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Over the last 60 years, bulk metallic glasses have emerged as a new class of materials 

with highly desirable material properties.  Their high strength, high elasticity, and corrosion 

resistance are attractive properties for viable commercial products.  At its core, material 

properties are directly related to the underlying microstructure.  By understanding the structural 

and chemical order in the liquid and undercooled liquid and their relationship to thermophysical 

properties such as viscosity, a greater understanding of bulk metallic glass formation can be 

achieved.  In this dissertation, electrostatic levitation techniques are used to study the liquid in a 

containerless environment using a combination of X-ray and neutron scattering techniques.  An 

X-ray diffraction study of liquid and glass Ni-Nb(-Ta) alloys reveals that an acceleration in the 

rate of structural ordering must take place near the glass transition, providing the framework for 

a structural description of fragility.  X-ray diffraction and thermophysical property measurements 

of Zr-Ni binary alloys further characterize the structural connection to viscosity, and reveal 

signatures of chemical ordering in the liquid.  By combining X-ray and neutron scattering 

measurements, the topological and chemical order in Zr80Pt20 and Zr77Rh23 liquids is 

characterized.  Very different chemical order is found between these alloys, despite their 
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remarkable similarity in topological order.  Due to this structural similarity, a new metastable 

phase is predicted and later identified emerging from a deeply supercooled Zr77Rh23 liquid.  

Zr77Rh23 is found to have many metastable crystallization pathways, which are further 

characterized here.  Through simultaneous wide-angle and small-angle X-ray scattering, the 

devitrification behavior of a bulk metallic glass (Vitreloy 105) is investigated and is found to 

decompose into two distinct compositions during crystallization.  By understanding 

crystallization pathways in good glass-forming alloys, a better understanding of glass formation 

and its connections to structural and thermophysical properties can be achieved.   
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Chapter 1: Introduction 
The use of glass in industry and culture has been well documented throughout human 

history.  From cutting tools developed from volcanic rocks (obsidian), to stained glass windows, 

to the screens used in today’s smart phones and electronics (e.g., Gorilla
®
 glass), glasses are and 

have been integral parts of our culture for thousands of years.  Despite their widespread use, a 

complete understanding of the nature of glass formation remains elusive.  Many “rules of thumb” 

have been developed from extensive experience, but an answer to the fundamental question of 

“why do some materials form glasses more easily than others?” remains unanswered.   

A liquid is distinguished from a crystalline solid by its lack of long-range translational 

order.  However, significant short- and often medium-range order are still present.  A glass is 

formed if the liquid can be cooled sufficiently rapidly below its melting temperature while 

avoiding crystal formation.  The liquid becomes supercooled and will eventually solidify into a 

glass as the atoms lose mobility, retaining much of the inherent disorder associated with the 

liquid.  Avoiding crystallization is a competitive process involving thermodynamic and kinetic 

effects that are tied to the atomic-level structure.   

Metallic glasses are relatively new materials, with the first discovered as recently as 1960 

[1].  They have shown amazing advances in the years since, quickly finding their niche in 

commercial applications due to their unique combinations of high strength and elasticity, as well 

as many other desirable properties such as corrosion and fracture resistance [2, 3].  However, 

their practical implementation has been hindered by the prohibitively high cooling rates often 

necessary for glass formation.  The ease with which a metallic liquid can bypass crystallization is 
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known as its glass-forming ability (GFA).  This is greatly affected by the types, number, and 

relative ratios of the constituent elements.   

This dissertation seeks to answer the question of how the thermodynamic and kinetic 

properties are related to the atomic structure and in particular their relationship to GFA in 

metallic glasses.  It has become clear that chemical order often accompanies topological order, 

and new equipment was designed, constructed, and commissioned to identify the details of this 

relationship.  By understanding topological and chemical ordering of the liquid and glass and 

their relationship to the stable and metastable crystalline phases that form, questions of how 

crystallization is avoided can be answered.  This chapter will provide a brief background on the 

nature of glasses and the glass transition (Sections 1.1 and 1.2).  The underlying kinetic and 

thermodynamic properties relating to glass-forming ability are discussed (Sections 1.2 and 1.3),   

and connections are made to the general structures observed in liquids and glasses (Section 1.4).  

This chapter will conclude with a discussion of the levitation technique used to access the 

supercooled liquid (Section 1.5). 

1.1 Crystalline and Non-Crystalline Order 

A crystalline solid is characterized by the presence of long-range atomic order (LRO).  It 

consists of structural units that stack together repeatedly, producing a grid-like pattern (Figure 

1.1 (a)).  Liquids and glasses, on the other hand, are notable for a distinct lack of this long range 

translational symmetry.  However, while their long-range structure is not translationally ordered, 

their local atomic arrangements are not random.  There still exists strong short-range and 

occasionally medium-range order (SRO and MRO) (Figure 1.1 (b-c)).  Even though the 

structural units are not repeatable, each atom in an amorphous structure will, on average, contain 

similar local environments.  In the case of a network glass, such as the traditional silicate glasses, 
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(Figure 1.1 (b)), each atom shares a similar number of bonds, but the distribution of bond angles 

is more diverse than in the corresponding crystal.  Due to the non-directional nature of metallic 

bonds, metallic glasses are instead defined by an average number of neighbors, or coordination 

number (CN) (Figure 1.1 (c)).  However, the fast dynamics inherent in a liquid cause constant 

changes in the local coordination number as individual atoms continuously move, making and 

breaking bonds.  This results in a broader distribution of the average number of neighbors, but in 

general it is still well defined.   

   

Figure 1.1 Examples of atomic configurations for (a) crystalline, (b) network glass, and (c) metallic glass structures.  

The overlapping spheres represent bonded atoms in (c). 

 

1.2 Glasses and the Glass Transition 

An equilibrium liquid is ergodic, meaning that it can sample all possible configurations 

due to the high atomic mobility.  Ergodicity is broken upon reaching the glass transition, leading 

to dramatic changes in the thermophysical properties.  Volume and entropy (the first derivatives 

of the Gibb’s free energy) both evolve continuously during glass formation, changing the rate of 

evolution at Tg.  This is in contrast to the discontinuous behavior observed during the first-order 

liquid-crystal phase transition (Figure 1.2 (a)).  The second derivatives of the Gibb’s free energy 
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for liquids and glasses (e.g., the thermal expansion coefficient, α, and specific heat, CP) resemble 

a discontinuity at Tg, but it is spread out over a finite temperature interval rather than a single, 

well defined transition temperature (Figure 1.2 (b)).  This has led to the glass transition being 

called a “diffuse second order [phase] transition” [4].   

  

Figure 1.2 (a) First derivatives of the Gibb’s free energy and (b) second derivatives of the Gibb’s free energy. 

 

If crystallization can be avoided, a glass is formed when the liquid is rapidly cooled 

below its melting temperature until it reaches Tg, where the structure becomes “frozen in”.  

Empirically, this is the temperature at which the viscosity reaches 10
12

 Pa-s and the relaxation 

time of atomic rearrangement becomes much larger than the laboratory timescale (e.g., minutes).  

Avoiding crystallization of the equilibrium phase is, then, the critical step in the formation of 

undercooled liquids and glasses. 

As the temperature decreases, the atomic mobility is reduced and the viscosity, η, rapidly 

increases by many orders of magnitude as it approaches Tg.  For traditional silicate glasses, this is 

modeled well by an Arrhenius relationship which is characterized by a constant activation 

energy, EA, for viscous flow:  
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  0 exp AE RT  . (1.1) 

Here, η0 is the viscosity at infinite temperature and R is the ideal gas constant.  This can be 

represented in an Angell graph [5] by plotting log10η vs. Tg/T (Figure 1.3).  A constant slope on 

an Angell graph represents a constant EA, while any curvature implies that EA is temperature 

dependent.  The diverse behaviors observed in viscosity as liquids are cooled to Tg can be 

classified by their fragility [5], where strong systems approach Tg with very little change to their 

activation energy and fragile systems show large positive deviations from Arrhenius behavior 

(sometimes called super-Arrhenius behavior) upon approaching Tg.  Silicates are examples of 

strong glasses, while o-terphenyl (OTP) represents a fragile extreme.  Metallic glasses tend to be 

clustered between these two extremes.  

 

Figure 1.3 Schematic of an Angell plot of viscosity where log10(η) is plotted against inverse temperature and scaled 

to Tg.  All alloys share a common point where the viscosity at Tg is defined to be 10
12

 Pa-s.   
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The rapid changes in viscosity as the liquid approaches Tg cannot be explained by simple 

temperature effects and instead imply that some intrinsic property, such as the structure, of the 

material must also change [6].  The kinetics are directly connected to thermodynamic principles 

through the Adams-Gibbs relation [7]:  

 
0 exp

( )C

B

T S T
 

 
  

 
. (1.2) 

Here, B is a temperature independent constant and SC is the temperature-dependent 

configurational entropy of the system.  SC represents the number of possible configurations the 

system can sample and directly points to a structural basis for the fragility of a liquid.   

A convenient way of understanding the relationship between viscosity and 

configurational entropy is to examine the potential energy landscape [8, 9].  Within this 

description, a 3N+1 dimensional landscape is constructed which represents all possible 

configurations that the liquid can sample, where N is the number of atoms (Figure 1.4).  The 

surface represents the potential energy of each configuration, with peaks representing high 

potential energy and valleys corresponding to low-energy states, such as the stable crystalline 

configuration or metastable phases such as the glass.  Sampling the energy landscape consists of 

dynamic atomic rearrangements, altering the configuration.  High-temperature liquids are very 

mobile and can sample the entire configuration space, hence they are ergodic.  As the 

temperature is lowered, the configuration can get trapped within megabasins, where there is not 

enough energy to overcome the barrier between adjacent basins.  Movement between these 

megabasins requires large-scale atomic rearrangement and can be characterized by α-relaxation.  

Within each megabasin are many smaller configurational basins which do not require large-scale 

rearrangement.  Sampling between these smaller basins can occur through β-relaxation with the 
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rearrangement of small clusters or individual atoms.  At high temperatures, the two relaxation 

times are equal, but as the temperature is lowered, the barriers between megabasins increase and 

α-relaxation is slowed.  The glass transition is reached when the megabasins can no longer be 

sampled and α-relaxation disappears entirely.  This breaks the ergodicity of the liquid and it falls 

out of equilibrium into the amorphous state.   

 

Figure 1.4 A schematic of an energy landscape.  The x-axis represents every possible configuration.  Reprinted by 

permission from Macmillan Publishers Ltd: Nature [9] Copyright 2001. 

 

This description of the energy landscape helps clarify the previous definition of fragility.  

If the energy landscape consists of many megabasins, α-relaxation will dominate at high 

temperatures.  As the temperature decreases and α-relaxation begins to slow, β-relaxation will 

begin to take over and the viscosity will exhibit a rapid change in slope as its relaxation behavior 

changes.  This is representative of very fragile liquids.  In contrast if there are only a few 

megabasins, the relaxation behavior will be dominated by β-relaxation across the entire 

temperature range, displaying a relatively constant activation energy which is associated with 

strong liquids.   
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1.3 Glass-Forming Ability 

From window glass to cookware, the role of glass in our everyday lives is undisputed.  

The reason these glasses have become so widespread is due to the ease with which they can be 

formed and shaped while retaining their amorphous properties.  In other words, their glass-

forming ability, or GFA, is very high.  The ease with which a material can form a glass is 

typically defined by two parameters: the critical cooling rate (CCR), defined as the minimum 

cooling rate that can be used while producing a fully amorphous sample, and the critical casting 

thickness (CCT), defined as the maximum thickness in the smallest dimension that can be stably 

formed into a glass.  By lowering the CCR, less complex techniques may be used with which to 

shape the material into a useful application.  By increasing the CCT, more robust devices can be 

designed.  These two parameters are related, as rapid cooling techniques require thin materials 

for optimal heat exchange.   

Due to its high CCR (10
6
 K/s), the first metallic glass, discovered in 1960 [1], had little 

practical use.  Its shape was restricted to very thin ribbons or foils due to its small CCT (~10 

μm).  In the mid-1970’s, a Pd-Fe-P alloy was successfully formed with a CCT of 1 mm [10].  

This was the first bulk metallic glass (BMG), which is defined as having a CCT ≥ 1 mm while 

remaining fully amorphous.  Since then, the CCT has increased exponentially as our 

understanding of the underlying properties governing glass formation has developed (Figure 

1.5).  The first commercial BMG, Vitreloy 1 (Zr41.2Ti13.8Cu12.5Ni10Be22.5) [11] was developed in 

the early 1990’s with a CCR of less than 10 K/s and CCT of up to 14 mm.  Many variants have 

been developed since then, with efforts to remove hazardous alloying elements such as Be.   
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Figure 1.5 Critical Casting Thickness by year.  Reprinted by permission from Elsevier: Materials Today [2], 

Copyright 2004. 

 

In order to make a glass, the liquid phase must persist well below the melting 

temperature.  Whether or not a cluster of a new crystalline phase (daughter) will nucleate within 

the liquid (parent) depends on the competition between the driving force towards crystallization 

and the energy barrier that must be overcome.  This interaction is represented within classical 

nucleation theory as the work of cluster formation [12]: 

 ( )W n n A    . 1.3 

Within this theory, n is the number of atoms of the daughter phase, Δμ is the difference in 

chemical potential between the two phases, A is the surface area of the daughter phase, and σ is 

the interfacial free energy between the two phases.  The second term is always positive and 

represents the energy barrier of forming a new phase.  Since forming an interface between the 

two phases requires atomic rearrangement, it is inherently tied to their structural differences.  
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Frank’s hypothesis of the structures present in liquids and glasses that can significantly increase 

this term are discussed in Section 1.4.  When the daughter phase is thermodynamically preferred, 

the first term will be negative, representing a driving force towards forming the new phase due to 

the differences in free energy.  As the temperature is reduced, this difference increases.  The 

daughter phase will not grow until clusters larger than a critical size begin to form (i.e., when

0dW dn  ).  Once clusters containing the critical number of atoms, n
*
, have nucleated, they will 

begin to grow by gaining or losing one atom at a time through atomic collisions.  This approach, 

developed by Volmer and Weber, is the kinetic model of cluster growth assumed within the 

Classical Theory of Nucleation (CNT) [13]; crystal nucleation within a liquid is directly 

influenced by the viscosity of the liquid.   

The formation of a glass, then, depends on three primary components:  (1) the driving 

free energy for the thermodynamically favored phase, (2) the structural difference represented by 

the interfacial free energy, and (3) the atomic mobility and viscosity.  In this sense, the 

thermodynamics, structure, and kinetics are all intertwined and understanding their relationship 

is of direct scientific interest.  Optimizing these three factors leads to improved glass formability.  

In addition to these fundamental relationships, three empirical rules have been developed for 

optimizing glass formation [14]:  (1) an alloy with three or more elements, (2) large atomic size 

differences (greater than 12%), and (3) containing elements with large negative heats of mixing.  

In addition to lowering the free energy of the liquid phase and increasing the interfacial free 

energy term due to preferred clustering, these characteristics reduce atomic mobility and prevent 

large-scale atomic rearrangements, hindering the nucleation and growth of the crystal.   

Many good glass-forming alloys are found at deep eutectics in the phase diagram (Figure 

1.6).  At a eutectic, the solidus (TS) and liquidus (TL) temperatures are equal.  This allows the 
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liquid to stably persist at much lower temperatures so the maximum driving free energy at Tg is 

greatly reduced.  According to Turnbull, crystal nucleation is suppressed as the ratio between Tg 

and TL increases [15].  This is known as the reduced glass transition temperature, or /rg g LT T T .   

 

Figure 1.6 Schematic of a phase diagram for a binary A-B alloy with a deep eutectic.  

 

However, as with any attempts at universal descriptions of metallic glasses, there are 

exceptions to these rules.  In particular, a number of binary BMGs have been discovered in 

recent years with CCTs greater than 2 mm.  These include alloys such as Ni-Nb [16], Cu-Zr [17-

19], and Cu-Hf [19].  These alloys are excellent models for studying GFA due to their inherent 

simplicity in comparison with multicomponent systems.  The smaller number of components 

allows the chemical and topological order to be resolved with fewer constraints.  These alloys in 

particular were instrumental in formulating a structural metric of classifying the fragility of a 
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metallic glass [20].  Some of the precursors to that work are discussed in Chapter 3 and Chapter 

4.   

1.4 Liquid and Amorphous Structure 

As discussed in the previous section, one of the primary barriers to crystallization is the 

energy penalty associated with the formation of an interface between two distinct phases (i.e. the 

liquid and crystal).  If both phases contain significantly different structural arrangements relative 

to each other, large atomic rearrangements are required in order for the daughter phase to form, 

increasing the energy penalty.  Crystalline structures typically have high packing density due to 

the structured arrangement of atoms within the lattice.  For example, atoms in a face-centered 

cubic (FCC) and hexagonal close-packed (HCP) lattice each have 12 nearest neighbors.  Since 

the densities of the glass and crystalline phases are typically very close, the glass must also have 

a tightly packed structure, and yet remain highly disordered in order to break the LRO prevalent 

in crystals.  

 

Figure 1.7 Schematic of an icosahedron, consisting of an atom with 12 nearest neighbors.  Each vertex atom is 

equidistant from the central blue atom.  Each bonded pair (blue atoms connected by red line) is surrounded by five 

atoms (green plane) giving five-fold symmetry.  
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In addition to FCC and HCP lattices, there is another structure that has 12 nearest 

neighbors.  An icosahedron shares the tight packing characteristics, but contains five-fold 

symmetry which is incompatible with LRO (Figure 1.7).  This structural arrangement was first 

proposed by Frank to explain why a liquid could be supercooled below TL and has since been 

demonstrated in both elemental [21-23] and alloy liquids [24, 25].  The icosahedron sacrifices 

long range periodicity for better rotational symmetry and is actually preferred over FCC and 

HCP structures for SRO.  The five-fold symmetry observed in icosahedral order is similar to the 

structures first proposed for metallic glasses, based on a dense random packing of hard spheres 

(DRPHS) [26].  In this model, atoms are treated as hard spheres that stack together to maximize 

tetrahedral structures [27], which leads to five-edged faces between atoms.   

While icosahedral structures cannot fill a flat 3-D space, this packing frustration can be 

relieved by transforming to a curved 3-D space [28].  In this geometry, equilateral tetrahedral 

structures can fully fill space.  Icosahedral packing then becomes the ideal state for both SRO 

and LRO.  Packing frustration in a flat 3-D space is relieved by introducing rotational defects 

called disclinations.  These are represented by six-fold and four-fold bipyramids [28] rather than 

tetrahedra.  This model is appropriate when all atoms are of the same approximate size, but 

differences in coordination numbers can arise due to atomic size differences.  Frank and Kasper 

developed a classification system for different coordination numbers called Z-clusters, each of 

which maximizes the tetrahedral structures contained in a cluster [29]. 

In order to study the atomic structure of metallic liquids and glasses, various scattering 

techniques are used.  The details of the X-ray and neutron scattering techniques used for this 

dissertation are discussed in detail in Chapter 2.  Statistically, an isotropic distribution of atoms 
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can be represented by a pair-distribution function, or g(r).  It is essentially a 1-D histogram of 

relative interatomic distances within an atomic configuration and is represented by: 

 
2

0

1
( ) ( ), where

4
ij ij i j

i j

g r r r r r r
N r


 

    . 1.4 

Here, N is the total number of atoms in a configuration with density ρ0, rij is the distance between 

atom i and atom j, and δ is a Dirac delta function.  If a common distance is found separating 

many different atom-pairs, a peak will form at that value of r.  Due to the highly periodic 

arrangement of crystalline atoms, this results in a series of well-defined peaks corresponding to 

the spacing between atomic planes (Figure 1.8 (a)).  In a highly disordered liquid or glass, a very 

broad distribution of interatomic distances causes a smearing out of the well-defined peaks found 

in crystals (Figure 1.8 (b-c)).  The structural order can also be expressed in inverse-space through 

a Fourier transform of g(r) to obtain the total static structure factor, S(q): 

   2sin( )
( ) 4 ( ) 1

qr
S q g r r dr

qr
  . (1.5) 

S(q) is related to the signal that is directly measured in a scattering experiment.  Similar to g(r), 

S(q) will have very broad peaks for an amorphous material representing the diverse correlations 

present in the atomic configuration.  As structural order is increased and the average bond 

lengths become better defined, the peaks sharpen, increasing in amplitude while decreasing their 

width.  Examples of S(q) for crystalline, glassy, and liquid materials are presented in Figure 1.8 

(d-f).   

The pair-distribution function can be said to describe the topological order of the 

configuration.  It is purely a statistical description of the atomic locations, weighted by physical 
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parameters.  In addition to topological order, a multi-component system may contain chemically 

specific atomic arrangements resulting in chemical order.  Chemically specific distribution 

functions can be constructed by restricting the sums over i and j to only count specific types.  For 

instance, in a binary alloy A-B, three separate distributions can be constructed to describe the 

relative distances between an A and another A, an A and a B, and a B and another B.  These are 

known as the partial pair-correlation functions (PPCFs).  In an n-component alloy, there are 

( 1) / 2n n unique partial functions.   

 

Figure 1.8 Experimental pair-distribution functions for (a) a crystalline material, (b) a glassy material, and (c) a 

liquid material.  (d-f) The corresponding S(q)s measured in an experiment. 
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The total S(q) measured in an experiment is dependent upon the type of scatterer used.  

X-rays and neutrons scatter through different interactions, so the chemical correlations will have 

different relative weighting depending on the scattering strength of each element.  If sufficient 

scattering contrast can be obtained, the chemical correlations can be extracted.  Understanding 

the underlying chemical order in addition to the topological order is one of the primary 

objectives undertaken in this dissertation and is discussed further in Chapter 4 and Chapter 5. 

1.5 Electrostatic Levitation 

In order to access the liquid in the supercooled regime, heterogeneous nucleation must be 

avoided.  Contact with a container while in the metastable supercooled state can dramatically 

reduce the interfacial free energy required to form the daughter phase causing crystallization to 

be very likely once the liquid is cooled below TL.  In order to prevent this, the container must be 

removed.  Crystallization can still occur through homogeneous nucleation due to thermal 

fluctuations, but this will often allow several hundred degrees of undercooling.  Over the years, a 

number of containerless processing techniques have been developed to this end.   

Some of the earliest experiments involving the study of containerless liquids 

implemented drop tubes.  In this technique, a molten sample falls through a tube that is either 

evacuated or filled with an inert gas.  Thermophysical and structural property measurements are 

very difficult to perform in this configuration, making high-precision measurements very 

challenging.  However, levitation techniques can maintain a stable sample position allowing for 

optical and other non-contact measurements.  Aerodynamic levitation [30] uses jets of inert gas 

to counter gravity while high-powered lasers melt the sample.  Since it involves flowing gas, this 

can cause difficulties with maintaining a stable temperature and can introduce large temperature 
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gradients across the sample.  In addition, processing materials with high vapor pressures 

becomes problematic.  Acoustic levitation [31] counters gravity by producing highly focused 

sound waves that produce a 3-D potential well.  This method adds quite a bit of complexity to 

the apparatus, and sometimes has difficulty with dense materials.   

The primary levitation methods used with metallic alloys are electromagnetic (EML [32]) 

and electrostatic levitation (ESL [33]).  EML levitates samples within an RF coil that induces 

eddy currents in the sample due to a changing magnetic flux.  As a consequence, the sample is 

simultaneously heated and levitated and temperature control becomes intertwined for these two 

processes.  This method is also limited to metallic materials, so broad applications are limited.  

Despite its limitations, it does have significant benefits in microgravity, where less current is 

required to maintain stable levitation.  Knowing the precise coupling between the RF coil and the 

sample, for example, allows precision measurements of the specific heat of the liquid, something 

much more difficult to do with other levitation methods.  The ESL technique applies a high 

voltage between a negatively charged top electrode and a grounded bottom electrode.  The 

applied voltage induces a positive charge on the surface of a sample which causes it to levitate.  

This technique does not require the sample to be completely enclosed by a coil, as in EML, 

which drastically reduces scattering background and increases the available scattering angle for 

structural scattering experiments.  While metallic samples are typically used with ESL, any 

material that can have an induced surface charge can be studied with this technique, provided 

that sample evaporation is not a problem.  While this process has many benefits, it pays for it 

with increased complexity.  ESLs typically require a very large footprint and can have difficulty 

levitating large samples (larger than 100 mg) without additional complexity.  Samples also lose 

charge during heating as hydrocarbons and adsorbed gases are evaporated, requiring an 
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ultraviolet (UV) source to recharge the sample through the photoelectric effect.  Despite its 

limitations, ESL provides many advantages in scattering experiments and is the technique used 

throughout this dissertation.   

1.6 Summary 

The nature of the topological and chemical atomic structure of metallic glass-forming 

alloys is one of the key questions that this dissertation seeks to address.  The structural order that 

appears in a glass can be traced back to having origins in the high-temperature liquid.  

Understanding the thermodynamics, kinetics, and atomic structure of the liquid and supercooled 

liquid and how they are related to glass formation is crucial to developing improved BMGs.  The 

topics discussed in this chapter provide the background for the research presented in this 

dissertation.  A description of the experimental techniques employed throughout this dissertation 

is provided in Chapter 2.  In Chapter 3, the evolution of structural parameters in Ni-Nb(-Ta) 

BMGs is used to lay the groundwork for developing a structural view of fragility.  This is 

continued in Chapter 4 with a series of non-bulk-forming Zr-Ni alloys, where structural as well 

as chemical order is investigated along with their thermophysical properties.  Some of the first 

neutron scattering studies using a newly developed electrostatic levitator (NESL) are presented 

in Chapter 5, where the chemical and topological order for similar eutectic alloys in the Zr-

(noble metal) family are analyzed and compared.  From those results, a new metastable phase is 

predicted and later identified using local structural features of the high-temperature liquid.  This 

new phase, as well as other metastable phases that were found to form, are further investigated in 

Chapter 6 and discussed in the context of phase selection and crystal growth through metastable 

processes.  Finally, an investigation into the formation of nanoscale heterogeneities prior to 

crystallization in a Vit105 BMG is presented in Chapter 7.  Understanding the crystallization 
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pathways of alloys with a variety of glass-forming abilities is crucial to developing better bulk 

metallic glasses.   
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Chapter 2: Experimental and Analysis 

Methods 
 

The experiments presented in this dissertation required a wide variety of preparation and 

analysis techniques.  Due to the collaborative nature of these experiments and the number of 

personnel required for operation, duties such as sample preparation, data acquisition, and data 

reduction were often shared by all group members.  Major experiments were undertaken at both 

the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) (Section 2.4) and at 

the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) (Section 2.8).  

In addition to myself, sample preparation, characterization, and data collection were helped by 

A. K. Gangopadhyay, V. Wessels, N. A. Mauro, J. C. Bendert, A. J. Vogt, M. E. Blodgett, C. E. 

Pueblo, J. M. McKnight/Gewin, A. Hope, M. Nadeau, C. Miller, and S. Veligati.  The sections 

that follow describe sample preparation (Section 2.1), sample characterization (Section 2.2), and 

the experimental details and analysis techniques for both high-energy X-ray diffraction (Sections 

2.3-2.6) and time-of-flight (TOF) neutron diffraction (Sections 2.7-2.9).  Details of the 

simulations, structural analysis, and crystal pattern identification presented in this dissertation are 

discussed in Sections 2.10-2.11. 

2.1 Sample Preparation 

All samples studied in this dissertation were prepared from material selected for both 

metallic purity as well as oxygen concentration, both of which greatly affect sample processing.  

All samples were initially prepared by creating 1 – 2.5 g master ingots via arc-melting in an inert 

atmosphere.  These ingots were subsequently crushed into small pieces, which were used for 
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preparing levitation samples, glass ribbons, or samples for thermal analysis using a Differential 

Thermal Analyzer (DTA) or Differential Scanning Calorimeter (DSC).  All elemental materials 

were purchased from Alfa Aesar; information on elemental impurities for each material is 

available from their website (www.alfa.com) by request.  Detailed information on all materials 

used for preparation of samples for this dissertation is listed in Table 2.1.  

Table 2.1 Raw material information used in sample preparation. 

Element Stock/Lot # Purity (%) Form Experiments Used 

Al 10573/F01R022 99.999 Shot Zr52.5Cu17.9Ni14.6Al10Ti5 

Cu 42958/A06Y011 99.9999 Slug Zr52.5Cu17.9Ni14.6Al10Ti5 

Ni 42333/D18M33 

42333/L02X015 

99.995 

99.995 

Slug 

Slug 

Ni59.5Nb40.5, Ni62Nb38, 

Ni60Nb20Ta10, 

Zr52.5Cu17.9Ni14.6Al10Ti5 

Nb 42846/I28N13 99.95 Slug Ni59.5Nb40.5, Ni62Nb38, 

Ni60Nb20Ta10 

Pt 43288/J02U012 99.95 Wire Zr80Pt20 

Rh 11576/B28Y022 99.8 Wire Zr77Rh23 

Ta 42826/E08L09 99.95 Slug Ni60Nb20Ta10 

Ti 42394/J31R019 99.995 Slug Zr52.5Cu17.9Ni14.6Al10Ti5 

Zr 42556/A03S011 

42556/K30R008 

42256/D25Z022 

99.95 

99.95 

99.95 

Slug 

Slug 

Slug 

Zr80Pt20, Zr77Rh23, 

Zr52.5Cu17.9Ni14.6Al10Ti5 

 

The master ingots were prepared by weighing pieces of the source material in the correct 

proportions for the alloys of interest to an accuracy of ±0.1 mg using a Mettler Toledo 

AB54/FACT mass balance.  This precision allowed the alloy composition to be prepared within 

0.05 atomic percent (at.%).  The mass fraction (m%i) for the i
th

 element for a given composition 

was determined by  

 % i i
i

j j
j

x M
m

x M



, (2.1) 

http://www.alfa.com/
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where xi is the atomic percent, Mi is the molar mass, and the sum is over j encompasses all 

elements in the alloy.  The mass for the i
th

 element, mi, was determined by  

 %i im m I , (2.2) 

where I is the mass of the master ingot.   

Prior to arc-melting, the water-cooled copper hearth was sanded using fine grain (1000 

grade) sand paper to remove any copper oxides that might have formed since it was last used.  

The hearth was then thoroughly cleaned with acetone and methanol to remove any residue and 

other contamination.  The source material was then placed on the hearth.  Materials with higher 

melting temperatures were strategically placed on the top of the pile to minimize evaporation 

from materials with low melting points and high vapor pressures.  The chamber was evacuated 

using a custom pumping station, designed by M. E. Blodgett, with a GE Motors oil backing 

pump and Pfeiffer HiCube turbo pump [1].  After evacuating for 20 minutes, the chamber was 

back-filled with 99.999% pure Ar gas to a pressure of -15 inches of mercury (inHg).  This 

process of pumping and back-filling was repeated a total of three times.  After the final 

evacuation, the chamber was back-filled with Ar gas to just below atmospheric pressure (-5 

inHg).  A Miller Synchrowave 250 DX arc welding power source, connected to a tungsten tip via 

a vacuum feed-through, was then used to strike an arc between the tip and the copper hearth. 

Prior to melting any sample material, a Ti50Zr50 getter was first melted for 30-60 seconds.  

The getter serves as an O2 collector and reduces sample contamination.  It is good practice to re-

melt the getter any time an arc is struck.  Once the getter cycle was finished, the sample material 

was melted for 30-40 seconds, rotating the arc around the sample to maximize mixing.  After 

initial alloy formation, each ingot was flipped over and re-melted 2-3 times.  The final ingot 
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mass was measured and the ingots were rejected if the total mass loss resulted in a shift in 

composition of more than 0.05 at%.  This was estimated by assuming that the mass loss was due 

to the element with the highest vapor pressure.  The typical mass loss is less than 0.1%.  

Additional details of the arc-melting process can be found in other sources [1, 2].  

Once the ingot was prepared, individual samples for use in ESL experiments were created 

by crushing the ingot and arc-melting small pieces of 30-70 mg (for X-ray scattering 

experiments) or 100-450 mg (for neutron scattering experiments).  Each sample was briefly arc-

melted a single time in order to minimize evaporation.  Since each sample is fully melted during 

ESL experiments, ensuring mixing at this stage is not necessary as long as the ingots were well 

mixed.  

Glassy ribbons were prepared by induction melting pieces of a crushed ingot under an Ar 

atmosphere within a graphite crucible and injecting the melt onto a rapidly spinning copper 

wheel (5,000 – 8,000 rpm).  When the molten sample struck the wheel, very thin ribbons (15 – 

20 μm thick) were formed and ejected into a collection tube. 

2.2 Sample Characterization 

In order to properly calibrate the results from the high-energy X-ray and neutron 

scattering experiments, a number of thermophysical and structural property measurements were 

required.  The solidus (TS) and liquidus (TL) temperatures were measured using Differential 

Thermal Analysis (DTA) techniques (Section 2.2.1).  These temperatures are used for calibrating 

temperature measurements of levitated liquids.  Measurements of the glass transition (TG) and 

crystallization (TX) temperatures were measured using Differential Scanning Calorimetry (DSC) 

techniques (Section 2.2.1).  These temperatures are used for calibrating temperature 
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measurements of amorphous ribbon and low-temperature levitated solids.  Low-energy X-ray 

diffraction (Section 2.2.2) was used to determine if as-quenched ribbons were fully amorphous 

as well as for crystalline phase identification. 

2.2.1 Differential Scanning Calorimetry and Differential Thermal Analysis  

Differential Scanning calorimetry (DSC) measurements were performed on as-prepared 

ribbons and crushed ingots to determine phase transition temperatures using a PerkinElmer DSC 

7.  In the DSC technique, a sample and a reference are placed in adiabatically isolated pans (Al 

pans for Tmax < 600 
o
C, Cu pans for Tmax > 600 

o
C), which are heated separately.  A control 

algorithm adjusts the power to each pan during a heating or isothermal experiment to maintain 

the same temperature for each pan.  If the sample undergoes a phase transition, either more 

(endothermic) or less (exothermic) power is required relative to the reference to maintain both 

pans at the same temperature.  The enthalpy of transformation can then be calculated by 

integrating the differential power.  The DSC measurements were made using argon gas to 

maintain a constant pressure in the sample holder and to help prevent oxidation.  As mentioned 

previously, the results of the DSC measurements were used to determine both the glass transition 

temperature (TG) and the crystallization, or devitrification, temperature (TX) for amorphous 

samples. 

Differential Thermal Analysis (DTA) measurements were made using a Setaram Labsys 

DTA/DSC on crushed alloy ingot fragments to determine high-temperature phase transformation 

temperatures, such as the solidus (TS) or liquidus (TL) temperatures.  Samples were placed in an 

Al2O3 crucible and covered with Al2O3 powder, while a reference crucible was loaded with only 

Al2O3 powder.  Both crucibles were placed in a common furnace and identical temperature 

cycles were performed.  While similar to the DSC technique, in DTA a single furnace is used to 
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heat both pans and the difference in temperature is measured.  In both techniques, the results of 

the measurements were plotted against temperature rather than time.  While both DSC and DTA 

can be used for similar studies, the DSC has a higher precision for measuring properties such as 

the specific heat and the enthalpy of transition.  While less accurate, the DTA is capable of 

measurements to much higher temperatures. 

2.2.2 Low-Energy X-ray Characterization 

In order to ensure that the quenched ribbons were fully amorphous, low-energy X-ray 

measurements were made using a Rigaku Geigerflex powder diffractometer (Cu Kα, λ = 1.54 Å).  

Multiple ribbons were taped to an aluminum frame and studied in a reflection geometry, 

scanning between 20-120 degrees in 2θ.  If sharp diffraction peaks were observed, another 

quench was performed at higher wheel speeds until only smooth, broad peaks were seen in the 

diffraction data.  Crystal peak positions and phase identifications of Zr-Rh were also determined 

with this machine by crushing processed samples into a powder, depositing the powder onto 

pieces of two-sided tape, and mounting it to the aluminum frame.  Further details are discussed 

in Chapter 6.     

2.3 Beamline Electrostatic Levitation (BESL) 

Much of the data presented in this dissertation are focused on liquid structure and 

thermophysical property studies.  The Washington University Beamline Electrostatic Levitator 

(WU-BESL) [2-4] was designed using the electrostatic levitation (ESL) technique [3] to provide 

a containerless environment with which to study the high-temperature and supercooled liquid 

structure, while simultaneously providing non-contact measurements of thermophysical 

properties.  A multitude of ports on the main chamber body provide line-of-sight to the sample 

(Figure 2.1).  The majority of the wide-angle X-ray scattering (WAXS) data presented in this 
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dissertation were obtained from Station 6-ID-D at the Advanced Photon Source (APS) at 

Argonne National Laboratory (ANL).  Simultaneous wide-angle X-ray scattering and small-

angle X-ray scattering (SAXS) data were obtained from Station 1-ID-E at the APS and are 

presented in Chapter 7.  Thermophysical properties (density, viscosity, and temperature data) 

were obtained during experimental runs as well as at Washington University in St. Louis.   

 

Figure 2.1 A schematic layout of the instruments for non-contact measurements using WU-BESL (Reprinted with 

permission from [5]). 

  

2.3.1 WU-BESL Setup 

WU-BESL consists of a high-vacuum chamber that is typically operated at 10
-7

 Torr.  

This pressure is achieved using two scroll pumps: one backing a Pfeiffer Vacuum turbo pump for 

the ultraviolet lamp (UV) and the other backing an Osaka Vacuum turbo pump for the main 

vacuum system.  Within the chamber are a set of charged electrodes producing an electric field 

of 0 - 2.5 MV/m (Figure 2.2).  An amplifier capable of generating a potential difference of 0 to -



28 

 

20 kV across the vertical components is connected via high-vacuum feedthroughs.  The negative 

potential induces a positive charge on the sample, counteracting the effect of gravity.  In order to 

maintain stable levitation, a pair of orthogonal lateral amplifiers generates electric potential 

differences of ± 3 kV.  Shadows are cast by the levitated samples (m = 10-150 mg, r = 2-4 mm) 

using a pair of high-powered colored LEDs onto a pair of orthogonal position sensitive detectors 

(PSDs).  The position is tracked by the computer and the voltages are dynamically adjusted to 

maintain the sample within 10 μm of the desired position [6] (Figure 2.2).   

 

Figure 2.2 The WU-BESL electrode configuration and feedback algorithm.  High-powered LEDs placed in 

orthogonal positions cast a shadow of the sample onto position sensitive detectors, which track the motion of the 

sample.  A feedback algorithm sends signals to the electrodes, modifying the electric potential to adjust sample 

position.   

 

Samples are heated using a fiber-coupled diode laser (980 nm, 50 W continuous 

maximum power output).  As the sample temperature increases, surface charge is lost.  This is 

replenished via the photoelectric effect using a pair of high-intensity UV sources.  Thermionic 

emission eventually sets in at higher temperature, removing the need for the UV lamps.  Once 

fully melted, the sample maintains a relatively stable charge.  At this point, the lines-of-sight 
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from the sample to the UV lamps are blocked by shutters to minimize deposition from 

evaporation.   

2.3.2 Measurements of Thermophysical Properties 

Sample temperatures were measured from 160 
o
C to 2300 

o
C using two infrared 

pyrometers with overlapping temperature ranges.  A single-color Process Sensors Metis MI18 

MB8, operating at a 1.89 μm wavelength, was used for low-temperature measurements (160-800 

o
C) and a Process Sensors Metis MQ22 two-color ratio pyrometer, operating at 1.40 and 1.65 μm 

wavelengths, was used for high-temperature measurements (600-2300 
o
C).  Ratio pyrometers 

provided more accurate measurements of the temperature because emissivity changes with 

temperature are normalized out [7].  Relative changes in the emissivity at each of the two close 

wavelengths are expected to be small.  The emissivity ratio was calibrated by matching the melt 

plateau in the temperature-time curve measured on heating in WU-BESL to the largest 

endothermic signature measured in a differential thermal analyzer (DTA) (Labsys
TM

 DTA/DSC, 

Setaram), corresponding to the solidus temperature, TS.  A constant emissivity ratio was assumed 

for the entire temperature range. 

The temperature was correlated with non-contact measurements of the volume.  The 

projected area of the sample was obtained using the shadow method [8, 9] with a Pixelink PL-

B74IG CMOS camera and a 455 nm collimated microscope LED, which has a total beam power 

of 240 mW and a beam diameter of 37 mm.  The video data were taken at a frame rate of 20-25 

fps.  The pixel dimensions were calibrated before and after each sample using 2.38125 ± 0.00076 

mm diameter (grade 3) tungsten carbide standards.  The volume was determined from the area 

data, assuming that the sample is symmetric about the vertical axis [10], and the density was 
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calculated by dividing the measured sample mass by the measured volume.  A more detailed 

discussion of the machine vision volume measurement algorithm can be found elsewhere [5, 8].   

Liquid viscosity was measured as a function of temperature using the oscillating drop 

technique [11-13], where a perturbing voltage on the top and bottom electrodes caused sample 

oscillation.  The viscosity is related to the decay time in the surface oscillation when the 

perturbation is removed.  The surface oscillations were measured by a Pixelink PL-B74IG 

CMOS camera operating at a high frame rate (1500 fps).  More detail is given elsewhere [5, 13].  

2.3.3 Beamline compatibility 

WU-BESL is designed to be a portable unit that can be transported to and installed on 

various high-energy X-ray beamlines at the APS.  Two opposite ports on the main chamber are 

replaced with 0.015” thick Beryllium windows to allow the X-rays to pass through to the sample, 

while minimizing the scattering from the chamber.  The exit port is large enough to provide a 

scattering angle 2θ of up to 20
o
.  All instruments connected to the ports around the exterior are 

designed to be easily removed for transportation.    

2.4 High-Energy X-ray Diffraction Measurements 

The majority of the X-ray data in this dissertation were not obtained from a single 

experiment, but collected in several different formats and environments over the space of 4-5 

years.  Each experiment had slightly different parameters which are laid out in detail in the 

following sections.  Throughout this dissertation, each experimental run is referred to in short-

hand to reference the specific environment and settings involved in its acquisition.  The short-

hand for each experiment is represented by the section titles under Sections 2.4.X.  For instance, 



31 

 

a reference to “BESL 2010” in this dissertation refers to the data obtained during August 2010 

using the experimental details described in Section 2.4.1. 

2.4.1 BESL 2010 

WU-BESL was installed on Station 6-ID-D at the APS for three weeks during August of 

2010 for a study of a broad range of metallic liquids.  High-energy X-rays (E = 129.69 keV, λ = 

0.095604 Å) were scattered from levitated samples in a transmission geometry using a beam size 

of 0.7 x 0.7 mm.  The scattered X-rays were measured using an amorphous Si flat-panel GE 

Revolution 41-RT operating at 1 Hz for isothermal measurements and at 2 Hz for free-cooling 

cycles.  The detector was operated using 1024 x 1024 pixels, each of which was 400 x 400 μm in 

size.  The detector was positioned nominally 910 mm from the sample and was regularly 

calibrated using levitated polycrystalline Si standards and confirmed using a NIST SRM 640c Si 

standard powder in a capillary located in the approximate position of the levitated samples.  The 

maximum accessible momentum transfer, qmax, was 14 Å
-1

. 

A series of standard correction files were obtained both before and after a sample was 

loaded into the chamber.  An empty chamber scan was acquired for each frame-rate used during 

sample acquisition.  During this scan, the secondary X-ray shutter was open was but no sample 

was present.  This scan measures secondary scattering from inside the evacuated chamber and 

the surrounding environment.  It also measures the secondary air scattering in the path before and 

after the Be windows on the chamber.  A dark scan was acquired with the secondary X-ray 

shutter closed.  The dark scan measures the dark current, or the native counts registered by the 

detector in the absence of any X-ray beam. 
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2.4.2 APS 2011 

During October 2011, glassy ribbons were studied on Station 6-ID-D at the APS for a 

focused study of the room-temperature amorphous structure of select glasses.  The ribbons were 

cut into 10-20 mm strips and ~10-15 were mounted to plastic frames.  The frames were placed in 

a special mount on the beamline in transmission geometry.  High-energy X-rays (E = 100 keV, λ 

= 0.1243 Å) with a beam profile of 0.7 x 0.7 mm were used and the scattered signal was 

collected using the same amorphous Si GE Revolution 41-RT detector used in BESL 2010, but 

in a higher resolution mode (2048 x 2048 pixels, 200 x 200 μm pixel size) located approximately 

200 mm from the sample.  The detector was routinely calibrated using NIST SRM 640c Si 

powder mounted to a metal frame using Kapton tape.  For this experiment, qmax was 20 Å
-1

. 

Each sample was scanned for approximately 20 – 60 s.  Sample absorption was measured 

using photodiodes both before and after the sample to gain an estimate of the beam attenuation.  

During acquisition, the secondary shutter was closed for the first and last 5 s, providing regular 

dark scans for each sample.  Between samples, an empty scan was acquired for approximately 20 

s.   

2.4.3 BESL 2013 

In June 2013, WU-BESL was reinstalled on Station 6-ID-D at the APS for three weeks 

for a second broad study of metallic liquids and amorphous ribbons.  High-energy X-rays (E = 

131.9 and 79.7 keV, λ = 0.09403 and 0.1555 Å) were scattered from levitated spheres and 

mounted ribbons in transmission geometry with a beam size of 0.7 x 0.7 mm. Scattered X-rays 

were measured using the same amorphous Si flat-panel GE Revolution 41-RT as for the previous 

experiments at a variety of acquisition rates (1-8 Hz).  The detector was operated using 2048 x 

2048 pixels, each of which was 200 x 200 μm in size.  The detector was positioned nominally 
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565 mm from the sample and was regularly calibrated using levitated polycrystalline Si 

standards and confirmed using a NIST SRM 640c Si standard powder in a capillary in the 

approximate position of levitated samples.  For this experiment, qmax, was 15 Å
-1

. 

Each liquid sample was scanned for approximately 10 – 20 s during isothermal 

measurements.  During acquisition, the secondary shutter was closed for the first and last 5 s, 

providing regular dark measurements for each sample.  Between samples, an empty scan was 

performed for approximately 20 s.   

Single amorphous ribbons were mounted to a resistive heating apparatus in WU-BESL 

and held in approximately the same location as the levitated samples.  The ribbons were 

thermally cycled from room temperature to near Tg multiple times, while simultaneously 

acquiring diffraction images and temperature measurements.  The cycling allowed the diffraction 

patterns to be monitored until they were completely reversible up to Tg, indicating complete 

structural relaxation prior to crystallization.  The relaxed glasses were then held isothermally for 

60 s at a series of temperatures that increased towards Tg.  They were then heated at a rate of 40 

to 100 K/min through Tg until crystallization was observed. 

2.4.4 SAXS 2014 

In November 2014, WU-BESL was again transported to the APS, but this time it was 

installed on Station 1-ID-E for simultaneous wide-angle X-ray scattering (WAXS) and small-

angle X-ray scattering (SAXS) measurements of potential liquid-liquid phase separation.  The 

SAXS signal was acquired by leaving a gap in the center of the WAXS detectors, allowing the 

signal to pass through to a second detector located much farther away (Figure 2.3). 
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Figure 2.3 Schematic of the setup for simultaneous WAXS and SAXS scattering measurements. 

 

High-energy X-rays (E = 100 keV, λ = 0.12398 Å) were scattered from levitated samples 

in transmission geometry with a beam size of 0.05 x 0.1 mm (vertical x horizontal).  WAXS 

measurements were performed using four amorphous Si flat-panel GE Revolution 41-RT 

detectors arranged with a small gap in the center.  The configuration of four detectors is referred 

to as HYDRA (Figure 2.4).  The detectors were operated using 2048 x 2048 pixels, each of 

which was 200 x 200 μm in size.  The detectors were positioned nominally 1496 mm from the 

sample and were regularly calibrated using levitated polycrystalline Si.  The maximum usable 

momentum transfer, qmax, was 13 Å
-1

.   
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Figure 2.4 Four amorphous Si flat-panel GE Revolution 41-RT detectors in the HYDRA configuration. 

 

In typical WU-BESL experiments, a beamstop is placed just beyond the Be exit window 

to block crystalline scattering from the window from reaching the detectors.  In order to measure 

a SAXS signal, the small-angle X-rays need a clear path to the SAXS detector.  A special jig was 

devised by mounting a tungsten ring to a wooden shaft and extending it into the beam path.  This 
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blocked the scattering from the Be windows from reaching the detector while at the same time 

allowing transmission of the small-angle signal (Figure 2.5). 

 

Figure 2.5 Tungsten ring used to block scattering from the Be exit window from reaching the HYDRA detectors 

while at the same time allowing the SAXS signal to reach the detector. 

 

A PIXIRAD-1 CdTe photon counting pixel detector (Figure 2.6) was used to measure the 

SAXS signal.  The sample-to-detector distance, detector tilt, and detector center were calibrated 

using a 12.5 x 12.5 mm Lightsmyth reflection grating with 7200 lines/mm (part number SLG-

C72-1212A-AI).  The detector was located 6,240 mm from the sample and was capable of 

measuring momentum transfers between 0.01 and 0.25 Å
-1

, corresponding to correlation lengths 

of 2.5 – 62.8 nm.  A 1 cm thick glassy carbon calibration standard was used for absolute 

intensity normalization and is discussed in further detail in Section 2.6.2. 
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Figure 2.6 PIXIRAD-1 SAXS detector. 

 

2.5 Wide-Angle X-ray Diffraction Analysis 

There are many standard corrections that must be applied to properly reduce the 

measured diffraction to a static structure factor, S(q), or pair-distribution function, g(r).  The 

WAXS data in this dissertation were analyzed using an in-house LabVIEW
TM

 analysis program 

designed by J. C. Bendert [14].  The software implements all standard X-ray corrections, detailed 

below.  Quantitative corrections for spherical absorption and multiple scattering from a beam 

striking the sample off-center were also developed by J. C. Bendert [15] and are included in the 

analysis package.  In order to synchronize sample temperature with the X-ray beam, a TTL 

signal was connected between the two acquisition systems to indicate when the X-ray detector 

was acquiring.  A peak analysis of S(q) was performed using an in-house LabVIEW
TM

 program 

developed by J. C. Bendert and myself, which can select from a range of fitting functions, 

including spline fits and Gaussian functions, to properly locate the peak heights and centers and 
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generate an appropriate error based on adjusted scaling parameters (fluorescence and 

multiplicative scaling from the X-ray analysis program) and statistical adjustment (moving each 

point in the input curve by its measurement error).  The same errors were implemented for the 

peak analysis of g(r), with the addition of truncation errors (changing the max-q used when 

Fourier transforming S(q) into g(r)) and density errors.  

Previous works have discussed the necessary corrections required for proper X-ray 

scattering experiments in detail [5, 14, 16].  A brief overview of the relevant corrections will be 

given in this section to provide the reader with some background.  This section deals specifically 

with data acquired at Station 6-ID-D at the APS, but the general form of the corrections are also 

valid for data acquired at Station 1-ID-E.   

Raw intensity data were acquired at the APS in a transmission geometry using a GE 

Revolution 41-RT amorphous Si flat panel detector.  A dark frame image was acquired with the 

X-ray shutter closed to correct for the natural noise within the detector, as well as an empty 

chamber frame with no sample in the beam path to measure the secondary scattering from both 

the air and the chamber.  A background- and dark-corrected scattered intensity was calculated 

using 

 ( ( ))Corrected Raw Dark Empty EmptyDarkI I I I I     , (2.3) 

where IRaw is the measured sample intensity and Γ is a detector-specific gain map that corrects 

for variable efficiency in each pixel and is provided by the instrument scientist.   
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Figure 2.7 Schematic illustration of powder diffraction onto an area detector.  Isotropic scattering produces intensity 

rings at a constant 2θ relative to the incident beam where the intensity is constant for all ϕ around the beam axis.  

The distance to detector, D, and radial distance from the beam center, R, are used to determine 2θ. 

 

Liquid and polycrystalline samples scatter isotropically, producing ring-like patterns on a 

flat panel detector (Figure 2.7).  While, in principle, the detector is positioned perfectly 

perpendicular to the X-ray beam, this is not always the case in practice.  A detector tilted relative 

to the incident beam will produce an asymmetrical pattern as the scattering distance will not be 

equal for each pixel in a ring around the center.  During each X-ray experiment, the diffraction 

pattern of multiple levitated Si samples prepared from arc-melting was measured.  Using the 

well-known diffraction pattern of pure Si (diamond lattice, a = 5.43071 Å), the detector image 

was corrected for angular tilt and rotation by fitting up to 15 diffraction rings.  The image was 

then converted from polar coordinates (R, ϕ) to solid angle coordinates (2θ, ϕ), after adjusting 

both R and ϕ for the tilt angle.  Once expressed in solid angle coordinates, each pixel was 

corrected for the detector geometry, oblique incidence (accounting for the extra distance a 

photon must travel within a pixel if it doesn’t strike the pixel perpendicularly), and polarization.  
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Radiation that is polarized in the scattering plane is attenuated, while perpendicular radiation is 

not.  This factor depends on both the scattering angle as well as the angle of the polarization 

plane.   

Self-absorption and multiple scattering were calculated assuming the incident beam was 

significantly smaller than the radius of the sample.  A spherical geometry was used in these 

calculations, and the detector image was corrected for the asymmetry resulting from the beam 

striking the sample off-center [15].  The scattered signal is attenuated as it passes through the 

remainder of the sample after scattering, resulting in a reduction in measured intensity.  The 

absorption correction calculates what the resulting effective scattering volume is and adds back in 

what the true intensity should be.  This correction effectively scales the background subtracted 

intensity by V/V’, where V is the actual sample volume and V’ is the effective scattering volume.  

Multiple scattering, or secondary scattering events within the sample after the primary scattering 

event, also takes this into account but is also dependent upon the new scattering angle from the 

second scattering event.  In principle, a photon could be scattered multiple times within a sample, 

but in practice, there is very little effect beyond the second scattering event.  The multiple 

scattering factor scales the background subtracted intensity by I2/I1, where I2 is the calculated 

secondary scattering intensity and I1 is the primary scattering intensity.  For liquid and glass 

samples measured during BESL 2010 and BESL 2013, the attenuation was calculated from NIST 

tables using measured sample mass and density.  For liquid and glass samples measured during 

APS 2011 and SAXS 2014, the attenuation was estimated from a photo-diode located in the 

beamstop.   

The liquid and glass samples were all assumed to be isotropic and homogenous and the 

intensity was integrated around ϕ at a constant 2θ [17].  This produced a one-dimensional pattern 
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as a function of scattering angle with a greatly enhanced signal-to-noise ratio.  In order to 

properly compare measurements made across a variety of energies, the scattering angle 2θ was 

converted to the appropriate momentum transfer, or q, given by  

 
 4 sin 2 2

q
 


 , (2.4) 

which scales with the scattering photon wavelength, λ. 

Inelastic scattering of photons results in an energy shift of the scattered photon due to the 

energy transferred during the recoil.  This effect, known as Compton scattering, must be 

removed from the measured intensity per atom and is denoted by 

      C2 /Incn E E i M


  . (2.5) 

This intensity contains contributions from radiation pressure ((EC/E)
α
, also known as the Breit-

Dirac recoil factor) as well as a correction to the classical Thompson scattering, made by 

subtracting the coherent scattering power for a particular atom (i(M)) [18, 19].  The exponent, α, 

is dependent upon whether the detector is a counting detector (α = 2) or an intensity detector (α = 

3) [16].  An intensity detector was used for all data in this dissertation. 

Finally, all of these corrections can be combined to produce the coherent scattering cross 

section, dσC/dΩ, using 

 
 

   
1 1'

2 11
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dA d Id

N d n F
d V V OP I I




 

 
  

 
 , (2.6) 

where N is a normalization factor that converts dσC/dΩ from arbitrary units into electron units, F 

is a correction for fluorescence, O is the correction for oblique incidence, and P is the correction 
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for polarization.  The normalization is performed by minimizing the Peterson metric [20] which 

minimizes the ripples in G(r) below some minimum cut-off where they become unphysical.  This 

metric is also used in the correction of neutron diffraction measurements and is discussed in 

more detail in Section A.7.  This correction properly normalizes S(q) to 1 at large-q.  

Fluorescence occurs when atoms absorb a photon and re-emit another at a different wavelength.  

This results in a background that is flat across all solid angles, typically more intense for samples 

with larger atomic numbers (Z).  If a correction of this type is needed to properly normalize 

small-Z samples where the fluorescence is expected to be small, it becomes an adjustable factor 

to account for experimental unknowns while correcting the data to physically realistic values.    

The structure factor, or S(q), can be calculated from the coherent scattering cross section 

once all of these corrections have been performed.  There are several notable normalization 

methods, each of which emphasizes slightly different aspects of the structural data.  In this 

dissertation, the primary normalization scheme used is the Faber-Ziman formalism [21].  Within 

this formalism, the Laue diffuse scattering is subtracted from the coherent scattering cross 

section and then normalized to the square of the average form factor, as given by 

 

2 2

2

( ) ( )

( )
( )

d
f q f q

dS q
f q


 

  . (2.7) 

In this notation, 
2( )f q   represents the square of the average form factor and 

2( )f q   is the 

average of the square of the form factor.  These are defined by 

 ( ) ( )i i

i

f q c f q  (2.8) 

and 
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22( ) ( )i i

i

f q c f q  , (2.9) 

where ci is the fractional atomic composition of the i
th

 atomic species.  The atomic form factor, 

f(q), is strongly q-dependent and f(0) scales roughly as the atomic number, Z.  The form factors 

used in this dissertation were calculated from tabulated data for all elements up to 75.4 Å
-1

 [22]. 

Once the total structure factor is calculated, the reduced pair-distribution function, G(r), 

can be calculated from a Fourier transform using 

    0

0

2
( ) 4 ( ) 1 ( ) 1 sin( )G r r g r q S q qr dq 





    , (2.10) 

where g(r) is the pair-distribution function (PDF) and ρ0 is the atomic number density.  In 

practice, the Fourier transform is over a finite range of qmin to qmax due to limited detector sizes 

and geometry.  If S(q) does not correctly approach unity at large-q, or if qmax is cut off before 

structural oscillations damp out (which can occur if the experiment cannot access a large enough 

q-range), large termination error ripples are introduced into the resulting g(r).    

2.6 Small-Angle X-ray Scattering Analysis 

The principles of small-angle X-ray scattering (SAXS) largely follow from the discussion 

of wide-angle X-ray scattering (WAXS) (Section 2.5).  The primary advantage of SAXS is the 

ability to examine nanometer-sized compositional fluctuations rather than the atomic level 

structure (Figure 2.8).  Intensity features appearing at a momentum transfer of q correspond to 

scattering from density inhomogeneities of size 2 .d q  Many bulk metallic glasses have 

been found to decompose on the nanoscale into two phases prior to crystallization [23-28]; 

small-angle scattering investigations can provide increased understanding of the nucleation and 
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growth of the devitrification products as well as an understanding of the stability observed in 

good glass-forming systems.  The following sections give a brief background on the theory 

behind small-angle scattering (Section 2.6.1) as well as the corrections implemented in the 

investigation of liquid-liquid phase separation in a Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk 

metallic glass (Section 2.6.2 and Chapter 7).  

 

Figure 2.8 Representative sizes accessible with various types of wide-angle scattering techniques (red), small-angle 

scattering techniques (blue), other scattering methods (green), and direct imaging techniques (purple). 

 

2.6.1 Small-Angle X-ray Scattering Theory 

X-ray scattering from a single atom depends on the distribution of electrons around that 

atom.  When scattering from a large cluster of atoms, the probability of scattering then depends 

on the density of electrons in the given volume, or the scattering length density, ρ(r).  The 

scattering amplitude of a particle, F(q), is given by 

 ( ) ( ) i

V
F q r e d  

q r
r , (2.11) 

where V is the particle volume.   
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Figure 2.9 Schematic of a second, compositionally distinct, phase formed within the bulk material. 

 

If two compositionally distinct regions form within a sample such as through phase 

separation or dilute particles suspended within a medium (Figure 2.9), the second component 

may have a different density of scattering elements, ρ2(r), than the bulk phase, ρ1(r).  The ability 

to resolve the difference between the new phase and the bulk depends on the relative difference 

in scattering length density, 2 1     , or the contrast density.  In X-ray scattering, the 

contrast density is given by 

 ( )i ie
i

r c f q    , (2.12) 

where re- is the Thompson electron radius, Δci is the difference in concentration of component i 

between the scatterer and its average surroundings, and fi(q) is the atomic form factor.  The 

measured differential cross section is then given by  



46 

 

 
21 i

V

d
e d

d N


  

 
q r

r , (2.13) 

and the macroscopic cross section, d d  , scales as 

 
21 i

V

d N d
e d

d V d V


 

  
  

q r
r . (2.14) 

In the limit of q→0, the macroscopic cross section reduces to the well-known Guinier 

relationship [29] given by 
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, (2.15) 

where Nv is the density of the second region within the bulk phase, V is the region volume, and 

RG is the region’s radius of gyration, or the mass distribution of the region around a central axis.  

RG can thus be used to determine the approximate dimensions of the second region.  Since 

d d  is related to the measured SAXS intensity, I(q), RG can be calculated from the slope, m, 

of ln(I(q)) vs. q
2
 using 

 3GR m  . (2.16) 

This method is valid only when max 1.2Gq R  where qmax is the largest value in q over which the 

fit was performed. 

2.6.2 Small-Angle X-ray Scattering Corrections 

Raw SAXS data were first corrected by subtracting the dark counts obtained when no X-

ray beam was present.  An empty chamber scan taken with no sample in the beam was also 

corrected by subtracting the native dark counts.  Both empty and dark frames were acquired 
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periodically throughout the experiments for each frame rate.  Due to high sample absorption at 

the energies used (Section 2.4.4), the scattered signal can be greatly attenuated and the empty 

scan is therefore measured with a higher flux than with the attenuated signal.  The difference in 

signal intensity before and after striking the sample was measured during the SAXS 2014 

experiment and the sample transmission factor, TS, was used to damp the effective empty 

subtraction using 

 ( )S raw dark S empty darkI I I T I I    . (2.17) 

For most samples, TS was approximately 40%.  The macroscopic cross section was calculated 

using 

 
0S S S

S

d
I I A T d

d


 
   

 
, (2.18) 

where I0 is the incident flux, A is the area of the beam that strikes the sample, ΔΩ is the solid 

angle per detector pixel, η is the detector efficiency, TS is the sample transmission, and dS is the 

sample thickness [30].   

In order to extract size information from observed structural features, such as the radius 

of gyration, RG (Eqn. 2.16), the intensity must first be normalized to an absolute scale.  This 

allows for direct comparison between other independent experiments [31, 32], as well as 

accurate calculations of RG.  To do this, the small-angle intensity of a 1 cm thick glassy carbon 

standard located in the approximate location of a levitated sample was acquired.  The measured 

scattering intensity with appropriate background and dark subtraction for the standard, IGC, 

follows a similar equation as Eqn. 2.18.  By taking a ratio of the measured intensities of the 
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sample and glassy carbon, the majority of the detector corrections will normalize out and the 

macroscopic sample cross section can be determined by 

 
/

S S S

S GC GC GC GC

I d Td d

d d I d T

    
   

    
,  (2.19) 

where ( )GCd d   is the known glassy carbon scattering pattern [30, 31].  A calibration factor, 

C, can be determined using 

 GC

GC GC GC

d

d
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I d T

 
 

 
 . (2.20) 

The absolute intensity can then be quickly calculated for any sample by combining Eqns. 2.17-

2.20: 

 S

S S S

Id
C

d d T

 
 

 
. (2.21) 

All analyses were performed using MATLAB scripts created by the beamline scientist at 

Station 1 at the APS, J. Almer.  The entire combination of secondary programs and primary 

scripts are included in the supplementary DVD attached with this dissertation.  

2.7 Neutron Electrostatic Levitation (NESL) 

All of the neutron scattering data in this dissertation were acquired using the Neutron 

Electrostatic Levitator (NESL) which was designed, constructed, and developed at Washington 

University in St. Louis by K. F. Kelton, N. A. Mauro, K. Derendorf, and A. J. Vogt through 

collaboration with A. I. Goldman and G. E. Rustan at Ames Laboratory and T. Egami and K. 

Lokshin at Oak Ridge National Laboratory [33-35].  This device also uses the ESL technique [3] 

to provide a containerless environment with which to study the high-temperature and 
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supercooled liquid structure of metallic glass-forming liquids.  The NESL utilizes an 

environment similar to WU-BESL, in which non-contact measurements of temperature are 

acquired simultaneously with scattering data.  Due to the highly constrained geometries of the 

neutron beamlines, however, additional considerations greatly complicated its design and 

construction. 

2.7.1 Design Constraints and Beamline Integration 

 

Figure 2.10 A rendering of the Neutron Electrostatic Levitator (NESL) in a vertical orientation for SNS detector 

wells.  Components are mounted vertically to the keystone and reflected off of mirrors.  Image adapted from [34] 

with permission. 

 

The NESL is designed for easy integration into a number of possible instruments at the 

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL).  It is intended for 



50 

 

elastic scattering studies on the Nanoscale-Ordered Materials Diffractometer (NOMAD) 

beamline [36], and for inelastic scattering studies on the Wide Angular-Range Chopper 

Spectrometer (ARCS) and the Cold Neutron Chopper Spectrometer (CNCS).  Each of these 

instruments contains a large detector well into which the sample environment is lowered (Figure 

2.10 (a)).  The interior walls of the detector well are lined with arrays of detectors covering a 

wide range of solid angles.  Taking advantage of this detector coverage imposes significant 

design challenges, such as keeping NESL components out of the scattering path to the detectors.  

In order to accomplish this, each optical component is oriented vertically on the keystone (Figure 

2.10 (b-c)) and reflected off of silver-coated mirrors to maintain line-of-sight to the sample 

(Figure 2.11).  To maximize photon flux and effectively maintain sample charge, a UV source is 

mounted at the base of the NESL (Figure 2.10 (d)) where the capillary extends to within 60 mm 

of the levitated sample (Figure 2.13).  The NESL is mounted to the detector well with a 37” 

flange to complete the vacuum seal with the neutron detector chamber.  Since the UV is mounted 

external to the NESL chamber, multiple feedthroughs are connected to this flange to provide 

vacuum, gas, and water lines to the UV source. 
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Figure 2.11 Schematic of the electrode assembly, sample catcher, and mirror platforms.  The use of mirrors moves 

components out of the path of the scattered neutrons and reduces secondary scattering.  Samples are loaded by 

dropping a sample from the carousel through the top electrode onto a vertical post (currently lowered below the 

sample catcher).  Image adapted from [34] with permission. 

 

Entrance and exit windows for the direct beam are made from pure vanadium, an element 

with a relatively small coherent scattering cross section.  This ensures that any scattering from 

these windows contains no coherent scattering signal that would interfere with that from the 

sample.  In addition, interior components surrounding the beam path are covered with reaction 

bonded B4C (RBBC) to further reduce internal primary scattering.  The entrance window is 

preceded by rings of carbon-bonded B4C (CBBC) surrounding a Boron Nitride (BN) pinhole to 

further collimate the incident beam.  External to the exit window is a beamstop consisting of a 

layer of B10 powder held in place by a BN plug (Figure 2.12). 
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Figure 2.12 Internal collimation optics using neutron-absorbing boron components.  Schematic courtesy of A. J. 

Vogt. 

 

To further reduce background and secondary scattering from the NESL, the majority of 

components surrounding the sample are constructed out of aluminum, which has a very small 

neutron scattering cross section.  In addition, the vacuum chamber walls consist of thin (1/16”) 

aluminum windows, further reducing the secondary scatter from the sample environment.  Those 

components, which out of necessity are made from stainless steel (such as the bolts and flanges 

for the NESL vacuum chamber), are shielded by clamping thick Boraflex
TM

 sheets with 

approximately 25% boron (a strong absorber of neutrons) over the exit surface.  This eliminates 

most of the secondary scattering from these components.   
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2.7.2 Optical Components and Levitation 

Sample levitation is maintained using a set of charged electrodes in a similar 

configuration as WU-BESL.  A schematic of the electrode assembly and the surrounding 

environment is shown in Figure 2.11.  An amplifier capable of generating a potential difference 

of 0 to -30 kV across the vertical components is connected via high-vacuum feedthroughs.  In 

order to maintain stable levitation in the center of the electrode assembly, a pair of orthogonal 

lateral electrodes, similarly connected to high-voltage amplifiers, generates electric potential 

differences of ± 5 kV.  Shadows are cast from the levitated samples (m = 100-450 mg, r = 1.5-3 

mm) onto a pair of position sensitive detectors (PSDs) by a pair of orthogonal Helium-Neon 

positioning lasers (designated red and blue) (Figure 2.13).  The position is measured and vertical 

and lateral voltages are dynamically adjusted to maintain sample position using a feedback 

control algorithm [6].   
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Figure 2.13 Top-view of vertically mounted components on the NESL keystone relative to the incident neutron 

beam.  Example laser paths and shadows are shown with colors appropriate to their labels for clarity.  In reality, all 

lasers are actually red or otherwise outside of the visible spectrum.  Schematic constructed with the assistance of A. 

J. Vogt. 

 

The sample is heated using a pair of diametrically opposed fiber-coupled diode lasers 

(980 nm, 110 W continuous maximum power output, designated as yellow and white).  Non-

contact temperature measurements are performed using a single Process Sensors Metis MQ22 

two-color ratio pyrometer with an effective operating range of 500 – 2000 
o
C.  The emissivity 

ratio is calibrated by correcting the temperature at the melt plateau to that of the largest heat 

signature observed in a differential thermal analyzer (DTA) (LabsysTM DTA/DSC, Setaram).  A 
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constant emissivity ratio is assumed over the entire temperature range once the sample is molten.  

Further details of the temperature correction are given in Section A.3.   

As the sample increases in temperature, surface charge is lost.  As for the ESL discussed 

in Section 2.3.1, sample charge is maintained via the photoelectric effect by an ultraviolet (UV) 

source.  Thermionic emission eventually removes the need for the UV lamp at higher 

temperature.  Once fully melted, the sample maintains relatively stable charge.  Line of sight to 

the sample from the UV lamp is then blocked by a shutter, minimizing deposition onto the 

capillary from sample evaporation.   

A primary Pfeiffer PKR261 cold cathode vacuum gauge is located on the keystone to 

measure the chamber pressure near the sample (Figure 2.13), while a second gauge can be 

mounted higher up on the vacuum chamber, close to the turbo pump.  The NESL is operated 

under high vacuum, typically below 7x10
-7

 Torr.  For the experiments presented in this 

dissertation it was operated around 7-8x10
-6

 Torr due to outgassing issues that have since been 

diagnosed and repaired.  

 Samples are loaded in a 30-slot carousel located above the top electrode (Figure 2.11) 

and are dropped through a hole in the center of the curved top electrode onto the sample post.  

The post can be lowered to the base of the sample catcher to recover fallen samples.  A pair of 

Pixelink cameras is used to observe the levitated sample as well as the sample catcher to ensure 

samples are recovered and properly processed (Figure 2.13).   

Further details of the integration of the specialized components used in the NESL are 

extensively discussed elsewhere [2, 33-35].  
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2.8 Neutron Diffraction Measurements 

Time-of-flight (TOF) neutron scattering data were acquired using the NESL during 

experiments performed at the Spallation Neutron Source (SNS) at Oak Ridge National 

Laboratory (ORNL).  A brief overview of how neutrons are produced at the SNS is presented in 

Section 2.8.1 and an overview of neutron time-of-flight (TOF) measurements is presented in 

Section 2.8.2.  A description of the Nanoscale-Ordered Materials Diffractometer (NOMAD) 

instrument [36] and relevant details used during experiments in September and October of 2014, 

referred to as “NOMAD 2014” throughout this dissertation, are discussed in Section 2.8.3.  

2.8.1 Neutron Production 

The SNS currently produces the most intense pulsed neutron beams in the world.  

Neutrons are produced through spallation, where a high-energy proton beam strikes a heavy-

metal target and ejects neutrons.  In order to accomplish this, a number of steps are required 

(Figure 2.14). 

First, charged hydrogen atoms (H
-
) are accelerated to a maximum energy of 1 GeV using 

a 1000 ft linear accelerator (linac) (Figure 2.14 (a)).  The maximum ion beam power that can be 

produced at the SNS is 1.4 MW, although it is typically operated at a much lower setting (less 

than 1 MW).  The high-energy ions are injected into an accumulator ring that bunches and 

intensifies the ion beam (Figure 2.14 (b)).  The negatively charged ions pass through foils that 

strip off electrons, producing positively charged hydrogen atoms (H
+
; i.e., protons).  The protons 

circulate through the ring for approximately 1200 rotations until they are all released in a short 

pulse (~10
-6

 s).  These pulses are produced at approximately 60 Hz.   
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Figure 2.14 Schematic of the steps required for spallation neutron production. 

 

Proton pulses strike a mercury target with each proton capable of spalling, or knocking 

off, approximately 20-30 individual neutrons (Figure 2.14 (c)).  The hot neutrons pass through 

moderators (filled with water or liquid hydrogen), cooling them down until their energies reach 

the appropriate range specified for each individual instrument.  The cooled neutrons are guided 

to each instrument and further prepared for injection to a sample environment by secondary 

choppers (Figure 2.14 (d)). 

2.8.2 Time-of-Flight (TOF)  

At the SNS, pulsed neutrons travel along the primary flight path of length D1 (19.5 m at 

NOMAD) until they interact with the sample.  Scattered neutrons then travel a distance D2 (0.5-3 

m at NOMAD) from the sample to the detector.  The velocity, v, of a neutron arriving at a 

detector with a time-of-flight (TOF), τ, associated with a specific pulse coming from the up-

stream moderator can be described by  
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 1 2D D
v




 . (2.22) 

The neutron momentum is given by  

 np m v k  , (2.23) 

where mn is the mass of a neutron, ħ is Planck’s constant, and k is the wave number.  By 

combining Eqns. 2.22 and 2.23, the wavelength of the neutron is given by  

 
1 2

2 2

( )nk m D D

  
  


. (2.24) 

The momentum transfer, q, can then be determined from Bragg’s law, given earlier in Eqn. 2.4.   

While D1 is well known, D2 for each individual detector pixel is not as well determined.  

Diamond powder encased in a vanadium can is placed in the same position as a typical sample to 

calibrate each pixel in the detector bank to a known powder diffraction pattern.  The diamond 

powder is used to calibrate the detector distances in a similar manner as the Si standards in the 

X-ray experiments described in Section 2.5.   

2.8.3 NOMAD 2014 

As a pulsed neutron source, the SNS provides 60 Hz beam pulses to each of the facility’s 

beamlines.  At NOMAD, the neutron pulses of the incident beam are controlled by four choppers 

located upstream of the sample and operated at 30 Hz.  By excluding every other pulse from the 

source, this ensures that slow, long wavelength neutrons in one pulse are not overlapped by fast 

neutrons of the following pulse.  This arrangement provides access to wavelengths between 0.1 - 

2.9 Å (10 eV – 10 meV), with a measureable q-range out to 100 Å
-1

.   
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TOF data for the scattered neutrons were acquired using 
3
He linear position sensitive 

detectors of both 1” and ½” diameter tubes to measure neutron arrival times and positions.  The 

tubes are grouped in packs of 8, with a total of 50 packs providing detector coverage during 

NOMAD 2014.  Each pack is separated into 1024 separate pixels (51200 pixels total) providing 

3-175
o
 coverage in 2θ.  The TOF, τ, and pixel for each neutron associated with that pulse are 

then stored in detector files. 

In September 2014, the NESL was installed on the NOMAD beamline at the SNS and 

neutron scattering data from levitated liquid droplets were acquired using a collimated beam of 

~10 mm in diameter near the sample.  The first liquid structural data were acquired from Zr64Ni36 

samples, but after only two days of beam time the experiment was cut short due to target and 

accelerator failure at the SNS.  The NESL remained installed on the NOMAD beamline during 

facility repairs, and in October 2014, the original experiment was completed.  Experimental 

configurations remained unchanged as the NESL was not moved while facility repairs were 

performed.  TOF data was acquired for four more liquid alloys (Cu46Zr54, Zr80Pt20, Zr77Rh23, and 

Ti39.5Zr39.5Ni21).  The results from liquid Zr80Pt20 and Zr77Rh23 scattering measurements are 

discussed in Chapter 5.   

Because of difficulties in melting large (300 - 450 mg) samples, all successfully melted 

samples were 90-150 mg in size.  Isothermal measurements were performed over 30-60 minutes 

for sufficient counting statistics.  Scattering data for levitated vanadium standards were acquired 

for 30 minutes each to normalize scattered intensity from the sample to the incident beam 

spectrum.  This will be discussed further in Section 2.9.2.  Levitated samples of pure Ni were 

used to double-check detector position calibrations originally determined from diamond powder 
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standards (Space group 3Fd m , lattice parameter a = 3.5668 Å).  A 30 minute scan of the empty 

chamber was also made to remove background scattering.  

2.9 Neutron Diffraction Analysis 

While in many ways less complicated than X-ray scattering, there are still a number of 

corrections required to reduce the measured neutron scattering intensity to a static structure 

factor, S(q), and pair-distribution function, g(r).  Initial reduction of the data acquired during 

NOMAD 2014 was performed using a sequence of IDL and Python modules developed by the 

beamline scientist, J. Neuefeind, specifically for the NOMAD beamline [36].  A brief overview 

of scattering and neutron scattering lengths is presented in Section 2.9.1.  A description of the 

corrections required for neutron diffraction is described in Section 2.9.2, and details on the actual 

implementation are discussed in Appendix A.  Generic IDL scripts useful for future experiments 

are described in Appendix B and contain more detailed information on each function.  

Descriptions of custom LabVIEW programs and their relationship to data reduction are described 

further in Appendix C.  The collection of LabVIEW programs used here are included in the 

supplementary DVD attached with this dissertation.  

2.9.1 Neutron Scattering 

The structural signal that is extracted from total scattering experiments comes from 

elastic, coherent scattering, or scattering where the phase relationships in the wave functions of 

the scattered waves, ( ),kx wt   are preserved throughout the scattering process.  Here, k is the 

wave number, x is the position, w is the frequency, and t is time.  In this process, individual wave 

functions constructively and destructively interfere with each other resulting in peaks in the 
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measured intensity at specific scattering angles, 2θ.  The total coherent scattering wave, Ψcoh, can 

then be represented as a sum of the amplitudes of the individual scattering waves, or  

 
coh i

i

  , (2.25) 

giving the total measured coherent intensity, Icoh, or 
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I      . (2.26) 

In contrast, incoherent scattering does not maintain the phase relationship between the 

incident and scattered neutrons.  With this change in phase, information regarding the 

interference of individual wave amplitudes is lost.  The incoherent intensity, Iinc, is given by 

 
2

inc i i

i i

I I    . (2.27) 

In the case that all atoms are identical, the incoherent intensity will be identical for each atom 

and no diffraction information can be extracted.   

For the measurements described in this dissertation, all scattering from the sample is 

assumed to be elastic, where no energy is exchanged between the neutron and the scattering 

sample.  Because neutron energies are comparable to thermal motions in the sample, this 

assumption is less valid than in the case of high-energy X-ray diffraction measurements [16].  

Inelastic neutron scattering results in significant energy transfer, which correspondingly changes 

the neutron velocities.  As a result, inelastically scattered neutrons arrive at the detectors at 

slightly different times than those scattered elastically, and therefore are assigned an incorrect 

wavelength.  Difficulties in accounting for inelastic scattering are discussed in more detail in 

Section A.7. 
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Since neutrons scatter from the nucleus rather than the electron cloud (except in the case 

of magnetic scattering), there is a dependence on the total nuclear spin in the coherent, σc, and 

incoherent, σi, scattering cross sections (typically measured in units of barns).  Because of this, 

each element and isotope will have a distinct scattering length, bc and bi respectively, for both 

coherent and incoherent scattering (typically measured in femtometers, or fm;
21 100barn fm ).  

The cross sections are calculated using 

 
2 2

4 , 4c c i ib b     , (2.28) 

with the total scattering cross section, σT, being given by 

 T c i    . (2.29) 

The larger the scattering cross section, the higher the probability of interaction.  The scattering 

length, b, is a representation of the strength of the scattering and is analogous to the atomic form 

factor, fi(q), in X-ray scattering.  However, b is a constant for all q, because, unlike the 

distribution of electrons in X-ray scattering, the distribution of nuclear spins is much smaller 

than the wavelength of typical neutrons used in scattering experiments.  These cross sections and 

scattering lengths vary non-monotonically with nuclear size, and the character of the nuclear 

interactions can change significantly by simply changing the number of neutrons present in the 

nucleus [37]. 

2.9.2 Neutron Corrections 

Over time, the power of the proton beam striking the mercury target can vary depending 

on the ion energy produced by the linear accelerator (Section 2.8.1).  Higher power will result in 

an increased neutron flux, which also results in increased scattering intensity.  To account for 
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this, the measured intensities are normalized by the proton charge measured from an upstream 

monitor.  This allows intensity measurements from different scans to be compared on the same 

scale.  

Due to the nature of spallation TOF neutron experiments, the neutron beam consists of a 

non-uniform distribution of incident neutron energies.  The measured scattering intensity from a 

primarily incoherently scattering sample, such as vanadium, will therefore represent the energy 

profile of the source spectrum.  Since scattering from vanadium is not completely incoherent, 

any small, residual coherent peaks can be subtracted out and smoothed over, leaving only the 

profile of the spectrum behind.  Once the signal due to scattering from the chamber, IEmpty, is 

removed, the measured intensity from the sample, ISample, can be normalized to the measured 

vanadium intensity, IV, at each point in q, correcting for the source spectrum using 

 
Sample Empty
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V Empty

I I
I

I I





. (2.30) 

This normalization has the added benefit of removing the need for detector specific corrections 

(e.g. pixel efficiency) since both ISample and IV are measured with the same equipment and the 

corrections cancel [16]. 

Self-absorption and multiple scattering, both from the sample and vanadium standard, are 

significant factors in correcting the measured intensity.  The resulting attenuation from self 

absorption is energy-dependent and is generally tabulated at a constant wavelength.  The 

attenuation coefficients used were measured at a wavelength of λtable = 1.798 Å [38], and the 

energy dependence was assumed to be linear in λ.  The absorption cross section at any given λ is 

then given by 
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Both absorption and multiple scattering corrections also depend on geometry.  The geometry is 

often approximated by simple solutions and is in many cases a fairly accurate assumption.  

However, the spherical geometry absorption corrections for X-ray scattering using WU-BESL 

[14, 15] cannot be extended to the geometry of the NESL experiments, since the small size of the 

X-ray beam relative to the sample greatly simplifies that calculation.  Instead, the neutron beam 

was collimated to span the majority of the 12 mm gap between the top and bottom electrodes 

during NOMAD 2014, completely covering the entire sample.  Geometry- and mass-dependent 

simulations (designed by J. Neuefeind) were made to generate an estimate of both sample 

absorption and multiple scattering, which were subsequently applied to correct the data.  As with 

X-ray scattering (Section 2.5), the absorption correction uses the physical dimensions of the 

sample and estimates the effective scattering volume, V/V’.  The contribution from multiple 

scattering, I2, is then subtracted using 
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Once the corrected I(q) is obtained, the total static structure factor, S(q), can be calculated 

in the same manner as in X-ray scattering using 
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 , (2.33) 

where <b>
2
 and <b

2
> are averaged over each chemical isotope using 
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and 
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Here, bi and ci are the scattering length and atomic percent of the i
th

 chemical species.  This is 

equivalent to the average atomic form factor used in X-ray scattering, ( )f q   (Eqns. 2.8-2.9).   

The initial S(q) generated using the above corrections was frequently found to contain 

curvature that resulted in small-r ripples occurring at unphysically small distances.  These ripples 

primarily result from inelastic scattering and experimental noise, which corrupt the data.  Even 

when this curvature is correctly accounted for, the data still suffer from poor amplitude 

normalization.  Secondary scattering from the environment can cause issues with proper 

normalization, resulting in features in g(r) that do not reflect physical behavior.  By constraining 

to physical parameters such as the experimental density, the data can be reduced to an absolute 

scale and effectively compared with other experimental measurements.  In order to correct for 

these effects, a more technical discussion is necessary.  Details of the method used to account for 

these effects, as well as the practical implementation of all of the above discussed corrections, 

are presented in detail in Appendix A (in particular, Section A.7). 

2.10 Atomic Simulations and Structural Analysis 

The experimentally measured S(q) and g(r) are one-dimensional time-averaged 

representations of a dynamic three-dimensional structure.  As such, all phase information is lost 

during data reduction.  While providing a time-averaged picture of the sample’s overall structural 

characteristics, exact atomic locations and dynamics are lost.  There are several methods that can 
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be used to extract atomic configurations to study the details of atomic interaction.  Molecular 

Dynamics (MD) simulations employ first principle approaches for atomic interactions with 

realistic atomic potentials (ab initio [39-41]), or classical approaches using embedded atom 

interactions [42, 43].  Once the configuration has stabilized, the g(r) can be directly calculated 

from the atomic ensemble.  These simulations are very computationally intensive, limiting ab 

initio simulations to small configuration sizes.  However, the embedded atom method has shown 

large improvements in configuration sizes in recent years [44]. The latter simulations require 

carefully constructed atomic potentials to achieve consistent results, which are of limited 

availability.   

Another simulation method, the Reverse Monte Carlo (RMC) technique [45], uses 

experimentally determined structures to constrain the simulation.  Since this produces results that 

are consistent with experiment, this method was chosen for the analysis of atomic configurations 

used in this dissertation.  This method is not without disadvantages, however.  Details of the 

RMCs used in this dissertation, as well as the inherent advantages and disadvantages, are 

discussed in Section 2.10.1.  Structural classification schemes based on the resulting atomic 

configurations are discussed in Sections 2.10.2 and 2.10.3. 

2.10.1 Reverse Monte Carlo (RMC) 

The Reverse Monte Carlo (RMC) technique [45] randomly adjusts individual atomic 

positions within a large ensemble of atoms until the calculated scattering pattern agrees with 

experimentally measured data.  In this manner, the technique produces an atomic configuration 

that is consistent with experimental observations.  It is similar to the Metropolis Monte Carlo, 

but in RMC the difference between experimental and calculated structure factors is minimized 

rather than the potential energy.  Many different types of experimental data can be used to 
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constrain the simulation including X-ray diffraction, neutron diffraction, and Extended X-ray 

Absorption Fine Structure (EXAFS) measurements.  RMC simulations can also be constrained to 

chemically specific structural data if partial pair-distribution functions (PPDFs) are known, either 

from experimental determination or MD results.  Since the RMCs in this dissertation were 

constrained with total static structure factors measured from X-ray and neutron scattering, the 

RMC method will be discussed in this context.   

For a typical RMC simulation, a random initial atomic configuration of N atoms is 

generated with appropriate stoichiometric ratios in a box of a size that is consistent with the 

atomic density.  The initial total structure factor, Si(q), is calculated from this initial 

configuration and a χ
2
 is calculated with respect to the experimental input, SE(q) using 
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Here, σi is the uncertainty of the experimental data set.  A single atom’s position is adjusted 

within user defined limits, and the final structure factor, Sf(q), is calculated from this new 

configuration.  If 
2 2

f i  , the move is accepted.  If 
2 2

f i  , the new position is accepted with 

a probability of   2 2exp f i   .  Otherwise, the move is rejected. 

The RMC technique produces the most disordered configuration that is consistent with 

the experimental data.  As a consequence, the atomic configuration generated by a single RMC is 

not unique.  To account for this, the simulations were repeated multiple times in order to produce 

multiple independent configurations and gain a measure of the statistical uncertainty in the 

results. 
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Additionally, this technique can produce unphysical results if too few constraints are 

used.  An n component alloy requires at least ( 1) / 2n n inputs to fully constrain all PPDFs.  

When too few constraints are used, the simulated chemical arrangement of atoms within the 

ensemble is less reliable.  Despite this, the topological distribution of atoms can still be used to 

study structure independent of chemistry, as is done in Chapter 3. 

The RMCs in Chapter 5 were performed using RMC_POT [46].  RMCs from Chapter 3 

were performed using RMCA, a more primitive version of the RMC_POT code, and the 

particular details associated with its analysis are discussed in Section 3.2 and elsewhere [2].  

Since our understanding and experience with this technique has improved since using RMCA, 

the details discussed below are specific to the RMC_POT analysis performed in Chapter 5, 

though the principles and implementation are very similar in both programs.  For more 

information on input and output file formatting for RMC_POT, see the user guide available on 

the web at http://www.szfki.hu/~nphys/rmc++/opening.html.   

Each simulation was run for approximately 60 hours until the final χ
2
 converged to a 

minimum value.  This value was recorded as a function of time and checked for each individual 

run to ensure that a stable configuration was achieved.  The absolute value of the χ
2
 depends on 

the individual σi assigned to each input constraint.  In this dissertation, the high-energy X-ray 

S(q)s were believed to have the smallest uncertainty and were given a lower σ (σX = 0.002) than 

the MD partials and neutron structures (σMD = σN = 0.005).  This ensured that the final 

configuration more closely resembled that of the most precise experimental data.  When both X-

ray and neutron experiments were used to constrain the simulation, the effective density was 

calculated using the average of the temperatures for each experiment.  The liquid density was 

measured in situ using non-contact methods as described in Section 2.3.2.   

http://www.szfki.hu/~nphys/rmc++/opening.html
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When constrained by a full set of MD PPDFs, the hard-sphere cutoffs can be determined 

from the minimum before the first peak in the PPDFs.  Since the simulations were constrained 

with inputs from both X-ray and neutron data rather than all MD partials, the hard-sphere cutoffs 

were set slightly lower than anticipated from atomic size considerations in order to not bias the 

final experimental result.  In addition to preventing unphysically short atomic distances, the 

hard-sphere cutoffs serve to speed up the simulation by preferentially moving atoms located 

below the cutoff distance.  In the simulations performed in this dissertation, the maximum 

distance any atom was allowed to move per step was 0.3 Å on a grid with a spacing of 0.06 Å.  

This r-spacing was chosen since it was the same r-spacing as the MD partials used as constraints.  

A small fraction of the atomic moves (10%) were allowed to swap particles wherein an atom of 

type A exchanged positions with an atom of type B.  This improved mixing and helped reduce 

the convergence time.  Additional details of the RMC_POT program and its implementation are 

discussed elsewhere [2, 35, 46]. 
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Figure 2.15 (a) RMC simulation results for Zr80Pt20 using only experimental X-ray constraints without absolute 

normalization and (b) RMC simulation results for Zr80Pt20 using absolute normalization.  The open symbols are the 

experimental inputs, the red lines are the fits when no multiplicative or additive scaling factors were used, and the 

dashed blue lines are the fits when both scaling factors were used.  Large differences are observed when scaling 

factors are turned off or on when the experimental S(q)s are not corrected for curvature and absolute scaling.  Much 

better agreement is found between converged RMC structures when they have been corrected for curvature and 

scaling (difference curves in green, offset by -1 for clarity.  A dashed black line at -1 guides the eye). 

 

One of the primary differences between the simulations performed in Chapter 3 and 

Chapter 5 is that the former required implementing multiplicative and additive scaling factors 

during the simulation in order to produce S(q)s that were consistent with experiment.  No such 

adjustments were required for consistent results in Chapter 5.  This is primarily because the 

experimental S(q)s used in Chapter 3 were not expressed on the absolute scale, described in 

Section A.7, since the technique for doing so is fairly new.  To test this using RMC_POT, 
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simulations were performed using Zr80Pt20 X-ray S(q)s that were not corrected for absolute 

intensity and were compared with simulation results from those that were.  In both cases, all 

three available MD partials were also used as constraints.  Additionally, separate simulations 

were performed with and without a multiplicative scale factor.  For simulations without 

curvature and normalization corrections (Figure 2.15 (a)), the experimental data could not be 

consistently reproduced.  Using a multiplicative scaling factor during the simulation produced 

results that were significantly different than when no scaling factor was used (difference curve in 

Figure 2.15 (a)).  The fits, when constrained with an S(q) with absolute normalization, showed 

much better agreement with experiment and the simulated structure factors showed very little 

difference whether or not a scaling factor was employed (Figure 2.15 (b)).  This is additional 

evidence that the technique described in Section A.7 consistently reduces data to an absolute 

scale. 

2.10.2 Honeycutt-Andersen (HA) Analysis 

Honeycutt-Andersen (HA) analysis is a technique used to describe the local environment 

around a given pair of atoms (called the root pair) in an atomic configuration [47].  It is similar to 

common neighbor analysis (CNA) [48], but incorporates an additional integer to designate if the 

root pair are bonded or not and replaces the last integers with an arbitrary number used to 

eliminate degenerate results.  The HA index is comprised of four integers: ijkl.  For every atom 

in the ensemble, all potential neighbors are considered.  The integer i represents how close the 

specified root pair is.  In other words, i = 1 indicates that the root pair of atoms are nearest 

neighbors, i = 2 suggests the second atom is located in the second coordination shell and not 

bonded to the first (second nearest neighbors), etc.  In practice, values of i > 2 are rarely 

considered, and typically only the nearest-neighbor pairs are of interest.  The integer j represents 
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the number of common nearest neighbors shared by both atoms in the pair.  The integer k 

represents the number of bonds shared between each of the j common neighbors.  Finally, the 

integer l is used to break degeneracies.  It is possible that unique configurations might share the 

first three numbers, so each unique configuration is assigned a distinct l value. 

 

Figure 2.16 Example of the 1551 index in a perfect icosahedron, constituting a pentagonal bipyramid.  The root pair 

of i=1 is distinguished by the two blue atoms connected by a red line.  The j=5 shared neighbors are located at the 

vertices of the green polygon, and the k=5 bonds among those atoms are represented by the edges of the green 

polygon.  The central atom is bonded with every other atom, but the bonds are not displayed in order to improve 

visualization. 

 

These indices can be used to identify the prevalence of particular local atomic 

environments, such as a fragment of a perfect icosahedron (pentagonal bipyramid) with a central 

atom.  In this case, the bond geometries are represented by the index 1551, indicating the pair of 

atoms are each bonded to the same 5 atoms which share 5 bonds amongst themselves.  Visually, 

this can be represented by the cap of an icosahedron (Figure 2.16).  Distorted icosahedra can be 

visualized by forcing one of the neighbor atoms to be slightly farther away from the rest, 

breaking one of the k=5 bonds and creating a 1541 geometry k=4).  If an atom is completely 
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removed such that it is no longer a neighbor to either the root pair or the other surrounding 

atoms, it becomes 1431.  Some common crystalline indices include the body-centered cubic 

(BCC, 1661), face-centered cubic (FCC, 1421), and hexagonal close packed (HCP, 1422).   

It is important to note some of the limitations of this technique.  While a 1551 pair 

represents the cap of an icosahedron, it does not guarantee that the rest of the surrounding 

structure is consistent with an icosahedral environment.  In order to represent a perfect 

icosahedral structure, the central atom must have a total of twelve 1551 structures associated 

with it, one formed with each vertex.  An MD study of Zr2M (M=Co, Ni, Cu, and Ag) metallic 

liquids found that, while the 1551 index was highly prevalent, the majority of atoms only 

contained 2-3 of these structures on average [49].  When distorted icosahedral structures were 

also considered (1551 + 1541 + 1431), the average number of these configurations surrounding 

an individual atom increased to 6-8 with a sizeable fraction (5-10%) of atoms involved in 12.  

While these indices suggest small pieces of the ensemble contain common configurations, HA 

analysis alone does not provide a full picture. 

2.10.3 Voronoi Tessellation 

Voronoi tessellation is a technique used to determine the nearest neighbors of a given 

central atom [50-52].  Planes are drawn bisecting the lines between a central atom and the atoms 

surrounding it.  The volume nearest to the central atom contained within these bisecting planes is 

known as the Voronoi cell.  It is calculated in the same manner as a Wigner-Seitz primitive cell 

in reciprocal space.  A 2-dimensional example is displayed in Figure 2.17.  An atom is 

considered to be a neighbor if its Voronoi cell shares a face (3D) or edge (2D) with the cell of the 

central atom.  In the case of Figure 2.17, atoms A and B clearly have an edge connecting their 

cells while the line bisecting atoms A and C disappears as closer atoms cut into it.  An example 
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of a 3-dimensional Voronoi cell is displayed in Figure 2.18.  When the atomic configuration 

contains only one species, or when all atomic sizes are approximately the same, this technique, 

as described above, produces an accurate picture of the local atomic coordination.  When there is 

a large atomic size mismatch, the bisecting planes should instead be calculated relative to the 

surface of the atom, rather than the center of mass.  Failure to account for this can result in 

planes cutting through the larger atom rather than between the two atoms.  Because of this, 

weighted Voronoi methods have been developed [53].  

 

Figure 2.17 A 2D example of constructing a Voronoi cell.  A line is drawn bisecting a line connecting each atom 

(For example, the dashed lines between atoms A and B (black) and A and C (blue)).  When all lines are drawn, A 

and C are clearly not considered neighbors as the enclosed cell around each atom does not share an edge.  
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Figure 2.18 Example Voronoi cell for the <0,3,6,0> index (left, yellow bars) for the atomic arrangement on the 

right.  The numbered atoms represent the nearest neighbors shared between the central atom (A) and vertex atom (B) 

corresponding to an HA index of 1551.  Reprinted with permission from [54]. 

 

The Voronoi cells are indexed by counting the number of edges of each of the faces on 

the resulting Voronoi polyhedra.  The index is listed in the format <n3, n4, n5, n6, …> where n3 is 

the number of faces with 3 edges, n4 is the number of faces with 4 edges, etc.  The Voronoi cell 

for a perfect icosahedron, for example, contains twelve faces, each with 5 edges, and can be 

represented by the index <0 0 12 0>.  Since each face corresponds to a neighboring atom, the 

coordination number (CN) can be uniquely determined from the total number of faces in the 

Voronoi cell, or by summing up all of the elements in the Voronoi index. 

While a large variety of Voronoi indices (VI) typically appear in a disordered liquid, 

atoms will typically attempt to maximize the polytetrahedral packing according to their atomic 

size [54].  This ideal packing is characterized by the Frank-Kasper (FK) polyhedra [55] which, 

for each CN, represents the greatest polytetrahedral packing efficiency.  For CN 12, the ideal 

packing is the icosahedron (<0 0 12 0>).  Each FK polyhedron attempts to maximize the 5-sided 

faces, but disclinations (rotational defects) are necessary to relieve packing frustration resulting 

in additional 4- and 6-sided faces that must follow the rule 4 52 12n n  .  This is typically 

resolved by removing two n5 faces and turning them into an n4 and n6 pair.  The ideal FK 
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polyhedrons for CN 9-16 are listed in Table 2.2.  Note that all contain either n4 or n6 

disclinations, other than CN 12, for idealized local packing.   

Table 2.2 Frank-Kasper polyhedra for different CN. 

Coordination Number (CN) Voronoi Index (VI) for n3 – n7 VI for single disclination 

9 <0 3 6 0 0> <0 4 4 1 0> 

10 <0 2 8 0 0> <0 3 6 1 0> 

11 <0 2 8 1 0> <0 3 6 2 0> 

12 <0 0 12 0 0> <0 2 8 2 0> 

13 <0 1 10 2 0> <0 2 8 3 0> 

14 <0 0 12 2 0> <0 1 10 3 0> 

15 <0 0 12 3 0> <0 1 10 4 0> 

16 <0 0 12 4 0> <0 1 10 5 0> 

 

While the FK polyhedra represent ideal packing for a given cluster of hard spheres, in the 

highly disordered liquid and glass structures studied in this dissertation, it is very uncommon to 

find these VIs in great prevalence.  Due to high disorder and rapid dynamics in the liquid, 

additional disclinations are required to relieve packing stress.  These additional disclinations, on 

top of the ones necessary for the ideal cases, must also follow the 4 52 12n n   rule.  The VIs for 

the first distortions of CN 9-16 are also listed in Table 2.2.  Higher-order distortions are also 

frequently observed in disordered systems, and additional details can be found elsewhere [35, 

54]. 

In this dissertation, the program Voro++ was used to perform a Voronoi tessellation on 

the atomic configurations generated from RMC simulations described in Section 2.10.1 [56].  In 

order to use Voronoi analysis techniques consistent with other recently published results [44], 

additional custom modifications were performed by V. Tran at Washington University in St. 

Louis.  In some atomic configurations, faces with a very small area can appear.  This represents 

the inclusion of atoms that are slightly farther away than the rest of the coordination shell.  In a 
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dynamic liquid, these atoms will be constantly moving around and likely spend very little time 

bonded to the central atom.  Including these small faces artificially inflates the coordination 

number.  In order to account for this, the ability was added to remove faces that were smaller 

than some specified absolute area.  In this dissertation, atoms with a face area smaller than 0.25 

Å
2
 were removed from consideration as a neighbor.  The atomic radii that were used for 

weighted Voronoi tessellation were the Goldschmidt radii.  A copy of the program used is 

included in a DVD of supplementary materials associated with this dissertation.   

2.11 Crystal Diffraction Pattern Analysis 

Crystalline diffraction patterns are often identified and characterized throughout this 

dissertation, with emphasis placed on the metastable phase identification of Zr77Rh23 (Chapter 6).  

Some preliminary analysis was performed using the rapid reduction algorithms of the Jade 

analysis software from MDI before the free trial expired (www.materialsdata.com).  The final 

phase identification and fitting was performed using the python-based General Structure and 

Analysis Software II (GSAS II) [57], a user friendly redesign of the original software, GSAS 

[58], developed by the same authors at the APS.   

2.11.1 Phase Information 

While the primary focus of this dissertation is the study of disordered liquid and glasses, 

it is often enlightening to identify the crystallization products that form during devitrification and 

recalescence.  However, identification of crystalline phases can be very challenging without prior 

knowledge of the possible accessible phases.  Completely unknown phases can be identified and 

categorized using transmission electron microscopy (TEM) and other characterization 

techniques, but the details of these methods are beyond the scope of this dissertation.  Instead, 

http://www.materialsdata.com/
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knowledge of the equilibrium phase diagram and what phases to expect at a given temperature is 

the primary tool used to identify crystallization products.    

A crystalline lattice can be defined by three unique lattice vectors (a, b, and c) and the 

angles formed between them (α, β, and γ) (Figure 2.19).  The relative lengths of these lattice 

vectors and the angles formed between them determine the symmetries allowed within the 

structure.  The example in Figure 2.19 is a Primitive lattice (P, Figure 2.20 (a)) with 8 atoms 

positioned at the vertices of a cube.  In this case, a = b = c and α = β = γ = 90
o
.   

 

Figure 2.19 Example primitive lattice.  Lattice distances are denoted by a, b, and c (red) and the angles between 

them by α, β, and γ (blue). 

 

Additional atoms can be added to the primitive lattice to generate different symmetries.  

There are three “centering” methods by which atoms are placed in the center of some part of the 

Primitive lattice (Figure 2.20).  A Face Centered (F) lattice is made by placing 6 additional atoms 

within the primitive lattice at the center of each face (Figure 2.20 (b)).  A Body Centered (I, from 

the German Innenzentriert) lattice is made by adding a single atom at the very center of the 

primitive lattice such that it is equidistant from each vertex (Figure 2.20 (c)).  The Base Centered 
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(C) lattice adds only two additional atoms to the primitive lattice (Figure 2.20 (d)).  It is similar 

to the FCC lattice in that these atoms are placed in the center of faces, but only a single pair of 

opposite faces will contain these atoms.  An additional “centering” scheme is Rhombohedral (R), 

but no additional atoms are added to the cell.  Instead α, β, and γ are each adjusted such that they 

are all equal, but not equal to 90
o
, while keeping a = b = c.  This is also sometimes called a P 

lattice, but its use is not consistent.   

 

 

Figure 2.20 The four lattice “centering” schemes.  (a) Primitive (P) is a cube or rectangle.  (b) Face Centered (F) has 

an atom at the center of each face of the P lattice.  (c) Body Centered (I) has an interior atom equidistant from each 

lattice point in the P lattice.  (d) Base Centered (C) has an atom in the center of two opposite faces. 

 

Thus far, only cubic symmetries have been discussed.  In other words, all lattice 

parameters are equal and all angles between them are 90
o
.  A total of 14 Bravais lattices can be 
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described by using the centering schemes (P, F, I, C, R) and allowing the lattice parameters (a, b, 

c) and angles (α, β, γ) to vary (Table 2.3).  Some centering schemes are redundant when used on 

multiple different base lattices.  The Bravais lattices are the smallest number that can be used to 

uniquely describe any crystalline symmetry.    

Table 2.3 Basic lattices and their allowed centering schemes.   

Base Lattice Centering Schemes Lattice Parameters Lattice Angles 

Cubic P, I, F a=b=c α = β = γ = 90
o
 

Tetragonal P, I a=b≠c α = β = γ = 90
o
 

Orthorhombic P, I, F, C a≠b≠c α = β = γ = 90
o
 

Hexagonal P a=b≠c α = β = 90
o
, γ = 120

o 

Rhombohedral R or P a=b=c α = β = γ ≠ 90
o
 

Monoclinic R, C a≠b≠c α = γ = 90
o
, β ≠ 90

o 

Triclinic P a≠b≠c α ≠ β ≠ γ ≠ 90
o
 

 

Crystalline phases can be identified by their space group, which contains information 

regarding the symmetries within a given atomic arrangement.  There are several notable notation 

schemes such as the Schönflies notation (most commonly used to describe molecular symmetries 

in spectroscopy), but the primary labeling used in this dissertation is the International (also 

known as Hermann-Maugin) notation.  In the International notation, the label is based on the 

type of Bravais lattice the structure represents.  Depending on the arrangement of atoms within 

the overall Bravais lattice, 230 individual space groups can be identified.  The centering scheme 

can be determined at a glance: the first character is always a letter corresponding to the centering 

scheme (Figure 2.20).  Additional numbers and letters are used to describe the rotation axes (e.g. 

3 for a 360 3o
 rotation or -3 (or 3 ) for an improper rotation of the mirror image), mirror planes 

(m), glide planes (a, b, c, n, d) and screw axes (numerical subscript after a rotation.  e.g. 21 is a 2-

fold rotation followed by a translation of ½ the lattice vector).  For example, table salt (NaCl) 

contains a pair of inter-penetrating face centered cubic (FFC) lattices with a space group of 
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3Fm m  (Figure 2.21).  From its space group it is immediately apparent that this structure 

contains face centered symmetries with a pair of mirror planes as well as a 3-fold improper 

rotation.   

 

Figure 2.21 Example of table salt, NaCl, with a space group of 3Fm m .  Na is represented by the red atoms and Cl 

by white.  It is composed of two inter-penetrating FCC lattices.  Plot generated using GSAS II [57].  

 

If the space group is known, the symmetries at any generic point within the unit cell are 

also known.  In other words, if an atom is located at (x, y, z) within a unit cell, the symmetries 

present in the space group will determine how many more atoms must be present and where they 

must be located.  In the case of a 96 atom unit cell, this greatly reduces the amount of work 

required to completely reconstruct the entire lattice.  Specific lattice sites will have certain 

allowed symmetries and knowledge of a single one of those points allows the remainder to be 

filled in.  These symmetry sites are known as the Wyckoff Positions.  They are designated by a 

number and a letter, where the number represents the multiplicity and the letter specifies the 

unique symmetries associated with the position (e.g., 4a).  These start at a and increment up.  In 

the above case of NaCl, there are a total of 27 individual atoms in the unit cell, but only two 
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individual atomic positions are required to populate the full lattice.  A Na atom is placed at (0, 0, 

0) (the origin, located in the back corner; Wyckoff position 4a) and a Cl atom is placed directly 

in the center at (½, ½, ½) (Wyckoff position 4b).  The individual atomic positions are fractions 

of the lattice parameter in the x, y, and z directions.  The Wyckoff positions for each space group 

have been tabulated and are available on the web at: http://www.cryst.ehu.es/cgi-

bin/cryst/programs/nph-wp-list [59-61]. 

A compilation of known phases for metallic alloy systems is published in Pearson’s 

Handbook of Crystallographic Data for Intermetallic Phases [62].  Most of the time, the phases 

of interest are contained therein.  However, metastable phases are often not listed, or phases that 

form under very restrictive conditions.   

2.11.2 Phase Identification in GSAS II 

All phase identification was performed using the Python-based GSAS II software [57].  

The analysis begins with a measured intensity profile, I(q).  Since the positions of the diffraction 

peaks can be used to fingerprint phases, fully correcting the intensities is of less importance as 

the measured peak positions are typically well defined.  In powder diffraction studies (Section 

2.2), the raw output from the Rigaku acquisition is already in the form of a 1D intensity curve as 

a function of scattering angle, 2θ.   

http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-list
http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-list
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Figure 2.22 Steps required to convert synchrotron I(q) into a properly formatted I(2θ) for analysis in GSAS II. 

 

The X-ray batch LabVIEW analysis package [14] can save the intermediate I(q) during 

data reduction.   Typically crystallographic analysis is done as a function of 2θ rather than q, so 

the synchrotron I(q) is converted to I(2θ) using the known X-ray energy (Section 2.4) and the 

inverse of Eqn. 2.4.  In order to properly prepare I(q)s for importing into GSAS, they were first 

imported into Origin and converted from q to 2θ (Figure 2.22).  The Origin function Analysis → 

Mathematics → Interpolate/Extrapolate was used to re-sample the input I(2θ) and force an even 

spacing which is required for importing into GSAS II using the GSAS-CW ESD format.  An error 

column was created with relative error of 1%, but this was purely for formatting purposes.  The 

error value is not used in the phase identification.  2θ, I(2θ), and 1%Err columns were saved into 

a *.dat file and then imported into a free program, Powder4 

(http://www.ccp14.ac.uk/tutorial/powder/xyw_to_gsas_esd.html).  This program was written by 

N. Dragoe in order to simplify the process of converting between file formats from various 

diffraction analysis programs.  I(2θ) was imported using File → Open → X, Y, Z free ascii mode.  

The file was then be exported using File → Gsas – CW ESD and saving it as *.gsa or *.gsas. 

I(q) from X-ray 

Batch.vi  

Interpolate over N 

points → Even spacing 

Create error 

column 

Save *.dat file → xyz Import into Powder4 – 

X,Y,Z free ascii 

Export as Gsas – 

CW ESD 

Import to GSAS II as 

GSAS Powder 

Load synchrotron 

instrument file 

http://www.ccp14.ac.uk/tutorial/powder/xyw_to_gsas_esd.html
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Figure 2.23 Importing into GSAS II. 

 

Once the file was successfully converted to a properly formatted *.gsas file, it was 

imported into GSAS II (Figure 2.23) as a GSAS powder type file.  After loading, GSAS asks to 

load an instrument parameter file.  If Cancel is selected, it provides a number of options that 

relate to various types of instruments such as CuKα which was used for Rigaku powder files, 

time-of-flight (TOF), and 0.7 Å synchrotron data.  If the latter option is selected, the wavelength 

can be updated to the value used to acquire the data (Figure 2.24)  

 

Figure 2.24 Adjusting the experimental X-ray wavelength. 
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In order to identify the phase or phases that formed within the sample, representative 

diffraction patterns can be calculated within GSAS II based on known space groups, lattice 

parameters, and atomic lattice sites.  Since this is all done with standard procedures within GSAS 

II, the details will not be covered here.  User tutorials and guides can be found at the project 

home page (https://subversion.xor.aps.anl.gov/trac/pyGSAS).   

In order to determine whether or not a chosen phase was consistent with the experimental 

data, at least one variable must be selected to be free to refine.  The first attempts typically use 

the lattice parameters and relative phase fractions.  The refinement is begun using Calculate → 

Refine from the main menu.  If a test-phase is going to fit the input data, it will typically be 

immediately obvious, with the majority of the calculated peaks matching the position of features 

from the experimental data.  If large shifts of lattice parameters are required for the fit to match 

the data (±0.5 Å), it is likely not a good match unless large atomic size mismatches are observed.    

In some situations, a selected phase will very closely match the experimental data with 

the exception of relative peak amplitudes.  During crystallization, as well as when crushing 

samples into powder, some larger crystallites can form with a preferred orientation, breaking the 

isotropic assumption.  This can be accounted for by allowing preferred orientation parameters to 

be adjusted.  Within GSAS II, up to 20 orders of spherical harmonics were refined.   

The Rietveld refinement minimizes the difference between the experimentally observed 

intensity, Y
obs

, and the calculated curve, Y
calc

, given by: 

 ,

1 1

( )
p m

calc

i b i l j j j

l j

Y I k I y x
 

    (2.37) 

https://subversion.xor.aps.anl.gov/trac/pyGSAS
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at each point in 2θ, i.  Ib,i represents the background at that point, the sum over l covers the 

number of phases, p, being used to fit the data, kl is the phase scale factor for the l
th

 phase, and 

the sum over j covers all m Bragg reflections that contribute to the intensity at point i.  Ij is the 

total intensity from the j
th

 Bragg peak and yj(xj) is a function that represents the shape of the 

peak.  The goodness of fit is calculated using a weighted profile residual factor, 
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where  
1

obs

i iw Y


 .  A fit is typically considered good if Rwp < 10%.  High measured 

background can artificially reduce this value since it is easy to subtract out, so careful judgment 

should be used in order to determine quality of fit.  For further information regarding the 

Rietveld method, see [63]. 
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Chapter 3: Structural evolution in Ni-Nb and 

Ni-Nb-Ta liquids and glasses – A measure of 

liquid fragility? [1] 
This chapter has been published in the Journal of Non-Crystalline Solids in collaboration 

with N. A. Mauro, J. C. Bendert, and K. F. Kelton [1], and has been adapted to be consistent with 

the formatting in this dissertation.  The author’s personal contributions include reduction of 

detector data into S(q) and g(r) and subsequent analysis, measuring the glass density, running the 

RMC simulations and analyzing the results, and participating in writing the manuscript.  A large 

portion of the writing was performed by N. A. Mauro.  Scattering data were collected during 

BESL 2010, and liquid density data were acquired by J. C. Bendert (Washington University in 

Saint Louis, Saint Louis, MO).   

3.1 Introduction 

Bulk metallic glasses (BMGs), i.e. glasses that can be cast into large sizes due to their 

low critical cooling rates, form a unique class of functional materials whose properties make 

them the focus of significant fundamental and technological research.  Most BMGs have been 

discovered in multicomponent alloys; binary alloys are generally considered to have a low glass-

forming ability (GFA).  Transition metal (TM) binary BMGs have only been reported in a few 

alloy families [2-7].  One of these families, the Ni-Nb alloys, is reported to form binary bulk 

metallic glasses at a composition of Ni62Nb38 with a critical casting thickness of 2 mm [5]. These 

glasses are of practical interest since they are reported to have excellent compressive strength 

and corrosive resistance [8], while retaining a small reduced glass temperature.  For several 

reasons, these glasses are also of fundamental interest.  The bulk-forming compositional range 
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for these glasses is extremely narrow [5] and the three empirical rules for BMG formation [9] do 

not apply.  The best bulk glass-forming composition (Ni62Nb38) is not at the eutectic composition 

(Ni59.5Nb40.5), in contradiction with usual expectations [10].  Additionally, glass formation is 

improved with small compositional changes, including the substation of Ta for Nb [11-14].  

Glass formability and physical properties are related to local atomic order.  However, the 

precise nature of these relations remains one of the central problems in the study of metallic 

liquids and glasses.  Based on both theoretical and experimental studies, it is generally accepted 

that the development of atomic order in the liquid that is different from that of energetically 

accessible crystalline phases raises the nucleation barrier and stabilizes the liquid below the 

equilibrium liquidus temperature, both aiding glass formation [15, 16].  Supporting this, X-ray 

[17] and neutron [5, 18-20] diffraction studies show a shoulder on the high-q side of the second 

peak in the total static structure factor, S(q), that is often taken to be an indication of icosahedral-

like short-range order (ISRO) [16, 21, 22], which is incompatible with crystal periodicity.  

However, diffraction studies of high- and low-GFA liquids and glasses in a range of alloy 

families show that a developing shoulder on the second peak in S(q) with decreasing temperature 

is a nearly universal feature.  It cannot, therefore, be used as a measure of good GFA.  Instead, 

the rates of evolution with temperature of some structural metrics are emerging as discriminating 

measures for GFA.  Molecular dynamics simulations of low-GFA Cu-Zr [23, 24] liquids indicate 

that their structures change rapidly near the glass transition, while the structures of high GFA Zr- 

[25, 26] and Pd- [26, 27] based liquids evolve gradually over a wide temperature range above 

and through the glass transition temperature.  Quantifying this evolution may lead to a better 

understanding of glass-forming ability.  Because of their relative simplicity, binary glasses and 
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liquids, such as the Ni-Nb alloys, provide excellent systems for studying the structural 

dependence of glass formability in a systematic fashion. 

In this manuscript, the results from diffraction studies of containerlessly-processed Ni-Nb 

liquids and the corresponding glasses are presented.  The experimental and analysis techniques 

used are described in Section 3.2.  In Section 3.3, the results of high-energy synchrotron X-ray 

diffraction studies and thermophysical property measurements of Ni59.5Nb40.5, Ni62Nb38, and 

Ni60Nb30Ta10 liquids and glasses are presented.  In Section 3.4 the results of a structural 

characterization based on Reverse Monte Carlo fits to experimentally-determined static structure 

factors are presented and discussed.  Trends in the structure factors and pair-correlation functions 

of the liquids that show evidence for deviations near the glass transition are also discussed.  The 

work is summarized and conclusions are drawn in Section 3.5. 

3.2 Experimental 

Master ingots (∼1.0 g) of all compositions were prepared by arc-melting high-purity 

elements Ni (99.995%), Nb (99.95% metals basis excluding Ta), and Ta (99.95%) on a water-

cooled copper hearth in a high-purity (99.999%) Ar atmosphere.  The ingots were crushed and 

portions were arc-melted to obtain small spherical samples (∼2.5 mm diameter) for in situ liquid 

structural studies at the Advanced Photon Source (APS) on 6-ID-D using the Washington 

University Beamline Electrostatic Levitator (WU-BESL) [28, 29].  WU-BESL is optimized for 

X-ray diffraction studies of levitated, containerlessly-processed, liquids in a high-vacuum 

environment (10
-7

 Torr).  Several of the master ingots were melted by RF-induction heating to 

1300-1350 °C (well above the liquidus temperature) in a graphite crucible under a high-purity 

(99.999%) Ar atmosphere and rapidly quenched onto a copper wheel that was rotating at ~70 

m/s, producing ribbons that were continuous for 3-10 cm with an average cross section of 1-2 
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mm by 20-30 μm.  Laboratory X-ray diffraction (Rigaku, Cu-Kα, λ = 1.54 Å radiation) and high-

energy synchrotron diffraction studies confirmed that the as-quenched ribbons were amorphous.  

Synchrotron scattering studies of the glasses were made at the APS in transmission geometry by 

mounting the ribbon samples on the 6-ID-D beamline goniometer. 

The liquid temperature was measured from 160 C to 2300 C using two infrared 

pyrometers with overlapping temperature ranges.  A single-color Process Sensors Metis MI18 

MB8, operating at a 1.89 µm wavelength, was used for low-temperature measurements (160–800 

C), and a Process Sensors Metis MQ22 two-color ratio pyrometer, operating at 1.40 and 1.64 

µm wavelengths, was used for high-temperature measurements (600–2300 C).  Ratio 

pyrometers provide more accurate measurements of the temperature because emissivity changes 

with temperature are normalized out [30].  Because of the close measured wavelengths, relative 

changes in the emissivity at each measured wavelength over a narrow temperature range are 

expected to be small.  Emissivity ratios were calibrated by matching the melt plateau in the 

time/temperature curve obtained on heating in the ESL (the onset corresponds to the solidus 

temperature, Ts) to the largest endothermic transition signature measured in a differential thermal 

analyzer (Labsys
TM

 DTA/DSC, Setaram Instrumentation).   

To obtain the maximum supercooling, the levitated samples were heated to 1400 
o
C, well 

above the liquidus temperatures (TL) for the three samples studied, using a fiber-coupled diode 

laser (980 nm, 50W continuous maximum power output).  The samples were subsequently 

allowed to cool by radiation loss, with the laser power turned off.  A constant emissivity ratio 

was assumed over the entire temperature range for which structural data were acquired.  

Crystallization from the supercooled metastable liquid was marked by a single large-temperature 

increase (recalescence).  Sample masses were measured before and after ESL processing to 
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determine mass loss during processing, which would indicate a change in composition.  In all 

cases the mass loss was kept negligible.  

The temperature measurements were correlated with non-contact volume measurements 

of the liquid samples.  These were made using the shadow method [31, 32] with a Pixelink PL-

B741G CMOS camera and a 455 nm collimated microscope LED, which has a total beam power 

of 240 mW and a beam diameter of 37 mm.  The pixel dimensions were calibrated before and 

after each sample measurement using 2.38125 ± 7.62 x 10
-4

 mm diameter (grade 3) tungsten 

carbide standards.  The sample volume was determined from the shadow of the backlit levitated 

sample [33], and the density was then calculated by multiplying the sample mass by the inverse 

of the volume.  The volume is recorded as a video as a function of time and temperature during 

radiative free-cooling with the heating laser turned off.  During free-cooling, the temperature of 

the sample is described by  

  4 4

0p B T

dT
mC A T T

dt
     , (3.1) 

where m, Cp, dT/dt, B, A, T, T, and T0 are the sample mass, specific heat, cooling rate, Stefan-

Boltzmann constant, sample surface area, total hemispherical emissivity, sample temperature and 

ambient temperature, respectively.  The video data were taken at a frame rate of 20-25fps.  

Details of the machine vision volume measurement algorithm are given elsewhere [31].  The 

relative precision of the density data was ~0.3% over the temperature range studied, with an 

absolute accuracy of ~0.5%; the measurement error is dominated by errors in the volume and 

mass calibrations.  The densities of the amorphous ribbons at room temperature were determined 

using Archimedes’ method, with toluene as the working fluid; the uncertainties in the values 

obtained were between 1.2% and 1.5% after error propagation. 
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High-energy diffraction measurements of the liquids and glasses (E = 129 keV, λ = 

0.0969 Å
-1 

for the liquid studies; E = 100 keV, λ = 0.1243 Å
-1 

for the glass studies) were made in 

a transmission geometry to a momentum transfer, q, of 15 Å
-1 

using a GE Revolution 41-RT 

amorphous Si flat-panel X-ray detector.  The structure factor, S(q), was derived from the 

scattering data by first applying an appropriate gain map, masking bad pixels, averaging images, 

subtracting the appropriate dark current, and correcting for oblique incidence, absorption, 

multiple scattering, fluorescence, Compton scattering, and secondary container scattering 

contributions using in-house analysis packages written in LabView
TM 

[22].  Liquid diffraction 

patterns were obtained at a variety of temperatures by controlling the heating-laser power to keep 

the temperature constant.  A series of measurements of duration 10-20 seconds were made at 

each temperature step.  The total static structure factor was calculated from the scattering data 

using   
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where I(q) is the measured diffraction intensity, ai is the atomic fraction of each element, and 

fi(q) is the q-dependent atomic form factor for each species.  The sums were made over all 

species and an isotropic and statistically homogeneous atomic distribution was assumed.  The 

total structure factor is related to the total pair-correlation function, g(r), by a Fourier transform 

as shown in Eqn. 3.3,  

     2

0

sin
1 4 1

qr
S q g r r dr

qr
     , (3.3) 

where 0 is the average number density.  
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Average atomic structures of the liquids and glasses as a function of temperature were 

obtained from Reverse Monte Carlo (RMC) fits to the S(q) data (see [34-36] for a discussion of 

the RMC method).  For this study, atoms with appropriate stoichiometric composition were 

confined to a cubic box with dimensions appropriate to the measured density.  Several RMC fits 

were made for each composition of interest to generate statistical information on the Honeycutt 

and Andersen (HA) indices [37] used to provide quantitative information about the structures 

obtained.  Each RMC fit was started from a random configuration of 5000 atoms and from a face 

centered cubic (FCC) lattice of 4000 atoms.  The data for one composition (Ni59.5Nb40.5) were fit 

at the same temperature (1386 C) eight times to gather a statistical distribution on the output.  

For the RMC fits, the minimum distances (hard-sphere cut-offs) in the partial g(r)s were 

calculated from where g(r) trended to zero on the low-r side of the primary peak and scaled to 

account for atomic size and bonding length contraction due to enthalpy of mixing.  For a given 

liquid composition the values obtained did not change significantly with temperature, and were, 

therefore, taken to be constant.  Within a given composition, the Ni-Ni, Ni-Nb, and Ni-Ta 

distances were set approximately the same (denoted as Ni-(Ni,Nb,Ta)), as were the Nb-Nb, Nb-

Ta and Ta-Ta distances (denoted as (Nb,Ta)-(Nb,Ta)).  These distances were changed between 

compositions to be consistent with the experimental g(r)s.  The Ni-(Ni,Nb,Ta) hard-sphere 

cutoffs were nominally 1.88 ± 0.09 Å; the (Nb,Ta)-(Nb,Ta) hard-sphere cutoffs were nominally 

2.25 ± 0.10 Å.  For the RMC fits to the data for the glasses, the variability of the cutoff distances 

was even smaller between compositions.  The Ni-(Ni,Nb,Ta) hard-sphere cutoffs were nominally 

2.17 ± 0.01 Å; the (Nb,Ta)-(Nb,Ta) hard-sphere cutoffs were nominally 2.61 ± 0.01 Å.  As 

mentioned, the short-range order (SRO) in the atomic structures obtained from the RMC fits was 

evaluated in terms of the HA indices.  For the HA index calculations, the temperature-dependent, 
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nearest-neighbor, cutoff distances were taken to be the location of the minimum in the total g(r) 

after the first peak.  These values did not change significantly with temperature or composition, 

nominally 3.68 ± 0.02 Å in the liquid and 3.57 ± 0.01 Å in the glass. 

The positions and magnitudes of the first peaks in S(q) and g(r) were refined by fitting a 

cubic spline to the peak.  Total uncertainties were estimated by considering perturbations from 

independent sources of errors, including statistical uncertainties, estimated following the method 

described by Hammersley [38], and confidence intervals of fitted correction factors (e.g. 

intensity normalization).  Based on this, the precision of the peak heights in both S(q) and g(r) is 

~0.5% and the accuracy of the peak heights in g(r) is  ~ 4%. 

3.3 Results 

The representative temperature-time free-cooling curves for the three compositions 

studied are shown in Figure 3.1 (a).  For each composition a single melt plateau is observed 

which marks the onset of the solidus temperature, Ts.  For Ni60Nb30Ta10, Ts was determined to be 

1191 ± 5 
o
C; for Ni59.5Nb40.5 and Ni62Nb38, it was 1175 ± 5 

o
C.  These values are consistent with 

the published phase diagram [39-41].  The amount of supercooling was small for all liquids, 

approximately 100 
o
C.  This was true even for the eutectic Ni-Nb liquid, which could be 

superheated by ~200 
o
C above the liquidus temperature before Ni evaporation.  This is in 

contrast with reports from previous levitation studies of Ni-Nb liquids [42], where a supercooling 

of 126 
o
C was reported in one electrostatic levitation study when the liquid was superheated by 

200 
o
C [43].  Significant evaporation loss was reported if this amount of superheating was 

exceeded.  There is one report of an extremely large supercooling of 210 
o
C below the solidus, 

but with a superheating of 400 
o
C [44].  This corresponds to a temperature of 1575 

o
C, where the 

vapor pressure for Ni is 10
-2

 to 10
-1 

Torr [45].  Evaporation was very likely at such extreme 
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temperatures, suggesting that the actual composition of the supercooled liquid was not the 

eutectic composition.  Taken together, these results suggest that heterogeneous nucleation sites 

persist even at the highest superheating. 

The time/temperature curves for all supercooled liquids showed a single, relatively long 

(~ 8 s) recalescence event.  High-energy X-ray diffraction patterns taken during recalescence for 

the Ni59.5Nb40.5 and Ni62Nb38 liquids indicate a phase mixture of the orthorhombic Ni3Nb and 

trigonal Ni6Nb7 equilibrium crystal phases [46].  The diffraction patterns obtained during 

recalescence for the Ni60Nb30Ta10 liquid were consistent with these phases, but with a random 

substitution of Ta onto Nb sites. 
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Figure 3.1 (a) Representative temperature-time curves for a typical heating and free-cooling cycle in the three 

compositions studied.  (b) The temperature upon heating and free-cooling (left ordinate axis) and the specific 

volume (right ordinate axis) as a function of time for one Ni62Nb38 cycle.  The specific volume as a function of 

temperature is highly linear, as shown in the insert. 

 

The sample volume was measured as a function of temperature for multiple radiative 

free-cooling studies for each sample composition.  A representative data set is shown in Figure 

3.1 (b); the temperature-dependent specific volume (average volume per atom) calculated from 

these data is shown in the inset to this figure.  The rate of change of the number density () and 

the coefficient of thermal expansion ( ( ln / )PV T    ) for each liquid composition were 

determined from linear fits to the density and volume data, respectively, following Eqns. 3.4 and 

3.5. 

     1s sT T T      (3.4) 

     1s sV T V T T    (3.5) 
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Here, s and Vs are the density and volume, respectively, at the solidus temperature, Ts.  

The fit parameters are listed in Table 3.1.  Linear temperature dependencies of both the density 

and the volume are found for all compositions studied, indicating that the thermal expansion 

coefficients are constant in the ~ 300 
o
C temperature range over which the data were taken.   

Table 3.1 Fitting parameters for the density and volume for each composition . 

 

 

The measured total structure factors, S(q), for the liquids and glasses and the pair-

correlation functions, g(r), are shown in Figure 3.2.  In all cases, the S(q)s (Figure 3.2 (a-c)) 

oscillate well around unity over the entire q range, indicating the high quality of the experimental 

data.  The lack of high-frequency ripples in the pair-correlation functions (Figure 3.2 (d-f)) 

indicates that there was little systematic error in the S(q) calculation [47] and that the scattering 

intensities were measured to sufficiently large q to minimize truncation ripples.  For all samples 

studied, the intensities of the peaks in S(q) increase with decreasing temperature, the widths 

decrease, and the peak locations shift to higher-q.  These trends continue into the glasses.  They 

indicate a growing structural order with cooling towards and through the glass transition.  For all 

liquids, a shoulder on the high-q side of the second peak in S(q), which is typically taken to 

indicate the development of icosahedral short-range order [16, 21, 22], becomes more 

pronounced with supercooling and evolves into a splitting of the second peak for each glass.  

Composition TS (
o
C) Temperature range Density Parameters Volume parameters 

Tmax (
o
C) ρS (1/Å

3
) β (1/

o
C) VS (Å

3
) α (1/

o
C) 

Tmin (
o
C) (Uncertainty) (Uncertainty) (Uncertainty) (Uncertainty) 

Ni59.5Nb40.5 1175 1400 

1170 

6.92E-02 

( 3.50E-04) 

-6.18E-05 

( 3.09E-06) 

14.448 

( 7.20E-02) 

6.21E-05 

( 3.10E-06) 

Ni62Nb38 1175 1310 

1100 

6.98E-02 

( 3.50E-04) 

-7.41E-05 

( 2.22E-06) 

14.337 

( 7.10E-02) 

7.39E-05 

( 3.70E-06) 

Ni60Nb30Ta10 1191 1400 

1090 

6.94E-02 

( 7.90E-05) 

-7.98E-05 

( 2.39E-06) 

14.400 

( 1.60E-02) 

7.90E-05 

( 4.98E-06) 
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Figure 3.2 The total structure factors, S(q), and the pair-correlation functions, g(r), for the liquids at all temperatures 

measured and the glass measured at room temperature.  The inserts for the S(q)s ((a) Ni59.5Nb40.5; (b) Ni62Nb38; (c) 

Ni60Nb30Ta10) and the g(r)s ((d) Ni59.5Nb40.5; (e) Ni62Nb38; (f) Ni60Nb30Ta10) show the evolution of the first and 

second peaks.  For each composition, the insert containing the first peak in g(r) also shows the relative strength of 

the Ni-Ni, Ni-Nb/Ta, and Nb/Ta-Nb/Ta FZ weighting factors (from Table 3.2) at ~2.48 Å, ~2.70 Å, and ~2.95 Å, 

respectively. 

 

An asymmetric first peak in the total pair-correlation function is observed for all liquids 

(inset in Figure 3.2 (d-f)); it continues to develop and becomes more prominent in the glasses.  

The total pair-correlation function is the weighted average of the chemically specific partial pair-

correlation functions (PPCFs).  For binary alloys, then, the first peak represents the contributions 
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of three PPCFs (Ni-Ni, Ni-Nb and Nb-Nb); it represents six PPCFs for the ternary liquid/glass 

(Ni-Ni, Ni-Nb, Ni-Ta, Nb-Nb, Nb-Ta and Ta-Ta).   

Within the Faber-Ziman formalism, the total structure factor is the weighted sum of the 

partial structure factors, Sij(q), 

 
,

( ) 1 ( )( ( ) 1)ij ij

i j

S q q S q    , (3.6) 

where the double sum ranges over all of the elemental pairs, the weighting factors are given by 

[48] 
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where ai is the atomic fraction of each element and fi(q) is the q-dependent atomic form factor for 

each element.  The total PCF is related to the total structure factor by a Fourier transform 
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By substituting Eqn. 3.6 in Eqn. 3.8, the total g(r) can be written as 
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Since the PSFs and the FZ weighting factors are both q-dependent, the construction of the 

PCF requires the convolution of the Fourier transform of two functions.  However, the weighting 

factors are slowly varying functions and, to a first approximation, the contribution of the partial 

pair-correlation functions to the total pair-correlation function is given by the q = 0 value of the 

FZ weighting factors [48].  These PPCF weighting factors are listed in Table 3.2.  This 
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approximation has been confirmed using known PSFs for related systems; it is a reliable 

approximation to between 5 and 10%. 

Although it was not possible to directly determine the partial PCFs from the X-ray 

diffraction data, the location of the maxima of the first peaks in the different partial PCFs 

(corresponding to the first coordination shells) are approximately dictated by the atomic sizes of 

the constituent elements [49], which are consistent with published data [18, 20].  Table 3.2 

summarizes the expected positions of the peaks in the partial PCFs that contribute to the main 

peak in the total g(r).  The relative weight (from the FZ factors in Table 3.2) and the positions of 

the partial PCF peaks are shown graphically for each composition in Figure 3.2 (d-f).    

Table 3.2 Faber-Ziman (FZ) multiplicative weighting factors for the contributing PPCFs and the estimated bond 

lengths from atomic size consideration. 

Partials Ni59.5Nb40.5 

FZ factors 

Ni62Nb38 

FZ factors 

Ni60Nb30Ta10 

FZ factors 

Estimated average 

bond length (Å) 

Ni-Ni 0.251 0.278 0.213 2.48 

Ni-Nb 0.500 0.499 0.312 2.70 

Ni-Ta N/A N/A 0.185 2.73 

Nb-Nb 0.249 0.224 0.114 2.92 

Nb-Ta N/A N/A 0.136 2.95 

Ta-Ta N/A N/A 0.040 2.98 

 

The asymmetry observed in the first peaks in g(r) for the liquids and glasses is the result 

of the positions of the first peaks in each of the partials being locating at different r values.  The 

Ni-Ni contribution to the first peak in g(r) is small and contributes to broadening observed at 

low-r.  The Ni-Nb (or Ni-Nb + Ni-Ta) contribution is large and centered near r ~ 2.7 Å, the peak 

location in the total g(r).  Finally, the Nb-Nb (or Nb-Nb + Nb-Ta + Ta-Ta) contribution is 

centered near r ~ 2.95 Å, causing the peak in g(r) to spread to high r, producing an asymmetry.  

The similarities in the measured total pair-correlation functions suggest that the chemically 
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specific PSFs and partial PCFs are very similar for the three compositions.  The slight 

differences observed in the total PCFs in Figure 3.2 can be explained by differences in the FZ 

factors weighting the partial PCFs. 

The second peak in the g(r) from all of the glasses shows a pronounced splitting that is 

much more prominent than in the liquid data.  This can be attributed to the development of 

medium-range order (MRO) in the glass, which has been observed in neutron diffraction studies 

[18-20].  Depending on the scattering contrast between elements, this MRO can be manifest as a 

pre-peak in the total structure factor, and, if they are available, can be directly observed in partial 

structure factors (PSFs).  While no PSFs have been measured for the liquids studied here, 

neutron diffraction studies on NixNb(100-x) (x = 40, 50, 56 and 63) glasses have been made using 

isotopic substitution [18].  These show evidence for MRO in both the Ni-Ni and Nb-Nb PSFs, 

for glasses with Ni concentrations larger than 40 at.%.  It is likely that MRO is present in the 

liquids studied here, but the X-ray scattering contrast is insufficient to show a pre-peak in the 

S(q).  The problems associated with insufficient scattering contrast between constituent elements 

has been recently discussed by Mauro and Kelton [50].   

3.4  Discussion 

The amplitude of the first peak in S(q) (denoted as S(q1)) is shown as a function of 

temperature in Figure 3.3.  An interesting feature emerges on examining the growth of S(q1) as 

the liquid is cooled into the glass.  In the liquid, S(q1) increases approximately linearly with 

decreasing temperature for all compositions; the best-fit lines are shown with 95% confidence 

intervals.  The liquid structure will continue to change with decreasing temperature, until it 

reaches the glass transition temperature, Tg, at which point it will become essentially fixed within 

a narrow temperature range below Tg (except for structural relaxation processes that are slow on 
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the time scale of the cooling).  Since it was not possible to supercool the liquid to Tg using the 

BESL, the data from the glasses measured at room temperature were extrapolated to Tg to 

compare with the behavior of the liquid, when extrapolated from high temperature.  Since the 

structure of the glass is approximately constant below Tg, changes to S(q) with temperature will 

be due to atomic vibrations, which can be calculated from the Debye theory [51].  
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Here, WT(q) is the Debye-Waller factor at temperature T, θD is the Debye temperature, M is the 

atomic mass, T1 is the temperature at which the static structure factor (ST1(q)) was measured, and 

T2 is the temperature at which the structure factor (ST2(q)) is calculated.  The Debye temperatures 

were estimated by a weighted average of the Debye temperatures of the alloy elements [52, 53], 

giving 37.375 
o
C, 39.7 

o
C, and 34.5 

o
C for Ni59.5Nb40.5, Ni62Nb38, and Ni60Nb30Ta10 respectively.  

With Eqns. 3.10 and 3.11, the S(q) was estimated near the glass transition temperature for each 

sample, using the S(q) that was measured at room temperature.  Using Eqn. 3.8, the 

corresponding g(r)s were also estimated at Tg, by taking a Fourier transform of the extrapolated 

S(q). 
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Figure 3.3 Amplitude of the first peak in S(q) as a function of temperature for each composition.  The S(q1) from the 

Debye-Waller-corrected S(q) for the glasses for each composition are shown at the respective glass transition 

temperatures.  Linear best-fit lines for the S(q1) liquid data extrapolated down to near Tg are shown with 95% 

confidence intervals.  The data corresponding to the liquid are indicated with solid symbols; those corresponding to 

glass solid are open symbols.    

 

Linear extrapolations to Tg of the amplitudes of the first peak in S(q) (Figure 3.3) and g(r) 

(Figure 3.4) for the liquids are considerably smaller than the values extrapolated from the 

glasses.  (It should be noted that the larger range in the extrapolated value for the eutectic 

composition (Ni59.5Nb40.5) than for the other compositions is a consequence of the smaller liquid 

data set, i.e. measurements at only three temperatures.)  These results suggest that the rate of 

structural ordering in the liquid accelerates at some temperature between the lowest one 

measured in the supercooled liquid and Tg.  All liquids show the same trend, not appearing to 
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differentiate the better glass formers (Ni62Nb38 and Ni60Nb30Ta10) from the poorer one 

(Ni59.5Nb40.5).  A qualitatively different behavior was observed for a few high-GFA bulk metallic 

glass-forming Zr-based and Pd-based bulk metallic glass-forming liquids that have been studied 

[25-27], which showed no evidence for a sudden change in their structural features determined 

from scattering studies near Tg.  This indicates that the differences between the three liquids 

studied here may be smaller than the differences between these glass-forming alloys and other 

glass-forming systems. 

 

Figure 3.4 Amplitude of the first peak in g(r) as a function of temperature for each composition.  The g(r1) from the 

Fourier transform of the Debye-Waller corrected glassy S(q) for each composition are shown at the respective glass 

transition temperatures.  Linear best fit lines for the g(r1) for the liquid for each composition are shown with 95% 

confidence intervals, extrapolated down to near Tg.  The data corresponding to the liquid are indicated with solid 

symbols; those corresponding to glass solid are open symbols.    
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For all compositions studied, the position of the first peak in S(q) (located at q1) shifts to 

higher-q and thus to shorter length scale with decreasing temperature.  This is consistent with the 

measured average density, which increases with decreasing temperature.  The measured q1 

increases approximately linearly with decreasing temperature from the liquid into the glass, with 

a maximum shift over the entire temperature range measured of about 0.6%.  The significant 

error in this extrapolated value (due to the small temperature range over which liquid data could 

be obtained and the large separation in temperature between the liquid measurements and those 

of the glass) makes only a qualitative analysis of this trend possible.  The position of the primary 

peak in g(r), r1, for each composition in the liquid state shifts by a maximum of 0.1% over the 

temperature range measured.  As with the shift in q1, a quantitative analysis is not conclusive due 

to uncertainties in the data. 

The atomic structures of the liquids as a function of temperature, and the glasses at room 

temperature, were obtained from RMC fits to the total structure factor.  Extensive discussions of 

the RMC method and the interpretation of the data obtained can be found elsewhere [53-55].  

The large incident X-ray beam size used (.7 mm x .7 mm square) probes a sufficiently large 

portion of the sample as to obtain information that represents an average of the different local 

structures.  Since RMC is an inverse method that uses one-dimensional scattering information to 

construct a three-dimensional structure, some caution should be exercised when interpreting the 

results.  This has been explored previously for amorphous metals [56], where it was found that 

the topological information obtained from a Honeycutt-Anderson analysis of an RMC structure 

is reliable, both when unconstrained RMC fits were made to X-ray total structure factors and 

when the fits are constrained by chemically specific partials obtained from ab-initio molecular 

dynamics calculations.  However, the quantitative chemically specific information contained in 
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the partial pair-correlation functions is unreliable in unconstrained RMC fits.  The partial PCFs 

show features that are qualitatively consistent with data obtained previously for metallic glasses 

[19, 57, 58] but the positions of the first peaks differ considerably from the reported values.  

Therefore, for the liquids and glasses presented here, only the topological structures as 

characterized by their HA indices are discussed. 

Atomic models that were consistent with the experimental scattering data were obtained 

for the liquid and glass at each composition.  RMC fits were also made to the S(q) data from the 

glasses, which were extrapolated from room temperature to their respective Tg.  As noted in 

Section 3.2, the convergence of the RMC fits was explored for different starting configurations at 

each temperature, examining both ordered (cubic symmetry) and random initial configurations.  

In all cases, a good fit was obtained for all scattering momentum transfer, q. Figure 3.5 shows 

representative RMC fits for Ni59.5Nb40.5 at 1400 C (liquid) and at 25 C (glass).  For all 

compositions and at all temperatures, the S(q) obtained from RMC fit the first peak almost 

perfectly, and only slightly under-represent the second peak and shoulder.  The higher order 

peaks were fit well in all cases.    
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Figure 3.5 Representative RMC fits for Ni59.5Nb40.5 at 1400C (liquid) and 25C (glass).  (a) The RMC fits over the 

entire q range; (b) the RMC fits for the first peaks; (c) the RMC fits for the second peaks. 

 

An HA analysis was made of the structures obtained from the RMC fits; the most 

relevant indices are shown in Figure 3.6.  The variations in HA for the different initial 

configurations for the RMC fits are reflected in the error bars presented.  Liquids and glasses of 

all compositions show prevalence for icosahedral (1551) and distorted icosahedral (1541+1431) 

local order, which is common in TM-based metallic liquids and glasses [22, 35, 59].  For the 

liquids, this order exceeds 30-40% of the sum of all of the HA nearest-neighbor indices, 

regardless of temperature.  However, the fraction of icosahedral and icosahedral-like order 

becomes even more dominant in the glass, exceeding 60% of the total sum of HA indices.  This 

is due in large part to a dramatic increase in the 1551 index.  Only small amounts of BCC-type 

(1661) and crystal-close-packed-type (1421 +1421) order are observed in the liquids and glasses. 
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Figure 3.6 HA analysis of the structures obtained from the RMC fits for each composition at each temperature, 

scaled to the total number of measured 1xxx pairs.  The HA indices calculated from the room temperature S(q) data 

for the glass after extrapolation to the glass transition temperature.  The best fit lines for the 1551 index (liquid only) 

for each composition are shown with 95% confidence intervals, extrapolated to near Tg.  The data corresponding to 

the liquid HA indices are indicated with solid symbols; those corresponding to the glasses are shown as open 

symbols. 

 

An interesting feature emerges on examining the growth of the 1551 index.  In the liquid, 

this index increases approximately linearly with decreasing temperature (Figure 3.6); the best-fit 

lines are shown with 95% confidence intervals.  Since upon cooling, the rate of structural change 

in the glass is arrested near Tg, the number of 1551 indices estimated from the results of a RMC 

fit to the glass S(q) data at Tg, extrapolated from the room-temperature data, should correctly 

reflect the structure at that temperature.  A linear extrapolation of the number of 1551 indices in 

the liquid phase to the glass transition temperature (noted for all compositions in Figure 3.6) is 

well below that estimated for the glass.  Like the trends observed in the S(q) and g(r) peak 
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heights, these results suggest that the rate of development of the 1551 index accelerates at some 

temperature between Tg and the lowest temperature at which data were obtained in the 

supercooled liquid.  This acceleration is not observed in the other indices, which is consistent 

with the results of MD simulations for Cu-Zr liquids and glasses [23], where only some features 

of the local atomic order accelerate near Tg.  Like the experimental results shown here in the Ni-

Nb and Ni-Nb-Ta liquids, the MD simulations show that, for Cu-Zr liquids above but near Tg, the 

1551 index decreases rapidly with increasing temperature [23].   

It might be expected that the rate of increase in the 1551 HA in the liquids would be 

arrested on cooling toward the glass transition temperature, reflecting a decreasing atomic 

mobility which should cause a decrease in the rate of structural evolution.  Such behavior has 

been observed in a few bulk metallic glass-formers in the Zr-based family [25, 26] and the Pd-

based family [26, 27].  The differences in the structural evolution of these Zr-BMG-forming 

liquids and the Ni-Nb glass-forming liquids can be understood within the fragility classification 

(strong/fragile) [60]. Quantities such as the viscosity, specific heat, volume, etc. change more 

rapidly near Tg for fragile liquids than for strong liquids.  The data presented here suggest that 

structural properties derived from the X-ray static structure factor also provide a measure of the 

fragility.  Within the framework of fragility, schematically illustrated in Figure 3.7, the structural 

changes in strong liquids are expected to be more gradual and begin at higher temperatures than 

in fragile liquids, which would show significant structural changes only near the glass transition 

temperature.   
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Figure 3.7 Schematic illustration of how structural metrics such S(q1), g(r1), HA index, etc. change with 

temperature for (a) strong and (b) fragile liquids. 

 

Rapid structural ordering in liquids of the type inferred here has been observed in MD 

simulations.  Cu-Zr liquids, for example, show the rapid formation of Cu-centered clusters, near 

Tg but before vitrification [24].  However, to our knowledge this is the first study of this directly 

from scattering data.  Further, rapid structural ordering in Ni-Nb-based liquids upon approaching 

Tg has not been observed previously in scattering experiments or MD simulations.  The atomic 

structures of Ni-Nb glasses are believed to be fundamentally different from those of the Zr-rich 

binary glasses [61].  Yet both are fragile and both indicate rapid structural ordering in the liquid 

at temperatures near the glass transition temperature.  Taken together, then, the MD results for 
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Cu-Zr liquids and the experimental results presented here indicate that the temperature-

dependent structural changes that can be deduced directly from the S(q) and g(r) obtained from 

X-ray studies could be a universal indicator of liquid fragility.  If true, such structural studies 

could provide an easier method for obtaining fragility information than from viscosity 

measurements.  Since the HA indices for icosahedral ordering are the ones that show the most 

dramatic change on approaching Tg, this suggests that icosahedral ordering is intimately linked to 

fragility.  It also supports previous work indicating that icosahedral ordering plays an important 

role the glass transition [30]. 

3.5 Conclusion 

Containerless measurements were made of the density, volume, thermal expansivity and 

X-ray diffraction for Ni62Nb38, and Ni60Nb30Ta10 (bulk metallic glass-forming) and for 

Ni59.5Nb40.5 (non-bulk metallic glass-forming) equilibrium and supercooled liquids.  Atomic 

structures were obtained from Reverse Monte Carlo fits to the scattering data.  Few experimental 

data sets exist that include structural measurements for both the supercooled liquids and the 

glasses at the same composition.  Interestingly, the structural and thermophysical properties are 

similar, despite the different glass-forming abilities of the liquids.  This indicates that the 

signature of glass formability in the liquid far above the glass transition temperature is weak.  

However, based on the evolution of the amplitude of the primary peak in S(q), the first peak in 

g(r), and the amount icosahedral order in the structure (in terms of the HA 1551 index), there is 

an acceleration of the structural change in the liquid near the glass transition temperature.  This 

rapid development of structural ordering is similar to what is observed in the viscosity, specific 

heat, volume, etc., of a fragile liquid.  This is in contrast to the behavior observed in a Zr-based 

bulk metallic-glass-forming strong liquid.  There, the growth of the icosahedral 1551 HA index 
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changes linearly in the liquid with decreasing temperature, with the rate of change decreasing 

near Tg as a consequence of the decreasing atomic mobility.  That the 1551 index shows the 

expected behavior for both strong and fragile glasses, indicates that the evolution of icosahedral 

order is intimately linked to liquid fragility.   
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Chapter 4: Structural Evolution and 

Thermophysical Properties of ZrxNi100-x 

Metallic Liquids and Glasses [1] 
This chapter has been published in the Journal of Non-Crystalline Solids in collaboration 

with N. A. Mauro, A. J. Vogt, M. E. Blodgett, C. Pueblo, and K. F. Kelton [1], and has been 

adapted to be consistent with the formatting in this dissertation.  The author’s personal 

contributions include the acquisition and analysis of X-ray and thermophysical data and writing 

the manuscript.  Initial data reduction and preliminary results were performed by A. J. Vogt.  

Some viscosity data were acquired by M. E. Blodgett.  Glassy ribbons were prepared by C. 

Pueblo, who also performed DTA and DSC  measurements.  All authors participated in the 

acquisition of high-energy X-ray data during BESL 2013 and significantly contributed in 

drafting the results.   

4.1 Introduction 

Since the discovery of metallic glasses [2], considerable effort has gone into 

understanding the fundamental processes that govern why some metallic liquids can be cooled 

slowly into a glass, while others must be rapidly-quenched.  The rapidly slowing liquid kinetics 

upon approaching the glass transition temperature, Tg, play a significant role in glass formation, 

which ultimately hinges on avoiding crystallization.  Since the viscosity increases by nearly 15 

orders of magnitude from the liquidus temperature to Tg, it is a particularly sensitive property, 

useful for characterizing liquids.  As the temperature is decreased, the viscosity increases with an 

Arrhenius behavior for those liquids characterized as strong.  In contrast, fragile liquids show 

highly non-Arrhenius behavior, with a rapid increase in the apparent activation energy upon 
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approaching Tg [3].  Generally strong liquids have a higher glass-forming ability (GFA) than 

fragile liquids [4-6], making a deeper understanding of fragility of both fundamental as well as 

practical interest.  While fragility is typically defined in terms of the viscosity, it fundamentally 

reflects ordering in the liquid structure.  Improvements in containerless processing and levitation 

techniques allow this ordering to now be investigated quantitatively.  While some structural 

studies have been possible using containers, structural investigations of glass-forming liquids 

over a wide compositional range are lacking.  The recent development of the Washington 

University Beamline Electrostatic Levitation facility (WU-BESL) [7, 8] has enabled such 

studies, allowing high-energy X-ray diffraction studies to be made of metallic liquids and glasses 

for a wide range of alloy families and compositions.  These experiments have provided precise 

determinations of the X-ray static structure factors, S(q), and pair-correlation functions, g(r), for 

many glass-forming liquids.  With this improved data quality, the link between structural 

ordering and fragility was recently demonstrated experimentally [9].  As explained later in this 

section, the Zr-Ni liquids provide an excellent system for exploring these points further and for 

developing possible correlations between GFA and structural and thermophysical properties. 

Both X-ray and neutron scattering experiments have shown that with increased 

supercooling, metallic liquids develop significant short-range and often medium-range order [10-

14].  While the total structure factors and pair-correlation functions are qualitatively similar for 

almost all metallic liquids and glasses, it has been established recently that there are quantitative 

differences that may be correlated with GFA [9].  For Ni-Nb [15], Cu-Zr [16, 17], and other 

fragile metallic glass-forming liquids, studies have shown that the ordering must accelerate as the 

temperature of the supercooled liquid approaches Tg.  In several studies of fragile liquids, 

Reverse Monte Carlo (RMC) fits to experimental data [15] and molecular dynamics (MD) 
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simulations [18] have demonstrated that the rapid ordering is due to a rapid increase in the 

number of particular local atomic clusters.  Experimentally, the increased ordering manifests as a 

deviation from an extrapolation of the first peak height in the total structure factor, S(q1), of the 

high-temperature liquid to the glass at Tg, leading to the definition of a structural fragility index 

[9]                
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Like the kinetic fragility parameter, m,  increases with increasing liquid fragility.  The 

rapid increase in S(q1) near Tg for fragile liquids is in contrast to the behavior of S(q1) for 

stronger Zr- and Pd- based liquids [19].  There, the extrapolated high-temperature liquid values 

for S(q1) are nearly the same as for the glass at Tg, indicating a more constant rate of structural 

ordering over the temperature range from near the liquidus temperature, TL, to Tg. 

Since metallic liquids with high GFA typically contain four or more components, the 

measured total structure factor is composed of many partial structure factors, making it 

extremely difficult to unravel the nature of the chemical and topological ordering.  The simpler 

binary liquids and glasses are better suited for such studies, although they have a lower GFA.  

Zr-Ni is known to form a glass across a wide range of compositions, albeit only when rapidly-

quenched at cooling rates of at 10
5
-10

6
 K/s [20].  These alloys also form the basis of more 

complex alloys with better GFA.  Zr-Ni liquids and glasses have been extensively studied by X-

ray [21-25] and neutron scattering [14, 23, 26-31], as well as through  simulations [22, 32-34].  

The results from these studies have attracted attention because of the evidence for significant 

chemical ordering in both the liquid and glass [22, 23, 32, 34].  However, to our knowledge, 

there has never been a comprehensive investigation of the ordering of Zr-Ni across a large 



122 

 

compositional range.  Furthermore, most structural studies have focused only on the liquid or the 

glass and not the relationship between the two.  

In this work, results from a coordinated study of the structure and thermophysical 

properties are presented for three Zr-Ni alloys selected to represent a wide compositional range: 

Zr36Ni64, Zr57Ni43, and Zr76Ni24.  Viscosity and density measurements were made over a wide 

temperature range for all liquids while processing in a containerless environment.  Results from 

high-energy X-ray diffraction studies of the equilibrium and supercooled liquids and the 

corresponding glasses suggest that distinct asymmetric features in the total pair-distribution 

function reflect chemical ordering in all three alloys, starting in the high-temperature liquid and 

increasing into the glass.  Based on a quantitative analysis of the temperature dependence of the 

static structure factor, all three liquids are fragile. 

4.2 Experimental procedure 

Master ingots for all compositions were prepared by arc-melting high-purity Zr (99.95 

at.%, including Hf nominal 3 at.%) and Ni (99.995 at.%) on a Cu hearth in a high-purity (99.999 

at.%) Ar atmosphere.  A Ti-Zr getter located close to the sample was melted prior to arc-melting 

to further reduce the oxygen concentration in the chamber.  Each ingot was melted three times to 

ensure that the samples were homogeneous; each melt cycle lasted approximately 60 s.  Sample 

mass loss during arc-melting was negligible (less than 0.1%).  The master ingots were 

subsequently crushed and portions were re-melted to obtain small spherical samples (~2.5 mm 

diameter) for in situ liquid structural studies at the Advanced Photon Source (APS) in sector 6-

ID-D, using the Washington University Beamline Electrostatic Levitator (WU-BESL) [7, 8].  

WU-BESL is optimized for X-ray diffraction studies of levitated, containerlessly processed 

liquids in a high-vacuum environment (~10
-7

 Torr).  Metallic glasses were prepared by RF 
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induction, melting portions of the master ingot in a graphite crucible under a high-purity 

(99.998%) Ar atmosphere and then rapidly quenching the liquid onto a copper wheel that was 

rotating at ~60 m/s.  This produced continuous 3-10 cm ribbons with an average cross section of 

1-2 mm x 20-30 μm.  Studies made using a Rigaku powder diffractometer (Cu Kα, λ = 1.54 Å) 

and high-energy X-ray diffraction studies made at the APS confirmed that the as-quenched 

ribbons were fully amorphous.  

For the levitation experiments, the liquid samples were heated, melted, and subsequently 

thermally processed using a fiber-coupled diode laser (980 nm, 50 W continuous maximum 

power output).  Crystallization of the supercooled liquid, marked by a sharp rise in temperature 

(recalescence), limited the lowest temperature for the X-ray diffraction studies to 230 
o
C below 

the liquidus temperature.  Sample masses were measured before and after thermal processing to 

determine the mass loss during processing, which would indicate a change in composition due to 

Ni evaporation.  Based on measurements of the partial pressure of oxygen in the levitation 

chamber, the mass change from oxygen absorption or oxidation is negligible.  Our evaporation 

measurements indicate that the large negative heats of mixing between Ni and Zr decrease the 

evaporation rate significantly below a rule of mixtures estimate, leading to a maximum predicted 

composition shift of 0.1 at.% during the thermal cycling of these experiments.  Care was taken to 

limit the time each sample was at extreme temperatures, and in all cases the mass loss was 

negligible.   

Single amorphous ribbons were mounted to a resistive heating apparatus in the WU-

BESL and held in approximately the same location as the levitated samples.  The ribbons were 

thermally cycled from room temperature to near Tg multiple times, while simultaneously 

acquiring diffraction images and temperature measurements.  The cycling allowed the diffraction 
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patterns to be monitored until they were completely reversible up to Tg, indicating complete 

structural relaxation before crystallization occurred.  The relaxed glasses were then held 

isothermally for 60 s at a series of temperatures that increased towards Tg.  They were then 

heated at a rate of 40 to 100 K/min through Tg until crystallization was observed.  The resistive 

method used here allowed the samples to be heated quickly and their small size allowed them to 

cool quickly when the heating current was removed.  It is more common to place samples in a 

quartz capillary, which is then heated with an external furnace.  However, this suffers from slow 

heating and cooling rates.  The lack of a capillary greatly reduced the background scattering, 

allowing the quantitative structural studies presented here.   

The temperatures of the amorphous ribbons and levitated liquids were measured from 

160 
o
C to 2300 

o
C using two infrared pyrometers with overlapping temperature ranges.  A single-

color Process Sensors Metis MI18 MB8, operating at a 1.89 μm wavelength, was used for low-

temperature measurements (160-800 
o
C) of the liquids and glasses and a Process Sensors Metis 

MQ22 two-color ratio pyrometer, operating at 1.40 and 1.65 μm wavelengths, was used for high-

temperature measurements (600-2300 
o
C) of the liquids.  Ratio pyrometers provide more 

accurate measurements of the temperature because emissivity changes with temperature are 

normalized out [35], since relative changes in the emissivity at each of the two close wavelengths 

are expected to be small.  A constant emissivity ratio was assumed for the entire temperature 

range over which structural data were acquired.  For the liquids, the emissivity ratio was 

calibrated by matching the melt plateau in the temperature versus time curve measured on 

heating in the BESL to the largest endothermic signature measured in a differential thermal 

analyzer (DTA) (Labsys
TM

 DTA/DSC, Setaram).  In the ESL measurements, the plateau 

corresponds to the solidus temperature, TS.  For the amorphous ribbons, the low-temperature 
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pyrometer was calibrated by matching the onset temperature of the appearance of crystal peaks 

in the X-ray diffraction patterns with the onset temperature for the exothermic crystallization 

signature in a differential scanning calorimeter (DSC) (PerkinElmer DSC 7).  The same heating 

rates were used for the X-ray and DSC studies.   

For the liquid samples, the temperature was correlated with non-contact measurements of 

the volume.  The projected area of the sample was obtained using the shadow method [36, 37] 

with a Pixelink PL-B74IG CMOS camera and a 455 nm collimated microscope LED, which has 

a total beam power of 240 mW and a beam diameter of 37 mm.  The video data were taken at a 

frame rate of 20-25 fps.  The pixel dimensions were calibrated before and after the set of 

measurements on each sample using 2.38125 ± 0.00076 mm diameter (grade 3) tungsten carbide 

standards.  The volume was determined from the area data, assuming that the sample was 

symmetric about the vertical axis [38], and the density was calculated from the product of the 

inverse of the volume and the measured sample mass.  The relative precision of the density data 

was ~0.3% over the temperature range studied, with an absolute accuracy of ~0.5%; the 

measurement error is dominated by errors in the calibrations of the volume and mass.  A more 

detailed discussion of the machine vision volume measurement algorithm can be found 

elsewhere [36].  The densities of the amorphous ribbons were determined at room temperature 

using Archimedes’ method, with toluene as the working fluid.  The total uncertainties in the 

values obtained were between 1% and 2%.  

The liquid viscosity was measured as a function of temperature using the oscillating drop 

technique [39-41], where a perturbing voltage on the top and bottom electrodes caused sample 

oscillation.  The viscosity is related to the decay time in the surface oscillation when the 
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perturbation is removed.  The surface oscillations were measured by a Pixelink PL-B74IG 

CMOS camera operating at a high frame rate (1500 fps).  More detail is given elsewhere [41].  

The diffraction studies of the liquids and glasses were made in a transmission geometry, 

using high-energy X-rays (E = 132 keV, λ = 0.0940 Å).  Scattering data were obtained to a 

momentum transfer, q, of 20 Å
-1

 at a sampling rate of 1 Hz using a GE Revolution 41-RT 

amorphous Si flat-panel X-ray detector.  The sample-to-detector distance, detector tilt, and 

detector center were calibrated by fitting the diffraction pattern of a levitated polycrystalline Si 

sample.  These values were confirmed using a NIST Si standard in a capillary placed at the 

position of the levitated liquid sample.  The scattering data obtained were processed by masking 

bad pixels, applying a pixel efficiency gain map, averaging the images obtained during the 

isothermal hold, and subtracting the appropriate detector dark current and scattering background.  

Images were then corrected for oblique incidence, absorption, multiple scattering, fluorescence, 

polarization, sample geometry, and Compton scattering contributions using in-house analysis 

packages written in LabVIEW
TM

 [42].  A series of measurements were made at each temperature 

step (15-20 s duration for liquids, up to 60 s for glasses) to obtain the total static structure factor 

using  
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, (4.2) 

where I(q) is the measured diffraction intensity, ci is the atomic fraction of each elemental 

species, and fi(q) is the q-dependent atomic form factor for each species.  The sums were taken 

over all species and an isotropic and statistically homogeneous atomic distribution was assumed.  
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The total pair-correlation function, g(r), was computed from a Fourier transform of the structure 

factor,  
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   , (4.3)  

where ρ0 is the average number density. 

The positions and magnitudes of the first peaks in S(q) were refined by fitting a cubic 

spline to the peak.  The total measurement uncertainties were estimated by considering 

perturbations from independent sources of error (including statistical uncertainties) following the 

method described by Hammersley [43], and from the confidence intervals of fitted correction 

factors (e.g. intensity normalization).  Based on this, the precision of the peak heights in S(q) was 

0.4-1.7% for both liquids and glasses.  However, because the scattering from the single-ribbon 

glasses was weak, the accuracy of the calculated peak heights in S(q) is estimated, at ~6%.  The 

accuracy in the calculated peak heights in S(q) for the liquids is much better, ~1%, due to the 

high signal-to-noise in the scattering data. 

4.3 Results and Discussion 

For each composition, a single melt plateau at the solidus temperature, TS, was observed 

upon heating.  These temperatures were calibrated using DTA measurements of TS, which gave 

1070 ± 5 
o
C for Zr36Ni64, 1025 ± 5 

o
C for Zr57N43, and 980 ± 5 

o
C for Zr76Ni24.  Representative 

temperature-time curves for each composition are shown in Figure 4.1.  An inflection was 

observed during the heating of Zr57Ni43 at constant laser intensity (Figure 4.1 (b)), indicating a 

two-phase solid-liquid region that extended to a liquidus temperature, TL, of 1180 ± 5 
o
C.  These 

temperatures are in reasonable agreement with the best available phase diagram for these alloys 
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[44].  The accessible temperature range for the liquid studies was limited by the evaporation rate 

of Ni at high temperatures and the maximum supercooling temperature, which varied with 

composition. 

 

Figure 4.1 Representative temperature-time curves for a typical heating and free-cooling cycle for the three 

compositions studied: (a) Zr36Ni64, (b) Zr57Ni43, and (c) Zr76Ni24.  The solidus temperature, TS, in each cycle 

corresponds to the temperature plateau upon heating.  An inflection at higher temperature in (b) corresponds to the 

liquidus temperature, TL.  The absence of an inflection in either Figure 4.1 (a) or (c) indicates that these are eutectic 

alloys. 

 

The sample volume was measured as a function of temperature for multiple radiative 

free-cooling cycles and combined with the mass to compute the liquid density.  Over the 

measured temperature range (~400 
o
C) the density and volume scale linearly with temperature 

for all liquid compositions.  The density is described by  

 ( ) ( )S S

d
T T T

dT


    , (4.4) 
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where ρS is the liquid density at the solidus temperature, TS.  The average density increases with 

increasing Ni concentration, consistent with the higher density of Ni relative to Zr, and agrees 

with measurements made in other Zr-Ni glasses [31].  The coefficient of thermal expansion at the 

solidus temperature, αS, was calculated for all liquids from a linear fit of the volume as a function 

of temperature using            
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The fitting parameters are listed in Table 4.1.   

Table 4.1 Fitting Parameters for the Density and Volume for each Liquid Composition
a
.  

Composition TS (
o
C) Liquid ρS (g cm

-3
) Liquid dρ/dT (g cm

-3 o
C

-1
) αS (

o
C

-1
) Glass ρ (g cm

-3
) 

Zr36Ni64 1070 ± 5 7.50 ± 0.01 -5.09 ± 0.02 E-4 6.87 ± 0.03 E-5 7.87 ± 0.10 

Zr57Ni43 1025 ± 5 7.02 ± 0.01 -3.51 ± 0.02 E-4 5.08 ± 0.04 E-5 7.21 ± 0.09 

Zr76Ni24 980 ± 5 6.67 ± 0.01 -2.94 ± 0.02 E-4 4.46 ± 0.03 E-5 6.87 ± 0.13 
a
The solidus temperature, TS, was determined from DTA measurements; the liquid density at the solidus, ρS, rate of 

change of the liquid density with temperature, dρ/dT, and the coefficient of liquid thermal expansion at the solidus, 

αS, were determined using the BESL; the glass density at room temperature, ρ, was determined using Archimedes’ 

method. 

 

The liquid viscosity, , was measured as a function of temperature for all liquid 

compositions (Figure 4.2).  It is not possible to present the Zr-Ni liquid viscosity in a typical 

Angell plot [3] since, consistent with previous reports [45, 46], no definitive Tg was observed in 

our DSC scans for the Zr-Ni glasses despite initially annealing the sample at low temperatures.  

Over the high temperature range where it could be measured, however, log10() scales 

approximately linearly with inverse temperature, with only a subtle curvature evident (Figure 4.2 

(b)).  This indicates that the activation energy for flow is approximately constant over this 

temperature range, as expected for high-temperature metallic liquids [47, 48].  An effective 
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activation energy was calculated from the slope of a linear fit to the Arrhenius region of ln() vs. 

1/T using the form 

 
0

1
ln( ) ln( ) AE

R T
   ,  (4.6) 

where EA is the activation energy, R is the ideal gas constant, and 0 is the viscosity at infinite 

temperature (Table 4.2).   

 

Figure 4.2 (a) Liquid viscosity, , as a function of reduced inverse temperature.  (b) log10() versus reduced inverse 

temperature.  In (b) a constant slope is observed over a significant portion of the temperature range studied, 

indicating a constant activation energy in the high-temperature liquid. 

 

While, as mentioned, Tg is difficult to measure in the Zr-Ni glasses, the crystallization 

temperature, Tx, is easily measured due to the large enthalpy release.  Previous studies have 

indicated that Tx - Tg < 10 K for Zr-Ni alloys [45].  Due to the difficulty in measuring Tg, Tg ≈ Tx 
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is used here.  DSC measurements of the onset temperature for crystallization were used to 

calibrate the temperature in the structural studies of the amorphous ribbons.  Similar heating and 

quench rates were used for both measurements.  The crystallization temperatures obtained at a 

heating rate of 40 K/min are presented in Table 4.2. 

Table 4.2 DSC Crystallization Temperature and Effective Activation Energy for Viscosity. 

Sample Tx (40 K/min) Effective Activation Energy (EA) 

Zr36Ni64 568 ± 3 
o
C 72.7 ± 0.4 kJ/mol 

Zr57Ni43 463 ± 3
 o
C 54.6 ± 0.6 kJ/mol 

Zr76Ni24 353 ± 3
 o
C 58.4 ± 0.3 kJ/mol 

 

The total structure factors, S(q), for both the liquids and glasses were calculated from the 

measured intensity, I(q), using Eqn. 4.2; these are shown in Figure 4.3.  In all cases, S(q) 

oscillates well around unity over the entire q-range, indicating the high quality of the 

experimental data.  The amorphous ribbons were not pre-annealed prior to the structural 

measurements in BESL so that structural relaxation could be studied during heating.  The ribbon 

was initially heated to a temperature well below the estimated glass transition temperature, then 

cooled to room temperature.  In subsequent cycles, the maximum temperatures were increased 

until reversible behavior in the height of the first peak in the structure factor, S(q1), was 

observed.  Structural relaxation was observed for all compositions, evidenced by an increase in 

the height of S(q1) and a decrease in its full width at half maximum.   
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Figure 4.3 Static structure factors for liquids and glasses of (a) Zr36Ni64, (b) Zr57Ni43, and (c) Zr76Ni24.  (d) A 

comparison between the S(q)s for all three compositions is shown for the liquids at the highest temperature studied 

(~1435 
o
C) and (e) for the glass at room temperature, after structural relaxation.  S(q)s in a-c are each vertically 

offset by 0.5 for clarity. 

 

For liquids of all compositions, the first peak position shifts towards larger q with 

decreasing temperature, consistent with an increasing density.  The first peak also sharpens and 

increases in amplitude with decreasing temperature, indicating structural ordering in the liquid.  

The features in the first and higher order peaks in the S(q)s for the glasses are dramatically 

sharper than in the liquid, consistent with more structural order in the glass.  A large-q shoulder 

on the second peak is often taken as evidence for icosahedral short-range order (ISRO) [10, 13, 

49].  However, this is often distorted icosahedral order as is the case in the Zr36Ni64 glasses [23].  
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Further, results from MD simulations of Zr-rich Zr2Ni [32] and Zr64Ni36 [34] have shown that the 

dominant  Zr-centered clusters in the liquid are more closely related to higher-coordinated Frank 

Kasper (FK) polyhedra (coordination numbers (CN) of 14-16), while the Ni-centered clusters are 

primarily highly distorted icosahedra (CN of 11-13) with negligible ideal icosahedra (CN of 12).  

The higher-coordinated FK polyhedra are also present in small amounts in the Zr36Ni64 glass, 

with the relatively reduced population likely due to the smaller Zr concentration.  Since the 

second peak in S(q) varies in shape and position across a wide range of compositions (Figure 4.3 

(d-e)), it is possible that there are evolving types of order as Zr is replaced by Ni.  This is 

supported by the differences measured between the partial structure factors obtained from 

neutron scattering studies with isotopic substitution in the Ni-rich Zr36Ni64 glass [23, 50] and 

from  RMC fits to neutron scattering data for the Zr-rich Zr2Ni glass [31].  There have been 

numerous reports of a pre-peak in the experimentally measured S(q) obtained from neutron 

scattering studies of the Zr64Ni36 amorphous alloy.  This indicates the presence of medium-range 

order (MRO), attributed to the Ni-Ni correlation for both the high-temperature liquid [26, 30] 

and the room temperature glass [31].  The pre-peak is also found from ab initio MD calculations 

of the high-temperature liquid [34].  For the Zr36Ni64 glass [23, 50] the pre-peak is attributed to 

both Zr-Zr and Ni-Ni correlations, resulting from pronounced topological and chemical short-

range order due to a preferred Zr-Ni bonding.  However, the feature is not observed in X-ray 

diffraction measurements of the room temperature glass [23], consistent with our results.  There 

is no evidence for a pre-peak for the Zr-Ni liquids and glasses studied here, which is  expected 

due to the respective weighting factors of the Zr-Zr, Zr-Ni and Ni-Ni partial structure factors 

[51]. 
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Figure 4.4 Pair-correlation functions, g(r), calculated from the S(q)s for the liquids and glasses of (a) Zr36Ni64, (b) 

Zr57Ni43, and (c) Zr76Ni24.  The first peaks, corresponding to the first coordination shell, for each alloy (d-f) show a 

marked asymmetry or peak splitting corresponding to the positions of the average bond distances, indicated by the 

dashed lines.  The amplitudes of the peaks giving rise to the asymmetry scale with their respective Faber-Ziman 

weighting, indicated by the height of the solid bars. The g(r)s in a-c are each vertically offset by 0.5 for clarity.  The 

peaks of the g(r)s in d-f increase in amplitude as the temperature is decreased. 

 

The pair-correlation function, g(r), for all liquids and glasses was calculated from the 

S(q)s using Eqn. 4.3; these are shown for all liquids and glasses studied in Figure 4.4.  The 

higher order peaks behave in a similar manner for all liquids, increasing in amplitude and 

shifting towards smaller-r with decreasing temperature.  These trends indicate an increase in the 

correlation length for structural order and an increasing density.  The smallest-r peak (i.e. first 

peak), however, shows an anomalous expansion, shifting towards larger r with decreasing 
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temperature.  This is now emerging as common behavior, reported in many metallic glass-

forming liquids [52, 53].  The character of the first peak in g(r) for the different glasses is one of 

the more interesting features (Figure 4.4 (d-f)).  The Zr57Ni43 liquid and glass show a distinctly 

split first peak with the two sub-peaks having nearly equal amplitudes.  In contrast, the g(r) for 

the Zr36Ni64 liquid has an asymmetric first peak that develops into a small shoulder at large-r in 

the glass, consistent with that observed by Georgarakis et al. [21].  The Zr76Ni24 liquid shows a 

similar asymmetry, but with the shoulder appearing at small-r in the glass.  That the sharper 

features in the g(r)s for the glasses appear at the same positions as the asymmetries in the liquid 

g(r)s suggests that the short-range order in the liquid and glass is similar.  An asymmetry was 

also observed in the first peak in g(r) in Cu-Zr/Hf liquids and glasses [16, 17, 21], although the 

features are more subtle than observed here and only become distinct in the glass.  

EXAFS [25, 54] and neutron diffraction [27, 29] measurements of room temperature 

glasses have shown that the Zr-Ni and Ni-Ni bond lengths are almost identical and essentially 

constant across a range of compositions, while the Zr-Zr bond length is compositionally 

dependent, increasing to larger r as the Zr concentration is decreased.  MD calculations of Zr2Ni 

liquids indicate a small increase of all bond lengths with decreasing temperature, as well as a 

separation of the Zr-Ni and Ni-Ni bond lengths similar to what is observed in the glass [32].  

Based on these measured average bond distances, the large-r feature in the first coordination 

shell (Figure 4.4 (d-f)) corresponds to the Zr-Zr bond, with the position of this feature shifting to 

larger r as the Zr content decreases.  This is consistent with the Zr-Zr bond length increasing 

with decreasing Zr concentration.  The small-r feature corresponds to the combined Ni-Ni and 

Ni-Zr bonds and shifts very little in position across the compositional range studied, consistent 

with other measurements [25].  The average length of the Zr-Ni bond in other studies is 5-7% 
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shorter than the sum of their individual atomic radii [21, 25, 32], consistent with the 6-7% 

decrease observed here.  In the Cu-Zr/Hf liquids and glasses, the average length of the Cu-Zr/Hf 

bond is very close to the sum of the atomic radii, resulting in much more overlap of the 

distribution of the Cu-Zr/Hf and Zr/Hf-Zr/Hf bond lengths in the first coordination shell.  Since 

the atomic sizes of Cu and Ni are very similar, this difference in behavior is likely due to the 

higher enthalpy of mixing between Zr and Ni compared with that between Cu and Zr (-49 and -

23 kJ/mol, respectively [55]).  The reduced average length for the Zr-Ni bonds results in a 

distinct separation of the peaks of the Zr-Zr and Zr-Ni bond length distributions, indicating an 

increase in the chemical ordering of Zr with Ni.  

The relative amplitudes of the first coordination shell features can be described within the 

Faber-Ziman formalism [56], where the partial pair-distribution functions (PPDF), gij(r), are 

related to the partial structure factors (PSF), Sij(q), by  

 
2

0

1 1 sin( )
( ) 1 ( ( ) 1)

4
ij ij

qr
g r S q q dq

qr 
   . (4.7) 

The total g(r) is related to the partials using the q-dependent Faber-Ziman (FZ) weighting 

factor, wij, where, as q  0,  

 
2
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ij i j

Z Z
w c c

Z
 , (4.8) 

where ci is the concentration of the i
th

 atomic species and Zi is the number of electrons in each 

species.  When the features in the partial structure factors vary quickly compared to the atomic 

form factors, the total pair-correlation function can be approximated as a simple weighted sum of 

the partial pair-correlation functions,                                                                   
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This approximation is valid for amorphous metallic alloys and is discussed in more detail 

elsewhere [16, 57-59].  The relative heights of the peaks and shoulders in the first coordination 

shell are well correlated with the relative amplitudes of the FZ factors for the corresponding 

atomic bond distances (Table 4.3).  While the small-r feature corresponds to the combined first 

peaks of the Ni-Ni and Ni-Zr PPDFs, the FZ factor for Ni-Ni is small for all alloy concentrations, 

indicating that the Ni-Ni PPDF contributes very little to the total g(r).  The split peaks in the first 

coordination shell then correspond primarily to contributions from the Ni-Zr and Zr-Zr PPDFs.  

Their sharpening indicates an increase in the coherence length and frequency of Zr-Ni and Zr-Zr 

bonding, signaling chemical ordering for all of the alloys studied.  The sharpening of these peaks 

also indicates an increase in topological ordering, but the well-separated bond lengths show that 

the change in structure is not chemically random but rather is tied to specific chemical 

contributions.  The chemical ordering in Zr-Ni, then, is not restricted to the glass, but also occurs 

in the high-temperature liquid.  Such chemical ordering is, therefore, not unique to Cu-Zr/Hf 

liquids, but may be quite common in metallic alloy liquids.  

Table 4.3 Faber-Ziman weighting factors for each amorphous alloy. 

Composition wNi-Ni(0) wZr-Ni(0) wZr-Zr(0) 

Zr36Ni64 0.307 0.494 0.199 

Zr57Ni43 0.120 0.452 0.428 

Zr76Ni24 0.033 0.296 0.671 
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Figure 4.5 (a) The thermal processing program for Zr57Ni43 glass.  The maximum temperature is slowly increased to 

observe structural relaxation.  (b) The maximum in the first peak in S(q) (S(q1)) in the Zr57Ni43 glass as a function of 

temperature over several processing cycles.  The final cycle is fully reversible after a nearly 8% increase in S(q1) at 

room temperature from the as-quenched structure to the fully relaxed structure.  The error bars reflect the 

imprecision in the height of the first peak in the static structure factor. 

 

A dramatic sharpening of the first peak in S(q) on going from the liquid to the glass is 

observed for all alloy compositions (Figure 4.3 (a-c)) and indicates an increase in the ordering of 

the liquid on a larger scale, accompanying the increasing density.  The increasing height of the 

first peak, S(q1) is correlated with a decreasing peak width.  One benefit of the experimental 

design is the ability to extract quantitative information from these changes with temperature.  As 

already discussed, the as-quenched glasses were thermally cycled to allow structural relaxation 

to be measured.  For illustration, the processing cycle for Zr57Ni43 is shown in Figure 4.5 (a), 

with the change in S(q1) shown in Figure 4.5 (b).  In the case of Zr57Ni43, pronounced changes in 

S(q) accompany structural relaxation, with S(q1) increasing by nearly 8% from the as-quenched 

state to the fully relaxed state (measured at room temperature). 
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Figure 4.6 The maximum in the first peak in S(q), (S(q1)), in the glass and liquid as a function of temperature for (a) 

Zr36Ni64, (b) Zr57Ni43, and (c) Zr76Ni24.  The glass data were obtained after complete structural relaxation.  The 

respective crystallization (Tx), solidus (TS), and liquidus (TL) temperatures are indicated in each panel.  When 

extrapolated to Tg, the liquid S(q1) values are smaller than those for the relaxed glass.  The computed values of the 

structural fragility, , reflect this difference.  The error bars reflect the total uncertainty, incorporating estimates of 

both accuracy and precision. 

 

The temperature dependence of S(q1) for the liquids and glasses of all three compositions 

is shown in Figure 4.6.  At high temperature, S(q1) increases linearly with decreasing 

temperature with very similar rates (dS(q1)/dT) for all liquid alloys.  After complete structural 

relaxation, the temperature dependence of S(q1) for the glass is small, primarily arising from 

atomic vibrations, which are described within the Debye theory [60].  For all three alloys studied, 

a discontinuity is observed between a linear extrapolation to Tg of the S(q1)s for the liquids and 

the S(q1)s measured for the completely relaxed glasses at Tg.  The structurally relaxed state was 

chosen to ensure consistency of the measurements between glasses prepared using different 
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techniques and with different effective quench rates.  From Eqn. 4.1, the calculated structural 

fragility index, , is 15 ± 5% for Zr36Ni64, 7 ± 4% for Zr57Ni43 and 7 ± 5%  for Zr76Ni24.  These 

indicate that a large acceleration of structural ordering must occur in the liquid upon approaching 

the glass transition temperature.  This is the behavior expected for fragile liquids  [9], with the 

Zr36Ni64 appearing more fragile than the other two Zr-Ni liquids.  GFA is often argued to 

correlate with liquid fragility, consistent with the low GFA and high fragility for these alloy 

liquids. 

4.4 Conclusions 

In summary, density, volume, thermal expansivity, viscosity, and high-energy X-ray 

diffraction studies of ZrxNi100-x (x = 36, 57, and 76) equilibrium and supercooled liquids were 

made in a containerless environment using the electrostatic levitation capabilities of the BESL 

facility.  Complementary X-ray data were obtained in the BESL from rapidly-quenched glasses 

made from these liquids.  The smaller background than is possible in capillary measurements 

gave higher quality data that could be compared with the liquid data.  For all alloys, the pair-

correlation function, g(r), showed evidence of chemical ordering between Ni and Zr with 

decreasing temperature that starts in the liquid and becomes more prominent in the glass.  This is 

a manifestation of the strong bonding between Zr and Ni.  Similar evidence for chemical 

ordering was observed earlier by us in Cu-Zr and Cu-Hf liquids and glasses.  The results 

presented here indicate that this may be a common feature in many binary metallic liquids and 

glasses, hinted at by simulations of Zr-transition metal binary alloys [32].  A deeper experimental 

investigation of this ordering requires the measurement of the partial structure factors from, for 

example, neutron diffraction studies.  Topological ordering accompanies the chemical ordering.  

A rapid acceleration in the structural ordering near the glass transition temperature is observed in 
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the temperature evolution of S(q1), indicating a high fragility for the Zr-Ni liquids [9].  Normally, 

fragility is determined by the temperature dependence of the viscosity, which is often difficult to 

measure.  The ability to determine fragility from structural studies provides a new avenue for 

studies of the origin of fragility and for investigating the relationship between fragility and glass-

forming ability.  
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Chapter 5: Measurements of Structural and 

Chemical Order in Zr80Pt20 and Zr77Rh23 

Liquids 
This chapter includes X-ray scattering data acquired during the BESL 2013 experiment 

and neutron scattering data acquired during the NOMAD 2014 experiment.  Some density 

measurements were performed by M. E. Blodgett, and DTA measurements were performed by 

N. A. Mauro (Washington University in Saint Louis, Saint Louis, MO).  Results from MD 

simulations were provided by M. Kramer (Ames Laboratory, Ames, IA) and have been published 

elsewhere [1].  Voronoi analysis was performed using a modified version of Voro++ provided by 

V. Tran (Washington University in Saint Louis, Saint Louis, MO). 

5.1 Introduction 

Although lacking long-range order, metallic liquids do have short-range order (SRO) and 

medium-range order (MRO), which have been heavily studied in recent years through both 

experiment [2-12] and simulations [13-15].  This SRO and MRO are important for understanding 

the nucleation and growth of crystalline phases [16] and can provide insight into metastable 

phase formation and glass formation.  Frank predicted that icosahedral SRO, a structure that is 

highly coordinated but is incompatible with translational periodicity, is dominant in elemental 

liquids [17] and provides a significant energy barrier to crystallization.  Molecular dynamics 

(MD) simulations of pure Cu have provided evidence that this is the case [18], and it has since 

been observed in levitated elemental liquids [12, 19, 20].  In one case, the icosahedral order 

catalyzed the nucleation of a metastable icosahedral quasicrystal phase (i-phase) [16], directly 

demonstrating the impact of order on the nucleation barrier.  Rapidly-quenched Zr-rich 
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compositions of Zr-Pt and Zr-Pd liquids are also known to form the i-phase [21-23], suggesting 

that those liquids could also have dominant icosahedral order.  Supporting this, amorphous Zr-Pt 

can be produced by rapid quenching if the oxygen concentration is increased [24], with the i-

phase as the primary devitrification product [25, 26] followed by the equilibrium hexagonal 

Zr5Pt3 phase [27].  Small changes in Pt-concentration (from 20 at.% Pt to 27 at.% Pt) change the 

transformation kinetics, giving Zr5Pt3 as the primary devitrification product [28] and bypassing 

the formation of the i-phase.  While other similar alloys such as Zr-Rh do not directly form the i-

phase, additions of Rh to Zr-Cu binary alloys does cause quasicrystal formation [29]. 

Previous X-ray scattering studies of Zr-Pt glasses have shown a pre-peak in the total 

structure factor, S(q), at small-q, indicating a significant amount of MRO in the amorphous 

structure [27, 30, 31].  Those studies suggest large amounts of icosahedral and distorted 

icosahedral SRO in the glass, with the pre-peak arising from Pt-Pt correlations.  X-ray scattering 

studies of supercooled Zr80Pt20 liquids suggest that this MRO begins in the high-temperature 

liquid and persists through quenching into the glass [1].  A pre-peak is also a common feature of 

Zr-(noble metal) eutectic liquids, such as Zr-Ir/Pt/Au [5].  However, while the noble metals are 

all similar in size and have similar bonding strengths with Zr, Zr-Rh and Zr-Pd eutectic liquids 

do not contain a pre-peak.  The Faber-Ziman (FZ) weighting factors [32] scale with the square of 

the atomic number, Z.  The lack of a pre-peak in Zr-Rh and Zr-Pd, where Rh and Pd have smaller 

Z than Ir, Pt, and Au, has then been attributed to the small value of the solute-solute FZ 

coefficients compared with those for the other two partials [5].  It is of interest to determine the 

structures of these liquids to further investigate this explanation for the lack of a pre-peak in 

some Zr-noble metal liquids and the reasons for glass and complex crystal phase formation.  

Combinations of data from different types of experiments (e.g., anomalous X-ray scattering, 
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wide-angle X-ray scattering, and elastic neutron scattering using isotopic substitution) are 

typically used to determine the structural and chemical ordering.  The number of experiments 

needed is determined by the number of components in the alloy.  For an alloy with n 

components, ( 1) / 2n n  different experiments are needed to separate the partials. 

Here we report the results of combined wide-angle high-energy X-ray diffraction and 

time-of-flight (TOF) elastic neutron scattering studies on electrostatically levitated Zr80Pt20 and 

Zr77Rh23 liquids.  These suggest that the lack of a pre-peak is not simply due to the values of the 

FZ coefficients.  An analysis of the data shows that while the topological SRO is similar for both 

alloys, Zr77Rh23 has more prominent chemical SRO.  Based on a Voronoi tessellation analysis of 

the atomic structure obtained from a Reverse Monte Carlo simulation of a Zr80Pt20 liquid that is 

constrained by the results of molecular dynamics simulations, the liquid contains dominant 

polyhedra that are consistent with structural features of the equilibrium Zr5Pt3 crystalline phase.  

Due to the topological similarity between Zr77Rh23 and Zr80Pt20, a new phase is predicted, 

Zr5Rh3, and is found as a primary crystallizing phase in the deeply supercooled Zr77Rh23 liquid.  

While the free energies of the stable crystal phases are less, the similarity in structure to that of 

the liquid lowers the nucleation barrier, favoring the formation of the phase. 

5.2 Experimental Details 

Master ingots for all compositions were prepared by arc-melting high-purity Zr (99.95 

at.%, which contained Hf to a nominal concentration of 3 at.%), Pt (99.95 at.%), and Rh (99.8 

at.%) on a Cu hearth in a high-purity (99.999 at.%) Ar atmosphere.  A Ti-Zr getter located close 

to the sample was melted prior to arc-melting to further reduce the oxygen concentration in the 

chamber.  Master ingots were melted three times to ensure that the samples were homogeneous; 

each melt cycle lasted approximately one minute.  Mass loss during arc-melting was negligible 
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(less than 0.1%).  The master ingots were subsequently crushed and portions were re-melted to 

obtain small spherical samples (~2.5 mm diameter) that were processed in a containerless 

environment using the Washington University Beamline Electrostatic Levitation (WU-BESL) 

facility [33, 34].  WU-BESL is optimized for X-ray diffraction studies of levitated, 

containerlessly processed liquids in a high-vacuum environment (~10
-7

 Torr), and was used for 

in situ structural studies of the levitated liquids at the Advanced Photon Source (APS) in sector 

6-ID-D.  Additional master ingots were crushed and re-melted into slightly larger spherical 

samples (~3 mm diameter, 100 mg) for in situ liquid structural studies at the Spallation Neutron 

Source (SNS) located at Oak Ridge National Laboratory (ORNL).  Elastic neutron scattering 

studies were made on the Nanoscale-Ordered Materials Diffractometer (NOMAD) beamline [35] 

using the Neutron Electrostatic Levitator (NESL) [36-38].  The NESL is optimized for time-of-

flight (TOF) elastic and inelastic neutron studies of levitated liquid samples in a vacuum 

environment; the pressure at the sample location was ~8x10
-6

 Torr for these studies. 

5.2.1 X-ray Scattering Details 

For the X-ray experiments, the liquid samples were heated, melted, and subsequently 

thermally processed using a fiber-coupled diode laser (980 nm, 50 W continuous maximum 

power output).  Crystallization of the supercooled liquid, marked by a sharp rise in temperature 

(recalescence), limited the lowest accessible temperature for the X-ray diffraction studies to 190 

o
C below the liquidus temperature (TL).  A Process Sensors Metis MQ22 two-color ratio 

pyrometer, operating at 1.40 and 1.65 μm wavelengths, was used for high-temperature 

measurements (600-2300 
o
C) of the liquids.  A constant emissivity ratio was assumed for the 

entire temperature range over which structural data were acquired.  The emissivity ratio was 

calibrated by matching the onset of the melt plateau (corresponding to the solidus temperature, 
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TS, in the temperature versus time curve measured on heating in WU-BESL) to the largest 

endothermic signature measured in a differential thermal analyzer (DTA) (Labsys
TM

 DTA/DSC, 

Setaram) [39]. 

The temperature was correlated with non-contact measurements of the volume, made 

using the shadow method [40, 41] with a Pixelink PL-B74IG CMOS camera and a 455 nm 

collimated microscope LED.  The relative precision of the density data was ~0.3% over the 

temperature range studied, with an absolute accuracy of ~0.5%; the measurement error is 

dominated by errors in the calibrations of the volume and mass.  A more detailed discussion of 

the machine vision volume measurement algorithm and experimental implementation can be 

found elsewhere [40, 42]. 

The X-ray diffraction studies of the liquids were made in a transmission geometry using 

high-energy X-rays (E = 130 keV, λ = 0.0956 Å for Zr80Pt20, E = 132 keV, λ = 0.09403 Å for 

Zr77Rh23).  Scattering data were obtained to a momentum transfer, q, of 20 Å
-1

 at a sampling rate 

of 1 Hz using a GE Revolution 41-RT amorphous Si flat-panel X-ray detector.  The sample-to-

detector distance, detector tilt, and detector center were calibrated by fitting the diffraction 

pattern of a levitated polycrystalline Si sample.  These values were confirmed using a NIST Si 

standard in a capillary placed at the position of the levitated liquid sample.  The scattering data 

obtained were processed by masking bad pixels, applying a pixel efficiency gain map, averaging 

the images obtained during the isothermal hold, and subtracting the appropriate detector dark 

current and scattering background.  Images were then corrected for oblique incidence, 

absorption, multiple scattering, fluorescence, polarization, sample geometry, and Compton 

scattering contributions using in-house analysis packages written in LabVIEW
TM

 [43].  A series 
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of measurements were made at each temperature step (15-20 s) to obtain the total static structure 

factor using  
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, (5.1) 

where I(q) is the measured diffraction intensity, ci is the atomic fraction of each elemental 

species, and fi(q) is the q-dependent atomic form factor for each species.  The sums were taken 

over all species and an isotropic and statistically homogeneous atomic distribution was assumed.  

The total pair-distribution function, g(r), and the reduced pair-distribution function, G(r), were 

computed from a Fourier transform of the structure factor using  

  
2

( ) 4 ( ) 1 ( ( ) 1)sin( )G r r g r q S q qr dq


    , (5.2) 

where ρexp is the average number density measured as described above. 

5.2.2 Neutron Scattering Details 

For the neutron experiments, the liquid samples were heated, melted, and subsequently 

thermally processed using a pair of fiber-coupled diode lasers (980 nm, 110 W continuous 

maximum power output) on opposite sides of the sample.  Two lasers were used to ensure even 

heating and to minimize the temperature gradient across the larger samples.  Temperatures of the 

levitated NESL samples were measured from 500 
o
C to 1800 

o
C using a single Process Sensors 

Metis MQ22 two-color ratio pyrometer.  A constant emissivity ratio was assumed for the entire 

temperature range over which structural data were acquired.  The emissivity ratio was calibrated 

in a similar manner as WU-BESL measurements [39].  Due to long time-scale drift in the 

positioning lasers, the sample would slowly shift relative to the pyrometer causing an apparent 
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temperature drift in the sample.  The melt plateau was measured before and after each 

measurement and was used to calibrate the isothermal temperature.   

The TOF elastic neutron diffraction studies of the electrostatically levitated liquids were 

made using high-energy neutrons (E = 10 meV – 10 eV, λ = 0.1 – 2.9 Å).  Scattering data were 

obtained to a momentum transfer of 100 Å
-1

 for a series of isothermal measurements (60 min for 

the Zr80Pt20, 30 min for Zr77Rh23).  Diamond powder contained in a pure vanadium can located in 

the approximate sample position was used to calibrate the sample-to-detector distances for each 

3
He linear position sensitive detector covering a scattering angle, 2θ, of 3 – 175 

o
.  A levitated 

sample of incoherently scattering vanadium was used to measure the incident distribution of 

neutron energies for subsequent normalization once coherent Bragg peaks were removed.  Both 

the sample and vanadium measurements were corrected with an empty chamber scan.  

Absorption and multiple scattering contributions were simulated for both the sample and 

vanadium measurements based on a spherical sample geometry using the measured sample mass 

and density and were removed from the scattering data [35]. 

The S(q)s obtained from neutron scattering experiments showed a large overall curvature, 

causing poor normalization around unity.  This feature corresponds to inelastic scattering 

contributions that are manifest as large unphysical peaks in the small-r region of G(r) (r < 1 Å).  

The oscillations were replaced with a linear fit to the hard-sphere region where it is expected to 

go as ( ) 4 .G r r    The difference between the experimental ripples and the fit was then 

Fourier transformed back into q-space and subtracted from the initial S(q).  This method 

produces physically realistic behavior in the hard-sphere region and removes inelastic scattering 

contributions below the first nearest-neighbor distance [44]. 
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In order to effectively compare two independently measured structure factors, they must 

both appear on the same absolute scale.  Incomplete accounting for secondary scattering, i.e. 

neutrons scattered by the sample that undergo subsequent scattering from the environment before 

being detected, is one of the primary causes of incorrect scaling.  In practice, it is nearly 

impossible to properly model the secondary scattering without knowing the precise location and 

material composition of each part of the sample environment.  However, some approximations 

can be made from the expected physical behavior.  The Peterson metric, ΔGlow [45] (Eqn. 5.3), 

quantifies the magnitude of ripples in G(r) below some cut-off before the first peak, rlow, which 

corresponds to the hard-sphere cutoff where no atom may be located.    
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 (5.3) 

The parameter ρfit is the number density calculated from the slope of a linear fit below rlow in 

G(r).  The slope of this region was adjusted to minimize ΔGlow, minimizing the deviation from 

linear behavior.  The measured S(q) was then multiplied by a scaling factor, α, according to the 

method described by Peterson [45] using 

 '( ) ( ) (1 )S q S q    . (5.4) 

Here, S’(q) is the corrected structure factor and the additive constant of 1-α is required to 

maintain oscillation of the structure factor about unity.  Since α is a constant, it propagates 

through a Fourier transform and changes the scaling in real space as well without otherwise 

changing or distorting the real space features.  It was adjusted until the experimentally measured 

number density, ρexp, matched ρfit.  This treatment was applied to the S(q)s obtained from both 

the X-ray and neutron measurements and was confirmed to give identical results for 
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measurements of identical alloys at the same temperature from two separate X-ray scattering 

studies.     

5.2.3 Reverse Monte Carlo Fits 

Atomic configurations were obtained from the scattering data with the Reverse Monte 

Carlo (RMC) technique [46] using RMC_POT [47].  By constraining the fits with the results 

from the X-ray and neutron scattering experiments, the extraction of physically-reasonable, 

chemically-specific partial structure factors (PSF) could be obtained.  In addition, fits to the 

liquid Zr80Pt20 data were constrained using the Zr-Pt partial pair-distribution function (PPDF) 

obtained from ab initio MD simulations [1].  A detailed discussion of the choice of this 

constraint is given in Section 5.3.2.  The starting configurations for the RMC fits contained 

10,000 atoms (8,000 Zr, 2,000 Pt) that were randomly distributed in a cubic box with a size 

constrained by ρexp(T) measured in WU-BESL.  Minimum PPDF cutoff distances were used to 

increase the convergence of the fit and were set optimally at 2.2, 2.2, and 2.4 Å for Zr-Zr, Zr-Pt, 

and Pt-Pt respectively.  The atomic configurations obtained from the RMC fits were analyzed 

with Voronoi tessellation techniques [48, 49] using Voro++ [50].  Recently, the importance of 

weighted bisectors in the Voronoi analysis has become clear [51].  Elemental Goldschmidt radii 

[52] were used to calculate more physically realistic bisecting planes between two atoms of 

different sizes.  The effect of weighted bisectors is to create a larger separation in the average 

coordination numbers (CN) of the large and small atoms by more accurately modeling how much 

space each individual atom encompasses.  Because the liquid structure is already disordered and 

the local coordination number is continuously changing, the time-averaged atomic configuration 

will contain many unphysically-sized faces that incorrectly identify an atom as a neighbor.  To 

correct for this effect, faces with an area smaller than 0.25 Å
2
 were removed.  This cutoff was 
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determined by the maximum face area that caused a histogram of edge sizes to appear to follow 

Gaussian distribution without altering the shape of the large-edge size.  The CRMC fits were 

performed eight times for each temperature to generate sufficient statistics and determine the 

error bars in the Voronoi and CN analysis. 

5.3 Results and Discussion 

5.3.1 Liquid X-ray and Neutron Scattering Measurements 

The total structure factors, S(q), were measured for Zr80Pt20 and Zr77Rh23 liquids from 

high-energy X-ray and TOF neutron scattering data obtained over a temperature range of 980 - 

1300 
o
C (Figure 5.1).  Since the oscillations in S(q) damp to close to unity by q = 12 Å

-1
 in 

liquids, the data acquired beyond this are not shown here.  As the temperature of Zr80Pt20 is 

decreased below the solidus temperature (TS = 1177 
o
C, measured with DTA) into the 

supercooled liquid, the primary peak sharpens and the second peak develops two distinct 

shoulders.  These features indicate that the liquid structure is becoming increasingly ordered as 

preferred length scales emerge during cooling.  Due to the limited temperature range over which 

Zr77Rh23 was measured (ΔT = 50 
o
C, TS = 1061 

o
C), very little peak evolution was observed.  For 

both alloys, the primary peak from X-ray scattering data is shifted to slightly larger-q than in the 

neutron scattering experiments; the shift is more noticeable in the broad second peak.  These 

features are due to differences in the weighting of the partial structure factors between the X-ray 

and neutron scattering, likely revealing chemically specific short-range ordering (CSRO). 
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Figure 5.1 Total S(q)s measured for levitated liquid (a) Zr77Rh23 and (b) Zr80Pt20 using both X-ray (solid lines) and 

neutron (solid symbols) scattering. 

 

The S(q) for Zr80Pt20 contains a pre-peak at q~1.6 Å
-1

, consistent with previous liquid [1, 

5] and glass studies [27, 30, 53].  Appearing in both X-ray and neutron data, it is greatly reduced 

in the latter (Figure 5.2).  This feature has been argued to reflect the Pt-Pt correlation between Pt-

centered icosahedron-like clusters [1, 30, 54].  It is interesting to note that, while many of the 

features of the Zr77Rh23 and Zr80Pt20 S(q)s are remarkably similar, the pre-peak is absent in both 

X-ray and neutron S(q)s for Zr77Rh23.  A previous study of the MRO in Zr-(noble metal) (NM) 
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liquids [5] suggested that the same sort of chemical order is likely present in all of these alloy 

liquids, but the pre-peak might not appear due to smaller chemical contrast from the Faber-

Ziman (FZ) [32] weighting factors. 

 

Figure 5.2 Neutron (―) and X-ray (−∙−) scattering in the low-q region at ~1100 
o
C for Zr77Rh23 (top) and Zr80Pt20 

(bottom) liquids (vertically offset by 0.5 for clarity).  The dotted blue lines (∙∙∙∙) are guides to the eye to emphasize 

the pre-peak that forms in Zr80Pt20.   

 

The relative amplitudes of the first coordination shell features can be described within the 

Faber-Ziman formalism [32], where the partial pair-distribution functions (PPDF), gij(r), are 

related to the partial structure factors (PSF), Sij(q), by   
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Here, ρexp is the experimentally measured number density (Table 5.1) and is given by  

 
exp ( ) ( )S S

d
T T T

dT


    . (5.6) 

TS is the solidus temperature and ρS is the number density measured at TS.  The total g(r) is 

related to the partials using the q-dependent FZ weighting factor, wij, where, as q  0,  

 
2

(0)
i j

ij i j

Z Z
w c c

Z
 . (5.7) 

Here, ci is the concentration of the i
th

 atomic species and Zi is the number of electrons in each 

species.  For neutron scattering, Z is replaced by the neutron scattering length, b.  When the 

features in the partial structure factors vary rapidly with q compared to the atomic form factors, 

the total pair-correlation function can be approximated as a simple q-independent weighted sum 

of the partial pair-correlation functions, 

 ( ) (0) ( )ij ij

i j

g r w g r . (5.8)                                                                   

This approximation is valid for amorphous metallic alloys and is discussed in more detail 

elsewhere [3, 55-57].  The equivalent weighting factors for neutron scattering are calculated 

using Eqn. 5.7 by replacing Z with the neutron scattering length, b.  The calculated X-ray 

weighting factors for Zr77Rh23, 
,X ZrRh

ijw , are almost equal to the neutron weighting factors for 

Zr80Pt20,  
,N ZrPt

ijw  (Table 5.2).  By the argument given previously [5], since no pre-peak is 

observed in X-ray measurements for Zr77Rh23, it should not be observable in the neutron 

scattering data for Zr80Pt20.  That it is observed, however, indicates that the two liquids must 

have different topological and/or chemical ordering, calling into question the previous 

interpretation of similar structures among Zr-NM liquids [5]. 
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Table 5.1 Measured liquid density and change with temperature (see Eqn. 5.6). 

Composition TS (
o
C) ρS (g cm

-3
) dρ/dT (g cm

-3
 
o
C

-1
) 

Zr80Pt20 1177 ± 5 8.38 ± 0.01 -3.30 ± 0.02E
-4

 

Zr77Rh23 1061 ± 5 7.22 ± 0.01 -3.24 ± 0.02E
-4

 

  
Table 5.2 Faber Ziman weighting factors for X-ray and neutron scattering (see Eqn. 5.7). 

Alloy Scattering type wii wij wjj 

Zr80Pt20 X-ray 0.45195 0.44065 0.10741 

  Neutron 0.56093 0.37604 0.06302 

Zr77Rh23 X-ray 0.56022 0.37651 0.06326 

  Neutron 0.64397 0.31701 0.03901 

  

5.3.2 Single Partial Subtraction 

Previous structural studies of liquid Zr80Pt20 were based on RMC fits to experimental X-

ray scattering data and constrained by the PPDFs from ab initio MD simulations of 100 atoms 

(80 Zr, 20 Pt) [1].  While these MD-PPDFs are consistent with g(r) from X-ray scattering 

experiments (g
X
(r), Figure 5.3 (a)), they are less consistent with g(r) from neutron scattering 

experiments (g
N
(r), Figure 5.3 (b)).  While MD gives g(r)s for the higher-order coordination 

shells consistent with g
N
(r), the primary peak, g(r1), is not well reproduced. 
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Figure 5.3 Liquid g(r)s (red curves) at 1299 
o
C, showing the results from (a) neutron and (b) X-ray scattering 

measurements.  The partials for gZrZr(r) (blue), gZrPt(r) (green), and gPtPt(r) (pink) from MD are weighted by their 

appropriate FZ weighting factors (Eqn. 5.7).  The total g(r)s from MD for both types of scattering are also plotted 

(solid symbols). 

 

If two contrasting scattering experiments are performed, such as using a combination of 

X-ray and neutron scattering, two independent equations can be constructed from Eqn. 5.8 that 

contain weighting factors specific to the scatterer (i.e., using fi(q) for X-rays and bi for neutrons).  

Three independent equations are required to completely solve for all gij(r)s in a binary alloy.  

However, if only two experiments are performed, the individual contribution of any single gij(r) 

can be removed using an appropriate linear combination of the two equations [58-60]  using: 
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. (5.9) 

Here the superscripts X and N represent X-ray and neutron scattering, wij is the weighting factor 

for the ij
th

 partial (ij = Zr,Pt), and i'j' represents the partial being removed.  If experimentally 

determined g(r)s are available, the contribution from a single partial, gi'j'(r), can be removed 

using the left-hand-side of Eqn. 5.9.  Alternatively, an equivalent curve can be calculated if a full 

set of gij(r)s are known, such as through MD, using the right-hand-side of Eqn. 5.9.   

When compared with the MD results (open circles, Figure 5.4), the best agreement was 

observed when the contribution from the Zr-Zr partial was removed (Figure 5.4, black curves).  

The primary peak amplitude in Δgno-ZrZr was underestimated by MD, but the peak position was in 

approximately the correct location.  In contrast, the worst agreement was found when the Zr-Pt 

contribution was removed (Δgno-ZrPt, Figure 5.4, red curves).  In this case, there was a large offset 

between the primary peak positions, with the experimental value located at larger-r.  The Zr-Zr 

partial is ~85% of the total contribution to Δgno-ZrPt, suggesting that the main peak position 

primarily corresponds to the average Zr-Zr bond distance, giving rZr-Zr = 3.32 Å.  This is in better 

agreement with EXAFS measurements of a Zr80Pt20 glass [61] (3.26 Å) than with MD (3.14 Å).  

When the Pt-Pt partial was removed (Figure 5.4, blue curves), there was again a large 

discrepancy between the MD and experiment.  This is also weighted heavily towards the Zr-Zr 

contribution (~71%), consistent with MD underestimating the Zr-Zr bond length.  In all cases, 

the second- and higher-order peaks were consistent between both experiment and MD.  Since the 

best agreement was found when gZrPt(r) was the dominant partial and large inconsistencies were 

found when gZrZr(r) was present, gZrPt(r) was chosen as the third constraint for the RMC 

simulations.  
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Figure 5.4 Experimental and calculated values of contributions to the total g(r) when a single partial is removed 

using Eqn. 5.9.  Large differences are observed when the Zr-Zr partials dominate.  Each curve is offset by 3 for 

clarity. 

 

5.3.3  Constrained Reverse Monte Carlo  

As discussed in Section 5.2.3, atomic configurations for the liquids were generated from 

the experimental scattering data using the Reverse Monte Carlo technique [46].  It is important to 

note that, while producing realistic results, RMC structures are not unique.  They are the most 

disordered structures that can describe the experimental data.  Since the measured S(q)s are 

already averaged over many liquid configurations due to the rapid dynamics in the liquid and the 

long acquisition times, the structures obtained from RMC are reasonable approximations to this 

average.  However, while the total structure factor is generally well reproduced, RMC structures 

obtained from a single experimental X-ray or neutron scattering constraint do not properly 

capture chemical order, yielding unphysical PPDFs.  This can be significantly improved by 
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constraining the RMC fits with multiple experimental inputs, such as from X-ray, neutron, and 

EXAFS measurements, as well as with PPDFs obtained from MD simulations.  

Based on the results from Section 5.3.2, RMC fits to the experimental S(q)s from X-ray 

and neutron scattering, S
X
(q) and S

N
(q), were additionally constrained with the Zr-Pt partial, 

gZrPt(r), obtained from the MD simulations.  The constrained fits agreed well with both X-ray and 

neutron results (Figure 5.5 (a)).  S
X
(q) was in particularly good agreement.  The positions and 

amplitudes of the first peak in g(r) were consistent with both the neutron and X-ray results 

(Figure 5.5 (b)).  The pre-peak in S
N
(q) was not reproduced with the constraints used; only when 

the RMC fits were constrained with the two experimental measurements and not the MD results 

did the pre-peak appear.  In that case, however, the PPDFs contained unphysical features due to 

insufficient constraints during the RMC fitting procedure. 

When compared with the PPDFs obtained from MD, gZrPt(r) was well reproduced, since it 

was one of the input constraints to the CRMC fit (Figure 5.6 (b)).  As predicted, the gZrZr(r) from 

RMC shifted to slightly larger-r relative to MD (Figure 5.6 (a)).  The most significant difference 

with MD was in gPtPt(r) (Figure 5.6 (c)), where the very small first peak nearly doubled in size 

and shifted to slightly larger-r.  This larger nearest-neighbor Pt-Pt correlation is consistent with 

previous CRMC results made using EXAFS measurements of Zr80Pt20 glasses [62].  The 

amplitude of the second-neighbor shell (r~4.5 Å) for gPtPt(r) is also increased.  The PSFs from 

the CRMC show very good agreement with the Zr-Pt MD partial (Figure 5.7 (b)), as expected, 

and while the Zr-Zr partial is very similar to that from MD (Figure 5.7 (a)), all of the peaks show 

a small shift to lower-q, consistent with a shift to larger-r in the PPDF.  The largest differences 

are again for the Pt-Pt partial (Figure 5.7 (c)).  As argued previously, the pre-peak in S(q) near q 

= 1.6 Å
-1

 is due to Pt-Pt correlations beyond those of nearest neighbors.  This is consistent with 
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the large feature around 4.5 Å in gPtPt(r) (Figure 5.6 (c)) and the large peak around 1.6 Å
-1

 in 

SPtPt(q) (Figure 5.7 (c)).  The peak in gPtPt at r~4.5 Å is significantly reduced if the pre-peak is 

masked in SPtPt, suggesting that this is the dominant length scale for the medium range Pt-Pt 

correlation.  This is consistent with interatomic distances in different types of interpenetrating Pt-

centered icosahedra [30, 54].  The approximate distances between the center Pt atoms for these 

clusters are 4.55-5 Å in a capped configuration (Figure 5.8 (a)) and 4-4.3 Å in a diagonal 

configuration (Figure 5.8 (b)).  In a highly disordered liquid containing a distribution of 

icosahedral-like clusters, these distances are likely smeared out, creating the broad peak in 

gPtPt(r) centered at 4.5 Å.   

 

Figure 5.5 Results of CRMC fits to Zr80Pt20 liquid at 1299 
o
C for (a) S(q)-1 and (b) g(r) for both X-ray (top curves) 

and neutron (bottom curves) scattering.  In all cases, the CRMC (solid red lines) reproduced the experimental inputs 

constraints (open symbols) to high accuracy. 
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Figure 5.6 Comparisons of the PPDFs from MD (open symbols) and CRMC (red lines) for (a) gZrZr(r), (b) gZrPt(r), 

and (c) gPtPt(r).  The largest differences were observed with gPtPt(r). 

 



165 

 

 

Figure 5.7 Comparisons of the PSFs from MD (open symbols) and CRMC (red lines) for (a) SZrZr(q), (b) SZrPt(q), 

and (c) SPtPt(q).  The largest differences were observed with SPtPt(q). 
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Figure 5.8 (a) Capped and (b) diagonal interpenetrating icosahedra.  The center of each icosahedron is represented 

by a blue sphere.  A red line connects the centers of neighboring interpenetrating icosahedra.   

 

5.3.4 Bhatia-Thornton Partial Structures 

The total structure factor of a binary alloy can also be expressed within the Bhatia-

Thornton formalism [63] (Eqn. 5.10).  SBT(q) is described in terms of fluctuations in density 

(topological order, SNN(q)), fluctuations in chemical concentration (chemical order, SCC(q)), and 

the cross-correlation between topological and chemical order (SNC(q)):   
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b b b

 
   . (5.10) 

Here, b corresponds to the neutron scattering length and i,j correspond to the first and second 

elements in the binary alloy, respectively.  SCC(q) is defined such that at large-q it converges to 

cicj.  While the order of bi-bj is important for the interpretation of SNC(q), reversing the alloy 

equation only changes the sign.  SBT(q) can be calculated for X-ray scattering by replacing bi 
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with the q-dependent atomic form factor, fi(q), as is done within the FZ formalism.  The BT 

partial structure factors can also be described in terms of the FZ partials: 
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 (5.11) 

For Zr80Pt20, all three FZ partials were obtained from CRMC and converted to the BT 

formalism using Eqn. 5.11 (Figure 5.9 (a)).  For Zr77Rh23, the weighting factor for SCC(q) in both 

X-ray and neutron scattering was negligible compared to SNN(q) and SNC(q) (less than 1%), so 

Eqn. 5.10 reduced to an equation with only two unknowns and SNN(q) and SNC(q) could be 

uniquely determined with two experimental inputs.  The equivalent PPDFs, gNN(r), gNC(r), and 

gCC(r), were then obtained from a Fourier transform of the partial structure factors (Figure 5.9 

(b)).  While the amplitude of the Zr80Pt20 SNN(q) partial is slightly larger than that of Zr77Rh23, 

SNN(q) is virtually identical in all other aspects.  Topologically, then, the ordering in the two 

liquids appears to be very similar, with nearly identical average bond lengths between atomic 

sites.  This similarity is also evident in gNN(r), where again nearly identical peak shapes and 

positions are found.  Perhaps this is not surprising since, in the limit of 0,jc   SNN(q) equals 

S(q) for the pure element and Rh and Pt are of similar size (rPt = 1.38 Å, rRh = 1.34 Å) and in 

adjacent columns and rows on the periodic table.  However, SNN(q) in another pair of alloy 

liquids where the solutes are again in adjacent columns in the periodic table (Zr64Ni36 and Zr2Cu) 

show very different topological order [64].  This could be a consequence of the lower solute 

concentrations in the Zr-Pt and Zr-Rh liquids, with the order constrained by the Zr, or it simply 

indicates that it is possible for alloy liquids with similar atomic sizes to behave quite differently.   
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Figure 5.9 (a) S(q) and (b) g(r) Bhatia-Thornton partials for Zr80Pt20 (solid lines) and Zr77Rh23 (solid symbols) at 

1115 
o
C.  The topological order (NN) is very similar between both alloys. 

 

The positive peak in SCC(q) for Zr80Pt20 near 1.6 Å
-1

 (Figure 5.9 (a)) suggests that the pre-

peak in the total S(q) arises from atoms of the same chemical species that are arranged in a 

regular pattern within the overall structural topology.  Taken with the results of CRMC, this is 

consistent with a Pt-Pt correlation.  There is also a corresponding positive peak in gCC(r) near 4.5 

Å, consistent with the Pt-Pt correlation observed in the second coordination shell of gPtPt(r). 

The cross-correlation terms, SNC(q) and gNC(r), are often described as representing a “size 

effect.”  The negative peak in gNC(r) for Zr80Pt20 near 2.75 Å suggests there is a higher density of 

atoms surrounding Pt atoms at that distance than around Zr.  The corresponding negative peak in 
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gCC(r) suggests that atoms of opposite species tend to associate at this length scale, consistent 

with the high chemical affinity between Zr and Pt.  Similarly the positive peak near 3.2 Å 

suggests a larger density of atoms surrounding Zr atoms at that distance than around Pt atoms.  

These results are consistent with fewer atoms packing around the smaller Pt atoms than around 

the larger Zr atoms.  The lack of features in gCC(r) at r = 3.2 Å implies that there is no preference 

for Zr over Pt atoms at this length scale.  The negative peak in gNC(r) near 4.5 Å again suggests a 

higher density of atoms around Pt atoms relative to around Zr, and the corresponding positive 

peak in gCC(r) is consistent with there being a preference for those atoms to also be Pt.  This is 

consistent with the medium-range correlations previously discussed in the FZ formalism.  

It is interesting to note that while Zr80Pt20 and Zr77Rh23 are nearly identical in their 

topological order, the size effect is much larger for Zr77Rh23, despite Pt and Rh having very 

similar atomic radii, and suggests that the chemical order in Zr77Rh23 is more strongly tied to the 

topological order than in Zr80Pt20.  It seems that the stronger heat of mixing between Zr-Pt than 

between Zr-Rh should at least make up for this difference, if not surpass it.  Without gCC(r) 

available for Zr77Rh23, it is impossible to know what chemical order overlays the topological 

configuration, but it is possible that Zr-Rh forgoes the establishment of medium-range 

correlations between Rh-atoms in favor of increased chemical short range order.  This would 

explain the lack of pre-peak in S
X
(q) for Zr77Rh23 while it exists in S

N
(q) for Zr80Pt20, despite 

their identical FZ weighting factors.   

5.3.5 Coordination Number 

The average coordination numbers, <CN>BT, were calculated from gNN(r) by integrating 

the topological radial distribution function,
 

2( ) 4 ( )NN NNR r r g r  , between the minima on 

either side of the primary peak.  The calculated values of <CNZrPt>BT = 13.5 and <CNZrRh>BT = 
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13.6 are nearly identical and are significantly larger than the value of 12 for ideal icosahedral 

packing.  The larger numbers reflect the larger size of the dominant species, Zr, allowing more 

atoms to efficiently pack around it.  This is confirmed using the partial coordination number for j 

atoms surrounding a central i atom, <CNij>PPDF, calculated in a similar fashion by integrating  

between the minima on either side of the primary peak.  On average, each Zr atom (<CNZr>PPDF) 

is surrounded by 14.1 atoms (11.6 Zr and 2.5 Pt), while each Pt atom (<CNPt>PPDF) is surrounded 

by 11 atoms (10 Zr and 1 Pt). 

5.3.6 Voronoi Tessellation 

To further probe the liquid structures, the Voronoi tessellations were computed for the 

atomic configurations generated from CRMC (Figure 5.10).  The average coordination numbers 

calculated from the Voronoi Indices (VI) were consistent with those found from the RDF 

method, with <CNZr>VI =13.8 and <CNPt>VI = 11.0.  It is not unexpected that the CN as 

determined by the RDF method overestimates the CN determined from Voronoi cells as there is 

some overlap between coordination shells which cannot be removed.   

The dominant Zr-centered clusters (Figure 5.10 (a)) consist of large-CN Frank-Kasper 

(FK) polyhedra [65] such as <0 1 10 3 0> (CN 14) and <0 1 10 2 0> (CN 13), along with 

distorted polyhedra that relieve packing frustrations (<0 2 8 4 0>, <0 3 6 5 0>, and <0 4 4 6 0> 

for CN = 14, <0 3 6 4 0> and <0 2 8 3 0> for CN = 13).  There are a few CN 15 polyhedra as 

well as a small fraction (~2%) of perfect icosahedral clusters (<0 0 12 0 0>; these are much less 

preferred because of the large size of Zr).  Having a majority of large CN polyhedra (13-15) is 

consistent with the average <CNZr>PPDF = 14.1 determined from the gij(r).  Over the temperature 

range studied, the number of ideal FK polyhedra (<0 1 10 2 0>, <0 1 10 3 0>, and <0 1 10 4 0>) 

increases with decreasing temperature reflecting the ordering in the liquid.  However, the number 
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of distorted CN 14 and CN 13 FK polyhedra does not decrease, indicating that increased 

ordering is due to the transformation of strongly-disordered, high-CN polyhedra into more 

efficiently packed structures.  As an example, the equilibrium crystal phase Zr5Pt3 contains two 

distinct Zr-centered clusters with coordination numbers of 14 and 15 [53].  When the <0 1 10 3 

0> cluster in the liquid undergoes small distortions, it transforms into the CN 15 Zr-centered 

cluster in Zr5Pt3.   

 

Figure 5.10 Frequency of the dominant Voronoi Indices for (a) Zr-centered and (b) Pt-centered structures.   

 

While no single VI constitutes more than 10% of the total of Zr-centered polyhedra, the 

Pt-centered clusters are clearly dominated by <0 2 8 1 0> (Figure 5.10 (b)), the CN = 11 FK 

polyhedron.  This structure appears to be very stable, since it was also shown to dominate in 

Zr80Pt20 glasses [30, 53].  This polyhedron corresponds to the Pt-centered cluster in the Zr5Pt3 

equilibrium crystal phase [66], which is also the second phase to devitrify from amorphous 

ribbons following the formation of the quasicrystal [27].  While <0 2 8 1 0> clearly dominates, 

other polyhedra with CN = 10-12 also appear.  Interestingly, while perfect icosahedra, <0 0 12 0 
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0>, are only weakly present in the high-temperature liquids, their frequency nearly doubles upon 

supercooling.  The icosahedral-like clusters, <0 2 8 2 0> and <0 3 6 3>, are among the remaining 

dominant structures, with the number of <0 2 8 2 0> polyhedra also showing a sizeable increase 

with decreasing temperature.  The rapid increase of these 12-coordinated structures likely aids in 

the formation of the quasicrystal phase upon cooling.   

5.3.7 Crystal Identification 

While complete chemical information cannot be extracted for Zr77Rh23, the similar 

coordination numbers with those of Zr80Pt20 and the nearly identical SBT(q) and gBT(r) suggest 

that these two liquids are at least topologically very similar.  While there appears to be a much 

higher correlation between topological and chemical ordering in Zr77Rh23, the stability of the <0 

2 8 1 0> cluster makes it likely that it is also prevalent in Zr77Rh23.  Since this polyhedron is also 

found in the Zr5Pt3 crystal phase, it would seem that a similar phase might form in Zr77Rh23.  It 

has not been observed in studies of Zr-Rh and Zr-Pd equilibrium phase diagrams [67, 68], but 

does form in Zr-Ir alloys (Zr5Ir3) [69].  Given this, an equivalent Mn5Si3-type phase is likely 

close to equilibrium in all of the Zr-noble metal alloys and may form as a metastable product 

during the crystallization.  This appears to be the case for Zr-Rh.  Shown in Figure 5.11 are fits 

(using GSAS II [70]) to X-ray data taken during recalescence of liquid Zr77Rh23 (with more than 

200
o
C supercooling).  These indicate the presence of two phases, β-Zr and a hexagonal Mn5Si3-

type phase, having a space group of P63/mcm.  The most intense peaks are from β-Zr (*), while 

all remaining peaks belong to the Zr5Rh3 phase (o).  Starting with lattice parameters found in 

Zr5Pt3 (a = 8.201 Å and c = 5.405 Å) [71, 72], the converged fits gave a = 7.95 Å and c = 5.6 Å 

for Zr5Rh3, closer to those found for Zr5Ir3 (a = 8.025 Å and c = 5.488 Å) [69].  While some 

differences are observed in the lattice parameters, the nonequilibrium conditions during the 



173 

 

nucleation and growth of the metastable phase likely introduced chemical disorder within the 

lattice, slightly distorting the average atomic distances.   

 

Figure 5.11 Identification of a phase mixture of β-Zr (*) and Zr5Rh3 (o) crystalline phases. 

 

5.4 Conclusions 

In summary, the first neutron scattering results of liquid and supercooled Zr80Pt20 and 

Zr77Rh23, made using a new electrostatic levitation facility [36], are reported.  By combining 

these data with high-energy X-ray scattering studies of these liquids at equivalent temperatures, 

it is possible to extract topological and chemical ordering information.  A comparison of 

structure factors and pair-distribution functions obtained from molecular dynamics simulations 

revealed differences between the computed values and those measured from the X-ray and 

neutron scattering experiments.  Partial subtraction methods suggest that the gZrZr(r) and gPtPt(r) 

MD partials were least consistent with measured results.  The X-ray and neutron structure 

factors, S
X
(q) and S

N
(q), were therefore combined with gZrPt(r) from MD to obtain the partials 
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and the atomic structure for liquid Zr80Pt20 using the constrained Reverse Monte Carlo method.  

A pre-peak in the scattering data for Zr80Pt20 is consistent with medium-range ordering, arising 

from extended Pt-Pt correlations.  Bhatia-Thornton partials for Zr77Rh23 were obtained by 

ignoring the CC contribution (less than 1% of the total) and calculating the NN and NC partials 

using X-ray and neutron scattering measurements.  For Zr80Pt20, they were calculated directly 

from the Faber-Ziman partials determined from CRMC.  From this, the two liquids were found 

to be topologically very similar.  The larger cross partial, SNC, for Zr77Rh23 suggests that the 

chemical order is more strongly tied to the topology than for Zr80Pt20.  Combined with the lack of 

a pre-peak in the diffraction data, it is suggested that there is strong Rh-Rh chemical short-range 

order, but weaker medium-range order.  The Voronoi results for the Zr-Pt liquid showed a 

mixture of ordered and distorted FK polyhedra, as well as a dominating Pt-centered <0 2 8 1 0> 

cluster, a structure also found around the Pt atoms in the Zr5Pt3 equilibrium crystal phase.  A 

similar metastable phase was found to crystallize from a deeply supercooled (>200 
o
C) Zr77Rh23 

liquid; this phase has not previously been reported in this binary alloy.   

In addition to identifying some features of Zr-noble metal liquids, these results, based on 

multiple types of scattering experiments and combined with MD simulations, demonstrate the 

ability to follow the chemical and topological ordering of metallic liquids as a function of 

supercooling.  This information is critically important in developing a better understanding of 

features such as liquid properties, crystal nucleation, possible liquid/liquid phase transitions, and 

ultimately glass formation. 
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Chapter 6: Metastable Phase Selection in 

Zr77Rh23 
This chapter includes X-ray data that were acquired during the BESL 2013 experiment, 

as well as at Washington University in St. Louis.  Neutron data were acquired on the NOMAD 

beamline at the Spallation Neutron Source in 2013 in the same configuration as NOMAD 2014.  

DTA measurements were assisted by C. Pueblo, and crystallography was supported by Prof. P. 

C. Gibbons (Washington University in Saint Louis, Saint Louis, MO). 

6.1 Introduction 

While equilibrium crystal phases are thermodynamically favored to form in a 

supercooled liquid, these phases do not necessarily have the lowest homogeneous nucleation 

barrier to crystallization [1].  Instead, the nucleation and growth of the metastable phases with a 

lower nucleation barrier often occurs [2].  To observe the influence of the homogeneous 

nucleation barrier, however, heterogeneous nucleation must be avoided.  By using the 

electrostatic levitation technique [3] to remove contact with container walls, which serve as 

potent heterogeneous nucleation sites, the non-equilibrium liquid can be maintained to low 

temperatures before the onset of crystallization, allowing homogeneous nucleation to be 

explored.  By carefully selecting an alloy composition at a deep eutectic [4], the supercooling 

can be further enhanced by increasing the reduced glass transition temperature, Tg/TL, due to the 

lower liquidus temperature.  This reduces the difference in Gibbs free energy between the liquid 

and the crystal, decreasing the driving force towards crystallization and improving undercooling. 

The binary alloy Zr77Rh23 is a eutectic alloy that has been of interest due to its 

superconducting properties [5-8] and its ability to form a metallic glass by rapid quenching [8-
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10].  Complex crystal phases, such as the Ti2Ni-like “big cube” phase [8, 11, 12] and phases with 

D0e–like structure [11, 12] form upon devitrification of the amorphous phase.  These phases 

disappear upon further annealing in favor of the equilibrium phases.  In some instances where the 

liquid was not quenched quickly enough to form a fully amorphous phase, diffraction peaks from 

a metastable L12–type FCC structure were identified [10, 13].  Past studies of metastable phases 

in this alloy have been limited to the devitrification products, but we have recently reported the 

identification of a metastable Zr5Rh3 (Mn5Si3-like) crystalline structure emerging during the 

recalescence of an undercooled levitated liquid using in situ high-energy X-ray diffraction 

(Chapter 5) [14].  Additional recalescences have been observed, suggesting the non-equilibrium 

undercooled Zr77Rh23 liquid contains many crystallization pathways to different metastable 

states.  The deep undercooling obtained in this alloy (160-280 
o
C) increases the amount of time 

spent crystallizing under non-equilibrium conditions such as occurs when the hypercooling limit 

is reached [1] and helps facilitate these transformations. 

Here we discuss the metastable phase selection of supercooled Zr77Rh23 liquids using the 

electrostatic levitation technique to maximize supercooling.  Initial characterization was 

performed in situ using high-energy X-ray and neutron diffraction.  Subsequent studies were 

made using powder diffraction with laboratory CuKα radiation of crushed samples that were 

allowed to radiatively free-cool to room temperature after recalescence was observed. 

6.2 Experimental Methods 

Samples were prepared in a manner consistent with the procedures outlined in Chapter 2.  

The in situ X-ray diffraction measurements were acquired during the “BESL 2013” experiment 

using WU-BESL [15] and details of the detector setup and configurations are discussed in 

Section 2.4.3.  Liquid diffraction analysis was performed using in-house LabVIEW modules [16] 
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and is discussed in Section 2.5.  The in situ neutron diffraction measurements were made using 

the NESL [17-19] on the Nanoscale-Ordered Materials Diffractometer (NOMAD) beamline at 

the Spallation Neutron Source [20].  Details of the experimental configuration are discussed in 

Section 2.8.3.  Some samples were thermally processed in WU-BESL until the recalescence of 

interest was observed.  The sample was then allowed to radiatively free-cool to room 

temperature and was subsequently recovered and crushed into a powder.  Room temperature 

powder patterns were acquired using a Rigaku powder diffractometer (CuKα λ = 1.54 Å).  The 

details of these measurements are discussed in Section 2.2.2.  Crystalline phases were identified 

using the GSAS II software [21], and the details of this analysis are discussed in Section 2.11.   

6.3 Results and Discussion 

The melt plateaus in the temperature-time profiles for the Zr77Rh23 liquid were matched 

to the experimental solidus value, TS, of 1061 
o
C, which was in reasonable agreement with the 

best available phase diagram [22].  Once melted, the temperature was increased until the desired 

processing temperature was reached.  The laser was then turned off and the samples were 

allowed to radiatively free-cool below the melting temperature.  Eventually, a sharp rise in 

temperature was observed corresponding to the release of latent heat as the sample crystallized.  

Several representative temperature-time profiles of the processed Zr77Rh23 liquid are shown in 

Figure 6.1.  The free-cooling curves are plotted on top of each other; the similar slopes during 

the free-cools indicate similar cooling rates.  Depending on the amount of supercooling 

observed, three unique regions of maximum undercooling and recalescence temperature were 

observed (Figure 6.2) corresponding to the three profiles in Figure 6.1.  Each type of 

recalescence was observed from multiple independent samples suggesting that the observations 
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are not sample dependent.  None of the combinations of crystalline phases that formed during 

recalescence were found to be consistent with the equilibrium phase diagram [22].   

 

Figure 6.1 Temperature-time profiles corresponding to three unique types of recalescence behavior.  All profiles 

have a melt plateau at 1061 
o
C (dashed line) and all times are relative.  Each curve was shifted in time so their free-

cool behavior would overlay the others. 
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Figure 6.2 Three distinct recalescence behaviors were observed.  The smallest undercooling was observed for 

Group 3 (-.-), while Groups 1 (–––) and 2 (- - -) had some overlap.  The post-recalescence temperature/time 

behavior with increased undercooling for Group 1 indicates that it is hypercooled. 

 

The crystalline phases of the sample at the melt plateau prior to melting were observed in 

situ from neutron scattering using the NESL (Figure 6.3 (a)).  They were identified as a mixture 

of the BCC β–Zr and the tetragonal C16 phases, consistent with the equilibrium phases at this 

temperature [22].  Their lattice parameters (Table 6.2) were in good agreement with the 

measured values for the equilibrium phases (Table 6.1).  If Rh substitutes for Zr in β–Zr, the 

lattice parameter will shrink due to the smaller size of Rh (rRh = 1.35 Å, rZr = 1.61 Å) [23].  At 

the maximum equilibrium solubility (8%), the lattice parameter shrinks from 3.601 Å to 3.568 Å 

[9].  The fit value of a = 3.550 Å would suggests that the maximum solubility limit is exceeded, 

likely signaling that equilibrium solubility is larger than found in the accepted phase diagram.  
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The fit parameters for the C16 phase (a = b = 6.556 Å, c = 5.595 Å) are also in reasonable 

agreement with the expected equilibrium values (a = b = 6.496 Å, c = 5.605 Å).   

 

Figure 6.3 Crystalline phase identification of measured intensity (black points) and model fits (red lines) scaled to 

the maximum intensity recorded.  The difference curve is displayed below each fit (blue line).  (a) In situ neutron 

diffraction pattern at the melt plateau: β–Zr + Zr2Rh (C16).  (b) Recalescence to TR1 ≈ 1020 
o
C, measured from 

powder diffraction: β–Zr + Zr2Rh (Ti2Ni-like).  (c) Recalescence to TR2 ≈ 1060 
o
C, measured from powder 

diffraction: α–Zr + Zr2Rh (C16).  (d) In situ X-ray diffraction pattern at the recalescence plateau (TR3 ≈ 995 
o
C): β–

Zr + Zr5Rh3 (Mn5Si3-like).  (e) Recalescence to TR3 ≈ 995 
o
C, measured from powder diffraction: β–Zr + Zr5Rh3 

(Mn5Si3-like).  Unidentified peak near q = 3.1 Å appears in situ only at low temperatures and is likely a third phase. 
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Table 6.1 Previously identified equilibrium and metastable phases of Zr-Rh, Zr-Pt, and Zr-Ir.  The parameters x1 

and x2 correspond to the adjustable atomic locations in the Wyckoff site symmetry. 

Phase Type 

a (Å) 

b (Å) 

c (Å) 

Symbol 
Wyckoff 

multiplicity 
x y z Ref 

β–Zr W 3.568 Im3m Zr (2a) 0 0 0 [24] 

α–Zr  Mg 
3.232 

5.147 
P63/mmc Zr (2c) 1/3 2/3 1/4 [24] 

Zr2Rh Al2Cu (C16) 
6.496 

5.605 
I4/mcm 

Rh (4a) 

Zr (8h) 

0 

0.1667 (x1) 

0 

0.6667 (x2) 

1/4 

0 
[24, 25] 

Zr2Rh Ti2Ni (E93) 12.536 Fd3m 

Zr (16d) 

Rh (32e) 

Zr (48f) 

5/8 

0.8381 (x1) 

0.1848 (x2) 

5/8 

0.8381 

0 

5/8 

0.8381 

0 

[11] 

Zr5Pt3 Mn5Si3 
8.201 

5.405 
P63/mcm 

Zr (4d) 

Zr (6g) 

Pt (6g) 

1/3 

0.236 (x1) 

0.5991 (x2) 

2/3 

0 

0 

0 

1/4 

1/4 

[24, 26] 

Zr5Ir3 Mn5Si3 
8.025 

5.488 
P63/mcm 

Zr (4d) 

Zr (6g) 

Ir (6g) 

- - - [24, 27] 

 

Table 6.2 Phases and their fit parameters identified from experimental X-ray and neutron scattering data.  x1 and x2 

correspond to the adjustable atomic locations in the Wyckoff site symmetry.   

Group 
Undercooling 

(ΔTS) (
o
C) 

Recalescence 

Temperature 

(ΔTS) (
o
C) 

Phases 

Phase 1 

a (Å) 

b (Å) 

c (Å) 

Phase 2 

a (Å) 

b (Å) 

c (Å) 

x1 

x2 
Observation 

- Melt Plateau Melt Plateau 
β–Zr + Zr2Rh 

(C16) 
3.550 

6.556 

5.595 

0.1653 

0.6653 
in situ: NESL 

1 
780-830 

 (281-230) 

997-1024 

(64-37) 

β–Zr + Zr2Rh 

(Ti2Ni) 
3.550 12.506 

0.8431 

0.1874 
Powder 

2 
804-830 

 (257-230) 

1054-1064 

(7-(-3)) 

α–Zr + Zr2Rh 

(C16) 

3.239 

5.160 

6.521 

5.602 

0.1667 

0.6667 
Powder 

3 
835-901 

 (226-160) 

983-990  

(78-71) 

β–Zr + Zr5Rh3 

(Mn5Si3) 
3.539 

7.968 

5.685 

0.2376 

0.5880 

in situ: WU-BESL, 

Powder 

 

A single sharp recalescence to TR1 ≈ 1020 
o
C was observed for the deepest level of 

undercooling obtained (Figure 6.2, Group 1).  The small width of the recalescence suggests that 

the deep undercooling (>230 
o
C below TS) was in or close to the hypercooling limit, with 

nonequilibrium crystallization occurring.  This was the most common recalescence behavior 

observed and was seen in nearly all samples processed.  The diffraction peaks were identified as 

a combination of β–Zr (BCC solid solution) and metastable Zr2Rh (Ti2Ni-like FCC, or “big 

cube”) (Figure 6.3 (b)).  The Zr2Rh phase has been previously identified as a primary 
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devitrification product [8].  While this is an equilibrium phase for many alloys [28], in Zr-Rh it is 

only observed for a short time after devitrification, transforming to equilibrium phases with 

continued annealing.  The fit parameters (a = 3.550 Å and a = 12.506 Å for β–Zr and Zr2Rh, 

respectively, Table 6.2) are in good agreement with previously measured values.  The Ti2Ni-like 

phase has been shown to be a precursor to the icosahedral quasicrystal phase (i-phase) in Ti, Zr, 

and Hf alloys [29] and is often known as the Kuo crystalline approximant phase to the i-phase 

[30].  While the Zr-Rh alloy does not directly form the i-phase, additions of Rh to Zr70Cu30 

facilitate its formation [31, 32].  The Ti2Ni-like phase is also known to be stabilized by the 

addition of oxygen.  However, all materials used in this study had low reported oxygen content, 

and while extended liquid processing will slowly consume remaining oxygen in the chamber, no 

dependence on processing time was observed in the formation of this phase.  

With at least 230 
o
C of undercooling, a single recalescence at TR2 ≈ 1061 

o
C was 

observed, the same temperature as the melt plateau (Figure 6.2, Group 2).  From the measured 

diffraction peaks (Figure 6.3 (c)), a phase mixture of the low-temperature α–Zr solid solution 

phase and the equilibrium tetragonal C16 phase forms on recalescence in Group 2 (Table 6.2). 

Based on the equilibrium phase diagram, β–Zr should form instead of α–Zr.  In equilibrium, the 

solid-solid phase transition from β–Zr to α–Zr occurs at 735 
o
C, while the minimum temperatures 

prior to recalescence were between 804 and 830 
o
C.  It has been observed in pure Zr that the α–

Zr can be formed directly from the liquid through rapid quenching [33-35], aided by interstitial 

oxygen.  However, similar experiments performed on Zr-Nb alloys with up to 5.5 at.% Nb did 

not produce α–Zr directly from the liquid [35].  Attempts at rapidly quenching by dropping the 

sample immediately after recalescence, placing it in thermal contact with the rest of the levitation 

chamber, also contained a mixture of the α–Zr and C16 phases.  Since samples from Groups 1 
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and 3 that were also quenched after recalescence contained the β–Zr phase, it is unlikely that 

Group 2 samples initially formed the β–Zr phase and transformed into the α–Zr phase during 

cooling.  Instead, it appears that deep undercooling close to the hypercooling limit provides a 

non-equilibrium crystallization pathway that leads to the formation α–Zr.  Since the Group 1 

samples recalesce to the melting temperature of the C16 phase, that is likely the first phase to 

form.  However, this was not observed during the in situ measurements and could not be 

verified.  The rapid growth of the C16 phase could lead to chemical segregation, forming Zr-rich 

regions within the liquid which create an environment similar to the pure element and allowing 

the nucleation and growth of the α–Zr phase.   

When the amount of undercooling observed was 226 
o
C or less, a single recalescence 

plateau was observed at TR3 ≈ 995 
o
C (Figure 6.2, Group 3).  The diffraction peaks indicated a 

mixture of β–Zr and the metastable Zr5Rh3 (Mn5Si3-like) phase (Table 6.2).  This phase was 

previously identified from comparisons of the Zr80Pt20 and Zr77Rh23 liquid structures, for which 

the SRO for both liquids are nearly identical (Chapter 5) [14].  The Pt-centered Voronoi clusters 

of the high-temperature Zr80Pt20 liquid were dominated by the <0 2 8 1 0> index, a structural unit 

of the Pt-centered atoms in the Zr5Pt3 equilibrium phase (Table 6.1) [36].  Although the Zr5Rh3 

phase is not a known equilibrium phase in the Zr-Rh system, a similar intermetallic phase 

appears in Zr-Ir alloys (Table 6.1) [24, 27].  While this phase is observed in both Zr-Ir and Zr-Pt, 

the Zr-Ir lattice parameter a is noticeably smaller than in Zr-Pt (8.025 vs. 8.201 Å, respectively).  

The lattice parameters for a Zr5Rh3 phase that was fit to the in situ X-ray diffraction data were 

consistent with those observed in the Zr-Ir alloy (a = 7.968 and c = 5.685 Å, Figure 6.3 (d)).  

Consistent results were found between in situ BESL experiments (Figure 6.3 (d)) and room 

temperature powder samples (Figure 6.3 (e)).  An additional diffraction peak was observed at 
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room temperature ~3.1 Å
-1

 (Figure 6.3 (e)).  This peak was not observed during high-temperature 

in situ measurements, but appeared as the sample cooled after recalescence.  It is likely that this 

signals the formation of a third phase that grows as the sample cools.   

 

Figure 6.4 Amount of undercooling (ΔT) vs. width of recalescence plateau (in time, Δt).  The best fit to Groups 1 

and 2 is represented by the dashed black line, and the best fit to Group 3 is represented by the dotted red line. 

 

A significant width (in time) of the recalescence plateau was observed for all Group 3 

samples.  In Group 1 and Group 2, the width of the plateau (Δt in s) was highly correlated with 

the amount of undercooling observed (ΔT relative to TS, in 
o
C).  Despite very different phases 

forming, both followed a very linear trend (Figure 6.4, dashed black line).  All occurrences of 

Group 3 behavior, while consistent within their group, had a very different rate of decay of 

recalescence width (Figure 6.4, dotted red line).  The recalescence temperature is much lower 
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than in Groups 1 and 2 indicating that the kinetics are likely much slower.  Since it does not 

transform during the extended isothermal crystallization, it is suggested that the metastable phase 

is somewhat close to equilibrium with the metastable liquid at those temperatures, consistent 

with the stability of the Zr5Pt3 phase observed in Zr80Pt20 [14].   

The observations of multiple metastable phases crystallizing from the supercooled 

Zr77Rh23 liquid were not fully categorized at the time of the initial in situ experiments.  As such, 

the identification of Groups 1 and 2 could not be performed in situ and were investigated after 

they had already cooled to room temperature.  There are more metastable phenomena that 

occurred during the processing of in-house samples such as multiple recalescences (Figure 6.5 

(a-b) and metastable melt plateaus (Figure 6.5 (c)).  Due to the short lifetime of some of these 

features, (Figure 6.5 (a-b)) it was impossible to study with powder diffraction after processing 

the sample.  In addition to multiple recalescences, samples that recalesced to TR3 would 

sometimes re-melt at the same temperature rather than at the usual melting temperature.  While 

this was only occasionally observed, it was more common to see a discontinuity during re-

heating corresponding to TR3 followed by a melt plateau at 1061 
o
C.  In situ experiments at high-

flux X-ray sources such as the Advanced Photon Source are well suited to study the growth of 

these phases as well as to identify the primary nucleating phase that forms during recalescence.  
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Figure 6.5 Other metastable recalescence behavior featuring (a) a minor recalescence before maximum 

undercooling is obtained, (b) a pair of recalescences after maximum undercooling, and (c) metastable melting 

plateaus. 

 

6.4 Conclusions 

In summary, the crystallization behavior and metastable phase selection were studied for 

deeply supercooled Zr77Rh23 alloy liquids.  The Zr5Rh3 phase was first identified from a 

structural comparison of Zr80Pt20 and Zr77Rh23 liquids (Chapter 5), and is further characterized 

here.  Three separate crystallization patterns were identified, corresponding to β–Zr + Zr2Rh 

(Ti2Ni-like), α–Zr + Zr2Rh (C16), and β–Zr + Zr5Rh3 (Mn5Si3-like).  The close similarity of 

Zr5Rh3 phase with the liquid structure likely inhibits this alloy’s glass-forming ability.  The 

crystallization pathways are tied to the amount of supercooling obtained prior to crystallization.  

Several of the identified metastable phases (α–Zr and Zr2Rh (Ti2Ni-like)) are known to be 

stabilized by interstitial oxygen.  Further characterization of these phases is needed, including in 

situ observations of the diffraction patterns as they form from the liquid.  Additional insight into 

the topological and chemical structure of the liquid can in turn provide valuable information on 
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the metastable pathways that must be avoided for glass formation.  In addition, understanding the 

behavior and formation of metastable phases is important for determining processing techniques 

to select for specific phases and mechanical properties for future applications.   
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Chapter 7: Devitrification Behavior in 

Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) Using 

Simultaneous Wide-Angle and Small-Angle 

X-ray Scattering 
This chapter includes X-ray data that were acquired during the SAXS 2014 experiment.  

DSC and DTA measurements were performed by C. Pueblo (Washington University in Saint 

Louis, Saint Louis, MO). 

7.1 Introduction 

Phase separation in the supercooled liquid is a phenomenon that has been observed in 

silicate glasses for many years [1, 2].  More recently, it has been reported in a variety of metallic 

glass systems including Ni-based [3-5], Cu-based [6], Zr-based [7, 8], Mg-based [9], and many 

other alloys [10].  This is of practical interest since phase separation can produce hierarchical 

microstructures involving chemically and topologically diverse length scales [11].  The 

formation of these features can hinder the inhomogeneous flow that is typical of metallic glasses, 

improving their plasticity [12-14].  In addition to phase separation, the formation of dispersed 

nanocrystals within the amorphous or supercooled liquid state could also provide similar benefits 

[11].  

If phase separation occurs in the supercooled liquid, this implies the existence of a 

miscibility gap where two liquids of distinct composition can coexist.  In order to phase separate 

in this manner, elements with a repulsive interaction (i.e., positive heats of mixing) can be added 

to an alloy.  This is in direct opposition with the typical rules of bulk glass formation, which 
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require elements with large negative heats of mixing [15].  In some alloys, however, it has been 

found that the addition of elements with small positive heats of mixing can sometimes aid glass 

formation [16-18].  Alternatively, a short-lived phase separation could occur.  While the 

homogeneous supercooled liquid has a single liquidus temperature (TL), decomposing into two 

compositionally distinct amorphous regions could cause TL to increase relative to the glass 

transition temperature (Tg) in at least one phase [19, 20].  In other words, the reduced glass 

transition temperature, /RG g LT T T , decreases.  According to the Turnbull criteria [21], 

nucleation is suppressed for large values of TRG, so a decrease in TRG during decomposition 

could trigger the onset of crystallization in one of the regions.  By understanding the 

crystallization pathways in these kinds of materials, the development of new and better bulk 

glass-forming materials may be realized.   

7.2 Motivation 

A study was undertaken to search for liquid-liquid phase separation in the supercooled 

liquid through simultaneous wide-angle (WAXS) and small-angle X-ray scattering (SAXS) 

measurements (denoted in this dissertation as SAXS 2014, Section 2.4.4).  A number of bulk 

glass-forming alloys known to phase separate when annealed close to Tg were examined.  A 

pseudo-binary phase diagram calculated using CALPHAD for one such alloy (Ni58.5Nb20.25Y21.25) 

[4] suggested the presence of a miscibility gap in the high-temperature liquid, and was also 

investigated.  In preparation for this experiment, WAXS data were acquired from levitated liquid 

samples during BESL 2013 (Section 2.4.3).  When the height (S(q1)) and width (full-width at 

half-max, (FWHM)) of the primary peak in the structure factors (S(q)) were compared for a 

collection of alloy liquids, Ni58.5Nb20.25Y21.25 did not cluster with the rest.  Instead, the primary 

peak was shorter and wider than for other liquids (Figure 7.1).  While scattering data for 
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Ni58.5Nb20.25Y21.25 were obtained at relatively high temperatures, this temperature range 

overlapped with that of the other alloy liquids, suggesting that the different peak shape was not 

solely due to increased disorder.  The data suggested, then, that a broad distribution of length 

scales could result from the formation of two compositionally distinct liquid phases, due to the 

overlap of widely separated partial structure factors.   

 

Figure 7.1 S(q1) vs. FWHM for a variety of liquid alloys measured with high-energy X-ray diffraction in WU-BESL 

experiments.  The primary peak in Ni58.5Nb20.25Y21.25 (magenta triangles) was significantly shorter and wider than the 

rest, suggesting that two separate phases could have overlapping structure factors. 

 

Unfortunately, attempts at observing phase separation in the high-temperature 

supercooled liquid prior to crystallization were unsuccessful for all alloys studied in SAXS 2014.  

The SAXS measurements were limited to a q-range of 0.01 – 0.025 Å
-1

 (corresponding to 

correlation lengths of 1.2 – 62.8 nm) and recorded a flat background.  An increase in intensity at 



197 

 

very small-q was observed after crystallization, corresponding to a “tail” from much longer-

range correlations inaccessible in our configuration.  In all cases, this feature appeared 

simultaneously with the formation of crystal peaks in WAXS.  Due to the rapid kinetics in the 

high-temperature liquid, any nanoscale compositional fluctuations that might form would 

quickly grow beyond the experimentally accessible length scales in SAXS, preventing studies of 

the earliest stages.  In order to successfully observe liquid-liquid phase separation, the liquid 

must either be cooled to significantly lower temperatures where the kinetics are much slower, or 

the acquisition rate must be increased.  In the temperature range near TL, even 1 s scans are 

probing a time-averaged structure and do not have the resolution to capture such short time-scale 

fluctuations.   

Despite the lack of evidence for phase separation in the supercooled liquid near TL, 

however, clear SAXS signals were observed upon heating into the supercooled liquid region in a 

glassy Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) alloy that was quenched in situ.  Vit105 has been studied 

in the past with small-angle scattering (SAS), WAXS, DSC, and TEM measurements [20, 22, 

23].  When annealed close to Tg, a SAS signal near 0.025 Å
-1

 began to grow.  Simultaneous in 

situ SAXS and WAXS measurements revealed that the SAXS intensity began to increase before 

the WAXS intensity increased when annealed at Tg [23].  This was observed separately using 

TEM and WAXS, where the sample annealed near Tg for 30 minutes showed clear density 

fluctuations in TEM and SANS but no crystal peaks appeared in WAXS [20].  Both studies 

concluded that phase separation likely occurred prior to crystallization.  However, later 

experiments found contradicting results.  Nanobeam electron diffraction (NBD) of samples 

annealed at Tg revealed crystalline diffraction patterns in the density fluctuations observed in 
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TEM [24].  Similarly prepared samples exhibited a SAXS signal, while no crystal peaks were 

observed in X-ray diffraction.   

The results presented in this chapter seek to clarify these conflicting results in past work.  

This study was performed in a containerless environment to remove the influence of 

heterogeneous nucleation sites from a container.  The high-flux X-rays available at the Advanced 

Photon Source (APS) allowed for observation of the crystallization behavior in real-time 

(acquisition times of 1 s rather than 1 min [23]).  In addition, the high stability of this alloy 

allowed us to examine the crystallization behavior in the supercooled liquid region well above 

Tg. 

7.3 Experimental Methods 

Samples were prepared in a manner consistent with the procedures outlined in Chapter 2.  

The WAXS and SAXS data were acquired during the “SAXS 2014” experiment using WU-

BESL [25] and details of the detector setup and configurations are discussed in Section 2.4.4.  

WAXS analysis was performed using in-house LabVIEW modules [26] and is discussed in 

Section 2.5.  SAXS analysis was performed using Matlab scripts developed by the beamline 

scientist at Station 1-ID-E at the Advanced Photon Source and is discussed in Section 2.6.   

7.4 Results and Discussion 

7.4.1 Thermal Analysis 

The glass transition (Tg) and crystallization (Tx) temperatures were determined from DSC 

measurements at a heating rate of 20 
o
C/min (Figure 7.2).  Tg was determined to be 389 

o
C, 

which is within 20 
o
C of other reported values at similar heating rates [20, 23, 27-30].  Vit105 

exhibits one or two crystallization events, depending on the oxygen concentration of the sample 
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[24].  With low oxygen concentration, two crystallization events are seen.  The first corresponds 

to the formation of the tetragonal Zr2Ni phase, and the second to the formation of the Ti2Ni-like 

big cube phase which is known to be stabilized by oxygen.  With high oxygen concentration, 

only the second crystallization event is observed.  Two crystallization events were observed in 

our samples, confirming the high-quality material used in sample preparation.  For our samples, 

Tx was 449 
o
C.  

 

Figure 7.2 DSC curve of Vit105 at 20 
o
C/min.  Tg and Tx are indicated by the red arrows (389 and 449 

o
C, 

respectively). 

 

The solidus temperature, TS, was determined from DTA measurements at a heating rate 

of 5 
o
C/min.  A single feature is observed at Ts = 799 

o
C, suggesting this alloy is near a eutectic 

composition (Figure 7.3).  This temperature was used to calibrate the temperature/time 

measurements in the high-temperature liquid.  
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Figure 7.3 DTA scan of Vit105 at 5 
o
C/min.  TS is indicated by a red arrow (799 

o
C). 

 

7.4.2 High-Temperature Liquid 

Liquid structure factors were acquired for a variety of temperatures both above and below 

TS during isothermal holds (10 s, Figure 7.4).  For all temperatures, S(q) oscillates smoothly 

around 1 indicating the high quality of the experimental data.  As the temperature decreases, a 

shoulder develops on the high-q side of the second peak.  This feature has been commonly 

attributed to icosahedral-like structures [31, 32], but it has been found to be a common feature in 

most metallic liquids  [33].  The height of the first peak, S(q1), increases linearly with decreasing 

temperature (Figure 7.5).  The peak position, q1, shifts to larger-q with decreasing temperature, 

consistent with an increasing average density.  As mentioned before, simultaneous SAXS 

measurements recorded a flat signal for all liquid temperatures, picking up no sign of phase 

separation in the high-temperature liquids. 
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Figure 7.4 Liquid and supercooled liquid structure factors for Vit105.   
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Figure 7.5 Height, S(q1), and position, q1, of the main peak in liquid S(q)s.  

 

A comparison of S(q1) and the full-width at half-max (FWHM) reveals that Vit105 does 

not group with the phase-separating alloy Ni58.5Nb20.25Y21.25, contrary to previous predictions 

discussed in Section 7.2 (Figure 7.6).  Instead, it is grouped with the majority of compositions 

studied and does not appear to have any unique characteristics.  This could indicate that the 

anomalous behavior for Ni58.5Nb20.25Y21.25 signals the presence of a liquid-liquid miscibility gap 

near the melting temperature for that liquid.  If phase separation does indeed occur in Vit105, it 

must be near or below Tg.  Alternatively, the anomalous behavior for Ni58.5Nb20.25Y21.25 could be 

due not to phase separation, but simply to large atomic size differences.  Y has a much larger 

Goldschmidt radius (rY 1.81 Å) than Ni and Nb (rNi = 1.25 Å, rNb = 1.47 Å) [34], which would 

result in very diverse bond lengths within the alloy, broadening the primary peak in S(q).  While 
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the atomic sizes in Vit105 are also very diverse, the largest atom, Zr, is significantly smaller than 

Y (rZr = 1.61 Å), limiting the bond size diversity.    

 

Figure 7.6 S(q1) vs. FWHM for a variety of liquid alloys.  The solid symbols represent the values calculated for 

Vit105 from BESL 2013 and SAXS 2014 liquid measurements.   

 

Simultaneous WAXS and SAXS diffraction patterns were also acquired every 1 s during 

a radiative free-cooling cycle.  The maximum undercooling obtained was 100 
o
C before the 

sample recalesced.  Once crystallized, many sharp diffraction peaks were observed in WAXS 

(Figure 7.7 (b)).  Simultaneously, an increase in intensity was observed at very small-q in SAXS 

(Figure 7.7 (a)).  This “tail” is typical of crystallization and corresponds to a macroscopic 

correlation length much larger than accessible q-range.  The small tail observed prior to 
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crystallization was constant for all liquid temperatures and is likely an artifact from background 

subtraction.  The temperature cycle during the free-cool is presented in Figure 7.8 (a). 

 

Figure 7.7 (a) SAXS absolute intensity as a function of q for 5 temperatures during recalescence.  (b) WAXS S(q) 

for the same temperatures.  S(q)s are offset by 1 for clarity.   

 

To determine if compositional fluctuations preceded crystallization, the SAXS intensity 

was summed as a function of time.  The growth of any features in SAXS will result in an 

increase in the overall measured intensity.  The integrated WAXS intensity was not a practical 

parameter for comparison, since the increase in intensity due to crystallization is offset by the 

reduced scattering from the amorphous material.  This is evident in Figure 7.8 (b), where the 

intensity at q = 2.47 Å
-1

 decreased while the intensity at the locations of crystalline peaks (q = 

2.52 and 2.66 Å
-1

) increased.  As such, the amplitude in S(q) at the latter two positions (denoted 

as S(qx), i.e. S(2.52) and S(2.66)) was used to determine the onset of crystallization.  All 

parameters were normalized by their maximum and minimum values, scaling them between 0 
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and 1.  No change was observed in these parameters throughout the free-cool, but S(2.52), 

S(2.66), and the SAXS intensity (Figure 7.8 (b)) rapidly increased as the sample began to 

recalesce (Figure 7.8 (a)).  All changes occurred simultaneously, indicating that the increase in 

the SAXS signal corresponds to scattering from large crystals that form within the amorphous 

matrix.     

 

Figure 7.8 (a) Temperature-time cycle during the free-cool.  The average temperature for each scan is marked by a 

red circle, and the scans from Figure 7.7 are marked by blue circles.  (b) Normalized parameters for both WAXS and 

SAXS measurements.  The open symbol represents the total sum of SAXS intensity.  The solid symbols represent 

the amplitude of S(q) at specific values of q; the largest crystalline peaks that developed during recalescence 

correspond to q = 2.52 and 2.66 Å
-1

, and a region where no crystalline peaks developed corresponds to q = 2.47 Å
-1

.  

All parameters are normalized between 0 and 1. 
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7.4.3 Devitrification 

Due to the excellent glass-forming ability of Vit105, sufficient quench rates for glass 

formation could be achieved in situ by dropping molten samples onto the bottom electrode.  The 

quenched samples were re-levitated and confirmed to be fully amorphous.  The sample was 

heated into the supercooled liquid region, above Tg, and held near 450 
o
C while acquiring 

simultaneous 1 s WAXS (Figure 7.9) and SAXS (Figure 7.10) data.  While this temperature is 

higher than our measured Tx, it is lower than the values reported by others, suggesting that there 

may have been some small error in our temperature calibration.  However, the central point is 

that the measured temperature is above Tg as measured here; ours are, then, the first 

measurements made in the supercooled liquid and not the glass.   

The S(q)s initially contained broad, amorphous features (Figure 7.9, 54 elapsed seconds).  

They began to sharpen (Figure 7.9, 128 and 253 s) until crystalline peaks were observed in the 

data (Figure 7.9, 365 s).  This sharpening could simply be due to structural relaxation since the 

sample was not annealed after quenching.  Alternatively, the sharpening could be due to the 

formation of nanocrystals.  The crystalline peaks do not grow rapidly at first, but they are clearly 

visible by 479 s.  These peaks are consistent with a tetragonal Zr2Ni phase. 

The SAXS intensity gradually increased during the early stages of the measurements, 

signaling the formation of compositional fluctuations.  Eventually, a peak formed that was 

centered around 0.025 Å
-1

, giving a correlation length ( 2 /d q ) of 251 Å (25.1 nm).  

Whether these fluctuations were due to phase separation or nanocrystals is unclear upon initial 

examination; the details of the decomposition will be discussed in further detail below.  These 

features are likely the source of sharpening in S(q).  
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Figure 7.9 WAXS measurements during isothermal holds near 450
 o

C.  (a) S(q)s during devitrification (each offset 

by 1).  (b) Intensity contour plot from the entire isothermal experiment.  The black regions indicate where the X-ray 

beam was shuttered between scans.  The horizontal lines and corresponding time (displayed on the left) correspond 

to the S(q)s in (a). 
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Figure 7.10 SAXS measurements during isothermal holds near 450
 o

C.  (a) I(q) during devitrification.  (b) Intensity 

contour plot from the entire isothermal experiment.  The black regions indicate where the X-ray beam was shuttered 

between scans.  The horizontal lines and corresponding time (displayed on the left) correspond to the I(q)s in (a). 

 

In order to quantify the evolution of these features, several parameters were tracked in a 

similar manner as in Section 7.4.2.  The integrated SAXS intensity was used to quantify changes 

in the SAXS signal, but it should be noted that the features in the data were qualitatively 
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different than those observed in the high-temperature liquid.  Devitrification was tracked by 

recording the height in S(q) at positions where crystalline peaks eventually develop (i.e., S(qx)).  

However, as S(q1) increases prior to crystallization, the peak also narrows, resulting in a decrease 

in the amplitude on the shoulder (S(qx)) (Figure 7.11 (a)).  While amorphous, S(qx) follows a 

linear relationship with S(q1) (Figure 7.11 (b)).  Since ( ) /m y b x   is a constant, where y is 

S(qx), x is S(q1), and m and b are the slope and y-intercept from the best fit line in Figure 7.11 (b), 

plotting 1( ( ) ) / ( )xS q b S q  reveals when the crystalline peaks actually begin to grow. 

 

Figure 7.11 (a) Change in amplitude of S(q) at 2.47 Å
-1

 as the primary peak sharpens. (b) S(2.47) follows a linear 

relationship with S(q1).   
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Figure 7.12 Scaled parameters as a function of elapsed time.  Parameters are scaled between 0 and 1. 

 

For clarity, all structural parameters were scaled between 0 and 1 using their minimum 

and maximum values (Figure 7.12).  During the initial stages (Figure 7.12, region I), S(q1) (solid 

black) and S(q2) (solid red) grew rapidly.  This behavior was visually observed in WAXS (Figure 

7.9).  The integrated SAXS intensity (open black) also increased during the same time span.  

However, S(2.47) (solid blue) and S(3.05) (solid magenta) both showed no change.  If the growth 

in S(q1) and S(q2) is only due to structural relaxation, the sample should remain largely 

homogeneous.  Instead, the simultaneous growth of a SAXS signal indicates that compositional 

fluctuations are beginning to develop.  In the past, this has been interpreted as evidence of two 

distinct liquid phases forming.  However, the sharpened features in the WAXS signal suggest 

that it may instead be due to the formation of nanocrystals.  Previous studies found Zr2Ni 
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nanocrystals began to form after annealing near Tg [24].  However, the features in the second 

peak in the WAXS data share characteristics with the Ti2Ni-like crystal phase.  This is consistent 

with the appearance of Ti2Ni-like nanocrystals identified from samples that were heated quickly 

to 468 
o
C [24].  At that heating rate, the formation of Zr2Ni nanocrystals was not observed.  

Annealing close to 450 
o
C possibly suppresses the nucleation rate of Zr2Ni nanocrystals and the 

SAXS signal is instead dominated by the formation of Ti2Ni-like nanocrystals.   

After the initial rapid growth of a SAXS signal in region I, the intensity temporarily 

stabilized (Figure 7.12, region II).  By this point, a distinct peak had formed in the SAXS signal 

at ~0.017 Å
-1

 (d ≈ 370 Å (37 nm)).  At the same time, the growth of S(q1) and S(q2) began to 

slow, eventually leveling off.  There was very little additional growth to the SAXS signal, 

suggesting that the continued changes in the WAXS signal were due to structural rearrangement 

or relaxation as the nanocrystals stabilized.  The intensities at qx = 2.47 and 3.05 Å
-1 

remained 

stable in the early stages of this region, but they eventually began to grow.  This suggests that the 

primary crystalline phase began to grow well after the first SAXS signal was observed.   

Once nucleated, the Zr2Ni crystalline phase rapidly grew (Figure 7.12, region III).  The 

SAXS intensity also increased, with the peak shifting to larger-q (q = 0.021 Å
-1

, d = 299 Å (29.9 

nm)).  The nucleation and growth of the Zr2Ni phase was likely induced by chemical segregation 

wherein the Ti, Cu, and Al atoms were removed from the bulk by the formation of the Ti2Ni-like 

nanocrystals.  The chemical fluctuations leading to the nucleation of Ti2Ni-like nanocrystals 

were likely initially driven by the preferential bonding between Ni and Zr due to their large 

negative heat of mixing (-49 kJ/mol), leading to locally ordered fluctuations that expelled Ti, Cu, 

and Al [35].  This could lower the nucleation barrier as these regions become closer in structure 

and composition to their corresponding crystal phases, promoting nucleation.  While nucleation 
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could occur in either the Ti-rich or Ti-poor regions, the features reflected in the WAXS signal 

suggest that the nucleation rate for the Ti2Ni-like phase is much higher than for Zr2Ni at this 

temperature. 

 

Figure 7.13 (a) Calculated RG from the measured SAXS curves.  The symbols in red are calculated from the select 

SAXS curves in (b). 

 

In order to characterize crystal growth, the radius of gyration (RG) was calculated from 

the SAXS intensity.  In the limit as q→0, the macroscopic cross section follows the well known 

Guinier relationship [36]: 
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Here, Nv is the density of the second region within the first, V is the volume of the second region, 

Δρ is the difference in electron density between the two regions, and RG is the region’s radius of 

gyration (i.e., the mass distribution around a central axis).  RG was extracted from the slope of 

2ln( )I vs q , providing information on the physical size of the scattering regions (Figure 7.13).   

RG was calculated between q = 0.032 and 0.063 Å
-1

 and is presented in Figure 7.13 (a).  

Due to the lack of definition in the SAXS signal during the initial stages (0 – 75 s), accurate 

slopes could not be computed (Figure 7.13 (b), black curve).  The R
2
 values from the fit were ~0-

0.2, lending little statistical meaning to the slope.  As the SAXS intensity began to grow (Figure 

7.13 (b), red curve, 128 s), sufficient statistics were available for accurate determinations of RG.  

Throughout region I, RG quickly grew, eventually stabilizing around 38.9 ± 0.7 Å by the end of 

region II.  Once crystallization began (end of region II, Figure 7.12), very little change was 

observed in RG, eventually stabilizing around 41.7 ± 0.7 Å.  This suggests that the increase in 

absolute intensity was due to an increasing number of crystalline regions rather than growth of 

existing ones, with their size limited by the dimensions of the compositional fluctuations that 

developed.  The primary crystallization likely did not extend into the second region since the 

compositional difference between the two phases would restrict growth by limiting the 

availability of the appropriate chemical elements.   

While early studies of Vit105 suggested liquid-liquid phase separation was responsible 

for the SAXS signal, much of the evidence presented here is consistent with the more recent 

study where nanocrystals were observed after annealing at Tg [24].  Based on a combination of 

atom probe tomography, X-ray diffraction, and TEM studies, Kündig et al. found evidence of 
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nanocrystals within the inhomogeneous regions corresponding to either the tetragonal Zr2Ni 

phase or the oxygen-stabilized Ti2Ni-like “big cube” phase, depending on the heating rate and 

amount of oxygen present [24].  The X-ray diffraction peaks in their low-oxygen sample were 

matched to the Zr2Ni phase and are consistent with the diffraction peaks observed upon primary 

crystallization in this study.  The results of X-ray diffraction studies of their high-oxygen sample, 

in particular the features that develop in the second amorphous peak, were remarkably similar to 

the sharpening that was observed in our WAXS data in region I (Figure 7.9).  However, none of 

the most intense diffraction peaks were observed in our data.  This suggests that the 

compositional fluctuations that develop are likely due to the nucleation of Ti2Ni-like 

nanocrystals [24].  As Ti, Cu, and Al are integrated into the nanocrystals, crystallization is 

induced in the remaining liquid as it becomes compositionally similar to Zr2Ni, reducing its TRG.   

7.5 Conclusions 

In summary, simultaneous wide-angle (WAXS) and small-angle (SAXS) X-ray scattering 

measurements were performed on a levitated Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) alloy in the liquid 

and supercooled liquid state.  Vit105 had comparable primary peak heights and widths to similar 

alloys, and did not display the anomalous behavior found in Ni58.5Nb20.25Y21.25.  This may 

indicate that no miscibility gap exists at high temperatures for Vit105.  Alternatively, the 

anomalous behavior observed in Ni58.5Nb20.25Y21.25 could instead reflect the large size differences 

of the constituent elements between Ni/Nb and Y.   

Compositional fluctuations were observed in the supercooled liquid, well above Tg, 

during annealing of an amorphous sample produced in situ.  While previous studies have 

suggested these features were due to decomposition into two amorphous phases prior to 

crystallization, the simultaneous peak sharpening observed in WAXS shared some similarities 
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with low-intensity features observed during the formation of Ti2Ni-like crystals in a high-oxygen 

sample.  While the high-intensity peaks were not visible, the sharpening in the WAXS signal is 

likely due to the nucleation of Ti2Ni-like nanocrystals.  Once nucleated, the nanocrystals grow 

until the appropriate elements are no longer available.  At this point, the change in composition 

in the remaining liquid initiates nucleation of the Zr2Ni phase, which quickly grew.  The growth 

of the primary crystal phase was restricted by the initial boundary formed between the two 

regions resulting in a maximum RG of ~42 Å.   

This crystallization pathway is significantly different from that observed from the liquid 

when cooled to ~100 
o
C below TL.  Just above Tg, crystallization is induced by the nucleation and 

growth of Ti2Ni-like nanocrystals, changing the composition of the bulk and reducing TRG.  In 

the high-temperature liquid, nucleation occurs as the sample is cooled below TL resulting in the 

formation of a very different crystalline phase(s).  In both cases, heterogeneous nucleation from 

container walls was eliminated, but it is possible that the boundary formed between the 

nanocrystals and the liquid regions also lowered the energy barrier required for crystallization.   

In conclusion, this experiment highlights that a combination of techniques is very useful 

for examining multiple distinct length scales in a single experiment and sorting out details of 

complicated phase transitions.  The high flux at the APS allows for real-time observations of the 

crystallization process.  While successful measurements of liquid-liquid phase separation in the 

high-temperature liquid were not possible, the ability to study crystallization in the supercooled 

liquid near Tg over short timescales provides insight that would otherwise require multiple 

separate experiments on separate samples.  By understanding the crystallization pathways in bulk 

glass-forming alloys, the structural and kinetic parameters responsible for glass formation can be 

studied, leading to improvements in bulk glass formability.  
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Chapter 8: Summary and Conclusions 
The experiments presented in this dissertation are part of a larger effort seeking to 

understand the liquid and supercooled liquid structure in terms of its thermodynamic and kinetic 

properties to ultimately answer why some glasses form more easily than others.  To this extent, 

the structural evolution in the liquid is shown to be intimately tied to its viscosity and ability to 

form a glass.  Through the use of containerless environments, the liquid structure well below its 

melting temperature was studied using X-ray and neutron scattering techniques.  The structural 

features present in the liquid have enabled predictions of previously unknown metastable phases.  

Careful understanding of the crystallization pathways provided insight into devitrification 

methods characteristic of good and poor glass-forming alloys.   

In Chapter 3, the structural evolution of Ni-Nb(-Ta) liquid alloys was discussed.  The 

structure factors were measured as a function of temperature in the liquid, while the amorphous 

ribbons were studied at room temperature.  The structure of the glass, characterized by the height 

in the first peak of S(q), was extrapolated to its glass transition temperature by modeling thermal 

vibrations within the Debye theory.  The height of S(q) for the liquid samples was also 

extrapolated to Tg with a linear fit.  A discontinuity was revealed between these two 

extrapolations, implying that the structural order must accelerate at some point before the glass 

transition.  Reverse Monte Carlo simulations revealed that one of the Honeycutt-Andersen 

indices related to icosahedral structures also showed the same temperature evolution.  The rapid 

acceleration required is similar to that observed in viscosity, which is typically used to classify a 

liquid’s fragility.  Ni-Nb(-Ta) alloys, while considered bulk metallic glasses, are known to be 

fragile.  The rapid acceleration in structural ordering required is in contrast to the observed 
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behavior in previous studies of a very strong alloy, Pd40Cu30Ni10P20 [1].  This was the first 

observation that an acceleration of the rate of structural ordering near Tg was required for fragile 

liquids and provided the groundwork for a future, more detailed classification of structure and 

fragility [2].  

In Chapter 4, the structure and thermophysical properties of three Zr-Ni alloys were 

discussed (Zr76Ni24, Zr57Ni43, Zr36Ni64).  While the Zr-Ni system has a large glass-forming 

region, these alloys do not display a glass transition temperature in differential scanning 

calorimetry studies and are considered to be extremely fragile.  Rather than using the predictive 

models presented in Chapter 3, the structural evolution of the glass was directly measured as a 

function of temperature up to Tg and found to have a very large discontinuity relative to the 

liquid, consistent with extremely fragile systems.  This experiment highlights the usefulness of 

the WU-BESL chamber.  The chemical ordering was also investigated.  The primary peak in the 

pair-distribution function, g(r), was extremely asymmetric.  In alloys at extreme compositions 

(Zr76Ni24 and Zr36Ni64), the primary peak contained a shoulder at either large- or small-q.  The 

intermediate alloy, Zr57Ni43, consisted of two peaks of approximately equal amplitude.  The 

positions of these peaks were shown to be consistent with appropriate bond-lengths, and the 

amplitudes scaled with the Faber-Ziman weighting factors.  The lack of quality (measured or 

simulated) partial structure factors limited the characterization of chemical ordering, and 

highlighted the need for combining multiple scattering experiments with sufficient chemical 

contrast.   

In Chapter 5, the first liquid neutron scattering data of Zr80Pt20 and Zr77Rh23 acquired 

using the newly commissioned NESL levitator at the Spallation Neutron Source were discussed 

in combination with X-ray experiments acquired using WU-BESL.  In order to compare two 
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independently obtained S(q)s, new data reduction techniques were developed to properly 

compare both measurements on an absolute scale by constraining to physical parameters.  

Constrained Reverse Monte Carlo (CRMC) simulations were constrained using Zr80Pt20 X-ray 

and neutron S(q)s as well as a single partial pair-correlation function (PPCF) calculated using 

MD.  The atomic configurations were used to calculate the Voronoi indices prevalent in the 

liquid.  It was found that the Pt-centered <0 2 8 1 0> index was dominant and highly stable for 

all temperatures.  The PPCFs from the CRMC were used to study the topological and chemical 

contributions within the Bhatia-Thornton (BT) formalism.  Equivalent BT partials were 

calculated for the Zr77Rh23 alloy by eliminating the smallest contribution (the chemical-chemical 

was less than 1% of the total) and numerically solving for the rest.  The topological order was 

found to be very similar, while the chemical contributions in Zr77Rh23 were found to have much 

stronger ties to the topology.  The similarity in their topology enabled the prediction that the 

stable <0 2 8 1 0> Voronoi index, a structural unit of the Zr5Pt3 crystalline phase, may also be 

present in Zr77Rh23 liquids, and therefore Zr5Rh3 might be a metastable phase for Zr77Rh23.  From 

this prediction, a previously unobserved metastable Zr5Rh3 phase was successfully identified 

crystallizing from a deeply undercooled liquid. 

In Chapter 6, the crystallization behavior of a supercooled Zr77Rh23 alloy was discussed.  

The metastable Zr5Rh3 discovered in Chapter 5 was characterized and found to be one of many 

possible metastable phases that can form.  Depending on the maximum supercooling achieved, 

three different crystallization pathways were observed.  Many of these pathways are likely 

stabilized by the presence of oxygen, such as the Ti2Ni-like “big cube” phase and the direct 

formation of α – Zr.  Understanding the metastable crystallization pathways can lead to the 
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development of materials with carefully selected material properties based on the microstructure 

of the crystallized phase as well as improving the design and glass formability of new alloys. 

In Chapter 7, attempts were made to observe liquid-liquid phase separation in high-

temperature bulk metallic glasses using a combination of wide-angle (WAXS) and small-angle 

X-ray scattering (SAXS).  The identification of nanoscale compositional fluctuations in the high-

temperature liquid was unsuccessful.  However, a SAXS signal was observed during an 

isothermal measurement of a glassy Vit105 alloy that was quenched in situ.  It was revealed that 

compositional fluctuations began well before primary crystallization was observed.  Past studies 

have presented conflicting interpretations of this data.  This investigation sought to clarify 

whether the SAXS signal was the result of liquid-liquid phase separation, or if it corresponded to 

the formation of nanocrystals.  While no crystalline peaks were found in the WAXS data during 

the growth of a SAXS signal, the broad amorphous peaks began to sharpen with characteristics 

similar to the previously observed Ti2Ni-like phase.  While direct imaging of the compositional 

fluctuations in the supercooled liquid were impossible, the evidence suggests that the SAXS 

signal is not, in fact, from liquid-liquid phase separation, but rather the rapid growth of 

nanocrystals driven by structural and chemical ordering.  The investigation of the crystallization 

pathways in excellent BMGs such as Vit105 is crucial to understanding not only how such 

BMGs form, but also provide insight into methods of altering the microstructure to select for 

specific mechanical properties useful in future applications. 

While past speculations have made a structural connection to fragility, clear evidence has 

not been previously observed.  This connection was demonstrated for the first time in this 

dissertation, based on the measurements of structural evolution presented.  In addition, a 

connection between structural and chemical ordering was found in some, but not all, of the high-
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temperature liquids studied.  Two similar liquids, based on atomic sizes and binding enthalpies 

of the constituent elements, were found to contain very different local chemical environments 

despite similar topological order.  Based on their local order, a metastable phase was predicted 

and later discovered and characterized in one of these liquids.  Using the capabilities of the 

newly commissioned NESL levitator, future experiments will further explore the extent of these 

connections between structural evolution, chemical order, and thermophysical and kinetic 

properties.  By developing a clear understanding of these relationships, a greater understanding 

of glass formation can be reached. 
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Appendix A: Neutron Analysis User Guide 

This appendix discusses the details involved in reducing the time-of-flight (TOF) neutron 

scattering data that were performed on the Nanoscale-Ordered Materials Diffractometer 

(NOMAD) discussed in Section 2.8.3.  The IDL and Python scripts that were used for initial 

reduction are described in detail (Sections A.1-A.6), as well as the methods developed to correct 

the data post-reduction (Section A.7).  Additional details for generic forms of the IDL scripts are 

covered in Appendix B and detailed descriptions of the LabVIEW programs that were used are 

covered in Appendix C. 

A.1 Data Storage at ORNL 

Reduction from neutron counts to S(q) was performed on the Spallation Neutron Source 

(SNS) servers by remote connection using a free program called NX client.  A configuration file 

is provided by the SNS from their general analysis website, http://analysis.sns.gov.  Running the 

provided configuration file connects the user to their login server.  It can be accessed with the 

account that each user set up prior to the experiment.  As of July 27, 2015, the NX client is no 

longer supported for remote desktop access to the SNS servers.  Instead, a new browser-based 

connection can be used.  Since this is a relatively new procedure, the details will not be discussed 

here.  More information can be found at https://analysis.sns.gov/.  In order to access any folders 

on the server, the user’s ID must be associated with the experiment number (IPTS number).  This 

can be accomplished by contacting the PI or SNS contact for the experiment of interest, or can be 

requested from https://neutronsr.us/accounts/request-sns.html.  All neutron data used in this 

dissertation were taken from the experiment designated as IPTS-11941.  All data can be found 

under the following path on the SNS servers: 

http://analysis.sns.gov/
https://analysis.sns.gov/
https://neutronsr.us/accounts/request-sns.html
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~/SNS/NOM/IPTS-11941/shared 

with the analysis stored under: 

~/SNS/NOM/IPTS-11941/shared/abskorr 

Temperature-time data were collected on the NESL computers and the data were 

uploaded to 

~/SNS/NOM/IPTS-11941/shared/TemperatureData 

Examples and templates were stored in the folder: 

~/SNS/NOM/IPTS-11941/shared/GeneralScripts_OctoberNOMAD_20150430 

Raw temperature files and processed neutron data were transferred from the SNS servers 

to a local computer using the FTP software Cyberduck, connecting to analysis.sns.gov on port 22 

using an FTP-SSL (Explicit AUTH TLS) connection.  Information on downloading and 

connecting to the SNS servers is also contained at http://analysis.sns.gov.  As of the writing of 

this dissertation, the web page is formatted such that hovering over each icon will reveal a 

description of the program as well as a link to downloading it.  The files can be transferred via 

Cyberduck by right-clicking on the appropriate file or highlighted files and selecting download 

to.  There have been issues with the program crashing if this method is used on a second set of 

files while the first transfer is still in progress. 

The reduction of raw neutron counts to final corrected and normalized S(q) and g(r) 

requires a large number of steps (Figure A.1) and each will be discussed in turn.  There are three 

primary sections that the analysis can be broken into: Initial preparation, use of IDL scripts, and 

final LabVIEW reduction techniques.  The current topic will be highlighted in red in the flow 

chart as it is discussed within the text. 

http://analysis.sns.gov/
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Figure A.1 Sequence of analysis steps for reduction of neutron scattering data. 

 

A.2 Required Files 

All corrections were made using a sequence of Python and IDL scripts developed by J. 

Neuefeind and modified for final use by myself.  Python scripts were executed by preceding the 

script name with the command python, and IDL scripts were executed by preceding the script 

name with the command idl.  The scan number corresponding to each calibration file is listed in 

Table A.1.  

Table A.1 Calibration files used in NOMAD 2014. 

Run ID Standard Type Mass (mg) Diameter 

(mm) 

Scan Length (min) 

33228 Empty Chamber -- -- 60 

33263 Pure Vanadium 365.23 4.85 60 

33278 Diamond Powder -- -- 31 

33279 Vanadium Can -- -- 31 

 

Several standard files are required for proper data reduction (Table A.2).  Many of them 

are created by the beamline scientist as part of the automatic reduction and are likely located in 

the experimental sub folder ~/shared/autoNOM.  The relevancy of these automatically generated 

files for future experiments should be discussed with the beamline scientist to ensure their 

accuracy.  These files include aqdep33278, mask33278.dat, nomad_33278.calfile, and 
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idlstart.pro, where 33278 is the scan number of the diamond calibration standard.  The file 

norm33263_010_290_sm.dat is the vanadium normalization file specific for NOMAD 2014; 

instructions on creating this file are discussed in Section A.5.  It is possible the automatically 

reduced normalization file will be sufficient, but in NOMAD 2014 it did not fully remove all 

coherent vanadium peaks and had to be modified.  The creation of the absorption and multiple 

scattering files afsample.dat and sample.msdat is discussed in Section A.3 and the use and 

modification of the standard binning file, bingr_abs_9999.bat, is discussed in Section A.6. 

Table A.2 Files necessary for data reduction used in NOMAD 2014. 

Filename Description 

aqdep33278 Describes the q-dependence of the neutron detectors 

mask33278.dat Describes bad pixels and banks to mask out of data analysis 

nomad_33278.calfile Describes detector calibrations necessary for analysis 

norm33263_010_290_sm.dat 
Normalization file created from the vanadium standard (λ = 

0.10 - 2.90 Å) with extraneous peaks manually removed 

idlstart.pro Standard IDL initialization file 

afsample.dat Absorption and multiple scattering correction file 

sample.msdat 
Sample information used in creation of absorption and multiple 

scattering files.  Generated from sample.ini inputs 

bingr_abs_9999.bat Binning template for NOMAD 2014  

 

A.3 Temperature Corrections 

 

The raw temperature-time files were transferred from the SNS servers to a local PC for 

emissivity corrections and further reduction.  Each isothermal measurement was preceded by a 
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free-cool from the liquid and re-melted.  Solidus (TS) temperatures were determined for each 

sample from the largest endothermic signature measured in a differential thermal analyzer (DTA) 

(Labsys
TM

 DTA/DSC, Setaram) and were matched to this melt plateau using a modified version 

of EMCorrectTempData.vi [1].  There was significant drift in the He-Ne positioning lasers 

resulting in an apparent shift in temperature over time.  As a result, the “constant” temperatures 

could drift by ~50 
o
C over 30 min.   

Temperature averages were performed using Origin 9 over regions of relatively constant 

temperature close to the preceding melt plateau.  The Origin function Statistics on Columns was 

used, with the beginning and end points determined visually from an inspection of the 

temperature-time graph.  An adequate fit was also obtained using the Statistics – Mean gadget, 

but the error on the mean was not output using this method.  The final temperature was calibrated 

using the melt plateaus before and after each scan.  For example, in Figure A.2 (a), Run 33243 

was first corrected to the plateau preceding the measurement.  Over the first 206.5 s it averaged 

to 1293.19 ± 0.51 
o
C with a standard deviation of 23.09 

o
C, where the error represents the 

standard error of the mean.  Similarly, in Figure A.2 (b), the same temperature data was 

corrected to the melt plateau following the measurement, and the final 560.5 s of the hold 

averaged to 1293.49 ± 0.16 
o
C with a standard deviation of 11.63 

o
C.  This confirmed that the 

temperature remained constant throughout the measurement despite the apparent drift.  The 

temperature is typically fairly well defined (Figure A.3 (a-b)) giving the low standard error, but 

due to sample motion and issues with pyrometer alignment, there was often a spread to the data 

resulting in a large standard deviation.  A typical dataset had a standard deviation of 4-10 
o
C 

(Figure A.3 (b)).   
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.  

Figure A.2 Temperature-time graphs of Zr80Pt20 Run 33243 corrected by (a) matching to the melt plateau in Run 

33243 and (b) matching to the melt plateau in Run 33244. 
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Figure A.3 Statistics on the temperature-time average of (a) Run 33243 matched to the melt plateau prior to the hold 

and (b) Run 33247.   

 

A.4 Absorption and Multiple Scattering Simulations 

 

Simulations of absorption and multiple scattering were performed for each sample using 

temperature-dependent liquid density acquired with WU-BESL at Washington University in 

Saint Louis.  An initialization file was used to define the appropriate radius (in cm) and density 

(in g/cm
3
) of each sample (Figure A.4).   
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Figure A.4 Zr80Pt20_5_Run33243_1293C.ini initialization file that seeds the absorption and multiple scattering 

simulation. 

 

The initialization file can be created or modified using the gedit text editor through a 

Linux terminal using: 

$ gedit filename.ini 

where the $ symbol indicates the start of the entry box in a Linux terminal and is not input by the 

user.  If a file named filename.ini exists, it will open in gedit.  If the file does not exist, it will 

open an empty text document and name it filename.ini.  The sample formula requires a space 

between each element and its corresponding atomic weight (in at.%*100).  All samples in this 

dissertation were calculated using a spherical sample shape, but a cylindrical shape is also 

available.  The simulation is executed by running the following code in a terminal in the same 

folder as the initiation file: 

$ python ~zjn/pytest/define_sample.py –f filename.ini 

As mentioned in Section 2.9.2, it is generally assumed that the absorption coefficient for 

neutron scattering behaves linearly with neutron wavelength, commonly known in literature as a 

1/v scaling, where v is the velocity of the neutron.  When the above command is executed, the 

absorption coefficients are approximated using Eqn. 2.31.  The define_sample.py script is also 

capable of performing an energy-dependent simulation of the absorption coefficient for the cases 

where an absorption resonance appears in the energy range used at NOMAD.  Using Zr77Rh23 as 
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an example (Chapter 5 and Chapter 6), rhodium contains a resonance near 0.3 Å (Figure A.5), 

resulting in a large increase in absorption that deviates from the 1/v relationship.  The previous 

command can be modified to read in the measured absorption as a function of wavelength by 

applying a modifier: 

$ python ~zjn/pytest/define_sample.py –f filename.ini –R True 

 

Figure A.5 Rhodium absorption resonance peak.  Normal 1/v behavior is represented by the linear tail at large 

wavelength.  The range of data presented here spans the accessible wavelengths available at NOMAD.   

 

Due to the very good linear approximation that most materials exhibit in the appropriate 

energy range, in most experiments it has not been necessary to take into account wavelength-

dependent absorption.  With the increase in computing power and available data, it is now 

feasible to start implementing this type of correction.  Due to time constraints, this feature was 

not extensively tested and was not implemented in this dissertation.  Instead, the absorbing 

wavelengths were filtered out.  Details of performing wavelength filtering are described in 

Section B.2.2, Table B.3. 
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Once completed, these scripts produce a file containing all absorption and multiple 

scattering information named afsample.dat, where sample is replaced with a unique filename 

specific to the composition, run number, and temperature.  A second file, named sample.msdat, 

is also generated, containing sample specific information including mass, radius, density, and 

scattering length based on information provided in the initiation file.  

A.5 Normalization File 

 

The standard reduction of pure vanadium during NOMAD 2014 had issues removing all 

Bragg peaks from Run ID 33263.  Modified scripts were created to properly correct the data.  To 

begin, both the background and pure vanadium data (Run IDs 33228 and 33263) were reduced 

using separate batch files (Figure A.6 and Figure A.7).  For future experiments, the values 33278 

and 33228 can be replaced with the corresponding run numbers for the diamond calibration and 

empty chamber. 

 

Figure A.6 IDL binning script for the empty chamber (Run ID 33228). 
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Figure A.7 IDL binning script for the vanadium standard (Run ID 33263). 

 

 

Figure A.8 IDL Script @idlstart defines the path of all other scripts used. 

 

These scripts create Run ID-specific files (all33228n.dat and all33263n.dat, respectively) 

containing all of the acquired intensity information.  The command @idlstart is an IDL 

subroutine that points IDL to the proper directory where all reduction subroutines are stored on 

the SNS servers (Figure A.8).  The command restore reads the specified file and imports the data 

into correctly named variables according to file-type.  The command qbinning requires an input 

of Run ID, IPTS number (NOMAD 2014 is considered IPTS-11941), maximum q, q-spacing, 

and a reference to the diamond powder calibration file.  The file afVana.dat that is restored on 

line 5 in Figure A.6 and Figure A.7 contains the simulated absorption and multiple scattering 

data for the Vanadium standard.  The command grouping combines all of the imported 

information onto the defined q-grid.  The input abskorr=1 tells the program to perform the 

absorption and multiple scattering correction.  The command save combines the variables 

created by grouping and outputs a text file, typically titled all#####.dat.  This file contains the 
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run information, where ##### represents the run number of interest.  Further information on all 

of the relevant commands is contained in Appendix B. 

The IDL script run_norm.bat was then executed to create a normalization file that is 

properly background subtracted and corrected for absorption and multiple scattering (Figure 

A.9). 

 

Figure A.9 IDL script run_norm.bat, which performs proper background subtraction, absorption, and multiple 

scattering corrections. 

 

This script first restores the binned and grouped files previously created by the binning scripts 

(Figure A.6 and Figure A.7) as well as the simulated absorption and multiple scattering 

corrections (afVana.dat).  During normalization, the data from each bank is fit to a Gaussian near 

each coherent Vanadium peak (Figure A.10).   

 

Figure A.10 Vanadium peak removal from Bank 5 of NOMAD.  The white curve is the background-subtracted 

vanadium scattering signal from Run 33263.  The red curves are the fits to Bragg peaks from vanadium. 
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Once all six banks are successfully fit, the peaks are subtracted out and replaced with a smooth 

curve in that region (Figure A.11). 

 

Figure A.11 Each detector bank with vanadium peaks successfully subtracted out. 

 

When this peak-subtracted normalization file was used to normalize the original 

vanadium scan, the result was a sequence of very small coherent peaks above a flat background 

(Figure A.12), indicating any signature of the incident spectrum was successfully removed. 
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Figure A.12 The vanadium scan normalized to the Bragg-subtracted vanadium normalization factor.   

 

This procedure generally removes all features from the vanadium, but in the data 

acquired during NOMAD 2014 there was a small feature that was not properly subtracted near q 

= 5 Å
-1

, corresponding to the 211 vanadium reflection (q211 = 5.079 Å).  This feature was quite 

small, but problematically appeared in the middle of the second peak in S(q) (Figure A.13).  
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Figure A.13 Liquid Cu46Zr54 at 774 
o
C.  The arrow indicates a jagged notch in the second peak of S(q)-1 near the 

211 Vanadium reflection. 

 

In practice, the bank-averaged sample intensity is divided by the variable normall 

contained in the normalization file.  The variable normall was extracted using the IDL script 

SaveNormall.pro, shown in Figure A.14. 

 

Figure A.14 IDL script SaveNormall.pro, extracting the normall parameter from the file norm33263_default.dat. 
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This script restores the normalization file named norm33263_default.dat, then writes the 

variable normall to a text file using the command wstd.  When executed, normall(q) was written 

to a user-named file (here, normall_default.dat).  Normall was fit using a cubic spline in Origin 

with 2500 points (the same number of points in normall) using linear and apparent interpolation.  

Eight points were masked out from the fit from q = 5.0 - 5.14 Å
-1

 and were replaced with the 

spline fit (Figure A.15).   

 

Figure A.15 The normalization factor normall both before (black) and after (blue) a residual vanadium peak was 

masked by hand.   
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The data were then exported from Origin to a text file, designated as normall_sm.dat.  

The IDL script VPeakRem_norm.pro was used to convert normall_sm back to the proper format 

for a normalization file (Figure A.16).   

 

Figure A.16 IDL script VPeakRem_norm.pro.  Re-saves normall as a normalization file. 

 

With the new normalization factor, norm33263_sm.dat, the notch in S(q)-1 that appeared 

in Figure A.13 was successfully removed, smoothly spanning the gap and providing a more 

realistic S(q)-1 (Figure A.17).  

 

Figure A.17 Liquid Cu46Zr54 at 774 
o
C.  The black curve represents a typical S(q)-1 produced using a normalization 

file without proper vanadium peak removal.  The red curve represents S(q)-1 with a proper normalization. 
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A.6 Obtaining S(q) 

 

With a proper normalization file, a total S(q) was generated from the time-of-flight (TOF) 

data using all of the standard files listed in Table A.2.  A binning script was generated for each 

run number using a standard template, bingr_abs_9999.bat (Figure A.18).  A detailed description 

of each function is described in detail in Appendix B.  There are two pre-set values that can be 

easily replaced using find-replace in a standard text editor, accessed by ctrl+h in gedit.  The run 

number is represented by 9999, and the filename for the absorption correction is represented by 

sample.   
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Figure A.18 Standard binning template, bingr_abs_9999.bat.  Standard find-replace components include 9999 for 

the sample run number and sample for the filename designating absorption and multiple scattering information. 

 

In the example in Figure A.18, the normalization file is input in two places, designated 

here as norm33263_clean.dat.  For the purposes of NOMAD 2014, a single normalization file 

was prepared using the techniques described in Section A.5.  There are several other parameters 

that must be modified for data taken on future experimental runs.  A more general template, 

bingr_abs_9999_general.bat, contains several other generic parameters for replacement which 

are described in detail in Appendix B.   

Once a proper binning file is created, it is executed using the command: 

$ idl bingr_abs_9999.bat 

This script generates a series of files beginning with NOM_9999_ including standard g(r) and 

S(q) files.  A complete description of the output files are given at 
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http://neutrons.ornl.gov/sites/default/files/How-to-reduce-NOMAD-data.pdf.  The only output 

used from this is the S(q) file, which technically outputs S(q)-1.  This S(q) has been corrected for 

all standard detector corrections as well as absorption and multiple scattering.  It does not yet 

properly account for secondary scattering from the chamber or remove non-physical features.  

These corrections are discussed in Section A.7.   

A.7 Curvature Removal and Absolute Normalization 

 

The S(q) produced in the preceding steps is still not fully reduced.  Using only those 

corrections, there is often a sizeable amount of curvature that prevents S(q) from oscillating 

smoothly around 1 for smaller-q values (5-10 Å
-1

), as is the expected behavior (Figure A.19).  

This is typically attributed to inelastic scattering, where the incident neutron transfers noticeable 

energy to the scattering atom, thereby reducing its velocity and increasing the resulting measured 

TOF to the detector.  These neutrons become incorrectly binned and must therefore be accounted 

for.   
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Figure A.19 Initial S(q) post-corrections of undercooled liquid Zr80Pt20 at 981
o
C.  The red line indicates S(q) = 1. 

 

There are several possible ways of dealing with this excess curvature.  The first method is 

to calculate the estimated effect using the method developed by Placzek [2].  This correction is 

strongest at small-q, but calculations always severely overestimate its effect.  It has been 

integrated into popular PDF reduction software such as PDFgetN [3], but due to the difficulty of 

properly calculating this effect over all q-ranges, it is of limited practical use [4].  Other methods 

are in development using phonon models to directly calculate the inelastic contributions, but are 

currently not implemented.  A method has been developed by Page et al. [5] which attempts to 

account for this effect in q-space by fitting a weighted background to S(q) from each bank of 

data.  The background is weighted within a small window in q-space to ignore contributions 
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from coherent peaks and place more emphasis on determining an appropriate baseline.  This 

method is reasonably effective with high amounts of inelastic scattering of crystalline materials, 

but due to the broad peaks in liquid structure factors presented in this dissertation, the automatic 

weighting for the effective background is not expected to accurately fit the data.   

A method commonly used in r-space assumes that below some minimum r-cutoff, rmin, 

the reduced pair-distribution function, G(r), is represented by a straight line with the slope 

proportional to the number density: 

  0
0

2
( ) 4 ( ( ) 1) ( ) 1 sin( )G r r g r q S q qr dq 





    . (A.1) 

Here, g(r) is the pair-distribution function and ρ0 is the average number density.  The pair-

distribution function is a measure of the likelihood of finding another atom a distance r away 

from any given atom.  Therefore, there is a hard-sphere limit below which it is unphysical to 

place two atoms.  In this region, g(r) = 0 and G(r) = -4πrρ0.  If there are any features in the 

Fourier transform from S(q) to G(r) in this region, then they must be unphysical and can be 

removed.  Features in this region are assumed to produce only low-amplitude, low-frequency 

oscillations in S(q).  The best-fit line can be subtracted from the data and Fourier transformed 

back to q-space where it is then subtracted from S(q).  However, this method cannot account for 

any inelastic scattering contributions to G(r) that occur beyond the first coordination shell.  One 

of primary disadvantages of this method is that it makes assumptions based on the expected 

structure.  However, both G(r) and g(r) are minimally affected above rmin so the real-space 

distance correlations are preserved.   
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Multiple scattering events are those wherein a neutron that scatters off of a nucleus 

within the sample is scattered a second time within the same sample.  This correction has already 

been discussed, but it does not account for those neutrons that first scatter from the sample and 

then scatter a second time from the environment.  These events are called secondary scattering.  

The NESL has many components and takes up a large footprint, so there are many opportunities 

for secondary scattering.  Since these events only occur when a sample is present in the beam, an 

empty chamber scan cannot properly account for these extra counts.  An exact calculation of 

secondary scattering, then, depends upon the precise geometry and elemental composition of the 

surrounding equipment.  This is a nearly impossible task to undertake, but approximations can be 

made based on expected physical behavior.   

The previous discussion involving subtracting out the unphysical ripples in G(r) in the 

hard-sphere region does not guarantee that g(r) → 0 at r = 0 Å.  If g(r) at small-r is not 0, this 

unphysically implies that there are still real-space correlations at distances smaller than 

interatomic distances and results in a slope in the small-r region of G(r), 4πρfit, that does not 

match the experimentally measured number density, ρ0.  According to Peterson [6], one of the 

most common systematic errors is a scaling error where the reduced S(q) requires an additional 

scaling factor: 
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 '( ) ( ) (1S q S q     . (7.3) 

Here, α is a multiplicative scaling constant and S’(q) is the modified S(q).  The addition of (1-α) 

is necessary to maintain proper normalization about S(q) = 1.  If the liquid density is known to 

sufficient accuracy, α can be adjusted until ρfit calculated from G(r) matches the experimentally 

determined value.  The combination of these two corrections is not unique to neutron scattering 

measurements, and can also be applied to X-ray measurements in order to put them on the 

absolute scale. 

 

Figure A.20 Custom LabVIEW VI Sq_Curvature.vi used for curvature removal and absolute normalization.  

Displayed data is for a Zr80Pt20 liquid S(q) from neutron scattering at 1293 
o
C. 

 

The neutron data in this dissertation were reduced using a modified version of the real-

space method described above using the LabVIEW program Sq_Curvature.vi (Figure A.20, 

Section C.2).  Since the output from the IDL scripts described in Section A.6 produces a non-

uniform space-delimited file, the output *.dat must first be converted to the proper format using 
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the custom LabVIEW program NOMAD_File_Convert.vi (described in more detail in Section 

C.1).  This VI converts the IDL results into a format consistent with the output from X-ray 

Batch.vi.  As a result, Sq_Curvature.vi is compatible with structure factors measured from both 

types of experiments.  Sq_Curvature.vi has a wide array of options included in the user 

parameter section, but ideal values were found for the majority and do not require adjustment.  

The details of all possible options are described in detail in Section C.2.  The value of rmin is 

optimally determined by either visually observing the minimum before the first peak in G(r) or 

by using the minimum bond length expected between the constituent elements.  This can be 

approximated using combinations of the Goldschmidt radii of each species or by chemically 

specific techniques such as isotopic substitution neutron scattering or extended X-ray absorption 

fine structure (EXAFS) measurements.  For the liquids measured from neutron scattering in this 

dissertation, g(r) was quite noisy, making it difficult to accurately determine the minimum before 

the primary peak.  In order to minimize arbitrary determination of rmin, a golden section search 

[7] is used to minimize the Peterson metric [6], denoted as PDFGauge in this work:   
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. (7.4) 

Here, ρfit is determined from the slope of a linear fit to the small-r data with G(r = 0) fixed at 0.  

Within the program, set Refinement Steps to PDFGauge – rmin.  When the program is run, 

Minimize What? and Minimize How? automatically adjust to PDF Gauge and rmin, respectively 

(Figure A.21).  This particular metric is already implemented in our in-house reduction of X-ray 

data in order to properly normalize S(q) at large-q and minimize the ripples present in G(r) below 

some rmin [8].  
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Figure A.21  Refinement control setting to change (subsection of User Parameters from Figure A.20) for fitting rmin.  

What? and How? are automatically adjusted to the proper settings when the program is run. 

 

As is apparent in Figure A.22 (a), the experimental G(r) is very nonlinear with a large 

number of unphysical oscillations in the hard-sphere region.  The linear fit to G(r) (red line) is 

subtracted from the experimental data in this region below rmin and back-transformed into q-

space using the inverse of Eqn. A.1 (red curve, Figure A.22 (b)).  When subtracted from the 

initial S(q) (black curve), the final S(q) (blue curve) now oscillates well around S(q) = 1.  If this 

corrected S(q) is Fourier transformed to G(r), the small-r region matches that of the previous fit 

with small additional ripples added due to termination error (Figure A.22 (c)), and the behavior 

of G(r) above rmin is not altered.   

It should be noted that curvature removal is performed during all stages of analysis within 

Sq_Curvature.vi, not just when the value of rmin is set.  Once the unphysical features are removed 

from G(r), any best fit to this now smoothed line results in approximately the same line.  As a 

result, each of the steps described below begin with the original input S(q) and an appropriate 

curvature removal is performed at the end.  The previous discussion highlights this process in the 

context of setting a single parameter. 
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Figure A.22 (a) G(r) transformed from the initial S(q) of liquid Zr80Pt20 at 1293
o
C using Eqn. A.1.  The red line is a 

linear fit to the small-r region below rmin determined from a minimization of PDFGauge.  (b) Initial S(q) (black line) 

with the Fourier transformed unphysical ripples from (a) (red line) and final S(q) with the curvature subtracted 

(blue).  (c) G(r) from Fourier transform of S(q) after unphysical ripples have been subtracted.  (d) g(r) after 

unphysical ripples have been subtracted. 

 

If Fourier transforms are performed on this S(q) using the experimentally measured 

density, g(r) often does not oscillate around g(r) = 0 (Figure A.22 (d)).  This deviation can be 
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attributed to the secondary scattering of neutrons from the environment, as previously discussed.  

In order to fully remove this contribution and put the data on an absolute scale, a two-step 

sequence is performed (Figure A.23).   

  

Figure A.23 Two steps used in properly scaling S(q). 

 

The first step applies a multiplicative factor, Gmod, to the small-r slope of G(r) such that 

below rmin, 0 mod( ) 4G r r G    .  This modifies the effective density calculated from the slope 

of this region.  By minimizing PDFGauge with respect to Gmod, a best fit line is found that 

minimizes the magnitude of the ripples.  Within the program, set Refinement Steps to PDFGauge 

– Gmod.  When the program is run, Minimize What? and Minimize How? will automatically 

adjust to PDF Gauge and Gmod, respectively (Figure A.24).  Gmod starts at a value of 1, 

representing an unmodified slope. 
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Figure A.24 Refinement control setting to change (subsection of User Parameters from Figure A.20) to minimize 

small-r ripples in G(r) using a scaling factor on the slope, Gmod.  What? and How? are automatically adjusted to the 

proper settings when the program is run. 

 

Once the ripples are minimized by manually adjusting the slope of G(r), the second 

refinement step applies a multiplicative scaling factor, α, to S(q).  This factor propagates through 

into g(r).  This parameter is adjusted until the difference between the effective density, ρfit, and 

the experimental density, ρ0, is minimized, forcing g(r) to oscillate around g(r)=0 below rmin.  

Within the program, set Refinement Steps to #Density – Scaling.  When the program is run, 

Minimize What? and Minimize How? will automatically adjust to PDF Gauge and rmin, 

respectively (Figure A.25).   

 

Figure A.25 Refinement control setting to change (subsection of User Parameters from Figure A.20) to force g(r) to 

oscillate around 0 using a scaling factor on the total S(q), α.  What? and How? are automatically adjusted to the 

proper settings when the program is run. 

 

With all corrections implemented, the final output is presented in Figure A.26.  Both S(q) 

and g(r) now display the expected physical behaviors with S(q) oscillating around 1 for the entire 



252 

 

q-range with little to no curvature evident, and g(r) oscillating around 0 in the hard-sphere 

region.   

 

Figure A.26 Final output of Zr80Pt20 liquid from neutron scattering after all refinement steps for (a) S(q) and (b) 

g(r).  S(q) oscillates around 1 at large-q with no apparent curvature; g(r) oscillates around 0 at small-r. 

 

These techniques are not exclusive to the neutron analysis, but are also useful for 

correcting high-energy X-ray scattering as well.  In order to test the consistency of this method, 

these steps were performed on Zr76Ni24 liquid structures at 1085 
o
C that were acquired on two 

separate WU-BESL experiments (BESL 2010 and BESL 2013).  After using X-ray Batch.vi to 

reduce these data, a discrepancy was noted in the amplitudes of S(q) of what should be identical 
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structure factors (Figure A.27 (a)).  Similarly, neither g(r) oscillated around 0 and furthermore, 

neither oscillated around the same value (Figure A.27 (b)).  When using data from the same 

experiment, these deviations are likely similar in all scans, but in order to compare between 

separate experiments, this is not sufficient.  Using the steps described in Figure A.23, the two 

independent measurements were nearly identical when placed on the same absolute scale.  Only 

minimal deviations are observed when a difference is taken between the two final outputs (blue 

curves in Figure A.27 (c-d)). 

 

Figure A.27 Reduction of a Zr76Ni24 liquid at 1085 
o
C from two independent levitation experiments.  (a) S(q) and 

(b) g(r) using only X-ray Batch.  (c) S(q) and (d) g(r) after using the steps in Figure A.23 to put both experimental 

data sets on an absolute scale. 
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Appendix B: Generic Templates for Neutron 

Analysis 

The details in this appendix describe the scripts used in the NOMAD 2014 data 

reduction.  A majority of these scripts were written by J. Neuefeind and are described here for 

clarity. 

B.1 General Templates 

 Templates specific to NOMAD 2014 have been described in Section A.6, but for future 

experiments there are many other parameters that may require modification than just those 

described in those sections.  Example templates are stored under: 

~/SNS/NOM/IPTS-11941/shared/GeneralScripts_OctoberNOMAD_20150430 

~/SNS/NOM/IPTS-12581/shared/abskorr/GeneralScripts_OctoberNOMAD_20150430 

B.1.1 Initial Data Reduction Template 

Figure B.1 represents the template bingr_abs_9999_general.bat.  In addition to the 

standard parameters described in Section 2.10.7, there are several additional required parameters 

that are specific to each individual experiment (listed in Table B.1).   
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Figure B.1 Template bingr_abs_9999_general.bat.  Parameters for quick-replacement for future experiments are 

listed in Table B.1.   

 

Table B.1 Parameters for quick-replacement in bingr_abs_9999_general.bat (Figure B.1). 

Template Representation Description 

9999 Run number for appropriate sample scan 

XXXX Run number for appropriate diamond scan 

IPTS Proposal number for the experiment of interest – do not include 

decimal points 

sample Filename of the appropriate absorption/multiple scattering 

simulation 

empty Run number for appropriate empty chamber scan 

normFile Filename of the appropriate vanadium normalization (case 

sensitive) 

YYYY Diameter of the vanadium standard used in normFile 

 

Due to the consistency of the majority of these parameters across a single experiment, 

once these parameters are set there is very little need to change them.  These parameters are 

listed in the order in which they appear in the template.   
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The run number (9999) is typically a 5-digit value that is incremented by one each time 

the secondary neutron shutter is opened.  In principle, this script can be run on any scan 

including empty chamber and diamond scans, but this script is specifically designed with the 

assumption that 9999 represents a sample acquisition.   

The diamond scan (XXXX) is typically measured once over the course of an experiment.  

It should be noted that the standard filenames used in data reduction (Table A.2) are named 

according to the file-naming convention in use during the end of 2014.  It is possible that the 

standard filenames will be redefined in the future, in which case the user is advised to find all 

instances of XXXX and take note when a filename is being called instead of a run number.  If it is 

a filename, it will be bracketed by single quotes and should be updated to the new naming 

convention.   

The proposal number (IPTS) is a 4-5 digit number which represents the ID number 

associated with the beamtime proposal.  If the IPTS number is unknown, this can be accessed 

from the ORNL guest portal (http://user.ornl.gov) under proposals.  The ID number listed next to 

the individual proposals will often have a decimal value in addition to the 4-5 digit number 

which represents a specific visit.  Typically, this value is listed as “.1” as most experiments are 

completed in a single site visit.  For example, the ID number 11941.1 represents the data taken 

during NOMAD 2014 in September, and 11941.2 represents the data taken in October.  For the 

purposes of replacing IPTS in the template, only the base value is used (11941).   

The sample filename represents the base filename used in creating an absorption and 

multiple scattering correction file from an initialization file named sample.ini.  This parameter 

has already been discussed elsewhere (Section A.4).  

http://user.ornl.gov/
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The value of empty represents the scan number of the empty chamber used to correct the 

data, again typically a 5-digit number.  In the case of NOMAD 2014, a single sample carousel 

was loaded and the NESL never broke vacuum.  As such, the sample environment did not change 

and only a single empty chamber scan was acquired for the experiment.  During future 

experiments, it is possible multiple pumping cycles will occur.  In this case, it is advised to use a 

separate empty run corresponding to the most recent scan during the same pumping cycle.  This 

value should also be updated when producing a normalization file (Section A.5). 

The normalization file, normFile, should be updated for the individual vanadium standard 

used in correcting the data.  During NOMAD 2014, a single vanadium standard was acquired so 

only one normalization file was created.  If the q-range or energy filter is modified to try to 

remove absorption features, a new normalization file needs to be created for each setting.  

The diameter of the vanadium standard, YYYY, should be updated to match the vanadium 

scan used to create normFile.   

B.2 Standard IDL Functions 

Throughout the templates described in this dissertation, many different functions are 

called to assist with the data reduction.  Some of these are standard functions that are 

automatically associated with the IDL language, but many have been developed by J. Neuefeind 

specifically for use with NOMAD data reduction.   

B.2.1 Using IDL Functions 

Most of the scripts described in this dissertation are written in a text editor (typically 

gedit) and are saved as either batch (*.bat) or program (*.pro) files.  For the purposes of 

executing scripts in IDL in the context of standard data reduction, it makes no difference which 
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extension is used.  However, program files can be more easily called within a higher-order IDL 

script.   

In order to execute a prepared IDL script, the following commands are used: 

$ idl script.bat 

or 

$ idl script.pro 

These commands are entered into a traditional linux terminal where the current directory 

matches that of the file of interest, and the symbol $ represents the end of a traditional command 

prompt.  No leading space is required to be input by the user as in the following more detailed 

example: 

[mjohnson@biganalysis05 Zr80Pt20_5_Run33243_1293C]$ idl script.bat 

The use of $ simplifies the representation of using the terminal command line.  If working within 

the program IDL (accessed by $ idl ), the leading symbol will instead be IDL> . 

Within an IDL script, other scripts can be called by prefixing the filename with @ and 

excluding the file extension.  For example, the majority of the scripts described within this 

dissertation begin with the line: 

@idlstart 

Once the main script is loaded using the commands described above, the script idlstart.pro is run 

(Figure B.2).  This script adds a second path accessible by the remainder of the scripts by 

including the location where all of the NOMAD-specific reduction scripts are stored (~zjn/idl).   
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Figure B.2 IDL script idlstart.pro. 

 

The second line of this script defines the default values of q to be used in subsequent data 

reduction.  The command .run compiles the subsequent functions and loads their dependencies 

into memory for more rapid access.  The command ; is the IDL designator for code commenting.  

This startup script will typically be created by the instrument scientist of the experiment and can 

be found in the autoNOM folder after the experiment is underway.  There should not be a reason 

to modify this script, but the details are described here to provide greater understanding of the 

entire process.   

It should be noted at this point that spaces are never used to distinguish between a 

function and its callees.  For example, in order to print a value to the screen during operation, the 

command print is used in the following format: 

IDL> x=1 

IDL> print,x 

          1 

IDL>  

 

In this case, the command is not x, print x, or print(x), but instead contains a comma between the 

command and the variable of interest. 



261 

 

In order to import IDL-generated files, the command restore is used with the filename 

enclosed in single quotes, as discussed in Section B.1.1.  This is a common method built into 

IDL to recreate a sequence of variables that were saved from the IDL interface, remembering 

their names in addition to their values.  In order to see a list of variables imported when using 

restore, the qualifier /ver can be added to the end to produce a verbose output following the 

command: 

IDL> restore,'all33243_c.dat',/ver 

% RESTORE: Portable (XDR) SAVE/RESTORE file. 

% RESTORE: Save file written by mjohnson@biganalysis05.sns.gov, Fri Mar 13 

10:08:43 2015. 

% RESTORE: IDL version 7.1.1 (linux, x86_64). 

% RESTORE: Restored variable: A33243. 

% RESTORE: Restored variable: B33243. 

% RESTORE: Restored variable: T33243. 

% RESTORE: Restored variable: P33243. 

% RESTORE: Restored variable: NF33243. 

% RESTORE: Restored variable: AMS33243. 

IDL>  

 

If more information is needed about the individual functions restored, further information 

can be gained using the help command: 

IDL> help,A33243 

A33243          FLOAT     = Array[2500] 

IDL> 

 

In this case, the variable A33243 restored from all33243_c.dat contains an array of 2500 float 

values. 
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In order to plot in IDL, the command plot is used.  In order to make a plot of Y vs. X, the 

following command is used: 

IDL> plot,X,Y 

There are many qualifiers that can be added to the function call, far too many to detail in this 

appendix.  The commonly used qualifiers used in this dissertation are described here, but the 

online help files at www.exelisvis.com contain more detailed information.   

Of particular interest while reducing data as described in this dissertation is the ability to 

add a second plot on top of the first.  This is done using the command oplot.  This function will 

take most of the qualifiers that plot uses with the exception of axis parameters.   

When adding additional curves to a plot, it is necessary to be able to distinguish between 

each of them.  This can be accomplished by altering the point style (ps=integer) or line color 

(color=integer or color=’hexcode’x).  The value of integer is an integer value that selects from a 

pre-determined table of either point styles or colors to use.  A point style of integer = 0 

represents a line, while a color of integer > 0 scales the color from white to red (higher values are 

darker) and integer < 0 scales the color from white into blue (more negative values are darker) 

and can range into the hundreds.  Alternatively, a hexcode can be specified if more than 3 colors 

are necessary.  A list of exact hexcodes are given for IDL from the description of !COLOR 

(http://www.exelisvis.com/docs/constant_system_variable.html), but the values listed there do 

not match the output using the tables defined at NOMAD.  If the hexcode listed online is 

“rotated” by 2, then the values will work in the NOMAD context (i.e., gold is FFD700 from the 

reference, but in practice it requires the code color=’00FFD7’x). 

http://www.exelisvis.com/
http://www.exelisvis.com/docs/constant_system_variable.html
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Another qualifier commonly used in visualizing the data during reduction involves 

properly scaling the axes.  This is accomplished using xra = [min,max] and yra = [min,max] to 

set the x and y axis ranges, respectively.   

Using the parameters described above, a combined example is given as follows: 

IDL> restore,'all33243_c.dat' 

IDL> @idlstart 

IDL> plot,q,A33243,xra=[0,20],yra=[0,0.025]    

IDL> oplot,q,A33243/2+.01,color='00D7FF'x,ps=1 

IDL> 

 

This produces the plot shown in Figure B.3.  The first line restores a previously saved file named 

all33243_c.dat.  The second line runs the script idlstart.pro contained within the operating 

folder.  This script, as described in Figure B.2, creates the variable q containing the same number 

of data points as the variables restored from all33243_c.dat.  The third line plots the variable 

A33243 for 0 < X < 20 and 0 < Y < 0.025 using the default white line.  The fourth line adds a 

second curve to the plot using mathematical operators to modify the variable A33243, changing 

the color to gold, and changing the point style to “+”.   
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Figure B.3 Example of plotting options commonly used in data reduction scripts. 

 

B.2.2 NOMAD Specific Functions 

The previous section described general functions used in the NOMAD data reduction 

process.  In this section, specific functions developed by J. Neuefeind are described.  There are 

several scripts described throughout this dissertation, but the majority of the functions are 

contained within bingr_abs_9999_general.bat script (Figure B.1) and exceptions will be dealt 

with on an individual basis.  Some functions take many inputs and as such will not fit on a single 

line in a text editor.  Those that overflow have an extra $ symbol on the end of the line signifying 

that the following line is a continuation of the previous (see examples of qbinning and grouping).  

If the information described here is insufficient, the functions are all stored on the ORNL servers 

under ~SNS/users/zjn/idl.  Many also have defined help files, which can be accessed using  

IDL> function,/help 
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where function is the function name of interest.  

The function qbinning performs automatic binning according to the pre-defined reduction 

procedures.  In order of listing in Figure B.1, the variables are described in Table B.2:  

Table B.2 Parameters used in qbinning. 

Parameter Description 

h9999 
Output histogram variable name.  In the case of the background qbinning, 

this is replaced with hback 

IPTS Proposal number of the experiment 

9999 
Sample scan number.  This is replaced by the background scan number 

during the second call of qbinning 

calfile Calibration file based on the diamond sample from scan number XXXX 

sil Silent or verbose output (only affects visual displays during processing) 

normfactor 
Output normalization factor specific for scan 9999.  This value is an 

internal calculation and is used in combination with subsequent scripts 

 

Within bingr_abs_9999_general.bat, qbinning is called twice.  The first time requires an 

input of the sample scan of interest, while the second call performs similar operations on the 

specified background file.  In the case of the background file, the value nf9999 when calling 

normfactor is replaced by nfback. 

The function grouping combines all of the detected events in the detector file and puts 

them into several appropriate variables.  As a result, there are multiple “outputs” from this 

function.  This is also the function that performs the absorption correction as well as filters by 

wavelength or q.  Each of the parameters designated in Figure B.1 is described in Table B.3, as 

well as some of the other common additions: 
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Table B.3 Parameters used in grouping. 

Parameter Description 

h9999 Input histogram generated from qbinning 

a9999 

All neutron events not excluded by mask summed together as a function 

of the predefined q vector.  This is the most-used variable generated by 

grouping 

b9999 
Intensity sorted by bank.  NOMAD typically uses 6 generic banks, which 

are defined as a series of packs of tubes 

p9999 
Intensity sorted by packs as a function of q.  Each pack consists of a 

number of individual tubes. 

t9999 
Intensity sorted by tubes as a function of q.  This is the smallest unit of 

division 

nf9999 Normalization factor generated from qbinning 

mask 
Detector mask file based on the variable mask restored from 

maskXXXX.dat 

lamfil Filter by wavelength on (1) or off (0).  Only used if lamlim is defined. 

lamlim 
Defines the wavelength range to use.  Default values are 

lamlim=[0.1,2.9] in Angstroms 

non Specifies nonlinear treatment of banks 

abskorr Perform an absorption correction or not 

multkorr 

Perform a multiple scattering correction or not.  Currently this function in 

grouping is not utilized and the multiple scattering correction is 

performed elsewhere.  If undefined in the function call as is usual, it is 

turned off 

af 
Input parameter of the absorption factor.  The variable name af is 

restored from restore,’afsample.dat’ previously 

aqdep 
Input parameter of the standard detector file aqdepXXXX, previously 

restored 

hz30 
A parameter never used during NOMAD 2014, but appears to be related 

to the maximum wavelength range accessible in the detectors.   

 

Similar to qbinning, grouping needs to be performed for both the sample and the 

background file.  For the background, all parameters are the same as for the sample except with 

9999 replaced with back. 

 The function there, detpos, and subsequent for loops are standard functions that search 

for which tubes are present in the experiment and determine their relative positions.  The limits 

shown in Figure B.1 were correct during the NOMAD 2014 run, but this is a parameter that may 
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change with time.  The details should be discussed with the instrument scientist for future 

experiments.   

The function makeback takes variables generated from grouping and saves a copy of the 

generated background file for future use so the calculation doesn’t need to be performed every 

time.  The variables are defined in Table B.4: 

Table B.4 Parameters used in makeback. 

Parameter Description 

aback 
Variable generated by grouping containing the background 

from all detectors 

bback 
Variable generated by grouping containing the background by 

bank 

sqrt(aback*nfback) = ebacka Error estimate of aback 

sqrt(bback*nfback) = ebackb Error estimate of bback 

file=’backsample.dat Specifies output filename based on the sample filename 

 

The function readmsdat simply reads in a file of the form *.msdat, which contains all of 

the sample specific information generated during the processing of the absorption and multiple 

scattering simulation.  The variables are defined in Table B.5: 

Table B.5 Parameters used in readmsdat. 

Parameter Description 

sstruc Desired variable name generated by readmsdat 

file=’sample.msdat Defines the filename to be opened 

  

The function muscat performs the multiple scattering and secondary scattering 

corrections on the sample.  If a parameter for secondary scattering, msi, is not specified, then the 

default value of msi = 0.25 is used.  This value is based on measurements of a typical sample 

environment used at NOMAD.  The variables are defined in Table B.6: 
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Table B.6 Parameters used in muscat. 

Parameter Description 

a9999–aback Background-subtracted scattering intensity 

ams9999 Output variable containing the modified scattering intensity 

back=’backsample.dat’ Filename of the previously defined background file 

norm=’normFile.dat’ Filename of the vanadium normalization file 

msi=# 

A specified value for secondary scattering.  A value of 0 turns 

the correction off completely, and a value of 0.25 is based on a 

generic sample environment 

 

The output ams9999 from the multiple scattering function has been background 

subtracted.  The subsequent functions do not assume a background correction has been 

performed, so when saving the data to file it is added back in.  The background file is already 

saved, so it is a convenient way of storing the data.  This is done using the command 

ams9999=ams9999+aback, and the command save takes any number of inputs to specify which 

variables should be stored.  The final qualifier of save specifies the filename.  If this filename is 

subsequently restored using restore, all of the variable names used in the inputs of save will be 

available for use. 

The final function, creategr, takes all of the previously performed corrections and does 

the final normalizations required to build S(q) and g(r).  In general, the majority of the 

parameters do not need to be adjusted.  If a wavelength filter was applied, however, the 

maximum q must not be greater than that obtainable by backscatter (2θ=180
o
) at the minimum 

wavelength, λmin given by: 
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The variables for creategr are defined in Table B.7. 

 

Table B.7 Parameters used in creategr. 

Parameter Description 

ams9999 Scattering intensity with all corrections but not background subtracted 

b9999 Scattering intensity by bank 

back=’backsample.dat’ Filename of the corrected background file 

norm=’normFile.dat’ Filename of the vanadium normalization file 

hydro 
Hydrogen correction for inelastic scattering as defined by Placzek [1].  

A value of 0 turns this off 

qminpla 
Minimum q value used in fitting self scattering background, typically 

10 Å 

qmaxpla 

Maximum q value used in fitting self scattering background, typically 

50 Å but must be modified if a wavelength filter was used as specified 

in Eqn. B.1 

qmaxft 
Maximum q to Fourier transform.  Typically 10π, but must be modified 

if a wavelength filter was used 

sc Scan number used in naming output files 

inter 
Interactive plotting during reduction on (1) or off (0).  Adds many 

interruptions and is typically on only for debugging purposes 

use 
Specifies normalization behavior.  use=1 uses high-q normalization 

while use=0 uses absolute normalization.  A value of 0 is usual 

maxr Specifies the maximum r value in the Fourier transforms 

comment =’text string’ 
Specifies a text string to include in a comments section in the output 

files 

ignq 
Specifies the minimum q to ignore.  A value of 50 ignores up to q = 1 

Å
-1

.  This is useful for cutting out extra noise 

density 

Specifies sample density for use in final conversion to S(q).  The 

command sstruc.rho calls the defined variable sstruc from readmsdat 

and specifies the sub-parameter rho 

sigma 
Defines effective scattering cross section, scaled by the packing 

fraction.  This is a variable stored in the msdat file as sstruc.sigmas 

sbs 
Effectively <b>

2
 in units understood by creategr.  This is a variable 

stored in the msdat file as sstruc.sbs 

sb2 
Effectively <b

2
> in units understood by creategr.  This is a variable 

stored in the msdat file as sstruc.sb2 

packfrack 
Defines the packing fraction of the sample.  This is a variable stored in 

the msdat file as sstruc.packfrac and is typically 1 
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d1 
Diameter of the sample.  This is a variable stored in the msdat file as 

sstruc.radius 

qual 
Defines a string to add to the output filenames.  Standard formatting is 

to use qual=’_c_’ 

dvana 
Defines the diameter of the vanadium standard used.  Defined as YYYY 

in the template 

geometry 
A string defining the geometry of the vanadium standard.  This will 

accept either ‘spherical’ or ‘cylindrical’ 

 

It should be noted that the units of <b>
2
 and <b

2
> stored in the msdat file are not 

consistent with values obtained from standard tables.  If the standard units are calculated with b 

in units of femtometers (fm), then <b>
2
 is larger by 10

4
 and <b

2
> is larger by 10

2
.    

Some additional standard functions created specifically for NOMAD include both 

reading and writing standard text files.  The function rstd takes inputs of X, Y, and a filename.  

This function loads the specified file and assigns the first column encountered to the variable X, 

and the second column to the variable Y.  In a similar manner, the function wstd will take inputs 

of X, Y, and filename.  In this case, the variables X and Y are existing variables within the 

workspace and filename is the specified output filename.  Y can either be a single array or a 

mathematical function.  In the following example, the file named testIn.dat is imported, creating 

the parameters column1 and column2.  They are then modified and saved to the file testOut.dat, 

specifying the output should be twice the input: 

IDL> rstd,column1,column2,’testIn.dat’ 

IDL> wstd,column1,2*column2,’testOut.dat’ 

 

These functions are used extensively in the template ress_9999.dat to load in the original S(q)-1 

file created by creategr and output a new S(q)-1 modified by secondary scattering. 
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Appendix C: LabVIEW Programs 

This appendix describes in detail the various LabVIEW tools that I have designed and 

created to aid in data reduction and analysis.  Information on things such as expected file 

formatting and the intended procedure will be laid out.  All programs were written using 64-bit 

LabVIEW 2014 and are not compatible with earlier versions.  The compatibility with 32-bit 

LabVIEW 2014 has not been tested but it is expected to work. 

C.1 NOMAD_File_Convert.vi 

The data files that are output from the procedures and scripts used to reduced time-of-

flight (TOF) neutron diffraction from the NOMAD beamline [1] are saved in a *.SQ.dat format 

that are not compatible with existing file importing protocols used in our in-house LabVIEW 

analysis suite for X-ray diffraction [2].  Rather than modifying the import protocols, this program 

was designed to import NOMAD output files and convert them into appropriate *.S.csv 

formatted files. 

In brief, this program allows for specific file extension filtering and imports a single or 

multiple NOMAD formatted file containing two columns (q and S(q)-1), that are un-evenly 

space-delimited.  It converts them into a comma-delimited file containing three columns: q, S(q), 

and a user specified percent error.  It saves three header lines to be consistent with X-ray S(q) file 

formatting: the first contains the run number, the second contains only a #, and the third contains 

the column labels.    

This program expects an input file name in the following format: 

NOM_#####_TextQualifiers_SQ.dat , 
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where ##### represents a 5-digit run number corresponding to a specific scan.  TextQualifiers 

are specified in the bingr scripts (Section A.6, Appendix B).  The run numbers must be the first 

set of sequential digits in the filename.   

As of the writing of this dissertation, NOMAD files are saved with exactly 5 header lines 

(all starting with a # symbol).  The second line of the header contains the filename and is 

specifically used during the file conversion.  Following the header, there are two columns of 

data.  The first column is the momentum transfer, q (Å
-1

), and the second is the total structure 

factor, S(q)-1, which oscillates around 0.  The delimiting between column 1 and column 2 is a 

non-standard sequence of spaces which varies by row.   

 

Figure C.1 Example front panel of  NOMAD_File_Convert.vi.  Possible inputs are single or multiple file paths, a 

file extension filter, and an amount of relative error to consider for each point. 

 

During the import process, the exact file extension can be specified (Figure C.1, upper 

right).  This will filter file-types by specific sequence of characters, where * represents any text 

allowed.  For instance, specifying *SQ.dat will filter out all files that do not end with SQ.dat.  
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Once imported, the first 5 lines are separated from the data and the first sequence of numbers is 

extracted from the second line.  If the filename follows the format indicated above, this should 

represent the run number.  Due to inconsistent delimiters between data points in the two input 

columns, sequences of numbers are searched for and separated using regular expressions rather 

than a delimiter-based search.  Once two columns have been successfully separated, S(q)-1 is 

converted into S(q) and a relative amount of error specified by the user is included as a third 

column.   

The output filename is modified from the input filename.  The extension is stripped off 

and the final three characters are removed (representing “_SQ”) and replaced with “.S.csv”, 

consistent with the formatting of our in-house software for X-ray analysis.   

C.2 Sq_Curvature.vi 

This program contains the bulk of the neutron data reduction steps and has a large array 

of options to adjust for the interested user.  The final analysis techniques described in this 

dissertation (Section A.7) have fixed most of the parameters as they were found to be self-

consistent, however the whole array of options are left available for future testing and 

characterization.   

This program expects an input file ending in *.S.csv containing exactly three lines of 

header and at least two comma-delimited columns that contain q and an S(q) that oscillates 

around 1 (i.e., specifically NOT S(q)-1).  If there is a third column, this program expects it to 

contain the absolute error associated with each point in S(q).   

The outputs from this program are S(q), G(r), and g(r) files containing three lines of 

header.  The first line contains the final values of all refined parameters (described below).  The 
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second line contains a single “#”.  The third line contains column header names.  All files are 

output as InputFilenameQualifier.type.dat, where InputFilename is the full filename of the input 

file without file extensions, Qualifier is the user defined parameter Add To Filename, and type is 

either S, G, or pdf.  The data are tab delimited with a file extension of *.dat. 

This program’s primary utility is to perform golden section searches [3] to optimize user-

specified parameters by minimizing a user-specified constraint.  Another key component of this 

program is the removal of unphysical oscillations in the small-r region of g(r), as described in 

more detail in Section A.7.  During the reduction, all output S(q) files are re-scaled to a constant 

q-spacing of 0.02 Å
-1

 for proper subtraction of the Fourier transformed small-r ripples.  The 

following sub-sections describe all of the possible input parameters as well as some of the details 

potentially relevant to the user.   

C.2.1 User Parameters 

There are many input parameters in this program, as shown in Figure C.2.  Each 

parameter as named on the front panel will be given a brief description. 
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Figure C.2 User input parameters in Sq_Curvature.vi. 

 

Graph file: An input comma-delimited S(q) file described above containing q, S(q), and 

optionally S(q) error with exactly three lines of header. 

G(r) inputs – G(r) grid: Specifications for the min, max, and spacing used in calculating 

G(r) during the analysis.  These are calculated directly from the input S(q) and are not sensitive 

to adjustment. 
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G(r) inputs – Show Uncertainty: Options to show specified errors in the output G(r)s.  

They are typically turned off. 

G(r) inputs – Apply Damping: Provides the user with several options to systematically 

damp S(q) at larger-q to attempt to correct for termination errors, as well as an option to input a 

value where the damping begins.  This can have a large effect on the output g(r) but may not be 

physically meaningful, as it is possible to damp down actual correlations.  The user is warned to 

use caution if these options are implemented. 

Low-q / High-q: Inputs to specify the maximum and minimum q-values to use from the 

input data.  Problems will occur if either is outside of the range of data contained in the file.   

Quality controls - #Density Input: Experimental or otherwise known number density of 

the sample in question.  This is used in the calculation of g(r) and is also a refinement parameter. 

Quality controls - S(q=0)=-Laue: Another possible input constraint.  As q goes to 0, S(q) 

should go to -L (the Laue diffuse scattering term).   

Extend S(q) to 0: This performs a linear extrapolation from the smallest q-value in the 

input array to q=0.  This is not a physical extrapolation and it is not recommended to be used.   

Bounds +/-: The amount that the specified input parameter can vary during a golden 

section search.  For instance, if Gmod is being varied from an initial value of 1, a bound of “0.5” 

would result in the maximum and minimum final values being 1.5 and 0.5 

# Iterations: The number of cycles for each golden section search.  It typically converges 

within 15-20 iterations.  With a typical computer, 30 cycles does not significantly extend the 

analysis time.   
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C.2.2 Refinement Controls 

There are many options for refinement available to the user.  The final analysis used in 

this dissertation is described in Section A.7 and is also briefly described in this section.   

Currently there are three values that can be minimized to attempt to improve the 

reduction.  Only one can be selected at a time by changing Minimize What?: 

PDFGauge: The algorithm minimizes the “Peterson Metric” [4].  This value represents 

the deviation from linearity in the hard-sphere region in G(r).  A large value indicates significant 

deviations from linearity.  This is one of the primary methods used for fitting fluorescence and 

scaling parameters during X-ray data reduction. 

S(q)|q=0: The algorithm minimizes the difference between the input parameter S(q=0)=-

Laue and the actual value at the first data point in the input array.  The user should be aware that 

if low-q ≠ 0, then the algorithm compares the first data point in the input array to the input 

parameter, which may not necessarily be the value at q=0.  

#Density: The algorithm minimizes the difference between the input parameter #Density 

Input and the actual value estimated from the slope in the hard-sphere region of G(r). 

There are three primary parameters that can be adjusted to help improve the refinement of 

the input S(q).  Only one can be selected at a time by changing Minimize How?: 

Start rmin: Specifies the cutoff value used in the estimation of the slope in the hard-

sphere region of G(r).  There is an option (Use 1.5pi/q1 true/false) to perform a manual estimate, 

but this can result in unphysical bumps before the primary peak.   

Start Gmod: Specifies a multiplicative modifier to the slope calculated from the hard-

sphere region of G(r).  A value of Gmod = 1 represents an unmodified slope. 
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Start Scale: Specifies a multiplicative modifier to the input S(q), equivalent to Peterson’s 

α [4] using S’(q) = αS(q)+β.  To ensure proper normalization, β=1-α. 

There are several Refinement Steps available to the user for commonly used combinations 

of constraint+parameter.  If Free Form is selected, Minimize What? and Minimize How? can be 

freely modified by the user.  The other options specify constraint+parameter pairs.  The best 

method found to reduce the data is as follows: 

1)  Optimize rmin by minimizing PDFGauge 

2)  Optimize Gmod by minimizing PDFGauge 

3)  Optimize α by minimizing #Density 

C.2.3 Saving Options and Additional Boolean Buttons 

Once reduction is complete, the button Save at end will save the data to files formatted 

similarly to the input S(q) files.  The buttons between S(q), G(r), and g(r) allow the user to select 

which output curves are saved.  Add To Filename will automatically attach the specified string to 

the end of the filename prior to the file extension.  If an underscore is desired after the input 

filename, it must be specified by the user.  All files are saved within the input directory and will 

overwrite existing files.  The output format is: InputFilenameQualifier.type.dat, where up to five 

input file extensions are removed.  The data are saved as tab-delimited files. 

There are several Boolean buttons available to the user that can affect the analysis:   

No Refinement: Skips all golden section searches, but still performs small-r oscillation 

removal 

Reinitialize: regularly used parameter which resets all Main Refinement Control and 

Saving Options parameters to their default, un-altered values.   
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Reload File: Should be left as “True”.  Each time the program is run, it will re-load the 

input file.  If set to “False”, the program will use the final values set in the Input S(q) graph at the 

end of the previous run.  This has not been thoroughly tested and has known termination issues.   

Set Intercept to 0: Should be left as “True”.  This specifies whether or not the slope of 

small-r G(r) should be forced to be constrained by G(r=0) = 0.   

Use 1.5pi/q1: Forces Start rmin to be equal to 1.5π/q1, where q1 is taken as the position of 

the first absolute maximum in the input S(q). As previously noted, if this is fixed too far below 

the minimum before the main peak in G(r) it can result in incomplete removal of ripples, 

introducing an unphysical bump.  

C.3 BT_Deconstruction.vi 

This program’s primary purpose is to separate out the Bhatia-Thornton (BT) partial 

structure factors and partial pair-distribution functions for a binary alloy (used in Chapter 5) [5] 

using two experimental inputs.  If the partial weighting of one of the three BT partials is very 

small for both X-ray and neutron weighting (less than 1%), its contribution can be ignored and 

the other two partials can be solve numerically.  Because both input files are expected to be 

binned differently as a function of q, this program performs Hermite interpolations to re-bin the 

data.  

There are a many possible user input parameters (Figure C.3), but the majority are 

consistent with other LabVIEW programs currently in use and will not be described in this 

section.  Instead, only unique parameters will be described here. 
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Figure C.3 Front panel of BT_Deconstruction.vi displaying the SNN and SNC BT partials. 

 

C.3.1 Options Tab 

The most important parameters for calculation of BT partials are the composition and 

atomic ratios (necessary for calculating the neutron weighting factors) and X-ray wavelength 

(necessary for calculating the X-ray weighting factors).  The order of elements is important in the 

interpretation of the output curves for the Number-Chemical (SNC or gNC) partials.  These 

weighting factors contain either Δb = ba – bb or Δf(q) = fa – fb, representing the difference in 

neutron scattering lengths or X-ray form factors, respectively.  As such, the first element listed 

under Sample Elements corresponds to ba and fa and will change the direction and interpretation 

of oscillations in SNC and gNC.  A button labeled Swap Comp Order will perform a one-time 

reversal of the order of input elements.  The only effect of swapping the order of elements is to 

change the sign of the cross-correlation term.   

Attempts were made to perform a pseudo-inverse of the 3x2 matrix containing the 6 BT 

partial weighting factors for two input structure factors; this can be accessed by setting BTx2 to 

“False”.  All attempts were unsuccessful, but the user is welcome to attempt similar tests with 
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their own data.  If one partial weighting factor is negligible in both X-ray and neutron scattering 

calculations, setting this button to “True” will reveal a slide bar named BT Partial to exclude to 

select which partial to exclude.  In this dissertation, the only partial that had negligible weighting 

was the Chemical-Chemical contribution.  The labels NN, NC, and CC represent the exclusion of 

the Number-Number, Number-Chemical, and Chemical-Chemical contributions, respectively. 

This program will also calculate the Faber Ziman (FZ) [6] partial structure factors and 

partial pair-correlation functions.  Similar attempts were made to use a pseudo-inverse of the 3x2 

matrix containing the 6 FZ partial weighting factors.  These were also unsuccessful.  If FZx2 is 

set to “True”, a slide bar is revealed to select a specific partial structure factor to exclude if the 

weighting functions are appropriately negligible.  As the FZ labels are element specific, the 

labels use generic names that represent a binary system of composition AXB100-X. 

C.3.2 Saving Tab 

Options on this tab are relatively self explanatory.  Add To Filename differs in this 

program from others as an underscore is automatically added if this parameter is not empty, but 

it does nothing if no additional text is specified.  The button Save Files? will enable saving of all 

potential outputs.  Saving Options generates a list of possible types of curves to be saved, along 

with a button selecting whether the individual curve will be saved.   

C.3.3 Scatt Info Output Tab 

This tab contains calculated values relevant to the operation of the program for the user to 

visually check the accuracy of the look-up tables used.  The matrices are formatted with the first 

row representing the neutron weighting factors and the second row representing the X-ray 

weighting factors.  The tabulated values of the elemental neutron scattering lengths (bi), 
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weighted averages, Δb (Neutron scattering info), and the q=0 value of the X-ray atomic form 

factors (f_i(0)) are displayed. 

C.3.4 Graph Tabs 

There are several tabs on the left side of the program (Figure C.3) that display various 

input and output curves.  The first two tabs represent the input neutron and X-ray S(q)s, 

respectively, normalized within the Faber-Ziman scheme.  The Interpolated data tab contains the 

input graphs from the previous two tabs as well as the same two curves after they have been re-

binned to a common q-spacing to convince the user that the interpolations are correct.  The f(q), 

b tab plots the X-ray atomic form factors in several formats, including both elemental and 

individually weighted elemental (f_a(q), c_a*f_a(q) respectively), the total summed form factor 

<f(q)>, and the average of the square, <f
2
(q)>. 

The final four tabs contain the BT partial structure factors, the BT partial pair-distribution 

functions, the FZ partial structure factors, and the FZ partial pair-distribution functions.  The FZ 

partials rarely have negligible weighting in both X-ray and neutron scattering, and the calculated 

curves are not useful without that condition being met. 

C.4 BT_From_3xPPDF.vi 

If more complete information is available, such as a full set of partial pair-distribution 

functions or partial structure factors generated either from Molecular Dynamics (MD) or Reverse 

Monte Carlo (RMC) simulations, the BT partials can be directly calculated based on their 

relative compositional weighting (Figure C.4).   
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Figure C.4 Front panel of BT_From_3xPPDF.vi. 

 

There are two primary methods of importing three separate partials into this program; it 

must be specified using Single File or Separate Files button.  The current label is the expected 

import format.  If Single File is selected, the program expects the file format to be consistent 

with either *.psq, *.pfq, or *.ppcf outputs from the RMC program, RMC_POT++.  Traditional 

PPCF constraints used in RMC_POT++ analysis uses files saved as *.gr, and these individual 

files are also compatible.   

If the input file is *.psq or *.pfq, the program expects a 5-line header with either four 

columns of data containing q, SAA, SAB, and SBB or two columns containing q and a single partial.  

If multiple files are used, only the first two columns are selected in each file. 

If the input file is *.ppcf, the program expects an 8-line header; if the input file is *.gr, the 

program expects a 2-line header with four columns of data containing r, gAA, gAB, and gBB or two 
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columns of data containing r and a single partial.  If multiple files are used, only the first two 

columns are used.  In all cases, the imported data are Fourier transformed into q-space using the 

input number density on the processing g(r) tab.   

If the input file contains an unrecognized extension, the program uses the parameters for 

*.psq, although this is relatively untested.  If any of the four named file extensions are detected, 

the large button labeled as PSQ Input in Figure C.4 will automatically update: Blue with a label 

of PSQ Input if *.psq or *.pfq are detected, and Orange with a label of PPCF Input if *.ppcf or 

*.gr are detected. 

The calculated BT partial structure factors and/or partial pair-correlation functions can be 

saved using the Save button, with the smaller buttons (labeled BT PSQ and BT PPCF) selecting 

types of files to save. Similar to BT_Deconstruction.vi, Add To Filename will automatically add 

an underscore if the string is not empty, but will otherwise leave the filename un-altered with the 

exception of the final output extension.  

The tabs on the left in Figure C.4 contain plots of the input FZ partials and calculated BT 

partials for S(q) and g(r) respectively.  Input parameters controlling the r-spacing (ONLY if the 

input files are in q-space) are contained on the Processing g(r) tab, as well as the number density 

input.  It should be noted that lowr cannot be smaller than r = 1 without causing issues with the 

calculations.  If the user is interested in the exact matrix used to determine the PSQs and PPCFs, 

these are contained on the data tab in the order of AA, AB, and BB. 

C.5 pdf_to_Sq.vi 

The primary purpose of this VI was to test the effect of an overall multiplicative scaling 

factor, α, while developing the data reduction techniques used for putting X-ray and neutron 
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scattering on the same absolute scale (Section A.7).  This VI can also be used to quickly 

calculate S(q) from g(r).  The output cannot be programmatically saved, but it can be exported by 

right-clicking on the output graph, S(q), and selecting Export  Export Data To Clipboard or  

Export Data To Excel.   

The expected input file formatting is consistent with the *.PDF.csv output from X-ray 

Batch.vi [2, 7] and consists of three header lines.  A number density input is required to properly 

Fourier transform to S(q).  The start/end points in g(r) can be set using Start/End.  This VI uses 

controls similar to X-ray Batch.vi, which was designed with the intention of converting from S(q) 

 g(r).  Therefore, the labeling low-q and high-q actually refer to the parameters for the input 

g(r) rather than the output calculations.  S(q) can be calculated in a specified q-range and spacing 

using the Grid input where, again, this control was designed with the reverse process in mind.  

The user can alter g(r) Scaling Factor to test the effect of a multiplicative constant on g(r) on the 

final S(q).   

There are two additional calculated parameters, Low-q Mean and Rough S(q1) which 

were initially used for testing purposes in order to determine how well S(q) tailed towards q = 0 

Å
-1

 and what the effect was on the peak height, S(q1).  These are very rough calculations and are 

not intended to be used in quantitative analysis. 

C.6 ppcf_to_Sq.vi 

This VI was designed to quickly build a total g(r) from PPCFs output from RMC_POT 

using either X-ray or neutron scattering weighting and transform them into S(q).   

This VI will take inputs of either a single file containing r and three partial g(r)s, or it 

will load three individual files each containing r and a single partial g(r).  If loading a single file, 
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the expected formatting will be consistent with the *.ppcf file output from RMC_POT, 

containing 8 lines of header.  The file must end in *.ppcf.  If loading individual files, they must 

all end with *.gr and contain exactly two lines of header.  In this case, the r-binning is not 

expected to be constant and the data will be interpolated.   

The experimental or otherwise known number density is required for accurate conversion 

to S(q).  In all cases, the composition must also be known.  It should be pointed out that this VI is 

only designed for BINARY compositions and would require modifications if more complex 

systems are studied.   

Similar to other VIs described in this appendix, several controls are used in other VIs 

such as Grid Output.  The labels are still formatted for S(q)  g(r).  Like in the VI pdf_to_Sq.vi 

(Section C.5), the High r and Low r in this control refer to the max and minimum values in the 

final S(q).    

The Boolean Extend to 0 should always be set to True; it is a residual function that should 

no longer be necessary to change. 

The Boolean Rebin? was included in case future modifications of this VI were necessary 

that potentially altered the internal analysis steps.  If a single file is loaded that contains all 

partial g(r)s, there is no effect.  This must be True if three individual partials are loaded in that 

contain separate r-binnings, such as digitization from literature.   

The file saving options are similar to other VIs in this appendix.  An underscore does not 

need to be included in Add To Filename; the program will automatically add one in if it is 

needed.  If left blank, no alteration is done to the output filename.   
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C.7 Batch_VI_Parsing.vi 

This VI was designed for use with the modified Voro++ used for analysis of Voronoi 

tessellations in this dissertation (Chapter 5).  This VI converts the file formatting output from 

Voro++ into a format useable by a Python selection script written by Z. Markow [8].  This VI 

can also be used to analyze Voronoi polyhedra as a function of small-face area removed (Figure 

C.5). 

 

Figure C.5 Front panel of Batch_VI_Parsing.vi. 

 

This VI can import one or more files; they can be filtered for partial string matches using 

File_Extension.  The input filename is expected to comply with the following format: 

#.##.sighist.&.dat 
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where “#.##” is a three digit value representing the absolute size of the faces that were removed 

and is used as the “additional specifier” that can be defined within Voro++, sighist is part of the 

default Voro++ output naming scheme, and “&” represents either the atom type or “all” atom 

types.  For the binary systems A-B considered in this dissertation, there were three output files 

where &=1,2,all.  “1” represents A-centered polyhedra, “2” represents B-centered polyhedra, and 

“all” represents the combined total.  Each of these files consists of a single header line containing 

column labels.  The rest of the file is formatted as a histogram of the total counts (first column) 

found for a given Voronoi index (the remaining columns containing the number of n-sided faces, 

starting with n=3).  The histogram is pre-sorted by decreasing frequency. 

There are several inputs on the front panel  (Figure C.5) which are set by default to the 

parameters used for the Voro++ *.sighist.* output files, but have the capability of being modified 

if future users use differently formatted files.  These features have not been tested for options 

other than the default setting.  The type of delimiter between numbers can be changed using 

Delimiter.  Common delimiters are already included, such as Space (default), Comma, Tab, and 

End of Line.  The parameter Header Rows can be changed to an arbitrary number of lines.  The 

parameter Number Components To Keep is used to select the largest n-sided face allowed in the 

final output.  Increasing this value past the number of n-sided faces contained in the input file 

does not add additional 0’s, but instead will output the entire Voronoi string.  Once unnecessary 

n-sized faces are removed from consideration, the remaining n-sized faces are separated by 

spaces then enclosed in angled brackets (“<” and “>”).  If the initial Voronoi index was “0 0 12 0 

0 0 0 0 0 0” and only four components were kept, the final output would be the string “<0 0 12 

0>”.  Two common configurations were identified: When performing Voronoi index matching 

within this program, the default settings contain only 5 components (VIs To Match).  When 
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sorting the output histogram using the Python script DataRowSelectorVI.py, the VIs are 

formatted with 10 components.   

Within this VI, the histogram counts per Voronoi index are summed and converted into 

“fraction of total”.  If the user wishes to know the fraction of the total polyhedra that is not type-

centered specific, it must be calculated by hand.  The coordination number of each polyhedron is 

also calculated during the conversion.   

If the user selects the Boolean Only Save formatted files?, no analysis is performed on the 

selected files and instead each file is quickly converted into a comma-delimited *.csv file.  The 

output file name is the same as the input, but replaces the file extension “dat” with 

“formatted.csv”.  Within this file is a single header containing column labels: VI, Raw Count, 

Frequency, and CN. 

If further analysis is of interest to the user, the Boolean Only Save formatted files? must 

be set to False.  The program will compile Voronoi indices into an array of strings defined by 

VIs To Match.  The number of elements within the matching strings must be the same as the 

number of components kept or else the program will find zero matches.  The plot VI Frequency 

With Cutoff will scan the Face Area Cutoff from the first four characters (assumed to be digits) 

of the filename, and the frequency will be found from the appropriate column in the row 

matching the appropriate Voronoi index.  A three dimensional histogram, CN with Cutoff 3D, 

will plot the relative frequency of each coordination number between 0 and 25 against the small-

face cutoff size.  While a 3D plot is available, it has been found to be more useful to view the X-

Y projection with the frequency scaled by color.  The plot Average CN from Gauss outputs the 

average coordination number at each face cutoff as determined from the peak position of a 
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Gaussian fit to the histogram.  The error bars represent the standard deviation, or width, of the 

CN distribution.    
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