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ABSTRACT OF DISSERTATION
Development of Thymic NK Cells From Double Negative 1
(DN1) Thymocyte Precursors
by
Claudia Lizett VVargas
Doctor of Philosophy in Biology and Biomedical Sciences (Immunology)
Washington University in St. Louis, 2011

Professor Wayne M. Yokoyama, Chairperson

While there has been much progress in defining the specificity and function of
natural killer (NK) cells, their differentiation has not been fully elucidated. Previous
studies of thymocyte development in vitro indicate that double negative (CD4°'CD8’, DN)
thymocytes can develop into cells with NK cell markers, but these cells have not been
well characterized. Moreover, a subpopulation of NK cells which requires an intact
thymus, i.e, thymic NK cells, has been described with selective expression of CD127
although their origin and differentiation are also poorly understood. Herein, we
generated and characterized NK cells differentiating from thymic DN precursors. We
enriched potential progenitors by sorting DN1 (CD44'CD25") CD122'NK1.1" thymocytes
from Rag1™ mice for adoptive transfer into Ragl™Ly5.1 congenic mice. Following
intrathymic injection, donor-derived cells phenotypically resembling thymic CD127" NK
cells were found in thymus and spleen. To further characterize these cells, we seeded
sorted DN1 CD122'NK1.1" thymocytes on a confluent monolayer of irradiated OP9 bone

marrow stromal cells in the presence of IL15, IL7, FMS-like tyrosine kinase 3 ligand



(FIt3L) and stem cell factor (SCF). Flow cytometry results showed NK1.1" cells
emerged after at least 7 days in culture. By using limiting dilution analysis, we
demonstrated a cell frequency of 0.24% (1 out of 414 sorted thymocytes were able to
generate an NK1.1" cell population). In vitro differentiated NK cells acquired markers
associated with the development of conventional bone marrow-derived splenic NK cells,
but also expressed CD127, which is typically found on thymic NK cells. In-depth studies
using gene chip microarrays further confirmed in vitro differentiated NK cells more
closely resembled thymic NK cells as both expressed novel markers such as CD25 and
CD103, which were not expressed by splenic NK cells. Finally, we found that in vitro
cells generated from thymic precursors secreted cytokines when stimulated and
degranulated upon target exposure, indicating that they were functional. Together, these
data indicate that thymic NK cells can develop from a DN1 progenitor cell and may

perhaps have a specific role that sets them apart from their splenic counterparts.
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CHAPTER 1

INTRODUCTION



Natural killer (NK) cells are a critical component of the innate immune system
that do not require prior sensitization to be activated upon exposure to tumor or infected
cells [1]. These cells have been implicated in the priming of T cells, B cell autoimmunity
and tissue inflammation [2-4]. Unlike cells from the adaptive immune system, which
take days to weeks to exert their effector function, NK cells can respond in a matter of
hours [5]. Upon activation, NK cells lyse target cells through the degranulation of
granzymes and perforin, and also produce cytokines such as interferon-y (IFNy) and
tumor necrosis factor-a (TNFa) [6-9]. Furthermore, NK cells do not require somatic
rearrangement of genes for expression of their functional receptors, and can be found in
normal numbers in mice defective in antigen receptor gene rearrangement, such as Ragl”
mice [10-12]. While there has been much progress in defining the specificity and function

of NK cells, their differentiation process has yet to be fully elucidated.

Development of conventional NK cells

NK cells are generally thought to be bone marrow (BM)-derived lymphocytes that
differentiate through the sequential acquisition of markers and functional receptors [8,
13]. Current NK differentiation models are based on observations made during in vitro
or in vivo transplantation assays. Studies have shown that NK cell development, which
requires an intact BM microenvironment, can be divided into several major steps [14-16].
First, hematopoietic stem cells (HSCs) commit to the NK lineage, becoming natural killer
cell precursors (NKPs). Second, the NKPs acquire receptors and molecules involved in
target detection, making them immature NK cells (iNKs). Finally, the iINKs are

terminally differentiated into mature NK (mNK) cells that have the ability to execute
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appropriate effector functions. Thus, NK cells, like other lymphocytes, undergo several
developmental steps in order to become phenotypically and functionally mature.

In greater detail, the earliest step of murine NK cell differentiation in the BM
involves the commitment of the HSC to the lymphoid linage. Once this commitment is
made, HSCs become early lymphoid progenitors (ELP) that can be identified as Lin
cKit""Scal*FIt3* [14]. At this early developmental stage, the progenitors lose the
capacity to produce myeloid or erythroid lineages. Further differentiation of the ELPs
generates common lymphoid progenitors (CLP) that are LincKit®*Scal™"IL7Ra" [15] .
Shortly thereafter, the acquisition of CD122 (IL2/IL15R) defines the transition from a
CLP to a committed NKP [16]. The expression of CD122 allows the NKPs to be
responsive to IL15, which is critical for NK cell development and exerts its effects
through the IL15R complex, consisting of IL15Ra, IL2/IL15Rp, and the IL2R common y
(yc) chains [17]. In addition, signals received from FMS-like tyrosine kinase 3 ligand
(FIt3L) and cKit ligand on the BM stromal cells, along with common y-dependent
cytokines influence NK cell commitment since NKPs express CD135 (FIt3) and CD117
(cKit) [18]. Furthermore, studies where reciprocal BM transfers between lymphotoxin-a.
(LT-o) and wild type mice showed that close interactions between membrane LT-a-
expressing NKPs and LT-responsive radioresistant stromal cells are also necessary for
NK development [19]. Taken together, the generation of NKPs from HSCs not only
defines the first step in NK cell development, but also suggest that initial commitment to
the NK lineage is tightly regulated by stromal cells.

The maturation of NKP to iNK and later mNK cells can be further characterized

by several putative intermediate stages (Figure 1), based on correlating marker expression
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[8, 20]. The generation of CD122-expressing NKPs marks the beginning of intermediate
stage | while NK1.1, CD94/NKG2 and NKG2D expression defines stage 1. Immature
NK cells at this stage are comparable to fetal or neonatal murine NK cells that express
CD94/NKG2 receptors without expressing Ly49 receptors [21]. While the stochastic
expression of Ly49 receptors follows, CD94/NKG2 expression is not a prerequisite since
there are NK cells that are Ly49"CD94/NKG2". During stages 111 and IV, immature NK
cells acquire CD117 and integrin o, (DX5). At stage 1V, NK cells undergo expansion in
the BM. After proliferation, iNK cells become mature NK cells characterized by high
levels of CD11b (Macl) and CD43. Hence, with the acquisition of these markers, NK
cells are terminally differentiated with the capacity to kill targets and produce IFNy.
However, it is important to note that these putative developmental stages are based on
correlating marker expression in vivo and developmental progression has not been

directly observed.

In vitro studies with CLP

While the in vivo studies have provided some insight into important phenotypic
changes that occur during cell development, direct experimental observation of marker
acquisition has been challenging. In vitro studies showed that NK cells can be generated
from bone marrow ELPs in the presence of cytokines including stem cell factor (SCF),
IL7, FIt3L, and IL15 [22-24]. However, the stages through which NK cells differentiate
in vitro have not been described. Moreover, cytokines alone are insufficient at generating
mature NK cells; they require direct contact with stromal cells, such as the OP9 stromal

cell line, to acquire a mature and functional phenotype [25]. OP9 stromal cells are
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adherent BM stromal cells that were established from newborn B6xC3H op/op mouse
calvaria [26]. This stromal cell line has an osteopetrotic mutation in the gene encoding
macrophage colony stimulating factor (M-CSF). This mutation favors the differentiation
of ES cells into hematopoietic cells other than the monocyte-macrophage lineage. With
the help of in vitro models, significant progress has been made in discerning some
cellular and soluble factors provided by stromal cells and progenitors that may be
instrumental in NK cell differentiation. All things considered, in vivo and in vitro studies
have provided a framework for considering NK cell commitment, development, and

maturation.

Bipotential thymic progenitors

Although CLP have been shown to directly give rise to NKPs in vivo and in vitro,
studies have shown that they also have the ability to become bipotential T/NK
progenitors (T/NKPs) and are found in various fetal organs including blood, thymus,
spleen, and liver [27-31]. The T/NKPs found in fetal thymus have the ability to generate
either TCRap T cells or NK cells, but no other lineages, when transferred into a thymic
environment [32]. In vitro studies have indicated that T/NKPs residing in different
tissues may differentiate in a somewhat different manner than NKPs in the BM. For
example, fetal thymus and blood T/NKPs express NK1.1 at later stages of development
[28, 32], whereas T/NKPs in fetal liver do not up-regulate this specific serological NK
marker at any stage of development [30]. Taken together, this may suggest that a minor

progenitor population has the potential to emigrate from the BM to the periphery, thereby



differentiating in a different environment which ultimately affects their receptor
repertoire and perhaps even their function.

Furthermore, early studies showed that the earliest thymocyte precursors in adult
mice also harbor T/NK potential [33]. In these studies, precursors among the double
negative 1 (DN1; CD44"CD25") population were sorted based on their expression or
absence of CD24, a heat stable antigen, and CD117. Five distinct populations were
identified and designated DN1a to DN1e based on the frequency of these two markers.
DN1a was identified as CD117°CD247; DN1b was CD117°CD24""; DN1c was
CD117°"CD24"; DN1d was CD117°CD24"; DN1e was CD117°CD24". Each sorted
population was cultured on either OP9 stromal cells transfected with delta-like 1 (OP9-
DL1), a Notch receptor ligand, or control non-manipulated OP9 cells. Results showed
that DN1c, DN1d and DN1e differentiated into CD4", CD8" or CD4"CD8" T cells only
when seeded on OP9-DL1 cells, while DN1a and DN1b progenitors gave rise to NK1.1"
cells when cultured with control OP9 cells. The limitation to this study was that the
NK1.1" population that differentiated in vitro was not further characterized in terms of
phenotype or function. Regardless, these studies have demonstrated that a small thymic

DN1 population in adult mice also harbor T/NK potential.

NK cells beyond the BM

While a large population of BM derived mature NK cells are found in the spleen,
studies have also shown the presence of NKPs and immature NK cells in other
extramedullary tissues in both adult humans and adult mice. NKPs in adult humans that

reside in the lymph nodes (LN) have been shown to traffic from the BM via the blood
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[34]. Similarly, NKPs and immature NK cells have been detected in murine liver and
spleen [20, 35]. Although these NKPs and immature NK cells have been shown to
differentiate in vitro, it is still unknown if they can further differentiate in vivo. These
studies suggest that perhaps the BM represents the initial site for HSCs to commit to the
NK linage, but a small NKP or iNK population can emigrate from the BM and finish
their maturation elsewhere.

Interestingly, the so-called "immature™ NK cells in the periphery have been
shown to be functional, thereby raising the question of whether they truly are immature
or whether they are NK subsets that differ in phenotype. For example, fetal hepatic NK
cells were shown to be NK1.1*TRAIL*CD11b""DX5" but can eliminate tumor cells in a
TRAIL (TNF-related apoptosis inducing ligand)- dependent manner [35, 36].
Meanwhile, two distinct subsets of CD122°CD3" NK cells within a mouse uterus at mid-
gestations could be identified. The smaller subset was comparable to splenic NK cells in
that they expressed NK1.1, DX5, Ly49s and CD43. However, the larger subset lacked
the commonly expressed markers of mature NK cells, including NK1.1 and DX5, yet
expressed NKp46, NKG2D and CD16 [37, 38].

Moreover, an interesting NK subset with phenotypically and functionally distinct
characteristics was shown to be present in murine thymus by the Di Santo group [39].
These cells had uniform expression of several NK markers, including CD122, NK1.1,
DX5, and NKG2D, but were CD127*CD69""Ly49'°“CD16'CD11b"". CD127 is also
known at the o subunit of the IL7 receptor and is thought to be a good marker for
activated T cells that have the potential to become long-lived memory cells [40]. IL7Ra

is also expressed on naive T cells, which is rapidly lost upon activation, and can also be
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identified on immature B cells through the early pre-B stage [41, 42] . The CD127"
thymic NK cells failed to lyse YAC-1 target cells as well as their splenic counterpart, yet
were more efficient at producing cytokines. Together, these data suggest the functional
difference may perhaps be attributed to the unique phenotype such as the low CD11b
expression and absence of CD16 (FcyRIII).

Thymic CD127" NK cells are absent in athymic nude mice, indicating that a
functional thymus is required for their development [39]. However, these cells are not
only present in Rag1/2-deficient thymus, but also resemble wild type counterparts,
suggesting that neither more mature thymocytes nor a fully developed thymic medullary
stromal compartment is required for thymic NK cell homeostasis [13]. Nevertheless, it is
not known if their progenitors seed the thymus as cells already committed to the NK cell
lineage or if they differentiate from uncommitted thymic precursors. While the exact
progenitor that gives rise to thymic NK cells is not known, recent in vivo experiments
showed that thymic NK cells do not rearrange the TCRy locus, suggesting that they are
not derived from a committed T cell progenitor [43]. Although these do not arise from
failed T cell progenitors, their relationship to previously described T/NKP cells has not
been elucidated.

While it is possible that they are generated from T/NKPs, others have suggested
that thymic CD127" NK cells are recirculating BM derived NK cells that have altered
their phenotype to serve a precise function within the specific tissue. Adoptive transfer
experiments have shown that conventional splenic NK cells can repopulate the spleen,

liver, and BM of recipient mice [44-46]. However, studies to determine whether these



NK cells migrate equally to all tissues or whether the recirculation is selective, have not
been exhausted.

So what are the biological implications of having NK cell subsets residing in
extramedullary tissues such as the thymus? For one, the unique phenotype of each NK
subset may provide a plasticity for NK cell effector function that would allow the cells to
adapt to different conditions. Recently, a study showed that conventional NK cells have
the potential to acquire immunoregulatory function (1L10 secretion) as a consequence of
extensive activation in visceral leishmaniasis [47]. Furthermore, thymic NK cells have
been implicated in immunosurveillance due to their lysing of rapidly dividing thymic
precursors [48]. Whether thymic CD127" NK cells have any other roles such as
modulation of thymopoiesis, maintaining thymic architecture, or providing a tolerogenic

function, is still not known.

NK cell subsets in humans

The phenotypic and functional differences between thymic CD127" and splenic
CD127" NK cells from adult mice bear similarities to the different subsets described in
humans. Human NK cells comprise approximately 10-15% of circulating lymphocytes
and can be identified phenotypically by their expression of CD56 [49]. Studies have
shown that there are two distinct populations of human NK cells: CD56%™ (90% of NK
cells) and CD56°"9" (10% of NK cells) [50]. The CD56%™ subset express higher levels
of CD16 (FcgRIII) and Killer cell Ig-like receptors (KIR), which are similar to mouse

Ly49 receptors, than their CD56™"9™ counterparts. While the latter subset is dominantly



present in secondary lymphoid tissues (SLT; lymph nodes and tonsils), CD56%™ NK cells
can be found in the BM, blood, and spleen [51].

Developmental ex vivo studies assessing CD16 versus CD94 expression within
the total CD3'CD56" populations of the SLT and blood suggest that human NK cells
progress from CD94"CD16™ to CD94*"CD16", marking the final stage of NK cell
development in vivo [49]. These results suggest CD56""¢" NK cells, which are
CD94*CD16, differentiate into CD56%™ NK cells (CD94*"CD16"). In addition, more
conclusive studies showed that CD56""" NK cells can further develop into CD56“™ by
culturing these cells with synovial fibroblast in vitro [52]. Although in vitro studies show
CD56"9" NK cells can be further matured, it is not known if this can also occur in vivo.
Regardless, limitations in human studies have made it difficult to determine the location
and differentiation process for the CD56°"9" population.

Functional analysis showed that CD56%™ NK cells have a natural cytotoxicity,
while their bright counterpart are more efficient at producing high levels of
immunoregulatory cytokines [53]. This includes IFNy, tumor necrosis factor (TNF),
granuloctye-macrophage colony stimulating factor (GM-CSF) and IL10. In addition,
CD5619" NK cells express a functional CC-chemokine receptor (CCR7) and CD62L,
suggesting that this subset has the ability to traffic to STL [50]. These differences
between human NK cells bear resemblance to those found in adult mice. Based on their
phenotypic and functional similarities, CD127" NK cells from adult mice may correspond

to the CD56""9"CD16™ NK subset. This perhaps suggests that NK cell heterogeneity may

be evolutionary conserved and biologically relevant.
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Many questions still remain about NK cell development, including the sequential
acquisition of surface markers as well as the development of NKPs or T/NKPs found in
the periphery. In this study, we used adoptive transfer to show that the DN1 CD122
NKZ1.1" thymic population harbors cells that have the potential to differentiate into
NKZ1.1" cells that are phenotypically similar to thymic NK cells. While the number of
differentiated cells was low in adoptive transfer experiments, we were successful at
further characterizing these NK cells following in vitro differentiation. By seeding DN1
CD122'NK1.1" thymocytes on a monolayer of irradiated OP9 cells and adding cytokines,
we were able to generate NK1.1" cells within 7 days and sequentially follow the
developmental stages. Phenotypic, gene chip, and functional analysis studies show that
the DN1 CD122'NK1.1" thymic population generate NK cells that very closely resemble
freshly isolated thymic NK cells. These studies should improve our understanding of
mouse thymic NK cell development, which in turn should aid our knowledge of human

NK cells.
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Figure 1. Developmental stages of NK cells in the BM. NK cell development can be
divided into 5 stages based on phenotypic markers. NKPs expressing CD122 have been
shown to give rise to mature NK cells. Expression of NK1.1, CD94/NKG2, Ly49, and
cKit define stages Il and I1l. NK cell expansion and increase effector function occur

between stages IV and V.
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CHAPTER 2

MATERIALS AND METHODS
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Mice

C57BL/6J (B6), B6.129S7-Ragl™™°™/J (Ragl™) Ly5.2, and B6.129S4(C)-Itgae™ /]
(CD1037") mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Ragl™
Ly5.1 congenic mice on the C57BL/6 genetic background were generated by crossing
B6.SJL-Ptprc? Pep3°/BoyJ (Ly5.1) mice with Ragl” mice (both from The Jackson
Laboratory). CD25Ragl” mice were generated by crossing B6.12954-112ra™P"/J
(CD25™, The Jackson Laboratory) with Ragl™ mice. All mice were used between 4 and
16 weeks of age. Mice were housed in specific pathogen free conditions and were used

in accordance with the animal protocol approved by the Animal Studies committee at

Washington University in Saint Louis.

Antibodies, flow cytometry, and cytokines

The following antibodies were obtained from BD Biosciences (San Jose, CA): anti-CD44
(clone IM7); anti-CD25 (PC61); anti-NK1.1 (PK136); anti-CD122 (TM-B1); anti-CD45.1
(Ly5.1, clone A20); anti-CD45.2 (Ly5.2, clone 104); anti-CD43 (Ly48); anti-CD117
(2B8); anti-CD62L (MEL-14); anti-B220 (RA3-62); anti-KLRG1 (2F1); anti-Ly49A
(JR9); anti-Ly49F (HBF-719); anti-Ly49G2 (4D11); and streptavidin PerCP-Cy5.5 (SA-
PerCP-Cy5.5). The following antibodies were purchased from eBioscience: anti-
Ly49A/D (12A8); anti-Ly49C/I/F/H (14B11); anti-CD49 (DX5); anti-CD11b (M1/70);
anti-NKG2D (CX5); anti-CD127 (A7R34); anti-CD69 (H1.2F3); anti-CD94 (18d3); anti-
CD16/32 (clone 93); anti-CD103 (2E7); CD86 (GL1); anti-CD45.1 (A20); SA-PerCP-
Cy5.5; anti-KLRG1 (2F1); anti-IFNy (XMG1.2); anti-Ly49H (3D10); anti-Ly491 (YLI-

90); and anti-CD107a (eBio1D4B). Anti-Ly49C (4L0O33) was produced from a
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hybridoma kindly provided by Suzanne Lemieux, Institut National de la Recherche
Scientifique-Institut Armand- Frappier, Laval, Quebec, Canada). Anti-Ly49D (4E4) was
developed in our laboratory as previously described [54]. Surface staining was
performed on ice in staining buffer (3% FBS, 0.1% NaN3 in PBS). Nonspecific antibody
binding was blocked with 2.4G2 (anti-FcyRII/III, American Type Culture Collection,
Manassas, VA). All samples were collected on a FACSCanto (BD Biosciences) using
FACSDiva software (BD Biosciences), and data were analyzed using FlowJo software
(Tree Star, Inc., Ashland, OR). The following cytokines were purchased from PeproTech
(Rocky Hill, NJ): IL15, IL7, FIt3L, and IL12. In addition, we used stem cell factor (SCF,

Fitzgerald Industries, Concord, MA) and I1L18 (R&D Systems, Minneapolis, MN).

Cell sorting

DN1 CD122'NKZ1.1" cells were sorted from Ragl™ mice by generation of thymus single
cell suspensions and stained with a mixture of antibodies that included fluorescein
isothiocyanate (FITC)-conjugated anti-CD44, phycoerythrin (PE)-conjugated anti-CD25,
allophycocyanin (APC)-conjugated anti-NK1.1, biotinylated anti-CD122 and PerCP-
Cy5.5 conjugated streptavidin. Pilot studies showed that Ragl” thymus contains only
CD4°CD8 (DN) cells so routine staining for CD4 or CD8 expression was not required.
Cells were stained in MTHc buffer which contained MTH (308 mOsm solution of 10X
Hanks Balanced Salt Solution, 1M HEPES and milliQ H,0), 5% v/v FBS and 0.5% v/v
1mg/ml DNase | stock solution. Cells were sorted in MTHs buffer which contained
MTH, 0.5% v/v FBS and 0.5% v/v 1mg/ml DNase I stock solution. Thymic and splenic

NK cells were enriched by generation of single cell suspensions from Ragl ™ mice and
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stained with APC-conjugated anti-NK1.1 in sorting buffer (1% FBS, 0.2% NaNj3; in PBS).
All cells were sorted by flow cytometry to >98% purity on a Dako MoFlo (Beckman

Coulter) in the Siteman Cancer Center Flow Cytometry Core.

Adoptive transfer

DN1 CD122'NK1.1" cells were sorted from the thymi of 50-80 Ragl"'Ly5.2 mice.
Highly purified cells were washed several times with PBS to avoid contaminating
recipient mice with remaining antibodies or FBS. Approximately 2x10° cells were
transferred into sub-lethally y-irradiated (700cGy) Ragl™Ly5.1 congenic mice. Cell
suspensions were injected into either the lateral tail vein (IV) or intrathymically (IT) of
age- and sex-matched recipient mice. IT recipient mice were given buprenorphine
hydorchloride for pain every 24 hrs for a period of 72 hrs and were supplied with
sulfamethoxazole and trimethoprim antibiotics for the duration of the experiment. All
experiments were approved by the Animal Studies Committee at Washington University

in Saint Louis.

Co-culture and resting cells

OP9 stromal cells (American Tissue Culture Collection) were resuspended in fresh OP9
media (DMEM, 20% FBS and 1% HEPES) and vy-irradiated at 2,500 rad. Cells were then
seeded at 1.5x10” cell per well in 96-well U-bottom plates and incubated for 20-24 hrs at
37°C in 5% CO,. DN1 CD122'NK1.1 cells were sorted from the thymi of 10-60 Rag1™
Ly5.2 mice. Highly purified cells were seeded in wells containing the monolayer of OP9

cells that were plated the day before. The co-culture was done in R10 media (RPMI,
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10% FBS, L-glutamine, 2-BME, and pen/strep) supplemented with IL7 (5 ng/ml), FIt3L
(5 ng/ml), stem cell factor (SCF, 5 ng/ml) and IL15 (20 ng/ml). Cells received fresh
media every 3 days. Thymocytes were allowed to differentiate anywhere from 4 to 22
days. To rest in vitro generated NK cells, we pooled wells with cells after culture for 19
days, washed them twice with PBS, resuspended them in R10 supplemented with low
dose I1L15 (10 ng/ml) and seeded them at 1-2x10° cells per well in 12 well plates for 36
hrs. To rest freshly isolated and sorted splenic and thymic NK cells, we cultured them in
R10 supplemented with low dose IL15 for a period of 16-20 hrs. These cells were not
cultured longer due to lower yield at later time points. There was no change in
phenotypic markers or activation during this incubation period. All cells were incubated

at 37°C in 5% CO..

In vitro stimulation assays, intracellular cytokine staining and cytometric bead
array

In vitro generated, splenic and thymic NK cells from Ragl” mice were stimulated in a
target cell-free assay. Briefly, 1 X 10° cells were cultured in either a 96-well plate that
contained R10 media alone, R10 media with IL12 (10 ng/mL) and IL18 (50 ng/mL), or a
24 well plate pre-coated with anti-NK1.1 (clone PK136, 10ug/ml; 1.5 hr at 37°C) and
washed 3 times with PBS. Cells were incubated at 37°C and 5% CO, for 1 hr and then
further incubated in the presence of brefeldin A (GolgiPlug, BD Biosciences) for an
additional 7 hr. Cells were fixed and permeabilized (Cytofix/Cytoperm; BD) and IFN-y
was detected by intracellular cytokine staining and flow cytometry as described

previously[20]. For the cytometric bead array, cells were stimulated for 8 hrs without the
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addition of brefeldin A. At the end of the culture period, we collected the supernatants
and followed the manufacturer's protocol for the Mouse Inflammation Kit (BD
Biosciences). Cytokine secretion was measured with the FACSCalibur using CellQuest

(BD) and analyzed with the BD CBA Software.

Degranulation assay

Sorted in vitro generated, splenic and thymic NK cells from Rag1™ mice were co-
cultured with YAC-1 target cells at varying ratios in 96-well V-bottom plates. Anti-
CD107a antibody and monensin (eBioscience) were added to each well. Plates were
incubated for 2 hr at 37°C, after which surface staining for flow cytometry was

performed as described above.

Microarray sample preparation and analysis

NK1.1" cells were sorted from in vitro generated NK1.1" cells along with splenic and
thymic NK1.1" cells from Rag1” mice. Total RNA was isolated using the QIAGEN
RNeasy Mini Kit (Valencia, CA) and target synthesis for hybridization to Affymetrix 430
v2.0 GeneChips was performed with two rounds of linear amplification by the
Washington University Siteman Cancer Center Microarray Core Facility. Total RNA
from 3 different experiments was pooled for target synthesis and three target samples
were pooled and hybridized to each chip, resulting in three chips for each cell type. Data
analysis was performed using Partek® Genomics Suite™ (St. Louis, MO). The chips
were normalized and the Bonferroni Correction was applied to correct for multiple test

samples according to the program instructions.
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Isolation of lymphocytes from the small intestine

After euthanizing mice, we performed a midline incision and retracted the skin. The
small intestine was cut 0.5 cm below the stomach and 1 cm above the cecum. The
intestine was flushed out with 20m filter sterilized CMF solution (100ml 10X Ca?* and
Mg®* HBSS + 100ml 10X HEPES-bicarbonate buffer + 20ml FBS + 1L H,0) at 4°C.
We then cut the intestine longitudinally and laterally into 0.5 cm pieces and rinsed them
3X with CMF solution. Intestinal pieces were then placed in a 50ml conical tube with
CMF/ 10% FBS/ 0.1 mM EDTA solution and stirred for 20 minutes at 37°C at medium
speed. After vortexing the intestinal pieces and allowing the bigger particles to settle, we
transferred the supernatant to another 50 ml conical tube. We added more CMF/ FBS/
EDTA solution to the intestinal pieces and repeated the stirring process. We combined
the supernatants, incubated them on ice for 10 minutes, and centrifuged them for 5
minutes at 1500 rpm at 4°C. Supernatant was discarded and cells were resuspended in

R10.

Isolation of lymphocytes from the large intestine
After euthanizing mice, we performed a midline incision and retracted the skin. The
colon was cut 1 cm below the cecum and near the anus. The intestine was flushed out
with RPMI supplemented with Pen/Strep. We cut the colon longitudinally and laterally
into 0.5 cm pieces, placed them in a 50ml conical tube with 40 ml prewarmed RPMI/
Pen/Strep/ 3% FBS/ 5mM EDTA/ 154mg/ml DL-Dithiotreitol (Sigma), and incubated
them in a orbital shaker for 20 minutes at 37°C at medium speed. The contents were then

strained through a sterile kitchen strainer. After washing the intestinal pieces 3X with
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RPMI/ Pen/Strep/ 5mM EDTA solution, we minced them and placed them in a new 50ml
conical tube with RPMI/ Pen/Step/ 0.155mg/ml liberase (Roche)/ 0.1mg/ml DNase.
Once again, we placed them in an orbital shaker for 30 minutes at 37°C at medium speed.
At the end of the incubation, we collected the solution in a 50ml conical tube and mashed
the intestinal pieces with a syringe plunger. We washed the pieces with PRMI/ 3% FBS
3X. The solution was centrifuged for 10 minutes at 1500 rpm at 4°C, supernatant was

discarded and cells were resuspended in R10.
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CHAPTER 3

IN VIVO DEVELOPMENT OF THYMIC NK CELLS

FROM DOUBLE NEGATIVE 1 (DN1) PRECURSORS

22



Most studies done on mouse NK cells focus on the conventional splenic
population, which are known to develop and mature in the BM. Unlike their splenic
counterpart, very little is known about the development of thymic NK cells. Here, we
explore the possibility that they develop from progenitors that have seeded the thymus,

and therefore are not re-circulating conventional NK cells.

Sorting the progenitor population from the thymus of Ragl™ mice

To initiate our experiments, we enriched potential progenitors by sorting a subset
of double negative (CD4°CD8") thymocytes, known as DN1 based on their expression of
CD44 and low or absent CD25, from Ragl” mice (Figure 2). Presort analysis showed
that only 4% of thymic lymphocytes were in the DN1 (CD44*CD25") stage of
development. The majority of the thymocytes were arrested in the DN3 (CD44°CD25)
stage due to the absence of RAG genes that would normally drive the differentiation of
thymic progenitors into the T cell lineage. Within the small DN1 population, we
identified CD122'NK1.1" cells, CD122"NK1.1" NK precursors, and NK1.1°CD122" NK
cells, which constituted 21%, 11%, and 65% of the cells, respectively. To study the NK
cell developmental potential of DN1 cells, we further enriched the population by
collecting only the CD122'NK1.1" cells which represent cells that have yet to commit to
the NK cell lineage [16]. Since this is the basis for all future experiments, we did a post-
sort analysis which showed that the DN1 CD122°'NK1.1" thymic population had a 99%
purity level. These results suggest there were little to no contaminating mature NK cells

that could potentially skew our results.
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In vivo differentiation of NK1.1" cells from thymic DN1 progenitors

To assess whether the DN1 CD122'NK1.1" population had the potential to
generate NK cells, we transferred highly purified cells from Ragl” Ly5.2 mice into sub-
lethally irradiated Ragl™ Ly5.1 congenic recipients. Cells were adoptively transferred
either intravenously (IV) or intrathymically (IT). Thirty two days post transfer, we
analyzed the spleen and thymus of recipient mice for donor-derived NK1.1" cells (Figure
3). In mice that received IV transferred cells, a small number of splenic NK cells were
donor-derived (Ly5.2"), while the thymus was completely devoid of such cells. On the
other hand, a larger pool of donor-derived cells was present in mice receiving the sorted
progenitors intrathymically, where approximately 50% of the thymic NK cells were
derived from Ly5.2" donor cells. In addition, NK cells generated from these donor
thymocytes were also detected in the spleen of the same mice where they constituted
close to 6% of all NK cells. These results suggest that, upon intrathymic adoptive
transfer, the DN1 CD122'NK1.1" thymic subpopulation can differentiate into NK1.1*
cells in the thymus and that a small percent of these NK cells has the potential to

emigrate to the spleen.

In vivo differentiation of thymic DNL1 cells generates non-conventional NK cells
While the number of donor cells in recipient mice receiving IV transferred DN1
CD122'NK1.1" thymocytes was too low for analysis, we were able to further characterize
the NK cells generated from donor cells transferred intrathymically (Figure 4). By gating
on NK1.1" cells in the thymus, we found analyzed informative markers associated with

thymic and splenic NK cells. Although the staining patterns for each marker were
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somewhat different, i.e., some markers were expressed on all cells while others were
expressed on subsets, we used the percent of positive cells (above isotype control
staining) as a convenient (although technically imprecise) means to compare and describe
the various staining profiles. With this approach, we found that IT transferred
NK1.1°Ly5.2" cells in the thymus expressed the thymic marker CD127, similar to thymic
NK cells from unmanipulated mice, albeit at somewhat lower levels for unclear reasons.
In addition, we found CD25 to be selectively expressed by thymic NK cells in both
control and IT mice. This was a surprising finding since previous studies did not note
CD25 expression on thymic NK cells in C57BL/6 mice [39, 55]. This marker may be
related to the origin of our NK cells from Rag1™ mice since we also did not find it
expressed on thymic NK cells from C57BL/6 mice (data not shown) Regardless,
unmanipulated splenic NK1.1" cells do not express either receptor, while thymic NK1.1*
cells from both unmanipulated and IT mice had CD25"" and CD25"%" populations, the
latter usually falling outside the range of detection. The CD25"%" staining was unlikely
due to non-specific Fc receptor staining because splenic Ragl™ cells which contain an
abundant number of FcR-bearing cells did not stain. For Ly49 expression, due to the low
return yield of Ly5.2" NK cells in the IT mice, we were unable to assess the expression of
the individual Ly49 molecules, thus pan-Ly49 antibodies were used to detect
Ly49C/I/F/H and Ly49A/D. Similar to thymic NK cells from unmanipulated mice, a
sizable fraction of donor NK1.1*Ly5.2* cells in the thymus were Ly49"", whereas a
smaller fraction expressed Ly49 receptors at higher levels. However, essentially all
splenic NK cells from control mice were Ly49™%". Finally, we were able to detect DX5

and CD11b on donor-derived cells in the thymus, although their expression level was
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lower than on unmanipulated thymic NK cells. Thus, these data suggest that IT
transferred DN1 CD122'NK1.1" cells can differentiate into cells that resemble thymic NK
cells.

In the spleen, donor NK1.1"Ly5.2" cells had a phenotype consistent with that of
donor and control NK cells in the thymus (Figure 4). Similar to unmanipulated thymic
NK cells, NK1.1"Ly5.2" cells found in the spleen expressed CD127 and CD25, although
at much lower levels. In addition, they expressed both Ly49'°" and Ly49"9" and were
CD11b"". This phenotype was distinct from control splenic NK cells, suggesting that the
adoptive transferred progenitor cells differentiate into thymic NK cells which can then

emigrate to the periphery.

Discussion

Conventional NK cells found in the periphery, particularly in the spleen, have
been shown to develop from progenitors in the BM [8, 16]. On the contrary, the
identification of the specific progenitor and developmental site that generates thymic NK
cells has been challenging. To date, there are speculations on whether these unique NK
cells begin their life as T/NK bipotential progenitors that initiate their development in the
thymus, or whether they are re-circulating conventional NK cells that have altered their
phenotype based on their environment. While studies have shown that T/NK bipotential
progenitors found within the DN1 population in the thymus are responsible for generating
NK cells in vitro [33], it has yet to be shown whether they differentiate into thymic NK
cells in particular. Moreover, these studies showed that it was the DN1 CD117" cells that

generated NK1.1" cells upon culturing them with OP9 cells. One major caveat to these
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experiments is that they failed to exclude NK1.1" cells that are within this population. In
our hands, approximately 5% of the DN1 CD117" population in Ragl” mice were
CD122'NK1.1" (data not shown). This small pool of NK cells was also found in
C57BL/6 mice. Our results suggest that there was a contaminating population of NK
cells in early experiments. Since only 1.5% of DNL1 cells expressed CD117, we chose to
collect all cells within the DN1 population, excluding CD122"NK1.1" and
CD122"NK1.1" cells. This not only increased our recovery yield, it also included cells
that were CD117", approximately 3% of DN1 CD122'NK1.1" cells.

To address the question of whether this population differentiated into thymic NK
cells, we adoptively transferred 2x10° highly purified DN1 CD122'NK1.1" cells from
Rag1™Ly5.2 mice into sub-lethally irradiated congenic mice. Pilot studies where we
transferred less cells or used non-irradiated hosts yielded negative results as we could not
find the Ly5.2" cells (data not shown). Perhaps this may indicate that these thymocytes
needed "space" in a niche created by irradiation. Furthermore, harvesting the cells at
earlier time points proved to be difficult since there were too few Ly5.2" cells to analyze
(data not shown). Results from these pilot experiments suggest an appropriate progenitor
number, space, and time were essential to our in vivo studies.

Using these guidelines, we were able to characterize donor-derived cells that had
differentiated in vivo for 32 days. Interestingly, we detected a Ly5.2 and Ly5.1 double
positive population in the spleen of the IT mice. This may be due to discrepancies in the
staining process, but considering the absence of this double positive population in the
thymus, it is highly unlikely. A second explanation may be that there are more

dead/dying cells in the spleen, thus appearing as double positive. Yet a third explanation
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is that the donor cells acquired the Ly5.1 molecule from recipient cells found in the
spleen. This could be likely since NK cells have been shown to acquire MHC class |
molecules from target cells by stripping them from the cell's membrane [56, 57].

A second interesting finding was the expression level of most phenotypic markers
in both thymic and splenic NK1.1Ly5.2" cells. Similar to unmanipulated thymic cells,
the thymic donor-derived IT cells were CD127*, DX5", and CD11b'™" although their
expression level (MFI) was much lower. These results suggest that one or more factors,
such as stromal cells, that aid in differentiation and may be necessary for marker
expression was affected when the mice were irradiated, also explaining why our NK
numbers were much lower than those in unmanipulated mice. In addition, DX5
expression in splenic donor-derived IT cells was also detected at much lower levels, once
again supporting our idea that the process of irradiating the mice leads to some
unforeseen changes that may affect marker repertoire. Furthermore, although CD127 and
CD25 were expressed on splenic NK1.17Ly5.2" cells from IT transferred mice indicating
some similarity to unmanipulated thymic NK cells, their expression was not much higher
than the isotype control. This could indicate one of two things: 1) DN1 CD122'NK1.1°
cells initiate their developmental process in the thymus, allowing for the expression of
CD127, CD25, and Ly49"" receptors, but emigrate to the periphery to continue their
maturation, which includes the down-regulation of CD127 and CD25. 2) DN1 CD122
NKZ1.1 progenitors fully develop in the thymus, but retain the capacity to alter their
receptor repertoire according to their environment, as seen by the emerging Ly49"9"
population. Whereas both possibilities are plausible, it will be difficult to verify these

speculations without further knowledge of their in vivo differentiation process.

28



While further in vivo studies need to be done, we were able to show that the DN1
population harbors cells with the potential to differentiate into thymic NK cells. This
suggest CD127" NK cells are not recirculating conventional BM-derived NK cells.
Though the majority of these cells developed and resided in the thymus, a small pool had
the potential to emigrate into the periphery. These results further validate the idea that
not all NK cells develop in the BM, more specifically, that CD127" NK cells develop in

the thymus.
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Figure 2. Sorting DN1 CD122'NK1.1" cells from Ragl” mice yields a highly
enriched progenitor population. Thymi from 10 Rag1l™ mice were removed and cell
suspensions were made. Cells were labeled with anti-CD44, anti-CD25, anti-NK1.1 and
anti-CD122 and sorted using the Dako MoFlo. Presort analysis shows cells were gated
on lymphocytes based on the forward/side scatter profile. Approximately 2x10* DN1
CD122'NK1.1" cells were used in a post sort analysis. Data represents more than two

experiments.
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Figure 3. Donor derived DN1 CD122'NK1.1" thymocytes differentiate into NK1.1"
cells in the thymus. Thymi from Ragl” Ly5.2 mice were harvested and sorted based on
DN1 CD122'NK1.1" phenotype as shown in Figure 2. Cells were transferred into
irradiated Ragl'/' Ly5.1 mice either intravenous (1V) or intrathymically (IT). Irradiated
littermates were used as controls. Cells were harvested from the spleen and thymus 32
days post-transfer. NK1.1" cells from the lymphocyte population were then examined for

host (Ly5.1%) and donor (Ly5.2%) cells. Data are representative of two experiments.
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Figure 4. DN1 CD122'NK1.1" thymocytes differentiate into NK cells with a unique
phenotype. DN1 CD122'NK1.1" thymocytes from Ragl”” Ly5.2 mice were transferred
into irradiated Rag1” Ly5.1 mice intrathymically (IT). Donor (Ly5.2") NK cells from IT
mice were compared to NK cells from unmanipulated (non-irradiated) littermates 32 days
post transfer. Gray-filled histograms represent cells stained with an isotype control and
blue-line histograms represent cells stained with the indicated antibody. Data are

representative of two experiments.
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CHAPTER 4

IN VITRO DEVELOPMENT OF THYMIC NK CELLS

FROM DN1 CD122'NK1.1' THYMOCYTES
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Early studies performed by T cell biologists showed that when DN1 cells were
cultured with OP9 stromal cells transfected with Delta-like 1, T cell markers were
detected on developing cells by day 6. When this same population was cultured with
control OP9 cells, the emerging cells expressed NK1.1 [33]. The limitation to this
significant finding was the lack of any further characterization of these NK1.1" cells in
terms of phenotype or function. Here, we aimed to determine whether in vitro generated
cells that differentiate from DN cells resemble thymic or conventional splenic NK cells

and whether these cells were functional.

In vitro differentiation of NK1.1" cells from thymic DN1 progenitors

Due to low donor-derived NK cell numbers in adoptive transfer experiments, we
were unable to perform more detailed experiments with this approach. To further
examine the events that take place during NK differentiation of the putative thymic
progenitors, we instead utilized an in vitro system in which thymic progenitors were co-
cultured with OP9 stromal cells in the presence of cytokines. Sorted DN1 CD122'NK1.1°
thymocytes from Ragl” mice were seeded onto a confluent monolayer of irradiated OP9
stromal cells and cultured in IL7, FIt3L, SCF, and IL15. At different time points, we
visually and microscopically examined wells for growth (Figure 5). After 10 days of co-
culture, we visualized a colony of cells at the center of most wells, but by day 16 cells
appeared in areas devoid of the OP9 monolayer. To assess whether these cells had
differentiated after 19 days in culture, we pooled growth-positive wells identified by
visual inspection and analyzed surface expression of NK1.1 via flow cytometry. Results

showed that by day 16, most cells were NK1.1* (Figure 6A). Kinetic analysis showed the
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absence of NK1.1" cells on day 4 but NK1.1" cells were readily detected on day 7, and
continued to increase on day 10 (Figure 6B) . Thereafter, the percentage of NK1.1" cells
was relatively stable. CD122 expression paralleled that of NK1.1 expression. Together,
these results suggest that DN1 CD122'NK1.1" thymocytes contained progenitors capable
of developing into NK1.1" cells in an in vitro system with OP9 stromal cells and

cytokines.

Precursor frequency of the DN1 population

To determine the frequency at which an NK1.1" cell was differentiated, we
performed a limiting dilution analysis. Sorted Ragl”™ DN1 CD122'NK1.1 thymocytes
were seeded in wells at different cell densities in 24-well replicates. After 19 days, all
growth-positive wells were individually collected and cells were surface stained and
analyzed via flow cytometry. Dead or dying cells were excluded with propidium iodide
(P1) staining. Results showed that approximately 80-90% of the cells in all growth-
positive wells were NK1.1%. Although the level of NK1.1 expression was somewhat
variable, the NK1.1 mean fluorescent intensity (MFI) was independent of seeding dose
(Figure 7A). For example, cells seeded at 300 cells/well expressed higher levels (MFI) of
NKZ1.1 compared to cells seeded at 400 and 500 cell/well. In addition, when all growth-
positive wells from one seeding dose were compared to each other, expression level of
NKZ1.1 varied from well to well (Figure 7B). This data suggest that we could use the
frequency of wells with NK1.1" cells, regardless of the level of NK1.1 expression, as a
reliable outcome in limiting dilution analysis. If we assume that the cells being titrated

are randomly and independently distributed among all wells, then the number of cells that
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differentiated into NK1.1" cells found in each well should follow the Poisson distribution.
By graphing the number of cells per well versus the log of the frequency of negative
cultures, we were able to demonstrate a frequency of 0.24% with a 95% confidence
interval of 0.3% to 17% (Table I and Figure 8). These results indicate that one out of
every 416 sorted DN1 CD122'NK1.1" thymocytes from Ragl” mice is an NK cell

precursor that can differentiate into and NK1.1" cell in vitro.

In vitro generated NK1.1" cells have a unique phenotype

In vivo studies have delineated tentative developmental stages for conventional
splenic NK cells based on marker correlation but developing NK cells have not been
directly observed to undergo the putative phenotypic changes that characterize each stage
[16, 20]. Here, we were able to directly follow the kinetics of NK cell development from
progenitor stage to NK1.1-expressing cells. Briefly, sorted Ragl™ thymocytes were
seeded at a concentration of 1000 cells per well on a monolayer of irradiated OP9 stromal
cells in the presence of cytokines. At different time points, equal number of wells were
pooled, stained with a panel of antibodies and analyzed via six-color flow cytometry. We
used a seeding concentration of 1000 cells per well to insure that each well would have
differentiating NK1.1" cells (from an average of 1-2 progenitors) and chose to pool wells
for analysis due to the small number of cells available. Again, as described for the
intrathymic transfer studies, the staining patterns for each marker were somewhat
different but we used the percent of positive cells (above isotype control staining) as a
convenient (although imprecise) means to compare and describe the various staining

profiles. Phenotypic analysis of the developing cells after 4 days of co-culture showed
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most markers were absent, except CD117 (cKit) and CD25 (IL2Ra) which were
expressed at low levels (Figure 9). Although the cells lacked most markers on day 4,
including NK1.1 and CD122 (Figures 6, 9A), more than 30% had differentiated into
NKZ1.1 expressing cells by day 7, all of which co-expressed CD122. The number of
NK1.1" cells increased to more than 85% by day 19 (Figures 6, 9B). Taken together,
these data strongly suggest that the cells were differentiating into NK1.1" cells rather than
representing outgrowth of contaminating mature NK cells because NK1.1 was not
initially expressed and markers associated with NK cells were primarily expressed only
after a week of in vivo culture.

To further analyze the kinetics of development in the in vitro generated cells, we
compared the phenotypic results on NK1.1* cells from different culture time points to
each other, expressed as a percentage of NK1.1" cells (Figure 10). As compared to other
markers, both CD122 and NK1.1 were expressed relatively early with ready detection on
day 7, where approximately 30% of total cells express both markers (Figures 6, 9A).
Interestingly, CD44 was present throughout the entire culture time, with more than 99%
of the cells expressing it (Figure 10). Developing cells also failed to express CD94 on
day 4, but more than 80% of NK1.1" cells had up-regulated this receptor by day 7. By
contrast, NKG2D was poorly expressed on day 7, and instead was expressed by
essentially all NK cells on day 10. The acquisition of CD94 and NKG2D on developing
NK cells after CD122 and NK1.1 are expressed supports previous findings by other
colleagues [8, 20, 21]. With the acquisition of NKG2D on day 10, followed by the
subsequent expression of Ly49 on day 13, it appeared that the in vitro generated NK cells

progressed from stage 11 of development to sate 111 during this window of time. Again,
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limited by the number of cells, we were unable to assess specific Ly49 expression with
mono-specific anti-Ly49 antibodies during this temporal analysis. Only a fraction of the
cells expressed Ly49s. However, unlike conventional splenic NK cells, the in vitro
generated cells lacked DX5 expression, and CD43 and CD11b were detected only after
about 16 days in culture. Interestingly, low levels of CD127 was detected on the in vitro
cultured NK cells. While 10% to 25% of the cells were CD127"" on day 10, there were
more than 50% NK1.1*CD127" cells by day 19 (Figures 9, 10). Overall, these studies
have allowed us to follow the sequential development of putative NK cells from DN1
thymocytes which generally recapitulates developmental stages of developing NK cells in

the BM.

Comparison between in vitro generated cells and freshly isolated NK cells

Our studies on the kinetics of development suggested that in vitro generated
NK1.1" cells were either conventional NK cells arrested between stage 11 and stage 1V of
the developmental process or that they differentiated into NK1.1" cells resembling thymic
NK cells. Inasmuch as our adoptive transfer studies suggested that the sorted DN1 cells
gave rise to NK1.1" cells that more closely resembled thymic NK cells, we sought to
further determine if our in vitro differentiated NK1.1" cells resembled thymic NK cells.
Here, we compared expression of surface markers on in vitro derived NK1.1" cells after
19 days in culture with that of freshly isolated thymic and splenic NK cells (Figure 11).
Similar to thymic CD127" NK cells, less than half of the in vitro generated cells had low
expression of Ly49 receptors, CD11b, and CD62L. Further detailed analysis of the Ly49

receptors confirmed these data because splenic NK cells readily expressed Ly49A,
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Ly49C, Ly49D, Ly49G2, and Ly49H, some of which are expressed on >50% of cells.
On the contrary, while the largest pool of thymic NK cells expressed Ly49G2, less than
20% expressed any other of these receptors, (Figure 12). In vitro generated cells lacked
Ly49C and Ly49G2 and less than 10% expressed low levels of Ly49A, Ly49D, Ly49F,
or Ly49H (Figure 12). Kinetic analysis showed that CD25 was up-regulated in enriched
thymic progenitors during the first 4 days of culture and expression was then constant
through day 19 (Figures 9, 10). Surprisingly, as noted above (Figure 4), CD25 was also
detected in thymic NK cells from Ragl” mice with essentially all cells expressing it at
intermediate to high levels (Figure 11). Studies done on splenic and thymic NK cells
from C57BL/6 mice showed CD25 was not present on either NK cell type, suggesting
CD25 is selectively expressed on thymic cells from Ragl™ mice (data not shown).
Finally, and most importantly, the majority of in vitro generated NK cells uniformly
expressed CD127, a marker of thymic NK cells [39], albeit at lower levels than thymic
NK cells. Overall, the phenotypic comparisons between all three cells types suggest that
in vitro generated NK1.1" cells more closely resemble thymic, and not conventional
splenic NK cells.

Unlike thymic NK cells, the in vitro NK1.1" cells did not express the integrin
DX5 or CD69. However, a slight modification in the culture protocol was informative.
Briefly, thymic progenitors were allowed to differentiate into NK1.1-expressing cells for
19 days under standard culture conditions with OP9 cells and cytokines, at which point
cells were harvested, washed, and incubated in low-dose (LD) IL15 alone for 36 hrs.
Interestingly, culture in LD IL15 alone was associated with the up-regulation of DX5 and

CD69 and the down-regulation of CD11b (Figure 13), resulting in a phenotype strikingly
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similar to thymic NK cells (Figure 11). Thus, this modification resulted in in vitro

differentiated NK cells that now very closely resembled thymic NK cells.

In vitro generated cells are functional

Due to phenotypic similarity to thymic NK cells, we further sought to characterize
the in vitro generated NK1.1" cells by comparing their function to freshly isolated thymic
NK cells. Functional analysis for the production and secretion of cytokines, along with
the ability to degranulate were assessed by both target cell-free and cell-dependent
stimulation assays, respectively. For these studies, we used in vitro differentiated NK
cells cultured under standard conditions with OP9 cells and cytokines for 19 days.
Cytometric Bead Array (CBA) results showed that at this point, the cells were secreting
several cytokines and chemokines, including monocyte chemotactic protein-1 (MCP-1),
IFNy, TNF, and IL6, without further stimulation (Figure 14). These results suggest that
the in vitro NK1.1" cells were in a pre-activated state due to their culturing environment,
thus making them incomparable to freshly isolated splenic and thymic NK cells.

To address this, we differentiated Ragl” DN1 CD122'NK1.1" thymocytes in
standard culture conditions for 19 days, at which point, cells were collected, washed and
"rested" in low-dose (LD) IL15 alone. Every 12 hours, we pooled cells and re-cultured
them in either media alone (non-stimulated) or media supplemented with IL12+1L18 for a
period of eight hours. Results showed that in vitro generated cells reached a state of
"rest" only after being in the LD IL15 culture for 36 hours, at which point they ceased to
secrete all tested cytokines (Figure 15 and data no shown). In addition, cells did not lose

the ability to secrete certain cytokines upon IL12+IL18 stimulation at any time point,
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even after reaching their resting state. Finally, once removed from their standard
culturing conditions and placed in LD IL15 alone, cells altered their phenotype to further
resemble thymic NK cells more closely (Figure 13). Together, these results suggest that
subtle changes in culture may resemble, but not necessarily recapitulate, the dynamically
changing environment that occurs during in vivo cell development.

To assess whether the resting in vitro generated NK cells were functional, we
performed a target cell-free stimulation assay with 1L12+IL8 or plate bound anti-NK1.1
(clone PK136) for 8 hours. Intracellular flow cytometry results were compared to those
from sorted splenic and thymic NK cells that were cultured in LD IL15 for 16 hours
(Figure 16). These in vivo differentiated NK cells were not cultured (rested) longer due
to a lower yield at later time points. Pilot studies showed there were no changes in
phenotypic markers or activation during this incubation period (data not shown). While
the majority of cells, regardless of in vivo or in vitro differentiation, produced a large
amount of IFNy when stimulated with IL12+IL18, less than 30% were capable of
responding to PK136 (Figure 16). Moreover, the amount of IFNy detected in PK136
cultures was approximately one log lower than that produced when stimulated with
IL12+IL18. These results suggest that the in vitro generated NK cells are functional and
can be stimulated to produce IFNy, especially when stimulated in an ITAM-independent
manner.

To more broadly compare the function of LD IL15 rested in vitro differentiated
NK1.1" cells to rested splenic and thymic NK cells, we once again used a mouse
inflammation CBA to quantitatively detect a wider panel of secreted cytokines. As

expected from the intracellular staining assay, all cell types secreted a large amount of
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IFNy when stimulated with 1L12+1L18, but only the latter responded as well, if not better,
upon PK136 stimulation. Interestingly, TNFo was produced by thymic and in vitro NK
cells upon stimulation with both 1L12+1L18 and PK136, whereas splenic NK cells
produced TNFa only with PK136 stimulation. IL6 was detected only after IL12+1L18
stimulation but MCP-1 was not detected at any point (Figure 17). These results further
indicate that the in vitro generated NK cells can be activated with various stimuli to
functionally resemble thymic NK cells.

Finally, to determine if the in vitro generated NK cells were capable of
responding to target cells, we co-incubated the three cell types with YAC-1 target cells.
In a similar manner, thymic and in vitro NK cells degranulated upon target encounter
(Figure 18). While there was a difference in degranulation between splenic NK cells and
thymic and in vitro NK cells, it may not be biologically significant. Overall, phenotypic
and functional analysis show the similarities between thymic and in vitro generated NK

cells, and together they share differences from their splenic counterpart.

Discussion

Adoptive transfer studies showed thymic CD127" NK cells developed from DN1
CD122'NK1.1 progenitors, although further analysis was limited due to the low recovery
yield of Ly5.2"NK1.1" cells 32 days post transfer. To compensate for the experimental
limitations imposed by in vivo studies, we cultured the enriched thymic progenitors from
Ragl” mice in an in vitro system conducive for precursor development. Early in vitro
studies showed that NK1.1" cells can differentiate from ELP when cytokine such as SCF,

IL7, FIt3L, and IL15 are added to the culture [22]. However, it was later shown that
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developing ELPs need to come in direct contact with BM stromal cells to acquire a
phenotype that resembles conventional splenic NK cells, thereby expressing molecules
such as Ly49 receptors [23-25] .

In these studies, we confirmed that OP9 stromal cells and all cytokines were
necessary for the growth of NK1.1" wells, resulting in a low to negative yield of NK1.1*
cells if any component was excluded during the culture (data not shown). For the most
part, we seeded irradiated OP9 cells in 96 well U-bottom plates 24 hours before co-
culture to allow them to settle to the bottom of the well and form a confluent monolayer
essential for progenitor development. Microscopic images showed the progenitors made
direct contact with the OP9 cells for the first 8-9 days of culture, but by day 10, the center
of the well was devoid of the stromal cells and instead was populated by the developing
cells (Figures 5,10). This suggested that OP9 cells were essential for the early stages of
development, while the cytokines were important for any further maturation during later
time points.

In addition, it was crucial that the OP9 stromal cells were in a healthy condition
before and during co-culture. Surprisingly, a simple change in FBS (from Biomeda to
Sigma) resulted in a morphological change in OP9 cells which affected their ability to
adhere to the bottom of the well, thereby leading to early cell death. Without the OP9
monolayer, the sorted DN1 CD122'NK1.1" thymocytes did not receive the proper cell-to-
cell signaling required for differentiation (data not shown). After replacing the new
Sigma FBS with Biomeda FBS, we were once again able to detect NK1.1" cells after 7

days in culture (data not shown and Figure 6B). This data suggest that direct and
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constant interaction between healthy stromal cells and DN1 CD122'NK1.1" thymocytes is
necessary for the generation of NK1.1" cells.

Besides showing that OP9 cells and cytokines are essential for in vitro NK1.1"
differentiation, our results also showed that the cultured cells did not represent an
outgrowth of mature NK cells since these do not require OP9 cells to proliferate. This
was further confirmed by the absence of any detectable CD122 and NK1.1-expressing
cells after 4 days in culture. By assessing marker expression at different time points we
were also able to follow the gradual acquisition of markers associated with developing
NK cells, which would not have been possible if there was a contaminating mature NK
population.

Unlike their conventional counterparts in the spleen, little is known about thymic
NK cells. While our in vitro differentiated cells resembled thymic NK cells and not
conventional NK cells, there were some subtle differences. For example, when we
analyzed the in vitro generated cells after being in culture for 19 days, we were unable to
detect DX5 and CD69 expression, markers typical of thymic NK cells. It was only after
we optimized the culture by "resting" the cells in LD IL15 alone that the in vitro cells up-
regulated DX5 and CD69, a marker generally associated with cell activation, while
down-regulating CD11b. In addition, subtle differences in the expression levels of Ly49
molecules in thymic and in vitro generated NK cells may be due to stromal factors that
regulate Ly49 expression that are difficult to recapitulate in vitro [24]. For example,
irradiation may alter stromal molecules or the MHC on OP9 cells could affect Ly49
expression or acquisition. These in vitro studies perhaps reflect a dynamically changing

in vivo cytokine environment during normal development. Regardless, the studies
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described here provide future opportunities to dissect the influence of differing cytokine
environments and stromal components on thymic NK cells and their development.

Moreover, functional studies showed that unlike their splenic counterpart, thymic
and in vitro generated NK cells are less efficient at degranulating upon target cell
encounter, yet more efficient at secreting certain cytokines such as TNF. Although the
exact function of this NK cell subset has yet to be elucidated, we can speculate that it
may produce a specific cytokine or chemokine upon activation which has not been
identified. The recent discovery of the NK-22 subset in mucosal tissues which can
secrete 1L.22, 1L26 and leukemia inhibitor factor upon 1L23 exposure, suggests that
different NK cell subsets may have differing roles [58]. While the function of these cells
may include protecting mucosal sites by constraining inflammation during bacterial
infection, the specific role of CD127" thymic NK cells is not yet clear. Future studies
looking at the effect of depleting these cells in vivo will help us further examine their
function within the thymus and other tissues.

While our studies demonstrate that thymic-like NK cells can differentiate from
DN1 CD122'NK1.1" cells, more work is needed to determine if a single progenitor cell in
the thymus could give rise to this particular CD127* NK cell subset. In addition, it has
yet to be determined whether these progenitors are pre-committed to this specific NK
lineage once they home to the thymus or if experimental constraints allowed preferential
development of thymic NK cells. Future studies where the DN1 population is further
dissected will help us answer some of these questions.

To our knowledge, our studies were the first to attempt to determine the

progenitor frequency in which a thymic precursor can give rise to an NK1.1-expressing
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population by limiting dilution analysis. Since the putative DN1 CD122'NK1.1°
progenitor population that differentiates into thymic NK cells has yet to be determined,
we lack the point of reference to compare our findings. While one out of every 416 DN1
CD122'NK1.1" thymocytes may seem like a low frequency, it should be noted that this
precursor population is negatively defined by lack of marker expression (CD4, CDS8,
CD117, CD122, NK1.1), rather than the expression of markers associated with high
progenitor frequency. Nonetheless, it should also be emphasized that we enriched for a
thymic NK cell precursor by using Rag1™ thymi and sorted for the DN1 CD122'NK1.1°
population which represents approximately 0.0073% of C57BL/6 (WT) thymocytes (data
not shown). Future experiments to enrich for the putative DN1 CD122'NK1.1°
progenitor, perhaps the CD117" population mentioned in Chapter 3, may be informative
to markedly increase precursor frequency to about 1/10. Nonetheless, these studies show
that this in vitro approach is feasible for the differentiation of thymic progenitors to

CD127'NK1.1" cells that phenotypically and functionally resemble thymic NK cells.
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Figure 5. Differentiating thymic precursors can be visualized by day 10. Sorted DN1
CD122'NK1.1" thymocytes from Ragl™ mice were co-cultured with OP9 cells and IL7,
FIt3L, SCF, and IL15. Wells were visually and microscopically examined for growth on
different days. Top panels are at 4X magnification, while bottom panels are at 20X

magnification. Data are representative of more than three experiments
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Figure 6. Thymic progenitors can differentiate into NK 1.1 cells in vitro. Sorted
DN1 CD122'NKZ1.1" thymocytes from Ragl’ mice were co-cultured with OP9 cells and
cytokines. A) Growth positive wells by visual inspection were pooled, stained, and
analyzed for expression of NK1.1 after 19 days in culture. For the negative controls,
cells were either left unstained (gray-filled histograms) or stained using the appropriate
isotype antibody (black dotted histogram). Cells were gated based on lymphocyte
population by scatter parameters. B) Kinetic analysis of NK1.1 and CD122 expression
on lymphocyte population, gated by scatter parameters. At varying culture periods, wells
were examined for the indicated markers as described in Figure 6A. Data are

representative of at least three experiments.
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Figure 7. All visually growth positive wells were NK1.1". Sorted DN1 CD122"
NKZ1.1" thymocytes from Ragl” mice were co-cultured with OP9 cells and cytokines at
limiting cell densities for 19 days. Growth-positive wells were analyzed for NK1.1
expression by flow cytometry. Cells were gated on the lymphocyte population. (A)
Histograms from one representative well for each seeding dose are shown. (B)
Histograms show all growth-positive wells for progenitors seeded at 300 cells/well. Data

represent three experiments.
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Table I and Figure 8. Limiting dilution analysis (LDA) of DN1 CD122" NK1.1°
thymocytes to determine progenitor frequency. Sorted DN1 CD122" NK1.1°
thymocytes from Ragl™ mice were co-cultured with OP9 cells and cytokines at limiting
cell densities for 19 days. Growth-positive wells were analyzed for NK1.1 expression by
flow cytometry. The frequency of growing cells was determined using Poisson
distribution : Y=(e-m)(mr)/r!, where Y is the expected fraction of wells with r precursors
when there is a mean of m precursors per well. Growth-negative wells are plotted as a
function of the number of sorted thymocytes added per well using the Graphpad Prism
software. The frequency is 0.24%. Standard error is 0.027% and 95% confidence interval

is 0.3% to 0.17%. Data represent three experiments.
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Figure 9. Phenotypic profile of cells generated in vitro from thymic progenitors.
Cells cultured in vitro were pooled on different days and assessed for marker expression
via flow cytometry. Black histograms represent cells stained with appropriate isotype
controls and colored-line histograms correspond to different days of analysis. Early (A)
and late (B) marker acquisition is shown. Expression on gated NK1.1" cells is shown,
except for all markers on day 4 and NK1.1 expression on different days, which were

gated on the lymphocyte population. Data are representative of 3-5 experiments.
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Figure 10. Developmental kinetic profile of NK1.1" cells generated in vitro from
thymic progenitors. Sorted DN1 CD122  NK1.1™ thymocytes from Ragl™ mice were
co-cultured with OP9 cells and cytokines at limiting cell densities for 19 days. Cells
were pooled on different days and assessed for marker expression via flow cytometry.
Developmental kinetics of sorted thymocytes as a function of days versus the percentage

of NK1.1" cells expressing the given marker. Data are representative of 3-5 experiments.
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Figure 11. In vitro developed NK1.1" cells resemble those found in the thymus and
not conventional splenic NK cells. Cells from indicated tissues of Rag1l™ mice, along
with in vitro differentiated NK cells were analyzed by cytometry. Gray-filled histograms
represent cells stained with an isotype control and blue-line histograms represent cells
stained with the indicated antibody. In vitro generated NK cells were compared to
freshly isolated splenic and thymic NK cells. Gated NK1.1" cells are shown. Data are

representative of 5 experiments.
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Figure 12. Ly49 receptors expressed in splenic, thymic and in vitro derived NK
cells. Cells from indicated tissues of Ragl™ mice, along with in vitro differentiated NK
cells were analyzed by cytometry. Gray-filled histograms represent cells stained with an
isotype control and blue-line histograms represent cells stained with the indicated Ly49
antibody. In vitro generated NK cells were compared to freshly isolated splenic and
thymic NK cells. Gated NK1.1" cells are shown. Data are representative of 4

experiments.
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Figure 13. In vitro generated NK1.1" cells closely resemble thymic NK cells after a
change in culture condition. The phenotype of in vitro generated NK cells in culture for
19 days (top panel) was compared to that of cells that were removed from culture after 19
days and rested in LD 1L15 for 36 hrs (bottom panel). Gated NK1.1" cells are shown.

Data are representative of 2 experiments.
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Figure 14. In vitro generated NK1.1" cells are in an activated state. Cytokine
production from in vitro differentiated NK cells grown in culture for 19 days was
compared to that produced by freshly isolated Rag1” splenic and thymic NK cells.
Sorted NK1.1" cells were stimulated with 1L12+1L18 or plate-bound anti-NK1.1 for 8
hours. Supernatants were collected and cytokines secreted were assessed by cytometric
bead array (CBA). All experimental conditions were done in triplicates. Data are

representative of 3 experiments
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Figure 15. In vitro generated NK1.1" cells reach a "'resting"" state after culturing in
LD IL15 alone. Sorted DN1 CD122" NK1.1" thymocytes from Ragl"' mice were co-
cultured with OP9 cells and cytokines for 19 days. Cells were then pooled, washed with
PBS and seeded in LD IL15. Every 12 hours, we collected cells and cultured them in
either R10 or R10 supplemented with 1L12+1L18 for an additional 8 hours. Supernatants
were collected and cytokine secretion was assessed by CBA. Data are representative of 2

experiments.
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Figure 16. Invitro generated NK1.1" cells are functional. The function of in vitro
differentiated NK cells grown in culture for 19 days then rested in LD IL15 was
compared to the function of Rag1™ splenic and thymic NK cells cultured in LD IL15.
Sorted NK1.1" cells were stimulated with IL12+1L18 or plate-bound anti-NK1.1 for 1hr,
Brefeldin A was added and cells were further incubated for 7 hours. [IFNy production
was measured by intracellular flow cytometry. For negative controls, cells were either
not stained (gray-filled histograms) or not stimulated (black-dotted histograms). All

histograms are gated on NK1.1" cells. Data are representative of 2 experiments.
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Figure 17. In vitro generated NK1.1" cells secrete cytokines when activated. The
function of in vitro differentiated NK cells grown in culture for 19 days then rested in LD
IL15 was compared to the function of Ragl” splenic and thymic NK cells cultured in LD
IL15. Sorted NK1.1" cells were stimulated with 1L12+1L18 or plate-bound anti-NK1.1
for 8 hours. Cytokines secreted were assessed by cytometric bead array. All
experimental conditions were done in triplicates. Data are representative of 2

experiments.
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Figure 18. In vitro generated NK cells resemble the function of thymic NK cells.
The function of in vitro differentiated NK cells grown in culture for 19 days then rested
in LD I1L15 was compared to the function of Ragl” splenic and thymic NK cells cultured
in LD IL15. Sorted NK1.1" cells were co-cultured with YAC-1 target cells for 2 hours.
CD107 degranulation upon target encounter was measured by flow cytometry. All
experimental conditions were done in triplicates. Data are representative of 2

experiments.
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CHAPTER 5

GENE PROFILES AND THE IDENTIFICATION OF

OTHER NOVEL RECEPTORS
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Our in vivo and in vitro studies indicate that DN1 CD122'NK1.1" thymocytes
harbor a putative population which can differentiate into NK1.1" cells. These cells
phenotypically resemble thymic NK cells. Thus far, most of our studies have assessed
surface molecule expression with the use of flow cytometry. This approach has allowed
us to follow the sequential acquisition of many markers. While both the in vitro
generated and thymic NK cells were shown to be NK1.1'CD127*Ly49"°"CD11b"", a
more detailed analysis must be done to further understand what makes these cells unique.
Herein, we attempt to further compare in vitro generated NK cells, thymic NK cells, and

splenic NK cells by gene expression profiling.

Gene expression profiling of splenic, thymic, and in vitro generated NK cells

To further examine the characteristics that make the in vitro generated and thymic
NK cells distinct, we compared their gene expression to that of their splenic counterpart.
Briefly, DN1 CD122'NK1.1" thymocytes were cultured with OP9 stromal cells and
cytokines for 19 days. At this time, all wells were pooled, stained, and sorted based on
NK1.1" expression. While essentially all cells expressed NK1.1, it was essential we
excluded any cells that could potentially alter our results. In parallel experiments, we
harvested spleen and thymus from Ragl”™ mice, made single cell suspensions and
enriched for the NK1.1" cells via cell sorting. Total RNA was isolated and gene
expression profiling was performed using genome-wide oligonucleotide microarrays (see
Methods). Total RNA from 3 different experiments was pooled for target synthesis and
three target samples were pooled and hybridized to each chip, resulting in three chips for

each cell type.
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By utilizing the Partek® Genomics Suite™, microarray chips were normalized
and unsupervised hierarchical clustering of the data grouped all three samples together
(Figure 19). PCA (principal component analysis) mapping showing the global analysis
of the genome, suggested that there was good concordance of the results between
replicate samples in each group. This was essential since triplicate gene chips were not
only going to be compared to each other, but to other triplicate chips from the remaining
samples.

Due to multiple sample comparison, we applied the Bonferroni correction to
further normalize gene profiles. Genes with a significant Bonferroni p-value of less than
0.02 were graphed in a heat map and lists indicating their fold change were created
(Figure 20 and Table I1). Results showed that in vitro generated NK cells had a
significant fold increase in granzyme D, granzyme E, and granzyme G expression. In
addition, in vitro NK cells had approximately 6 times more lymphotoxin A (LTa) and
tumor necrosis factor ligand. While surface expression showed that these cells were
similar, transcript profiles suggest there may be some subtle differences created by the in
vitro culture conditions.

To further examine the difference between splenic and thymic NK cells, we
mapped genes with a Bonferroni p-value of less than 0.02 (Figure 21 and Table I11). As
expected, we were able to detect a 4 fold difference in CD127 expression in thymic NK
cells, where splenic gene expression was down. Surprisingly, we detected integrin alpha
E (CD103), IL2 receptor alpha chain (IL2Ra, CD25), and cadherin 1 at a 25, 40, and 97
fold increase in thymic NK cells respectively. However, splenic NK cells had higher

expression of Fc receptor 1IgG2b (CD32) and CD86. Together, these results not only
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validate the our functional assays where splenic NK cells were more efficient at
degranulating, perhaps due to CD32 expression, but also suggest that thymic NK cells are
even more unique in their phenotype, expressing CD25 and CD103, than conventional
NK cells.

Finally, we compared the gene expression profile of splenic NK cells to that of
thymic and in vitro NK cells combined (Figure 22 and Table 1V) . By filtering genes out
with a Bonferroni p-value of 0.01, we were able to detect many of the similar genes
already described. Results showed that splenic NK cells had higher KLRG1, CD32, and
CD86 transcript expression. However, both thymic and in vitro NK cells expressed more
CD127, CD25, CD103, LTa, and granzymes D and E. To verify these results, we stained
for some of the surface receptors and analyzed them via flow cytometry (Figure 23).
Results confirmed the gene expression profiles, but future intracellular flow and RT-PCR
experiments will be done to validate other transcripts found to be significant. These
results further support our hypothesis that DN1 CD122"'NK1.1 thymocytes can
differentiate into NK1.1" cells that very closely resemble thymic NK cells, and not

conventional splenic NK cells.

Novel marker expression is specific to NK cells differentiated in a thymic
environment

While extracellular CD25 was detected on in vivo, in vitro, and thymic NK cells
during previous experiments (Figures 4, 9-11, 13, 24), the presence of CD103 transcripts
in thymic NK cells was an interesting finding. To determine if the CD103 protein was

expressed on the cell surface, we once again differentiated DN1 CD122'NK1.1°
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thymocytes into NK1.1" cells in vivo and in vitro (Figure 24). Adoptive transfer
experiments showed about half of Ly5.2"NK1.1" (donor-generated) cells found in the
thymus of IT transferred mice, expressed CD103. Although the same percent of cells
also expressed CD25, there was no correlation between the two surface molecules (data
not shown). In addition, both CD103 and CD25 detection on thymic Ly5.2"NK1.1" cells
was significantly lower than their control unmanipulated counterparts (Figures 23, 24).
This may be a direct consequence from irradiating the host mice. Regardless, these
results suggest that thymic progenitors can generate CD103" NK cells.

To investigate the kinetics of CD103 acquisition, we cultured DN1 CD122"
NK1.1" thymocytes in vitro with OP9 stromal cells and cytokines. Once again,
differentiating cells were harvested at certain time points and their phenotypic profiles
were assessed via flow cytometry (Figure 10). Results showed that while less than 10%
of NK1.1" cells expressed low levels (MFI) of CD103 on day 7, we were able to detect a
higher MFI on more than 60% NK1.1" cells on day 13 (Figure 10 and data not shown).
This expression was shown to be stable since NK cells were still CD103" on day 19.
This suggest that CD103 expression is acquired during the early stages of development,
more specifically during stage Il. Furthermore, by altering the culture conditions we
were able to show that essentially all (96%) in vitro generated NK1.1" cells expressed
CD103 at similar detection levels as thymic NK cells (Figures 23, 24). Taken together,
these results once again verify that the in vitro generated NK cells very closely resemble

thymic NK cells.
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Expression of CD127" NK cells in the absence of CD25 and CD103

To examine whether CD25 or CD103 influence the generation of thymic NK
cells, we looked for CD127"NK1.1" cells in different strains of mice including B6,
CD103™ on a B6 background, Ragl™, and CD25" on a Ragl™ background. As
expected, less than 15% of splenic NK cells in B6 and Rag1l™ mice express CD127, while
essentially all thymic NK cells are CD127". Similar results were obtained in CD103"
mice. Surprisingly, we detected CD127 at a lower MFI on less than half of thymic
NK1.1" cells in CD25""Ragl” mice (Figure 25A).

Although the percent of NK cells that expressed CD127 was comparable between
B6, CD103™, and Rag1™ mice, and lower on CD25""Rag1™ mice, their absolute
numbers varied significantly (Figure 25B). Compared to WT B6 mice, a larger number
of CD127" NK cells were detected in the thymus of CD103 KO (knockout) mice,
approximately 1.5 times more cells. However, CD127 was detected in only one tenth
(1/10) of thymic NK cells in Ragl™ mice, compared to WT. Furthermore, while a
smaller percent of thymic NK cells from CD25"Rag1™ mice were positive, their absolute
number was 4 times greater than that in thymic NK cells from Ragl™ mice. Together,
these results suggest that CD103 expression in a WT background, and CD25 in a RAG
background are not necessary for thymic NK cell development, but may be important for

the export of these cells.

Thymic NK cells in the periphery
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CD103 has been shown to be expressed in T lymphocytes and dendritic cells
(DCs) that reside in the intestinal mucosa [59, 60]. Since FACS analysis and gene
expression profiles showed that thymic NK cells also expressed abundant CD103, we
assessed whether this NK subset also had the potential to travel to the intestinal mucosa
(Figure 26). Results showed that although the percent of NK cells in the small and large
intestine (SI and LI, respectively) was low, these cells were still detectable. A population
of NK1.1" cells in both areas of the intestine were CD127", while only those in the small
intestine were CD103". A more in-depth phenotypic analysis of NK1.1" cells found in
the small intestine showed these cells resembled thymic NK cells in that they expressed
CD25 and low levels of Ly49 and CD11b (Figure 27). These preliminary studies may
indicate that a small population of thymic NK cells have the potential to emigrate from

the thymus and seed other tissues, perhaps partially guided by the CD103 integrin.

Discussion

While phenotype analysis was essential to our kinetics experiments, we further
characterized both thymic and in vitro generated NK cells by examining their genome-
wide expression profiles and comparing them with that of splenic NK cells. To ensure
the RNA isolated from sorted NK1.1" cells represented a whole population and not just
one mouse, we pooled RNA from 3 independent experiments. Due to the small amount
of RNA, the Washington University Gene Core Facility performed two rounds of linear
amplification, creating a target synthesis for hybridization to Affymetrix 430 v2.0
GeneChips, which offers complete coverage of over 39,000 transcripts on a single array

[61]. Three of these target samples were then pooled and hybridized to each chip.
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We assessed statistical significance by using the g value of false discover rate
(gFDR) based on the Bonferroni correction (Bonferroni p-value), which corrects for
multiple test samples. In this study, we defined the gFDR< 0.01 or <0.02 to be
statistically significant. Although the Bonferroni correction is usually overly stringent for
microarray data analysis, there will still be a 1-2% chance that a single false positive will
be present if the p-value cutoff is 0.01 to 0.02. Regardless, we were able to identify
several distinct gene transcripts present in either spleen, thymus, or in vitro NK cells.

When we compared the gene expression profile of in vitro NK cells to the profile
of thymic NK cells, we were able to detect significantly higher amounts of granzymes
and LTo transcripts in the in vitro population. Whereas most granzymes are structurally
related serine proteases, they differ in their substrate specificity [5]. In mice, four
granzyme orthologues can be found, including A, B, K, and M. While it has been shown
that the murine genome encodes several other granzymes (D, E, F, G, L, and N), little is
known about them [62]. Recent studies have shown that granzymes D-G were expressed
on granulated metrial gland (GMG) cells, which belong to the NK lineage, located in the
decidua and metrial gland during mid-gestation in mice [63]. In this study, expression of
the genes for granzymes D-G was found to be developmentally regulated in murine GMG
cells during pregnancy. These granzymes were shown to be expressed in late gestation,
in contrast to the mid-gestational expression of granzyme A. Furthermore, expression of
granzymes D-G was shown to be up-regulated by both IL2 and IL15 in in vitro culture
experiments. These finding suggests different roles for granzymes D-G compared with

granzyme A.
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The fact that transcripts for granzymes D, E, and G were found in in vitro cells
but not in thymic NK cells indicates that the culturing conditions influenced their
expression. When culturing our cells, we add a high dose of IL15 to push NK lineage
commitment, proliferation, and survival. In addition to IL15, studies have shown that
stromal cells support HSC differentiation via LTa engagement [19], which could also
explain why in vitro NK cells had a higher number of transcripts. In any case, these
experiments were carried out prior to discovering that in vitro NK cells are in a pre-
activated state at day 19 of culture. Further gene expression microarrays will need to be
done on "rested" in vitro NK cells for a fair comparison to thymic NK cells.

When the gene expression profile of splenic NK cells was compared to the thymic
NK cells, we were able to detect a 40-fold increase in CD25 expression in thymic NK
cells. Although gene expression profiles validated our phenotypic results in regards to
CD25 expression on thymic NK cells, we still do not know the basis for this difference at
the moment. The expression of this IL2R on thymic NK cells from Ragl™” mice, but not
on WT B6 mice, suggest it might be specific to this strain.

Interestingly, we also detected a 26-fold increase in CD103 expression in thymic
NK cells. Also termed integrin agp7, CD103 was first identified through its selective
expression on more than 90% of CD8 T cells, approximately 40-50% of CD4" T
lymphocytes, and a subset of DCs, all of which are found in the intestinal mucosa [64-
67]. The gastrointestinal tract is exposed to continuous antigenic challenges including
food antigens, bacterial antigens of the normal bacterial flora and pathogens. The
intestinal immune system therefore must be able to defend against these pathogens while

maintaining tolerance to the normal bacterial flora and food antigens.
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Studies have shown that T cells in intestinal mucosa undergo a shift in expression
of cell surface adhesion molecules upon stimulation [68]. Also, transforming growth
factor-p1 (TGF-B1) has been shown to induce expression of agf37 on almost half of the
peripheral T lymphocytes during in vitro cultures [60]. While CD103 binds to E-
cadherin [69, 70], and possibly to other ligands [71], it has been shown to mediate T cell
adhesion to epithelial cells [72, 73] . In addition, this integrin has been shown to transmit
an outside-in signal that enhances T cell proliferation and induces redirected lysis of FCR-
bearing target cells [59]. Furthermore, there is a decrease in the number of gut IEL's,
particularly of the TCR af* CD8" subset in CD103" mice, suggesting that its expression
may be involved in either the generation or maintenance of this IEL subset [74].
Together, these studies indicate that the expression of CD103 may influence thymic NK
cells to emigrate from the thymus and seed mucosal tissues, such as the gut. Here, these
cells may have the potential to carry out a specific function that may differ from the
effector function seen in their splenic counterparts.

The detection of these two novel receptors (CD25 and CD103) prompted us to
question whether either molecule affected or influenced the development of thymic
CD127" NK cells. Because CD25 was only expressed by thymic NK cells in Ragl”
mice, we backcrossed these two strains. Although a smaller percent of thymic NK cells
were shown to express CD127 in this strain, their absolute number was 4 times greater
than in Ragl” mice. In a similar situation, CD103"" mice had an higher absolute number
of CD127" NK cells in the thymus compared to WT B6 mice. This suggests that while
CD25 or CD103 may not have an effect on thymic NK cell development, it may

influence the export of these cells from the thymus.
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Although our knowledge of thymic NK cell development, receptor repertoire,
and function is still in its infancy, we have shown that these cells express novel receptors
that may give us clues as to their specific effector function. Herein, we have shown that
our method of gene expression profiling is a feasible and reliable method to characterize
splenic, thymic, and in vitro NK cells in a more in-depth manner. Along with phenotypic
and functional analysis, gene expression profiles further confirmed that the in vitro
generated NK cells closely resemble thymic NK cells, both of which are distinct from

their splenic counterpart.
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Figure 19. PCA map of splenic, thymic, and in vitro generated NK cells. NK1.1*
cells from spleen and thymus of Ragl”” mice, along with in vitro differentiated NK cells
were sorted, RNA was isolated and gene expression was assessed by genome-wide
microarrays. PCA mapping is a global analysis of the genome and not of any gene in
particular. Samples that are close together are similar across the whole genome. Each

chip represents 3 pooled samples independently sorted from 10-20 mice.
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Figure 20. Gene expression profiles of thymic and in vitro generated NK cells.
NK1.1" cells were generated by using the in vitro system described above. After 19 days
in culture, all growth positive wells were pooled and, along with thymic NK1.1" cells
from Ragl” mice, were sorted using Dako MoFlo. RNA was isolated using the Qiagen
RNeasy Micro Kit, quantified and submitted to the Multiplex Gene Analysis Core to be
used in an Affymetrix GeneChip® microarray. Transcript expression was analyzed via
Partek® Genomic Suite™ and adjusted with a Bonferroni p-value of less than 0.02. Each

cell type was done in triplicate. Data are representative of three gene chips.
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Table Il. List of gene expression profiles of thymic and in vitro generated NK cells.
Microarray data from freshly isolated thymic NK cells and in vitro differentiated NK
cells (day 19) were analyzed with Partek® Genomic Suite™. Genes were filtered by
adjusting the Bonferroni p-value to less than 0.02. Each cell type was done in triplicate.

Data are representative of three gene chips.
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Figure 21. Gene expression profiles of splenic and thymic NK cells. NK1.1" cells
from spleen and thymus in Ragl"' mice were enriched by FACS sorting. RNA was
isolated using the Qiagen RNeasy Micro Kit, quantified and submitted to the Multiplex
Gene Analysis Core to be used in an Affymetrix GeneChip® microarray. Transcript
expression was analyzed via Partek® Genomic Suite™ and adjusted with a Bonferroni p-
value less than 0.02. Each cell type was done in triplicate. Data are representative of

three gene chips.
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Table I11. List of gene expression profiles of splenic and thymic NK cells.
Microarray data from freshly isolated splenic and thymic NK cells was analyzed with
Partek® Genomic Suite™. Genes were filtered by adjusting the Bonferroni p-value to
less than 0.02. Each cell type was done in triplicate. Data are representative of three

gene chips.
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Figure 22. Gene expression profiles of splenic vs. thymic and in vitro NK cells.
Along with in vitro generated cells, NK1.1" cells from spleen and thymus in Ragl"' mice
were enriched by FACS sorting. RNA was isolated using the Qiagen RNeasy Micro Kit,
quantified and submitted to the Multiplex Gene Analysis Core to be used in an
Affymetrix GeneChip® microarray. Transcript expression was analyzed via Partek®
Genomic Suite™ and adjusted with a Bonferroni p-value of less than 0.01. Each cell

type was done in triplicate. Data are representative of three gene chips.

101



Tcrg-v4
Tcrg-V2, Terg-V3
rg-Va

Tei
ltgae  <—
qupe

ge

zr|p1
6230424C14Rik
tn1

pped2
Gzme ?
€20 oro0046434
Hd%frg:i

Lgals.

Cd IG 5
col
vhn%e
lip4
2010012005Rik
Khdc1b
Khdc1b
Mfhas1

1Rik

1 1 3

2 3 1 2
Thymic In vitro

E
Splenic

102



Table IV. List of gene expression profiles of splenic vs. thymic and in vitro NK cells.
Microarray data from freshly isolated splenic and thymic NK cells, along with in vitro
generated NK1.1* cell, was analyzed with Partek® Genomic Suite™. Genes were filtered
by adjusting the Bonferroni p-value to less than 0.01. Each cell type was done in

triplicate. Data are representative of three gene chips
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Figure 23. Extracellular staining verifies gene chip results. Cells from indicated
tissues of Ragl”™ mice, along with cells differentiated in vitro (day 19) were stained with
a panel of antibodies and analyzed by flow cytometry. Gray-filled histograms represent
cells stained with an isotype control and blue-line histograms represent cells stained with
the indicated antibody. In vitro generated NK cells were compared to freshly isolated
splenic and thymic NK cells. Gated NK1.1" cells are shown. N.D. signifies no data

available. Data are representative of 3 experiments.
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Figure 24. DN1 CD122'NK1.1" thymocytes generate CD103" NK cells in a thymic
microenvironment. DN1 CD122'NK1.1™ thymocytes from Ragl” Ly5.2 mice were
transferred into irradiated Ragl”™ Ly5.1 mice intrathymically (IT). 32 days post transfer,
cells were harvested from the spleen and thymus from host mice. In addition DN1
CD122'NK1.1" thymocytes were cultured in vitro for 19 days and rested in IL15 alone
for 36 hours. All cells were stained and analyzed via flow cytometry. Gray-filled
histograms represent cells stained with an isotype control and blue-line histograms
represent cells stained with the indicated antibody. Gated NK1.1" cells are shown. Data

are representative of 2 experiments.
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Figure 25. CD127" NK cells are present in CD25- and CD103- deficient mice. Cells
from indicated tissues of B6, CD103™, Ragl™, and CD25"Ragl” mice were harvested
and assessed for CD127" NK cells by flow cytometry. Gray-filled histograms represent

cells stained with an isotype control and blue-line histograms represent cells stained with
the indicated antibody. The absolute value was calculated using the parameters specified

in Flowjo. Gated NK1.1" cells are shown. Data are representative of 2 experiments.
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Figure 26. CD127" NK cells are present in the intestinal mucosa. Cells from the
small and large intestine of Rag1™ mice were analyzed by flow cytometry. Gray-filled
histograms represent cells stained with an isotype control and blue-line histograms
represent cells stained with the indicated antibody. Gated NK1.1" cells are shown. Data

are representative of 2 experiments.
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Figure 27. CD127" NK cells in the small intestine resemble thymic NK cells. Cells
from the small intestine of Ragl”™ mice were stained with a panel of antibodies and
analyzed by flow cytometry. Gray-filled histograms represent cells stained with an
isotype control and blue-line histograms represent cells stained with the indicated
antibody. Gated NK1.1" cells are shown. Data are representative of 2 experiments.

representative of 5 experiments.
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CHAPTER 6

DISCUSSION
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Our studies showed that highly purified DN1 CD122'NK1.1" thymocytes from
Rag1™ mice can differentiate into NK1.1" cells. The emerging NK population is unlikely
due to contaminating mature NK cells that grew out in the subsequent in vitro cultures for
a number of reasons: 1) The purified DN1 CD122'NK1.1 population from Ragl™Ly5.2
mice can give rise to cells with NK cell markers when adoptively transferred into sub-
lethally irradiated Rag1™”Ly5.1 congenic recipients in vivo. 2) Although NK1.1 and
CD122 are among the earliest markers on developing NK cells, they were not expressed
at the earliest time points during our Kinetic analysis, indicating that the cells acquired
these markers during differentiation. 3) Kinetic analysis showed the gradual and
sequential acquisition of markers associated with developing NK cell subsets. If these
cultured cells represented outgrowth of mature NK cells, we would have expected that
they expressed mature markers characteristic of later developmental stages early in the
culture period. 4) Acquisition of the NK cell markers did not occur unless the cultures
had all cytokines and OP9 cells, whereas mature NK cells can proliferate with IL15
alone. 5) Finally, the number of cells expressing the various NK cell markers cannot be
accounted for by proliferation of a small contaminating pool of mature NK cells which
typically have a 24 hour doubling time in vitro. For example, on day 4 we failed to
detected NK1.1" cells, while on day 7, 35% of the cells were NK1.1*. Taken together,
these considerations strongly support that DN1 CD122'NK1.1" thymocytes can
differentiate into cells with NK markers in vivo and in vitro.

Unlike their conventional counterparts in the spleen, little is known about thymic
NK cells. While the vast majority of splenic NK cells originate and develop in the BM,

early studies have shown the existence of a T/NK bipotential progenitor in the thymus
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[27-29]. Recent studies showed a similar T/NK bipotential progenitor may be present in
the BM, based on in vitro differentiation but thymic NK cells did not develop upon
adoptive transfer, unlike our results [75]. This suggest that these BM precursors lack the
signals to develop into thymic NK cells. On the other hand, T/NK bipotential precursors
are most commonly found within the fetal thymus, thus the possibility of thymic NK cells
developing within the thymus of an adult mouse has been suggested [27]. Furthermore,
previous studies did not characterize the NK1.1" cells that developed in vitro in the
absence of Notch signaling, and thymic NK cells were described subsequently; their
relationship to thymic NK cells was not investigated.

Here, our adoptive transfer studies strongly suggest that bipotential progenitors
exist in the adult thymus which can differentiate into thymic NK cells rather than
conventional NK cells. Taking into account that NK cells do not require gene
rearrangement for their receptors, unlike T and B cell receptors, we opted to perform all
of our experiments using Ragl” mice on a C57BL/6 background. This approach was
supported by a recent publication indicating that thymic NK cells are not derived from
thymocytes having undergone antigen receptor rearrangement [43]. Pre-sort analysis
showed that only a very small percent of thymocytes were in the DN1
(CD44"CD25"""™9) stage of development, while most cells were arrested in the
DN2/DN3 stage due to the lack of RAG genes. After sorting DN1 CD122'NK1.1°
thymocytes, we injected them intrathymically into Ragl™Ly5.1 congenic recipients.
Host mice had to be sub-lethally irradiated since we were unable to detect any Ly5.2" NK
cells during our pilot studies with transfer into unmanipulated mice. Our in vivo studies

also showed that thymic cells transferred intravenously failed to develop. This may be a
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direct consequence of the inability of these cells to develop in other tissues, such as the
spleen, or the failure to home back to the thymus for development, or both. Regardless,
when the DN1 population was directly injected into the thymus of host mice, we not only
detected donor NK1.1" cells in the thymus, but also in the spleen. The presence of donor
NK cells in the spleen may suggest that they develop in the thymus and have the potential
to migrate and seed other sites. A second, though not mutually exclusive, explanation is
that at some stage during development, a small percent of cells may escape the thymic
environment, seed the spleen, and finish their maturation. Although further studies will
be required to distinguish among these possibilities, our current studies indicate that the
adult murine thymic DN1 population harbors progenitors that develop within the thymic
environment into NK1.1" cells that resemble thymic NK cells.

While the differentiated cells from our adoptive transfer experiments were too
few for detailed analysis, we were able to study the in vitro differentiated cells in greater
detail. Early studies examining the heterogeneity of the thymic DN1 population showed
that T cells or NK cells could be generated in vitro using either OP9 cells with or without
the expression of the Notch ligand Delta-like 1 (OP9-DL1), respectively. These studies
showed that after six days of DN1/OP9 co-culture, NK1.1-expressing cells could be
detected [33]. A recent study indicates that BM-derived precursors can also differentiate
into NK1.1" cells with a similar in vitro system [75]. However, in either case, the NK
cells generated from this progenitor population were not further characterized.

In a similar manner, we seeded our sorted DN1 population on irradiated OP9 cells
and added FIt3L, SCF, IL15, and IL7 to create an environment conducive for NK

differentiation. By pooling wells on different days, we were able to delineate the kinetics
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of developmental markers. Within 7 days, our sorted population had differentiated into
CD122'NK1.1" cells. The acquisition of other markers seem to be following the stages
proposed by Kim and colleagues, where CD94, NKG2D, Ly49, CD43 and CD11b are
sequentially up-regulated following CD122 and NK1.1 expression [20]. However, low
Ly49 and CD11b MFI, together with the early CD25 and late CD127 expression, made
the in vitro differentiated NK1.1" cells distinct from conventional BM NK differentiation.
Regardless of the percent of cells that expressed each marker, we were able to detect the
acquisition and the uniform increment of expression, as compared to isotype controls, of
the positive population as time progressed. These studies suggest that conventional
splenic and thymic NK cells undergo similar initial stages during development.

For the most part, the DN1 CD122'NK1.1" cells were cultured with OP9 cells and
cytokines for approximately 21-30 days, although the OP9 cells were no longer necessary
after 13 days. From day 19 to 25, there was no phenotypic change in the in vitro
differentiated NK1.1" cells. Cell numbers quickly declined if cells were left in culture
conditions for more than 25 days, thus most experiments were done on day 19. Our
studies show that these in vitro differentiated cells have a phenotype that resemble
thymic NK cells, thus differing from conventional splenic NK cells. This was further
validated when we modified the in vitro culture conditions and incubated the cells in
IL15 alone which allowed up-regulation of DX5 and CDG69, as well as CD127 itself to
levels remarkably similar to thymic NK cells. Thus, the DN1 cells differentiated in vitro
into NK1.1" cells more closely resembling thymic NK cells.

Moreover, our studies yielded an unexpected difference with respect to CD25 that

we and others did not find expressed on wild type thymic NK cells [39, 55]. The basis
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for this difference is not clear at the moment but at minimum, it appears to be another
marker selectively expressed on thymic NK cells. Interestingly, gene chip profiles
verified that CD25 mRNA was 40- and 20- fold higher in thymic and in vitro NK cells,
respectively, than in their splenic counterparts.

In addition to CD25, microarray profiling also showed CD103 mRNA was
expressed 26-fold higher on thymic NK cells. Thus far, CD103 has been shown to be
expressed on CD8" and CD4" T cells in the intestinal mucosa [64-66]. It is also
expressed on lymphocytes in the genitourinary tract and lungs [76-79]. To our
knowledge, it has never been shown to be expressed on any NK subset. The expression
of this integrin on thymic NK cells may perhaps indicate that these cells differentiate in
the thymus but ultimately emigrate to mucosal tissues, such as gut or lungs. While
functional results showed that both thymic and in vitro generated NK cells have the
capacity to produce cytokines and displayed degranulation when exposed to NK sensitive
targets, a more specific role in other tissues is not out of the question. Further studies
which will determine if this unique NK subset is present in mucosal tissues will allow us
to determine if these cells have a different effector function than splenic NK cells, such as
a tolerogenic role.

Although CD127 is thought to be a good marker to identify thymic NK cells, it
has been shown to be expressed transiently in other lymphocytes [80]. IL7Ra down-
regulation, which is induced by IL7 signaling, has been proposed to serve as a
mechanism for T cells to receive pro-survival signals [81]. Cells signaled by IL7
transiently down-regulate surface expression of IL7Ro and thus become unresponsive to

the continued presence of IL7. This behavior explains how activated T cells undergo
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rapid expansion, increasing their numbers to almost half of the total number of T cells
during some acute infections [82]. Upon activation, T cells respond to other cytokines
such as IL2 and down-regulate IL7Ra and IL7 consumption, presumably in order to
preserve the naive repertoire that is critically dependent on IL7. A similar phenomenon
is believed to exist between DN and double positive (DP) thymocytes where the DN
population of lymphocyte precursors is critically dependent on IL7 to give rise to double
positive (DP) thymocytes [83], or in this case thymic NK cells. The transient expression
of CD127 suggest that it is a non-reliable marker for identifying NK cells generated in
the thymus in other tissues of the periphery. However, our studies show that CD103 is
exclusively expressed in thymic NK cells and in vitro differentiated NK cells. While we
were able to detect CD103 by day 7, the majority of in vitro NK cells expressed it by day
13. This expression was stable in that we were able to detect it consistently at later time
points. Furthermore, our studies showed that all CD127" NK cells were CD103-positive,
yet not all CD103" NK cells expressed CD127 (data not shown). With the transient
expression of CD127 and the constant expression of CD103, we propose that the latter is
a better identification marker for thymic NK cells.

Taken together, our results suggest that DN1 CD122'NK1.1" thymocytes harbor a
population that utilizes the thymic stroma to differentiate into NK1.1 expressing cells.
Both adoptive transfer and in vitro experiments showed that these cells have a unique
phenotype including the expression of CD127, CD25, and CD103. While these cells
were capable of lysing target cells, they were more efficient at secreting cytokines such
as TNF. Nonetheless, the studies described here provide future opportunities to dissect

the function of thymic NK cells and their development.

122



CHAPTER 7

FUTURE DIRECTIONS
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By utilizing the methods described here, our understanding of NK cell
development and differences between NK cell subsets has grown expansively. The idea
that T/NKPs in the thymus of adult mice could develop into a unique NK cell was
confirmed with adoptive transfer experiments. Although our return yield was slightly
lower than expected, in vitro studies allowed us to further study the DN1 population and
their association with thymic NK cells. However, many questions remain regarding

thymic NK cell development and function that merit further investigation.

Determine if thymic precursors are committed or influenced to become thymic NK
cells

Our studies showed that a small population of DN1 thymic progenitors are
destined to become thymic NK cells rather than conventional NK cells. A question that
remains is whether they acquire this commitment once they reside in the thymus or if
experimental constraints allowed preferential development of thymic NK cells. In order
to address these issues, further dissection of the DN1 progenitor pool will be necessary.

First, we must identify the putative progenitor population within the DN1 stage of
development that leads to the generation of thymic NK1.1" cells. Studies have shown that
the DN1 thymic population is heterogeneous [84]. To further refine the analysis of DN
subsets, the expression or absence of CD117 has been included in certain studies [33, 85].
The level of expression of CD117 by DN thymocytes is very broad and, depending on
staining strategy, spans two to three logs of fluorescence intensity (data not shown).
Whereas T lineage cells in the DN1 subset are CD117""9" other non-T lineage

precursors, including those for dendritic cells and NK cells, express intermediate levels of
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CD117 [84]. We will therefore, attempt to sub-sort the DN1 CD122°'NK1.1" thymocytes
according to CD117 expression and culture them in the in vitro conditions described
above. A quick phenotypic analysis will indicate which population generates
CD127"NK1.1" cells. Furthermore, we will re-address progenitor frequency by culturing
the specific population in limiting numbers. Current results show that one out of every
416 DN1 CD122'NK1.1" thymocytes generates an NK1.1" population , but it should be
noted that this precursor population is negatively defined by lack of marker expression
(CD4, CD8, CD117, CD122, NK1.1), rather than the expression of markers associated
with high progenitor frequency. Perhaps by further enriching our starting population, we
may be able to increase precursor frequency to about 1/10.

Once the putative precursor population is identified, we can differentiate them in
vitro with either our current culture conditions or with different factors that could
potentially alter the fate of the progenitors. Currently, we seed the progenitors on OP9
BM stromal cells and add IL7, SCF, FIt3L, and IL15. Our attempts to differentiate the
progenitors in a stroma-free culture, using only cytokines have been unsuccessful (data
not shown). For that reason, we will attempt to change the stromal cell line while
keeping all other factors constant. Early studies have shown that the AFT024 stromal
cell line supports murine HSCs by providing a positive stem cell regulator via delta-
like/preadipocyte factor-1 [86]. These cells not only represent the liver micro-
environment, but have also been immortalized with temperature sensitive SV40T antigen,
which allows them to grow only at 33°C while inhibiting their proliferation at 37°C.
Results could yield one of three options: 1) The progenitors could give rise to

CD127"NK1.1" cells that resemble thymic NK cells, indicating that these DN1 precursors
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are precommitted to the thymic NK subset early on. 2) The progenitors could
differentiate into NK1.1" cells that do not resemble thymic NK cells, suggesting the
progenitors are committed to the NK lineage but not the CD127" NK subset. These
results could signify that the thymic progenitors are influenced by their environment to
express a certain receptor repertoire. 3) Finally, progenitors may not express NK1.1" at
any time point, indicating the stromal cells are not providing the signals necessary for NK
development. Regardless, these results will give us the opportunity to further understand
the factors involved in NK lineage commitment.

While these in vitro results are possible, it will not be feasible to differentiate this
putative population in vivo. Our current protocol for adoptive transfer includes
harvesting the thymus from 80-100 Rag1™ mice to obtain an appropriate number of DN1
CD122'NK1.1" progenitors. If this population is further sub-sorted, we will need to
increase the number of mice used to collect enough of the putative progenitors that will
generate thymic-like NK1.1" cells. For this reason, we will attempt to answer these

questions in an in vitro system.

Examine transcripts that correlate with the developmental stages of NK cells

In addition to surface marker acquisition, it will be important to assess specific
transcription factors (TF) involved in the differentiation process. Because the in vitro
generated NK cells were shown closely resemble thymic NK cells, we can follow the
expression of TF as they develop. Thus far, we have initiated these studies by culturing
the DN1 CD122'NK1.1" progenitors in vitro for 4, 8, and 13 days. We enriched NK1.1"

cells on days 8 and 13 by doing a high-purity sort with MoFlow, while all differentiating
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cells were collected on day 4. Total RNA was isolated and target synthesis for
hybridization to Affymetrix 430 v2.0 GeneChips was performed with two rounds of
linear amplification. Total RNA from 3 different experiments was pooled for target
synthesis and three target samples were pooled and hybridized to each chip, resulting in
three chips for each cell type. Although we have received the gene profiles, we have not
performed detailed analysis of the transcription factors.

Since our studies suggest that these cells follow a similar differentiation process
as BM derived NK cells, we expect to see expression of the most common NKP TFs
during the early stages of development, such as PU.1, Ets-1, Ikaros, and 1d2. PU.1 has
been implicated in early NK cell development since deficiency in this transcription factor
affects expression of the CD127 and the FIt3 receptor [87-89]. Compared to WT, PU.17"
fetal liver HSC generated reduced numbers of NKPs when transferred into alymphoid
Rag2” x v¢" mice [90]. Similarly, deficiency in Ets-1 results in the absence of NK cells
in the bone marrow, spleen, and LN, suggesting NKPs are also reduced or absent [91].
Furthermore, mice that are deficient in the zinc-finger transcription factor Ikaros display
severe defects in the development of all lymphoid cell lineages including NK cells, which
may be due to the diminished expression of FIt3, CD122, and CD117 [92-94]. Finally,
the inhibitors of DNA binding (1d2) have been shown to heterodimerize with E-box
transcription factors, thereby titrating them out and inhibiting their transcriptional
activity. Since E-box transcription factors are critical mediators of T and B
lymphopoiesis, their inhibition by 1d2 generates NK cell lineage committed NKPs [95,

96]. Together these transcription factors have been shown to affect NKPs.
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During later stages of development, such as day 8 or day 13, we expect to see
different transcription factors than those found in earlier stages of development. For the
most part, immature NK cells have been found to express Gata-3, T-bet, and IRF-2,
whereas mature NK cells express CEBP-y, MEF, and MITF [13]. Gata-3 is has been
shown to be necessary for the proper expression of CD11b, CD43, and Ly49s on NK
cells along with CD127 on thymic NK cells [97]. It has been found to have a
contradictory function in NK cells compared to T cells, promoting IFN-y production by
mature NK cells [97]. In addition, Gata-3 has been associated with T-bet, which has
similar affects on CD11b and CD43 expression [98]. NK cells that develop in the
absence of T-bet have comparable cytotoxicity as their normal counterparts, but are
unable produce INFy after stimulation. A study done by Taki and colleagues shows that
IRF-2 also plays an important role in NK cell development in the BM and is also required
for proper CD11b and CD43 expression [99]. Results also show that mice deficient in
IRF-2 had a reduced number of splenic NK cells that had an immature phenotype,
lacking DX5 and Ly49 expression as well as expressing low levels of CD11b and CD43.
This study also found that although these cells seemed immature, they were found to
have normal cytotoxicity against sensitive targets. While we expect to see GATA-3 and
T-bet gene up-regulation, we suspect IRF-2 will not be detectable.

Unlike TFs involved in immature NK cells, TFs in mature NK cells are important
for proper effector functions. While an absence of CEBP-y, MEF, and MITF in these
cells has been shown to not have a negative impact on development and differentiation,
this deficiency has been implicated in a reduction of cytotoxicity and cytokine production

[13]. The absence of these TFs leads to a reduction in perforin and granzyme expression,
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both of which are necessary to carry out an appropriate effector function [13]. Since our
results suggest the in vitro generated NK cells are functional, we suspect these TFs will
be expressed.

By using the gene profiling method, we will be able to take a closer look at the
TFs that are involved in the developmental process. Because most of these TFs were
shown to be expressed during BM development, we expect to find some differences.
While we have initiated the process by doing the microarray, further studies that will

verify these results, such as quantitative RT-PCR, are still pending.

Determine whether NK cells in the GALT are derived from thymic DN1 CD122
NK1.1" progenitors

Human and mouse studies have shown that different NK subsets are present
within the gut-associated lymphoid tissue (GALT) including the intraepithelial lymphoid
compartment, intestinal lamina propria, Peyer's patches, and mesenteric lymphoid nodes
[100, 101]. Analysis of NK cells found within the intestinal mucosa revealed the
presence of a unique subpopulation that was NKp46*CD127*Ly49'NK1.1*", along with a
second population that resembled conventional NK cells [102]. While very little is
known about their receptor repertoire and effector function, the developmental origin of
these cells has yet to be determined.

To assess whether the NKp46°CD127 Ly49'NK1.1" cells are thymic-derived NK
cells, we will repeat the adoptive transfer experiments but expand our search for the
donor-differentiated NK cells. Briefly, DN1 CD122'NK1.1" thymic progenitors from

Rag1”Ly5.2 mice will be enriched via FACS sorting. These cells will be intrathymically
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injected into irradiated congenic Ragl”"Ly5.1 mice. Based on our previous results, cells
will be allowed to differentiate in vivo for 35-45 days, at which point, we will harvest
spleen, thymus, lungs, small intestine, and large intestine. We will look for the presence
of Ly5.2" NK cells by staining with both anti-NK1.1 and anti-NKp46 antibodies. To
further characterize these cells, we will look at their phenotypic profile by staining the
previously described surface molecules.

Taking our recent CD103 discovery into consideration, we expect to find Ly5.2"
NK cells in mucosal tissues. Whether these cells are NKp46°'NK1.1 or NKp46'NK1.1*
will be further investigated upon phenotypic analysis. Positive results will suggest that
the DN1 CD122'NK1.1" progenitors differentiate in the thymus, then guided by the
CD103 integrin, along with some other unknown factors, emigrate from the thymus and
homes to mucosal tissues. We can speculate that CD103 is involved in the thymic NK
cell migration since our results showed an increase in numbers of CD127* NK cells in the
thymus of CD103" mice. Further validation as to whether it is directly involved in
homing to mucosal tissues would need to be done by assessing the presence or absence of
these cells in the lungs or intestinal mucosa of CD103™ mice. However, negative results
may suggest a number of things: 1) The presence of Ly5.2°CD127 NK cells, with a
similar thymic phenotype could suggest these cells developed in the thymus, but upon
homing to the tissue, altered their phenotype to better suit the environment. 2) The
presence of Ly5.2°CD127" NK cells would indicate these cells are not the same subset as
those derived from the thymus. Together, these future studies will perhaps provide an
insight as to whether thymic NK cells have a specific role in not only the thymus, but in

the mucosal tissues as well.
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Do thymic NK cells carry out a specific function

NK cells are often thought of as killing machines that zone in on a target, bind,
and lyse all within a matter of minutes. The discovery of NK subsets has shown this to
be an erroneous idea. Since NK cells can circulate in the blood and are found in
secondary lymphoid tissue and non-lymphoid tissue, they may have a role in systemic
immunosurveillance against various pathogens and tumors [103]. However, studies have
shown that a subset of uterine NK cells in both humans and mice contribute and sustain
important changes in the maternal placental bed during the first half of gestation, mainly
by secreting vascular endothelial growth factor (VEGF) [104].

In addition, the mucosal NK subset, termed NK-22, that was recently described
has been shown to express both IL22 transcripts and proteins [58, 105]. 1L22, which
belongs to the IL10 family of cytokines, has been shown to protects the epithelial cell
barrier in the gut and other mucosal tissues from pathogens [106, 107]. Unlike
conventional NK cells that carry out their function by detecting targets cells that have
down-regulated their MHC [108], these mucosal NK cells are highly responsive to 1L23
in both human and mouse [58]. Studies have shown this NK-22 subset provides a
protective barrier against intestinal C. rodentium infection in Rag2” mice [109]. Perhaps
the tolerogenic effect that both uterine and intestinal NK cells have, may provide the
clues necessary to determine the specific effector function of thymic NK cells.

Once we determine whether thymus-derived NK cells have the potential to home
to the gut, we can further study their effector function by applying some of the same
methods described above. Since studies showed that Rag KO mice are resistant to C.

rodentium infection due to NK cells in the mucosa, we can utilize Ragl ™. mice to
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address specific function. Due to their lack of T, B, and NK cells, we suspect these mice
will succumb to the infection. Once this has been established, we can adoptively transfer
CD127" NK cells and assess the mice for weight loss and survival. Studies examining
the role of naive CD4*CD45RB" T cells in irritable bowel syndrome suggest
approximately 5x10° cells is an appropriate number to see any type of results, therefore,
we will start with this number of CD127" NK cells and transfer them IP. These studies
could result in two possible outcomes: 1) The mice will survive, suggesting that CD127*
NK cells have a tolerogenic role. 2) The mice will succumb to infection, suggesting
either that CD127" NK cells are not responsible for repopulating the mucosa, thus
providing no source of protection, or that they need the presence of other NK subsets to
effectively protect the mice.

While this is only one source of infection, we could repeat these experiments
using a several KO mice including the IL7” and CD103", in addition to us depleting the
cells with specific antibodies. Furthermore, we could infect mice with a number of
different pathogens and, once again, assess the phenotype and function of
CD127°CD103"NK cells present in the thymus and perhaps in the intestinal mucosa as
well. Taken together, these studies will allow us to further examine the potential role of
thymic NK cells during a pathogen infection. However, it is essential that we first
determine whether these NK cells are permanent residence of the thymus, or whether

they have the potential to home to other tissues.
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