Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-30

1991-04-10

The Discrete Orthonormal Wavelet Transform: An Introduction

Michael Frazier and Arun Kumar

In this paper z-transform theory is used to develop the discrete orthonormal wavelet transpform
for multidimensional signals. The tone is tutorial and expository. Some rudimentary knowledge
of z-transforms and vector spaces is assumed. The wavelet transform of a signal consists of a
sequence of inner products of a signal computed against the elements of a complete
orthonorml set of basis vectors. The signal is recovered as a weighted sum of the basis vectors.
This paper addresses the necessary and sufficient conditions that such a basis muct respect.
An algorithm for the design of a proper basis is derived from... Read complete abstract on page
2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Frazier, Michael and Kumar, Arun, "The Discrete Orthonormal Wavelet Transform: An Introduction” Report
Number: WUCS-91-30 (1991). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/648

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/648?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/648

The Discrete Orthonormal Wavelet Transform: An Introduction

Michael Frazier and Arun Kumar

Complete Abstract:

In this paper z-transform theory is used to develop the discrete orthonormal wavelet transpform for
multidimensional signals. The tone is tutorial and expository. Some rudimentary knowledge of z-
transforms and vector spaces is assumed. The wavelet transform of a signal consists of a sequence of
inner products of a signal computed against the elements of a complete orthonorml set of basis vectors.
The signal is recovered as a weighted sum of the basis vectors. This paper addresses the necessary and
sufficient conditions that such a basis muct respect. An algorithm for the design of a proper basis is
derived from the orthonormality and perfect reconstruction conditions. In the interest of simplicity the
case of multidimensional signals is treated separately. The exposition lays bare the structure of the
hardware and software implementations.


https://openscholarship.wustl.edu/cse_research/648?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/648?utm_source=openscholarship.wustl.edu%2Fcse_research%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages

The Discrete Orthonormal Wavelet
Transform: An Introduction

Michael Frazier Arun Kumar#*

WUCS-91-30
April 10, 1991

Abstract

In this paper z-transform theory is used to develop the discrete orthonormal wavelet
transform for multidimensional signals. The tone is tutorial and expository. Some
rudimentary knowledge of z-transforms and vector spaces is assumed. The wavelet
transform of a signal consists of a sequence of inner products of a signal computed against
the elements of a complete orthonormal set of basis vectors. The signal is recovered as a
weighted sum of the basis vectors. This paper addresses the necessary and sufficient
conditions that such a basis must respect. An algorithm for the design of a proper basis is
derived from the orthoncrmality and perfect reconstruction conditions. In the interest of
simplicity the case of multidimensional signals is treated separately. The exposition Iays
bare the structure of hardware and software implementations.

Address for correspondence:

Arn Kumar

Southwestern Bell Tech. Resources
550 Maryville Center Dr

St. Louis, MO 63141

email: kumar@sbctri.sbe.com
phone: 314-526-7857

* Michael Frazier is with the Department of Mathematics, Michigan State University, East Lansing, MI 48824, Arun Kumar is
with Southwestern Bell Technology Resources Inc. (SBTRI), St. Louis, MO 63141. This work was done while both the authors
were at Washington University, St. Louis, MO 63130, The first author was supported in part by NSF post-doctoral fellowship
DMS 8705935. The second author was supported in part by SBTRI. This is a corrected version of a paper submitted Feb. 20,
1961, to IEEE Trans. Information Theory.






DISCRETE ORTHONORMAL WAVELET TRANSFORM 1

1. Introduction

In this paper we discuss- the wavelet transform in a simple but rigorous manner. Two underlying
themes are developed simultaneously. The first is that of signal recovery from a sequence of inner
products. The second theme is operational, and concerns the design of filters needed to implement
the wavelet transform in hardware or software. Necessary and sufficient conditions for orthonormal
decomposition and perfect reconstruction are established. Algorithms for the design of wavelet filters
are presented together with illustrative examples. A rudimentary knowledge of z-transforms, vector

spaces, and inner-products, is assumed. The exposition is otherwise complete and self-contained.

The theory of wavelets [1]~[7] is related to older ideas in the field of multirate and subband signal
processing [8]-{11]. Histories of the development of wavelet theory can be found in [3] and [7}. Our
own interest in wavelets came about through a study of the Phi-transform [12]-[18], which is also
related to multirate signal processing. Almost all the results derived here are known from subband—
filter and wavelet literature, but are presented here in a simple unified manner that underscores the
close correspondence between the engineering and the mathematical points of view. Qur purpose is
to give an elementary exposition of discrete wavelet theory that is accessible to a general audience,
and which will provide sufficient background and reference information for non-specialists who would

like to implement and use wavelet analysis in their work.

In Section 2 we discuss the construction of “first generation” wavelet bases for discrete finite
and infinite-dimensional vector spaces. The first generation basis consists of even translates of two
functions fr and fy, usually thought of as low and high~pass filters, respectively. The fundamental
result here is Theorem 1 which gives a necessary and sufficient condition for the construction of such
an orthonormal basis. The decomposition and reconstruction of an input signal in terms of this
wavelet basis is best implemented through 2 one-stage filter-bank structure. For such a structure
there is a simple condition relating the “synthesizing filters” g; and gy to the “analyzing filters” fr
and fg, which is necessary and sufficient for the perfect reconstruction of every input signal. This

result is also derived in Section 2.

We discuss the practical design of first generation wavelet bases in Section 3. An explicit al-
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gorithm is given for obtaining all possible fi and fy satisfying the condition of Theorem 1. We
give some examples of such wavelet bases, in particular the “Shannon” and the “real Shannon”
bases, which are highly localized in the frequency-domain. We also discuss the problem of finding
the nearest (in the {*-sense) first generation wavelet to a given vector. This problem has a simple

solution based on our wavelet—construction algorithm.

In Section 4 we discuss the construction of higher—generation wavelet bases. The basic result
is Theorem 4 which describes how to pass from a wavelet basis at one generation to the next. In
the finite case this requires the construction of new filters; but these can be obtained from the

first-generation filters by a simple process described in Lemra 7.

In Section 5 we state and prove the results necessary to extend the development to mutidimen-
sional signals lying in discrete finite and infinite~dimensional vector spaces. Since the main ideas are
laid out in Sections 2 to 4, Section 5 is brief. The purpose is merely to provide a complete reference;

the new difficulties are mostly notational.

We use the z-transform as a basic tool in our discussion. Among other things, it provides a

convenient notation, allowing us to deal with the finite and infinite-dimensional cases simultaneously.

1.1. Notation

By C, R, Z, and Z¥, are meant the set of complex numbers, the set of real numbers, the set of
integers (positive, negative, and zero), and the set of positive integers. If a,b € Z are integers, then
al b means that a divides b. Zx denotes the ring of integers {0,..., N — 1}. For any discrete set
U, I1(U) denotes the vector space of all absolutely summable sequences defined from U to C, and
[(U) the vector space of all absolutely square summable sequences defined from I/ to C. If fisa
function from a discrete set U to C, then the support of f is defined as that subset of U where f

does not vanish: supp(f) = {u € U : f(u) # 0}.

If A is a set of vectors in some vector space V, then span(A) is the subspace of V consisting of
all finite linear combinations of the elements of A. For any set A C V the topological closure of A

in V' will be written cl{4).



DiSCRETE ORTHONORMAL WAVELET TRANSFORM 3

If @ is a string over an alphabet A we will write & € A" where “«”  in this context, de-
notes the Kleene operator. If o and § are strings, then af8 is their concatention. We write
a = afl)a(2)...a(n) where «(i) is the i-th character in @. By |o] € ZT U {0} will be meant
the length of the string a. The string e is the null string if |a] = 0. If a, 8,7 € A", and @ = B,
then § is called a prefiz of &. By § = pfx(e, i), 0 < i < |/, we will mean that 8 is a prefix of & and
18] = i.
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2. Two—Band Orthonormal Decomposition And Perfect Reconstruction Of
Discrete One—Dimensional Signals

In this section we describe how an arbitrary signal in the discrete infinite-dimensional vector space
[(Z) or the discrete N~dimensional vector space C can be written as a weighted sum of certain
“elementary” synthesizing functions. The expression of a signal z as a weighted sum of certain
synthesizing functions is called a decomposition of z. In order to set up the problem consider the
arrangement of filters, downsamplers, and upsamplers in Figure 1. By “|2” is meant downsampling,
or the deletion of every other number from the input sequence. By “12” is meant upsampling, or
the insertion of a zero between every pair of numbers in the input sequence. The symbols D and
U will also be used to denote the down and upsampling operators. The symbols f; and fy denote
analyzing fillers, while g; and gy are synthesizing filters. The subscripts “H” and “L” could be
thought of as abbreviations for “highpass” and “lowpass”, respectively; because it is usual, though

not necessary, that fy and gy are highpass filters, and f; and gy lowpass filters.

R § e LRt
transformation reconstruction
(analysis) : (synthesis)

transform domain representation of x

Figure 1: An arrangement of filters, downsamplers, and upsamplers.

If the signal z lies in infinite-dimensional vector space V = {%(Z), then we will assume that
fr fr.gL, 95 € ). It follows that for z € {2(Z), the sequences uy, vz, wr, yr, 85, vy, Wy, and
yi, all belong to *(Z). For z in the finite-dimensional signal (vector) space V = CV = *(Zn),
we will assume fr, far, 91,95 € C¥ . Then for z € C" the sequences uy, W, ¥r, Uy, wy, and yg,

belong to CN; while the sequences vy and vy belong to che,
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The sequences vy and vy are said to define a discrete orthonormal wavelet transform of the signal
x, if the analyzing—filter sequences fz and fr are chosen according to rules stated in Subsection 2.2.
‘The synthesizing—filter sequences gy and gy will be chosen so as to attain a perfect reconstruction

of z. Perfect reconstruction will be seen to define a decomposition of z.

The main results of this section are stated in two theorems that place constraints on the design of
filter sequences fg, fr, gzr, and gr. Another goal of this section is the unification of the engineering
and the mathematical points of view. While the problem is so far stated as a filter design problem,
it could also be studied as a pure vector space problemn. We will see that the process of filtering is
equivalent to the process of the computation of a series of inner~products, and there exists a close

relation between the engineering and the mathematical points of view.

2.1. z—Transform Notation

For an infinite sequence z = (..., z(~1), (0}, z(1),...) € I*(Z), z(i) € C for all i, the z-transform

£(z) of z is written:
o
Hz)= ) z(n)z™, (1)
n=-co
where the indeterminate z ranges over the unit circle T in the complex plane. In the standard
definition of the z—transform, the indeterminate z ranges over the entire complex plane. Here we
will use restrictions of the standard definition. Note that z(n) is the n-th Fourier coefficient of the
function that maps w € [—=, 7] to £(e~#*); in particular then,
z(n) = L f e %) eI duy. (2)
27 J_,

From (2), if #(z) = §(z) for all z € T, then z = y; hence the z—transform is one-to—one.

If z is a finite sequence = = (2(0),...,z(N — 1)) € C¥ for some N € Z™, then the z—transform

#(z) of z is written:

z(z) = E z(n)z ™", (3)
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The function £ is defined for z € Wy = {e=72*™/N : m € Zy}, the set of all the N-th roots of
unity. The complex number 2(¢~/2*™/N) 1 € Z, is the m-th Discrete Fourier Transform (DFT)

coefficient of z. By DFT inversion,

N-1
r(n) — ]_]\‘f Z é(e—j2xm/N)e—j2xmn/N_ (4)

m=0

From (4), if (2} = §(z) for all z € Wy, then z = y.

If z lies in {*(Z), then by (Fz){w) we will mean the Fourier transform of z evaluated atw € [, 7],
(Fz)w) = 2(e™#). If 2 lies in CV, then by (Fz)(m) we will mean the DFT of z evaluated at

m € Zn; (Fr)(m) = &(e~i2mmIN),

When the range of the index of summation is not specified in some particular equation, it will
mean that the equation holds equally for sums over Z and Zy. Similarly, when we make a statement
about some property of Z(z) that holds “for all z” or “Vz” we will mean “Vz € T” or “Vz € Wy"

depending on whether z belongs to the signal space V =2(Z) orto V = CV.

In case of finite sequences z, since z € Wy, all arithmetic on the powers of the indeterminate z™!
in #(z) will be done in the ring Zy. Thus, if N =4, thenaz~2 4+ bz 5 4 cz¥ =@z 2 + b2~L 4 c273.
When, for a finite sequence, its z—transform is written only in terms of z™! raised to some number
in Zx, then we will say that the z~transform is written in the canonical form. For infinite sequences
the z—transform is always in the canonical form. If we assume that all z—transforms are always
written in the canonical form then the mathematical development here is valid, simultaneously, for

the finite and infinite~dimensional signal spaces CV and 12(Z).

For z,y € I*(Z) or z,y € CV, their convolution (z * ) is defined by

(@xy)(n) = 3 z(m)y(n — m). | (5)

m

If £,y € {*(Z), then n and m range over Z. If z,y € C, them n and m range over Zy. In this latter
case, in (5), the index (n — m) into the sequence y may appear to go out of the domain Zy of y.
However, when dealing with finite convolutions, we will do all arithmetic on sequence indices in the

ring Zy. This is as in the case of the powers of z~! in z-transforms. Then there is no problem with
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indices going out of range, and all finite convolutions are “circular” convolutions in the standard

terminology of digital signal processing.

The z-transform of the convolution (z * y) of z and vy is the product of the z-transforms of z
and y: (z * y)"(2) = £(z)§(z). By coeffx(2(z)) we will mean the coefficient of z=* in the canonical
form £(z). By (2) or (4), this coefficient is well defined. Define the inner product of f,h € 3(Z) or

f,he Cc¥ by,
(F,hy =D f(n)h(n); (6)

where the index n runs over Z or Zy depending upon the signal space under consideration. This

inner product can be written in the z-transform notation.

Lemma 1. If f and h are complez sequences and z € T or z € Wi, then {f, h) = coeffg (f(z);;(z)) .

Proof of Lemma 1.

f(2)h(z)

(Z f(n)z‘“) (Z h(m)z-m) (7)
SO fnyk(myzm. (8)

fH

In going from (7) to (8) we have used the fact that for = € T or z € Wy, z-1 = 2, Equation 8

tmplies the lemma. a

2.2. Orthonormal Decomposition

Let R denote a rightshift operator that acts upon a sequence z € {2(Z) or # € C” such that

(Rz)(n) = z(n — 1), or equivalently,

(Rz)(z) = z713(z). (%)

In the finite-dimensional signal space CV, the right shift operator defined in (9) wraps sequences
g P g

around; i.e. when z is shifted right once, then the number z(»¥ — 1) moves to occupy the place where
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z(0) was. This is a consequence of using Zy arithmetic upon indices for z. The z~transform notation

reflects this wrap—around accurately when the canonical form is employed.

Let f be the impulse response of a filter with input = and output y. Define f(n) = f(~n). The

sequence f is the complex conjugate of the time-reversal of the sequence f. Then,

yk) =T.emftk-n) =Y 2(n) fln—k) =3 2(n) (RF)(n) (10)
= Tax(n) (R F)(n) = (2, R'F). (11)

Equation (11) follows from (10) because the rightshifted conjugate of the sequence f is the same as
the conjugate of the rightshifted sequence f. From (10) and (11} it is evident that the process of
filtering a signal z with a filter f is equivalent to the computation of a sequence of inner products.

One inner product is computed for each number y(k) produced by the filter.

A multiset (or a bag) is a “set” which may contain multiple copies of one or more of its elements.
In Figure 1, the sequence ug is made up of the inner products of z against elements in the multiset
{kaL}keZ or keZ, - Lhe reason why {R"fL}k is declared to be a multiset, and not a set, is that
it is possible that for some &; # ko, R"‘fL = R*2f;. The sequence vy 1s obtained from up by
discarding every other number, and therefore consists of the inner products of = against elements in

the multiset
By ={R*fi}x, (12)

where k € Z or k € Zy;; depending upon the signal space.

Define also the multisets

BH = {Rzkfg}k (13)

B = B rUBg. (14)
The union in (14) is a multiset union that preserves the multiplicity of multiset elements.

In orthonormal wavelet analysis, B is required to define an orthonorm- . basis of the signal space
V = 3(2Z) or V = C¥. The multisets By and B are required to define orthonormal bases of the

mutually orthogonal subspaces V and Vi of V. Then By, By, and B, must each be a set. We will
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see that the orthonormality of B will lead to particularly simple conditions for the decomposition

and perfect reconstruction of signals.

We next deduce the consequences of the orthonormality of B. Before that, however, we state a

lemma that will result in somewhat simpler notation.

Lemma 2. Define the muliisels

By = {R*™f}s (15)
By = {R¥ful (16)
B = BpUByg. (17)

Then By is orthonormal if and only if By is; By is orthonormal if and only if By is; and B is

orthonormal if and only if B is.

Proof of Lemma 2. For f € I2(Z) or f € CV,

Fro) =Y Fye = Y Fems = 3 Fompem = (zf<m>z-m) “Fo. )

m

By Lemma 1 and (18),
(R?*F, R¥E) = coeffq (z'”"( @22 () (2)) = coeft (z-”?(z)z?’iz(z)) = (R"?h,R™%*f). (19)
If B, is orthonormal, then
(R*fu,R¥fr)y =6(k - 1); (20)
where § is the Kronecker delta:
5(f)é{ {1) :;g (21)

Then from (19) and (20), {R~% f;, R-2*f,} = §(k-{), and By, is orthonormal. The lemma follows

by similar arguments. =
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It is easy to see that the multiset B= {R**f}, U {R* fyr}; (and therefore B) is orthonormal if

and only if the following equations hold Yk € Z or ¥k € Znya:

(f. R*f) = 68(k) (22)
{(fu, R*fu) = 6(k) (23)
(f.,R¥fg)y = 0. (24)

Equations (22)-(24) will be called the orthonormality conditions.

The two lemmas that follow will be used in the proof of the main theorem governing orthonormal
decompositions. A definition is necessary before the statement of the lemmas. A function h(z) is
said to be odd in z if and only if A(z) = —A(—z). We will call a function §(z) an elmost-odd function

of z if and only if §(z) is the sum of the constant function “1" with an odd function.

Lemma 3. Let f € I*(Z) or CN. The following are equivalent:
Pl: For allk € Z or k € Zyy,, (f, R* ) = 8(k).
P2: ¥z, |f(2)]? is an almost-odd function of z.

P3: Vz, |f(2)2 +|f(-2)? = 2.

Proof of Lemma 3. By Lemma 1,

(LB f) = coefto (f(2) BFF(2)) = coefla (£(z) 7 f(2)) (25)
= coeffy (zzk If(z)]z) = coeffap (If(z)[z) . (26)

Define
&(z) =L, a(n)a™™ =|f(z) (27)

By (26), P1 is true if and only if,

&(z) =1+ a(2n+ 1)z~@0+D), (28)
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Equation (28) implies that & is an almost-odd function of z. Hence P1 = P2. Conversely, if P2
holds, then (2) and (4) and a symmetry argument show that a(2n) = 0 for n # 0. Hence (26) shows
that P2=P1.

By P2, |f(2)]? =1+ B(z), where 3(z) is some function that is odd in z. By direct substitution,

P3 is equivalent to #(z)+ f(—z) = 0. Hence P2&P3. o

Lemma 4. Let f,h € (2(Z) or CV. The following are equivalent:
Pl: For allk € Z or k € Znya, (f, R*p) = Q.
P2: vz, (f:’;) is an odd functlion of z.

P3: Vz, f(2)h(z) + f(—2)h(—z2) = 0.

Proof of Lemma 4. From Lemma 1,
(f, Rk = coefEpe ( F(2)R(2)) (29)

Arguing as in the proof of Lemma 3, P1 is true if, and only if, ( f ?1-) is an odd function of . Therefore

Pl & P2. Also P2 P3 by definition. ]

In other words, Lemma 3 says that the sets By = {R*f.}; and By = {R?* fy )i (and therefore
B and B H) are each orthonormal if, and only if, the polynomials | ff,(z:)l2 and | fg(z)|2 are almost—
odd as functions of z € T or z € Wy. Lemma 4 says that the sets By and By (and therefore
By and é;;) are mutually orthogonal if, and only if, the polynomial f'(z) §(2) is an odd function of

z € T or 2 € Wy. These lemmas give us the following interesting result (cf. Meyer[21]):

Theorem 1. The set B = {R* .}, U {R% fi} is orthonormal if and only if the matriz

NN ONE"0
Alz) = ﬁ( fe(z) fu(-2) ) ' (30)

s unitary for all 2 € T or Wy,
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Proof of Theorem 1. From the orthonormality conditions (22)~(24), and Lemmas 2-4, we see

that the set B is orthonormal if and only if the following equations hold for all z € T or Wy.

o@D +1fe(-a) = 2 (31)

[fu(DF +1 a2 = 2 (32)

fu@) fu(@) + fe(-)fu(=2) = 0. (33)

Equations (31)-(33) are equivalent to the unitarity of the matrix (30). u]

Equations (31)-(33) may in fact be said to define the unitarity of A(z) in (30). Equations (31}
and (32) assert that the two columns of A(z) must each have norm (or “size”, or “length™) of unity
in some appropriately defined inner product space W. Equation (33) says that the columns of A(z)
regarded as vectors in W must be orthogonal, in that their inner product in W is required to vanish.
The matrix A(z) in (30) will be encountered over and over again, and will be called the system

matriz.

In the finite case (30) is required to be unitary only for z € Wy Since f(e=727m/N) = (FH{m),

Theorem 1 shows that the multiset B is orthonormal if and only if

1 (F)m) (FFa)(m)
Alm) = 7 ( (Ff)m=¥) (Fa)m+ ) ) o

is unitary form = 0,..., (N —1); where the sign in (34) is chosen such that m£ & € {0,...,(N=1)}.
In order to determine the validity of a filter pair (fz, fi) for the orthonormal decomposition of an
N-dimensional signal space we only need check the unitarity of N/2 (2 x 2)-matrices. The remaining

N/2 (2 x 2)-matrices are row-reversed copies of the first N/2, and their unitarity is automatic.

2.3. Perfect Reconstruction

We have so far established the necessary and sufficient conditions for orthonormal decomposition.
We now establish conditions such that the arrangement in Figure 1 will yield a perfect reconstruction

of the input signal. The downsampling operation can result in the violation of the Nyquist sampling
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criterion in each branch of Figure 1. It is remarkable that these violations do not prohibit the

noiseless recovery of a signal. From the lowpass (i.e. lower) branch of Figure 1 we have:

iar(z) = fu(2)a() (35)
() = (Pu)() = (an(z4?) 4 ag(-:12)) (36)
B1(2) = (Uu)(z) = o) (37)
9(z) = u(hine). (38)

Equations (36) and (37) describe the down and upsampling operations, respectively, and may
in fact be considered to define those operations. Alternatively, we may define the downsampling

operator D : (3(Z) — 1*(Z) or D : CN — CM/? by
(Du)(n) = u(2n), n €2(Z)orne CN2 (39)

The definitions of D in (36) and (39) are equivalent because

a(z %) +a(-2?) = Z:u(ﬂ)z_"/2+Zu(n)(—d)"z""’2 (40)
= 2 Z u(n)z "2 =23 " u(@2m)z"". (41)

Similarly, the upsampling operator i : 1*(Z) — 1*(Z) or & : C™? — C" may be defined as:
_J v(n/2), neven
{Uv)(n) = { 0, otherwise, (42)
The definitions of I/ in (37) and (42) are equivalent.
From (35)—(38),
. 1. : o 1, : .
i2(2) = 390(e(3(2) + 5dn() ful=2)8(—2). (43)
Similarly, from the highpass branch in Figure 1,
" L, IR 1. z N
9u(2) = 30n(2) fu(2)2(z) + Sha(2) fu(-2)3(-2). (44)
Perfect reconstruction holds in Figure 1 if and only if #(2) = §(z) + gr(2); i.e. if and only if

#(2) = 3 (002(2) + 3 ()) 2) + § (32 ul=2) + dmDFa(=2)) 3(=2). (49)

We also have the following:
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Lemma 5. If A(z), B(z)are fized polynomials in z, and if for all #(2)
#(z) = A(2)(2) + B(2)3(-z), (46)

then A(z) =1 and B(z) = 0.

Proof of Lemma 5. Substituting £(z) = 1 and £(z) = z into (46) we have

z = zA(z)+ zB{(z) (47)
z = zA(z) — zB(z). (48)
By adding and subtracting (47) and (48) we have the lemma. 0

From (45) and Lemma 5 we deduce that perfect reconstruction holds if and only if the following

equations are true:

il
n

G0(2) fr(z) + g (z) fu(z)

Gr(2) fr(=2) + du(2) fu(~2)

(49)

|
Lot

(50)

The system of equations (49) and (50) can be written as the single matrix equation below.
1 ( fu(z)  fau(z) ) ( §z(z) ) ( grz) ) ( V2 )
e ~ Py " = A F4 - = . 51
A 50y 1 ) (5 ) =20 (50 0 ey
The condition (51) is necessary and sufficient for perfect reconstruction, whether or not B is

orthonormal. If B is orthonormal then by Theorem 1 the system matrix A(z) is unitary and is,

therefore, particularly easy to invert: A=}(z) = 4*(z) = ET(z). Hence (51) is easily solved:

( 9(2) ) = A'(z)( v2 ) = [ &2l (52)
gu(z) 0 fu(z)

From (52) and (18), when B is orthonormal, perfect reconstruction requires that gz = f; and
oi = fr.

This is hardly a surprising result in view of the fact that given an orthonormal basis B of an inner

product space V, z € V can be decomposed as a weighted sum of vectors in B, where the weights
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are given by the inner products of # computed against the basis vectors. Recall from (10)-(11) that

(z * £)(2k) = (z, R?*f). By perfect reconstruction in Figure 1,

2(n) = (g2« UD(z * fL))(n) + (9o * UD(z * fr)))(n) (53)
= Y gr(n—2k)(z, R* 1)+ gu(n — 2k)(z, R** fiy) (54)

k k
= D (= R*F)(R*gr)(n) + 3z, R* fu)(R*gur)(n). (55)

k k

In view of the decomposition (55) of z, and in view of the orthonormality of B, it is not surprising
that g, = f; and gy = fy. Equation (55), along with the equations g; = fr and gy = fa
demonstrates the completeness of B. These three equations show that every vector z € 1%(2) or
C" can be written as a sum of the elements of B. The sequences f ¢ and fg are ﬁrsi—gencrat:_’on_

wavelets.

We have proved:

Theorem 2. The following are equivalent:

Pl: The set B = {R¥*f i U{R%* fy}s is orthonormal, and we have perfect reconstruction in

Figure 1.

P2: The system matriz A(z) in (30) is unitary forallz € T or 2 € Wy, gr = f;, and gy = fyy.
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3. The Design Of Wavelet Filters

In this section we discuss the design of the analysis filters f; and fr, and of the synthesis filters
gr and gg, in the signal spaces {2(Z) and CY. The requirements of orthonormality determine the
unitarity of the system matrix A(z) by Theorem 1. By the unitarity condition the norm of the first

column of the system matrix A(z) must be unity. Therefore,
L@ +1f(=2)F = 2. (56)

From (56) and Lemma 3, |fr{z)[? is almost-odd. Then |fz(2)|*> = 1 + A(z), where & is some
odd function of z. Moreover A(z) is real-valued because |f.(z)|2 — 1 is. As the squared modulus
of a complex number, |f(z)]? is bounded below by zero for all z € T. From (56), |f.(2)]? is also
bounded above: [fz(2)[> < 2, ¥z € T or Wy. Then =1 < A(z) < 1, ¥z € T or Wy. These

observations yield a recipe for the construction of f7(z).

Let A(z) be any real-valued function defined upon the complex unit circle T or the roots Wy
of unity, such that h(z) = —h(—z); and —1 < A(z) < 1. Let p(z) be another arbitrary real-valued

function defined on T or Wy . Define

fr(z) = 1+ h(z) 7C). (57)

The form of fr(z) in (56) is the most general possible. Since p(z) need not be a polynomial in z,

we do not write §(z).

Because A(z) is unitary, so is A7(z). Because the norm of the first column of AT (z) must be

unity, {fz(2)I* + |fu(2)|* = 2. Then fy(2) must have the form:

fg(z) =4/1~- fl(z) edo3) (58)

where o(2) is a real-valued function of =.

Substituting (57) and (58) into the system matrix {30}, and using the oddness of A(z), we have:

1 1./1+fz(z) efP8) 1 — h(2) 7]
A(z) = — - ) - . . (59)
V2 Y 1 — h{z) efrl=2) /14 h(2) efa(-2)
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Theorem 1 also requires the orthogonality of the two column vectors in AT(z). In other words,

inner product of the column vectors in AT(z) must vanish, then
) i .
V1-£k(z) (e.v(p(Z)-P(-z)) + e,(a(z)_a(_,;)) =0 (60)

If A(2) # 1, then (60) requires that:
o(2) — o(=2) = (2k + )7 + p(2) — p(—2), (61)

for some k € Z, k depending possibly on z. If A(z) = +1, then o(z) and p(z) are unconstrained.

We have shown that if A(z) is unitary then A(z) has the form (59) for h(z), ¢(z), and p(z),
as described. Conversely, any such matrix is easily seen to be unitary. Finally, the synthesis filter
sequences g; and gy must be chosen so as to satisfy Theorem 2. The three steps S1, S2, and S3,

in the construction of the filter sequences fr, fi, ¢z, and gz, are summarized below.

S1. Construct an arbitrary real-valued function h{z), z € T or Wy, such that —1 < h(z) <1,

and A(z) = —h(~z). Construct an arbitrary real-valued function p(z), z € T or Wy Define
fr(z) = 1+ h(2)e??®), z € T or Wy,

$2. Construct a real-valued function ¢(z), z € T or W, such that ¢(z) — o(—2) = (2k + D)7 +

p(z) = p(—z), if h(z) # £1. Hete k € Z is an arbitrary integer that possibly depends on z.
Define fer(z) = \/1— h(z) e/, 2 € T or Wy.

83. Define gr(z) = E(.z); dr(z) = -f:(z)

Theorem 2 shows that any and all wavelet filters at the first stage can be constructed with this

algorithm.

3.1. Examples Of Wavelet Filter Construction
Letz € C* Letw=¢e 92"/t = j: W, = {0 wh,w? w®) = {1,-7,~1,j}. Choose

R(1) =1, h(—j7) = =1, h(=1) = -1, A(5) = 1. (62)
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Choose p(z) = 0. Then from fr(z) = /1 + &(z) we have
fr) =2, fi(=)=0, fr(-1)=0, fr() = V2. (63)
The filter sequence fi, itself can be computed as the inverse DFT of the vector Ff = (v/2,0,0, v2):

fo=273%2,(1+7),0,(1 —7)). Knowing fi, we can write the polynomial fz(z):

fo(z) = } f(l + i)z f(I —j)e® (64)

In order to compute fy(z) we need to choose the function o(z). Since h(z) = %1 for z =

1,7, —1,—j, the choice of o(z) is unconstrained by p(z). We choose o(z) = 0. Then the DFT of fx,
computed from fy (z) = /1~ h(z) is:
ffff - (G: \/és \/i: 0): (65)

and

o 1 1 . -3
fu(z) = 7 m(i + )zt \/-(1 F) LI (66)

By Step 3 of the filter construction algorithm we have gr(z) = E(z) = fr(z) and §u(z) =
Fu(z) = fu(z).

3.1.1. A Second Example: The Shannon Wavelet Basis. We can generalize the last

example for signal spaces GV where 4[N. Let A and B be the sets

A = {0,1,...,N/4—1}U{3N/4,...,N -1} (67)
B = {N/4,...,3N/4d-1)}. (68)
Define
m= {§ mEn (69)
o5 =p)= O (70)
This gives:
(Ffr)m) = folei*m/V) = {aﬁ :zg‘g (1)

Fram = fulemrrmmy= {05 el ()
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The filters fir and fy have disjoint frequency supports. We call the basis defined by this pair of
filters the Shannon wavelet basis because the filters are similar to the sinc functions that appear in

the Shannon sampling theorem.

3.1.2. A Third Example: The Real Shannon Wavelet Basis. If the signals being dealt
with are real-valued, then it is sometimes advantageous to have real—valued filters so that all inner-
products are real too. This saves computation time and storage. We can modify the last example
to yield a real-valued basis. A function f € C" is real-valued if and only if (Ff)(m) = (FF)(N —
m),¥m € Zn. The filter sequences F fr and F fy in the last example each fail this criterion at

m = N/4. However, Theorem 1 tells us how to alter fz and fy in order to obtain real filters.

If fr is to be real, we require (FfL}(N/4) = (FfL)(3N/4) = fr(e~i7/%) = E(e-—jsxlz) =
f (=N = E( 7). Moreover, by Theorem I the system matrix is required to be unitary for all z in

Wy, For z = —j,

e L f=D) ful=3)
A ’)“\/5( Fol) Fuli) ) (73)

If we choose, fr(~j) = 7; fr(§) = —ji and Fu(~7) = fu(j) = ; then A(~j) is unitary, and
A(j) too. For +j # z € Wy, A(2) is unitary for f;(z) and fy(z) as defined in the last example.

Therefore, the following pair of filters defines a valid wavelet basis:

V2 0<m<Nf/4—1or3N/4+1<m< N1
j ,m=NJ/4
~-j ,m=3N/4
0 N/A+1<m<3Njd—1
0 ,0<m<N/4-lor3N/A+1<m<N=-1
(Ffa)m)= Fyle i?miN) = {1 ,m=N/4dorm=3N/4 (75)
V2 N/4+1<m<3N/4~1

(Ffu)(m)= fr(ei?™mINy = (74)

We have supp(F fr)Nsupp(F fg) = {N/4,3N/4}, a minimal overlap in support. We call the

basis defined by this filter pair the real Shannon wavelet basis.

3.2. Time—Frequency Localization

Wavelets and other methods of time-frequency analysis, like the Phi~transform, have many practical

applications which require the filter sequences or “analyzing functions” to possess certain specific
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properties. These properties concern the frequency—-localization or the simultaneous time-frequency—
localization [15]-[18] of filter sequences. We have seen that it is easy to construct wavelet bases that
are well-localized in the frequency domain: viz. the Shannon and the real Shannon bases. Now
consider the problem of simultaneous time—frequency localization. In the case of the FIJT time—
frequency localization is easy [17]. In the case of wavelets it is not, because we are hemmed in by

the orthogonality conditions. In what follows we formulate the time—frequency localization problem

Figure 2: The signal space V', the subspaces V3 and Vg, the manifold Vs, and mappings from V
inte Vp, Vg, and V5.

for wavelets.

In Figure 2 are drawn the subspaces Vr and Vg of V = I3(Z) or V = CV. The subspace Vp
consists of all sequences € V', with a fixed supp(z), which is some proper subset of V. The subspace
Vp consista of all sequences z € V, with a fixed support for Fr. The only vector common to Vp and

Vg is the zero vector. Pr: V — Vp and Pg: V — Vg are projection operators.

Let V5 C V be the set of all valid wavelets fr and fg. It is easy to check that Vs is neither
a subspace nor an affine space of V, hence any mapping Ps : V —+ V5 cannot be a projection. Vs
is in fact a manifold that lies embedded in the surface of the unit sphere in {2(Z) or CV. Define

Ps : V — Vs to be an operator that maps any given f € V to ¥ = Psf € Vs, such that distance
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f~dlly =(f-¥,F— w)” ? between f and 1 is a minimum. We now construct this operator for

v =cV.

Given any f € CV we would like to find a wavelet 1 that is closest to f. If ¢ is a wavelet that

is closest to f, then ||f — rpﬂéu is a minimum.

N-1

F=blln = =IFD) - (FDor = = 3 [(FFm) - (Fo)(m)f? (76)
N N —

ll

NJ2-1
5 2 (GFR)0m) ~ FHEI + [FF)om + N/2) = (Fh)m -+ N/D) (77
For m € Zyyy; define
Am) = |(FD)m) ~ (O +[(FHm+ N2~ (FR)m+ N/DE. (78)

From (76)-(78),

| Nt

I = #lier = 2, Alm). (79)

In order to minimize ||f — 1,b|[%~, we minimize A(m) for each m € Zpy,.

In order for # to be a valid wavelet filter fz or fy, the following equation must hold for m € Zy:

(Fp)(m) = /1 + (Fh)(m) o), (80)

by the conditions set forth in step S1 of the wavelet construction algorithm. Also it must be that

(FR)(m + N/2) = —(Fh)(m) € [-1,1)}, and p(e~72*™/N) real, for m € Zy.
Define a(m), b(m), 68(m), and v(m) by
(FAH(m) = a(m)e!® ™), m=0,... ,(N/2-1) (81)

(FF)(m + N/2)

11

b(m)ef ™) m =0,...,(N/2-1), (82)
where a(m), b(m) € R; a(m),b(m) > 0; and 8(m), v(m) € [~x,]; for m € Znyz.
From (78) and (80)-(82), for m=0,...,(N/2 - 1),

Am) = |a(m)el*™ — T FRYm) e 4
|(m)et™ — T=Fm)my efot-e7)| (33)
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If a(m) = b(m} = 0 for some m = mg then (83) tells us that A(mp) = 2, and we have all the
freedom we want in the choice of (Fh)(mg) € [—1, 1], p(e=2*me/N} € [—x, 7], and p(—e~72Tmo/N} ¢

[~, x]. It follows that there may be infinitely many wavelets 1 that are closest to a given f € V.

Now assume that a{m) and b(m) are not both zero. From (83) we note that in order to minimize

A(m) we want p(e72*™/N) = g(m) and p(—e~72*™/N) = y(m). Then (83) reduces to:
A(m) = 2+ a*(m) + b*(m) — 2 (a(m)v/T+ (FR)m) + b(m) /T (FR)(m)) (84)

In (84) a(m) are b(m) are fixed, and we wish to choose (Fh)(m) € [~1, 1] so as to minimize A(m).
This will be done if we choose (Fh){m) so as to maximize a(m)+/1 + (Fh)(m) +b(m)/1 - (Fh)(m).
By calculus, if ,b > 0 are fixed and are not both zero, then the function f(z) = av/I+ z +
bv/1 — z attains a maximum on [—1,1] at z = {a? — 62)/(a® + b%). Hence, if not both a{m) and
b(m) are zero, then a(m)\/1 + (Fh)(m) + b(m)\/1 — (Fh)(m) is maximized (and A(m) minimized)

by the following choice of (FR)(m) € [-1,1], m € Zyys:

&(m) = B(m) _ (FAE = (Ffm + N/
FR™) = ey 55 (m) = [ (m)E+ 1) (m T+ N

m € Zyys. (85)

Hence the DFT coefficient {Fp)(m), m € Zyya, of the wavelet 3 that is closest to f € V is

: ﬁa(m)e)'s(m)
m) = m) &%) =
@Fm) = VIFEIEm 9 = S (56)
V2(Ff)(m)

G + G+ MR | © N (87)

For N/2 < m < N, step S1 in the wavelet construction algorithm tell us that (FR}(m) =

—~(Fh)(m — N/2). Then, from (85), for N/2<m < N,

_ _{FDm — NP - [(FRm)?
(FR)m) = =(FR)(m = N/2) = (o e = N/ + (A

(88)
By Zn arithmetic upon indices into (Ff), (Ff){m — N/2) = Fm 4 N/2), and we note from (85)
and (88) that (85) and (87) hold not only for m € Z 2 but for the full range m € Zy.

In summary, we present the following simple three-step algorithm for the construction of a

wavelet 1 that is closest to a given vector f € C¥, f # 0:
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S1. If (Ff)(m) = (Ff)(m+N/2) = 0, then assign any value C € [0, V] to |(Fp)(m)|. To |(Fb)(m+
N/2)| assign V2 —C?. To each of the two phase terms p(e~72*™/N) and p(—e=i2*m/NY of

(Fb)(m) and (Fp)(m + N/2) assign any value in [-, 7].
S2. If not both (Ff)(m) and (Ff)(m + N/2) vanish, then assign

V2{Ff)(m)

(Fb)(m) = VIEFAmE +[{FH{m + N/

$3. From FY compute ¥ by DFT inversion.

This algorithm is an operational description of the operator Ps : V — Vg, V = C". A similar

description of Ps is possible for the signal space {3(Z).

We note from the above algorithm that if Ff is real-valued, then we can always find a wavelet

1) closest to f such that /Y is also real-valued,

In case of FIT analyzing functions, time—frequency localization involves the computation of an
eigenvector of the double projection operator (PgPr) [17). This eigenvector may not lie in Vs and
may not be a valid wavelet. One approach to the construction of a localized wavelet may be to map
the eigenvector ¢ of (PgPr) into Vs using Ps. Let ¢ be the image of ¢ under Ps. If the support of
¢ is not too severely restricted in the frequency domain, i.e. if not both (.’F'qﬁ)(m) and (Fg)(m+ N/2)
vanish for any m, then (89) tells us that ¢ will preserve, precisely, the frequency localization of f.
If the support of F¢ is severely restricted then we can still, to some extent, control the support of
Fi through a judicious choice of the constants C in S1. It is not, however, possible to say anything

about the time-localization of ¥ on the basis of the analysis in this section.

It is possible to choose ¢ such that both ¢ and F$ are real-valued. Then we can produce a

wavelet 1 closest to ¢ that is also real-valued in both the time and the frequency domains.

Define (Fg)(m) = v2 ((F8)(m)I2 + (F)(m + N/2)I?) ">, Then, from (89), ¥ = ¢+ g. It
follows that if ¢ and g are well-localized in time, then ¥ will be also. The function ¢ is well-
localized by design, and that leaves us with questions concerning the time-localization of g. This

question remains open.
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4. Wavelet Recursion For One-Dimensional Signals

If in Figure 1 we subject the sequence vy to the same treatment as z was subjected to, then we
obtain the situation depicted in Figure 3. If we decompose and reconstruct both vy, and vy, we
have the situation in Figure 4. Like the level-1 filters fr, fg, gz, and gsr; the level-2 filters fr,
fee, fur, fuwm, 90, 9om, gur, and gy y must also obey the requirements set forth in Theorem 2

if we require orthogonal decomposition and perfect reconstruction. Then the matrices

1 Friz)  Foa(z) 1w faw(
V2 ( fro(—2) fra(-2) )' and \/5( gc(~2) fun(-z) )’

must be unitary; and the reconstruction filters grr, 914, gxr, and gyg, must equal f L f LH

fHL, and fHH, respectively. The process can be repeated for vrr, vog, vy, Of vyH.

level 1 filters
R
b

level 2 filters

by

_ -
s

Figure 3: Recursion in the lower branch.

4.1. Wavelets, Filter Banks, And Wavelet Packets

In the classical wavelet analysis of Lemarie, Meyer, Mallat, and Daubechies, [1]-[6] recursion is
performed only in the lower-most branch. Then wavelet decomposition generates the sequence of
graphs in Figure 5, where each node represents a single filter-pair with their associated up-sample—
by-2 or down-sample~by~2 operators. The number of filters at each level of analysis and synthesis

is constant.
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lavel 2 filters level 2 filters

Figure 4: Recursion in both branches.

&
L ]
L ]
L level 3 filters U
leve] 2 fillers
level 1 filters

Figure §: The sequence of graphs generated in classical wavelet analysis.

In case of full recursion at every level, we have the sequence of graphs in Figure 6. The number of
filters doubles at each level of analysis and synthesis. This is the approach adopted by the filter bank
school [8][9]. Yet a third approach to recursion is that of “best-adapted wavelet—packets” pioneered
by Wickerhauser and Coifman et al. {19] [20}, and characterized by an arrangement of the sort in
Figure 7. In the best-adapted wavelet—packet method recursion is or is not performed at a certain

level in the transformation tree depending upon a criterion of the optimality of representation.
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N LS

Figure 8: The sequence of graphs generated in classical filter—bank analysis.

AN

Figure 7: Irregular recursion is characteristic of wavelet—packet representations.

4.2, Equivalent Non-Recursive Siructures

The recursive structures in Figures 3 and 4 have non-recursive equivalents. While the non-recursive
structures are not as efficient as their recursive equivalents so far as computation is concerned, they
do help us understand the nature of signal decomposition. Equivalent non-recursive structures are

constructed with the help of the theorem stated and proved in this subsection.

Define the “bigstar” notation * to do for convolution what the bigcup notation does for union:

L T T SR (90)
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Let « € {L, H}" be a string. For ja} > 0, define

lat §—
Fo = >l|‘:i=|.u lfpfx(cr.l') (91)

I

lal | i
Gq X U oty (92)

Here is an example to illustrate the notation: Fypp = fy « (U fyr) = (U2 frrrr). The next theorem
shows that the filters F, and G, can be used in place of a series of filters; so that, for example,
the non-recursive structure in Figure 8 is equivalent to the recursive structure in Figure 3. The
analyzing filters in the non-recursive structure are Frz, Fry and Fy; while the synthesizing filters

are Gpr, Gryg and Gp.

Figure 8: Direct decomposition into three orthogonal subspaces.

For the infinite—dimensional case define X; = Z, i € Z*. For the finite~dimensional case define
Xi = Zypi-«, i € ZT. With X; so defined, the following lemma and theorem hold simultaneously

for both finite and infinite-dimensional signal spaces.

Lemma 6. For the finite-dimensional case assume 2"[N. Let i € {1,...,n}. Then,
(A). For f € 3(X,) and h € (Y(Xiy1), (D)« h = D(f UR) € B{Xip1).

(B). For f € 3(Xiy1) and b € (N Xip1), U(F = k) = (U F) = UK) € B(X).
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Proof of Lemma 6.

(A) Forn € X"+1,

(D(f +UR)(n) = (F+UR)2n)= D f@n—m)Uh)(m)= . f(2n—2k}h(k) (93)
meX, EeX 41
= 2 (DH(—k)h(k) = ((Df) * h)(n). (94),

kEX 1

(B). Suppose n € X;. If n = 2m for some m € X;4;, then

@(F ) = (feh)m)= > f(m—kYh(E)= 3 (Uf)(2m —2k)(UR)(2k) (95)
kEX 41 keXin
= DU =DUND = (US)+ @) (n). (96)

leX;
Equation (96) follows from (95) because (UA)}(!) = 0 unless { = 2k for some k € Xiy;.

If n is not of the form 2m, m € X,44, then (U(f * h))}(n) = 0. However, in this case, (U f) +
UR)(n) = Yoo x (U F)(n—1) (UA)(1) is zero since (L{h)(!) # 0 only when ! = 2k, some k € X;,1, in
which case (U f}(n—1{) = 0. a

Theorem 3. Let o € {L, H}", |a|=n > 0, be fired. Let 2°|N. Define §; = pfx(e,i), i=1,...,n

(A). Suppose z € (X)) and fs, € IY(X;). Then

D(fpy # Dlfpacs * -4 DS ¥ D(fp #2))-. ) = D" (zx (K @' 5)))  (97)

"(zx Fy). (98)

I
Q¥ 9

(B). Suppose vy € 1(Xn41) and gg, € IN{(X;). Then

9o, * U(ap, % -+ Ulgp,, * Ulgp #Uva)). ) = (Urva)+ (Ko (01gs))  (99)

(U™va) * Ga. (100)

Each part of Theorem 3 follows easily by the repeated use of the corresponding part of Lemma 6.
This theorem explains the method for determining the non~-recursive equivalent of a recursive struc-

ture. In particular, it establishes the equivalence of Figure 3 and Figure 8.
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4.3. The Wavelet Basis
The knowledge of equivalent non—recursive filters makes it easy to determine the basis vectors whose
inner-products with the signal yield the transform-domain representation of the signal.

Let @ € {L, H}* be a string. Define

B"a = Rzlalkﬁ'
{ (,}MXWl (101)

Ve cl | span (é&)) . {102)

The definition of B, in (101) is consistent with the definitions of By and By in (12) and (13). B,
consists of time—shifted copies of the conjugate time-reversed non-recursive equivalent filter F'p. V,
is defined to be the subspace of V = {2(Z) or C" spanned by B,. We have seen in Section 2 that
By, By form the bases for Vi, Vg € V. We now show that recursion splits a subspace V, into an

orthogonal direct sum of subspaces V,r and V,g.

Theorem 4. (the iteration theorem) Let « € {L, H}*, jae| > 0, be fized. In the finite-dimensional
case let 2UIHVN . Let g € {L, H). Suppose that B, is an orthonormal basis for V,, Vi, C 12(X1).

Suppose that for, fony € il(ch,H.l) are chosen such that the mairiz

1 faL(z) f:aH(z)
\/5( far(=2)  fam(—2) ) (103)

is unilary for ¥z € T or Wyg-1a (85 in the statement of Theorem 1), Let

Fog=Fosll®f 5. (104)

Let Bop and Vg be as defined in (101) and (102). Then V, is the orthogonal direct sum of {Vap}a,

Vo = Var @& Vou. Alse éag 15 an orthonormal basis for Vg,

In Theorem 4 we may regard F, as being determined by the filters {fy}+ where 7 is some
prefix of a; but this is not essential. This theorem will be proved in its multidimensional form as

Thecrem §.



30 Frazier aND KUMaR

In any recursive structure that is characterized by a set of analysis or synthesis branches la-
belled with distinct strings «, the non—recursive equivalent filters {#,},, taken together, are said to
generate the wavelet basis

.é = Uga = U {Rzlalkﬁ‘a}kex;a (105)

[+1
of the signal space V = I%(2) or C. For example, in Figures 3 and 8 the wavelet basis is B =
BrrUB LH UB H- Weshow below that the sequences v, consists of numbers called wavelet transform
coefficients that are the inner—products of the signal z computed against the vectors in B,. The
numbers in {v, }» completely determine the signal z. We show also that y,’s are linear combinations

of the vectors in éa, and the weighting coefficients are the elements of v,. Then, by (102), ya € V,.

If z is an input signal, and if the filters along a recursion path are f3,,..., fB1oy in the terminology
of Theorem 3, then the analysis or transformation part consists of the computation of the following
sequences: first z « fg,, then D(x « fp,), then fp, + (D(z * f5,)), then D(fg2 * (D(z * f5,))), and
so on. The result after || filtering and downsampling steps is D'°l {z * F,) by (98). Note that for

k€ Xjoper,

va (k)

(P e R) () = @« R) (20) = T =) R (21l ~ 1) (106)

IEX;

il

e Fa (1-29) = 3 2() (Rﬂ"‘kﬁ’a)u) (107)

leX; e Xy
(:, Rz""kR,,) . (108)

The output v, of the analysis part is exactly the set of coefficients in the wavelet expansion of z

corresponding to the wavelet basis functions B, = {R2™'* F, }e Xyapar-

Let vy = ('DI"'I(z * I,)) be the output of the analyzing step. Consider the output of the corre-
sponding synthesizing or reconstruction step. This output is the result of the following sequence of

computations:

Vo — Uvg — ggy, ¥ Uve — U (g, ¥ Uve) — g, -, * U (98, *Uve) = ... (109)
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By part B of Theorem 3, the final output after Jo| steps is (u"'iu,,) * (7. Note that for n € X,

(@) +Ga)(m) = 3 () 0Guln=0= 3 valk)Ga (m—218) (110)

leX, EEX|a|+1
= T v (RZ"'"‘GQ) (n). (111)
E€X|at41
That is
((Ul"'iva) *Ga) = 5 valk) (th"'"Ga) . (112)
kEX 041
If we had selected fg,,..., f5, so as to obtain orthonormal wavelets {Rzlaikﬁ-a}keth, and if

aceording to the perfect reconstruction condition we choose g5, = f g, so that G, = F., then from
{108) and (112) the output of the @ branch can be written:

Vo= 3. <::,R2E°'k17"a> R E,. (113)
keXjaptr

4.4, Recursion With Repeated Filters

Consider the choice of the level-2 filters frz, fru, fur, fus; of the level-3 filters frrr, from,
frur, etc.; and so on. It is possible to construct the filters independently and differently at each
level acording to the prescription in Theorem 1. It is possible also to derive the filters at levels

higher than the first from the level-1 filters f; and fy.

In case of filters f € I}(Z), we can clearly choose for = fr and fog = fy, where o is some
string over the alphabet {L, #}. This does not quite make sense in the case of finite signals since,
for example, if f; lies in CV then fo lies in CV27°'. If f; and fy are such that A(z) in (30) is
unitary Vz € Wy, then (103) will be unitary Vz ¢ W p-1al if we can determine for and f.m so
that f,r(z) = f;(z) and Fart(2) = fy(z) for all z € Wy3-1a1. The next two lemmas tells us how

to do this.
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Lemma 7. (the folding lemma) Let f € C¥, h € G2, Then the following are equivalent:
Pl: h(z) = f(2), ¥z € Wayz-
P2: (FR)(m) = (Ff)(2m), Ym € Zyys.

P3: h(n) = f(n) -+ f(n -+ N/?), ¥n € ZNIQ.

The folding lemma will be proved in a general form as Lemma 15 when we discuss the wavelet
decomposition of multidimensional signals. This lemma indicates that we can obtain fy; € chiz
from fr, € c¥, for example, by “folding” fr;i.e. by breaking fr into two halves, placing one half on
top of the other, and summing pairwise: frr(n) = fr(n}+ fe(n+ N/2). Similarly, to obtain frg we
compute fg(n)+ fy(n+N/2). If 4|N, then we can continue by defining, for example, fy gz € CV/*

by funr(n) = fuar(n)+ fur(n+ N/4) = [fo(n) + fo(n + N/} + [fe(n + N/4) + fo(n + 3N/4)],

for n € Zpny4. The following lemma is immediate from Lemma 7.

Lemma 8. Let 2°|N, feCV, he ohr ™!, Then the following are equivalent:
Pl: h(2) = f(2), V2 € Wya-lal.
P2: (Fh)(m) = (Ff)(21*Im}), Vm € Zys-tar.

P3: h(n) = T2 =1 f(n 4 iN2-191), Vi € Zyyoiar.

4.5. A Summary Theorem For Classical Wavelet Analysis

The following theorem summarizes the results of this section for the case of classical wavelet analysis,
where recursion is performed only in the low-pass branch using repeated filters. In this special case

the sequence of non-recursive analyzing filters is Fyy, Fry, Frry,. .-, Fatfy FarL, where « € {L}".



DisCcRETE ORTHONORMAL WAVELET TRANSFORM 33

Theorem 5. Suppose N € T, a € {L}*, 20e1¥*DIN, and B some prefiz of a, 0 < |8] < |a|. Suppose
fr, fu € IMZ) or CV are such that the system matriz in (30) is unilary for all z € T or Wy.

Suppose thal Fop and Fgy salisfy

Jal+1

Far(e) = [ £ (%77) (114)
i=1
N " 21 LIS ti=1)

Bau(s) = fu (") I1 40 (7). (115)

i=1

Then,

B = Bor U U .éﬁﬁ {116)

o<ii<lal

is an orthonormal wavelet basis for V = I2(Z) or CV.

Proof of Theorem 5. Define for € I'(Xjaj+1) and four € I*(Xjg41) such that f;(z) = f,(2) and
fﬂﬁ(z) = fx(2). Then (by Lemma 8 and (37)} (114) and (115) are consistent with (91). The result

foliows by an induction argument based on the iteration theorem, where we consistently factor the

subspace Vg; through recursion. o

In the finite-dimensional case, the following expressions for the Fourier transforms of F,; and

Fgp are immediate from the equations (114) and (115);

laf+1
(FRar)Xm) = H (FfL)(2C-Vm) (117)
- {8l
(FFi) (@' m) [ [(FFL) (24 Vm). (118)

i=1

(FE3n )(m)
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4.6. Shannon And Real Shannon Wavelet Bases In Classical Wavelet Analysis

Let 2 be any prefix of o € {L}*. For Fay, For € CV, 20al+D(N an induction argument using

(117) and (118) gives the following values for the non—recursive Shannon filters:

lel+1)/2 - g<m< SNT(IQHH -1) or
(FFaL)(m) = { (1-270eFM N <m < (N -1 (119)
0 , otherwise
{ 2UAl+1)/2 - No-UAl+2) < ;< (n2-(ei+1) _ 12 or
(FFgg)(m) = (1-2-WFY N < m < ((1—2-UB+Dy v 1) (120)
0 ,otherwise.

Notice that the supports of {F,z, Fazr}s are disjoint in the frequency domain.

Similarly, for the real Shannon filters we have:

(olel+)z 0 < m < (N2-Uel42) 1) o
(-2l N <m< (N -1)

(FFar)(m) = <( joleli2 ,m = N9-Uel+2) (121)
~jaledlz = (1 - 2—(1ul+2)) N
. 0 , otherwise
( olBl/2 ym=N2-UFH2) or m = (1 - 2-Upl+2)) v
Alsiyyiz (Ng-(l.ﬂ|+2) +1) <m < (N2-Uo+D) 12 or
1— 2-(Iﬁl+1)) N+ 1) <m< ((1 —o-{f+2y v 1)
FFor)m) = 9 sqlan2 Er(l = N9-(81+D) ) (122)
D VP (1 2-08lI+1)) N
. 0 , otherwise.

The real Shannon filters {Fo.r, Far}ps are real-valued; and if any two overlap in the frequency—

domain they do so only at their end-points.

4.7. Computational Complexity

In this subsection we discuss signal spaces C*¥. The case of classical wavelet analysis is considered,
where recursion is performed only in the low—pass branch. Let M be the number of levels of analysis,

e.g. M = 2 in Figures 3 and 8.

If a non-recursive structure like that in Figure 8 is employed, and convolution is performed
through the computation of dot-products in the frequency~domain, then the computation of the

wavelet coefficients in all the sequences v, (the analysis step) requires

2M + 1)Nlog N + (M + 1)N = O(MN log N) (123)
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complex multiplies, and a little fewer number of complex additions.

The recursive structure in Figure 3 is more efficient and requires

22( Iog( ))_i_“il(_gf;)+2§+llog(2§+l)+2§+l (124)

=0

= (4~2""M)NlogN +2(1+ 2'"M) N = O(N log N) (125)

complex muitiplies.

In both cases signal recovery from the transform coefficients in v, takes a similar number of

multiplications and additions.

If the filters selected are short in the time—dornain, i.e. if they have a small support in the tirme-
dornain, then the operation count can be made linear in N. An example of such a filter—pair is the
four-point Daubechies filler—pair. The Daubechies filters are defined by equations (129) and (130)

below:

a=—V3 ; c=1~a (126)

nY
[y

(127)

o
=3 383
I~ I U SO

A0 N

o
A
=

-
o
P
|
o —
i
=]
.
©
P T

(128)

S L=

AL

A
=z

fo = (129)
fo = (130)
M-level non-recursive wavelet analysis with filters supported on T points in the time-domain

requires M TN complex multiplies when the convolutions are performed directly in the time-domain.

The number of multiplies for recursive implementation is M~ (TN2~) + TN 21 ~M = 9TN.
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5. Orthonormal Wavelets For Multidimensional Signals

Let P be a fixed positive integer. Let z(n) be a P—dimensional signal in 12(Z®) or in C¥* =
H(Zf) = 2((Zn)T), N even. A signal in ™, for example, could be thought of as representing
a square picture of size N pixels by N pixels. While it is trivial to extend the treatment here to
cover rectangular “multidimensional pictures”, we will rest content with square pictures in order
to keep the notation simple. The dimensionality of a signal, and the dimensionality of the vector
space in which the signal lies are two distinct concepts that must be kept apart. For example, a
two—dimensional picture in C™ lies in an N2-dimensional space. We will use multiindex notation

when convenient, writing

i(z) =) (n)z™" (131)
for
2(z1,29,...,2p) = ZZ . -Z-“?(ﬂx,---, np)z "t zp" R, {132)

In (131) z ranges over T¥ or WF, and n ranges over Z* or Z§, depending upon whether = belongs

to {2(ZF) or to CN”.

The first lemma below states a result of general utility.

Lemma 9. Forany n € 2¥ orne Zﬁ,

Z (_1)(k1ﬂl+...+kPﬂP) = Z (_1).&11 - { g}:‘ if fof some i: n; iS Odd (133)

otherwise;
k€{0,1}7 eeZ!

where k-n denoles the dot-product kn = kyny +...+ kpnp.

Proof of Lemma 9. If n = 2m = (2my,...,2mp) for me Z¥ orm ¢ Zﬁ,z, then each term in the
sum is 1, and the sum is 2F. Else, if n; is odd for some {, write

1
Z (_.1)*'“ = Z (_.1)(hm+...+ka-:m-;+kr+1m+x+-..+kpnp) (Z(—l)k'"').(liﬂ)

keZ] Evpeoo ki Ergr e ko €22 k=0

Because n; is odd, the last sum and, hence, the entire sum vanishes. a
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Define the downsampling operator D by (Df)(n) = f(2n), n€ Z¥ orn € Ziyp. D 13(2F) —
Iz(ZP) orD: CNY L c¥/D)” By way of example we draw a signal in c* in Figure 9. The points
retained by the downsampling operation are dark-circled. The next lemma states a property of the

downsampling operator concerning its action upon a filter sequence in [2(Z7) or ol

Figure 9: The downsampling operator retains the elements with dark circles.
Lemma 10. For z € T¥ or Wy’

@) =277 30 F=0hat L -1a?) = 2P T (). (s

keZy keZy

Proof of Lemma 10. Forne Zf orne ZP,

A=D1 = T, () (- 1)F2H2) = T2 f(n)(=1)kme=n/? (136)
= Zn f(n)(___1)(k|n1+...+kpﬂp)z;“ﬂll2...z;ﬂpl2‘ (137)

Therefore,
DI (CIV RS T N W () /C ) P ) (138)

reZ’ keZ; "
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Interchanging the order of summation in {138), and using Lemma 9, we have

27 3 AR = Y fl,. e ™R (139)
kGZ,P n=2m
= Y f@my,....2mp)ey™ . 2p™F (140
m

Y (DA, . mp)a ™ 5™ = (D) (2).  (141)

(]

Define the upsampling operator i : I3(ZF) — I2(ZF) or 4 : CV° — CCM y
@y ={ /2 iEn=2m mezf ormezf (142)

— 10, otherwise.
It is easy to see that (U ) (2) = f(22), i.e. UF) (21, ...,2p) = flzd, ..., 23).
Define the shift operator R so that (R*f)(n} = f(n — k), or
(kyyoikp) -

(R A(n,-.inp) = Flny — ki, .. np — kp). (143)

It is easy to see that (R¥f)'(z) = z7*f(2) = % . 2p*P f(z1,...,2p). By way of example,
Figure 10 shows the effect of the operator R(>3) upon a sequence in C¥. R(>® shifts the input
sequence by two in the “direction” of z; (down) and by three in the “direction” of z (right). The
choice of the “directions” was dictated by the fact that we would like 2(7, k) to be the coefficient of

Z]_—‘-Zz—k.

By coeff;tf(z); k€ Z¥ or k € Z%,; will be meant the coefficient of z7% = z{""‘ . ..z;k“’ in the

canonical form of the polynomial f(z). For f = {f(n)}a and g = {g(n)}n, {f, ) = 3o, f(M)F(n). It

is easy to see that {f, R*g) = coeffi{f(2)3(2)); z € TF or wk.

5.1. The Orthonormality Condition

In this section we present three lemmas that lead to a multidimensional version of Theorem 1.
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l—’zl
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Figure 13: An Example Of The Shift Operation
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(®
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Lemma 11. Let f = f(n), n € Z¥ orn € Z§. Then the following are equivalent:
P1: (f, R*f) = 8(k) = 6(k1) . ..8(kp).
P2: 3 .z? F(-1)2)2 =22 Vz e TF or WE.
2

Here f((=1)'2) = f((=D)rzy,..., (=1)Pzp) fori=(Iy,...,1p) € ZF.
Proof of Lemma 11. Pl is equivalent to:

coeff 4 (;f(z ) = 5(k). (144)
Define
h(z) = 1f(2)%. (145)
FormeZPorme Zf;,z, (144) is equivalent to:

> h(n)e" =L (146)

n=Im

But, 3~ _,. h(n)z™" = (UDh)(z) = (Dh)"(2?). Therefore, by Lemma 10,
Y h(m)z = (Dhy () =277 Y k(- (147)
n=2m EEZP
From (147), (146) is equivalent to:
Y A(-1)z) =27, (148)
1€Z]

From (145), A((—=1)'z) = | f{{~1)'2)]®. Substituting for A((—1)'z) in (148) we have the lemma. 0
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Lemma 12. Let f = f(n), g=g(n), n€ 2F orne Zfr. Then the following are equivalent:
Pi: (f, R*g) =0, Vk.

P2 Tyezr F(-1VDF((~1)'2) = 0, vz € T? or W],

Proof of Lemma 12. The proof is similar to that of Lemma 11. P1 is equivalent to:
coeff 2k (f(z)}a‘(z)) = 0. (149)
Define
h(z) = f(2)§(2). (150)

From (150), for m€ Z¥ orm € Zfr/z, (149) is equivalent to:

> h(n)zr" =0. (151)
n=2m
By Lemma 10,
> h(n)z™ = (UDh)(z) = (Dh)(?) = 2-F Y h((=1)'2). (152)
n=2m fEZ:
Substituting (150) in (152) we have the lernma. o

The proof of the following lemma is similar to the proof of Lemma 2.

Lemma 13. Fori & Z4r define

fim) = Fl-n) (153)
2P =1

B = |J{R"fi:kezP orkezf,) (154)
i=0
2P -1

U (R%fi :k € 27 or k€ 25,,). (155)

i=0

B

The multisel B is orthonormal if and only if the mulliset B is.

Consider now the orthonormal decomposition of the signal z in Figure 11.
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transformation reconstruction
(analysis) (synthesis)

transform domain representation of x
Figure 11: The basic filter-bank for a P-dimensional signal.

We need some new notation for a statement of the main theorem in this subsection. Let
j o= (J1--jp) € {0,1}F = Zf. Since card({0,1}F) = 2P, we can enumerate all such j’s as
J®,..., 7@, Select this enumeration such that ;(® = (0,0,...,0). Then, we write j&) =

G, 30), with 5§ € 2, for all k. We also write F((=117"2) = f(=1) 21, ..., (=178 2p).

Theorem 6. Let fp(n) = folny,....np),..., far_(n) = fae1(n1,...,np) be 2° sequences, with
n € 2" orn € ZF. Define a 2° x 27 matriz called the system matrix A(z) = (Aril2) ez,
z € TP or W, such that A4 4(z) = 2-PI2f (=1 ), ive.,

L0772 AU=1972)  fe (-1

=9~P/2 fo(("’l}j(”z) fl((“l)jmz) . f?"‘—1(("-l)jmz)

A(z) (156)

Fol(=17"""2) F-1F"2) Lo Fae (1P )

Then B is orthonormal if, and only if, A(z) is unitary for all z € T? or WE,.

Proof of Theorem 6. By Lemma 13, the orthonormality of Bis equivalent to the orthonor-
mality of B. By Lemma 11 the orthonormality of {R?*f; : k€ Z° or k € Zﬁ,z} for every fixed i
18 equivalent to the i-th column of A having length “1”. By Lemma 12 the cross—orthogonality of

{R*f :keZf orke Zf:-/z} and {R¥f, :ke€ZP ork e Zf,“} is equivalent to the orthogonality
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of the #;-th and the i5-th columns of A. i}

Theorem 6 is the higher-dimensional analog to Theorem 1 (cf. Meyer[21]). By way of example,

the system matrix for the signal space C*¥ is as follows:

qu(zl, z3) f:l(zh 2) sz(zh 22) st(zh z9)
...E .Cn ~z1,23) Jfl —21,22) .{2(—21,22) ,{3(-—21,22) -
AL =5l fomm)  Alrm)  fale—m)  falenr2) (157)
fo=21,—22) fil=21,—22) fy(-2,-22) fa(-21,~2)

5.2. Perfect Reconstruction

From Figure 11 we can see that perfect-reconstruction occurs if and only if the following equation

holds for all input signals z:

2P_1

D (g xUD(fi x 2)) (2) = 2(2). (158)

i=0

Equation (158) will be called the perfect reconstruction condition.

Lemma 14. The perfect reconstruction condilion is satisfied if, and only if,

2F_1

Y Fil(=1) 2)ai(2) = 27 8(k). (159)

=0

Proof of Lemma 14. From Lemma 10,

P+ 2)(2) =277 37 ful(-1)FHDa((-1)k212). (160)

keZ]

From (160) it follows that

UD(fix ) () =27F 3 fi((-1)F2)z((~1)%2). (161)

keZs

Using (161), the perfect reconstruction condition (158) can be written as:

2P 1
27PN ST A-1FE((~1)*2)di(2) = 3(2). (162)

f2=0 EEZ,P
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Define

2Py
Cu(z) = Y Fil(=1)F2)3;(2). (163)

i=0

The perfect reconstruction condition in (162) now reads:

27F 3" Cu(n)((-1)*2) = #(2). (164)

keZf

Define #(z) = 2!, for | € Z§. Since the perfect reconstruction condition must hold for all #(z),

it must in particular hold for all the ((z), { € Z¥. Then for every !, from {164),

#2(z2)=2=27F 3 (- ) Ce(x) = 27" D (~1)*Cu(a). (165)

keZy keZ?

From (165) it follows that, for all { € Z5 |

27F 3" (=1)*1Cu(2) (166)

keZ?

Let K € Z% be any fixed binary P-tuple. Multiplying both sides in (166) by (—1)X", and

summing over all [ we have:

2 EDFE = 2P S S (- (=D)F () (167)
1€Z; 1eZ? reZf
= 277 5 N (U= TEICK2) (168)
1€Zf keZf
= 277 3" Cu(z) D (-1 BL (169)
keZf 1eZ?

By Lemma 9, because K € 27,

Y (-1F = 2P5(K) = 2P5(K,). . .6(Kp). (170)
1€Zf

Also by Lemma 9,

D7 (=1)E K = 9Pk — k). (171)
1€Z?
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From (167)~(171),

Y Cul2)8(k - K) = 2P 8(K), (172)
keZy
or
Cx(z) = 2P4(K). (173)
From (163) and (173) we have the lemma. O

The following theorem is immediate from Lemma 14.

Theorem 7. Let A(z) be the system matriz (156). The system in Figure 11 gives perfect recon-

struction if and only if, Vz € T or C}‘:,,

QO(Z) 2P12
A(z) ?l(z) = ? : (174)
Gar1(2) 0

In the following corollary we summarize the results of the orthonormal decomposition and perfect

reconstruction of signals in {(Z*) and CV "

Corollary 1 The following are equivalent:

Pl: The set B = U?:o'l{R“f,- ckeZfork e Zf,,?} is orthonormal, and we have perfect

reconsiruction in Figure 11,

P2: The system matriz A(z) in (156) is unitary, and Vi € Zor, ¢i = f;.

Proof of Corollary 1 (P1 = P2). The unitarity of 4(z) follows from Theorem 6. Hence A~1(z) =
XT(z). From this observation and Theorem 7 follows the fact that, Vi € Zyr, §;(z) = f?i(z); or

equivalently ¢; = f;.
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(P1 <= P2). By Theorem 6, B is orthonormal. Since §;(z) = }T(z), the equation

2-P/25,(2) 272 fo(2) ]
9-Fl2; ~Pl2 ¢ 0

ao| RO | | e || s
2wPf2§2P_1(z) .prlzf'zi’_l(z) 0

is true, because the rows of A(z) are orthonormal by the unitarity of A(z). Then perfect reconstruc-

tion foliows by Theorem 7. o

5.3. Multidimensional Product Filters

Suppose f and f;; are one-dimensional filters such that

1 Flzy fal2) "
ﬁ(m—z) fy(—Z)) (176)

is unitary for all z € T or Wy. Define

fomr,ma} = fr(m)frine) (177)
filri,m2) = fa(ni)fe(ng) (178)
fa(ni,ng) = fo(ni)fu(ne) (179)
fa(n,ma) = fa(m)fu(ns). (180)

With this definition, the matrix (157) is a Kronecker product of two matrices of form (176):

folz1,22) Filz,7) falz1,22) fa(z1,22)
= L folmzz)  fi(-mum)  fol-z,2)  fa(-2,2)
A = 3] RGem)  fueoem) falrnem) Aoz | (8D
fol=21,—22)  fi(~21,=02) fol-21,—22) fa(-21,~22)

S J I Yo L(fel) al) ) gy

VZ\ fr(=2) ful=22) /" B\ Frl=2z) ful-=)

It is easy to check directly that the orthonormality of the set {R?* fp}, U {R* fx }; implies the
orthonormality of the set B in (154), for fq,..., f3 given by (177)-(180). This is the usual way of
constructing two—dimensional wavelets from one-dimensional wavelets. We call fo,..., fa product
wavelets. This is consistent with Theorem 6, since the unitarity of the matrix (181) follows from the

unitarity of the matrices in the Kronecker product formula in (182).
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Thus, two—dimensional wavelet filters can be constructed as products of one—dimensional filters.
However, Theorem 6 shows that there exist two-dimensional wavelet filters that are not product
filters. This follows from the existence of the following unitary matrix, which cannot be expressed

as a Kronecker product:

V200 V2

1| v2 0 0 -2

ils 2 & ) (183)
0 V2 —-v2 0

These arguments can be extended to the construction of general multidimensional filters.

5.4. Recursion

Let V = i2(ZF) or Cf. Let « € Z3#, |a| = n > 0, be fixed. Define §; = pfx(e,i), i = 1,...,n.
Let Fy,Gy € V be defined as in (81) and (92). For k= 1,...,n+ 1, let Xy = ZP in the infinite—
dimensional case. .In the finite—dimensional case assume 2*|N, and let X = Zjpies for k =

1,...,n+4 1. Then Theorem 3 carries over to the multidimensional case.

Let B, and V, be defined exactly as in (101) and (102). We now prove the following analog to

Theorem 4:

Theorem 8. (the iteration theorem) Let a € Z3p, | > 0, be fired. In the finite~dimensional case

let 2UeltVIN | Let B € Zgr. Suppose that B, is an orthonormal basis for Vg, Vo C 13(X1). Suppose

that {fap € Xjal4+1)s = {fo0: fat, - -+, faqzp—1)} satisfy Theorem 6. Let
Fag=Fa *ulalfaﬁ. (184)
Let Bop and Vg be as defined in (101) and (102). Then V, is the orthogonal direct sum of {Vag}s,

v, = D,V (185)

Also B&g 1s an orthonormal basis for V,p.

Proof of Theorem 8. We first demonstrate the orthonormality of | J; Begs. In order to do that it

suffices to prove that

- Usl+1)y, = 1 ,k=0and fy =pf
<Fﬂ.3uR2 kFa'ﬁ:) :{ 0 ,otherwise. l ’ (189)
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We have:
<F'up,,R2u°H”kF'aﬁg> = coeffy ((ﬁaﬂg)A(z) (thla[-i-l)kﬁaﬂ:)‘(z)) (187)
= coeffq (Fap, (z) 22" Fup,(2) (188)
= coeffg(als1rg lﬁ'mgl z) Fag,(z)) . (189)
From (184},
- - . - - lod
Fup(2) = Fa(z) (U0 £p)(2) = Ful2) fop (') . (190)
From (189) and (190),
(Faﬁ,,Rm“””"ﬁ‘ap,> = coefly qoteing (ﬁ'a = ( m) Fon ( Ial)) _ 151y
. = glalp 5
By the orthonormality of B, = { R F,,} ,
EEX i1
<ﬁ'a,R2'°"‘ﬁ‘a> = coeffalals ( ? e z)) = &(k). (192)
From (192) it follows that
.2 ,
Fol| (=14 ) a(l)e™ (193)
1ex,
2lalf}

for some a(l). Here by “21¢lJI” we mean that 3i, 21%1};, where I; is the ith component of the vector

le X, =2% or 2§
Similarly, by the orthonormality of {fag € Iz(XEQIH)}ﬁeZ,p’
(Fapor B fap,) = coeffas (Fup, () s, (2)) = 6()S(B: — o)

From (194) it follows that

aﬁl(z)fcrﬂg(z) =46 ﬁl Z b([

€ X ord+1
2fi

(194)

(195)
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for some &(1). Again, by “2/l" we mean that 37, 2f!;. From (191), (193), and (195) we have

<F‘ag“R2““'+”"Faﬂ=> = coeffgtaisry | 5(FL—F2) | 1+ E az=" | + Z b(I)z'”'"'.;-

g )
3% apm)z~(em ) | (196)
2ot o

Equation (186) follows from (196), and U, Bap is orthonormal.

We now show that (Up E'a,g) cd (span (Ba)) =V,. Forne X,

Fap(n) = (Fastllfp) ()= 3 Faln—m) (W1F5) (m) (197)
meX,
= Y R-2is) = Y fustk) (RTEFL) (). (198)
E€X|al41 EEX|al41

In (198) we ha.\;re F‘ag expressed as a linear combination of the elements of B,. Hence Fag € V,.
Since Bg is invariant under the operator R™% for all k € X|a|+1, We obtain (U,a éag) C Va.
Hence cl (span (Uﬂ ]5’,,,3)) = @ﬁ Vap C ¢l (span (Ea)).

In the finite-dimensional case the proof is complete, since the cardinalities of the orthonormal
sets B, and Us Bagp are equal, so that span (éa) = span (Uﬁ éap). For the infinite-dimensional
case, however, the inclusion B, Cecl (span (U.ﬁ éag)) = @5 Vyp remains to be established. Using

(198) note that for all n, k € 7% and B € Zqe,

(R Fap) (1) = Y Fap(m) Fu (n = 2°1(m + 26)) (199)
meZ”

= Y Fu(n-2%m) fp(m - 2%) (200)
meZ”

= Y (R*f.p) (m) (R F.) (m). (201)
meZ”

For p € Z* fixed, and n € Z%, define §, by é,(n) = 1 if p = n, §,(n) = 0 otherwise. Expanding

&, with respect to the basis {Rzkfaﬂ kezf pe ng} gives

o= Y Y. fuplp— 2k R, (202)
peli,p keZ”
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Hence, using (201), for each p € Z° we have

S X Feslo— ) R (B wdelf, ) (203)

el p reZ”® X

= 2 2 X Fuplp—2) (R¥) (m) (R AL) (204)

neZ” ped p ped”

= 3 & (R*"R) = YR, (205)
nEZP

This expresses each element of B, as a linear combination {converging in I*(Z) since faﬁ €

1Y(Z%)) of the elements of Us Bop. This completes the proof. m]

In like manner to (108), (113) it is easy to see that for any signal z € X, and for k € Xial+1s

k) = (z,R¥%F,) (206)
va = Y, (=B FF)R¥HF, (207)
E€X|a)41

The sum of y, for different « yields a decomposition of z in terms of the wavelet bases.

Recursion can be performed with “repeated” filters, as discussed in the single-dimensional case
in Subsection 4.4. We now prove the following folding Jemma that allows us to construct filters at

higher levels by “folding” the filters at the previous level. This lemma is analogous to Lemma 7.

Lemma 15. (the folding lemma) Suppose M € 2%, f = {f(n)} ez, . and b = {h(n)} 27
Then the following are equivalent:
Pl: h{z) = f(z), Yz € WE,.
P2: (FR)(m) = (Ff}(2m), ¥m € Zf;.
P3: h(n) =3,z f(n + ME), ¥n € vAYS
Proof of Lemma 15. We have:
(FR)(n) = h(e—izmn/M) nezb (208)

(FR(2n) = f(e7i2r3n/2M) = f(e~in/M) | n e Zf,. (209)
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Hence P1«pP2. Also,
f(z) = Z f(n)z™" = Z Z fln+ ME)z=n-Mk (210)
nEZ:’M “EZZ k@Z:P
Therefore, for z € W},
fey= 3 X fln+ Mk, @10
nEZ; kEZ:

Thus P3=>P1, and P1=>P3 since the z-transform is one—to-one on Z5,. o
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6. Conclusions and Discussion

We can summarize the results presented here in the following way. Theorems 1 and 6 give the
necessary and sufficient conditions for the construction of first generation wavelets. Lemmas 7 and
15 show how to obtain higher level auxiliary filters needed for the iteration step. Theorems 4 and
8 describe this iteration, showing how to obtain higher-generation wavelet bases. From a strictly
mathematical point of view these results are all that is necessary to create discrete wavelet bases.
However, the decomposition and reconstruction of a signal by a direct implementation of such a
basis is inefficient as evidenced by (123)-(125). Much faster implementation is obtained through a
recursive filter—bank setup. Theorems 2 and 7 give the necessary and sufficient conditions for perfect
reconstruction in this setup. Theorem 3 and (206)-(207) establish that this filter—bank arrangement
does in fact implement the decomposition and reconstruction of a signal in terms of the orthonormal

wavelet bases we have developed.

An algorithm is given for the construction of any and all wavelet filters for the decomposition
of one~dimensional signals. Filters for higher—dimensional signal spaces can be realized as tensor
products of one-dimensional filters, but the direct design of multidimensional filters with desirable

properties remains a problem for further research.

The problems of frequency localization and simultaneous time-frequency localization of one-
dimensional wavelet filters are discussed because of their importance to data compression and coding.
While the mapping of a filter in the signal space to a closest wavelet is seen to preserve its frequency—
localization, the mapping destroys time-localization. The problem of simultaneous time—frequency

localization is an important open problem so far as wavelets are concerned.
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