Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-33

1991-06-01

DNA Mapping Algorithms: Abstract Data Types - Concepts and
Implementation

Will Gillett and Liz Hanks

The conceptual aspects of and the implementation details of a set of self-identifying abstract
data types (ADT) are described. Each of the ADTs constitutes a specific class of object, upon
which a set of well-defined access functions is available. The intent of these ADTs is to supply a
paradigm in which a class of object is available for manipulation, but in which the underlying
implementation is hidden from the application programmer. Specific ADTs are the described in
some detail. The tagged architecture used to achieve the self-identifying property of the ADTs is
presented, and a set of required system-backbone... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Gillett, Will and Hanks, Liz, "DNA Mapping Algorithms: Abstract Data Types - Concepts and
Implementation” Report Number: WUCS-91-33 (1991). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/651

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/651?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/651

DNA Mapping Algorithms: Abstract Data Types - Concepts and Implementation

Will Gillett and Liz Hanks

Complete Abstract:

The conceptual aspects of and the implementation details of a set of self-identifying abstract data types
(ADT) are described. Each of the ADTs constitutes a specific class of object, upon which a set of well-
defined access functions is available. The intent of these ADTs is to supply a paradigm in which a class of
object is available for manipulation, but in which the underlying implementation is hidden from the
application programmer. Specific ADTs are the described in some detail. The tagged architecture used to
achieve the self-identifying property of the ADTs is presented, and a set of required system-backbone
access function is defined. Their combination is shown to produce a robust system in which complex
aggregate ADT classes can be flexibly created and managed with little effort on the part of the application
programmer. Memory management and statistics reporting techniques are presented.

https://openscholarship.wustl.edu/cse_research/651?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/651?utm_source=openscholarship.wustl.edu%2Fcse_research%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages

DNA Mapping Algorithms: Abstract Data Types -
Concepts and Implementation

Will Gillett and Liz Hanks

WUCS-91-33

June 1991

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

This work was supported by the James S, McDonnell Foundation under Grant
87-24 and NIH under grant 1 ROI HG00180-01.

ABSTRACT

The conceptual aspects of and the implementation details of a set of self-identifying abstract data
types (ADTs) are described. Each of the ADTs constitules a specific class of object, upon which a set of
well-defined access functlions is available. The intent of these ADTs is to supply a paradigm in which a
class of object is available for manipulation, but in which the underlying implementation is hidden from the

application programmer.

Specific ADTs are described in some detail. The tagged architecture used to achieve the self-
identifying property of the ADTs is presented, and a set of required system-backbone access function is
defined. Their combination is shown 0 produce a robust system in which complex aggregate ADT classes
can be flexibly created and managed with little effort on the part of the application programmer. Memory
manggement and statistics reporling techniques are presented.

TABLE OF CONTENTS

1. INIIOAUCHION .eovererecrrernsenseersenmeresinssesseererssnsssssassesrarassassesessssesseassseseseesssnassssasess st sbsnsensassasasssssnnsesnsens 1
1.1. Software Engineering Reasoning for ADTS .. sinnsessisssnressssssssessinsnsssssssssseseses 1

1.2. Self-identifying Propertics 0F ADTS . cneinecrsinise i seste st sssssssssessssssassssssssasssesssnse 2

1.3. System-backbone AcCess FUNCLIONScivcrieiveiseiiens s rssessstssrssmssssssssssssssasessssssasssasssnne 3

B4, EXPOSIOTE woicieiererireresersereresessesesasarisssssasasserensssenmsssesenssessssisssonesssssmssrssesasssssessonssesemsssssssnnsas 3

2. Required System-backbone ACCESS FUNCLOMS w.vuirererierirsriseseerareensseessess st sesssesesssssesssssssassesraeas 4
2.1, CLEALNE ...ociieremrureererrneseressessetareses e e ssesessessnssess st ssassanssssess sansssanesesbssessasasesssssssrssssesessnsssenssns 4

2.2, DBSITOYING .ovvrvireiieiisaenieneriassntesnssressasssrssssisssasssesesessasssasssasestaneassssrasssnsensasssvassaresessssssesessassnsses 9
2.3, PIEtty PLNLNG .vvvioeeeeersiariesisietesisneesessssssssassssssssssesssesssssssssssessssssssssssassssissssssissesosssensassesssnnss 11

2.4, DEDUE PIINUNG coovveveeerrsinreseeeisrerereseressssstasessessssssassesesssssassseserssssssssassssessasssesesssesssmssssessnras 14

2.5, COPYINEG worvvriririririrmitiniarere e e aaesae e e ses s se et aressssesasestassessssssssnsensisssanssssssesssesssssansrerassssnsesranens 16
2.6, COMPATIREcuerrveicecirermrmrsesrersesssssssssssssbsssssssssss sasetassssssesasssassssnassrersssisssssansssressssssssasrasssees 18

3. Object-operation AcCesS FUNCHONS ..oveviierinrnesissonesirieresresereseresessvmsserssssssrersssssnssssssssssseressssasnsnes 21
4. Management Of ADTS ..cciieiiecececcer e mcesrercas s e ssee s sesss s ssssssssssessssssssesetssons sonesssssssensnsnorssens 21
4.1, Declaring a0 ADT CISS ..cccoceeevervreereresrerrsrisestesesressesserssnesssssssassss sesessrarsesssssnssssrarsesssssssssans 21
4.2, Statistics on INStances Of ADTS ... iierrrrverrersessesrresessrssessasssesesssseresssssesessssesnsress saesens 27
4.3. Memory ManagemMeIitceeevererereasninesesisiraseiererissessssssesrsessssensnsssssssssssssnsesesessarassensnsessssasssen 29
43,1 ALIOCAUOM cuovieiiriieiiiecianice e reentercsvsesreaereressassssssraresesssssssesnssesrssaras sresare vesssssartnessasonss 29

4,32, DEAIIOCALION .eeeueeeereerererrsrsrsrecrssrescassesesebsesssrsetatesscrassasessst snsasnsssssnsasesessnsrensssraseassas 32

5. SYSIEIL ADTS .oiviiiiiieeiriiteestrssieistes it eeeesessssssaseresensrsseesssesesesasss senssmensassasnossrasermmsnsasasas smrnsasobssass 33
5.1. General PUIPOSE ADTS ...iiviveresererermiesesesesessssssssssssmssssssesensssssssessssesssssesse st ssssssessnsasassessassas 33

5.2, Other GENEIAL ADTS .ovvvecvrvreeecrersersierircssassssresessessssesassansasssansasssess s scasntssnsssessnsassesansssssanses 34
5.3. DNA MAPPINZ ADTS wooeivvrvrrrnsissnesrsesieiassesssasssase stesssessssnsssseressssssnsassssessansssareasasasassreses 35
5.4, PSEUAD ADTS .ooviviievevevevrescmnmiesesssissssnsst s snsstsssssssnesseresesesesesssssns s sassssasssansassnsssssnssssnsesasensres 36

6. CONCIUSIONS cvvereire e eeesestciiserareeees e s beeeereeasaeererssesesnssstenseess sesransresrenssasnssasassnereseorsnsnsssnssnsasasntosessn 36

TABLE OF FIGURES

Figure 1: Declarations for AdE_INEoiiivieiierrrn e seersesssneresersssnsesssses s ssass sssssssssessvarissoss 4
Figure 2: Creation of an Instance of @df_INE ..o s cessesserernresessmcoreeosnssnss 5
Figure 3: Declarations for adt_SIFING ... carreervsrererscsereresnsarsassss e ossssssenissssssonsn 5
Figure 4: Creation of an Instance of adt_SIriNgc.cccoreomvcirencm oo sesimcnnnsasss 6
Figure 5: Declarations fOr At PAIT ... cerre e st cererseeserissesssassssesseserasstssssnssssesesssseasssncs 7
Figure 6: Creation of an Instance of AdE_Pair ...t senesesesssssas 8
Figure 7: Code for pair_create ddd_ 1Lt . snssssssersssons 8
Figure 8: Declarations for 2df_dll ... s e ssssare e sn 9
Figure 9: Creation of an empty @t dIl ..o eroieerernee e v neacs s tssemsn i ssasasesarasesnres 9
Figure 10: Destruction of an Instance of adt_INt ... 10

Figure 11

Figure 13
Figure 14
Figure 15

Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22;
Figure 23:
Figure 24:
Figure 25:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31;

Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:

: Destruction of an Instance of adf_SIriNG ..oveeeveivevecenceresnecee e
Figure 12: Destruction of an Instance of adt_pairc.eeercecemeeesiesesieresennas
: Destruction of an Instance of adt_aH ...
: Pretty Print of an Instance of adt_intcccovvevcmmnrnesriernsrerenerenees
: Pretty Print of an Instance of adt_stringcccocevevneeececniniceecnceees
Figure 16: Pretty Print of an Instance of adf_paircceeeveesencerensssesssnins
Pretty Print of an Instance of adf_dll ..o st sresnsane

Example Inpul and Cutput for Pretty Print .. cicice e cresseiete e seensts et eeeeesessssnssssssans
Debug Print of an Instance of adt_intwccveeovvevrmcrceessrnereseevessnnnas
Debug Print of an Instance of adt_Stringoccoevmenvcerncvnsenennns
Debug Print of an Instance of adt_pairc.ceevvmrnrencnnmeessenonne
Debug Printing of an Instance of adt_dlloeccrermeriscerecensese s ssessrens
Example Input and Quiput for DEbUZ PrIfL c.cocecvrreeeee e ens e secirseresssrresesssrssensessss
Copying an Ingtance of adt Itoeveeeieiecieiee e e rees
Copying an Instance of adt_SIring ... ccininiiiee e
Copying an Instance of adt_pair ... veincniinesseesssse s seenseens
Copying an Instance of adt_dll ..o seeneae
Comparing Instances of Qdt_INE ...c...oiiciiicconiesrnrnnrersnssssesessssesesaessssssssssserassssssssnes
Comparing Instances of adt_SIFINE ... cicvinicine e et s e
Comparing Instances of adt_pairccceeceeeennieeeeeveeveseessennens
Comparing Instances of adt_dIlcoveverieresererssmarusssereresseersonies
Arithmetic functions for adt_iRtcccooomevecneercnreere e
Figure 32: Concatenation for adt_SEriNGceieeveierennieeierenreesiesesersesssenensnennn
Object-operations for adt_pairccvcennennnsnenioncensseerennssens
Declaration of adt Ntcciviviecvrrnnreriessssee s e s ssesssseseress
Memory Management Table SIUCIITE ...ocoocovrvrerineneresrseseereseenerens
Declaration of adt_String ..o
Declaration of adt_pair ..ot vsn e s ererens
Declaration of adt_dIl ...

...............................

...............................

...............................

...............................

...............................

...............................

...............................

...............................

10
il
11
12
12
13
13
14
14
15
15
15
16
17
17
17
18
19
19
20
20
22
23
24
25
25
26
26
27
28

Figure 39: Statistics aboul ADTs and Memory Managemenl ... eerreesressssesssemssesessrasssessrases
Figure 40: Code fOr mem_Man_ get MM ... ceeresreessesesssessess e ssrasssscsssessssssssnsssssn saesees
Figure 41: Code formem_man_ fixedsize 2l10CALE ..o
Figure 42: Code formem man_varsize allOCALE .wcoecrmcmemeenesmesssssssssesses
Figure 43: Code formem man_fixedsize dealloCabLe ...
Figure 44: Code for mem_man_varsize deallOCaLe ..o
Figure 45: A SEQUENCE-SEL TTEE civviiiiircrrieiiiarirere v e ressssssssssssssssesbes s se s be b s ss s e s etr bbb st onssasrsstoss
FIgure 46: A Map URIL ... ciniisve s sisssssveseessnssesssssressessrersssssessstesnsst s nsssssssssessseasasesees

-i-

DNA Mapping -1- ADTs

1. Introduction

This reports describes the conceptual aspects of and the implementation details of a set of self-
identifying abstract data types, which will be referred to here as ADTs. Each of the ADTs constitutes a
specific class of object, such as integer, list, or tree, upon which a set of well-defined functions should be
applicable. The intent of ADTs is to supply a paradigm in which a class of object is available for manipu-
lation, but for which the underlying implementation is hidden from the application programmer.

The DNA Mapping encapsulation of ADTs, as implemented with a self-identifying (tagged) archi-
tecture, constitutes a paradigm very similar to that of object-oriented programming (OOP). The major
difference between standard object-oriented programming and the DNA Mapping ADTs is that inheritance
is present in most object-oriented system but is not present in our ADTs.

L.1. Software Engineering Reasoning for ADTs

Although the underlying implemeniation of ADTs is based on a combination of standard, well-
understood data structures (arrays, structs, pointers, and intrinsic data types), the application programmer is
not allowed to know this underlying struclure or access any of the actual physical components directly.
Instead, a set of access functions is supplied, with which the application programmer can manipulate the
conceptnal components of an ADT.

For instance, given an ADT intended to simulate a list of objects, adt_list, the application program-
mer may want to know the cardinality of a specific list. In order to extract this information, an access func-
tion, say list cardinality, would be supplied, When invoked, this function would return the
number of objects currently in the list -- but without the application programmer knowing how the underly-
ing implementation is achieved. For example, it might be that the cardinality is actually held as an explicit
field of the underlying data structure representing the conceptual list, and 1ist_cardinality simply
references this field causing no computation to be done. In this case the cardinality field probably would be
incremented each time an object is inserted into the list and decremented each time an object is deleted
from the list. This underlying implementation requires an explicit memory location to maintain the datum
continually being updated. An alternative approach is not to maintain explicit information about the cardi-
nality, but instead to search through the list, counting the number of objects present each time the
list_cardinality function is invoked. This implementation option requires no extra memory to hold
the explicit cardinality. Each has its own advantage. One is efficient in time, and the other is efficient in
space.

Another option for holding lists is 10 implement them either as a sequential array or as a dynamically
allocated linked list. Each of these possibilities has its advantages and disadvantages. The linked list
approach may be efficient in time with respect o insertions and deletions, but may take much more
memory than the array approach. The array approach may be efficient with respect to memory, but has
severe Lime penalties for insertion and deletion of objects and may require significant reallocation as the list
grows in size.

The ADT paradigm claims that all of these underlying implementation decisions should be hidden
from the application programmer. The question as to why this is an desirable property to have is an
appropriate and important one. The basic answer is the following. The application programmer should
program in a conceptunal space that does not change unless the application itself changes. In other words,
the "things" manipulated by the programmer should be perceived to be "things” that are important to the
application and not primarily important 1o the details of some specific programming language (i.e., "things"
that are important to the solution of the application). Once the solution to a problem (application) has been
found, it should not have (o be changed just because something in the underlying implementation changes.
(A more giobal example of this has to do with the reason that high-level languages are used to solve prob-
lems. Specifically, if a solution to a problem has been found using the language C, then we would like that
solution to remain applicable even though the eventual executable program is run on a machine other than
the one upon which it was developed.) In the conceptual world of ADTs, we would like the solution to a

DNA Mapping -2- ADTs

problem to rernain valid, even though the underlying implementation of a list is changed from an array
approach to a linked list approach. Specifically, with respect to the application, the sequence of insertions
into and deletions from some list will be identical, independent of the mechanism chosen to implement the
list (i.e., array or linked list). If, for some reason, the original mechanism chosen for implementing lists is
found to be inappropriate or deficient and a subsequent decision is made to change the original mechanism
for implementing lists, the application code itself should not have to be changed just because the underly-
ing implementation of lists has changed.

By hiding the underlying implementation of the ADTs, implementation decisions can be deferred or
changed without affecting the quality or validity of the application code being developed. This allows pro-
totype systems to be developed quickly. If a quick-and-dirty but inefficient initial implementation of a set
of ADTs can be created, then it may be possible to create the basic functionality of an application quickfy,
allowing the fine-tuning and time and space optimization to be deferred until later in the project.

Besides the ability to change the underlying implementations of the ADTs without affecting the
application code built upon them, simply the use of mathematically well-understood abstractions (imple-
mentable as ADTs) is an extremely powerful conceptual tool in the programming of solutions to applica-
tions. If ADTs simulating lists, sets, pairs, trees, stacks, elc. can be implemented, then the application pro-
grammer can use these powerful conceptual tools as actual tools available in the concrete form of program-
ming constructs. Specifically, many problems themselves are described by using abstract mathematical
concepts. More importantly, abstract algorithms for solving the problems are often expressed using these
abstract mathematical concepts. The ability to implement an abstract algorithm guickly, without resorting
lo time-consuming translation into standard mundane programming constructs, makes it possible to deter-
mine the validity of ideas quickly. It also enhances the ability to change, reconfigure, upgrade, manage,
document and verify the application code produced.

At the inception of the DNA Mapping project, it was clear that whatever specific code was produced
at the start of the project would not be applicable by the end of the project, let alone years after the end of
the project. This is true for a myriad of reasons. The biological laboratory protocols will change over
time; the problems themselves will change over time; the questions being asked by the biologist will
change over ime. It was evident that whatever code was produced would have to be extremely
reconfigurable in order o adapt to (a) changes whose origin and nature are already known but whose
specifics are not currently known and (b} changes whose origin and nature cannot be anticipated. The
incorporation of ADTs within the system has largely been due to this realization. It is hoped that by the use
of very abstract high-level constructs, large components of the software will be extractable, modifiable, and
reusable over a long period of growth and learning about DINA mapping.

1.2. Self-identifying Properties of ADTs

The self-identifying properties of the ADTs implemented within the system are paramount to the
cperation of the system, because they allow the type of an object 1o be determined at execution time
instead of at compile time. The self-identification is achieved by attaching a tag to each instance of an
ADT at execution time. Each instance of an ADT in a specific class of ADT is given the same tag as all
other instances in that class of ADT. The tags used across the different classes of ADTs are uniquely dif-
ferent, i.e., the tag of an instance uniquely identifies the class of ADT to which the instance belongs. This
tag is not a compile-time concept; it is an execution-time concept. It is present and identifiable at execution
time. This means that, given a pointer to an arbitrary instance of an ADT, it is possible to determine the
class of ADT to which it belongs at execution lime,

This self-identifying properly of ADTs allows combinations (or aggregates) of ADTs 1o be put
together in arbitrary ways. For instance, it is possible to create a list that contains objects which are
instances from different classes of ADTs. In other words, a list can have a combination of objects present
in it, such as integer ADTs, float ADTs, and string ADTs. The ADT classes are not restricted to intrinsic
data types, however. A list can contain another list as one of the objects present in it. In fact, there is no
limit to the recursive inclusion of ADTs as components of other ADTs, For instance, it is possible to have

DNA Mapping -3- ADTs

a pair whose left element is a string ADT and whose right element is a list of trees. It also is possible to
have a list of stacks of pairs of trees.

The use of ADTs with an execution-time tag present does restrict what can be generically used as
components of ADTs. In most cases, the generic components must be ADTs themselves. In other words,
raw (unencapsulated) C data types such as integer, float, and string are not allowed, since they have no tag
present to identify their type at execution time. This does present minor restrictions on the use of ADTs.
In general the solution to these restrictions is to "wrap” raw intrinsic C data types into an ADT and use the
ADT counterparts as compenents of other (aggregate} ADTs, These ADT classes are supplied for: integer,
float, string, and Boolean,

1.3. System-backbone Access Functions

For each ADT class, a set of required system-backbone access functions must be supplied. Each
ADT class is declared to the system at execution time; these required access functions are made available
10 the system at this declaration time. They include () how to create an instance of the ADT, (b) how to
destroy an instance of the ADT (i.e., return the, possibly aggregate, memory associated with the instance),
(c) how to make a copy of an instance of the ADT, {d) how to pretty print an instance of the ADT (i.e.,
print the contents of the instance in a high-level conceptual manner), (e) how to debug print an instance of
the ADT (i.e., print the contents of the instance in a low-level detailed manner), and (f) how to compare
two instances of the ADT to determine whether one is less than, equal to, or greater than the other.

Given these access functions and the self-identifying properties of the ADTs, the application pro-
grammer can manipulate aggregate ADTS in very generic ways. For instance, the programmer can pretty
print a list by calling the routine 1ist_pprint. In this process, appropriate punctuation (square brack-
ets and a comma) are used to delimit the objects in the list, as one might expect. However, the actual print-
ing of the objects themselves cannot be accomplished by the 1ist_pprint routine directly because it
does not have the knowledge required to pretty print every type of object present in the system. Instead,
since the tag of each object is available at execution time, the appropriate pretty print routing applicable to
the specific object present can be "looked up” and invoked to produce the desired results.

Similar logic holds for destroying, copying, debug printing and comparing compound objects. In
fact, since this idea of recursively operating on a compound object (based on the tag of its components) is
so pervasive that macros which accept an object and call the appropriate specific function based on the
value of the tag found are supplied to the application programmer. These macros include DESTROY,
COPY, PPRINT, DPRINT, and COMPARE.

The ideas used for building complex data structures using these types of ADTs are very similar to
those used while producing complex data stractores in LISP, In LISP, whenever a list of objects is desired,
a left-spined or right-spined tree is created with the objects "hanging” from the tree; here a specific generic
list is created. However, the application programmer need put no effort into understanding or implement-
ing the details of the list mechanism. In LISP, if a pair of objects is desired, a cons is performed making
one object the left son of a tree and the other object the right son of the tree; here an explicit pair is created.
In general the conceptual viewpoint for creating complex data structures using ADTs is similar to that
found in using LISP.

1.4. Exposition

In order 10 expose the nature of the ADTs present in the system, the details of four specific ADTs
will be presented: adt_int {integer), adt_string (character string), adt_pair (a 2-tuple), and adt_dll
(doubly-linked list). adt_int is included because it is a very simple fixed-size intrinsic data type.
adt_string is included to show the variation involved for a variable-length data type. adt_pair is included
because it is probably the simplest aggregate ADT present in the system. adt_dll is included to show the
complexity of a variable-length, multiple-component ADT.,

DNA Mapping -4- ADTs

The reader should be aware that the code presented in this report is not exactly the same as that
present in the DNA Mapping software. In general, the code shown here is intended to convey the impor-
tant ideas and some of the details of ADTs. However, the code has been simplified to eliminate system
detail that might confuse this exposition.

The reader also should be aware that the use of ADTs does have some disadvantages. The power of
these ADTs allows the application programmer to do many unorthodox and inappropriate things. For
instance, it is possible to include as a member of a list the list itself {since actual pointers are used). If such
a hideous recursive situation occurs, an action as simple as a preity print will produce infinite output. Since
memory is dynamically allocated in creating ADTs and the user of the ADT is responsible for destroying
the ADT (i.e., returning the memory), the application programmer must be vigilant to destroy each instance
of an ADT which is no longer needed. Failure to comply with this maxim will cause memory exhaustion
and the execution will abort. Consider the prospect of leaving just one word of memory inappropriately
allocated in the middle of a loop which is executed a million times.

Section 2 presents a number of required system-backbone access function that must be present for
every ADT class declared to the system. The presence of these functions along with the self-identifying
property of the ADTs allows the effective management of complex aggregate ADTs. Section 3 shows how
to implement the normal object-operation access functions associated with ADTs, Section 4 describes how
an ADT class is declared to the system at execution time, how statistics about the status of instances of
ADTs can be obtained, and how memory management is performed. Section 5 briefly describes a set of
ADTs present in the DNA Mapping system. These ADTs are subdivided into three categories based on
their generality. Section & discusses the usefulness and utility of the ADT paradigm.

2. Required System-backbone Access Functions

In order to use an ADT within the gystem, it must first be declared 10 the system. In this declaration
a number of required system-backbone access function are made available to the system, the size of an
instance is given, the pointer Lo the null object is specified, and the tag 10 be used for this ADT is returned
for external use. The details of this declaration will be deferred to Section 4.1. Here, we are interested in
the access functions that are presented during this declaration. They are the following functions: create,
destroy, pprint, dprint, copy, and compare.

2.1. Creating

As a simple introduction to creating an instance of an ADT, consider adt_int. Assume that the struc-
ture of an adt_int has been declared as in Figure 1. In this figure, the macro MEM NULL refers to the
NULL pointer for a generic ADT of unknown class; its current value is 0 in compliance with most null
pointers. The macro INT_ VAL is used to mask the underlying implementation from the programmer.
Note that, in this case, the programmer is not the application programmer bul instead the creator of the
ADT class itself. Such hiding by macros has been found to be invaluable for allowing structural changes to

struct int node {
int int_ f£ld:
b:
typedef struct int_node STR_INT TYPE, *INT TYPE;
#define INT NULL {({INT_ TYPE)MEM NULL)
#define INT_VAL(p) ((int) (p)->int_f1ld)

Figure 1: Declarations for adt_int

DNA Mapping -5- ADTs

occur to the underlying implementation while minimizing the amount of code that must be modified.

A simple routing for creating an instance of an adt_int can be constructed, as shown in Figure 2. In
this type of create routine, the actual value of the desired ADT is presented at creation time. This is simple
because the value being inserted into the ADT is a scalar, in contrast 10 creation of an aggregate list. Here,
the integer 1 is an input parameter. The first executable statement simply insures that initialization
{mostly declaration) has been done. The invocation of mem man_fixedsize_ allocate allocates
Lhe correct amount of memory for a data structure of this class. (Here, the prefix mem_man__ stands for

"memory management”.) The details of this will be deferred to Section 4.3.1. However, the general idea
will be discussed here. In this case, two full words of memory are allocated; one for the tag and one for the
integer itself. (The size of the adt_int is known to the system because it was declared at initialization time
and thus need not be specified here. This is in contrast to a variable-size data structure, in which a call to
mem man_varsize allocate will be performed.} The correct tag for an adt_int is placed in the first
word of the memory allocated, and a pointer to the second word (the actual adt_ int structure as declared in
Figure 1) is returned through the function name. The macro INT_VAL is used to insert the value of the
input parameter into the memory which has been allocated. A pointer 1o the user-accessible portion of this
instance of an adt_int is retumed through the function name.

In this ADT convention, the system knows that if it is manipulating a pointer to an instance of an
ADT, then it can find the tag corresponding to this instance one word to the left of the current pointer.
However, the current pointer points to exactly the structure which was declared by the programmer, Thus,
this pointer can be used as if there were no Lag present at all.

Now consider a more complex situation in which a variable amount of memory must be allocated
based on the “size” of the incoming argument. Such a sitvation is typified by adt_string. Consider the
declarations of Figure 3. Here, notice that the struct string node actually contains no space for the

INT_TYPE
int_create (i)

int i;
{

INT_TYPE D;

if(lint_init done} int_ds_init();
p = (IN? TYPE)mem man fixedsize allocate(int_tag);
INT VAL(p) = i;

return (p) ;

Figure 2: Creation of an Instance of adt_int

struct string node{
int size fld;

};
typedef struct string node STR_STRING_TYPE, *STRING TYPE;
#define STNG NULL ((STRING_TYPE)MEM NULL)
#define STNG SIZE (p) ({int) (p)->size_£1ld)
#define STNG_VAL{p) ((STRING) {(MEM TYPE) (p)+sizeof (STR_STRING TYPE)))
#define SENG_LEN (p) {{int)strlen (STNG_VAL(p}))
fdefine STNG_IS_EMPTY (p) (STNG_LEN(p) == 0)

Figure 3: Declarations for adt_string

DNA Mapping -6- ADTs

variable-size string that eventually will reside in the instance of the adt_string. Instead there is only an
integer size f£1d (size field) which will be used to indicate the size of the (user-specified) variable-size
memory allocated for this instance of the adt_string. The actual string data will be concatenated just after
this one-word field. Note again the use of macros to mask the underlying implementation.

The code for creating an instance of an adt_string is shown in Figure 4. Here, the type STRING is
equivalentto char *. The structure of the code here is similar to that of Figure 2, but there is some vari-
ation. The length of the (user-specified) portion of the data structure must be computed. This is the length
of the character string (i.e., the call 1o stzlen)plus ! (for the \0 at the end of the string) plus the length
of the size_ flditself. The correct amount of memory is allocated by calling
mem _man_varsize_allocate. Note that in this variable-size case, the size of the desired object must
be specified (as the second argument, size). The size f£1d is setby using the STNG SIZE macro.
Then the value of the incoming string is copied to just after the size £1d component of the struct. The
pointer to the (user-specified) data structure is returned through the function name.

Several conventions have been used here that are important (o the construction of ADTS. It should
be clear that there are two routines used for allocating memory: mem man_fixedsize allocate for
fixed-size ADTs, and mem man_varsize allocate for variable-size ADTs. Correspondingly, there
are two deallocation functions: mem_man_ fixedsize _deallocateand
mem man_varsize deallocate For fixed-size ADTs there is no question about how much memory
to deallocate when an instance is returned to the sysiem. However, for the deallocation of a variable-size
ADT, the original amount of memory allocated at creation time must be specified at destruction time, so
that the correct amount of memory is returned. This is the basic reason for the including the size f£1ld
in the structure of an adt_string. It’s value will be used at deallocation time. The decision to make it the
first field of the struct is an important one. This is because there are two ways of returning an instance of a
variable-size ADT to the system. mem man_varsize deallocate may be called, in which case
the size of the (user-specified) data structure must be specified. Alternatively
mem_man_fixedsize deallocate can be called if the builder of the ADT class has used the con-
vention to make the size of the variable-size data structure the first field of the data structure. In this case,
if the instance is known to be of variable length, mem man_fixedsize_ deallocate simply looks in
the first field of the structure for the appropriate length and deallocates that amount of memory.

Now consider an aggregate ADT, adt_pair, which implements a 2-tuple. The declarations for an
adt_pair are shown in Figure 5. Here again, the standard use of macros masks the underlying structural
implementation.

STRING TYPE
string create (s)

STRING 57

{
STRING TYPE p:
int size;

if{!string_init_ done} string ds_init{);

size = sizeof (STR_STRING_TYPE) + strlen(s) + 1;

P = (STRING TYPE)mem man varsize allocate({string tag,size);
STNG SIZE (p) = size;

strepy (STNG_VAL(p),s3);

returnip);

Figure 4: Creation of an Instance of adt_string

DNA Mapping -7- ADTs

struct pair {
MEM TYPE left element_fld;
UTIL_TYPE left_util f£1d;
MEM TYPE right element_ f£ld;
UTIL_TYPE right_util fld;
ki
typedef struct pair STR PATIR TYPE, *PAIR TYPE;
#define PAIR NULL (PAIR TYPE)MEM NULL
#define PAIR LEFT ELEMENT(p) ({(MEM TYPE)} (p)->left_element_£ld)
#define PATR_RIGHT ELEMENT (p) (({(MEM TYPE) {p)~>right element £1ld)

#define PAIR LEFT UTIL(p) ((p)->left_util_£1d)

#define PAIR _RIGHT UTIL (p) {{p)->right_util_f£id)

#define PAIR IS_EMPTY (p) (PAIR_LEFT_ELEMENT (p) == MEM_NULL &&
PATR _RIGHT ELEMENT (p) == MEM_NULL)

Figure 5: Declarations for adt_pair

Note that in the declaration of the struct pair, there are more than two fields, i.e., more than just
the left_element_fldandthe right_element_f£f1d. The two extra fields are referred to as util-
ity fields, and indicate whether or not the corresponding component object should be destroyed in the pro-
cess of destroying the pair itself. This idea of "destroyable or not” comes from the concept of "ownership”,
Specifically, certain aggregate ADTs will deal with managing data (i.e., objects) for some other applica-
tion. If the ADT is just managing data, then it does not "own" the data itself, and therefore when it (in this
case, the pair) is destroyed and its management activities end, it should not destroy the data that it was
managing because some other application "owns" the previously managed data and needs o manipulate it
more. If the destruction of the managing pair caused the desiruction of the data it is managing, then the
application requesting the management would not operate comrectly because its data would have been des-
royed. The field left util fldisa BOOLEAN which indicates whether or not the object held in the
field left_element_f£1dis "owned" by this instance of an adt_pair, i.e., whether or not the object
held in the field 1eft_element f£1d should be destroyed when this instance of an adt_pair is des-
troyed. The field right util fldisa BOOLEAN which indicates whether or not the object held in
the field right_element f£1dis "owned" by this instance of an adt_pair, i.e., whether or not the
object held in the ficld right_ element_f£1d should be destroyed when this instance of an adt_pair is
destroyed.

This kind of utility "ownership” field is present in many of the aggregating ADTs, such as list and
set. Often, there are additional separate access functions for inserting objects into aggregate ADTs, for
which the component objects being managed should not be destroyed when the aggregate ADT itself is
destroyed. These access functions will contain the string " _ddd" as part of the name of the access func-
tion. The ddd is meant 10 connote "don’t destroy data”. Thus, a call such as
pair_create_ddd(objl,obj2) creates an instance of an adt_pair in which objl and obj2 will
not be destroyed when the managing pair itself is destroyed, whereas a call such as
pair_create{objil,obj2) creates an instance of an adt_pair in which ob3jl and obj2 will be
destroyed when the aggregau'ng pair itself is destroyed. In the case of the adt_pair there also are access
functions for selectively allowing either the right or left field to be destroyed or not.

The code for creating an adt_pair is shown in Figure 6. Notice that the type of the input parameters
is MEM_TYPE. This is the gcneric type for an ADT of unknown class. Since the ADT class of the objects
that will be placed in the pair at execution time cannot be known at compile time, MEM_TYPE is the only
appropriate type for the input parameters. The constant UTIL_CAN DESTROY is used to indicate that the
object held in the corresponding field should be destroyed when the pair created here is destroyed. There is
a corresponding UTIL CANT DESTROY constant. To show the variations possible for utility manage-
ment, the code for pair_create_ddd left isshown in Figure 7. Notice that the flag indicating
whether or not a component object should be destroyed can be modified afier creation of the aggregating
object.

DNA Mapping -8- ADTs

PAIR TYPE
pair_create(left, right)
MEM TYPE left, right;
{
PAIR TYPE a;

if (!pair init_done) pair ds init{);

a = (PAIR_TYPE) mem man_fixedsize allocate{pair tag):;

LEFT ELEMENT (a) = left;

RIGHT _ELEMENT (a) = xright;
util_set_destruction(&PAIR_LEFTﬁUTIL(a),UTILMCANMDESTROY);
util set destruction(&PAIR _RIGHT UTIL(a),UTIL CAN DESTROY);

return(al;

Figure 6: Creation of an Instance of adt_pair

PAIR TYPE
pair create_ddd left (left,right)
MEM TYPE left,right;

{
PAIR TYPE a;

a = pair create(left,right);
util_set_destruction (¢PAIR LEFT UTIL (a),UTIL CANT DESTROY);
util_set_destruction (&PAIR_RIGHT UTIL({a),UTIL CAN DESTROY);

return (a) ;

Figare 7: Code for pair_create ddd_left

The last ADT class 1o be addressed is the adt_dil. Declarations used in the definition of the adt_dIl
are shown in Figure 8. The adt_dll is based on the concept of a 1ist_node. In fact, there is a separate
ADT class for list node with its own access functions. Iis direct implementation will be suppressed
here, and it will be assumed that the reader can infer the meaning of any access function that occurs in the
code from the name of the access function itself.

In the declaration of a 1ist_node there are three major fields: the left_£1d, the
right_fld,andthe data fld. The left_ £1dof a node points to the node to its left. Similarly for
the right_ fld. The data_f1d points to the instance of the ADT being held at this position. There
are two other minor fields. The util_f£14d is used to indicate ownership, and specifies whether or not the
object pointed to by the data_ £1d of this node should be destroyed when this node is destroyed. The
up_f1d indicates the context in which this node resides. It is essentially a "parent” indicator. In most
cases this ficld points to the header node of the adt_dIl in which it resides.

An adt_dll implements a doubly linked list with a header. The emply adt_dll contains one and only
one node, the header node; the left_fldand the right f£1d point to the header node itself. The
header node is distinguished from all other 1ist_nodesin that the data_£1d of the header node
points to the header node itself.

The code for creating an instance of an empty adt_dI! is shown in Figure 9. Notice that the imple-
mentation style here is exactly the same as the previous creation routines. However, in this case the
corresponding object being created is the empty object. Also, note the introduction of the concept of a

DNA Mapping -9. ADTs
struct list_node {
MEM TYPE up_fld;
struct list node *left fld;
struct list_ncde *right_f£1d;
MEM TYPE data fld;
UTIL TYPE util £id;
bi
typedef struct list node STR_LIST NODE_TYPE, *LIST_ NODE_TYPE;
typedef STR LIST NODE TYPE STR DLL TYPE, *DLL_TYPE;
#define DLL_NULL (DLL_TYPE) PNT_LIST NODE_NULL
#define DLL_ LEFT (p) ({LIST_NODE_TYPE) (p)~> left_f1ld)
#define DLL RIGHT (p) ((LIST _NODE_TYPE) (p) > right_ f£1d)
#define DLL_DATA (p) {{MEM_TYPE) (p)~> data_f£1d)
#define DLL_PARENT (p) { (MEM_TYPE) (p)-> up_fld)
#define DLL UTIL(p) { (MEM_TYPE) {p)-> util £f1ld)
#define DLI._IS_ HEAD (p) (DATA (p} == (MEM _TYPE) (p))
Figure 8: Declarations for adt_dll
DLL_TYPE
dll create({parent)
MEM TYPE parent;
{
DLL TYPE P’

if (!dll_init dene) dll ds init (};

p = (PLL_TYPE) mem man_ fixedsize allocate{dll taqg);
LEFT(p) = p;

RIGHT (p) = ps

DATA (p) = (MEM TYPE)p;

PARENT (p} = parent;

return (p) ;

Figure 9: Creation of an empty adt_dH

"parent” to indicate the context in which the specific instance of the adt_dli resides.

2.2. Destroying

The concept of destroying an object deals with returning the memaory, which was allocated for "hold-
ing" that object, to the system for future used by other instances of ADTs. Since no part of the application
should have a pointer to this returned memory after deallocation, whatever variable is used to hold the
pointer to this object {in order to return the memory o the system) should be NULLed out after the destroy
has been completed. In order to help enforce this convention, a pointer to the pointer to the object is
handed to the destroy function, and it is the responsibility of the destroy function to NULL out the pointer it
received upon completion of the return of the memory.

Consider the destruction of an adt_int, as shown in Figure 10. Here, note the call to
mem _man_fixedsize deallocate. Since this is a fixed-size data structure, the system knows the
amount of memory that was allocated and therefore how much 10 deallocate. ‘Thus, there is no need to sup-
ply the data structure size for deallocation. Note that a pointer to the pointer to the data structure is passed
1o this routine. The pointer Lo the data structure is set to NULL, just before returning.

DNA Mapping -10 - ADTs

void
int_destroy (p)
INT TYPE *p;
{
if (*p == INT _NULL) return;

mem man_fixedsize deallocate ((MEM_TYPE) *p) ;
*p = INT NULL;

return;

Figure 10: Destruction of an Instance of adt_int

When destroying a variable-size object, only slight differences occur. Consider the destroy of an
adt_string, as shown in Figure 11, Notice here that there is a calculation of the size of the memory which
must be retumed and the call to mem man_varsize deallocate with a second argument which
specifies that size.

Notice that there are no component ADTs to be destroyed in the adt_int and the adt_string. For an
example of an aggregate ADT which has component ADTs which may have to be destroyed, congider the
destroy of an adt_pair, as shown in Figure 12. Here, the routine determines ownership by checking to see
if it should destroy its twa component objects. Any component that should be destroyed is destroyed, and
then the memory for the pair itself is returned to the system.

As the last example of a destroy routine, consider the destroy of an adt_dll, as shown in Figure 13.
Here, each list node in the adt_dll is selected and destroyed. The check to determine ownership is "hid-
den” inthe callto list_node destroy. Notice that it is possible that some of the objects placed in
the adt_dH may be destroyable and other may be nondestroyable. A selective decision is made at each
list_node as to which component objects are destroyable and which are not. After each of the nodes in
the list has been destroyed, the memory for the header node is returned to the system,

In the destruction of an adt_pair and an adt_dll, the macro DESTROY has been used. This macro
interrogates the tag of the object handed to it to determine which specific destroy routine should be used to
return the appropriate amount of memory to the system. It should now be clear why the execution-time
tagged architecture is so important to the effeclive use of recursively embeddable ADTs, Without the

void

string_destroy (p)
STRING_TYPE *p;

{
int size;

if {(*p == STNG_NULL) return;
size = STNG_SIZE (*p);
mem man_varsize_deallocate{ (MEM _TYPE)*p,size);

*p = STNG NULL;

return;

Figure 11: Destruction of an Instance of adt_string

DNA Mapping -11-

void
pair destroy(pair)
PAIR TYPE *pair;
{
if (*pair == PAIR NULL) return:

if (util can_destroy (¢PAIR_LEFT UTIL (*pailr)))
if (LEFT_ELEMENT (*pair) != MEM NULL)
DESTROY (&LEFT ELEMENT (*pair));
if (util_can_destroy (§PAIR RIGHT UTIL (*pair)))
if (RIGHT ELEMENT {*pair)} != MEM NULL)
DESTROY (&RIGHT _ELEMENT {(*pair)):;
mem man_fixedsize deallocate((MEM_TYPE) *pair);
*pair = PAIR NULL;

return;
i
Figure 12: Destruction of an Instance of adt_pair
void
dll destroy{dll)
DLL_TYPE *dll;

{
LIST_NODE_TYPE 1ln;

if (*dll == DLL NULL) return;

in = RIGHT {*dll)}:;
while (!DLL_IS_HEAD({ln)} {
list_node_destroy(&ln);
ln = RIGHT({*dll):;
¥
mem man_fixedsize deallocate((MEM_TYPE)*dll);
*dll = DLL NULL;

return;

Figure 13: Destruction of an Instance of adt_dlIl

execution-time lag present, it would be impossible to correctly manipulate (in this case, deallocate

memory) the constituent components of a complex aggregate ADT.

2.3. Pretty Printing

ADTs

The objective of pretty printing is to have the logical content of an instanice of an ADT printed in a
high-level manner, from which the reader can guickly extract the content. For scalar objects, this is rela-
tively straightforward. Consider the code for int_pprint as shown in Figure 14. Notice that the logic
is extremely simple. The integer value is extracted and printed. No new-line is printed; this is because the
pretty print of the integer may be done in a much larger context, that of an aggregate ADT. Extrancous
new-lines may destroy the overall contextual effect desired. Here, the macro RERROR prints an error
message. The first argument to the macro, ABORT_CODE, indicates that this is a severe error, and after

printing the error message the run should be aborted.

DNA Mapping -12.- ADTs

void
int_pprint (p)
INT_EYPE =k
{
int i;
if (p == INT_NGLL) RERROR(ABORT_CODE,(“NULL pointer"));

i = INT VAL(p);
printf (“%d",i);

return;

Figure 14: Pretty Print of an Instance of adt_int

The pretty print of a variable-size object is not much different, as shown in the code for
string pprint inFigure 15,

The pretty print of an aggregate ADT requires some punctuation. In the case of the adt_pair, the
two objects of the 2-tuple are place between parentheses, with a comma between them. The pretty print
routine for an adt_pair, pair pprint, is shown in Figure 16. Note the use of the macro PPRINT to
perform the prelty print on the two components, the types of which are unknown. Notice again that no
new-line is printed which might destroy the contextual effect.

The pretty print for the adt_dll is shown in Figure 17. Note the call to 1ist _node_pprint to
achieve the pretty printing of the object at each selected position of the list,

In order to see the utility of the tag architecture and the declaration of the required system-backbone
routines, now consider the code shown in Figure 18(a), which produces a refatively complex ADT struc-
ture. This code first creates an adt_dll containing two elements, the string "abc” and the integer 1. It then
creates an adt_pair coniaining this adt_dll as its first element and the integer 2 as its second element, It
then creates a second adt_dll, whose first object is the pair just created and whose second object is the
sring "def”. The resulting ADT is prelty printed, and the output produced is shown in Figure 18(b).

void
string pprint {p)
STRING_TYPE p;
{
STRING 5;
if (p == STNG_NULL) RERROR(ABORT CODE, ("NULL pointer"));

s = STNG VAL(p):
printf(“\“%s\"",s);

return;

Figure 15: Pretty Print of an Instance of adt_string

DNA Mapping -13- ADTs

void
pair pprint (pair)
PAIR_TYPE pair;

{
if (pair == PAIR NULL) RERRCR(ABORT CODE, ("NULL pointer™)});:

printf (" (*);
PPRINT(LEFT_ELEMENT(pair));
printf (", ") :;
PPRINT(RIGHT_ELEMENT(pair));
printf {")");

return;
}
Figure 16: Pretty Print of an Instance of adt_pair
void
dll pprint (dll)
DLL, TYPE dll;

{
LIST NODE_TYPE 1ln;

if (dll == DLL_ NULL) RERRCR (ABORT_ CODE, ("NULL pointer™)):

1n = RIGHT (dl1l);

printf (<"} ;

while (!DLL IS HEAD{in)) |
list_node pprint (1ln):
ln = RIGHT(ln);

bi

printf (">");

return;

Figure 17: Pretty Print of an Instance of adt_dil

DNA Mapping -14- ADTs

dlll = dll_create (MEM NULL);

dll insert_data_to_right{dl111,d111,int create(l)}:
dll_insert_data_to_right(dlll,dlll,stringmpreate(“abc“));
pair = pair create(dlll,int create(2));

dli2 = dll_create(MEM NULL);

dil_insert_data_to_right (dli2,d112,string create ("def"));
dll_insert_data_to_right(dl12,d112,pair);

dll_pprint (dl112);

@

<{<"abc",1>,2),"def">
(b)
Figure 18: Example Input and Output for Pretty Print
2.4. Debug Printing

The objective of debug printing is to have the implementation content of an instance of an ADT
printed in a low-level manner, from which the reader can extract the details of the implementation, This is
for the purpose of discovering errors in the implementation. The overall idea behind debug printing is
similar to that of pretty printing except that all the implementation details, such as explicit pointers into
memory, are displayed.

Consider the debug printing for an adt_int, as shown in Figure 19. Notice that the value of the
integer stored as well as the pointer to the memory at which it is stored are printed. Similar code is used
for debug printing an adt_string, as shown in Figure 20.

A debug print for a simple aggregate ADT such as an adt_pair has a similar structure to its pretty
print counterpart, as shown in the cede for pair dprint presented in Figure 21, Notice the recursive
use of the macro DPRINT,

In order to keep things simple for complex aggregate ADTS, such as an adt_dll, the unbounded com-
plexity of the structure is suppressed, as shown in the code for d11_dprint presented in Figure 22.
Here, only the fields of the header node are printed in detail. The reason for simplifying the debug printing
of a complex ADT such as this is as follows. The basic reason for doing a debug print is to find an error;

veid
int_dprint (p)
INT TYPE p:
{
int iz
if (p == INT_NULL) RERROR (ABORT CODE, ("NULL pointer"));

i = INT_VAL(p);
printf (" (int%x{(i:%d))",p, 1)

return;

Figure 19: Debug Print of an Instance of adt_int

DNA Mapping ~-15- ADTs

void
string dprint (p)
STRING TYPE o8
{
if (p == STRING_NULL} RERROR(ABORT CODE, ("NULL pointer")};
printf (" (str¥x(sz:%d) (s:\"%s\")) ", p,STNG SIZE({(p),STNG VAL(p));
return;
}
Figure 20: Debug Print of an Instance of adt_string
void

pair_dprint (pair)
PAIR TYPE pair;

{
if (pair == PAIR NULL) RERROR (ABORT CODE, ("NULL pointer")):;

print£ (" (") ;
DPRINT(LEFT_ELEMENT(pair));
printf(*, ");

DPRINT (RIGHT ELEMENT (paixr)}:
printf({™)™);

return;

}
Figure 21: Debug Print of an Instance of adt_pair

void
dll_dprint (dll)

DLL_TYPE dli;
{

if (dll == DLL NULL) RERROR (ABORT CODE, ("NULL pointer")});

printf (" (dll%x{u:%x) (l:%x) (r:%x))",d11l,PARENT {dll),LEFT (dl1l},RIGHT (d11)};

return;

Figure 22: Debug Printing of an Instance of adt_dll

usually this error involves an erroneous pointer. The process of debug printing should not produce an error
in its own right. If one of the pointers in a 1ist node is in error, then a debug print routine which fol-
lows that erroncous pointer may ¢ause an execution error. In order to eliminate this kind of "random
search” through memory, only the top-level header node is debug printed. Puring debugging, it is possible
1o "march down" the separate 1ist_nodesof the adt_d!l to discover the pointer error.

The code shown in Figure 23(a) produces the debug print output shown in Figure 23(b).

DNA Mapping -16 - ADTs

dlli dll_create (NULL);

intl = int_create(1l};

int dprint{intl);

dll_insert data_to right (dl1ll,dlll,intl);
stringl = string create{"abc");

string dprint (stringl);

dll insert data to right(dlll,dlll,stringl);
dll dprint (dll1);

int2 = int_create(2);

int dprint{(int2);

pair = pair create(dlll,int2);

pair dprint(pair);

dll2 = dil create (NULL);

stringZ = string create("def"};

string dprint (string2);
dll_insert_data_ to_right (dli2,dl12,string2);
dll_insert data to_ right (dll2,dl12,pair);
dll_dprint (dl112);

(@

{(int2198bl(i: 1))

{str21988d(sz:8) {(s:"abc"))

(11219828 (u:0) (1:2197e8) (r:219899))

(int2198£5(i:2))
((dl1219828(12:0) {(1:2197e8) (r:219899)), (int2198f5(i:2}))
{stxr2198d1 (52:8) {(s:"def"))

{d112198dd{u:0) {1:2198b%) (r:219909))

(b)
Figure 23: Example Input and Output for Debug Print
2.5. Copying

The objective of making a copy of an instance of an ADT is essentially the same as that of the
assignment operator in most programming languages, i.¢., (o make a copy of the object so that the original
can be modified without changing the copy. For scalar ADTs the copy routines are simple, as shown in
Figures 24 and 25 for an adt_int and adt_string, respectively. Note the seemingly unnecessary appear-
ance of an "extra” input parameter named parent. In fact, this parameter is not used in these two copy
routines, because there is no parent field 10 be set. However, in more complex ADTs, there may be a
parent field that has to be set when a newly created instance is being copied into its new context. In this
case the parent input parameter is necessary. The reason that the parent parameter is present here
where it is not needed is because all required system-backbone routines must have exactly the same calling
protocol. In other words, every copy routine must have exactly two input parameters, of which the parent
is first and the object to be copied is second. The COPY macro also takes exactly these two parameters.
Without this kind of uniform calling convention, it is impossible to develop a recursive mechanism for han-
dling all the different classes of ADTs.

The code for copying an aggregate ADT uses the same recursive concepts as present in the rest of
the system. The code for copying an adt_pair is shown in Figure 26, Notice the continued use of the first
parameter, which in this case is called dummy, since it is known that the incoming value will not be used.

DNA Mapping -17 - ADTs

INT_ TYPE
int copy(parent,in)
MEM TYPE parent;
INT TYPE iny
{
INT TYPE cut;
if (in == INT NULL} RERROR{ABORT CODE, ("NULL pointer")};
out = (INT TYPE)mem man fixedsize allocate{int_tag);

INT VAL{out} = INT VAL(in):

return (out) ;

Figure 24: Copying an Instance of adt_int

STRING TYPE
string_copy (parent, in)

MEM TYPE parent;
STRING_ TYFE in;
{
STRING TYPE out;
if (in == STNG_NULL) RERROR{ABORT CODE, ("NULL pointer")):

out=(STRING TYPE)mem man varsize allocate(string tag,STNG_SIZE(in)):
STNG SIZE{out) = STNG_SIZE(in);
strepy (STNG_VAL(out), STNG_VAL (in)) ;

return {out) ;

Figure 25: Copying an Instance of adt_string

PAIR TYPE
pair_copy (dummy,pair in)
MEM TYPE dummy ;

PAIR TYPE pair in;
PAIR TYPE pair_out;
if (pair in == PAIR NULL) RERROR(ABORT CODE, {("NULL pointer™)):

pair out = pair create(COFY (MEM NULL, LEFT ELEMENT (pair in)),
COPY(MEM_NULL,REGHT_ELEMENT(pairmin)));

return{pair_out};

Figure 25: Copying an Instance of adt_pair

The copy routine for a more complex aggregate ADT, an adt_dll, is shown in Figure 26. Note that
here the parent parameter is used, because there is a parent field present in the ADT itself. It should
now be clear why the uniform calling protocol for all copy routines is necessary. Also note the recursive

DNA Mapping -18 - ADTs

DLL_TYPE

dll copy{parent,dll in)
MEM TYPE parent;
DLL_TYPE dll_in;

{
DLL TYPE dil out;

LIST NODE_TYPE 1ln in;
LIST_NODE_TYPE 1n_out;

if (dll_in == DLL_NULL) RERROR{ABORT CODE, ("NULL pointer"});

dll out = dll create (MEM NULL);

PARENT (d11l out) = parent;

l1n_in = RIGHT(dll in);

while (!DLL IS HEAD(ln in)) {
ln_out = list node copy((MEM TYPE)dll out,ln in);
list_node_insert_node_to_right ((MEM TYPE}dll_out,

LEFT(d1l_out),ln out);

ln in = RIGHT(ln in);:

}i

return{dll out};

Figure 26: Copying an Instance of adt_dll

callto list_node_ copy as the objects of the original input adt_dll are scanned and copied.

2.6. Comparing

For each ADT, a compare function must be supplied. This compare function is required to take two
instances of the same ADT class and determine whether the first is less than, equal to, or greater than the
second. Note that the creator of the new ADT class need only produce the compare function for two
instances of the new ADT class being created. There is a macro, COMPARE, with extended logic which
takes two instances of ADTs (from potentially different ADT classes) and determines their order. This
COMPARE macro constitutes the computation of a total order of all instances of all ADT classes that
reside in the system. Its logic will be presented in the discussion of aggregate ADTs.

The compare function {or the ADTs can be used in a number of ways. The COMPARE macro is
actually used internally in the implementation of some of the ADTs themselves. For instance the current
implementation of adt set uses the COMPARE muacro 1o esseniially sort the objects that are in the instance
of an adt_set. Also, it is sometimes useful to sort objects to facilitate subsequent processing; but the cri-
teria for the sort is unimportant. The generic COMPARE function, since it computes a total order on all
mstances of ADTs, can be used in such a generic sort.

The compare functions for adt_int and adt_string are given in Figures 27 and 28, respectively.
Here, the type COMPARE_TYPE isan enumcontaining three values: less_than_code,
equal code,and greater_than_code. The routine system_int_compare takes a single
integer value as input and returns: less ~than codeifthei integer is less than 0, equal_code if the
integer is equal to 0, and greater_than_code if the integer is greater than 0. In this situation, a
specific ordering of the instances of ADTs is spec:ﬁcd by the code shown. For instance, for adt_int
less_than_code is returned if the first parameter is less than the second parameter. However, the code
can be changed to reflect the reverse ordering and the system will still operate as desired. The total order-
ing of all instances of ADTs is preserved as long as each separate compare function maintains a total

DNA Mapping -19- ADTs

COMPARE_TYPE
int_ compare (pl,p2)
INT TYPE pl;

INT TYPE PZ;
{
COMPARE_TYPE ans;
if (pl == INT_NULL} RERROR(ABORT_CODE, {("NULL pointer"});
if (p2 == INT NULL) RERROR{ABORT CODE, ("NULL pointer™});

ans = system int compare {(INT VAL(pl) - INT VAL(p2)):

return{ans) ;

Figure 27: Comparing Instances of adt_int

COMPARE_TYPE
string compare (pl,p2)

STRING TYPE pl,pl;
{

COMPARE_TYPE ans;
if (pl == STNG NULL) RERROR (ABORT CODE, ("NULL pointer®™));
if (p2 == S®NG_NULL) RERROR (ABCRT _CODE, ("NULL pointer™));

ans = system int_compare (strcmp (STNG VAL (pl),STNG VAL(p2))):

return (ans) ;

Figure 28: Comparing Instances of adt_string
ordering within its single ADT class.

As a simple example of how to write a compare function for an aggregate ADT, consider the func-
ion pair_compare shown in Figure 29. Here, the compare is biased toward the first component of the
2-tuple, If the first component of the first parameter is less than the first component of the second parame-
ter, then the first parameler is declared to be less than the second parameter. Similarly, if the first com-
ponent of the first parameter is greater than the first component of the second parameter, then the first
parameter is declared 1o be greater (than the second parameter. However, if the first component of each of
the parameters is equal, then the second component must be interrogated to resolve the apparent tie. If the
second component of the first parameter is less than the second component of the second parameter, then
the first parameter is declared to be less than the second parameter. Similarly, if the second component of
the first parameter is greater than the second component of the second parameter, then the first parameter is
declared 1o be greater than the second parameter. However, if the second component of each of the param-
eters is equal, then the two parameters must be equal, because both of their components are equal.

Note the use of the macro COMPARE, which allows comparisons between instances of objects from
different ADT classes. COMPARE works in the [ollowing simple way. Each ADT class has a unique tag
associated with it, COMPARE compares the tags of the two instances of ADTs which are its input param-
eters. If the tags are different, the instance with the numerically smaller tag is declared to be less than the
instance with the larger tag. If the tags are identical, then the instances are from the same ADT class, and
the appropriate (unique) compare function is "looked up" and invoked 10 compare the two instances.

DNA Mapping -20- ADTs

COMPARE TYPE

palr compare (pairl,pair2)
PAIR TYPE pairi;
PAIR TYPE pair2;

COMPARE_TYPE ans;
if (pairl == PAIR_NULL) RERROR(ABORT CODE, ("NULL pointer™)):
if (pair2 == PAIR NULL) RERROR(ABORT_ CODE, ("NULL pointer™));

ans = COMPARE (LEFT ELEMENT (pairl),LEFT ELEMENT (pair2));
if (ans == equal_ code)
ans = COMPARE (RIGHT ELEMENT (pairl),RIGHT ELEMENT (pairZ2)):

return {(ans);

Figure 29: Comparing Instances of ad¢_pair

The compare function for an adt_dll is a bit more complicated, but retains the same idea as that used
for the adt_pair. It is shown in Figure 30. Here, the logic has one more level of complexity. In this case,
first the cardinalities of the two lists are compared. If the cardinalities are different, then the one with the
smaller cardinality is declared to be less than the one with the larger cardinality. If the cardinalities are
identical, then the next level of test is applied. The corresponding objects in the two lists are compared
starting at the beginning of each list. If the first objects in the two lists are not equal, then the declared

COMPARE_TYPE

dll compare{dlil,dll2)
DLL_TYPE dlll;
DLL_ TYPE dllz;

LIST NODE TYPE 1nl;
LIST NODE TYPE 1n2;

COMPARE TYPE ans;
if (dlll == DLL NULL} RERROR (ABORT_CODE, ("NULL pointer")):
if (gll2 == DLI. NULL) RERROR(ABORT_CODE,(“NULL pointer"));

ans = system int_ compare(dll cardinality(dlll) - dil_cardinality(dll2)):
if {ans == equal_code) |{
lnl = RIGHT (dlil);
1n2 RIGHT {d112);
while{{ans == equal code) && !DLL_IS5 HEAD({lnl)) |
ans COMPARE (1nl, 1n2) ;
inl RIGRT {lnl);
In2 RIGHT (1n2);

IF

}:
b

return (ans) ;

Figure 30: Comparing Instances of adt_dll

DNA Mapping -21- ADTs

order of the two lists is determined by the order of the first two cbjects. If the first objects in the two lists
are equal, then attention is focused on the second objects in the two lists. The order of the two lists is
determined by discovering the first set of corresponding objects in the two lists which are not equal. If all
the corresponding objects in the list turn out to be equal, then the two lists themselves are declared to be

equal.

3. Object-operation Access Functions

The access functions presented so far constitute the required system-backbone access function which
must be supplied for every ADT class. These access functions are used for managing the objects, but have
nothing to do with the operations on the abstract data types for which they were created in the first place.
For instance, a stack ADT might have a push operation and a pop operation associated with it.

Once the basic-ADT class has been crealed and the system-backbone access functions produced, the
creator of the ADT can supply any number of object-operations on the ADT desired. For example, for the
adt_int, the four basic arithmetic functions ar¢ shown in Figure 31. Obviously, more such access functions
can be added for other arithmetic operations, such as med and exp.

The concalenation function is shown for adt_string in Figure 32.

Three object-operation access function that might be useful for adt_pair are shown in Figure 33.

4. Management of ADTs

This section discusses how ADTs are managed within the DNA Mapping system. This includes how
ADT classes are declared to the system, how the system mainlains statistics about ADT instance utilization
and reports this to the user, and how internal memory management is performed.

4.1. Declaring an ADT Class

Each ADT class nsed within the system must be declared to the system at execution time, usually
done al initialization of the entire DNA Mapping system. This is done by invoking a number of routines
associated with the memory management subsystem. Consider the declaration of adt_int, as shown in Fig-
ure 34. The first executable statement simply insures that initialization is done no more than once. The
three routines used to declare the properties of an ADT class are: mem man_declare,
mem man set_destroy function,and mem man set copy function.

The firstargument to mem man_declare simply supplies a character string name for
identification purposes during printing of tables. The second argument is an ontput parameter through
which the system-created tag for the specific ADT class is returned. The third argument specifies the size
of (i.e., the number of bytes of memory required) an instance of the ADT. If the ADT class is of fixed-size
for all instances, then a positive integer is input; if the ADT class has variable-size instances, then a special
code is used for this argument to indicate that it is of variable length. The next two arguments supply a
pointer to the debug print and pretly print routines, The next two arguments supply a pointer to the create
and compare routines. The last argument specifies the encodement used for the null pointer for the specific
ADT class. Currently, all of these null pointers are encoded as 0.

The mem man_set_destroy_ function sets the destroy function for the specific ADT class.
The mem man_set_copy_ function sets the copy function for the specific ADT class.

DNA Mapping -22- ADTs

INT_TYPE
int_add{pi,p2}
INT TYPE Pl;
INT_TYPE p2;
{
INT _TYPE ans;
if (pi == INT_NULL) RERROR (ABORT_CODE, ("NULL pointer"));
if (p2 == INT_NULL} RERROR(ABORT_CODE, ("NULL pointer")};

ans = int_create{INT_VAL(pl} + INT VAL{p2));
return(ans);

INT_TYPE

int_sub(pl, p2)
INT_TYPE el;
INT _TYPE p2:
INT TYPE ans;

if {pl == INT_NULL} RERROR (ABORT_CODE, ("NULL pointer}):
if {p2 == INT_NULL} RERROR (ABORT_CODE, ("NULL pointer©});
ans = int_create(INT_VAL(pl} - INT_VAL{p2));
return{ans};

INT_TYPE
int_mulit {pl,p2)
INT_TYPE pl;
INT_TYPE pe;
{
INT TYPE ans;
if (pl == INT_NULL} RERROR (ABORT_CODE, ("NULL pointer"™));

if (p2 == INT_NULL) RERROR {ABORT_CODE, (“NULL pointer®});
ans = int_create(iNT_VAL(pl} * INT VAL (p2});
return(azns);

INT TYPE
int_div{pl,p2}
INT_TYPE pL;
INT_TYPE pd;
{
INT_TYPE ans;
int il;
int iz;
if (pl == INT_ NULL) RERROR {ABORT_CODE, ("NULL peointer™)};
if (p2 == INT_NULL) RERROR{ABORT_CODE, ("NULL pointer"});

il = INT_VAL{pl);

i2 = INT_VAL({p2);

if (i2 == Q) RERROR(AEORTWCODE,("Attempt to divide by zero"));
ans = int_create(il/i2);

return{ans);

Figure 31: Arithmetic functions for adt_int

DNA Mapping -23- ADTs

STRING_TYPE

string concat{sl,s2)
STRING_TYPE sl;
STRING TYPE s52;

STRING_TYPE T
int size;
if (sl == STRING_NULL) RERROR(ABORT_CODE,{"NULL pointer®));
if (82 == STRING NULL) RERROR (ABORT CODE, ("NULL pointexr™));

size = sizeof (STR_STRING TYPE)
+ strlen(STNG VAL(sl)}+strlen (STNG VAL(s2))+1;
p = (STRING TYPE)mem man varsize allocate(string tag,size):;
STNG_SIZE{p) = size;
strcpy (STNG_VAL{p), STNG_VAL(sl));
strcat (STNG VAL (p),STNG VAL(s2));

return(p);

Figure 32: Concatenation for adt_string

DNA Mapping -24- ADTs

MEM TYPE
pair get left element (pair)
PAIR TYPE pair;
{
MEM TYPE ans;
if (pair == PAIR NULL} RERRCR(ABORT CODE, ("NULL pointer"™));

ans = LEFT_ELEMENT (pair);

return{ans);

}
void
pair set left element (pair,data)
PAIR_TYPE pair;
MEM TYPE data;
if (pair == PAIR NULL) RERROR(ABORT CODE, {("NULL pointexr"));

LEFT ELEMENT (pair) = data;
util set_destruction(&PAIR_LEFT UTIL({pair),UTIL_CAN DESTROY);

return;

PATR TYPE

pair create_by_swap (p)
PATIR TYPE P

{
PAIR_TYPE newp;

if {p == PAIR NULL) RERROR(ABORT CODE, ("NULL pointer"));

newp = pair_create ddd{pair_get_ right_element (p},
pair get left element (p)};

return (newp) ;

Figure 33: Object-operations for adt_pair

DNA Mapping -25- ADTs

void
int_ds init ()
{
if (int_init_done} return;
if (int_tag == NULL_ TAG) {
mem man_decltare(“int_ds", &int_tag,sizeof (STR_INT TYPE),
int_dprint,int pprint, (MFUNC_TYPE)
int_create,int_compare, (NULL TYPE)INT_NULL) ;
}i
mem_man_set destroy_ function{int_tag,int_destroy):
mem man_set_copy_ function(int_tag, {(MFUNC _TYPE)int_copy);
int_init_done = TRUE;

return;

Figure 34: Declaration of adt_int

The memory management system accepts all of these parameters and places them in a table, the
entries of which will be used during the remainder of the execution. This table is implemented as an array
of a struct. The structure of the struct is shown in Figure 35. All of the fields present in the actual DNA
Mapping sofiware are not present here; only those which are pertinent to the discussion at hand have been
included. The first nine fields included in this struct have already been discussed in the previous few para-
graphs. The remainder will be introduced in subsequent subsections.

The declaration for a variable-size ADT class is very similar, as shown in Figure 36 for adt_string.
Note that there is only one slight change to the scheme; the third argument to mem_man_declare is
VAR SIZE DS_CODE, which stands for "variable size data structure code”. The value of this constant is
-1, and indicates to the system that this is a variable-size ADT class.

The declarations for adt_pair and adf_dlI are very similar, and are shown in Figures 37 and 38.

struct adt_tab_entry({

STRING name_fld;

int size_ fld;
VFUNC_TYPE dprint_f£ld;
VEFUNC _TYPE pprint_fld;
NULL TYPE null pnt_ fld;
MFUNC_TYPE create_£fl1d;
VEUNC_TYPE destrov_£ld;
CFUNC_TYPE compare_fld;
MEFUNC_TYPE copy_fld;

int total_obj_ fld;
int max_obj_fld;
int cur_cbj_fid;
PNT AVAIL TAB ENTRY TYPE avail _tab_fid;

Figure 35: Memory Management Table Structure

DNA Mapping -26- ADTs

void
string ds_init{)
{
if (string_init_done) retuxrn;
if (string_tag == NULL TAG) {
mem man_declare(“string ds*, &string tag,VAR SIZE_DS_CODE,
string dprint,string pprint,
(MFUNC_TYPE) string create,
string_compare,
(NULL_ TYPE)}STRING NULL) ;
bi
mem man_sei_destroy function(string tag,string destroy);
mem_man_set_copy_function(string tag, (MFUNC_TYPE)string copy);
string_init done = TRUE;

return;

Figure 36: Declaration of adt_string

void
pair_ds_init ()
{
if{pair init_ done) return;
if (pair_tag == NULL TAG) {
mem man_declare("palx_ds", &pair_tag,
sizeof (STR_PAIR TYPE),
pair_dprint,pair pprint,pair_create,
pair compare, (NULL_TYPE)PAIR NULL);
}:
mem _man_ set_destroy_function{pair tag,pair destroy);
mem_man_set copy_ function(pair tag, (MFUNC_ TYPE)pair copy):
pair init_done = TRUE;

return;

Figure 37: Declaration of adt_pair

DNA Mapping -27- ADTs

void
dil_ds dnit ()
{
if (dll_init done) return;
if (dll_tag == NULL_TAG) {
mem man_declare (“dll ds",&dll tag,sizeof{STR_DLL_TYPE},
dll_dprint,dl}l pprint,dll create,
dll compare, (NULL TYPE)DLI_NULL);
bi
mem man set_destroy function{dll tag,dll destroy);
mem man_set_copy_function{dll_tag, (MFUNC_TYPE)dll copy):
list_node ds_init{);
dll_init done = TRUE;

return;

Figure 38: Declaration of adt_dll

4.2. Statistics on Instances of ADTs

The user can print a table which presents statistics about the current status of the ADTs. An example
of such a table is shown in Figure 39. The last column indicates the name of the ADT class as specified
during its declaration; it is included as a reference (0 externally name the ADT class. The first column indi-
cates how many instances of the specific ADT class are currently allocated. The value printed here is
extracted from the cur_obj fla field of the internal ADT table (cf. Figure 35). This field is incre-
mented every time an instance of the specific ADT class is created and decremented every time an instance
of the specific ADT class is destroyed. The second column indicates the maximum number of instances of
the ADT class that have ever been allocated an one specific time; it is essentially a "high water mark" indi-
cating how much of a resource bottleneck this particutar ADT class represents, The value printed here is
extracted from the max_obi_ f£14d field of the internal ADT table (cf. Figure 35). This field is modified
every time an instance of the specific ADT class is created 1o calculate the current maximum, The third
column indicates how many instances of the specific ADT class have ever been allocated. The valee
printed here is extracted from the total_obj_f1d field of the internal ADT table (cf. Figure 35). This
field is incremented every time an ingtance of the specific ADT class is created; it is never decremented.
The fourth column indicates the (user-specified) size, in bytes, of the memory required to held an instance
of the ADT. Notice that several ADT classes have a -1 in this column, indicating that they are variable-
size ADTs. The fifth column indicates the actual 1ag used internally for the specific ADT class. In fact,
this tag is a pointer {in memory} to the entry in the internal ADT table for this specific ADT class. In other
words, the tag is actually a pointer Lo a record (i.¢., struct) which contains all the functions needed to access
a specific instance of the ADT class and all the dala fields necessary to maintain running statistics about the
ADT class as a whole.

Notice that there are a number of lines at the bottom of the table which refer to the amount of
memory which has been allocated from the operating system. The first line indicates the total memory that
has been allocated from the operating system. This includes more than just ADT memory; certain DNA
Mapping system tables are dynamicaily allocated, but are not built by nsing ADTs. The second line indi-
cates how much memory has been allocated for nse by ADTs. Specifically, the DNA Mapping system
does its own memory allocation and management. Large blocks of memory {by default set at a size of 1K)
are allocated from the operating system, and memory for individual instances of ADTs is allocated from
these blocks. No memory is ever retumned fo the operating system. The third line indicates how large a
block will be allocated the next time a block of memory is needed from the operating system. The size of
the block altocated from the operating system can be controlled by invocation of the function
mem_man_numk. The fourth line indicates how much memory is currently available in the last block that
was allocated. The last line indicates how much miscellancous memory has been allocated. (Miscellane-
ous memory is a special class of memory which cannot be returned even internally to the DINA Mapping

DNA Mapping

current max
used # used

=
23]
(=23}

YW OO0 NHOSCOOOFOOOM OO

e wielNolsoBoNeBoBeNeNoNoNoNoNoNoNeloNoloNeleNololoNoRolsReRoReReReRe e

12

—

-28-
ADT TAB

total
used size
779]
G -1
0] 12
0 16
0 16
0 16
0 -1
17 -1
0 16
0 4
0 16
0 12
234 -1
69 -1
0 20
0 4
G 4
4649 12
102 16
2171 16
3551 16
0 16
43 -1
5291 16
5784 32
0 16
164 8
28829 20
11008 8
30067 20
31988 20
4742 4
0 1
4456 -1
93 4
12 -1

Total memory allocated is 140248 bytes.

Total ADT memory allocated is 137216 bytes.

Current block allocation size is 1K bytes.
936 bytes in current block.

53 bytes of misc memory.

Figure 39: Statistics about ADTs and Memory Management

systen.)

tag
216488
210030
20ffd8
20£€80
20f£28
20fedl
20fe78
20fe20
20fdc8
20£470
20£4d18
20fcct
20fc68
20£c10
20fbbsg
20fb60
20£f008
20£ab0
20fa58
20£a00
20£%a8
20£850
20fB8£f8
20f8ag
20fB48
20f7£Q
20f£798
20£74Q
20f6e8
20f690
20£638
20f£5e0
20£588
20£530
20f44d8
20f48¢

ADTs

name
langwrap ds
bipart_ds
bigraph_ds
digraph_ds
edge_ds
vertex ds
perm _ds
marray_ds
hashtab_ds
interval _ds
rlist ds
bag ds
combo_ds
bitv_ds
focus_ds
point_ds
line_ds
prop ds
window_ds
virag_ds
rfrag ds
heap ds
odometer_ds
pair_ds
tree ds
socket_ds
stk_ds

list ds
set_ds
dll_ds
list_node ds
float_ds
bool_ds
string ds
int ds
misc_mem

The data in this table can be used 10 determine the memory resources used in any specific computa-
tional activity. This table is extremely useful in the process of "zeroing out” memory. At the end of a com-
putation, the "currently allocated” column of this table should be 0 for all ADT classes, except miscellane-
cus memory. If a particular entry is not 0, then instances of that ADT class are still allocated, and the
application has failed to deallocate {destroy) unused objects. Great care must be taken to destroy all

DNA Mapping -29- ADTs

instances of ADTs which are no longer useful. Failure to do so can cause memory exhaustion and cause
execution of an otherwise correctly executing program to abort.

4.3. Memory Managemen{

The DNA Mapping system does ils own memory management internally, No calls to malloc,
calloc,or realloc are present; thus, the use of free isnot possible. Instead, all allocation of
memory from the operating system is done through invocations to the system routine sbrk. (The applica-
tion programmer should not use malloc orany of its variations, because sbrk and malloc are
incompatible with each other.) Large blocks of memory (by default set at a size of 1K) are allocated from
the operating system, and memory for individual instances of ADTs is allocated from these blocks. The
size of the block allocated from the operating system can be controlled by invocation of the function
mem man_numK. No memory is ever returned to the operating system.

Memory nodes which are returned to the system for future use are stacked in avail lists for future
reallocation. There is a separate avail list for each individual node size which has been retumed to the sys-
tem. An array of headers for these avail lists is maintained.

4.3.1. Allocation

As a request for a memory node of a specific size is processed, the system first checks to see if there
is an avail list for this size node and whether there is a memory node currently available. If a memory node
is available, it is extracted from the avail list and returned to whoever requested the memeory. If there isno
such node available in an appropriate avail list, the current memory block is checked to determing if there
is enough memory left in the block to satisfy the request. If there is encugh memory present, the correct
amount is extracted from the current memory block and returned to whoever requested the memory. If
there is not enough memory present in the current memory block, a new block of memory is allocated from
the operating system and the required amount of memory is extracted [rom it. This is the basic logic as
expressed in mem man_get_mem, as shown in Figure 40. Here, the two input parameters are (a} the tag
of the object for which memory is being requested and (b) a pointer (0 an avail list header where memory
nodes of exactly the correct size may be present,

The first executable statement computes the actual size of the memory needed, including the memory
for the tag. The second statement, invoking avail get, attempts to allocate memory from the appropri-
ate avail list. The rest of the code is applicable only if memory could not be extracted from the avail list.
next_memory is a pointer into the current memory block where the next (currently unallocated) available
byte of memory will be found. last_memory is a pointer io the next byte after the current memory
bleck. numK_to sbrkis a global variable which indicates how much memory to allocate from the
operating system; it can be modified by invoking mem_man_numK. The routine mem alloc invokes
sbrxk to get the next memory block from the operating system. The routine mem man_ cannot_ alloc
reporis memory exhaustion and offers the user several interactive options.

The routine mem _man_get_memis invoked by mem_man_fixedsize_allocate and
mem man_varsize allocate as shown in Figures 41 and 42, rcspccnvely In
mem _man_f 1xeds.1ze allocate the macro AVP_FIELD extracts the appropriate avail list header
from the internal ADT table. This is the last field, avail _tab_£1d, of the struct shown in Figure 35.
For fixed-size ADT classes, this field is initialized at declaration time to point to an avail list with appropri-
ately sized memory nodes. This size is computed by adding the user-specified data structure size to the
size of a tag.

Memory is allocated and a pointer to it resides in the variable ans. The value of the tag is inserted
at the beginning of the memory, and the variable ans is incremented by the length of a tag so that ans
now points 1o the user-specified portion of the memory which has been allocated. This is the value
returned in the last executable statement, The three executable statements just prior to the return update the

DNA Mapping -30- ADTs

MEM TYPE
mem _man_get mem{tag,av)
TAG_TYPE tag;
PNT_AVAIL TAB ENTRY TYPE av;
{
int size;
MEM TYPE ans;
int mem to_allocate;

size = SIZE _FIELD (av};
ans = avail_get (av); /* try to get memory for avail list */
if (ans == MEM NULL) { /* try to do block allocation */
if ({next_memory==MEM NULL)|| (next_memory+size>last_memory}) {
mem to_allocate = MAX(size,numK_to_sbrk*1024);
if ({next_memcry = mem alloc(mem to alloccate})
!= MEM FAIL CODE) {
total adt mem += mem to_allocate;
last_memory = next_memory + mem to_allocate;
ans = next memory;
next memory += size;
}
else {
mem _man_cannot alloc({tag):;
}r
}
else |
ans = next memory;
next memory += size;
bi
ki

return (ans) ;

Figure 40: Code for mem man_get_mem

DNA Mapping -31- ADTs

MEM TYPE

mem man fixedsize allocate (tag)
TAG_TYPE tag;

{
MEM TYPE ans;

/* get some memory */
ans = mem man_get mem(tag,AVP_FIELD(tag));

/* insert the tag and increment to user portion */
* {(PNT_TAG_TYPE)ans)++ = tag;

/* increment # of nodes allocated */
CURO_FIELD (tag) ++;
TOTALO FIELD(tag)++;

/* calculate max */
MAXO FIELD(tag) = MAX (CURO_FIELD (tag), MAXO FIELD (tag)):;

return{ans) ;

Figure 41: Code for mem _man_fixedsize allocate

appropriate statistics about (a) the current number of instances allocated, (b) the total number of instance
aliocated, and (c) the maximum number of instances allocated.

The code for mem_man_varsize_allocate is very similar. There are only two differences.
First, the (user-specified) size is specified as an input parameter. Second, in the call to
mem man_ get memn, the appropriate avail list header must be computed. This cannot be preprocessed at
declaration time, as with a fixed-size ADT class, because the size of each instance cannot be known at
declaration time. The macro ACT SIZE (i.e., actual size) takes ils input parameler and adds the size of 2
tag. Theroutine avail tab_lookup scarches the amray of avail list headers for one corresponding to
memory nodes of the appropriate size; if none is present, one is inserted. The rest of the code is identical to

MEM_TYPE
mem man_varsize allocate(tag,size)
TAG_TYPE tag;
int size;

PNT_ ADT TAB_ENTRY TYPE p;
MEM TYPE ans;

/¥ get some memory */
ans = mem man_get_mem(tag,avail_tab lookup(ACT_SIZE (size)));
/* insert the tag and increment to user portion */
*({PNT_TAG_TYPE)anS)++ = tagqg;
/* increment # of nodes allocated */
CURQ_FIELD (tag) ++;
TOTALO_FIELD(tag)++;
/* calculate max */
MAXO FIELD{tag) =~ MAX(CURO FIELD (tag), MRXO FIELD (tag)):

return (ans) ;

Figure 42: Code for mem_man_varsize allocate

DNA Mapping -32- ADTs

mem man_fixedsize allocate.

4.3.2, Deallocation

As instances of ADTs are destroyed, their memory is deallocated or returned by calling one of two
routines: mem man_fixedsize_ deallocate and mem man varsize deallocate. The
code for mem man fixedsize _deallocate is shown in Figure 43, The loglc for this routine is
somewhat comphcated by the fact that instances of both fixed-size and variable-size ADTs can be returned
through the use of 1his routine. (Recail that the convention for variable-size ADTs is to make the first field
of the user-specified data structure a field which hold the size of (he memory which was allocated.) The
TAG_OF macro "looks up” the tag of the instance of the ADT which was input, node. (Once the tagis
known, the size of the ADT can be determined. If the size is greater than zero, the ADT is a fixed-size
ADT; if the size is -1, the ADT is a variable-size ADT.) The SIZE_FIELD macro extracts the field
size_ fld from the internal ADT table (c¢f. Figure 35) to determine whether it is a fixed-size ADT or a
variable-size ADT. If size is greater than 0 (i.e., a fixed-size ADT), then the macro AVP_ FIELD
exiracts the appropriate avail list header which was determined during the declaration of the ADT class.
Otherwise this is a variable-size ADT and the appropriate avail list header must be computed. The
SIZE OF macro looks in the first word of the (user-specified) data structure to extract the size of the
memory present. To this, the macro ACT_SIzE adds the size of the tag, and the routine
avail tab lookup searches the array of avail list headers for the one which corresponds to the
appropriate size; a header is inserted if one of appropriate size is not present. Some statistics bookkeeping
is done. The variable node which originally pointed to the user-specified portion of the data structure is
decremented to point to the tag which occurs just to the left. This memory pointer is then inserted into the
appropriate avail list, as specified by the avail list header which was previously computed.

The logic of mem man_varsize_ deallocate, as shown in Figure 44, is much simpler. Here,
the tag is "looked up”, and the appropriate statistics bookkeeping is done. The correct avail list header is
computed, and the memory is inserted into the appropriale avail list for potential future use.

void

mem man_fixedsize deallocate (node)
MEM TYPE node;

¢
TAG_TYPE tag;
PNT_AVAIL TAB ENTRY_ TYPE avl;
int size;

tag = TAG_OF (node):
/* determine size and check */
size = SIZE FIELD{tag):
if (size > 0) avl = AVP_FIELD{tag);
else avl = avail_ tab lookup{(ACT SIZE(SIZE OF {ncde))};
/* decrement ¥ of allocated nodes */
CURO_FIELD (tag)--;:
/* move back to beginning of memoxry */
-—{{(PNT_TAG_TYPE}node);
/* put memory on avail list */
avail put{avl,node);

return;

Figure 43: Code [or mem man_fixedsize deallocate

DINA Mapping -33- ADTs

void

mem _man_varsize_deallocate ({node,size)
MEM TYPE node;
int size;

TAG_TYPE tag;
PNT_ADT TAR ENTRY TYPE p;

tag = TAG OF(node};

/* decrement # of allocated nodes */
CURQ_FIELD (tag)--—;

/* move back to beginning of memory */
~- ({PNT_TAG_TYPE)node);

/* put memory on avail list */
avail put (avail_tab_ lookup (ACT_SIZE (size)),node);

return;

Figure 44: Code for mem man_varsize _deallocate
5. System ADTs

Al this point, only four ADTs have been discussed in detail: adt_int, adt_string, adt_pair, and
adt_dll. (adt_list node also has been mentioned in passing.) In this section, a number of other ADT
classes present in the DNA Mapping system are discussed briefly. No code is presented, and only basic
ideas and intent are discussed. The ADT classes are subdivided into three categories: (a) very general
ADTs that might be included in almost any application, (b) general ADTs of a less universal natare, and (c)
ADTs specific to the DNA Mapping project itself.

5.1. General Purpose ADTs

In this section, a number of generic ADTs that might occur in almost any application are presented
briefly.

Two standard scalar data types are Boolean and float. There are two ADTs, adt_bool and adt_float,
which encapsulate these scalars. It should be obvious what their intent is, and they will not be discussed
further.

A very important generic ADT is adt_list which is an extension of adt_dIl. In fact, adt_list is built
on top of adt_dll (i.e., uses adt_dll as a component in its implementation). adt_list implements an aggre-
gate which can be thought of dually (i.e., concurrently) as either a linked list or an array. For instance, it is
possible ta ask for the 9th object in the list, or to request that an object be inserted after the 9th object in the
list. Of course, it still is possible 1o extract and insert data at either end of the list. adt_list also has one
other important new feature, the concept of a current position. This gives adt_list the property of having a
state, For instance, it is possible to place the current pointer at the beginning of a list and incrementally
"march through"” the list by advancing the current pointer. There are many access functions available for
adt_list, such as concatenation of lists, sorting of a list, reversing a list, etc. There are currently more than
100 access functions and 50 access macros defined on adt_list.

adt_set is another interesting ADT. It implements the abstract mathematical concept of a set, in
which no duplicates are allowed. adt _set is built on top of ad¢_list. In order to make operations such as
union, intersection, and membership efficient, the elements of a set are sorted (inside an adt _list) so that
searching and merging can be done efficiently. Here, the macro COMPARE is used to determine the order

DNA Mapping -34- ADTs

of the ADT instances.

The concept of a stack is achieved through the intreduction of adt_stk. This also is built on top of
adt_list. The standard operations of push, pop, empty, ctc. are supplied as object-operations.

The concept of an array of ADTs is achieved through the introduction of adt_marray (i.e., memory
array). In this ADT any finite length array can be allocated with user-specified upper and lower index
bounds. In this implementation random access to an arbitrary index position is achieved in constant time
(as in a random access array), whereas the array indexing feature of adt_list requires "marching through”
ihe elements of a linked list 1o find the correct index position.

The concept of a bit vector is achieved through the introduction of adt_bitv. In this ADT any finite
length bit vector {(i.e., array of Boolean) can be allocated with user-specified upper and lower index bounds.
This is useful for implementing the simulation of sets for which the members are known a priori. For
instance, the adjacency maltrix of an arbitrary graph easily can be implemented by construction an
adt_marray of adt_bitvs.

The concept of a hash table is achieved through the introduction of adt_hashtab. This is imple-
mented on top of adt_array. This ADT supplies the standard operations of inserting data based on a key
and then subsequently searching for the data which is associated with a specific key.

5.2. Other General ADTs

In this section ADTs of general interest, but of a less general nature are introduced. Here, only the
general concept associaled with the ADT is presented.

There are a number of ADTs which address the mathematical formalism of a graph. Specifically,
adt_digraph simulates the realization of a directed graph. Similarly, adt_bigraph simulates the realiza-
tion of a bipartite graph. Both of these are built on top of (wo other ADTs, adt_edge and adt_vertex.

Another mathematical abstraction is achieved through adt_bag. The mathematical concept of a bag
is similar to that of a set, except that the same object can occur more than once in a bag whereas an object
can occur no more than once in a set.

Two operations associated with graphics have been implemented. adt_point implements the concept
of a point in Cartesian coordinates, i.e., a 2-tuple of floats. adt_line implements the concept of a line seg-
ment, i.e., a 2-tuple of adt_points.

Three ADTs have been implemented to simulate combinatorial concepts. Specifically, adt perm
implements the concept of permutations. In other words, given a set of objects (instances of ADTs),
adt_perm will produce, one at a time, every permutation possible for that set of objects. Similarly,
adt_combo implements the concept of combinations. In other words, given a set of objects, adt_combo
will produce, one at a time, every combination possible (of a given size) for that set of objects.
adt_odometer simulates the idea of a generalized odometer (as in the odometer of a car), Itis given a list
of lists of objects. Each element of the top-level list (which is a list itself) corresponds to a wheel of the
odometer. The objects in each secondary list correspond to the "characters” that reside on the wheel.
adt_odometer retuins, one at a time, a list of objects corresponding to what would appear on the concate-
nation of the wheels as the least significant wheel continues (o turn, recursively causing subsequent wheels
1O turn,

An interesting form of a list has been introduced through the inclusion of adt_rlist (i.e., reversible
list). The general implementation of a list, as expressed through adt_list, gives all of the functionality
needed for manipulating lists, including concatenation of lists and reversal of a list. However, within its
implementation the operations of concalenation and reversal are not of O(1) time complexity. It was not
possible to modify the implementation of adt_list to make these operations of O(1) time complexity and

DNA Mapping -35- ADTs

still retain the generality that had been built into adt_list, for which there are a large number of access
functions. adt_rlist was created to supply a restricted form of a list in which both the concatenation func-
tion and the reversal function are of G(1) time complexity.

5.3. DNA Mapping ADTs

There also are several ADTs which are directly related to DNA Mapping concepts. For instance,
adt_rfrag implements the concept of what is referred (o as a real fragment. A real fragment corresponds
to an actual fragment present in a clone as identified through the process of electrophoresis. The term "real
fragment” is meant to imply that the fragment is known to exist (via visual inspection of the electrophoresis
geD). Areal fragment has: (a) a name, (b) a measured length, and (c) estimates as to the right and left error
bounds on the measured length.

In contrast, adt_vfrag implements the concept of what is referred to as a virtual fragment. A vir-
tual fragment corresponds to a fragment present in a map unit,. A virtual fragment is derived from one or
more real fragmentis which have been inferred (o come from the identical region of a genome. However
this inference is a working hypothesis, and the virtual fragment (as derived from its constituent real frag-
ments) may not exist at all. The length of a virtual fragment is the average of the lengths of the real frag-
ments which constitute it.

Several forms of tree are implemented by adt_tree. The most important form of tree is the
sequence-set tree (S5T). SSTs are used Lo encode the group/fragment information present in a map unit.
Specifically, in a map unit there is a sequence of groups, each group containing one or more fragments.
The order of the groups is known (i.e., sequence), bul the order of the fragments within each group is not
known (i.e., set). For instance, the SST shown in Figure 45 corresponds to the map unit shown in Figure
46.

In performing DNA mapping and altempting to map a clone into a map unit, a window of interest
(just slightly larger than the clone) is "dragged"” across the map unit at group boundaries. Ateach window
position, an attempt is made to map the clone within the portion of the map unit defined by the window.
Since the concept of a map unit is encoded as an SST, a windowing mechanism is needed for defining a
contiguons subregion of the tree. adt window supplics this physical mechanism. Within an instance of

1560 2000 30040 500 3500 4000 2500 1500 zQo0 3{00 500 1000

Figure 45: A Scquence-set Tree

DNA Mapping -36- ADTs

Figure 46: A Map Unit

adt_window two pointers identify two set nodes within an SST. The groups corresponding to the set nodes
(inclusively} between these two pointers define the window in the map unit.

5.4, Pseudo ADTs

Besides the formal ADTs that have been discussed, there are a number of pseudo ADTs that have
been produced. They are referred 1o as pseado ADTSs because the do not formally have a distinct tag asso-
ciated with them, but instead are built from a combination of other formal ADTs. Four of the current
pseudo AD Tz are function, mu, partition, and relation, function implements the mathematical concept
of a function. In other words, a sel (i.c., adt_set) of 2-tuples (i.e., adt_pair) in which the set of values
occurring in the first component must be unique with respect to the second componeit. mu implements a
number of useful functions on map units, expressed as sequence-set trees (SSTs). (The reason that this is
separated from the implementation of SSTs is that SSTs are an abstraction which can have trees of any
height or mixture of node types, whereas map units have exactly three tiers of rigidly structured nodes.)
partition implements the concepl of a partition of a set. relation implements the mathematical concept of
arelation, i.e., a set of 2-tuples for which there is no restriction on the uniqueness of the components.

6. Conclusions

The use of the ADTs described in this report has made it possible to quickly create prototypes of
many of the DNA Mapping algorithms. The self-identifying nature of the execution-time tagged architec-
ture combined with the required system-backbone access functions produce a framework in which it is pos-
sible to create, copy, compare, print, and destroy data structures of unbounded complexity. Their utility
stems from their object-oriented nature, making it possible to construct arbitrarily complex aggregates of
data structures without the intellectual or physical effort normally required (o understand and implement
the details at each level of the aggregation.

The aggregate nature of many of the general purpose ADTs makes it possible to creale a data
"bridge” between different compulational components of a complex algorithm. The aggregate output of
one routing (say a list of objects) can be made available as the input to any number of routines for subse-
quent processing. The aggregate can be passes through routines and be perceived as a single object until it
is necessary to unbundle the collection (o extract ils parts for individual processing. The concept is very
similar to that of a pipe in the UNIX operating sysiem. In the case of a pipe, UNIX uses a file (either on
disk or in memory) 10 communicate information between processes. This file is an aggregate of informa-
tion, the syntax of which both the creator and the receiver must undersiand. The receiver can choose to
pass on the information to a subsequent process without any modifications, or it can choose to "filter" the
information passed through it in any number of ways. The aggregate ADTs supply a similar encapsulation
mechanism between computational components of an application, using well-known concepts and struc-
tures. In a similar manner that the concept and use of a pipe encourages modularity and communication,
the ADT paradigm enhances the ability to modularize and parameterize the implementation of an applica-
tion. This modularity allows algorithms 1o be reconfigured quickly into variations of the original algo-
rithm,

DNA Mapping -37 - ADTs

Once the basic idea behind ADTs is understood, it is not difficult to design and implement new ADT
classes. It often is appropriate (o use already implemented ADTs as constituent components of a new ADT
being created. For instance, in the current ADTs implemented within the DNA Mapping system, adt_dil is
built on top of adt_list_node, adt_list is built on top of adt_dIl, and adt_set is built on top of adt_list.
Many other ADTs are interdependent also.

Since the ADT classes are declared at execution time, the entire system need not be recompiled as a
new ADT class is introduced. No compile-time tables keep track of what ADTs are or are not present;
thus, no compile-time objects have 1o be changed 1o reflect the introduction of a new ADT. The creator of
anew ADT class need only program the required system-backbone and object-operation access function
and include the declaration of the new ADT within the initialization activities of the system.

Although the nse of ADTs supplies a very flexible and powerful framework for the application pro-
grammer, it also forces significant responsibility onto the application programmer. The programmer must
be careful not to produce "circular” data structures whose recursive nature will confuse the simple-minded
aggregate ADT management framework, The programmer must also be vigilant to destroy all instances of
ADTs which are no longer needed. This requirement often dictates the style and structare of the algo-
rithms produced. This can be thought of as either an advantage or a disadvantage. It has been found that
the discipline imposed by "memory zeroing” restrictions often produces algorithms of much better structure
than would have been produced if the restrictions were not present. This tends to make the resulting algo-
rithms more modular, modifiable, verifiable, and reconfigurable.

	DNA Mapping Algorithms: Abstract Data Types - Concepts and Implementation
	Recommended Citation
	DNA Mapping Algorithms: Abstract Data Types - Concepts and Implementation

	tmp.1455646060.pdf.Ty8AC

