Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-32

1991-05-30

Parallel Synchronous Control

Gruia-Catalin Roman and Jerome Y. Plum

The arguments against centralized solutions focus on the performance bottleneck associated
with a single central uniprocessor having a limited throughput and, possibly, a small number of
ports. These limitations can be overcome to some extent if the central processor is replaced by
a modern SIMD (Single Instruction Multiple Data) machine. Several orders of magnitude gains in
parallelism are thus achievable while maintaining the logical simplicity of a centralized control.
We call such a scheme parallel synchronous control (PSC). In this paper, we explore this
approach by presenting a PSC solution to the classical dining philosopher problem. The PSC
solution... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Plum, Jerome Y., "Parallel Synchronous Control" Report Number: WUCS-91-32
(1991). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/650

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/650?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/650

Parallel Synchronous Control

Gruia-Catalin Roman and Jerome Y. Plum

Complete Abstract:

The arguments against centralized solutions focus on the performance bottleneck associated with a
single central uniprocessor having a limited throughput and, possibly, a small number of ports. These
limitations can be overcome to some extent if the central processor is replaced by a modern SIMD (Single
Instruction Multiple Data) machine. Several orders of magnitude gains in parallelism are thus achievable
while maintaining the logical simplicity of a centralized control. We call such a scheme parallel
synchronous control (PSC). In this paper, we explore this approach by presenting a PSC solution to the
classical dining philosopher problem. The PSC solution is derived directly from a fair centralized solution
without needing reverification.

https://openscholarship.wustl.edu/cse_research/650?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/650?utm_source=openscholarship.wustl.edu%2Fcse_research%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages

Parallel Synchronous Control

Gruia-Catalin Roman
Jerome Y. Plun

WUCS-91-32

30 May 1991

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Abstract

The arguments against centralized solutions focus on the performance bottleneck associated with a
single central uniprocessor having a limited thronghput and, possibly, a small number of ports. These
limitations can be overcome to some extent if the central processor is replaced by 2 modern SIMD (Single
Instruction Multiple Data) machine. Several orders of magnitude gains in parallelism are thus achievable
while maintaining the logical simplicity of a centralized control. We call such a scheme parallel
synchronous control (PSC). In this paper, we explore this approach by presenting a PSC solution to the
classical dining philosophers problem. The PSC solution is derived directly from a fair centralized solution

without needing reverification.

Keywords: concurrency, algorithms, synchronization, architecture.

Correspondence: All communications regarding this paper should be addressed to

Gruia-Catalin Roman
Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

(314) 889-6190
roman@CS WUSTL.edn
fax: (314) 726-7302

1. Introduction

The last decade has been dominated by a popular trend towards distributed computing and has been
marked by much research on the development of algorithms that exhibit little or no centralized control. The
arguments against centralized solutions focused originally on the performance bottleneck associated with a
single central uniprocessor having a limited throughput and, possibly, a small number of ports. Although
it is generally accepied that centralized solutions are not likely to scale up, current system architectures offer
new opportunities for exploiting centralized control strategies for multiprocessor structures and local area
networks. For instance, the market success of CSMA/CD (Carrier Sense Multiple Access with Collision
Detection} LAN's [14], such as Ethernet [17], encouraged the development of distributed algorithms that
employ broadcast as a communication primitive [16]; data parallel algorithms [13] take advantage of the
global synchronous control of modern SIMD (Single Instruction Multiple Data) machines; and barrier

synchronization schemes are being pursued by a number of authors [5, 12].

In this paper we explore yet another centralized control strategy. It is called parallel synchronous
control (PSC) and is based on the simple notion of substituting an SIMD machine in place of a
uniprocessor running a centralized control protocol. The result is a major increase in both the throughput
and the number of input/output ports available to the controller. Gains of several orders of magnitude in
parallelism are thus achievable while maintaining the logical simplicity of a centralized control. Possible
uses of PSC include distributed simulation and multimedia. In a distributed simulation, maltiple local
copies of the global simulation time may be updated simultaneously by employing some synchronous
algorithm (e.g., tree structured computation of the minimum time over all scheduled events) or built-in
global operations (e.g., on a Connection Machine, counting the number of active processors using the
count operation and incrementing the local times when the number is zero). In a multimedia environment
multiple devices (e.g., displays, projection systems, sound sources, robots, animations, etc.) must be
coordimated in a synchronous fashion. PSC can simplify the development of the control software and the

design of device interfaces.

For reasons of brevity and simplicity we choose the dining philosophers problem to illustrate the
P3Cidea. Dijkstra's original solution of the dining philosophers problem [11] relied on the use of
semaphores—a construct that emerged in a multiprogramming environment where centralized control was a
reasonable choice. All subsequent solutions attempted to cope with the challenges of a totally distributed
control. Lynch [15] addressed this problem by seeking a general solution to the static resource allocation
problem. A randomized algorithm to solve the dining philosophers problem was proposed by Rabin and
Lehmann [18]. While these algorithms use shared memory, Chandy and Misra [7] proposed a solution
using the message passing model. In general, all these algorithms treat the philosophers as processes and
the forks as shared data. Agha [3], and Aggarwal, Barbara and Meth [2], however, proposed solutions where
both the philosophers and the forks are processes. Our own PSC-type solution treats each fork as a process
running on a distinct processor of a SIMD machine while the philosophers execute asynchronously on a
MIMD (Multiple Instruction Multiple Data) machine, Each philosopher communicates with its

neighboring forks via a small amount of shared memory.

The remainder of the paper is organized into four parts. Section 2 introduces the notation system
used in this paper. The notation is borrowed from a model of concurrency called Swarm, a model which
allows one to specify and reason abont computations which combine synchronous and asynchronous modes
of execution. Section 3 presents a fair centralized solution to the dining philosophers problem and outlines
its correctness proof. Section 4 revisits the solution and distributes it across the processors of a SIMD
machine. The simulation of the resulting algorithm and architecture on a hypercube are also discussed. A

brief summary and conclusions are given in Section 5.

2. Swarm

Swarm [20] belongs to a class of languages and models that use tuple-based communication and is
the first of its kind to have an assertional style proof logic (9, 10]. Other languages and models in this
class are Linda [6], Associons [19], GAMMA [4]. Of particular import for this paper is the ease with

which Swarm can accommodate a variety of programming paradigms (e.g., shared variables, message

passing, and rule-based programming) and architectures (e.g., synchronous, asynchronous, reconfigurable,

etc.).

Dataspace representation. In Swarm, the entire computation state is captured by a set of
tuple-like entities called the dataspace. The dataspace consists of three kinds of entities: data tuples
(capturing the data state), transactions (identifying actions whose execution can change the program state),
and synchrony relation entries (which will be completely ignored until the end of this section).

Transacticns and data tuples assume the form:

+ data_type_name(sequence_of_values)-—e.g., A(2,66) may be the tuple representation of an
AITay entry;

* transaction_type_name(sequence_of_values)—e.g., Swap(2) may be a transaction.

Primitive operations. The dataspace is subject to query, deletion, and insertion of the entities
it contains. To query for the existence of an entity in the dataspace one simply treats the tuple description
as a predicate over the dataspace. Insertions are specified by fully instantiated tuples and deletions are
specified by tagging a fully instantiated tuple with a dagger (1). Any type of entity can be queried, inserted,
or deleted, except transactions which, for technical reasons can not be explicitly deleted. Here are some

examples of queries and actions one can specify in Swarm:

+ Swap(2)—(as a query) checks if this transaction is in the dataspace;

* [Vi:1<i<8 :: A(i,0)—(only as a query) checks if the array A contains only zeros for index
values 1 through 8;

» Swap(2)—(as an action) inserts this transaction into the dataspace;

* A(2,5)t—(as an action) deletes this array entry from the dataspace;

Atomic transformations, Both computation and communication are expressed as atomic
transformations of the dataspace. A simple atomic transformation is defined in terms of a query followed by

an action list consisting of deletions and insertions. For instance

L.y ti<ja AGEXY A AGY) AXx>y > AGX)T, AGYT, AGY), AGX)

states that two unsorted array eniries are subjected to an exchange by deleting the old instances and inserting
new ones. The query, similar to a Prolog goal, is an arbitrary predicate which may involve testing for the
presence or absence of data-tuples, transactions, and synchrony relation entries in the dataspace. A
successful query binds the variables listed before the query (existentially quantified by implication) to values
used to compute the dataspace deletions and insertions. Deletions always precede insertions. If the query

evaluates 1o false, no deletions or insertions are performed.

Commas may be used inside the query as shorthand f{or the logical and (A) and the order in which
deletions and insertions are listed is immaterial. Actually, when the items being deleted are present in the
query part, their deletion can be marked by daggers inside the query (only as a shorthand notation). Using

these conventions the ransformation above becomes

Ljxy i<, AQX)T, AGYT x> ¥y = AQY), AGX

Static composition. The ll-operator, as in UNITY [8], may be used to combine syntactically
several transformations—the resulting transformation may not be equivalent to any serial execution of the
component transformations since all queries precede all deletions which, in turn, precede all insertions. For
instance, a transformation which swaps synchronously all unsorted odd-even positions of an array of size N

can be stated as
[lli: I<i<N,imod2=<1::
Yt AQGXT, ALY, x> ¥y = A(Ly), AG+1.x)

The construct used here is called a generator and it is widely used in Swarm to define groups of objects,

statements, or dataspace entities.

Naming. The composite transformation above can be parameterized and can be given a name:

Swap(N) =
[li:1<i<N,imod2=1::
X%y L ALK, AGQ+LYT, x>y = AGLY), A(+1x)

It thus becomes a transaction type definition. An instance of Swap(N), such as Swap(4), is called a

rransaction, The component ransformations are called subtransactions.

Transaction execution. The set of transactions present in the dataspace define the control state
of the program. The execution of a Swarm program assumes that each transaction in the dataspace is
eventually selected and the transformation specified by its type definition is executed atomically. By
convention, a transaction is always deleted after its execution (unless explicitly reinserted) and no

transaction is allowed 10 delete any other ransactions.

Dynamic composition. At run time, independently created transactions may be coupled to
form synchronic groups, disjoint sets of transactions which are executed synchronously. The result is a
dynamic form of the |l-operator with the semantics of executing a synchronic group being essentially the
same as that of a group of subtransactions which are part of the same transaction. The execution rule is
changed by requiring that whenever a transaction is selected for execution, the entire synchronic group to
which it belongs is executed synchronously and deleted implicitly, unless the members of the group recreate

themselves explicitly,

In order to specify the structure of the synchronic groups, the dataspace includes synchrony relation
entries which assume the form

transaction_type_namej(sequence_of_values;) ~ transaction_type_names(sequence_of_valuesp)

and which may be queried, inserted, and deleted like any other dataspace entities. For instance,
[i:2<i<8 A even(i) :: Swap(i)~Swap(i+2)]
requires that henceforth the transactions Swap(2), Swap(4), Swap(6), and Swap(8) be executed
synchronously whenever two or more are present in the dataspace. Similarly,
[i:2<i<8 A even(D) :: (Swap(i)~Swap(i+2)}t]

removes the synchronous execution requirement among the four transactions involved,

3

The reflexive transitive closure of the synchrony relation, denoted by *“<”, partitions the universe of
transactions into disjoint sets whose intersections with the dataspace define the currently active synchronic
groups. The notation {Swap(i) = Swap(j)) allows one to query the closure of the synchrony relation, The
synchrony relation allows one to specify explicitly the synchronous execution of the components of some
computation, For instance, to specify an SIMD configuration, each sequential process is described by a set
of transactions, where each transaction creates a single continuation, and all the transactions are part of a
single synchronic group. The importance of the synchrony relation will become apparent in Section 4

where the PSC structure is introduced.

3. Fair Centralized Solution

The starting point for the PSC solution is a fair centralized algorithm involving N philosophers—
nambered from 0 to N-1—and one wailer that manages the forks. (The algorithm is given in Figure 2.)
Each philosopher has a cyclic behavior: after thinking for a while, he becomes hungry and requests the two
forks he needs to eat, he eats once the forks have been granted, and upon completion of his “meal” he
returns the forks and resumes thinking. Each philosopher starts in a thinking phase. Because Swarm lacks
any sequential constructs, the three phases are represented by the distinct transactions Thinking(i),
Waiting(i), and Eating(i). Exactly one of the three is always present in the dataspace for each value of .
Communication between each philosopher and the waiter is performed using four shared variables encoded
as tuples. When philosopher i becomes hungry, the tuple Aungry(i) is inserted in the dataspace by the
transaction Thinking(i) whose continuation is the transaction Waiting(i). Waiting(i) continuously tests

whether or not the needed forks have been granted. This is done by checking for the presence in the

dataspace of the tuples fork(e,(i-1) mod N,E) and fork(E i, 8)—where the tag E indicates that the
philosopher i is aliowed 10 eat with that particular fork while o and B hold information regarding the
philosophers located on the other side of each of the two forks. Once both forks have been granted, the
transaction Waiting(i) is replaced by Eating(i) in which the actual processing is symbolized by the
subtransaction work_te_do —» work , Eating(i). Finally, once the “meal” is finished, Eating(i} inserts the

tuple done(i) 1o inform the waiter that the granted forks were returned, but cannot make a new request until

/\

hungry(i) hungry(i)
hangry(i+1) hungry(i+1)

done(i) i even odd done(i+1)

hungry(i) \ — hungry(i)

— hangry(i+1) hungry(i+1)

<E,i,W> <W.,i,E>
hungry done(1+f>’<done(1) hungry(i}
<E,1,T <TiE>
hungry(i) hungry(i+1) —
don E(H- 1) done(i)

Figure 1: State Diagram for Fork §

the waiter signals that the meal completion has been taken into account by removing the tuple done(i).

The waiter embodies the fork granting policy which is designed to be fair in the sense that no
hungry philosopher is bypassed by its neighbors more then once. Figure 1 captures the policy as a finite
state diagram which is encoded in Swarm as the transaction Waiter of Figure 2. The waiter looks for

hungry and done philosophers and updates the status of the forks by removing and inserting fork tuples.

program Dining_Philosophers_with_Central_Waiter(N)
tuple types
[LAp:021<N,Ae {TWE},pe (T.W.E) :: hungry(t), fork(A,1,p), done())
transaction types
Waiter =
True — Waiter
U001« N
fork(T,1,T)t, —hungry(t), hungry((+1) mod N}t —> fork(T,LE)
I fork(T..T)f, hongry()t, —hungry{(i+1) mod N} — fork(E,LT)
i fork(T,t,T)t, hungry(f, hungry((t+1) mod N1, even{t) — fork(E,1L, W)
b fork(T,,, T)#, hungry(t, hungry((+1) mod N)t, odd(t) — fork(W,,E)

I fork(T,LE)f, —hungry(t), done((t+1) mod N}t - fork(T,.,T)
I fork(E,L,T)t, done{U)t, —hungry((1+1) mod N) —» fork(T,1,T)
i fork(T,LE), hungry(}t, -—done((t+1) modN) — fork(W,L,E)
i fork(Ex,T)f, —doney), hungry((1+1) mod N)¥ — fork(E,1, W)
I fork(T,L.E)Y, hungry()t, done((1+1) mod N){ — fork(®ELT)
I fork(E1,Ty, done(i)t, hungry((1+1) mod N)i — fork(T,1,E)
i fork(W,,E}, done((1+1) mod N} — fork(E,1,T)
I fork(@®EL, W), done(l)} — fork(T,L,E)

1;

[i:0<i<N::
Thinking(i)

]

user_cond, --done(i) — Waiting(i), hungry(i)
II' otherwise — Thinking(i);

Waiting(i) = o, B : fork(o.,(i-1) mod N,E), fork(E,i,8) — Eating(i)
il otherwise —» Waiting(i);

Eating(i) = work_to_do — work, Eating(i)
i otherwise — Thinking(i), done(i)
]
initially
[Waiter,
[1:0 <t <N : Thinking(1), fork(T,1,T)]
]
end

Figure 2: Centralized waiter controlling the forks

Each of these tuples contains the status of the two philosophers related to the fork, as perceived by that
fork. The information pertaining to the left and right philosophers is stored respectively in the first and
third components of the fork tuple. Since each philosopher starts in a thinking state, all forks have

mnitially the symbol “T” in their 1st and 3rd components. When a requested fork is granted, the fork tuple

is altered by placing an “E” in the appropriate component. If a philosopher requests a fork already granted, a
“W” is placed in the related component to keep track of this pending request. Once a done(i) tuple is present
in the dataspace—indicating that the corresponding phitosopher is done eating—the fork is either granted to
the other philosopher if he is waiting for it, or returns (o its initial state. In both cases, the removal of the

done(i) tuple allows the corresponding philosopher to try to eat again if he is willing to do so.

To prove that our algorithm is correct, we need to show that 1) no philosopher will starve, and 2)
deadlock can not occur. In the following proofs, we use the notation <left-right> as an abbreviation for

Sfork{leftiright).

Theorem 1 : In the absence of deadlock, the algorithm in Figure 2 is starvation-free.

Proof: Starvation occurs when a philosopher can not succeed to gain control of both forks while his
neighbors can. Whenever a philosopher is willing to eat but can not be granted a fork, the fork records the
refusal in its state and, as soon as the other philosopher is done eating, the fork is granted to the waiting
philosopher. Since once a fork is granted, it is kept by the philosopher until he has eaten, and since
deadlock can not occur, a philosopher willing to eat has to wait at most for his two neighbors to eat once.

Theorem 2: The algorithm in Figure 2 is deadlock-free.

Proof: Let’s assume that deadlock occurs., This means that each philosopher owns a fork and is

waiting for the other, i.e., that all the forks are in state <E-W> (or all in state <W-E>). Let’s say, without

loss of generality, that the common state is <E-W>, Let Ty, ,q be the last step where some forks had a

10.

state transition to <E-W> from a different state. Based on the fork state diagram, the source state of the

transition must have been <T-T> or <E-T>.

a) Fork { in state <T-T> before Tyeaq:

If the fork i+1 is also in state <T-T>, having both forks i and i+ change to <E-W> requires that
both { and i+] be even, which is not possible. Hence, fork i+ must have been in a different state. Since
fork i was in state <T-T>, philosophers { and i+ were still thinking. For fork i+ 1o not be in state
<T-T>, philosopher i+2 must be waiting for his forks (he can not be eating already since deadlock is
supposed to occur after the next transition.) Hence, the state of fork i+7 is <T-E>. But it is not possible

for this fork to reach state <E-W> without philosopher i+2 eating. So deadlock can not occur.

b) Fork i in state <E-T> before Tyq,4:

This requires that fork i+7 be either in state <T-T> or <T-E>. As explained in the previous case,

this can not lead to deadlock. |

Thegrem 3: The algorithm in Figure 2 would not be deadlock-free if the forks were not synchronized.

Proaof: The previous proof is based on the fact that all forks check the philosophers® status at once,
and change state synchronously. Let us assume that the forks are not synchronized. In the worst case, this
means that only one fork is selected and can change state at a time, and that no fork is required to notice the

fact that a philosopher became hungry. With this scheme, it is possible to devise a sequence of steps that

leads to a deadlocked global state. The Table 1 shows one such sequence with four forks (F, through Fy)
and four philosophers (P} through P4). The state of each fork is given after each action (which corresponds
to one or more steps). Any change in a fork’s state is indicated with an underline. The explanations for the

change are given in the right-most column. |

11.

Agent | States Explanation
Fi | F2 | F3 | Fy

initially <T-T> | <T-T> | <T-T> | <T-T>| —hungry(1) A —=hungry(2) A
—hungry(3) A —hungry{4)

Py &Py <T-T> | <T-T> | <T-T> | <T-T>| = hungry(2) A hungry(4)

Fy <BE-T> | <T-T> | <T-T> | <T-T>}] hungry(4) A —hungry(1) = <E-T>
F3 <E-T> | <T-T> | <E-T> | <T-T>| hungry(2) A =hungry(3) = <E-T>

Py &P3 <E-T> | <T-T> | <E-T> | <T-T>| = hungry(1) A hungry(3)

Fy <E-W> | <T-T> | <E-T> | <T-T>| <E-T> A hungry(1) = <E-W>
Fs <E-W> |<BE-Wx> | <E-T> | <T-T>{ hungry{1) A hungry(2) A 2 even=<E-W>
Fs <E-W> |<E-W> |<E-W> | <T-T> | <E-T> A hungry(3) = <E-W>
Fy <E-WalcE-Wal<E-Wxlc E-Wxl hungry(3) A hungry(4) A 4 even=<E-W>

Table 1: Deadlock reached without synchrony among forks

4. Distribution of the forks within an SIMD machine

In the previous section, we proved deadlock-freedom given that all forks change state based on the
same view of the dataspace. This is enforced by the atomic nature of transaction execution in the Swarm
model and the fact that the queries for all subtransactions are evaluated before the dataspace is modified
through the removal of tuples and insertions of transactions and tuples. In Swarm there is no semantic
difference between executing a transaction and a synchronic group. This allows us to partition the
subtransactions of a single transaction across several new transactions which are part of the same synchronic

group and exist in the dataspace whenever the original transaction existed. In other words, the transaction

T=S§yll... IS,

12,

may be replaced by the transactions
Ty=Spll... I S,

Typ=Sg 0.0l Sk,
Th = Skm4+1 F.. s,
without reverification of the program if the synchrony relation is modified to include the entries

[i:1<i<muT;~Tyy L

To make the iransition from the single transaction Waiter of Figure 2 to a set of synchronously
executing transactions, each allocated to a distinct processor of an SIMD machine, we simply need to
partition the subiransactions of Waiter in some convenient way. We chose to break the Waiter transaction
into N identical transactions Waiter(i}, cach handling fork i. This was suggested by the locality of the
shared data involved in the state change of a fork, namely only the corresponding fork tuple and the ungry
and done tuples from the two philosophers able to request the fork, This scheme reduces the number of
processors accessing a common shared memory from N+1 to 3, which reduces memory contention. The
resulting algorithm is given in Figure 3. An ideal implementation of the algorithm would have an SIMD
machine handling the forks by having each fork allocated to a different node, while philosophers would
reside on external asynchronous processors—such as an MIMD machine or a network of independent

machines.

Not having an SIMD computer available, we implemented this algorithm on a 64-nodes hypercube
Ncube-7 [1]. The NCUBE is an MIMD machine with message-passing communication from single source
to single destination. The shared memory accesses had to be replaced by request, grant and return messages
between philosopher nodes (each philosopher on a different node) and the fork handler nodes (each handler on
a different node). Instead of having tuples read by multiple transactions, several identical messages were
sent to the appropriate nodes. To ensure that all fork nodes nsed only messages received by all their
recipients, a barrier synchronization mechanism was used as follows: 1) each fork node read its pending

messages; 2) every pair of forks “sharing” a philosopher exchanged their list of received messages hence

13.

program Dining_Philosophers_with_Choosing_Forks(IN)

tuple types

[LAp:0s1<N,Ae {TWE},pe {TW.E} :: hungry(t), fork(A,1,p), done(1)]

transaction types
[1:0L1<N:

»
-

Waiter(i) = True — Waiter(i)
I fork(T,i T}, —hungry(i), hungry((i+1) mod N}t
U fork(T,i,T)f, hungry(i)t, —hungry((i+1)modN)
It fork(T,i,T)f, hungry(d)f, hungry((i+1) mod N)¥, even(i)
I fork(T,i,T)y, huongry(i)f, hungry((i+1) mod N)t, odd(i)
I fork(T,i,E}, —hungry(®), done((i+1)mod N)}
I fork(E.i,T)t, done(dt, —hungry((i+1) modN)
I fork(T.i,E}t, hungry(d)f, -done((i+1)modN)
I fork(E,iT)t, ~—done(i}, hungry((i+1) mod N)T
I fork(T,1LE)f, hungry()t, done((i+1) mod N)t
I fork(E,L, Ty, done(i}f, hungry((i+1) mod N)}
I fork(W,iE)t, done((i+1) mod N)t
b fork(E,i,W)t, done{)}

Thinking(i) =

Waiting(i) =

Eating(i) =

]
initially
[i:0g1<N::
end

user_cond , —done(i) — Waiting(i}, hungry(i)
otherwise — Thinking(i);

o, B : fork(o.i-1,Eat), fork(Eat,i,3) — Eating(i)
otherwise — Waiting(i);

work_to_do — work, Ealing(i)
otherwise — Thinking(i), done(i)

Thinking(), Waiter(i), fork(T,i,T), Waiter(i}~Waiter(0)]

— fork(T,i,E)
— fork(E.i,T)
—» fork(E i, W)
— fork(W,i,E)
~» fork(T,i,T)
— fork(T.i,T)
— fork(W,1,E)
—> fork(E i, W)
- fork(E.i,T)
— fork(T,i,E)
— fork(E.1i,T)
—> fork(T,i,E);

Figure 3: Separate synchronous transactions handling the forks

executing the barrier synchronization; and 3) each fork changed state taking only into account any message

from a philosopher received by the two forks the message was sent to. To monitor the execution of the

algorithm, we visualized the entire computation on a Silicon Graphics™ Personal Iris™ computer.

14,

5. Conclusion

The development of concurrent algorithms has been profoundly affected by our perception of what
computer architectures may or may not be able to implement efficiently. It is the contention of this paper
that the logical simplicity of synchronous algorithms (which enjoy excellent support on current SIMD
architectures) makes them attractive for many problems which are amenable to a centralized control and

require both high performance and a large number of controlled asynchronous units.

6. References

1. “NCURBE Users Handbook,” NCUBE Corp, Beaverton, OR (1987).

2. Aggarwal, S., Barbara, D., and Meth, K. Z., “A Software Environment for the Specification and
Analysis of Problems of Coordination and Concurrency,” JEEE Transactions on Software

Engineering 14(3), pp. 280-290 (1988).

3. Agha, G, Actors: A Model of Concurrent Computation in Distributed Systems (MIT Press,

Cambridge, Massachusetts, 1986).

4. Banatre, J.-P.,, Coutant, A., and Metayer, D. L., Eds., The Gamma Model and its Discipline of

Programming , 18 (1990).

5. Brooks, E. D., “The Butterfly Barrier,” International Journal of Parallel Programming 15(4), pp.

295-307 (1986).

6. Carriero, N., and Gelemter, D., “Linda in Context,” Communications of the ACM 32(4), pp.
444-458 (1989).
7. Chandy, K., and Misra, J., “The Drinking Philosophers Problem,” ACM Transactions on

Programming Languages and Systems 6(4), pp. 632-646 (1984).

10.

11.

12,

13.

14.

15.

16.

17.

15.

Chandy, K. M., and Misra, I, Parallel Program Design: A Foundation (Addison-Wesley, New

York, NY, 1988).

Cunningham, H. C., and Roman, G.-C., “A UNITY-Style Programming Logic for a Shared
Dataspace Language,” JEEE Transactions on Parallel and Distributed Systems 1(3), pp. 365-376

(1990).

Cunningham, H. C., and Roman, G.-C., “UNITY-style Proofs for Shared Dataspace Programs

Using Dynamic Statements,” Washington University, Department of Computer Science (1990).

Dijkstra, E. W., “Hierarchical Ordering of Sequential Processes,” Acta Informatica 1(2), pp. 115-

138 (1971).

Hensgen, D., Finkel, R., and Manber, U., “Two algorithms for Barrier Synchronization,”

International Journal of Parallel Programming 17(1), pp. 1-17 (1988).

Hillis, W. D., and Guy L. Steele, J., “Data Parallel Algorithms,” Communications of the ACM

29(12), pp. 1170-1183 (1986).

IEEE, 802.3: Carrier Sense Multiple Access with Collision Detection (IEEE, New York, 1985).

Lynch, N., “Upper Bounds for Static Resource Allocation in a Distributed System,” Journal of

Computer and Systems Sciences 23(2), pp. 254-278 (1981).

Melliar-Smith, P. M., Moser, L. E., and Agrawala, V., “Broadcast Protocols for Distributed

Systems,” IEEE Transactions on Paralle! and Distributed Systems 1(1), pp. 17-25 (1990).

Mercaife, R. M., and Boggs, D. R., “Ethernet: Distributed Packet Switching for Local Computer

Networks,” Communication of the ACM 19, pp. 395-404 (1976).

18.

19.

20.

16.

Rabin, M. O., and D., L., “On the advantages of free choice: a symmetric and fully distributed
solution to the dining philosophers problem,” 8th ACM Symposium on Principles of

Programming Languages, pp. 133-138 (1981).

Rem, M., “Associons: A Program Notation with Tuples Instead of Variables,” ACM Transactions

on Programming Languages and Systems 3(3), pp. 251-262 (1981).

Roman, G.-C., and Cunningham, H. C., “Mixed Programming Metaphors in a Shared Dataspace
Model of Concurrency,” IEEE Transactions on Software Engineering 16(12), pp. 1361-1373

{1990),

	Parallel Synchronous Control
	Recommended Citation
	Parallel Synchronous Control

	tmp.1455646060.pdf.5x6MN

