL assign(a,name(self()))
EFF assign(s.status,"announced")

Figure 1: Automaton types for LeLann’s leader election algorithm.

18



CLASS (x: all_of_type("process"))
OUTPUT send
PRE set_el(s.pending,name(x))
SEL assign(a.msg,name(x))
assign(a.chan,set_random(out(self())))
EFF set_delete(s.pending,a.msg)

Figure 2: A parameterized class.

for studying algorithm executions. In this section, we present language constructs that are useful

for algorithm verification, analysis, and visualization.

3.5.1 State Invariants

Constructing an assertional proof is a common method for showing that an algorithm meets its
specification. In an assertional proof, one states 2 number of properties on the state of the system
that imply the correctness of the algorithm. Then, one shows, usually by induction on the length
of the execution, that these properties are invariant. That is, they hold in all reachable states of
the algorithm. Often, the most difficult part of these proofs is in coming up with the right set
of invariants. Trying to construct a proof using the wrong invariants can result in much wasted
effort. It is helpful to be able to check invariants automatically on algorithm executions in order
to have an opportunity to refine them before proceeding with a rigorous proof. Therefore, the
Spectrum programming language provides the ability to specify a set of invariants on the state of
an automaton that are to be checked after each step of the execution. For example, the clause

INVARIANT
less(s.status,5)
bool_or(greater(s.status,0), set_empty(s.buff))

specifies that the status component of the state must always be less than five, and that either
status is greater than zero or buffis empty. After each step of the automaton’s execution, the set
of invariants is checked, and the execution is interrupted if an invariant is violated.

3.5.2 Spectators

Assertional proofs use invariants on the state of a computation primarily as a means to show
properties of the behavior of an algorithm. That is, our main concern is not with the states
themselves but with determining that the sequence of actions that occurs at the boundary between
the algorithm and the environment is consistent with the problem specification. As we saw in
Section 2, the I/O automaton model provides schedule modules as a way to specify problems in
terms of a set of allowable behaviors. In this section, we describe a device called a spectator that
allows one to check executions of algorithms against the set of allowable behaviors specified by a
schedule module.
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For purposes of illustration, we define a schedule module for the mutual exclusion problem.
Fix n, a positive integer, and let Z = {1,2,...,n}. We define schedule module M with sig(M) as
follows:

Inputs: UserTry;,i € I Outputs: Crit;,ie T
UserExit;, i € Z Rem;,t e 7

Schedule module M interacts with an environment that may be thought of as a collection of n
user processes u;, ¢ € Z, where each process u; has outputs UserTry; and UserExit;, and has inputs
Crit; and Rem;. A UserTry; action means that process u; wishes to enter its critical section. A
Crit; action by M gives u; permission to enter its critical section. A UserExit; action means that
process u; is leaving its critical section. Finally, the Rem; action gives u; permission to continue
with the remainder of its program. If § is a sequence of actions of M, then we define B|i to be
the subsequence of § containing exactly the UserTry;, Crit;, UserExit;, and Rem; actions. Before
defining the allowable schedules of M, we define the set of well-formed sequences of actions of M.
Let 3 be a sequence of actions in sig(M). We say that 8 is well-formed iff for alli € T , all prefixes of
i are prefixes of the infinite sequence UserTry;, Crit;, UserExit;, Rem;, UserTry;, Crit;,.... This
says, for example, that a process will not issue a try request while in its critical section.

We define the set scheds(M), the allowable external behaviors of M, as follows. Let 3 be a
sequence of actions in sig(M). Then 8 € scheds(M) iff the following conditions hold:

1. M preserves well-formedness in 3.

2. If B is well-formed, then Vi, j € Z, if Crit; and Crit; occur in 8 (in that order), then UserExit;
occurs between them.

Condition (2) says that no two processes are in their critical sections simultaneously, provided that
the user processes preserve well-formedness.

We would like to write a spectator to check executions of an automaton system against the
allowable behaviors specified by schedule module M. A spectator is simply an I/0 automaton with
no output actions that observes the actions taken by other automata. By writing spectators without
output actions, we need not be concerned that a spectator could interfere with the execution of
an algorithm. Furthermore, it is not sensible to have spectators report a detected error by means
of an output action, because the scheduler might not give the spectator a chance to take a step
until much later in the execution. Instead, we write a spectator so that one of its own invariants is
violated whenever it detects an error. Conveniently, this interrupts the simulation immediately, so
that the user may explore the source of the error. One can usually construct a spectator directly
from the schedule module specifying the problem.

The spectator in Figure 3 corresponds to Condition 2 of schedule module M , and could be used
to check the executions of a mutual exclusion algorithm. In this spectator, the state component
last-crit keeps track of the index of the process most recently in the critical section, and the
component in-crit keeps track of whether the last input action was Crit or UserExit. When a
Crit action occurs, the invariant ok = true is violated if and only if no UserExit occurred since the
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AUTOMATON CheckMutex
STATE tuple(last-crit: integer, in-crit: boolean, ok: boolean)
INVARIANT eq(s.ok,true)
INPUT initially
EFF assign(s.last~crit, 0)
assign(s.in-crit, false)
assign(s.ck, true)
INPUT Crit
EFF assign(s.ok, bool_not(s.in-crit))
assign(s.last-crit, a)
assign(s.in-crit, true)
INPUT UserExit
EFF assign(s.ck, bool_and(s.in-crit, eq(s.last-crit,a)))
assign(s.in-crit, false)

Figure 3: A spectator for mutual exclusion.

last preceding Crit action. When a UserExit action occurs, the invariant is violated if and only if
the argument of the action is not the index of the process currently in the critical section. It is
easy to see how these cases are derived from Condition 2 of schedule module M. One could write
a similar spectator automaton type for checking that each user’s execution is well-formed.

Note that a spectator depends only on the problem specification, and never on the algorithm
itself. That is, a spectator for a given problem specification could be used to check any solution to
that problem. In addition to verifying that executions are correct, spectators can be helpful in the
analysis of algorithm efficiency. For example, one might use a spectator to count the number of
messages sent in an execution, or to keep track of the rates at which processes enter their critical
sections in a mutual exclusion algorithm. Again, because a spectator has no output actions, we
know that such analysis cannot interfere with the algorithm execution.

3.5.3 Pseudovariables

Another language construct provided in Spectrum is the MAINTAIN clause, which updates state
components after every action of an automaton. The MAINTAIN clause is somewhat similar to
Lamport’s state functions [18] and the ALWAYS construct of UNITY [4]. It is used to maintain
“pseudovariables,” variables that are a function of the remaining state components. For example,

MAINTAIN
assign(s.status, set_size(s.buff))

would cause the state component siatus to be updated to the buffer size after every step of the
automaton.* The above is a relatively simple example, but a pseudovariable can be used to sum-

*The MAINTAIN clause is executed after the effects clause of each action and before any local invarianis are
checked. If 2 MAINTAIN clause contains multiple statements, they are executed sequentially.
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marize the state of an automaton in arbitrarily complicated ways. When pseudovariables take on
integer or boolean values, they can then be used as the basis of algorithm visualization. As we will
see in Section 5, each automaton instance is represented in the graphical user interface as an icon.
Within the interface, one can create “summary mappings” that associate state components of an
automaton type with the colors of the icons. In this way, important automaton state information
can be displayed during simulation. Using the above example, one could create a summary map-
ping for the state component status and watch the sizes of the buffers of each automaton grow and
shrink as the execution proceeds; such a visualization might be useful for identifying congestion in
parts of the network being simulated.

MAINTAIN clauses are also useful for algorithm analysis. For example, one might place a
statement in the MAINTAIN clause to increment a counter whenever the automaton takes a step.
By keeping track of such information in the MAINTAIN clause, rather than dispersing it throughout
the transition relation, one can separate those parts of the code that concern the algorithm itself
from those that are present only for the purposes of visualization or analysis.

4 The Simulator

In this section, we present the Spectrum simulator, the second main component of the Spectrum
Simulation System. Given a collection of automaton types and a configuration, the simulator per-
forms all of the functions necessary to load and type-check the automaton types, initialize the
simulation, interpret automaton state information, evaluate expressions in the transition relation,
and monitor the set of enabled classes in order to produce executions of an 1/O automaton sys-
tem. The simulator provides a choice of scheduling options, as well as services for checking state
invariants, updating state information on the display, rolling back executions, and generating trace
files.

The input to the simulator consists of a collection of automaton types and a configuration. The
automaton types are presented to the simulator in the form of a text file containing code written
in the Spectrum programming language. The configuration is made available to the simulator
as a data structure that is shared with the user interface. In addition to these two pieces of
input, the simulator may receive input from the user during the course of the simulation session.
We concentrate here on the functionality of the simulator. Implementation details are discussed
elsewhere [8].

The simulator has four main logical components, the loader, the interpreter, the execution loop,
and the scheduler. These components work together to implement the semantics of the Spectrum
programming language, thereby capturing the semantics of the I/0 automaton model. We now
discuss each of the components in turn.

The loader parses and type-checks the automaton types file, and organizes the automaton type
definitions into data structures that are used by the interpreter. Error messages are generated for
any type errors or syntax errors encountered, as well as for violations of restrictions on various
clause types. For example, one such violation is a precondition containing a statement that could
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potentially change a state component. When a function expression is parsed, the loader creates
a data type structure representing the type of the return value of the function. For polymorphic
functions, the return type is determined from the types of the arguments. This structure is carried
with the expression for further type checking (e.g., when the expression is an argument to another
function) and for use by the interpreter.

The job of the interpreteris to evaluate expressions represented as automaton types data struc-
tures in order to provide four basic services: determine whether or not any action is enabled from
a given class in a given state, select an action from an enabled class’ in a given state, determine
which automata have a given action as an input, and produce a new state of an automaton, given
its old state and an action in its signature.

In order to determine whether an action of a given type is enabled in the current state of an
automaton, the interpreter evaluates the precondition for that action. Similarly, to assign to the
arguments of an action, the interpreter evaluates the selection clause for that action. In order to
determine the set of participant automata for an action, the interpreter checks the WHERE clause
of that action for each automaton instance having that action type in its input signature. Finally, to
make state transitions, the interpreter evaluates the EFF clause of the action for each participant.
All such calls to the interpreter are under the control of the execution loop, presented next.

In the course of evaluating expressions, no type errors can occur, since the loader performs
static type checking. However, some errors are still possible, such as division by zero or drawing a
random element from an empty set. When such a situation arises, the simulator generates an error
message that indicates the nature of the error, the name of the action being processed, and the id
of the offending automaton.

The ezecution loop manages the entire simulation. Upon invocation, the execution loop assumes
that the automaton types data structures and configuration data structures are already in place.
Its first task in starting up a simulation is to initialize the data structures for each of the automaton
instances and their classes. The execution loop then calls on the interpreter to execute the “Initially”
action at all automaton instances whose automaton types have that action in their input signatures.
This serves to initialize the states of the automata. Following this, each class in the system is checked
to determine whether or not it contains an enabled action. That is, for each class of each automaton
instance, the interpreter is called to evaluate the precondition for each action in the corresponding
class of the automaton type definition. If any action in a class is found to be enabled, then the
class is marked as being enabled and the scheduler, to be discussed next, is informed of each class
so enabled. This completes the initialization procedure.

A high-level description of the execution loop is shown in Figure 4. At each iteration through the
loop, the scheduler is asked to produce the next class to take a step. (If no classes contain enabled
actions, the simulation terminates.) Then, an enabled action is chosen from that class. Since we are
not required to be fair to the actions within classes, but only to the classes themselves, we arbitrarily
choose the first enabled action in the class. Then, the selection clause (SEL) for that action is

®A class is enabledin a given state if some action in the class is enabled from that state.
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create the automaton instance data structures and classes
execute the “initially” action at each automaton
determine the set of enabled classes and inform scheduler
while the set of classes containing enabled actions is nonempty
ask scheduler for the next class to perform an output
choose an enabled action from that class
execute the SEL clause to determine the arguments
determine the set of participant automata
for each participant,
produce a new state of that automaton based on the event
check invariants
determine the new set of enabled classes of that automaton
inform the scheduler of updates to the set of enabled classes
update the display, write to the trace file, etc.

Figure 4: Pseudocode for the execution loop.

evaluated to determine the action arguments. Following this, the set of participants in the action is
determined: for each automaton having that action type in its input signature, the corresponding
WHERE clause is evaluated; if it evaluates to true, then that automaton is a participant in the
action. For each participant, the EFF and MAINTAIN clauses are evaluated to produce the new
state of the automaton. At this point, any invariants on the state are checked and the execution
is interrupted if violations are discovered. Since the state of each participant may change, the set
of enabled classes of each participant is recomputed, and the scheduler is informed of any changes.
At the end of each iteration, the user interface, described in the next section, is informed of both
the action and the set of participants in order to update the display.® Additional features provided
by the simulator include the generation of formatted trace files containing schedules and selected
state information, and the ability to back up or advance the simulated execution to an arbitrary
step number.

The fourth component of the simulator is the scheduler. The scheduler maintains a list of
the classes containing enabled actions, and is called on by the execution loop at each step in the
execution to choose the next class to be given a turn. This choice is made according to a particular
scheduling algorithm, selected by the user before simulation is begun. In the current implementation
of the simulator, there is a choice of two scheduling algorithms, randomized and round robin.

The randomized scheduler makes use of the weights on each of the automaton classes. It keeps
track of the total ¢ of the weights of all enabled classes, and at each step in the execution selects a
class with weight w with probability %. The round robin scheduler treats the list of classes with

®In fact, it is the user interface that requests each iteration of the loop, since the user may wish to interrupt the
simulation in order to study the states of automata, change the visualization, roll back the execution, ete.
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enabled actions as a queue. It always selects the first class in the list and moves that class to the
end of the list. Newly enabled classes are always added to the end of the list. Recall that the
I/O automaton model’s fairness definition requires that if a class continually contains an enabled
action, then eventually an action occurs from that class. According to this definition, the round
robin scheduler guarantees fairness. The randomized scheduler, on the other hand, only produces
fair schedules with high probability.

The way that scheduling is accomplished in Spectrum constitutes a major difference between the
present work and related work in the area of discrete event simulation. In discrete event simulation
(see Misra [28]), an “events list” is kept for all of the actions that should be simulated, but have
not yet occurred in the simulation. Each event in the system may cause new events to be added
to the events list. An important difference between the events list and the class list maintained by
our scheduler is that no event is removed from the events list until it occurs, while events in an
I/O automaton system may cause actions to become disabled and thus cause classes to be removed
from the scheduler’s class list. In general, the semantics of the I/O automaton model are such that
any action may become disabled by the occurrence of other events.

5 The User Interface

The Spectrum user interface is used to build configurations of automaton systems, and to control
simulation and visualization of those systems. To simulate an algorithm in Spectrum, one first
specifies the various automaton types of the system using the Spectrum language. Then, one
graphically constructs a system configuration (of the sort described in Section 3.2). In configure
mode, the user interface provides tools for building and editing a system configuration. Recall that
a configuration specifies, for each automaton in the system, the type of that automaton, a unique
system-supplied identifier and a user-supplied name, and a set of adjacent edges in a directed graph.
Icons of different shapes are used to represent the different automaton types. In configuring I/0O
automaton systems, one uses the mouse to create instances of automaton types, connect them
with directed edges, and arrange them spatially. The edges are useful for breaking symmetry,
defining communication patterns, or establishing other relationships between automata. The sets
of incoming and outgoing edges of automaton instances are accessible in automaton type definitions,
as described in Section 3. Other editing options include assigning names to automaton instances
(apart from the system-supplied automaton id), deleting instances and edges, and changing the
type of an instance.

One may also specify “summary mappings” in configure mode. These mappings associate the
colors of automaton instance icons with the values of the state components of those instances.
Each instance icon is divided into two parts, a border and a center. One may map a single
state component to both the border and center, or may map a different state component to each.
MAINTAIN clauses (see Section 3) are useful for updating state components that are used in
summary mappings. Summary mappings are established for an entire automaton type, rather
than on an instance by instance basis. The resulting uniformity makes the visualization easier to
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understand. Summary mappings are specified in configure mode in preparation for visualization
of algorithm executions. However, one is free to change summary mappings during simulation, as
well.

An important configuration option is the ability to build new automaton types by composing
others. For example, one might model an asynchronous system by associating a message buffer
automaton with each user process antomaton. Rather than explicitly creating each pair of automa-
ton instances, one might define a new automaton type that is the composition of a user process
automaton and a message buffer automaton. One may create instances of an automaton type be-
fore that type is (fully) defined. Whenever a composed type is defined or modified, the changes are
immediately reflected in all instances of that type. Hierarchical composition is supported; compo-
nents of a composition may be compositions themselves. However, it is illegal to create recursive
type definitions. For example, if type A is the composition of types B and C, then neither B nor C
may have A as a component.

Having specified a set of automaton types and a configuration, one can run simulations of the
I/O automaton system in simulate mode of the user interface. As the simulation runs, the display
is updated as follows. After each step of the execution, the borders around the set of automata
involved in that step are highlighted (red for output and blue for input) and the action name with
its argument value is displayed. In addition, the colors of the automaton instance icons are updated
according to the summary mappings. In order to provide flexible exploration of algorithms, the
summary mappings may be changed during simulation.

Taking advantage of the structure provided by I/O automaton composition, the Spectrum in-
terface allows one to look inside an automaton to see its components. This allows one to view
algorithm simulations at different levels of detail. If the automaton being “opened” is an instance
of a composed type, then a the user interface creates a window containing the automaton’s compo-
nents, colored according to their summary mappings, However, if the automaton is an instance of
a type explicitly defined in the automaton types file, then a window created that contains a textual
display of the values of the antomaton’s state variables. All state information (whether graphical
or textual) is updated as the simulation runs.

To facilitate close study of algorithms, the user interface allows one to invoke special simulator
functions. For example, one may roll back or advance the execution to any arbitrary step num-
ber, and may generate a trace file containing the schedule (sequence of actions) of the execution
and selected state information. Errors, such as violations of local state invariants, interrupt the
simulation so that the user may explore possible causes.

The interface is written in standard C [17] on top of the X11 window system [32] and requires
four color planes. The current implementation runs on DEC Microvaxes. A three-button mouse is

used for most interface commands.
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6 Conclusion

We conclude this paper with an evaluation of Spectrum in terms of the design goals outlined in
Section 1, taking into account the experiences of Spectrum users. For each design goal, we review
those aspects of the system that were designed to help achieve the goal, and consider how successful
these actually were. In the course of this evaluation, we suggest a number of possible directions for
further work.

The design must be faithful to a formal model. The Spectrum programming language
provides mechanisms for defining the signatures, states, initial states, transition relations, and par-
titions of I/O automata. The user interface provides facilities for building up complex systems of
I/O automata using standard I/O automaton composition, preserving the essential process struc-
ture of the components in the composition. And the Spectrum interpreter generates executions
of these systems that are consistent with the semantics of the I/O automaton model. However,
Spectrum provides what should properly be called a subset of the features of the I/0 automaton
model. Due to physical limitations of the digital computer, we were forced to abandon the non-
determinism present in the formal model and replace it by randomization at several places in the
system design. Also due to practical considerations, the infinite collections of automata allowed in
the formal model are not supported in Spectrum.

The nondeterminism present in the I/O automaton model is not of the usual complexity-
theoretic flavor. Instead, nondeterminism is used in order to make algorithms and their correctness
proofs more general. Rather than present a particular deterministic implementation of an algo-
rithm, one describes a (nondeterministic) I/0 automaton that, in some sense, embodies all such
deterministic implementations. By carefully introducing randomized functions in the language
(such as selecting a random number or choosing a random element from a set) and providing a
randomized scheduler, we are able to support algorithm descriptions that are quite general. Fur-
thermore, we have found that the random executions generated by Spectrum are quite useful for
gaining insight into how an algorithm works, finding errors in an algorithm, and learning about an
algorithm’s performance. Even so, one cannot possibly hope to automatically generate all of the
strange executions that could cause an algorithm to fail. Simulating algorithms in the Spectrum
system can provide help in understanding and debugging the algorithm, but unless one can generate
all possible executions of an algorithm, it will always be necessary to construct a formal correctness
proof. This is why it is so valuable that the semantics of the Spectrum language is consistent with
that of the formal I/0 automaton model.

In Spectrum, the configuration is static. That is, all automaton instances are in existence at the
beginning of the execution. This limitation is a problem when one wishes to consider algorithms
that involve dynamic process creation. In the I/0 automaton model, a system consists of a static
collection of components, but the number of components may be infinite. Therefore, one can
model dynamic process creation by assuming that all possible processes exist at the beginning of a
computation and then “waking them up” as the algorithm proceeds. (For examples of this, see [21],
[23] and [20].) Since supporting an infinite collection of automata is a physical impossibility, an
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interesting direction might be to extend Spectrum with mechanisms to support dynamic automaton
creation.

The language should be natural for expressing a large class of distributed algo-
rithms. Clearly, the choice of the formal model on which a language is based makes a great im-
pact on the expressive power of that language. Because of its separation of inputs and outputs, its
treatment of fairness, and its compositionality properties, the I/0 automaton model is particularly
well suited for describing a wide class of distributed algorithms, and has been the basis for much
research in that area. By making the I/O automaton model the theoretical basis of the Spectrum
system, we were able to take advantage of the expressive power provided by that model. Virtually
any message-passing algorithm may be expressed as an I/0 automaton. Spectrum’s rich set of data
types and built in operators make it easy to express a wide variety of distributed algorithms. And
since one can model the communication system explicitly as a separate I/O automaton, it is easy
to express (and simulate) algorithms that have widely varying assumptions about the underlying
network.

However, the expressive power of the Spectrum language could be improved in some areas.
Although the I/O automaton model provides excellent support for modelling message-passing al-
gorithms, many of the important asynchronous concurrent algorithms are described using shared
memory. And in some cases one might wish to use both shared memory and message passing to
describe different parts of an algorithm. In [6], we present extensions to the I/O automaton model
for describing shared memory algorithms. We are planning extensions to Spectrum based on this
work.

Another property of the I/O automaton model is that system components cannot observe the
private states of other components. But sometimes one wishes to describe distributed algorithms as
layers of modules such that the higher layers are allowed to observe (but not modify) the variables
of the lower layers. One layering mechanism, called superposition, is defined by Chandy and Misra
for the UNITY programming language [4]. It is essentially a program transformation that adds a
layer on top of a program by introducing a set of higher level variables and code that makes use
of them. The transformation is required to preserve all the properties of the underlying program.
In [9], we extend the I/O automaton model to permit superposition of program modules. We are
working on ways to incorporate these extensions into Spectrum.

The expressive power of Spectrum for describing distributed algorithms based on message pass-
ing is quite good. However, some Spectrum users (particularly those withous prior experience with
I/0O automata) find that it is difficult to “think” in the Spectrum language [11]. Apparently, this
problem is due to the syntax used for expressions and the lack of infix operators. A sugared version
of the syntax and the addition of user-defined data types would probably solve this problem.

The system should encourage experimentation with algorithms. The decision to sep-
arate automaton types from the system configuration allows Spectrum users to experiment with
a given algorithm in a vatiety of system configurations. Furthermore, the fact that systems are
configured graphically and their executions are observed visually saves time and effort in setting
up and aralyzing simulations. Crucial to making the separation work is the ability to parameterize
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an automaton type according to the configuration data. For example, one can use the edges of the
configuration graph to represent communication paths in a network and parameterize an automaton
type on its sets of incoming and outgoing edges. This automaton type could be instantiated many
times in a configuration, each time with a different number of incoming and outgoing channels.

The summary mappings of the user interface and the MAINTAIN clause of the Spectrum
language work together to provide a simple, yet flexible, mechanism for handling algorithm visu-
alization. There are two general methodologies for program visualization: declarative and imper-
ative [31]. In imperative visualization, one embeds procedure calls in the algorithm being studied
in order to effect changes in the display, while the declarative approach establishes relationships
between state information of the algorithm and objects on the display. Summary mappings are
declarative. This encourages experimentation, since it allows visualizations to be set up and mod-
ified quickly without changes to the algorithm itself.

The modularity provided by I/O automaton composition is also useful for experimentation.
One can easily substitute one module for another in the configuration without having to return to
the automaton types definitions. For example, one might write two versions of a automaton, one
that is faulty and one that is not, and then experiment with the fault tolerance of an algorithm
simply by changing the types of automaton instances in the configuration.

An important part of experimenting with algorithms is generating many different executions for
them. In Spectrum, there are currently two scheduling algorithms, randomized and round robin,
as described in Section 4. Permitting user intervention in the scheduling process, however, would
improve the flexibility of the system. One might allow the user to select the next class to take a
step, or one might add mechanisms for expressing algorithm-dependent scheduling rules, such as
“if any automaton has fifty messages in its buffer, then give it priority to take a step.” Another
means of intervening in simulation would be to permit users to change the values of automaton
state components during simulation.

Section 3 highlighted two mechanisms for studying algorithms from a correctness proof point
of view: the INVARIANT clause and the spectator. These are useful for experimenting with an
algorithm by generating many (or long) executions and mechanically checking for violations of
the invariants or the problem specification, and for computing performance statistics such as the
number of messages generated in an execution. Since the verification and analysis mechanisms are
kept separate from the algorithm being studied, one need not modify (or clutter up) the algorithm
in order to check or analyze its executions. The execution rollback feature and the trace file ca-
pability are particularly helpful for analyzing executions that result in violations of the invariants
or the specification. But the INVARIANT mechanism is not quite strong enough for the study of
distributed algorithms. Typically, when one constructs proofs of distributed algorithms, one thinks
not only about localinvariants on the private states of individual components, but also about global
invariants that involve the states of many system components. In the current Spectrum implemen-
tation, global invariants cannot be checked. However, extending Spectrum with a superposition
operator will not only enhance the expressive power of the Spectrum language, but will also permit
one to write (and check) global invariants simply by writing invariants of the higher layer automa-
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ton that involve the variables of the components of the lower layer. In addition, superposition will
allow one to create summary mappings based on aggregate information about components of a
composition.

Using spectators, one can check the correctness of an execution and study the message com-
plexity of an algorithm, but it is difficult to study time complexity in Spectrum. However, the I/O
automaton mode] has recently been extended for the study of real-time systems, and has been used
to construct timing-based proofs for distributed algorithms [1, 2, 22, 29]. This work could form the
basis of useful extensions to Spectrum. Timing constraints would be associated with automaton
classes and handled automatically by the system.

Another way to improve the utility of a simulation system for running experiments is simply
to make the simulator run faster. One way to accomplish this is to introduce Concurrency in
the simulator itself. We have developed an algorithm for achieving highly concurrent distributed
simulation of I/O automata [7], and plan to incorporate this capability in a future version of
Spectrum.

The design should achieve economy and integration. Although the Spectrum design
separates logically independent concerns, the system is well-integrated. We have achieved our goal
of using the same language mechanisms for writing programs, creating debugging tools, specifying
invariants, and setting up visualization. In addition, a single graphical interface is used for both
constructing the system configuration and controlling the simulation.

We stated in the introduction that an aim of this work is to demonstrate how distributed
algorithm specification, design, debugging, analysis, and proof of correctness may be integrated
within a single formal framework. We have described the Spectrum Simulation System based
on the I/O automaton model. By remaining faithful to that model, we have eased the transition
between formal specifications and algorithm descriptions, and also the transition between algorithm
descriptions and correctness proofs. Similarly, we have provided specific tools for using problem
specifications for checking algorithm executions mechanically (spectators), and alanguage construct
for expressing invariants on program states. These tools can be used to help integrate the design
and debugging process with the construction of a formal correctness proof, and they provide a
foundation for further integrating the tasks of developing algorithms and proving their correctness.
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