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ABSTRACT OF THE THESIS

Utility-Aware Scheduling of Stochastic Real-Time Systems

by

Terry Tidwell

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2011

Research Advisor: Christopher Gill

Time utility functions offer a reasonably general way to describe the complex timing

constraints of real-time and cyber-physical systems. However, utility-aware schedul-

ing policy design is an open research problem. In particular, scheduling policies that

optimize expected utility accrual are needed for real-time and cyber-physical domains.

This dissertation addresses the problem of utility-aware scheduling for systems with

periodic real-time task sets and stochastic non-preemptive execution intervals. We

model these systems as Markov Decision Processes. This model provides an evaluation

framework by which different scheduling policies can be compared. By solving the

Markov Decision Process we can derive value-optimal scheduling policies for moderate

sized problems.

However, the time and memory complexity of computing and storing value-optimal

scheduling policies also necessitates the exploration of other more scalable solutions.

We consider heuristic schedulers, including a generalization we have developed for the
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existing Utility Accrual Packet Scheduling Algorithm. We compare several heuris-

tics under soft and hard real-time conditions, different load conditions, and different

classes of time utility functions. Based on these evaluations we present guidelines for

which heuristics are best suited to particular scheduling criteria.

Finally, we address the memory complexity of value-optimal scheduling, and examine

trade-offs between optimality and memory complexity. We show that it is possible

to derive good low complexity scheduling decision functions based on a synthesis

of heuristics and reduced-memory approximations of the value-optimal scheduling

policy.
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Chapter 1

Introduction

An emerging class of real-time systems, called cyber-physical systems, is charac-

terized by those systems’ ability to interact with the physical world through sensing,

actuation, or both. These systems are unique among real-time systems in that they

have tightly coupled computational and physical semantics. Timing requirements

imposed by these interactions are of paramount concern for the safe and correct op-

eration of cyber-physical systems. As with traditional real-time systems, satisfying

these timing requirements is the primary concern for the design and development of

cyber-physical systems.

In addition to constraints on the system induced by timing requirements, other con-

straints may also influence the deployment and design of cyber-physical systems. Size,

weight, power consumption, or other physical restrictions may limit the resources

available, resulting in contention for shared resources. In such cases, a scheduling

policy must arbitrate access to shared resources while satisfying system timing and

other constraints. The creation of a scheduling policy for such systems is dependent

on the abstraction used to represent underlying timing requirements.

1.1 Scheduling Abstractions

Real-time systems traditionally model timing requirements as deadlines. Each schedu-

lable activity, called a job, is assigned a deadline. If a job is scheduled so that it com-

pletes before its deadline, the deadline is met, and otherwise the deadline is missed.
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The deadline scheduling abstraction has several drawbacks. In particular, deadlines

have inherent ambiguity. To demonstrate this ambiguity we consider two classes of

systems: hard and soft real-time systems.

The semantics and goal of a scheduling algorithm in real-time systems depend on the

exact specifications of the system being scheduled. In hard real-time systems [5], any

deadline miss may be considered equivalent to a catastrophic failure. The severity of

this failure is not specified exactly by the deadline abstraction, but may range from

significant performance degradation to total system failure. The goal of the scheduler

is to prevent any job from finishing after its deadline. A hard real-time system is not

feasibly schedulable unless all jobs can be guaranteed to meet their deadlines.

In contrast, soft real-time systems are systems in which a deadline miss is not con-

sidered catastrophic. Neither the effects of a deadline miss on the system, nor what

happens to the job that missed its deadline are specified under the deadline schedul-

ing abstraction. A missed deadline may simply mean that the opportunity for a job

to execute has passed with no additional gain or penalty, or it may mean that some

penalty has been incurred by the system, and further penalty may be incurred if the

job is not completed as soon as possible. Depending on what the system semantics

are, the goal of the scheduler may be, for example, to minimize the number of deadline

misses, or to minimize the total lateness of jobs (i.e., the amount of time by which

they miss their deadlines).

This lack of precision and expressiveness in capturing timing constraints makes using

deadlines as the primary scheduling abstraction for cyber-physical systems unattrac-

tive. However despite these drawbacks, deadlines are widely used. First, the theory

behind scheduling under the deadline abstraction is very well established, with a vari-

ety of scheduling algorithms available. Second, the expressive limitations of deadlines

are not a hindrance for many classes of real-time systems in which the closed nature

of the design problem allows the desired semantics to be handled implicitly.

Time utility functions (TUFs) are a powerful abstraction for expressing more general

timing constraints [20,41], which characterize the utility of completing particular jobs

as a function of time and thus capture more complex semantics than simple dead-

lines. To satisfy temporal constraints in a system whose semantics are described by

time utility functions, a scheduling policy must maximize system-wide utility accrual.
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These more general and explicit representations of scheduling criteria are compelling

for some classes of scheduling problems, and have been studied under particular con-

ditions in other previous research.

However, jobs in cyber-physical systems also have other features that complicate

their scheduling problems. Specifically, jobs in many cyber-physical systems may be

non-preemptable and may have stochastic duration. For example, jobs may involve

actuation, such that preemption of a job may require restoring the state of a physical

apparatus such as a robotic arm. In such cases the cost of preemption may be un-

reasonably high. Therefore scheduling algorithms for certain kinds of cyber-physical

systems must be able to consider non-preemptable jobs.

Interaction with the physical environment also may lead to unpredictable job behav-

ior, most notably in terms of job durations. A scheduling policy should anticipate

this variability not only by considering the worst case execution time (as is often

done in deadline-based scheduling) but also the probabilistic distribution of job du-

rations. This is especially important when the goal is to maximize utility accrual,

which depends on the timing of job completion.

Scheduling problems with these concerns may arise in a variety of cyber-physical

systems as well as in traditional real-time systems. In mobile robotics, jobs may

compete for use of a robotic arm that must be scheduled for efficient alternation.

In CPU scheduling, quality of service (QoS) for an application may be specified as

a time utility function, and the jobs to be scheduled may have long critical sections

where preemption is not allowed. Finally, in critical real-time systems non-preemptive

access to a common bus by commercially available off-the-shelf peripherals may have

to be scheduled in order to guarantee real-time performance [36].

1.2 Problem Formalization

The problem addressed in this dissertation is the scheduling of a discrete time system

in which a set of n tasks denoted (Ti)
n
i=1 are in contention for a shared resource. Each

task is composed of an infinite series of jobs, where Ji,j refers to the jth job of task

Ti. The release time of job Ji,j is denoted ri,j. After release, the job is added to a

3



scheduler’s ready queue. The first job of a task is released at time 0, and subsequent

jobs are released at the regular interval pi, called the period of task Ti. This period

allows us to anticipate the arrival of subsequent jobs into the ready queue. A job Ji,j

with release time ri,j will be followed by a job Ji,j+1 with release time ri,j+1 = ri,j +pi.

Jobs remain in the ready queue until they are scheduled to use the resource, or until

they expire due to no longer being able to earn utility. A scheduler for the shared

resource repeatedly chooses either to run a job from the ready queue or to idle the

resource for a quantum.

When chosen to run, a job is assumed to hold the resource for a stochastic duration.

The stochastic duration of each job Ji,j is assumed to be an independent and identi-

cally distributed random variable drawn from its task Ti’s probability mass function

Di. This function is assumed to have support on the range [1, wi], where wi is the

maximal (commonly referred to as the worst case) execution time for any job of Ti

and Di(t) is the probability that a job of Ti runs for exactly t quanta. If job Ji,j

is completed at time ri,j + t, utility is earned as denoted by the task’s time utility

function Ui(t). This function is assumed to have support on the range [1, τi], where

ri,j + τi is the time at which the job expires and is removed from the ready queue. If

the job expires before it completes, the system instead is assessed a penalty ei, where

ei ≤ 0.

As the system evolves it accumulates utility received from completed jobs and penal-

ties from expiring jobs. The sum of these utilities and penalties is the total utility

gain of the system. The goal of a utility-aware scheduler is to maximize this value.

Note that this system model is a generalization of both the traditional hard real-time

and soft real-time deadline driven model, by setting τi to the deadline and ei to ∞
or 0 respectively.

1.3 Challenges

Optimal utility-accrual and non-preemptive task scheduling problems are both known

to be NP-hard [45]. However, these problem features may be common in emerging
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cyber-physical systems. Past work in real-time and cyber-physical systems has not

adequately addressed the need for schedulers that robustly handle these concerns.

Optimizing utility accrual may be necessary in order to deploy systems that meet the

design constraints that these cyber-physical systems are likely to face. This requires

an exploration of the trade-off between the cost associated with deriving optimal

scheduling policies and the quality of utility-accrual heuristics. In addition, there is

a need to examine approaches that trade off optimality for lower memory or time

complexity.

1.4 Contributions

This dissertation explores a range of potential solutions to address the need for and

the challenges of utility-aware scheduling. Chapter 3 introduces value-optimal utility-

aware schedulers. These schedulers can be provided precalculated schedules that

maximize expected long term utility. However, these schedulers achieve optimality at

exponential cost in memory and time needed to precompute the schedules, which at

run-time have low time complexity but high memory complexity. We define a Markov

Decision Process (MDP) model of our system that enables us to derive value-optimal

schedulers, and also provides a formal framework for comparing the performance of

different scheduling policies. We show how our problem structure allow us to bound

the number of states in the MDP by wrapping states into a finite number of exemplar

states. We give a formal definition of value based on this wrapped MDP which

measures expected long term utility density.

Chapter 4 examines heuristics for utility-aware scheduling in comparison to value-

optimal schedulers. We adapt existing heuristics for use in the problem domain

described in Section 1.2. We adapt the existing Utility Accrual Packet Scheduling

Algorithm (UPA) [50] to stochastic real-time systems and arbitrarily shaped timed

utility curves. We show under which conditions the examined heuristics perform

well compared to value-optimal schedules, and under which conditions heuristic ap-

proaches under perform compared to value-optimal schedules. We present a set of

recommendations of which heuristics have the best value/cost trade-off for different

classes of stochastic real-time systems.
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In Chapter 5, we address value-optimal scheduling’s high run-time memory com-

plexity. We explore trade-offs between value-optimality and memory cost. We show

how heuristics and low-memory approximations of the value-optimal schedule can

be synthesized into scheduling decision functions which have low run-time time and

memory complexity, but which still achieve a high percentage of the optimal utility

that can be gained. We show how decision trees can abstract the structure of the

value-optimal policy algorithmically and automatically. This abstraction has reduced

run-time memory cost compared to value-optimal. We show that relatively small trees

can correctly encode a large percentage of the state-action mappings recommended

by value-optimal schedules and have higher value than heuristics. Finally, we show

the effects of integrating heuristics into the structure of decision trees.
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Chapter 2

Related Work

Time utility functions have been proposed as a method for representing constraints

in various systems. A distributed tracking system [8] was proposed for processing data

from the Airborne Warning and Control System (AWACS). This tracking system has

an upper-bounded number of possible tracks, which are streams of sensing data about

a particular physical object being tracked. The decisions about what track to process

at each point in time are made by the system scheduler. While the system defaults to

first-in first-out processing of data, the utility-aware scheduler proposed in [8] allows

the system to handle overload scenarios gracefully by prioritizing higher utility tracks.

Time utility functions are also well suited for use in control systems. Control loops

may become unstable due to inter-job jitter, the variation in time between job com-

pletions [19]. Time utility functions can encode this sensitivity to jitter [17]. By

using a utility-aware scheduler these control jobs can be dispatched in such a way as

to maximize utility, and therefore minimize inter-job jitter.

Similar quality of service metrics apply in streaming media applications. Inter-frame

jitter can cause degradation in playback quality. Because buffering of frames is not

always practical, scheduling when frames are decoded may be the better method for

controlling playback quality [19].

Utility also has been proposed as a way to schedule communication traffic in Control

Area Networks (CAN) in order to guarantee cyber-physical properties such as cruising

speeds in automobiles [31].
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The concern addressed in this dissertation - scheduling tasks with stochastic non-

preemptive execution intervals - is especially relevant in distributed control networks,

where it is undesirable to preempt messages already on a CAN and where network

delays may be unpredictable. Similar scheduling problems also may occur in real-time

systems built from COTS peripherals, where access to the I/O bus may need to be

scheduled in order to guarantee real-time performance [36]. Utility-accrual schedul-

ing primarily has been restricted to heuristics based on maximizing instantaneous

potential utility density, which is the expected utility of running a job normalized

by its expected duration [20]. The Generic Benefit Scheduler (GBS) [24] schedules

tasks under resource contention using the potential utility density heuristic without

assigning deadlines. If there is no resource contention, the proposed scheduling policy

simply greedily schedules jobs according to the highest potential utility density.

Locke’s Best Effort Scheduling Algorithm (LBESA) [20,26] schedules jobs with stochas-

tic durations and non-convex time utility functions using a variation of Earliest Dead-

line First (EDF) [27], where jobs with the lowest potential utility density are dropped

from the schedule if the system becomes overloaded. This technique requires an as-

signment of job deadlines along their time utility curves; optimal selection of those

deadlines is itself an open problem.

Other research on utility-accrual scheduling has crucially relied on restricting the

shapes of the time utility curves to a single class of functions. The Dependent

Activity Scheduling Algorithm (DASA) [9] assumes time utility functions are non-

increasing downward step functions. The Utility Accrual Packet Scheduling Algo-

rithm (UPA) [50], which extends an algorithm presented by Chen and Muhlethaler [7],

assumes time utility functions can be approximated using a strictly linearly decreas-

ing function. Gravitational task models [17] assume that the shapes of the time

utility functions are symmetric and unimodal. In addition it is assumed that utility

is gained when the non-preemptable job is scheduled, which is equivalent to assuming

deterministic job durations with utility gained on job completion.

No existing utility-accrual scheduling approach anticipates future job arrivals. There-

fore, existing techniques are suboptimal for systems in which future arrivals can be

accurately predicted, such as those encountered under a periodic task model [27].

8



MDPs have been used to model sequential decision problems including applications in

cyber-physical domains such as helicopter control [34,35] and mobile robotics [23,43].

Our previous work [12, 15, 16] formulated MDPs to design scheduling policies in

soft real-time environments with always-available jobs, but did so only for simple

utilization-share-based semantics. In this work we extend such use of MDPs to de-

sign new classes of utility-aware scheduling policies for periodic tasks with stochastic

duration.

Several other attempts have been made to address the difficulties that arise from

non-preemptive and stochastic tasks in real-time systems. Statistical Rate Monotonic

Scheduling (SRMS) [2] extends the classical Rate Monotonic Scheduling (RMS) [27]

algorithm to deal with periodic tasks with stochastic duration. Constant Bandwidth

Servers (CBS) [6] allow resource reservation in real-time systems where tasks have

stochastic duration. Manolache, et al. [29], estimate deadline miss rates for non-

preemptive tasks with stochastic duration. These approaches use classical scheduling

abstractions such as priority and deadlines, rather than time utility functions, and are

thus not appropriate for systems with the more complex timing semantics considered

by our approach.

Stochastic models, such as Markov Chains and Markov Decision Processes, have been

used in the analysis of schedulers. Examples include calculating the probabilistic re-

sponse times for interrupt scheduling using Constant Bandwidth Servers [28] and

analysis of different Constant Bandwidth Server parameters in mixed hard/soft real-

time settings in order to perform distributed scheduling [42]. Analysis of scheduling

policies for non-preemptive tasks with stochastic duration [29] has focused on calcu-

lating the expectation of a different scheduling metric (deadline miss rates) as opposed

to utility accrual. Stochastic analysis also has been applied to global multiprocessor

scheduling to calculate expected tardiness for soft real-time systems [32].

Stochastic analysis techniques such as Markov Decision Processes (MDPs) can be

used not only to perform analysis, but for design. MDPs are used to model and solve

sequential decision problems in cyber-physical domains such as helicopter control [34]

and mobile robotics [23,43].
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In previous work we applied MDP based techniques to generating share [12, 15, 16]

aware scheduling policies for scheduling tasks with stochastic non-preemptive exe-

cution intervals. That work focused on scheduling always-available non-preemptable

jobs with stochastic durations to adhere to a desired resource share. This was achieved

by penalizing the system in proportion to its deviation from the desired share target.

This work extends those techniques to design utility-aware rather than share-aware

scheduling policies, for a periodic task model rather than an always-available job

model.
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Chapter 3

Markov Decision Process Based

Utility-Aware Scheduling

In several important classes of real-time and cyber-physical systems, the ability of

a scheduler to maximize utility accrual of non-preemptable, stochastic jobs supports

the effective and efficient use of shared resources. However, designing schedulers

that maximize utility accrual for such systems is an open research problem. In this

chapter we introduce a Markov Decision Process model for the scheduling problem

introduced in Section 1.2, and show how techniques from operations research [37]

allow us to derive value optimal scheduling policies from this model.

3.1 Markov Decision Processes (MDPs)

An MDP is a five-tuple (X ,A, P, R, γ) consisting of a collection of states X and

actions A. The transition system P establishes the conditional probabilities P (y|x, a)

of transitioning from state x to y on action a. The reward function R specifies the

immediate utility of each action in each state. The reward function R is defined over

the domain of state-action-state tuples such that R(x, a, y) is the immediate reward

for taking action a in state x and ending up in state y. The discount factor γ ∈ [0, 1)

defines how potential future rewards are weighed against immediate rewards when

evaluating the impact of taking a given action in a given state.

A policy π for an MDP maps states in X to actions in A. At each discrete decision

epoch k an agent (here, a scheduler) observes the state of the MDP xk, then selects
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an action ak = π(xk). The MDP then transitions to state xk+1 with probability

P (xk+1|xk, ak) and the controller receives reward rk = R(xk, ak, xk+1). Better policies

are more likely over time to accrue more reward. We then have a preliminary definition

of the value V π of the policy π as the expected sum of the infinite series:

V π = E

{ ∞∑
k=0

rk

}
. (3.1)

However, for arbitrary MDPs this sum may diverge, making direct comparison be-

tween different policies difficult. To address this issue a discount factor γ is intro-

duced. The value of a policy is thus defined as the expected sum of discounted

rewards:

V π(x) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣x0 = x, ak = π(xk)

}
. (3.2)

Overloading notation, we let

R(x, a) =
∑
y∈X

P (y|x, a)R(x, a, y) (3.3)

denote the expected reward when executing a in x. Then we may equivalently define

V π as the solution to the linear system

V π(x) = R(x, π(x)) + γ
∑
y∈X

P (y|x, π(x))V π(y) (3.4)

for each state x. When |R(x, a)| is bounded for all actions in all states, the discount

factor γ prevents V π from diverging for any choice of policy, and can be interpreted as

the prior probability that the system persists from one decision epoch to the next [22].

In practice this value is almost always set very close to 1 (e.g., γ = 0.99, which was

used for the evaluations presented in this dissertation).
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There are several algorithms, often based on dynamic programming techniques, for

computing the policy that optimizes the value function for an MDP with finite state

and action spaces. The optimal value function V ∗(x) is defined recursively as:

V ∗(x) = max
a∈A

R(x, a) + γ
∑
y∈X

P (y|x, a)V ∗(y)


Once computed, a corresponding value-optimal policy can be found as defined in the

following equation:

π∗(x) = argmax
a∈A

R(x, a) + γ
∑
y∈X

P (y|x, a)V ∗(y)


Policy iteration [37, 38] converges toward an optimal policy by repeating two steps:

policy evaluation and policy improvement.

Policy iteration is initialized with a policy π0. At iteration k, the value function of

πk−1, V πk−1(x), is estimated for each state. Based on this estimated value function,

the policy is updated during the policy improvement step as follows:

πk(x) = argmax
a∈A

R(x, a) + γ
∑
y∈X

P (y|x, a)V πk−1(y)


Because each successive policy is guaranteed to have higher value, and only finitely

many possible policies exist, the search is guaranteed to converge [37,38].

The resulting policy is value-optimal: it optimizes long term value, in contrast to

immediate reward. Once computed, this policy can be stored as a lookup table

mapping states to actions.
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3.1.1 Utility-Aware Task Scheduling MDP

In our system model there are two salient features that determine the scheduler state:

the system time and the set of jobs available to run. We define our MDP over the set

of scheduler states. Each state has two components: a variable tsystem that tracks the

time that has passed since the system began running, and an indicator variable qi,j

that tracks whether the job Ji,j of task Ti is in the ready queue and can be scheduled.

An action ai,j in our MDP is the decision to dispatch job Ji,j and is only valid in

a scheduler state if qi,j indicates Ji,j is in the ready queue. In addition there is a

special action aidle, available in every state, which is the decision to advance time in

the system by one quantum without scheduling any job.

However, this basic description of the system state has an infinite number of states,

as there are an infinite number of indicator variables needed and the system may run

for an unbounded length of time, meaning tsystem may grow without bound.

In general tasks may have multiple jobs in the ready queue, but because jobs expire,

only dτi/pie variables are needed to track all the jobs of Ti that can be in the ready

queue at one time. In order to limit the number of variables, jobs can be indexed so

that the most recently released job of Ti is tracked by the variable qi,1. Likewise we

index our actions, so that ai,1 is the decision to run the most recently released job of

Ti. This bounds the number of variables needed to track the state of the ready queue,

and consequently bounds the number of different states in which the ready queue can

be.

Because tsystem is not bounded, the resulting MDP still has an infinite number of

states. However, the hyperperiod H of the tasks, defined as the least common multiple

of the task periods, allows us to wrap the state space of our MDP into a finite set of

exemplar states as follows. The intuition is similar to that for hyperperiod analysis

in classical real-time scheduling approaches. Given two states x and y with identical

qi,j for all tasks but different tsystem values tx and ty such that tx mod H = ty mod

H, the two states will have the same relative distribution over successor states and

rewards. This means that the value-optimal policy will be the same at both states.

Thus it suffices to consider only the finite subset of states where tsystem < H. Any
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Figure 3.1: Example 3 task system. Periods pi, time utility function curves Ui, and
termination times τi are shown for each task.

time the MDP would transition to a state where tsystem ≥ H it instead transitions to

the otherwise identical state with system time tsystem mod H.

If we assume that τi ≤ pi, we can simplify our state qi,j down to a single variable qi

defined over {0, 1} for each task because no more than one job of a task Ti can be in

the ready queue at once. This variable is 1 if there is a job of task Ti in the ready

queue and 0 otherwise. Because we require the termination time of the job to be less

than or equal to the task period, we need only reason about one job per task at a

time. For example, in Figure 3.1 tasks T1 and T3 have time utility functions (TUFs)

that satisfy this restriction, and so only a single job of each task may be in the ready

queue at any time.

If we allow τi > pi but assume that jobs of the task must be run in order, qi becomes

an integer which counts the number of jobs of Ti that are in the ready queue. The

values that qi can take are bounded by dτi/pie, the maximum number of jobs of Ti

that can be in the ready queue. Note that this is a strict generalization of the case

where τi ≤ pi. For example, in Figure 3.1 2p2 < τ2 < 3p2. Consequently, in this

example at most three jobs of task T2 may be in the ready queue.

If we allow τi > pi and also allow jobs of a task to be run out of order, then the full

expressive power of our model is needed with variables qi,j that track which of the
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dτi/pie most recently released jobs of Ti are in the ready queue. Note that this again

is a strict generalization of the previous two cases.

An action ai,j in our MDP is the decision to dispatch job Ji,j and is only valid in a

scheduler state if qi,j indicates Ji,j is in the ready queue. If we assume that τi ≤ pi

(or that jobs of Ti must be run in order), only a single job of Ti is ever eligible to be

run. In this case we can simplify our set of actions to ai, the action that runs the

single eligible job, in addition to the special action aidle.

With this mapping from scheduler states to MDP states in place, the transition func-

tion P (y|x, a) is the probability of reaching scheduler state y from x when choosing

action a. We discuss the formulation of the reward function for our utility-aware task

scheduling MDP next, in Section 3.1.2.

3.1.2 Reward Function

The reward function is defined similarly to the transition function. The scheduler

accrues no reward if the resource is idled, i.e., R(x, aidle, y) is always zero. Otherwise,

R(x, ai,j, y) is the utility density of job Ji,j of task Ti that was just run. The utility

density of a job Ji,j completed at time t is defined as Ui(t− ri,j)/(t− ri,j). Utility

density is used as the immediate reward as opposed to Ui(t−ri,j) in order to differen-

tiate between jobs with different durations. It is then possible to define the expected

potential utility density and thus the immediate reward for action ai,j in terms of the

probability mass function Di and the time utility function Ui, as a function of the

current time tsystem and the release time of the job ri,j as shown in Equation 3.5.

R(x, ai,j) =
wi∑

k=1

Di(k)Ui(k + tsystem − ri,j)

d
(3.5)

An example calculation of expected potential utility density is shown in Figure 3.2.

Task Ti has TUF Ui as shown in the upper graph. Di is defined on the range [1, 2] with

Di(1) = 0.5 and Di(2) = 0.5. The bottom graph shows the expected utility density

calculation shown in Equation 3.5 which is defined to be the immediate reward for

scheduling the jobs of task Ti at different times after that job’s release.
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Figure 3.2: Utility function, as a function of completion time, and expected potential
utility density as a function of job start time.

Although the equation given in Equation 3.5 works for the general case in which any

number of jobs of a task can be run in any order, if we assume τi < pi we can simplify

R(x, ai,j) to just R(x, ai) because only one job of the task will be eligible to run at

a time. In this case, the time since the release of the current job of task Ti is then

tsystem mod pi. Under this set of assumptions the expected immediate reward R(x, ai)

is:

R(x, ai) =
wi∑

d=1

Di(d)Ui(d + (tsystem mod pi))

d
(3.6)

Similarly, if we allow τi > pi but assume that jobs must be run in order, the time

since the release of the job earliest job of task Ti is pi(qi − 1) + (tsystem mod pi) and

the immediate reward for taking action ai is:

R(x, ai) =
wi∑

d=1

Di(d)Ui(d + pi(qi − 1) + (tsystem mod pi))

d
(3.7)

At time ri,j + τi, job Ji,j is removed from the ready queue if it has not been run.

We account for this by subtracting a cost term C(x, ai) from the immediate reward

function:
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C(x, ai) =
n∑

j=1

ηjej (3.8)

The term n is the total number of tasks, ηi is the expected number of jobs of task

Ti that will expire unscheduled given that action ai is chosen in state x, and the

term ei is the penalty for any job of task Ti expiring. The value of ei allows us

to represent systems with different semantics for expired tasks. For real-time tasks

where deadline misses are catastrophic ei would be set to negative infinity, and any

chance of a deadline miss makes this cost term dominate the immediate reward. In

contrast, when ei = 0 the only penalty incurred by the system is missing the chance

to gain any utility for running the job, and the cost term disappears.

3.1.3 Wrapped Utility-Aware Task Scheduling MDP

A simple but illustrative example of a wrapped utility-aware task scheduling MDP is

shown in Figure 3.3. In this example there are two tasks T1 and T2 with deterministic

quantum durations (D1(1) = D2(1) = 1), and termination times equal to their periods

(τ1 = p1 = 4, and τ2 = p2 = 2). The states of the MDP are depicted such that states

with the same tsystem are arranged in columns, and states with the same tuple of

indicator variables (q1, q2) are arranged in rows. Figures 3.3(a), 3.3(c), and 3.3(b)

show the transitions between states for taking action aidle, a1, and a2, respectively.

The states where tsystem = 0 are duplicated on the right side of each figure to illustrate

our state wrapping over the hyperperiod (which for this example is 4). Figure 3.3(d)

shows the set of reachable states from the state where q1 = q2 = 1 and tsystem = 0,

which is the system’s initial state.

Figure 3.4 shows the effects of non-determinism on the transitions in the MDP. This

figures uses the same system parameters as before but now assumes that T1 has

stochastic duration of either 1 or 2 quanta. Only the transitions from the highlighted

states are shown.

State wrapping bounds the values that each of the state variables can take, and

consequently bounds the size of the state space. If we assume τi ≤ pi, an upper
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(a) Transitions between MDP states for
action aidle

(b) Transitions between MDP states for
action a1

(c) Transitions between MDP states for
action a2

(d) Set of reachable states

Figure 3.3: Wrapped utility-aware task scheduling MDP for a simple but illustrative
example of two tasks with periods p1 = 4 and p2 = 2, termination times equal
to periods, and (deterministic) single quantum duration. Rows show states with the
same valued indicator variables (q1, q2), and columns show states with the same tsystem

value.

(q1, q2)

(1,1)

(1,0)

(0,1)

(0,0)

0 1 2 3 0

Figure 3.4: Transitions between selected MDP states for stochastic action a1, where
tasks T1 has stochastic duration in the range [1, 2].
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bound for the number of states in the scheduling MDP is

H2n. (3.9)

If instead we allow τi > pi but assume jobs of a task must be run in order, an upper

bound for the number of states in the scheduling MDP is

H
n∏

i=0

dτi/pie. (3.10)

If we allow τi > pi but let jobs of a task run in arbitrary order, an upper bound for

the number of states is

H2
∑n

i=0
dτi/pie. (3.11)

As stated in the equations above, the size of the state space is sensitive not only to

the number of tasks and their constraints but also to the size of the hyperperiod.

As such, the solution approach presented in this chapter is especially appropriate for

systems with harmonic tasks since in this case H = max(p1, . . . , pn), which reduces

the size of the state space that must be considered. Since real-time systems are often

designed to have harmonic task periods due to other design criteria (e.g., to maximize

achievable utilization under rate-monotonic scheduling of deterministic task sets) it

is reasonable to expect this to be fairly common in practice.

Regardless of the assumptions made, the wrapped MDP has finitely many states.

Consequently it can be solved using existing techniques from the operations research

literature [37]. As was described earlier, the resulting policy for this scheduling MDP

optimizes the value function, V π, defined in Equation 3.2, which is the discounted sum

of expected immediate rewards. Because these immediate rewards are defined to be

the expected utility density of the scheduling decision, the policy produced optimizes

utility accrual, and is value-optimal in the sense that no policy exists that gains more

value in expectation. In practical terms this means that the produced scheduling

policy is among the co-equal best possible utility-accrual scheduling policies for the

modeled system.

The produced policy is stored in a lookup table for use at run-time. The cost of

hashing the scheduler state is proportional to its size, resulting in O(a) time overhead,
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where a is the number of actions available to the scheduler. For the assumptions in

this dissertation this is equivalent to O(
∑n

i=0 dτi/pie), where n is the number of tasks.

3.2 Discussion

By modeling a utility-accrual scheduling problem as a Markov Decision Process we

are able to evaluate arbitrary policies’ values, and to derive a value-optimal scheduling

policy. As a policy evaluation method, our Markov Decision Process model has two

main advantages. First, it provides a reproducible and rational measure of quality

in the face of stochastic behavior. The value calculated by this methodology is the

same value that an actual run of the system will have in the limit, over the long term.

Second, it accounts for low probability high impact events in calculating the policy

value. Unlike quality measures, derived e.g. from Monte Carlo simulation, which

may miss a rare event, by taking the expectation from all possible state evolutions,

the value of a policy quantifies effects of rare high impact events. This is especially

relevant when the penalty associated with a job expiring, ei, is large compared to the

possible utility values.

This formulation as an MDP allows us to derive a value-optimal scheduling policy [49]

that maximizes the value function for a given discount factor. However, this schedule

must be precomputed, and the resulting computation and storage costs can make

doing so intractable. To calculate a policy, the full state space of the system must

be enumerated and the optimal value function calculated using modified policy iter-

ation [37]. The cost of doing so is polynomial in the size of the state space, which is

in turn exponential in the number of tasks. For use at run-time, the value-optimal

policy must then be stored in a lookup table, the size of which could be as large as

the size of the state space. Because of this, we are interested in how well heuristics

with lower computation and storage costs can approximate the value-optimal policy

under different system scenarios. In Chapter 4, we describe several relevant heuristics,

whose performances are compared to that of the value-optimal policy in an experi-

mental evaluation. In Chapter 5 we introduce reduced-memory approximations of the

value-optimal policy in order to address such a policy’s run-time memory complexity.
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Chapter 4

Utility-Accrual Heuristics

In Chapter 3 we showed how utility-accrual scheduling problems for non-preemptive

tasks with stochastic execution times could be represented, under our system model

described in Chapter 1, as Markov Decision Processes (MDPs). This allows us to do

two things: (1) given a scheduling policy, it allows us to calculate the value gained by

running that policy, which is a measure of the policy’s quality; and (2) given a task

set within the system model, it allows us to calculate a value-optimal policy, which

is a scheduling policy that maximizes the expected value over long term execution.

Sections 4.1 through 4.3 describe relevant scheduling heuristics involving permuting

the ready queue (sequencing heuristic), maximizing immediate reward (greedy heuris-

tic), or using deadlines to maximize utility (deadline heuristic). Section 4.4 describes

the Utility Accrual Packet Scheduling Algorithm (UPA) [50] and presents new heuris-

tics UPA α and Pseudo α, in which we improve UPA to deal with: (1) stochastic ex-

ecution intervals, (2) arbitrary time utility function (TUF) shapes, and (3) potential

costs and benefits of permuting the ready queue. In Section 4.5 we present an empir-

ical evaluation of these five heuristics across different classes of time utility functions

(TUFs), load demands, and penalties for missing deadlines.

4.1 Sequencing Heuristic

A straightforward (if relatively expensive) approach to producing utility-aware sched-

ules is to calculate exhaustively the expected utility gained by scheduling every per-

mutation of the jobs in the ready queue. We define nq as the number of jobs in the
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ready queue, a variable bounded by
∑n

i=0 dτi/pie. There are nq! permutations of the

ready queue, and the calculation of expected utility requires convolving the duration

distributions of each job in the sequence, an operation that takes time proportional to

the maximum task execution time. While impractical for deployment as a scheduler,

this heuristic is optimal for a restricted subset of our problem domain in the sense

that given no future job arrivals, no work conserving schedule can gain more expected

utility. Thus this policy is a good benchmark for measuring what is gained by con-

sidering future job arrivals and being non-work conserving (like the value-optimal

schedule). We refer to this policy as the sequencing heuristic.

4.2 Greedy Heuristic

The greedy heuristic is equivalent to the value-optimal schedule that would be gener-

ated if the discount factor γ were set to zero. When this happens the scheduler only

considers the effect of the expected immediate reward, and not the long term impact

of the scheduling decision. Calculating this policy in the soft real-time case, where all

penalties for expiring jobs ei are set to zero, is O(nq) because the expected immediate

reward for each scheduling action can be precomputed and is independent of what

other jobs are in the ready queue. In the hard real-time case the immediate reward

is not independent of the other jobs, because these other jobs may have a non-zero

probability of expiring depending on the stochastic duration of the job under consid-

eration. Calculating this conditional expectation of the expiration cost requires time

O(w) where w is the worst case execution among all tasks in the system. Since this

must be done for every task, the total complexity is O(nqw), which may be unaccept-

ably high. Using potential utility density as a heuristic for utility-aware scheduling

was proposed in [20, 26]. The Generic Benefit Scheduler [24] uses this heuristic to

schedule chains of dependent jobs according to which chain has the highest potential

utility density.
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4.3 Deadline Heuristic

The Best Effort Scheduling Algorithm [26] uses Earliest Deadline First scheduling [27]

as a basis for utility-aware scheduling. Deadlines are assigned to tasks based on

the task’s time utility function. Although optimal deadline placement is an open

problem, deadline assignment is typically done at critical points in the task’s time

utility function, where there is a discontinuity in the function or in its first derivative.

Examples of time utility functions and their critical points are discussed in Section 4.5.

We refer to this scheduling algorithm as the deadline heuristic.

4.4 UPA α and Pseudo α

The Utility Accrual Packet Scheduling Algorithm (UPA) [50] uses a pseudoslope

heuristic to order jobs based on the slope of a strictly linearly decreasing approx-

imation of the task’s time utility function. This algorithm was developed for use in

systems with non-increasing utility functions and deterministic execution times. UPA

first selects the set of jobs that will finish before their expiration times, then sorts

the rest of the jobs by their pseudoslope (given by −Ui(0)/τi). The slope closest to

negative infinity is placed first in the calculated schedule. Finally UPA does a bubble

sort of the sorted jobs in order to find a locally optimal ordering, in a way similar to

the sequencing heuristic discussed in Section 4.1.

To account for time utility functions with arbitrary shapes (as opposed to strictly

decreasing time utility functions) our first extension to UPA is to calculate the pseu-

doslope value using the current value of the utility function at the time when the

scheduling decision function is invoked. At time ri,j + t, for instance, the pseudoslope

value for job ji,j is −Ui(t)/(τi − t).

To make UPA applicable to tasks with stochastic durations, we also introduce a

parameter α in [0, 1] that imposes a minimum threshold on the probability that the

job will finish before its expiration time. In general UPA α considers only jobs whose

probability of timely completion is greater than or equal to α, and in particular UPA
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0 considers any job while UPA 1 considers only those jobs that are guaranteed to

finish before their deadlines.

Finally, with deterministic durations the local search for a better scheduling order

is O(n2
q), but with stochastic durations convolutions of the duration distributions

also need to be calculated to find the expected utility of each sequence of jobs. While

calculating the expected value of a sequence after an inversion of two jobs in a sequence

is O(1) in the deterministic case, in the stochastic case it is O(w). This makes

extending this part of the UPA algorithm potentially expensive for online scheduling

use. To evaluate the cost and benefit of this sequencing step we define two distinct

heuristics: Pseudo α is the scheduling algorithm that simply uses the pseudoslope

ordering to schedule jobs, while UPA α performs the additional sequencing step to

find a locally optimal schedule.

4.5 Evaluation

We first evaluated the heuristics described in this chapter using three different classes

of time utility functions which are illustrated in Figure 4.1. A downward step utility

curve is parameterized by the task’s expiration time τi and utility upper bound ui

and is defined as:

Ui(t) =

ui : t < τi

0 : t ≥ τi

(4.1)

This family of functions is representative of jobs with firm deadlines, like those con-

sidered in traditional real-time systems. For the purpose of the deadline heuristic,

job deadlines are assigned at the point τi. The relative utility upper bounds are im-

portant in determining good utility-aware schedules, but are not taken into account

by approaches that consider only deadlines.

A linear drop utility curve is parameterized like a downward step utility curve, but

with an additional parameter describing the function’s critical point ci:
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Figure 4.1: Representative time utility functions.

Ui(t) =


ui : t < ci

ui − (t− ci)
ui

τi−ci
: ci ≤ t < τi

0 : t ≥ τi

(4.2)

Such a utility function is flat until the critical point, after which it drops linearly to

reach zero at the expiration time. This family of curves is representative of tasks

with soft real-time constraints, where quality is inversely related to tardiness. For

that reason the deadline is set to the point ci.

A target sensitive utility curve is parameterized exactly like a linear drop utility curve,

and is defined as:

Ui(t) =


tui

ci
: t < ci

ui − (t− ci)
ui

τi−ci
: ci ≤ t < τi

0 : t ≥ τi

(4.3)

The utility is maximized at the critical point, and is representative of tasks whose

execution is sensitive to inter-task jitter. In control systems, whose sensing and

actuation tasks are designed to run at particular frequencies, quality is inversely
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related to the distance from the critical point. For deadline driven heuristics, this

critical point is considered to be the deadline for the purpose of evaluating deadline-

driven heuristics.

For the experiments presented in this chapter, τi is chosen uniformly at random from

the range (wi, pi]. Because the expiration time precedes the next job’s arrival, only

one job of a task is available to run at any given time. Because the expiration time is

greater than the worst case execution time, the task is guaranteed to complete prior

to its expiration time if granted the resource at the instant of release. The upper

bound on the utility curve ui is chosen uniformly at random from the range [2, 32],

and the critical point ci for the target sensitive and linear drop utility curves is chosen

uniformly at random from the range [0, τi].

Task periods are randomly generated to be divisors of 2400 in the range [100, 2400],

ensuring the hyperperiod of the task set is constrained to be no more than 2400.

The duration distribution for each task is parameterized with three variables (li, bi, wi)

such that li ≤ bi ≤ wi where li and wi are the best case and worst case execution

times respectively, and that 80% of the probablity mass is in the range [li, bi]. The

duration distribution for these experiments is defined as:

Di(t) =



0 : t < li

0.8
li−bi

: li ≤ t ≤ bi

0.2
bi−wi

: bi < t ≤ wi

0 : wi < t

(4.4)

This means that the demand of the task, the fraction of the available time that

the task requires to complete all its jobs, is normally between li/pi and bi/pi but

occasionally may be as high as wi/pi. The parameters are further constrained such

that li/pi ≥ 0.05 and bi/pi ≥ 0.10.

In addition to the constraints on the individual tasks, constraints are placed on the

task set as a whole, such that:
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n∑
i=1

li/pi = Li

n∑
i=1

bi/pi = Bi

n∑
i=1

wi/pi = Wi

where the 3-tuple (Li, Bi, Wi) defines the overall system load. The default case as-

sumes the values (0.70, 0.90, 1.20), which we call the high load scenario, where the

resource is working near capacity with transient overloads. A more conservative case,

the medium load scenario, has these values set at (0.40, 0.51, 0.69) which ensures that

the system is only loaded up to about 70% capacity, but for the most part is operating

at between 40% and 50% capacity. Finally we define a low load scenario which uses

the values (0.07, 0.15, 0.25).

4.5.1 Soft Real-Time Scenarios

In the following experiments, the penalty ei for a job expiring is assumed to be zero.

This means that the heuristics need only consider how to maximize utility accrual,

and not how to ensure that certain jobs are scheduled. We begin by focusing on the

high load scenario and calculating the value of each heuristic for 100 different 5-task

problem instances as a percentage of value-optimal.

Figure 4.2 shows the results of our experiments. Each graph shows what fraction of

the problem instances scheduled by each heuristic achieved at least a given fraction of

optimal. Figure 4.2(a) shows that all the heuristics achieved at least 30% of optimal on

all problem instances. The greedy heuristic is generally the worst of all the heuristics;

less than 20% of the problem instances scheduled using the greedy heuristic achieved

at least 80% of optimal.
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(a) Comparison of heuristics for downward
step utility functions.

(b) Comparison of heuristics for linear drop
utility functions.

(c) Comparison of heuristics for target sensi-
tive utility functions.

(d) Effect of α on Pseudo α for linear drop
utility functions.

Figure 4.2: Comparison of heuristic policy performance for a soft real-time task set
with five tasks under heavy load.
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Figure 4.2(a) shows that for soft real-time cases with high load and downward step

utility functions, the deadline heuristic performs best. However, as can be seen in

Figures 4.2(b) and 4.2(c), the deadline heuristic does not perform as well when the

time utility functions are linear drop or target sensitive. Instead UPA 0 performs

best, followed closely by Pseudo 0. As was discussed in Section 4.4, this marginal

improvement in quality between Pseudo 0 and UPA 0 comes at the cost of a large

jump in complexity. This particular value of α was chosen because of the results

presented in Figure 4.2(d), which show that by a large margin α = 0 outperforms

any other setting for this particular case. Although the graph shown is only for linear

drop utility functions, the results for downward step and target sensitive were nearly

indistinguishable from it. For the soft real-time scenarios we investigated, the value

of Pseudo α is maximized by α = 0, falls quickly and levels off for values not near 1

or 0, and then deteriorates rapidly again near 1.

In all soft real-time cases, the greedy heuristic performs relatively poorly, despite

greedily maximizing utility density. This is most likely because the utility density

is not strictly related to τi, and thus a job might have a higher immediate utility

density, but still might not be the most urgent job. The sequencing heuristic also

performs relatively poorly despite being much more computationally expensive than

either UPA 0 or Pseudo 0. This is surprising for two reasons: (1) the scheduling

decision made at every point is optimal if we assume that the schedule must be work-

conserving and that no more jobs arrive until the ready queue empties; and (2) UPA

0 uses a simplified variation of sequencing to achieve its modest gains over Pseudo 0.

Further investigation of this issue remains open as future work.

4.5.2 Hard Real-Time Scenarios

Unlike the soft real-time scenarios presented in Section 4.5.1, in hard real-time systems

a task expiring may incur severe penalties. Whereas in the soft real-time case the only

risk is the potential loss of utility from not scheduling the job, in the hard real-time

case the penalty associated with the job, ei, may be very large. For the experiments

presented in this section one of the five tasks is assumed to be a hard real-time task,

with ei chosen uniformly at random from the range [−150,−50). For the other tasks

in the system ei = 0.
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(a) Comparison of heuristics for downward
step utility functions.

(b) Comparison of heuristics for linear drop
utility functions.

(c) Comparison of heuristics for target sensi-
tive utility functions.
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(d) Effect of α on Pseudo α for a single problem
instance with target sensitive utility functions.

Figure 4.3: Comparison of heuristic policy performance for a hard real-time task set
with five tasks under heavy load.
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Figure 4.3 shows the results of these experiments. The first difference compared to

the soft real-time experiments in Section 4.5.1 is that some of the scheduling policies

now achieve overall negative value: that is, they accrue more penalty in the long

term than they achieve utility. For instance, Figure 4.3(c) shows that 90% of the

target sensitive problem instances scheduled by the greedy heuristic have positive

value. Pseudo 0, in contrast, gains positive value in only 60% of the cases. Deadline,

sequencing and UPA 0 only have positive value in 50% of the cases.

The differences in performance by time utility function type are also more muted

in the hard real-time scenarios. However, Figure 4.3(a) shows that (as before) the

deadline heuristic performs best when scheduling problem instances with downward

step utility functions, but as Figures 4.3(b) and 4.3(c) show it does not do nearly as

well in problem instances with linear drop or target sensitive utility functions.

Although the greedy heuristic has the smallest number of problem instances with

negative value it is important to remember that, as is mentioned in Section 4.2, cal-

culating greedy is more expensive in the hard real-time case because the immediate

reward of a scheduling decision is no longer independent of other jobs in the ready

queue. However, it is unclear why the sequencing heuristic, despite similar consid-

erations, degrades sharply. It is possible that because sequencing more efficiently

utilizes the resource, hard real-time jobs are more likely to arrive when the resource

is occupied and thus expire before completion. Although we report results for Pseudo

0 and UPA 0, Figure 4.3(d) shows that for hard-real time problem instances, it is

not clear that there is a single best value for α. In the problem instance shown here,

the best value for α is 1, while our other experiments show strong evidence that this

is the worst value for α in soft real-time problem instances. It is worth noting that

although Pseudo 1 here maximizes expected value, the value is still negative. Further

investigation of these issues with the sequencing, Pseudo α, and UPA α heuristics

remains open as future work.

4.5.3 Load Scenarios

Figure 4.4 shows the effect of different loads on the quality of the scheduling heuris-

tics. Figures 4.4(a), 4.4(c) and 4.4(e) show soft-real time scenarios for different loads
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(a) Pseudo 0 in high load soft real-time scenar-
ios.

(b) Greedy in high load hard real-time scenar-
ios.

(c) Pseudo 0 in medium load soft real-time sce-
narios.

(d) Greedy in medium load hard real-time sce-
narios.

(e) Pseudo 0 in low load soft real-time scenar-
ios.

(f) Greedy in low load hard real-time scenarios.

Figure 4.4: Evaluation of selected heuristics for soft and hard real-time cases, for
different time utility functions in low, medium and high load scenarios.
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on Pseudo 0, which we found in general offered the best trade-off between value and

cost for non-downward step soft real-time scenarios as seen in Figure 4.2. As Fig-

ure 4.4(a) shows, Pseudo 0 incurs only minor differences in the quality of the schedules

produced in the high load case, regardless of what time utility function class is being

scheduled. While Pseudo 0 does slightly better in high load cases when scheduling

jobs with downward step utility functions than when scheduling jobs with linear drop

utility functions, these differences become even smaller in the medium load scenario

shown in Figure 4.4(c). However, even as that happens the value gap between prob-

lem instances with these utility functions and the target sensitive utility functions

becomes more extreme. This trend continues further in the low load scenario, shown

in Figure 4.4(e). In this scenario Pseudo 0 achieves almost identical performance

to a value-optimal scheduling algorithm when the time utility functions are either

downward step or linear drop. However, problem instances where jobs have target

sensitive utility functions are scheduled comparatively poorly.

The poor performance of the Pseudo 0 heuristic in the medium and (especially) low

load scenarios may be explained by two factors. First, with less resource contention

a value-optimal policy has more degrees of freedom to optimize performance, and

therefore heuristic policies like Pseudo 0 achieve a lower percentage of value-optimal.

In essence there is more potential utility to be gained, and even a heuristic that

achieves the same absolute value in different load scenarios would achieve a lower

percentage of the optimal value under low load. Second, work conserving heuristics

like Pseudo 0 in low load scenarios are more likely to schedule jobs early when there

is little contention for the resource, even though that might result in lower overall

expected utility.

Figures 4.4(b), 4.4(d) and 4.4(f) show the effects of load in the hard real-time scenario

for the greedy heuristic, which we found to be, in general, the best heuristic overall

for hard real-time scenarios as seen in Figure 4.3. The same trends that were seen in

the soft real-time case are visible here as well. Once again for all but target sensitive

utility functions, greedy did best in the low load scenario, in which almost all problem

instances achieved 90% of value-optimal. As in the soft real-time case, low loads made

greedy (like the other scheduling heuristics) perform worse on target sensitive tasks,

which was most likely caused by similar phenomena to those described in the soft

real-time case.
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Figure 4.5: Possible time utility functions.

4.5.4 Other Time Utility Function Effects

As was shown in Sections 4.5.1 and 4.5.2, the shape of the time utility function can

have a significant impact on the quality of a scheduling heuristic. Because the shape

of a time utility function can be arbitrary (as long as it remains a function mapping

from time to utility), an interesting question is whether particular families of curves

are particularly difficult to schedule.

To examine this effect we consider additional classes of time utility functions. Unlike

the downward step, linear drop, and target sensitive curves, these curves are not

inspired by particular tasks in real-time or cyber-physical systems but rather by their

potential to reinforce or thwart assumptions pertaining to different heuristics. These

curves are shown in Figure 4.5. The first is the downward step function utility curve,

where utility drops in a series of m flat discrete steps:

Ui(t) =


ui

m
dmt

τi
e : t < τi

0 : t ≥ τi

(4.5)

The upward step function utility curve is similar, but utility rises as the task ap-

proaches its expiration time, and then falls off to zero afterward:
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Figure 4.6: Effects of time utility function class on Pseudo 0.

Ui(t) =


ui

m
(m− dmt

τi
e+ 1) : t < τi

0 : t ≥ τi

(4.6)

The rise linear utility curve is a variation of the target sensitive utility curve, where

utility rises up to a critical point ci and then remains flat, but has an abrupt deadline:

Ui(t) =


tui

ci
: t < ci

ui : ci ≤ t < τi

0 : t ≥ τi

(4.7)

To evaluate these effects we ran Pseudo 0 in the soft real-time high load scenario

with problem instances created with all six classes of utility curves and 5 tasks. The

results of running this experiment on 100 problem instances for each time utility

function class are shown in Figure 4.6. Very little differentiates most classes of time

utility functions, at least in the heavy load case. The notable exception to this is the

upward step function. This likely occurs because Pseudo 0 tries to approximate the
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Figure 4.7: Linear drop utility function, with different y-intercepts.

curve at any particular moment as a linearly decreasing function, and the upward

step function behaves in a way contrary to this simplified utility model.

A final observation about the classes of time utility functions we consider in this

dissertation is that target sensitive and linear drop curves only differ in the slope of

the line before the critical point. By changing the slope of the utility curve before

the critical point we get the broader class of utility functions shown in Figure 4.7, to

which both belong. Curves with y-intercept = 0 are target sensitive utility curves,

and curves with y-intercept = ui are linear drop curves. At any point where Ui(t) < 0

we assume instead that Ui(t) = 0. The effect of these utility curves on Pseudo 0 is

shown in Figure 4.8. The problem instances shown in this experiment are soft real-

time 5 task sets with high load. These experiments show that as the utility curve

becomes more peaked, Pseudo 0 performs worse compared to value-optimal, which is

consistent with the results of our previous experiments.
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Figure 4.8: Effects of initial time utility function slope on Pseudo 0.

4.6 Discussion and Recommendations

Our MDP formulation allows comparison of various heuristics to a value-optimal

policy in order to quantify their performance exactly despite stochastic task behav-

ior. This allows us to determine what percentage of the available utility each of the

heuristics achieves under a variety of different scenarios.

From the experimental evidence presented in Section 4.5, the heuristic that pro-

vided the best compromise between scheduling complexity and performance for soft

real-time systems was Pseudo 0, which extends UPA [50]. There were two notable

exceptions, however. First, if the time utility functions of the tasks being scheduled

were downward step utility functions, the deadline heuristic was superior to Pseudo

0. Second, in cases with low load and tasks with target sensitive utility functions, in

general no heuristic scheduler achieved a significant percentage of the value-optimal

objective.

For hard real-time task sets the only acceptable heuristic was the greedy heuristic,

albeit with two caveats. First, the value of the policy is not guaranteed to be positive.

Second, the scheduling overhead is proportional to the worst case execution time
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High Medium Low
Load Load Load

Downward Step Deadline Deadline Deadline
Linear Drop Pseudo 0 Pseudo 0 Pseudo 0
Target Sensitive Pseudo 0 Pseudo 0 None

(a) Soft Real-Time Guidelines

High Medium Low
Load Load Load

Downward Step Greedy Greedy Greedy
Linear Drop Greedy Greedy Greedy
Target Sensitive Greedy Greedy None

(b) Hard Real-Time Guidelines

Figure 4.9: Guidelines for soft and hard real-time scenarios.

among jobs, which could make it computationally too expensive for online use. As in

the soft real-time case, in general no heuristic scheduler performed well given low load

and tasks with target sensitive utility functions. These guidelines are summarized in

Figure 4.9.
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Chapter 5

Trade-offs in Value-Optimality

Versus Memory Complexity

Chapter 3 introduced a technique for producing value-optimal policies for utility-

accrual scheduling problems. However, these policies achieved optimality at the cost

of a large up front computation time for precomputing the schedule, and a large run-

time memory complexity. Chapter 4 examined heuristic schedulers with low time and

memory complexity at run-time, but which achieve a varying fraction of the value of

the value-optimal policy. In order to address the needs of utility-accrual schedulers in

real-time embedded and cyber-physical systems, in this chapter we consider how to

synthesize these approaches to maximize policy value, while maintaining low run-time

memory and time complexity.

As was seen in Chapter 4, for some scheduling problems solving the scheduling MDP

produced scheduling policies with significantly higher values than any of the heuristics

we evaluated. For some scenarios, it thus may be preferable to pay the initial cost for

precomputing the value-optimal schedule, and store the resulting policy in a lookup

table in which each state maps to the value-optimal action to take in that state.

However, this approach suffers from two potential pitfalls: (1) memory complexity,

and (2) brittleness due to a lack of generalization, i.e., an inability for the value-

optimal policy to adapt if the system visits a state not predicted by the model, which

thus has no entry in the lookup table.

The memory requirements for the stored lookup table representation of the value-

optimal scheduling policy may be potentially quite large, and thus may require storage

in main memory. The modestly sized scheduling problems shown in Section 4.5 may
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have state spaces that run into the tens of thousands of states, and each additional

task may double the size of the state space. Even if large amounts of time and memory

are available to precompute the value-optimal schedule, e.g., off-line during design

time, the run-time constraints may still prove prohibitive, especially on memory-

limited embedded systems. In order to be usable in such domains, an MDP based

scheduling policy thus must address the exponential memory costs of the lookup table.

Because the MDP based scheduling policy is solved over an ideal model of the system

it also may not capture the full range of activities that can occur in a real system.

Concretely, a state encountered in the real system may not be reachable under the

assumptions of the model. This can occur, for instance, if the actual duration dis-

tribution of a task is different than that used in the MDP model, e.g., if the actual

task has a non-zero probability of running for a duration greater than the worst case

execution time captured in the model. In such cases a look-up in the stored policy

may fail, resulting in unspecified scheduler behavior. Thus, additional flexibility of

the scheduling policy to handle such cases is desirable, and a mechanism is therefore

needed to generalize the policy to handle unexpected states.

This chapter describes how both of these issues can be addressed by leveraging deci-

sion trees [39,40] to transform the tabular representation of the value-optimal schedul-

ing policy into a functional form. In Section 5.1 we introduce decision trees and al-

gorithms for building them from scheduling policies, and in Section 5.2 we consider

the implications of the approach for choosing ideal tree sizes. In Section 5.3 we then

evaluate the impact of this approach for representative scheduling problem instances.

In Section 5.4 we introduce extensions to the decision tree representation presented in

Section 5.1 and evaluate the effects of these extensions on representative scheduling

problem instances.

5.1 Decision Tree Representation of Scheduling Poli-

cies

Decision trees compactly encode a policy from a collection of labeled instances,

which in the problem domain we consider is the set of scheduling states X . Every
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x ∈ X has a vector of k input variables x1, x2, ...xk. The set of possible labels for each

x is in A, the set of actions that can be chosen in a scheduling state. A decision tree

maps each x ∈ X to an a ∈ A.

Given an unlabeled query state xquery, we can then find the label recommended by

the decision tree. Every non-leaf node in the decision tree is decorated by a predicate

over the vector of k input variables in xquery. A predicate P maps xquery to 0 if the

predicate is false given the values of input variables in xquery or 1 if the predicate

is true over the input variables. Each non-leaf node has two children with one edge

labeled 0 and the other labeled 1. Each leaf node is decorated with a label a ∈ A.

The set of input variables to the predicate is derived from the state variables of the

scheduling state. The first input variable is the system time tsystem. This variable is

bounded in the range [0, H) where H is the hyperperiod of the task set. The next

input variable is an indicator variable for each possible job, specifying whether or

not it is in the ready queue. This variable takes a value of either 0 or 1. We then

introduce an input variable per task which counts the number of jobs of each task in

the ready queue. This variable is bounded in the range [0, dτi/pie] for task Ti. Finally

we introduce an input variable tracking the total number of jobs in the ready queue.

This variable is bounded in the range [0,
∑n

i=0 dτi/pie] where n is the number of tasks

in the system. The total number of input variables, all of which are integer-valued,

is 2 + n +
∑n

i=0 dτi/pie, where n is the number of tasks.

Given a tree and a query state, a simple recursive algorithm returns a label from the

decision tree. Starting with the root node, if the current node of the tree is a leaf

node, the algorithm returns the label of the node and terminates. If it is a non-leaf

node, the algorithm resolves the predicate labeling the node on xquery. If the predicate

resolves to false, the algorithm recurses on the child node reached by the edge labeled

0. Similarly, if the predicate is true, the algorithm recurses on the child node reached

by the edge labeled 1. In this way, the algorithm searches down the tree for the first

leaf node it encounters, and returns the label of that node.

Given a set of states and actions, we wish to build such a decision tree. We consider an

algorithm based on the ID3 and C4.5 algorithms [39,40]. The input to the algorithm

is a set I of labeled instances. An element in I is a pair in the form (x, a) where

x ∈ X and a ∈ A. In the context of our scheduling problem x is a scheduling state
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and a is the scheduling action π∗(x), which is recommended by the value-optimal

scheduling policy.

Given a finite set of predicates, these algorithms recursively build the decision tree.

For each predicate P the current set of labeled instances I is partitioned. The set we

consider contains all predicates of the form xk < y, where xk is an input variable for

scheduling state x, and y is an integer value in the range of that input variable. The

range for each variable in the vector of input variables is bounded, so there are only

finitely many predicates of this form.

The predicate partitions this original set into the two following subsets:

IP (x)=0 = {(x, a)|(x, a) ∈ I, P (x) = 0} (5.1)

and

IP (x)=1 = {(x, a)|(x, a) ∈ I, P (x) = 1}. (5.2)

The ID3 and C4.5 algorithms greedily build decision trees by maximizing the infor-

mation gain at each level of the tree. This metric attempts to minimize the size of

the tree, while at each level of the tree maximizing the accuracy of the encoding of

the policy.

The information gain resulting from splitting the original set I on the predicate P is

defined in terms of the entropy of the resulting sets. The entropy of a set is defined

in terms of the following subset:

Ii = {(x, a)|(x, a) ∈ I, a = i} (5.3)

which is the subset of the set I with the label i. The entropy h(I) of a set I is in

turn a measure of the homogeneity of the labels in the set and is defined in terms of

the cardinality of the set |I|, and of each subset |Ii|:
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h(I) = −
∑
a∈A

|Ia|
|I|

logb

|Ia|
|I|

(5.4)

The information gain of a predicate P (x) is calculated as:

IG = h(I)− h(IP (x)=0)− h(IP (x)=1) (5.5)

The predicate with maximal information gain separates the original set into two sub-

sets with the greatest homogeneity of labels. If the original set already only has one

label, the decision tree building algorithm creates a node labeled with the appropriate

label a and the algorithm terminates. Otherwise the predicate that maximizes infor-

mation gain is used to label the current node of the decision tree. The sets IP (x)=0

and IP (x)=1 are then used as the input sets for recursively labeling the child nodes.

Example decision trees illustrating such an expansion are shown in Figure 5.1.

tsystem < 250

q1,0 < 1

1 0

a2

a1aidle

1 0

(a) Example decision tree.

tsystem < 250

q1,0 < 1

1 0

q2,0 < 1 

a1aidle a1 a2

1 10 0

(b) Decision tree after expansion of rightmost leaf node.

Figure 5.1: Example decision trees, with predicates defined over state variables.

Because the decision tree may need to grow to exponential size in order to encode an

arbitrarily complex policy fully, the algorithm can be configured to terminate either

after the policy is fully encoded, or after a given number of splits is reached. At
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each iteration, if neither of these termination conditions is reached, the unexpanded

node with the highest potential information gain is split into two child nodes. If the

algorithm reaches its maximum number of splits, unsplit leaf nodes may be labeled

with the most common action of their input set.

Given a decision tree encoding a scheduling policy, we can translate that tree (trivially,

using nested conditional logic) into a function that takes as input a scheduler state,

transforms it into a vector as described above and follows the decision tree logic until

an action is returned. In the worst case, to encode the value-optimal policy fully, a

decision tree may need a number of leaf nodes equal to the number of states in the

lookup table for that policy. To produce a reduced memory approximation we build

the decision tree only to a given depth. In general, this usually results in at least

some errors encoding the actions of the value-optimal policy. This may also result in

actions recommended by a partially built decision tree being unavailable in the input

system state. To address this complication, if the action encoded by the tree is not

possible in the current state, the scheduling decision function can return aidle, the

action that simply idles the resource.

The run-time complexity of the resulting scheduling decision function depends on the

size (i.e., the number of splits) of the tree, d. If we assume that the resulting decision

tree is balanced, the worst case time complexity at run-time is O(log2 d). The maximal

worst case time complexity occurs if the resulting tree is maximally unbalanced in

which case traversal requires at most O(d) steps. The memory requirement of the

scheduling decision function is O(d). In the experiments described in Section 5.3

we bound the potential size of the decision tree to be less than one hundred nodes,

so d << |X |, the size of the scheduling state space. Thus the run-time memory

complexity of the tree-based approximation is expected to be much lower than the

run-time memory complexity of the lookup table for the value-optimal policy, which

is O(|X |).

5.2 Effects of Decision Tree Representation

The tree building algorithm described in Section 5.1 uses entropy minimization to

generate decision trees efficiently. This maximizes the information gain with each split
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in the tree. However, it is not information gain itself that we are primarily interested

in maximizing. Rather, we are interested in decision trees that (1) accurately encode

the state to action mapping of the value-optimal scheduling policy with reduced

memory cost and (2) accrue high value. Maximizing the information gain at every

iteration of the tree building algorithm is not strictly guaranteed to increase either of

these relevant metrics. A simple example can illustrate this phenomenon. Consider

the following subset of optimal actions for a set of states:

{ai, ai, aidle, aidle, ai} (5.6)

The most common action in this subset is ai. If a leaf node of a decision tree encoded

the mapping of a set of states to these actions, the leaf node would be labeled ai

by the tree building algorithm. Therefore, for any of the states in the set the policy

action encoded by the decision tree would be ai. If, however, the action ai were not

available in a given state, the scheduling decision function based on this decision tree

would instead return aidle, so that no illegal actions are returned by the scheduler.

In that case, if the two instances of aidle in the above set are associated with states

where ai is not a legal action, the error rate for the states encoded by this leaf node

would be 0.

However, because the actions are not homogeneous, the tree building algorithm in-

stead might split this leaf node. It is possible for a predicate to split the above set

into the following two subsets:

{ai, ai}, {aidle, aidle, ai} (5.7)

which have a lower combined entropy. Note that the dominant action in the second

subset is now aidle. Using the most common label for each set will now introduce an

error in the scheduling decision function, whereas the encoding from the smaller tree

perfectly encoded the optimal policy for the subset of system states.

This serves to demonstrate that as the size of the tree increases, the value of the

approximation produced, at least as measured by the accuracy of the state-to-action
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mapping, does not necessarily increase. This means we should have no expectation

that a less direct metric such as the value of the resulting scheduling decision function,

should monotonically increase as a function of tree size. Therefore, it is necessary to

evaluate such effects empirically as is discussed in Section 5.3.

5.3 Experimental Results

In this section we explore the quality of the reduced memory approximations to

the value-optimal policy. We examine how the accuracy of the encoded policy varies

with the size of the underlying decision tree representation. We also examine the

value of the decision tree based scheduling decision function. Finally, given a set

of heuristics and different reduced memory approximations of value-optimal policies,

we examine how the best of the presented scheduling techniques can be chosen to

improve feasible overall system utility accrual, and how the decision tree approach

performs in comparison.

5.3.1 Variation in Accuracy of Encoding with Tree Size

We first examine how accurately decision trees of different sizes can encode the state-

action mapping of a value-optimal policy. Specifically, we measure what percentage of

the states in the system model are correctly labeled with the value-optimal scheduling

action by approximations with different tree sizes.

We generate task sets for the following experiments using the methodology described

in Section 4.5. For both hard and soft real-time scenarios, 300 5-task scheduling

problem instances were generated: 100 each for the downward step, linear drop and

target sensitive time utility function types. All scheduling instances assumed high

load, which as is shown in Chapter 4 is a scenario in which heuristics typically have a

lower relative value compared to the value-optimal policy. The value-optimal policy

for each task set was calculated and then compressed into scheduling decision trees

of varying sizes.
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(a) Compression of 5-task soft real-time policies.
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(b) Compression of 5-task hard real-time policies.

Figure 5.2: Accuracy of policy encoding as a function of the size of the tree, counted
as the number of splits. Average accuracy with 95% confidence intervals, based on
all 300 problem instances, is shown.
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Figure 5.2 summarizes the results of this experiment, where the size of the decision

tree is again defined as the number of splits. For this experiment we looked at trees

with between 0 and 100 splits. As can be seen, there was no discernible difference

between the overall accuracy of the decision tree encoding under the hard and soft

real-time cases. We also found no discernible difference in the case of different time

utility function types. In general, the larger the scheduling decision tree, the higher

the accuracy of the scheduling decision function. However, this trend appears to be

logarithmic, suggesting that smaller trees will quickly capture the structure of the

policy, while larger trees will only gradually refine this approximation, if at all.

Although the general trend shows improvement in the accuracy of the encoding of

a policy’s state-to-action mapping, a close examination of the data showed that the

effect described in Section 5.2 did in fact occur, but that the number of states affected

was generally a very small percentage of the size of the state space.

5.3.2 Variation in Value with Tree Size

Figure 5.3 shows how the value of the resulting reduced memory approximation can

fluctuate as a function of tree size, for a randomly selected problem instance. This

particular problem is a 5-task soft real-time scheduling problem with a time utility

function from the linear drop family of curves. The values of two heuristic policies

are shown for comparative purposes. This example illustrates how the value of the

reduced memory approximation may be expected to vary for trees whose size is much

less than the size of the scheduling problem’s state space. Because such variations

tend to stabilize above a size of several tens of splits, we evaluate the values of all the

reduced value-approximations based on relatively small trees, i.e., trees with between

0 and 100 splits.

It is also appropriate to examine the sizes of the trees that result in the scheduling

policies with maximum value. The size of each tree that produced the approximation

with the maximum value for our experimental scheduling problems is shown in Fig-

ure 5.4. As can be seen in Figure 5.4, a non-trivial number of very small trees (less

than 10 splits), produce the reduced memory approximation with the highest value.
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Figure 5.3: Value of tree-based scheduling policy as a function of tree size, compared
to the value of the heuristic policies Pseudo 0 and greedy.

However, the plurality of scheduling problems are best scheduled by the reduced

memory approximations encoded by the largest trees.

5.3.3 Comparative Evaluation of Decision Trees

We introduced the value-optimal scheduling problem in Chapter 3. Producing

a value-optimal policy has large time complexity, and at run time this policy has

large memory complexity. We investigated a variety of heuristics in Chapter 4, and

found two, greedy (described in Section 4.2) and Pseudo 0 (described in Section 4.4)

to be best in the widest range of scenarios, as seen by the recommendations given

in Section 4.6. We now compare reduced-memory tree-based approximations of the

value-optimal policy to the other techniques in terms of their ability to maximize util-

ity accrual. We also examine the effects of synthesizing our techniques, by examining

the effect of selecting the best heuristic for a given problem instance and the effect of

selecting (from among heuristics and tree-based approximations) the highest valued

scheduling technique.
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(a) Optimal tree size for soft real-time problem instances.
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(b) Optimal tree size for hard real-time problem instances.

Figure 5.4: Histogram of the tree size giving the highest valued approximation.
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Figure 5.5 shows the value of the different scheduling techniques for the 300 scheduling

problems introduced in Section 5.3.1. The greedy and Pseudo 0 heuristics are shown,

as well as an evaluation (labeled heuristic) of the value achieved by simply picking

which ever of these two heuristics performs best in each scheduling problem. As can

be seen in Figure 5.5(a) this approach does not significantly improve the overall utility

accrual in the soft real-time case. This is most likely because Pseudo 0 outperforms

greedy in all but a few soft real-time scheduling problems. In contrast, as is shown

in Figure 5.5(b), this approach does provide noticeable gains in the hard real-time

case. This is likely because in the hard real-time scenarios, while greedy in general

performs better, there may be a slightly greater chance that Pseudo 0 outperforms

greedy on a particular scheduling problem.

The evaluation labeled tree gives the tree-based scheduling function with the highest

value for all the tree sizes in the range [0,100]. In both scenarios, soft and hard real-

time, our tree-based approximations outperformed either heuristic alone, as well as

the approach of choosing the best heuristic for a given scheduling problem.

The evaluation labeled best is the technique of choosing the heuristic or tree-based

approximation that gives the best value available for a given scheduling problem. As

can be seen from Figure 5.5(a), there was little improvement over using the best tree-

based approximation in the soft real-time scenario. However, in the hard real-time

scenario shown in Figure 5.5(b) there was a more noticeable improvement. As before

this improvement is likely due to the fact that in a hard real-time scenario there may

be a slightly greater chance that a heuristic outperforms a tree-based approximation

for that specific problem instance, when compared to the corresponding soft real-time

scenario. Indeed, when we look at the percentage of time the best approach would

choose a particular scenario, we find that under soft real-time scenarios, 83.3% percent

of the time a tree-based approximation was used, while 17.7% of the time a heuristic

was used (1.0% of instances were best scheduled by greedy, the other 16.7% by Pseudo

0). In the hard real-time scenarios, slightly fewer problems were best scheduled by

a tree based approximation (78.7%), while 21.3% were best scheduled by a heuristic

(13.7% of instances were best scheduled by greedy, the other 7.7% by Pseudo 0).
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(a) Comparison of scheduling approaches for soft real-time problem instances.
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(b) Comparison of scheduling approaches for hard real-time problem instances.

Figure 5.5: Evaluation of heuristics, decision trees and combined approaches.
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5.4 Heuristic Leaf Nodes

In the trees evaluated in Section 5.3, we assumed that each leaf node was labeled with

a single action. However, a final useful extension to our tree building algorithm is

to allow leaf nodes to be labeled by a heuristic policy. This allows us to incorporate

the strengths of heuristics in our tree-based approximations more directly and to

synthesize utility-accrual policies with higher expected value, while still maintaining

reasonable run-time complexity.

Given a set of policies Π and a set of state-action pairs I we calculate the sets,

Iπ = {(x, a)|(x, a) ∈ I, π(x) = a} (5.8)

and

I−π,i = {(x, a)|(x, a) ∈ I, π(x) 6= a, a = i} (5.9)

for each heuristic π ∈ Π. The first set is the set of states in the encoded policy that

have the same state-action mapping as policy π. The other is the set of state-action

pairs that do not have the same state-action mapping as π, but instead have the state

mapped to action i ∈ A. The entropy of a set relative to a policy π ∈ Π is defined as:

hπ(I) = −|Iπ|
|I|

logb

|Iπ|
|I|

−
∑
a∈A

|I−π,a|
|I|

logb

|I−π,a|
|I|

(5.10)

Conceptually this measure can be seen as taking the original set I, and replacing

any action in a state-action pair where the encoded policy and policy π agree with a

unique action for following the policy π, and then taking the entropy of the resulting

set. It is worth noting that this definition of entropy is identical to the measure of

entropy given in Equation 5.4 if a special policy is considered that returns a single

static action for any state.

When considering both static actions and a set of policies Π, the entropy of a set is:
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min{h(I), min
π∈Π

{hπ}} (5.11)

This formulation takes into account that the label of any leaf node will be either the

policy or static action with the largest set Iπ or Ii.

We show the results of running the experiments in Section 5.3 for trees with heuristic

leaves in Figure 5.6. These results demonstrate that in this approach the encoding

accuracy for trees with heuristic leaves begins slightly higher for very small trees,

but quickly becomes indistinguishable from trees built solely with static actions. Fig-

ure 5.7 shows that in this approach the optimally-valued trees with heuristic leaves

was more likely to be small (under 10 splits), but otherwise the results were not

significantly different than the results for the static trees shown in Figure 5.4.

Figure 5.8 shows that decision trees with heuristic leaves also outperform the heuristic

policies overall in both hard and soft real-time problem instances. For soft real-time

experiments, 95.3% of the time the best scheduler was a tree with heuristic leaves,

while an additional 4.3% of the time the best tree with heuristic leaves was equivalent

to the best heuristic (typically a “tree” with only a single node labeled with the

heuristic). In only 0.3% of cases was the best solution a heuristic. For hard real-time

experiments, 88.3% of the time the best scheduler was a tree with heuristic leaves,

while an additional 8.4% of the time the best tree with heuristic leaves was equivalent

to the best heuristic. In 3.3% of cases the best solution was a heuristic (2.3% of the

time greedy, 1.0% of the time Pseudo 0).
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(a) Compression of 5-task soft real-time policies.
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(b) Compression of 5-task hard real-time policies.

Figure 5.6: Accuracy of policy encoding as a function of the size of the tree with
heuristic leaves, counted as the number of splits. Average accuracy with 95% confi-
dence intervals, based on all 300 problem instances, is shown.
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(a) Optimal tree size for soft real-time problem instances.
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(b) Optimal tree size for hard real-time problem instances.

Figure 5.7: Histogram of the size of the tree with heuristic leaves that gives the
highest valued approximation.
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(a) Comparison of scheduling approaches for soft real-time problem instances.
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(b) Comparison of scheduling approaches for hard real-time problem instances.

Figure 5.8: Evaluation of heuristics, decision trees, and combined approaches.
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Chapter 6

Conclusions

Time utility functions are a promising scheduling abstraction for an emerging class

of real-time and cyber-physical systems, whose complex timing constraints may be

difficult to represent by traditional scheduling abstractions such as deadlines. How-

ever, the design of utility-aware scheduling algorithms poses a number of important

research challenges.

This dissertation introduces a novel Markov Decision Process (MDP) model for sys-

tems with periodic tasks and non-preemptive jobs that run with stochastic duration.

This model allows us to quantify the exact value of utility-accrual scheduling policies

for these systems, even in the face of stochastic behavior and rare high impact events.

We can derive value-optimal scheduling policies, policies that maximize long term

expected utility accrual, by solving the MDP system model. However, this incurs a

high up-front cost in time and memory, as well as a significant run-time memory cost.

Because of the potentially prohibitive cost associated with value-optimal schedules

we consider a variety of utility-aware scheduling heuristics that offer low time and

memory complexity at run-time. Using our MDP system model, we can examine

how each heuristic compares to the value-optimal policy. We examined the effect of

soft versus hard real-time constraints, as well as the effect of load, and the effect of

different time utility function types. We introduced a set of recommendations for

which heuristics are most effective in different scenarios, though in some cases none

of the heuristics performed adequately.
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We then introduced tree-based approximations of value-optimal policies, which trade

off some value-optimality for significantly reduced memory complexity. We compared

the value of the resulting reduced memory approximation policies to value-optimal

and heuristic policies. Our results show that the tree-based approximations often

outperform heuristics. Finally, we show the effect of synthesizing heuristics and tree-

based approximations. Our results show that through a combination of the techniques

presented in this dissertation, it is possible to synthesize utility accrual schedulers with

low run-time complexity that compare favorably to value-optimal policies.

There are several open research questions that were uncovered as part of this dis-

sertation. First, there is the unresolved question of why the sequencing heuristic

(discussed in Chapter 4) performs comparatively poorly, especially when a simplified

variation of sequencing improves performance when applied by UPA α. Second, it is

unclear if there is an efficient or even effective algorithm for calculating the optimal

value for α for UPA α and Pseudo α in hard real-time scenarios. Third, the ability of

decision tree based schedulers to adapt to unforeseen system states remains a largely

unexplored feature of this approach. The effect of unexpected states on the value of

scheduling policies is unknown. These questions remain open for future work.

There are several other promising research directions that future work could explore.

Some of these potential extension are the application of techniques from this work to

other system and task models e.g. tasks with dependencies or sporadic tasks. Other

avenues for future work include examining the ability to adapt to a changing system,

especially in domains such as supply-chain management in which the time-scale of

the system makes offline recomputation of the value-optimal in response to changing

system conditions tractable.
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