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ABSTRACT

The DNA restriction mapping problem can be abstracted to the Shortest Common Matching String
problem by viewing the restriction fragment lengths as symbols and the clones as bags. The Shortest
Common Matheing String problem can be decomposed into the Bag Sequencing problem and the Symbol
Sequencing problem. All three of these problems have been shown to be NP-hard. Rhee has proposed a
family of greedy algorithms to compute polynomial time approximations to the Bag Sequencing problem,
which produced surprisingly good performance results on abstracted data. In the test data generated by
Rhee for pragmatic analysis, the symbols in bags represented instances of fragments whose length
equivalency had been (magically) delermined, a priori; conceptually, fragments of identical Iength were
assigned the same symbol. This implies a transitive relationship between all instances of fragments
identified as being equivalent. Also, the distribution of the abstract symbols was assumed to be a uniform
distribution, instead of a geometric distribution, as exhibited by fragment length data.

This report presents modifications of Rhee’s work, adapted to (non-abstracted) fragment length data,
and the performance of the modified algorithms when applied to simulated data and laboratory data. The
modifications reflect the actual length properties of the restriction fragments, identifying two instance of
fragments as being similar if their measured lengths differ by no more than some predefined error
measurement bound (often taken to be about 3%). This relation is not an equivalence relation, since it is
not transitive. The modified algorithms were applied to fragments length data containing normal random
(measurement) error containing the classical geometric distribution. The performance that these modified
algorithms achieved when applied against such fragment length data was again surprisingly good.
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1. Introduction

1.1, An Overview of DNA Mapping

DNA is the genetic material that supplies the blueprint for an organism’s development. A DNA
molecule is composed of nucleotides, with each nucleotide consisting of a sugar, a phosphate, and a
"basc". There are four bases: A (Adenine), T (Thymine), C (Cytosine), and G (Guanine). A nucleotide is
distinguished by the base it contains. Sugar-phosphate bonds link the nucleotides into strands, and a base
on cne strand can "pair” with a base on another strand. However, only certain base pairings are allowed: A
bonds with T, and C bonds with G. Thus, A and T are kKnown as complementary bases, as are C and G.
A DNA molecule is made of two complementary DNA nucleotide strands bound together by this base pair-

ing, the base sequence on one strand determining the complementary sequence on the other strand.

DNA restriction mapping deals with determining the positions of specific sites of interest along a
given DNA strand, or genome. The sites of interest are called restriction sites, and consist of a specific
subsequence of DNA, often six nucleotides long. These restriction sites are recognized by specific
enzymes, known as restriction enzymes; a restriction enzyme cleaves (or cuts) DNA that it encounters at
exactly these restriction sites. Thus, given sufficient time, a restriction enzyme reacting with a strand of
DNA will completely digest it, producing fragments of DNA whose lengths are exactly the distance
between two successive restriction sites along the original DNA. The process of electrophoresis can be
used to measure the approximate lengths of these fragments, which are known as restriction fragments.
If it were possible to (a) identify each restriction fragment present in the genome, (b) determine the length
of each restriction fragment, and (c) determine the order of the restriction fragments in the genome, then it

would be possible to construct the map of the restriction sites.

The mechanism for obtaining this information is somewhat indirect, Ordering of the restriction frag-
ments is achieved by fracwring multiple copies of the original DNA at random positions to produce ran-
domly overlapping strands of DNA, known as clones. Each clone is then completely digested by the res-
triction enzyme (of interest), and electrophoresis is used 10 determine the lengths of the restriction frag-

ments within it. This list of restriction fragment lengths is known as the fingerprint of the clone. Overlap
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between the clones is inferred based on the similarity of the fingerprints of the resiriction fragment lengths,
and the order of the clones is inferred based on multiple clone overlap. As overlap between the clones is
inferred due to a significant number of restriction fragments of similar (within measurement error bounds)
lengths, the exact order of the restriction fragments within each clone may remain unknown; only the rela-
tive (partial) order of large groups of fragments may be inferrable. As more clones are found to overlap a
specific region of the original genome, the random positions of the clone ends are used to refine the original
partial order (of the restriction fragments) by reducing the size of the groups for which the fragment order

is unknown.

This process of DNA restriction mapping is analogous to solving a large jigsaw puzzle. However,
the uncertainty of where a clone should be placed can be significant, due to measurement error (produced
during electrophoresis), experimental error {(produced during cloning or digestion with the restriction
enzyme}, and certain biological properties of the DNA being mapped (e.g., two fragments of the same
length do not necessarily contain the same sequence of nucleotides). When putting together a jigsaw puz-
zle, the pieces of the puzzle have several cues (shape, color, pattern on the surface) which can be used to
guide their ultimate positioning in the final solution. In DNA restriction mapping, the clones have no shape
or color, but the fingerprint information can be viewed as a "pattern” to be matched against potentially
overlapping clones. The objective is to find a consistent positioning of clones with respect to one another
in which fragments in different clones can be identified with one another, while all fragments of each clone
remain contiguous (i.e., no "gaps" or unpaired fragments are present internally). There may be multiple

“solutions” to this restriction map puzzle, and the one (or ones) which is most compact is preferred.

1.2. Formalization of the DNA Mapping Problem

The DNA mapping problem can be abstracted to the Shortest Common Maiching String (SCMS)
problem, as defined by Turner. '8 Within this abstraction the clones are abstracted to bags, and the lengths
of the restriction fragments in the clone are abstracted to symbols. Abagb =<ay, 4, -+, a,>isa
multi-set in which a symbol (a; € I, where £ is some finite alphabet) can occur more than once. This

mathematical formalism is appropriate because a clone (i.e., a bag) can contain more than one fragment
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(i.e., 2 symbol) of the same apparent length.

Let #(x,b) denote the number of occurrences of the symbol x in 4. Then given two bags, b and b5,

over an alphabet X:

(@) by =baiff (VyeD)F ¥ ,b1)=#(y.b2)

(b) b1 < ba(b) isasubbagof by) iff ( Wy e E)(#(y b1) S#(.52))
(€) by Chaiff by S byand by # by

d) b3=by\boiff (IYEDN# (y.b3) =#(y b))+ (¥ b))

€ ba=by  b2iff (Y DFH Y ba) = min(E (.64 .b2)

A coliection of bags, B, is said to be subbag free if no bag in B is a subbag of another. If s =
ay - - - ay 18 a swing of symbols, then <s> denotes the bag <a,, a2, * **, a,>, which can be thought of as
representing all the strings obtained by permuting the symbols in s. A bag b and a string s are said ©

match if 5 contains a substring s such that <s"> = 5. The SCMS problem can now be defined as follows:

Given a setof bags B = {by, - - -, b, ], find a minimum length string that matches every bag in B.

Turner ® proved that the SCMS problem is NP-hard.

1.3. The Bag Sequencing Problem

In attempting to simplify this problem, Rhee [ divided it into two subproblems, the bag sequencing

problem, and the symbol sequencing problem. The bag sequencing problem can be stated as follows:

Given a subbag free collection of bags, B, find the sequence (defined by the order in which they

match the solution) of bags as they occur in some solution to the SCMS problem given B,

The symbol sequencing problem is unimportant to this work and will not be discussed further. Rhee [©!

proved that each of these subproblems is NP-complete.



DNA Mapping -4- Clone Sequencing

Since the bag sequencing problem is NP-complete, Rhee proposed a family of greedy algorithms
intended heuristically to produce an approximation to the solution of the bag sequencing problem in poly-
nomial time, Rhee applied this family of algorithms to simulated data, based on his abstraction, i.e., bags
of symbols. Surprisingly good performance was obtained when this family of algorithms was applied to

his abstract simulated data.

In Rhee’s abstraction, each instance of a fragments was associated with a distinct symbol. Two
instances of fragments associated with the same symbol were assumed to be "identical”, this fact having
been magically determined, a priori. In fact, in Rhee’s work, fragment length data were never produced;
only "abstracted” symbolic data were produced assuming a uniform distribution. This implies an
equivalence relation between instances of fragments associated with he symbol. Unfortunately, this pro-
perty is not true of nonabstracted fragment length data. Although Rhee’s algorithms had good performance
on his abstracted data, it was unclear how they could be extended to accommodate a nontransitive fragment

length similarity relation.

The reason for questioning the adaptability of Rhee’s algorithms to fragment length data is that the
relation which identifies whether or not two fragments are of the same apparent length is not transitive. For
example, given three fragments, A of length 1000, B of length 1020, and C of length 1040, A and B are of
the same apparent length (since they are within 3% of one another), and B and C are of the same apparent
length, but A and C are not of the same apparent length (since they are not within 3% of one another).
Since Rhee’s abstraction to symbolic data produces an unrealistic transitive relation upon which his algo-
rithms performed well, the question remained about how well fragment Iength modifications of them would

perform in the context of a non-transitive relation.

Other related work has been done by Rhee 5] and Turner, [7)

1.4. Objectives

The objective of using a family of greedy algorithms for clone sequencing is to produce ordered

contigs, as a preprocessing step to the formal mapping process. In this context, a contig is set of clones
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which have a high likelihood of coming from a contiguous region of the underlying genome; an ordered
contig is one in which the clones have been sequenced with respect to their occurrence along the genome.
Much of the formal mapping processing is performed within the confines of a contig, searching for the next
clone to be fused into the map. It is beneficial to have relatively small contigs, in order to reduce the search
for the next appropriate clone. Having the clones ordered in the sequence in which they appear in the
underlying genome supplies a trivial (initial) scarch mechanism for selecting the next appropriate clone to

include in the map.

This work reports on (a) the modification of Rhee’s family of greedy algorithms to work with frag-
ment iength data instead of abstracted data, and (b) the performance of the modified algorithms when

applied to simulated fragment length data and actual laboratory fragment length data.

Section 2 presents an overview of the general concept of greedy algorithms and sets forth a specific
paradigm for using greedy algorithms in clone sequencing. Section 3 makes this paradigm more concrete
by describing the details of a family of four greedy algorithms for clone sequencing. Section 4 investigates
the performance of these algorithms over a number of data sets using a number of different parameter set-

lings.

2. Greedy Algorithms

2.1. The Skeleton of Greedy Algorithms

Horowitz and Sahni P! describe a greedy algorithm as one which works in stages, considering one
inputat a time. Al each stage, a decision is made regarding whether a particular input can be included in a
feasible solution. The inputs arc considered in an order that is determined by some selection procedure. If
including the next input in the solution at that point will result in an infeasible solution, then the input is not
added to the solution. In most greedy applications, the solution is some subset of the inputs which satisfy
some specific constraint. Any subset that satisfies the constraint is said to be a feasible solution. If the

feasible solution maxirmizes or minimizes some objective function, then the solution is said to be optimal,
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with respect to that objective function.

Figure 1 is the Horowitz and Sahni abstraction of a greedy algorithm. SELECT selects an input
from A, removing it from A. FEASIBLE determines if the input selected can be included in a feasible
solution. It returns a Boolean value through the function name which represents this feasibility determina-

tion. UNION combines the input with the solution, 3}

2.2, Formalisms

In order to formalize the extensions of Rhee’s greedy algorithms to fragment length data, it is useful
to introduce a new mathematical construct similar to, but slightly different than, a bag. This will be
referred to as a fuzzybag, because the objects contained within can be identified with each other in a
"fuzzy” manner. Informally, two objects (numbers representing the lengths of corresponding fragments) in
fuzzybags should be allowed to be identified with one another if they are "similar” to one another. Usually
two fragments are identified as similar if their measured lengths are within 3% of one another. However,

this concept will be abstracted to a Boolean function similar(frag 1, frags).

2.2.1. The Fuzzybag

A fuzzybag is a multiset of positive real numbers. The operations that can be performed on fuzzy-

bags are the same as those that can be performed on bags, with a few modifications to reflect the fuzzy

procedure GREEDY (&, n)
{ A(l:n) contains the n inputs }
solution = empiy_set
for i =1 to n deo
x = SELECT (&)
if FEASIBLE (solution,x) then
solution = UNION (solution, x)
endif
endfor
return {sclution)
end GREEDY

Figure 1: General Greedy Algorithm
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nature of how objects are identified with one another. Consider two fuzzybags, fb, and fb,, where

Ffhi=<ayas, - G.>

and
fbha=<bi.bo, -+ bu>.
The cardinality of a bag is the number of occurrences of instances of objects in the bag, i.e., multiple
occurrences of an object are counted multiple times. Here, the cardinality of £, isn (i.e., |f#1] = n) and
the cardinality of b2 is m. The union of two fuzzybags is easily defined as:
Ffoufba=<aras - an.brba, - byp>
This implies that [fb1(_fbal = [fb1] + [fbo). However, in order to define intersection, some mathematical

scaffolding will have to be put in place.

Let a similarity function between two fuzzybags be a function which maps objects in one fuzzybag
only to similar objects in the other fuzzybag. In other words, if sf is a similarity function, then (frag,
fraga) e sfimplies similar(frag;, frag,). Consider all one-to-one partial similarity functions from f&; to
fb2, and denote this set of functions by APSF(fb,fb3). In other words, if fpar € APSF(fb1,fb2), then (a)
Spars 18 a partial function from b1 to fb5 (i.e., all objects in ££; may not be mapped into objects in fb3),
() fpar: is One-to-one (i.e., no two objects in fb; map onto the same object in £b5), and (c) if (fragi,

fraga) € foon, then sSimilar(frag,, frag,) is TRUE.

Let maxfuncs be a function whose single argument is a set of finite functions. Let maxfuncs select

from its argument the subset of all functions which have maximum cardinality. In other words,
maxfuncs (A)={fran €A [{ Vg €A1 S pare |21 1)}

Let ndpick be a function whose single argument is a set of objects, Let ndpick nondeterministically
pick a specific member from its argnment to be returned as its value. In other words,

ndpick((01,02, - - ,0x }) = 0;, for some 1 <i <k, the specific / being nondeterministically chosen.

Let ndselect be a functon whose single argument is a pair of objects. Let ndselect nondeterminist-
ically select either the first component or the second component from the pair to be returned as its value. In

other words, ndselect((01,02)) = o;, for some 1 <i <2, the specific { being nondeterministically chosen.
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Let ndproject be a function whose single argument is a set of pairs of objects (representing a func-
tion). Let ndproject(set_of_pairs) be the fuzzybag produced by nondeterministically selecting either the
first or second component from each of the pairs in the set, the resulting fuzzybag being the aggregate of all
such components selected. This is more formally defined by the two mutually recursive functions specified

below.

. <> if ifunc| =0
ndproject (func) E{giue (func ,ndpick (func)) otherwise

glue (func ,pair) = ndproject (func —{pair )y _y<ndselect (pair )>

The intersection operation now can be defined as:
Fby\fbe = ndproject (ndpick (maxfuncs (APSF (fb1.fb2))))
This definition of intersection is intended to supply a nondeterministic abstraction of selecting a set con-
taining the maximum number of fragments in the two fuzzybags which could be identified with one another
given the similarity criteria embodied in similar. Note that although this definition of intersection is non-

deterministic, the cardinality of the fuzzybag chosen is constant over all nondeterministic choices.

Three other important definitions are given below.
For=fo2iit | foyfba|=1fb1]=1fb2]
Forcfba iff | for~\fbal=|fb1]
ForcfoL ift | fo\fbal=1fb1]| and fbi#fbs

Note that these definitions rely directly on the concept of the intersection of two fuzzybags. Also
note that none of =, <, and < are transitive.
2.2.2. Adjacency in Nondirectional Sequences

In this work the term relationship refers to one element of the set of 2-tuples which comprise a rela-
tion. The term relation refers to the set of relationships of which it is composed. For instance, given the

relation R = {(a,b), (b,c), (c,a)}, there are three component relationships, (a,b), (b,c), and (c,a).
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The relation of interest here is that of two clones being adjacent to one another when considered in
the nondirectional unique sequence paradigm. The nondirectional unique sequence paradigm requires that
no object occurs in a sequence more than once and identifies two sequences, 51 and 54, as being identical
iff (@) s1=152, 0r (b) 51 = 57" (where s” s the reverse of s). For instance, the two sequences ADBFE and

EFBDA are identified as equivalent in this paradigm.

Given a nondirectional sequence S of length n, S can be completely characterized by specifying n-1
adjacency relationships between the objects in S. For example, the nondirectional sequence ADBFE is
characterized by the four adjacency relationships A is_adjacent_to D, D is_adjacent _to B,

B is_adjacent_to F, and F is_adjacent_to E. Note that in this paradigm, the is_adjacent_to relation is

symmetric.

In general, given n distinct objects, there are exactly 22=1) possible adjacency relationships

between them. Given that a specific nondirectional sequence of length n is to be constructed, the
specification of S can be considered equivalent to the selection of n-1 adjacency relationships which

characterize the sequence being constructed. Note that not all subsets of size n-1 (selected from the set of
ﬂ%l possible adjacency relationships) correspond to a nondirectional sequence, since in a sequence

any specific object can be adjacent to no more than two other objects.

2.3. A Paradigm for Clone Sequencing

In the case of clone sequencing (i.e., fuzzybag sequencing), the objective is to find the sequence of
clones as they appear in some solution to the SCMS problem. Since clone sequencing can be characterized
by selecting an appropriate set of adjacency relationships, a greedy algorithm will be used to interrogate all
the possible adjacency relationships between the clones to determine a clone sequence having a high likeli-

hood of being "close to" a solution to the abstract SCMS problem. In other words, given a set of x clones,
there are E—Q‘{—l)— possible adjacency relationships; each must be checked, in turn, to determine if it could

be part of an already partially completed feasible clone sequence.
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In moving from the abstract SCMS problem to the pragmatic problem of actually doing clone
sequencing, certain observations about the underlying biology and actual probability distribution need to be
recognized. For instance, if two clones have some apparent overlap, but not significant overlap (say two or
less fragments), the likelihood that they actually overlap may not be high at all. To include a clone in a
clone sequence on the basis of such unconvincing data tends to produce questionable results. Thus, there is
a minimum required apparent overlap criteria applied before a clone can be placed in a ¢lone sequence.
This often is taken to be the requirement that three or more fragments must appear to overlap before inser-

tion is allowed.

This requirement may cause "gaps” to occur in the middle of a clone sequence producing islands of
clones which are unconnected to other islands. In fact, an island may consist of a single clone if it has no
significant overlap with any other clones. Within the greedy algorithm paradigm, this means that given n
clones to be placed in sequence, fewer than n-1 adjacency relationships may actually be chosen. In fact,

one adjacency relationship will be absent for each unattached island present.

Figure 2 is a pseudocode abstraction of the C function greedy loop, which represents the fragment
length modification of Rhee’s instantiation of the greedy algorithm found in Figure 1. All of the greedy
algorithms described in this work are accomplished by invoking greedy loop with the appropriate argu-

ments.

There are several input parameters to greedy_loop. Select, Feasible,and Unionare C
functions which correspond to the abstract functions SELECT, FEASIBLE, and UNION of Figure 1.
specified overlap specifies the minimum number of fragments which must appear to overlap
between two clones before the two clones should be considered as candidates in the resulting feasible adja-
cency relation. In order to understand the remaining two input parameters to greedy_loop, Sand I, cer-

tain aspects of how the algorithm works must be explained.

As a preprocessing step, all possible adjacency relationships between clones are examined. If there
n(n—1 : . . . T .
are # clones, then there are —Lz—l such possible adjacency relationships. For each individual adjacency

relationship, the apparent overlap between the clones (i.e., the number of fragments which appear to be
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greedy_loop (S, L, Select,Feasible, Union, specified overlap)

LIST S;

LIST L;

FUNCTION Select;

FUNCTION Feasible;

FUNCTION Union;

int specified overlap;
{

declarations

count = 0;
triplet count = cardinality(L);

while ({(count <= triplet count) {

triplet = Select (L);
(fbagl, fbag2, overlap) = unpack(triplet);

if (overlap >= specified overlap) |
if (Feasible (S, fbagl, fbag2)) Unicn (S, fbagl, £fbag2);
)
count = count + 1;
}:
Figure 2: The greedy loop routine

identical, within the measurement error window) is computed. A conceptual triplet is formed, composed of
the two fuzzybags (i.e., clones) and the apparent overlap. (In fact, a fourth component is included to sup-
port weighted variations of the algorithms.) These triplets are sorted in decreasing likelihood of overlap;

the likelihood of overiap is assumed to be a good approximation to the likelihood that they are adjacent in

the clone sequence. The input parameter L is the sorted list of these triplets,

The parameter S is a list used as both an input parameter and an output parameter, Upon input, cach
element of the list is a singleton list (actually a reversible list, known as an rlist) containing the fuzzybag of
fragment lengths associated with a specific clone. At the beginning of the algorithm, as two fuzzybags are
declared (by the algorithm) to be adjacent, the corresponding elements are extracted from S, and a list
containing the two fuzzybags (just declared to be adjacent) is inserted into §. Each listin S is referred to
as an island; a list containing only one fuzzybag is a trivial island. As the algorithm progresses, islands

are fused to create larger islands. This may occur in several different ways: (a) a fuzzybag may be added
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to the end of already existing non-trivial island, (b) 2 new non-irivial island may be created, or (c) an adja-
cency relationship may cause two already existing non-trivial islands to be fused into one. The fusing of
islands can occur only if the adjacency relationship being considered deals with clones which are at the
ends of the islands being fused. Any adjacency relationship dealing with clones occurring in the internal
region of an island will be declared infeasible. Upon completion of the algorithm, whatever set of islands
remaining in S represents the resulting output clone sequence. Note that this may represent a number of

disjoint clones sequences, not just one clone sequence.

In order to achieve an efficient underlying implementation for manipulating clone sequences, it was
necessary to implement a new list Abstract Data Type (ADT) (21 for which concatenation and reversal
could be performed in constant ime. A new ADT, rlist was implemented to achieve this execution perfor-

mance.

Returning to the pseudocode shown in Figure 2, the first two statements in the while loop extracts
a triplet from the list L and "unpacks” the data present. These data represent the two clones that might be
adjacent to one another and their apparent overlap. If the overlap between the fuzzybags is significant, the
feasibility of their adjacency is assessed, given the current state of the partially constructed islands. If this
adjacency relationship is feasible (determined by Feasible), given the current set of islands present in

S, then the corresponding islands are fused (by Union).

3. A Family of Fuzzybag Sequencing Algorithms

The important aspects of four of the basic bag sequencing algorithms developed by Rhee (6] (and
modified for fragment length data) are presented in this section. In conformance with his dissertation, they
are referred to here as MGREEDY_B, MGREEDY_BS, MGREEDY_BW, and MGREEDY_BSW.
Prior 1o executing any of these algorithms, a preprocessing step is applied which extracts subbags from the
list of fuzzybags (i.e., clones) input. The computation is then done on the subbag free collection thus

extracted, by invoking greedy loop with the appropriate parameters.
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Referring 1o Figure 2, the Select function is identical for all of the algorithms; it simply exiracts
(i.e., retrieves and removes) the first element of the list L. The Feasible and Union functions will be

slightly different for each of the four algorithms.

3.1. MGREEDY B

The MGREEDY _B algorithm declares the adjacency relationship between two fuzzybags to be

feasible if the following three constraints are satisfied:

(a) the fuzzybags have at least the minimum required overlap,

(b) the fuzzybags are not in the same fuzzybag sequence (i.e., island), and
(c) the fuzzybags are at the ends of their respective fuzzybag sequences.

Thus, the Feasible function for this algorithm checks the three conditions given above; it returns
TRUE if all the conditions are satisfied and FALSE otherwise. The Union function manipulates the ele-
ments of S (0 extract the two islands in which the two fuzzybags currently reside, fuse the two islands, and

insert the newly created island into S,

3.2. MGREEDY BS

In the MGREEDY _BS algorithm, a new constraint, the subset-consecutiveness constraint, is
added to those of the MGREEDY_B constraints. This constraint requires that for any three consecutive
fuzzybags in a fuzzybag sequence, in addition to the facts that the first must have significant overlap with
the second and the second must have significant overlap with the third, there can be no apparent "gap"
between the first and the third. This constraint constitutes an interlocking requirement between the fuzzy-
bags, i.e., a fuzzybag must have significant overlap with it neighbor and "touch” its neighbor’s neighbor

(either by overlapping with it or at minimum abutting with it).

This algorithm also allows for the possibility of swapping the order of the two fuzzybags at the

appropriate end of either fuzzybag sequence. This allows for a small amount of "fine tuning” at the ends of
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the fuzzybag sequences, allowing for "local" errors at the extremes of the sequence.

The MGREEDY _BS algorithm declares the adjacency relationship between two bags to be feasible

if the following constraints are satisfied:

(a) the fuzzybags have at least the minimum required overlap,

(b) the fuzzybags are not in the same fuzzybag sequence (i.e., island),
{c) the fuzzybags are at the ends of their respective bag sequences,

(dy for the new fused fuzzybag sequence that would be created, [fbi, fbi, -, fb], the subset-

consecutiveness constraint must hold, i.e., { 2<j Sk-1){(fb: cfbi | fbi, ), and

(e) for the new fused fuzzybag sequence that would be created, fbi, fbi, -~ -, fb], the minimum over-

lap constraint must hold, i.e., ( V1<) k=D b, fb;,) 2 minimum_required_overlap ), where

(D(fb,, szm) = lfbn f\fbm 3

The first three constraints above are exactly those of the MGREEDY _B algorithm, The fourth for-
malizes the subset-consecutiveness constraint, and the fifth is a restatement of the minimum overlap con-
straint (which, on the surface, may seem to be vacuous). These last two constraints are expressed as con-
straints on the entirety of the newly created fuzzybag sequence because the ability to swap the last two fuz-
zybags at the end of constituent fuzzybag sequences may destroy any constraints which might have been

true prior to the fuzzybag swapping.

In order to help the reader understand the complexity of this algorithm, two detailed examples will

be presented. In these examples, the minimum required overlap between fuzzybags is assumed to be 3.

The first example is illustrated in Figure 3. In this example, the adjacency relationship between
fbag0 and fbagl is being tested for feasibility. FbagQ = <375, 400, 470, 580, 650>, and itis in an island
containing only itself. Fbagl = <400, 470, 580, 650>, and it is in an island containing one other fuzzybag,

foag2 = <400, 580, 650, 800>. This configuration is shown in Figure 3(a). w(fbag0,fbagl)=42>3;
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rlist1 rlist2
thag0 fbagl fbagz
// / \ 650 / \ 650 / \
800
400 479 580 580

AN /
N

a

a) 375, 400, 470, 580, 650, 400, 580, 650, 800 {fbagO+fbag2}

400, 470, 580, 650 {fbagl}

(a)
rlist3
fbag0 fbagl fbag2
//\ 650 400 / \650 \\
0 800
470 580 470 580 400 630
(b)

Figure 3: Subset-consecutiveness constraint applied with singleton fuzzybag
therefore, constraint (a) is satisfied. Fbag0 and fbagl are not in the same fuzzybag sequence; therefore,
constraint (b) is satisfied. Both fuzzybags are at the ends of their respective fuzzybag sequence; therefore,
constraint (¢) is satisfied. In order to check constraint (d), it must be determined whether or not fbagl is a
subbag of fbag0 unioned with fbag2. This analysis is shown in Figure 3(a) and verifies that constraint (d)

is satisfied. (The labeled bracket under lists indicates the fuzzybags being considered, and the analysis
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being performed. See Figure 7 for multiple analyses.) Constraint (e) is satisfied because constraint (a) is
satisfied and no swapping at the ends of either fuzzybag sequence was performed. The resulting fused fuz-

zybag sequence is shown in Figure 3(b).

As a second more complex example, consider how the algorithm would address the fbag3
is_adjacent_to fbag4 relationship, given that S contains the two islands shown in Figure 4. Conditions
(@), (b), and (c) are clearly satisfied for this configuration. Conditions (d) and (e) must be checked, given
the possibility of swapping the fuzzybags at the appropriate end of the two islands. The first check of con-
dition (d) would be performed, given that no fuzzybag swap has occurred. In this case, the algorithm
would check two subconditions, both of which must be true: fbag3 < fbag2 U fbag4, and fbag4 < fbag3 U

fbag5. The first of these two subconditions is shown in Figure 5 to be FALSE.

rlistl

615 sgg 800

Figure 4: Two initial fuzzybag sequences
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rlistl tlist2

E fbag0 H fbagl H fbag? H fbag3 }J L fbag4 H fbag5 H fbag6 [ fbag? \J

. /
N

a

a) 550,675, 880,950, 550, 580, 650, 675, 800  {fbag2+fbagd)}

(470)350,580, 675, 860, 950 {fbag3)

Figure 5: Subset-consecutiveness constraint applied with no swap
As a second attempt at confirming the subset-consecutiveness condition, the algorithm would attempt
to swap the two fuzzybags at the end of one of the islands. Figure 6 shows this configuration, in which
fhag4 and fbag5 have been swapped in the second island. Given this modification, there are four subcondi-

tions which must checked. The first three are shown in Figure 6, and the third is shown to be FALSE.

The next attempt would be to leave the second island alone and swap the fuzzybags on the end of the
first istand. This is shown in Figure 7, where fbag2 and fbag3 have been swapped. Again, there are four
subconditions 1o be checked here. As shown in Figure 7, all of these subconditions are TRUE. Thus, con-
dition (d) succeeds for this configuration. However, had condition (d) failed for this configuration, one

more configuration would have been tried, that in which the bags at the ends of both islands were swapped.

A quick check confirms that condition (e) is satisfied for the configuration shown in Figure 7. Since

all the conditions have been met, the two islands are fused; the result is shown in Figure 8.

3.3. MGREEDY BW

The MGREEDY_BW algorithm declares the adjacency relationship between two fuzzybags to be
feasible if and only if it meets the three conditions of the MGREEDY B. In this algorithm, however, the

order in which the adjacency relationships are selected is based on a nonincreasing weighted sum of
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rlist1 rlist2 '
l:) fbag0 [ fbagl | fbag2 | fbag3 J L foags H fbagd | fbag6 |H fbag7 }J
/

AN
N
a
A /
N
b
\. s
Y4
c
a) 550, 675, 800, 950, 470, 580, 650, 675, 800 {fbag2+fbag5}
70, 550, 580, 675, 800, 950 {fbag3}

b) 470, 550, 580,675, 800, 950, 550, 580, 650, 675, 800 (fog3+fbagd}
470, 580, 650, 675, 800 {fbag5}

c) 470, 580, 650, 675, 800, 470, 500, 650, 580, 800 {fbag5+fbagb}

hh,ﬂs, 830/ {fbagd}

Figure 6: Subset-consecutiveness constraint applied with one swap
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rlist2

rist1
’-{ fbag0 H fbagl | fbag3 H fbag2 }“—{ fbagd H fbags H fbag6 | fbag7

,J

N s
TN

a

N
b

a) 470,580, 550, 675, 800, 470, 550, 580, 675, 800, 950

\\\5;;87380,475,866”"'—Pﬂd‘ﬂwrpﬂd",

b) 470, 580, 675, 800, 950, 550, 675, 800, 950

\\\hvo, 50, 380, 675, oo,gﬁﬁt’f/f’/

c) 470,550, 580, 675, 800,950, 550, 580, 650, 675, 800

o 6. 50 40

d) 550, 675, 800, 950, 470, 580, 650, 675, 800

\\\350, 50, 650, 75, 866”"””’—’

Figure 7: Subset-consecutiveness constraint applied with another swap

rlist3

{fbagO+fbag3}
{fbagl}
{fbagl+fbag2}
{fbag3}
{fbag3+ibagd}
{fbag2}
{fbag?+fbag5}

{fbag4)

fbag) [ fbagl M foag3 || fbag2 | fbagd | fbags |- fbags | foag?

Figure 8: Resulting fused fuzzybag sequence

fuzzybag sizes value. This preprocessing step is the only difference between MGREEDY BW and

MGREEDY_B. Let ws represent this weighted sum. Then, the formula for ws is

WS(b;"bj)=

where w and w are conslant weights, and {4 | is some metric concerning the size of the bag b;.

wlb; b;)

w1t [ [ +wa¥ 15 ]
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Experimentally, it has been determined that the choice of wy = wp = 1 is no worse than any other choices

for these constants. 1©

In Rhee’s work, the symbols (corresponding to resiriction fragments) have no length, Thus, there is
only one applicable metric for the size of a bag, i.¢., | bx | was taken to be the number of symbols in b;.
However, when applied to fragment length data, a second type of metric becomes applicable, i.e., one
involving the lengths of fragments. Thus, the formula for calculating the weighted sum can be based on

cardinality or length. In order to formalize these ideas, let:

» (b b)) = bi\bjl, ie., the number fragments in b; and b; with the same apparent length,

o wlbib)= 3 length(f),ie.,the sum of the lengths of the fragments in b; and b; with the same
feg 2

apparent length,

o S.(b) = b, ie., the cardinality of the fragments in &;, and

L]

Si(bi) = % length (), i.e., the sum of the lengths of the fragments in b;

Then the weighted sum based on the length is

L (Dr(bi.b')
ws(b: bj) = WS (b )+w;*Si {65}

and the weighted sum based on the cardinality is

o (b b;)

wse (bibi) = 53 ¢ (0 Hw2™5, (0

The method of calculating the weighted sum is indicated in subseguent tables by the use of the term
length (1o reference ws;) and cardinality (to reference ws.).
3.4. MGREEDY BSW

The MGREEDY_BSW algorithm is identical io MGREEDY _BS, except that the inputs are

selected in order of nonincreasing weighted sums, as described for the MGREEDY _BW algorithm above.
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4. Performance

4.1. Performance Measurements

Rhee’s work [ defined a number of performance measures against which the quality of the result

obtained by his algorithms could be tested. These took the form of decision ratios.

#  Ruq represents the ratio of wrong decisions o total decisions:

Noa
Rud = W TN TN
wd + Nped - Nyg

*  Ry4 represents the ratio of unmade decision to total decision;

_ Nwd
Rua = Nui *Nrg + N

Here, N4 = number of wrong decisions, N,y = number of right decisions, and N,y = number of

unmade decisions.

As an example of how to compute these ratios, consider the following example from Rhee’s disserta-
tion. ¥ Agcume that there are ten clones labeled 0 through 9, where the actual clone sequence is
0123456789. Since there are ten clones, there are nine decisions o be make, 1.e., Nyg + Nyg + Nz = 9.
Assume that the algorithm in question produces as output a set of two istands, {123540789, 6}. Since there
are two islands, one of the nine adjacency decisions was not made; thus N,z = 1. Eight adjacency decisions
were made, three of which are wrong and five of which are right. The three wrong decisions are: 3
is_adjacent_to 5, 4 is_adjacent_to 0, and 0 is_adjacent_to 7. Thus, N,q = 3 and N,y = 5. Hence, for this

example Ry = 3/9=0333 and R,y = 1/9 = 0.111.

Note that the ability to compute these ratios is based on the absolute knowledge of the actual under-
lying clone sequence. Such knowledge can be extracted from fragment length data produced by simula-
tion, because the underlying reality can be determined. This is not true of data obtained from a laboratory;
any mapping which has been done, from which a clone sequence can be extracted, represents only an esti-

mate of the anderlying reality.
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4.2. Performance Results

4.2.1, The DNA Simulator

In order to determine the performance of the greedy algorithms as modified to address fragment
length data, the four algorithms were applied to fragment length data produced by a simulator constructed
within the DNA Mapping group. [l Although the exact details of the simulator are not extremely impor-
tant here, a few details may be helpful 10 the reader. The simulator can produce genomes of any desired
size; certain statistical properties of the genome produced can be controlled by the use of input parameters.
The simulator generates clones from a genome in an manner analogous to the biological production of
clones. For each clone, digestion with any specific restriction enzyme (or set of restriction enzymes) can
be performed, and the fragment length data can be obtained. Many postprocessing steps can be applied to
these fragment length data prior to mapping processing, the most important of which is the introduction of
random error (normally distributed). In the specific experiments simulated in these data, the clones were
digested three different times: (a) the first time with restriction enzyme EcoRI, a 6-cutter with recognition
site GAATTC, (b) the second time with restriction enzyme HindIIl, a 6-cutter with recognition site
AAGCTT, and (c) the third time with RH, which is a combination of the twa (i.e., when digesting the

clones, both enzymes are present so that the DNA is cleaved at both EcoRI sites and HindII sites).

The performance of these algorithms over a range of conditions is of interest, including genome size,
minimum overlap required, average fragment size, and introduction of random error. Most of the follow-
ing tables deal with four basic data sets whose genome sizes range from 100 kilobasepairs (kb) to 1600kb.
The designation of length or cardinality underneath the name of a weighted algorithm refers to the formula

used for the weighted sum of the bag sizes, as discussed in Section 3.3.

4.2,2, Comparison with Performance on Abstract Data

Table 1 presents the performance of these four algorithms over four different genomes with no ran-
dom error introduced and a minimum required overlap of 3 fragments. The use of data with no random

error introduced is as close to Rhee’s abstracted (symbolic) data as can be approximated with fragment
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length data. In the execution of the algorithms in these runs, the error window was reduced to 0%, so that

only fragments of identical length were identified with one another. This reduces the probability of confus-

ing two different fragments to the probability that two different fragments have identical lengths. Since the

probability of two different fragments having exactly the same length is relatively small, this significantly

reduces the chances of fragment confusion and roughly approximates abstracted symbolic data in which

the symbols are the discrete lengths of the fragments themselves.

The four different genomes are indicated in the first column. Their sizes are 100kb, 400kb, 800kb,

and 1600kb; the basic input parameters which produced them were identical. The second column indicates

the enzyme(s) used during the digestion. The third column indicates the number of clones produced from

the genome; this includes both subclones and maximal clones. Subclones correspond to subbags, and

maximal clones correspond to fuzzybags for which no subbag is present. The number of apparent maximal

clones for each kind of digestion is shown in the fourth column.

The last four columns present the performance of the four greedy algorithms as applied to the

specific data set. Each entry contains a 2-tuple. The first component is the ratio of wrong decisions; the

Table 1

Performance Data for NO Random Error, Minimum required overlap = 3

Performance Results of Greedy Algorithms Applied to Simulated Fragment Length Data
NO Random Error, Minimum required overlap = 3

Performance Calculations (/4.8 ,.1)

Genome | Enzyme | Total | Maximal | MGREEDY_B | MGREEDY_BS | MGREEDY_BW | MGREEDY_BSW
Size Clones Clones (length) (fength)

EcoRI 6 (0.000,0.460) {0.000,0.600) (0.000,0.400) (0.000,0.600)
100kb HindIll 35 7 (0.000,0.500) (0.006,0.500) (0.000,0.500) (0.000,0.500)
RH 9 (0.000,0.125) (0.600,0.125) (0.000,0.125) (0.000,0.125)
EcoRI 40 (0.000,0.436) (0.000,0.436) (0.000,0.436) (0.000,0.436)
400kb HindIiI 192 45 (0.000,0.273) (0.000,0.273) (0.000,0.273) (0.000,0.273)
RH 61 (0.033,0.083) (0.033,0.100) (0.033,0.083) (0.033,0.100)
EcoRI1 74 (0.000,0.438) (0.000,0.438) (0.000,0.438) (0.000,0.438)
800kb Hindl1 342 77 (0.000,0.447) (0.000,0.513) (0.000,0.447) (0.000,0.513)
RH 110 (0.000,0.046) (0.000,0.082) {0.000,0.046) (0.000,0.073)
EcoRI 130 (0.000,0.380) (0.000,0419) (0.000,0.380) (0.000,0.419)
1600kb | HindIIY 606 133 (0.000,0.364) (0.000,0.386) (0.000,0.364) (0.000,0.386)
RH 197 (0.000,0.107) (0.000,0.138) (0.000,0.107) (0.000,0.138)
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second component is the ratio of unmade decisions. There are five important observations to note from this
table. (1) In these "perfect” data, there are virtually no wrong decisions made. (The 0.033 entry for the RH
digestion of the 400kb genome represent two erroneous decisions out of the 60 decisions that were to be
made.) (2) The number of unmade decisions is very high, especially for EcoRI and HindIIl. This ratio may
be artificially high, do to the natural occurrence of islands in the simulated input data. (3) The
MGREEDY_BS algorithm causes more unmade decisions to occur than does the MGREEDY _RB algo-
rithm, This is to be expected because the subset-consecutiveness constraint constitutes an extra condition
which must be met, within the context of there being virtually no wrong decisions. (4) The number of
unmade decisions is much smaller for the RH digestion than for the EcoRI and HindI1I digestions. This is
because the average number of fragments per clone in the EcoRI and HindIll digestions is approximately
half of that in the RH digestion. This does not supply enough data to make useful overlap decisions, given
a minimum overlap of 3. (5) In these data, the weighted form of the algorithm has virtually the identical

performance as that of the unweighted form.

The statistics of the simulated data produced here are similar to those found for actual biological
fragment length data produced in a genetics laboratory, while the statistics of the simulated data used by
Rhee are not similar 10 actual biological fragment length data. Thus, it is difficult to compare the perfor-
mance results presented here with those generated by Rhee. However, in those few instances where the
statistics are not 1o divergent, the results seem to be roughly comparable. In general, the DNA Mapping
Group does not conclude that the results indicated here refute those found by Rhee. However, nor does the

group conclude that these results conclusively corroborate his results.

4.2.3. Performance on Fragment Length Data with Random Error

Although it is of interest to verify Rhee's results, as applied to idealized fragment length data (i.c.,
fragment length data containing no error), the real reason to implement fragment length modifications of
these algorithms is to apply them to actual laboratory data. As an intermediate step, they are applied to

simulated {fragment length data, to which random error has been introduced.
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Table 2 presents the performance of these four algorithms over four different genomes with random

error introduced and a minimum required overlap of 3. Although it is of interest to peruse all of the data,

the discussion here will focus on the performance obtained for the 800kb genome; this is the approximate

size that corresponds to a YAC (Yeast Artificial Chromosome), the unit of DNA to which the DNA Map-

ping software will most likely be applied. Also, the RH digestion (a double digestion) is the most pertinent

to analyze, since this is the type of digestion most ofien done in the laboratory. It supplies enough data, in

the form of average number of fragments per clone (roughly 6.5 fragments per clone) to attempt a

significant mapping activity. The data extracted from single digestions often is too sparse (roughly 3.3

fragments per clone) to perform mapping with a high degree of certainty.

The most striking difference between the performance of the algorithms when applied to data with

and without random error is the difference in wrong decisions. This is to be expected, of course, since the

major source of fragment confusion is caused by measurement error producing inappropriate apparent

overlap. Note that the percentage of wrong decisions for MGREEDY B has risen from 0% to the 11-16%

range, and that the percentage of unmade decisions has decreased slightly.

Table 2

Performance Data for 3% Random Error, Minimum required overiap = 3

Performance Results of Greedy Algorithms Applied to Simulated Fragment Length Data

3% Random Error, Minimum required overlap = 3

Performance Calculations (Ryg, R )

Genome | Enzyme | Total | Maximal | MGREEDY_B | MGREEDY BS | MGREEDY_BW | MGREEDY_BSW
Size Clones Ciones (length) (length)

EcoRI 6 (0.000,0.400) (0.000,0.600) (0.200,0.400) (0.000,0.600)
100kb Hindlll 35 6 (0.000,0.400) (0.000,0.400) {0.000,0.400) {0.000,0.400)
RH 6 (0.000,0.600) (0.000,0.000) (0.000,0.000) (0.000,0.000)
EcoRI 38 (0.034,0.324) {0.000,0.378) (0.081,0.324) (0.000,0.378)
400kb HindIll 192 43 (0.048,0.310) €0.024,0.310) (0.048,0.286) (0.048,0.310)
RH 56 (0.091,0.054) (0.000,0.091) (0.073,0.018) (0.000,0.010)
EcoRI 73 {0.111,0.375) (0.056,0.417) (0.153,0.347) (0.069,0.430)
300kb HindIII 342 75 {0.122,0.392) (0.054,0.459) (0.203,0.351) (0.094,0.500)
RH 108 (0.159,0.019) (0.019,0.065) (0.243,0.019) (0.075,0.131)
EcoRI 122 (0.165,0.240) (0.041,0.372) {0.314,0.223) (0.124,0421)
1600kb | Hind[I 606 125 (0.194,0.282) (0.089,0.371) (0.226,0.258) {0.105,0.363)
RH 193 (0.182,0.031) (0.047,0.114) (0.240,0.016) {0.083,0.114)
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Comparing MGREEDY _B with MGREEDY _BS, it is clear that the introduction of the subset-
consecutiveness condition significantly reduces the number of wrong decisions; unfortunately, it causes the
number of unmade decisions to rise slightly. Focusing in on the RH digestion shows extremely good
results for the MGREEDY _BS algorithm — less than 2% wrong decisions and 7% unmade decisions.
Translating these figures to a more concrete form yields the following analysis. The 0.065 value for Rua
implies that 7 decisions (out of the 107 to be made) were not made. This implies that there are 8 islands in
the result compuied by MGREEDY _BS, yielding an average of approximately 14 clones per island. (This
is the correct order of magnitude for the desired size of contigs.) The 0.019 value for R,,; implies that only
2 of the adjacency decisions made within all of the § islands are wrong. This is a surprisingly small error

rate for algorithms as simple as the MGREEDY family.

In comparing the performance of the weighted form of the algorithms to the unweighted form, note
that the weighed form (at least when based on length) has worse performance than the unweighted form.
This seemed surprising, since Rhee’s work indicated that the weighted form should improve the perfor-

mance.

In Rhee’s abstraction, the possibility of a weighting metric based on length was excluded; however,
as fragment length data were introduced, the possibility became evident. In the translation of Rhee’s work
to fragment length data, it was inferred that the sum of the lengths of the fragments with apparent overlap
was a better metric for the likelihood of the adjacency of two clones than the cardinality of the fragments
with apparent overlap. Thus, the original algorithms were coded to used the metric of length, with the
counter-intuitive results shown in Table 2. In order to investigate the difference between Rhee’s results
and those indicated by Table 2, the algorithms were recoded to allow the option of using a metric based on
cardinality. The results (only for the 800kb genome) of this experiment are shown in Table 3. Clearly, the
cardinality metric significantly improves the performance of the weighted algorithms, thus supporting

Rhee’s resnlts,

The question of how the minimum required overlap would affect the performance of these algo-
rithms was investigated. (All of Rhee’s work used a minimum required overlap of 3.) The results of reduc-

ing the minimum required overlap to 2 are shown in Table 4, and the results of increasing the minimum
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Table 3

Clone Sequencing

Performance Data Based on Cardinality Weighting

3% Random Error, Minimum required overlap = 3

Performance Results of Greedy Algorithms Applied to Simulated Fragment Length Data

Performance Calculations (Kyq,8,4)

Genome | Enzyme | Total | Maximal | MGREEDY_B | MGREEDY_BS | MGREEDY_BW | MGREEDY_RBSW
Size Clones | Clones (cardinality) (cardinality)
EcoRI 73 {0.111,0.375) {0.056,0.417) (0.069,0.375) (0.056,0.403)
800kb HindII 342 75 (0.122,0.392) (0.054,0.459) (0.081,0.365) (0.027,0.459)
RH 108 (0.159,0.019) (0.019,0.065) (0.112,0.000) (0.028,0.065)

required overlap to 4 are shown in Table 5. The analysis of the data confirms the expected outcome. As

the minimum required overlap is decreased, R4 tends to increase while R, tends to decrease; as the

minimum required overlap is increased, R, tends o decrease while R,,; tends to increase.

Given the encouraging results obtained on simulated data, it was decided to apply the algorithms to

actual laboratory data. Data were obtained from the Olson laboratory. (4] These data correspond to RH

digestions of 218 clones (92 maximal clones) from the CF YAC, so named because the cystic fibrosis gene

lics somewhere in this region of DNA. This is the only human DNA data currently available from the

Table 4

Performance Data for 3% Random Error, Minimum required overlap = 2

3% Random Error, Minimum required overlap =2

Performance Results of Greedy Algorithms Applied to Simulated Fragment Length Data

Performance Calculations (Rq.5u4)

Genome | Enzyme | Total | Maximal | MGREEDY_B | MGREEDY BS | MGREEDY_BW | MGREEDY_BSW
Size Clones Clones {length) (length)

EcoRI 6 (0.000,0.200) (0.000,0.400) (0.400,0.200) (0.000,0.400)
100kb Hindll 35 6 (0.000,0.200) (0.000,0.200) (0.000,0.200) (0.000,0.200)
RH 6 (0.000,0.000) (0.000,0.000) (0.000,0.000) {0.000,0.000)
EcoRI 38 (0.135,0.081) (0.000,0.216) (0.189,0.081) {0.027,0.216)
400kb HindIll 192 43 {0.190,0.048) (0.048,0.143) {0.167,0.071) (0.095,0.166)
RH 56 (0.109,0,018) (0.000,0.073) (0.073,0.000) (0.018,0.073)
EcoR1 73 (0.222,0.167) (0.097,0.306) {0.333,0.167) (0.153,0.306)
800kb Hindlil 342 75 (0.257,0.122) (0.108,0.230) (0.473,0.122) {0.257,0.392)
RH 108 (0.168,0.009) (0.019,0.065) (0.271,0.000) (0.084,0.131)
EcoRI 122 (0.298,0.091) (0.116,0.256) (0.479,0.066) (0.264,0.273)
1600kb HindII 606 125 (0.306,0.113) (0.153,0.234) (0.379,0.064) (0.194,0.226)
RH 193 (0.203,0.010) (0.068,0.094) (0.266,0.000) {0.088,0.114)
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Table 5

Clone Sequencing

Performance Data for 3% Random Error, Minimum required overlap=4

Performance Results of Greedy Algorithms Applied to Simulated Fragment Length Data
Simulated Data with 3% Random Error, Minimum required overlap = 4
Performance Calculations {(R,q Rua)
Genome | Enzyme | Total Maximal | MGREEDY B | MGREEDY_BS | MGREEDY_BW | MGREEDY_BSW
Size Clones | Clones (length) (length)
EcoRI [ (0.000,0.800) (0.000,0.800) (0.000,0.800) (0.600,0.800)
100kb HindIIl 35 6 (0.000,0.400) (0.000,0.400) (0.000,0.400) 0.000,0.400)
RH 6 (0.000,0.125) (0.000,0.125) (0.600,0.125) (0.000,0.125)
EcoR] 38 (0.000,0.540) (0.000,0.541) (0.000,0.540) (0.000,0.540)
400kb HindIll 192 43 {0.048,0.548) (0.024,0.548) {0.024,0.548) (0.024,0.548)
RH 56 (0.073,0.073) (0.000,0.109) (0.036,0.073) (0.000,0.109)
EcoRI 73 (0.042,0.556) (0.028,0.583) (0.028,0.556) (0.028,0.583)
800kb Hindll] 342 5 (0.027,0.649) (0.000,0.676) (0.014,0.649) (0.000,0.676)
RH 108 (0.103,0,084) (0.009,0.084) (0.168,0.084) {0.037,0.140)
EcoR1 122 (0.041,0.537) (0.000,0.587) {0.041,0.545) 0.016,0.587)
1600kb HindIIl 606 125 (0.073,0.540) (0.040,0.548) (0.040,0.540) (0.032,0.548)
RH 193 (0.130,0.083) (0.031,0.135) (0.188,0.073) (0.078,0.135)

Olson laboratory. These data had been mapped by the Olson laboratory, producing 21 islands of fused

clones, thus supplying a set of candidate clones sequences. These clone sequences are only candidates,

because they were created by software known 1o produce maps with minor errors. The underlying reality

of how the data are actually related is not known; their relationship is inferred from indirect observations,

such as apparent overlap. However, if these laboratory-created maps are taken as "ground truth”, the per-

formance analysis can be made between them and the resnits obtained from the MGREEDY family of

algorithms. The results for the RH digestion, using a number of different values for the minimum required

overlap, are shown in Table 6.

Table 6

Performance Data for Laboratory Data from the CF YAC

Performance Results of Greedy Algorithms Applied to Laboratory Fragment Length Data
CF YAC -- 218 rotal clones, 92 maximal clones

Performance Cazlculations (Ry,q.8 )

Required | MGREEDY_B | MGREEDY_BS | MGREEDY _BW | MGREEDY_BSW
Overlap (length)} (length)

2 (0.330,0.033) (0.121,0.176) (0.385,0.033) (0.110,0.198)

3 (0.242,0.121) (0.077,0.231) (0.264,0.132) (0.066,0.253)

4 (0.099,0.385) (0.044,0.440) (0.110,0.407) (0.022,0.450)
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The results here are based on a single ordering of the 21 islands produced in the Olson laboratory.
This ordering was chosen to be the one most compatible with the results obtained from MGREEDY algo-
rithms. This is not extremely significant, because most of the "gaps” between islands produced from the
MGREEDY algorithms correspond to the "gaps"” between the 21 islands produced in the Olson laboratory.
These "gaps” seem to be actual gaps in the data collected from the CF YAC. In collecting the clone data
from the CF YAC, the redundancy factor was approximately 3.5 (i.e., on the average, a specific region of
the underlying genome will appear in 3.5 clones). This is a relatively low redundancy factor and statisti-
cally allows regions of the underlying-genome to-be covered by ro clone in the sample. In contrast, the
DNA simulator collected clones with a redundancy factor of 5.0. Although this does not eliminate the pos--

sibility of creating gaps, it does tend (o reduce the number of gaps which occur.

These results are relatively encouraging. Focusing in on the weighted and unweighted BS algorithms
for high minimum required overlap (3 and 4), the number of wrong decisions made is relatively low
(between 2 and 7, out of 91). In fact, some of these decisions may actually be correct, since the "ground
truth” used is only an approximation to reality; of course, the converse is also true, and there may be more

wrong decisions than indicated.

The number of unmade decisions seems uncomfortably high. However, these ratios are artificially
high because of the gaps in the data being analyzed. For example, consider the R, value of 0.450 shown
for the MGREEDY _BSW algorithm with a minimum required overlap of 4. This value indicates that
there were 41 unmade decisions, i.e., there are 42 islands in the result reported. However, most of these
islands are caused by the actual gaps in the clone data between the 21 islands in the input data. Thus, many

of the unmade decisions were not made because it was not possible for them to be made.
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5. Discussion and Conclusion

The preliminary performance results reported here for the MGREEDY family of algorithms are very
encouraging. The modification of these algorithms to allow them to address fragment length data did not
significandy deteriorate the results reported by Rhee. These algorithms are relatively simple, and run in
polynomial (of low degree) time. The weighted and unweighted forms of the BS algorithm seem to per-
form best. In the data space region of most interest (RH digestion data on genomes of approximately

800kby), these algorithms seem to give outstanding performance.

We are interested in using these algorithms for producing ordered contigs. Thus, we are interested
in algorithms within the MGREEDY family which produce results with R,z as low as possible, and R,z in
a moderate range, say between 5 to 15%. These statistics seem to be obtainable from the MGREEDY _BS
algorithm for genomes in the 800kb range, with minimum required overlap between 3 and 4. Once the car-
dinality weighting metric is firmly in place, the MGREEDY_BSW algorithm may provide the best perfor-

mance.
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