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Abstract

This paper studies the robustness of pac learning algorithms when the in-
stance space is {0,1}", and the examples are corrupted by purely random noise
affecting only the instances {and not the labels). In the past, conflicting re-
sults on this subject have been obtained—the “best agreement” rule can only
tolerate small amounts of noise, yet in some cases large amounts of noise can
be tolerated.

We show that the truth lies somewhere between these two alternatives.
For uniform atiribute noise, in which each attribute is flipped independently
at random with the same probability, we present an algorithm that pac learns
monomials for any (unknown) noise rate less than 1/2. Contrasting this positive
result, we show that nonuniform random atiribute noise, where each attribute 1
is flipped randomly and independently with its own probability p;, is nearly as
harmful as malicious noise—no algorithm can tolerate more than a very small
amount of such noise.
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1 Introduction

‘This paper studies the robustness of pac learning algorithms for learning boolean
functions (i.e. the instance space is {0,1}"). In particular, we examine random noise
processes that corrupt examples by independently inverting each attribute bit with a
probability given by the noise rate. We assume throughout that the classification of
each instance is always correctly reported.

In the past, conflicting results on handling random attribute noise have been
obtained. On the one hand, Sloan [11] has show that the “best-agreement” rule can
only tolerate very small amounts of random attribute noise—suggesting that random
attribute noise may be difficult to overcome. However, by using a different strategy,
Shackelford and Volper [10] have obtained an algorithm that tolerates a large amount
of random attribute noise (at a known noise rate) for learning £&-DNF formulas. Thus
their result suggests that random attribute noise may be like random classification
noise, where large amounts of noise can sometimes be tolerated.

We show that the truth lies sommewhere between these two alternatives. In or-
der to fully understand the difficulty of overcoming random attribute noise, we first
carefully examine the way in which the noise is formally modeled. All previous work
has considered uniform random attribute noise, in which each attribute is flipped
independently at random with the same probability.

The algorithm of Shackelford and Volper demonstrates that when the exact noise
rate is known, at least for learning k-DNF formulas, a large amount of uniform random
attribute noise can be tolerated. In this paper we extend that positive result by
showing that even if the exact noise rate is unknown {only an upper bound on the
noise rate is needed), the class of monomials is still efficiently learnable under a large
amount of uniform random attribute noise.

Contrasting this positive result, we show that nonuniform random attribute noise,
where each attribute ¢ is flipped randomly and independently with its own probability
pi (all p; are less than some given upper bound for the noise rate), is nearly as
harmful as malicious noise. That is, no algorithm (regardless of sample complexity
or computation time) can tolerate more than a very small amount of nonuniform
random attribute noise. On the whole, these results are surprising. Intuitively, one
would think that random labeling noise destroys much more information than random

attribute noise.



2 Review of pac learning from noisy data

The method most commonly used for pac learning in the presence of noise is to pick
a concept that has the best (or at least very good) agreement with a sample of data
corrupted by noise. It has been shown that for both discrete [1] and continuous [8]
instance spaces, the hypothesis that minimizes disagreements meets the pac criterion
when the examples are modified by random labeling noise. Similarly, Kearns and
Li [6] have shown that this method of minimizing disagreements can tolerate a small
amount of malicious noise in discrete instance spaces. So these results specify the
amount of noise that can be tolerated ignoring the issue of computation time. (Of
course, if a hypothesis minimizing disagreements can be found in polynomial time
then the above techniques produce efficient learning algorithms.) Sloan [11] has ex-
tended those results to the case of malicious labeling noise. Finally, as Blumer et
al. mention [2], their VC dimension methods can be used to prove that this minimal
disagreement method also works for handling small amounts of malicious noise in
continuous instance spaces.

In the case of uniform random attribute noise, if one uses the minimal disagree-
ment method, then the minimum error rate obtainable (i.e. the minimum “epsilon”) is
bounded below by the noise rate [11]. We note that for arbitrary adversarial malicious
noise, that is the maximum noise rate that any algorithm can tolerate [5].

Although the method of minimizing disagreements is not effective against random
attribute noise, there are techniques for coping with uniform random attribute noise.
In particular, Shackelford and Volper [10] have an algorithm that tolerates large
amounts of random attribute noise for learning k-DNF formulas. That algorithm,
however, has one very unpleasant requirement: it must be given the ezact noise rate
as an input. In Section 4, we present a new algorithm for learning monomials that
tolerates large amounts of uniform random attribute noise (any noise rate less than
1/2), and only requires some upper bound on the noise rate as an mput.

Once we move to nonuniform random attribute noise, however, we can no longer
find such algorithms. We show in Section 5 that with nonuniform random attribute
noise, the minimum error rate obtainable is bounded below by one-half of the noise

rate, regardless of the technique (or computation time) of the learning algorithm.



3 Notation

We assume that the reader is familiar with the model of pac learning introduced by
Valiant [12]. Good discussions of the details of the model are given by Kearns et al.
and by Haussler et al. 7, 3].

Briefly, a concept is a subset of some instance space X, and a concept class is some
subset of 2%. An ezample of a concept ¢ is a pair (z,s), where x € X, and s is 1 if
z € ¢ and 0 otherwise. We call a sequence of examples a sample.

We assume a fixed (but unknown) probability distribution D on X. Furthermore,
the learner who is trying to learn concept ¢ has available to it a black box or oracle
called EX such that each call to EX returns a labeled instance, (z,s) where z is
drawn at random from D and labeled according to ¢. The learner’s goal is the
following: Given parameters 0 < ¢,6 < 1, draw a sample from EX, and output some

representation of a concept ¢é such that
PrD(cAg)> ¢ <6,

where A denotes symmetric difference, and the probability is over the calls to EX
and any coin flips used by the learning algorithm. Such a ¢ is called e-good.

The ordinary definition of pac learning (from noiseless data) assumes that EX
returns correct data. In this paper we are concerned with the case in which our
instances come from some noise oracle, instead of the usual noise-free oracle, EX.
Each noise oracle represents some noise process being applied to the examples from
EX. The output from the noise process is all the learner can observe. The “desired,”
noiseless output of each oracle would thus be a correctly labeled example (z, s), where
z is drawn according to D. We now describe the actual outputs from the following
noise oracles: MAL, [13], RMC, [1], MMC, [11], URA, [11}, and NRA,.

¢ When MAL, is called, with probability 1 — v, it does indeed return a correctly
labeled (z,s) where z is drawn according to D. With probability v it returns
an example (z,s) about which no assumptions whatsoever may be made. In
particular, this example may be maliciously selected by an adversary who has
infinite computing power, and has knowledge of the target concept, D, v, and
the internal state of the algorithm calling this oracle. This malicious noise

oracle models the situation where the learner usually gets a correct example,



but some small fraction v of the time the learner gets noisy examples and the

nature of the noise is unknown or unpredictable.

o When RMC, is called, it calls EX to obtain some (noiseless) (z,s), and with
probability 1 — », RMC, returns (z,s). However, with probability », RMC,
returns (z,3). This random misclassification noise oracle models a benign form

of misclassification noise.

e When MMC, is called, it also calls EX to obtain some (noiseless) (z,s), and
with probability 1 —v, MMC, returns (z, s). With probability v, MMC, returns
(z,1) where ! is a label about which no assumption whatsoever may be made.
As with MAL, we assume an omnipotent, omniscient adversary; but in this
case the adversary only gets to choose the label of the example. This malicious
misclassification noise oracle models a situation in which the only source of

noise is misclassification, but the nature of the misclassification is unknown or

unpredictable.

o We consider the oracle URA, only when the instance space is {0,1}" (i.e., we
are learning boolean functions). The oracle URA, calls EX and obtains some
(z1- -+ Tn,s). URA, then adds noise to this example by independently flipping
each bit z; to Z; with probability v for 1 < i < n. Note that the label of the
“true” example is never altered by URA,. This uniform random attribute noise
oracle models a situation where the attributes of the examples are subject to
noise, but that noise is as benign as possible. For example, the attributes might

be sent over a noisy channel.

o The oracle NRA, also only applies when we are learning boolean functions. This
oracle calls EX and obtains some (zy - - - 2, 5). The oracle NRA, then adds noise
by independently flipping each bit z; to %; with some fixed probability v; < v
for each 1 <1 < n. This nonuniform random attribute noise oracle provides a

more realistic model of random attribute noise than URA,.!

The noise oracles we will focus on here are URA, and NRA,,.

1Technically, NRA, specifies a family of oracles, each member of which is specified by n variables,

V1., U, where 0 < p; < v,



4 Learning monomials from noisy data

In this section we present an algorithm for learning monomials from data corrupted
with uniform random attribute noise. The examples will come from URA,, and the
only prior information about the noise rate v that the learner will have is some bound
vy < 1/2 such that 0 < v < u.

The key idea we exploit is the following: Imagine that the literal z; is included in
the target concept. Then whenever the learner receives a positive instance with the
first bit off, it must be that the bit was on in the “noise free” instance, and flipped

by the noise oracle. Hence, the ratio

number of times bit 1 is off in positive instance

(1)

total number of positive instances

provides a good estimate of the noise rate. Notice also that if 2y is not in the formula,
then the ratio specified in (1) still is bounded below by the noise rate. Thus we will
estimate the noise rate to be the minimum, over all literals, of the ratio specified
in (1) for the literal ;.

More formally, let the literals be numbered from 1 to 2n (Say z; is 1, 2215 2, .. .,

Fpisn+1, ..., and Z, is 2n.), and for each literal ¢, let
¢ = Pr[Literal ¢ is off in a positive instance from EX (noiseless data)]
p; = Pr[Literal ¢ is off in a positive instance from URA,].

Qur goal is to output a conjunction that contains every literal that is in the target
monomial, and no literal with a high value of ¢;. Of course, we cannot directly estimate
the ¢;’s since we only see examples from URA,. Our method is to accurately estimate
all the p;’s using examples from URA, and then use these estimates to determine
which literals have a high value for ¢; and should thus be excluded. Observe that for

all 2

pi = g(l—v)+(1-qv
= v+ ¢(l—2v) (2)

Thus for any literal z that is in the target monomial, p; = v. Furthermore, since
v < 1/2, for any literal ¢ that is not in the target monomial p; > v. We will show that

by accurately estimating all the p,’s we can obtain a good estimate for the noise rate



by simply taking the minimum estimated value over all the p;’s. We then output the
conjunction of all literals 7 having values of p; close to that minimum. The algorithm

is specified in full in Figure 1.

Theorem 1 The monomial algorithm specified in Figure I pac learns given dala from
URA,.

Proof: We now prove that the error of the hypothesis output by our algerithm has
error less than ¢ with probability at least 1 — 6. Let p, denote the probability of
drawing a positive example from URA,. (Note that since the noise process does not
affect the labels, p; is also the probability of drawing a positive example directly from
EX.) By applying Hoeffding’s Inequality [4] it is easily shown that if p, > e then with
probability at least 1 — /2 the algorithm will obtain enough positive examples in step
2. Of course, if p; < € then the hypothesis FALSE is e-good.

We now show that if enough positive examples are obtained in step 2, then the
hypothesis output in step 5 is e-good with high probability. Again, by applying Ho-
effding’s Inequality [4], it is easily shown that the probability that all of the estimates
p; are within e(1 — 214)/8n of their true value p; is at least 1 — §/2. That is,

e(1 — 2u)

Pr /\ Pi““—'g“——<15i<P£+
(1<i<2n) n

e(1 — 2u1)

>1—46/2.
8n - /

We now assume that at least m positive examples are obtained in step 2 and that
all the p;’s are within the above tolerance (these conditions are both satisfied with
probability at least 1 — §). Then:

1. The estimate I of v is accurate; in particular

. (1 — 21) ch<vt 6(1-—21/5)-
8n 8n

2. Any literal that is in the target monomial will be placed in the algorithm’s
hypothesis. Recall that for any literal z that is in the target monomial, p; = v

and thus
(1 — 2wm)

in
Hence for every literal i that is in the target monomial, p; will satisfy the

pi< b+

inequality in step 5.



Inputs: €,8, v, (where v < v, < 1/2), access to URA,,.
Output: Some monomial (possibly “FALSE™).

1. Set
m = 32n? In 8n
T (=22 5
2m 2. 3
2. Draw m’ = max {—m, —n 3} examples from URA,.
€ €

- If m positive instances are not obtained, halt and output “FALSE.”

- Otherwise, let S be a sample of m positive examples.

3. For each literal ¢
P: = (number of times literal ¢ is off in S)/m.
4 = mt_in D;-
5. Qutput the AND of all literals ¢ such that
e(1 — 2w)

g < O ———t,
syt 4n

Figure 1: Algorithm for pac learning monomials under random attribute noise with an

unknown noise rate.



3. No literal that would frequently cause the algorithm’s hypothesis to be false
when the target monomial is true will be included in the hypothesis. More
specifically, we argue that for any literal ¢ that is not in the target monomial

but is placed in the algorithm’s hypothesis ¢; < ¢/2n.
To prove this we will show that if ¢; > ¢/2n then F; will not satisfy the inequality

in step 5. Applying equation (2) we get

(1 — 21/(,).

. >
p;i2v+ on

Finally since p; and 7 are within the given tolerance of their true values, it

follows that:
(1 — 21)

4n
Thus the choice of literals made by the algorithm in step 5 ensures that every

literal  in the output formula has ¢; < ¢/2n.

pA,')I)'i'

Now since the literals in the output monomial are a superset of the literals in
the target monomial, the algorithm’s hypothesis is false whenever the target
concept is false. Since every literal ¢ in the output has ¢; < ¢/2n, and there
are at most 2n literals in the output formula, the probability that the output is

false when the target concept is true is at most e.

O

Remark: We can obtain a very similar result for a noise model where with prob-
ability 1 — v the example is noise free, and with probability v a single one of the n

bits is picked at random and flipped.

5 Nonuniform random attfibute noise

In this section we show that nonuniform random attribute noise makes pac learning
almost as difficult as malicious noise. Kearns and Li [6] showed that for any nontrivial
concept class, it is impossible to pac learn to accuracy e with examples from MAL,

unless
v <ef(l+e).

Our result for nonuniform random attribute noise is similar, with a slightly weaker
bound.



Labeled Instance D, D,
{(00,-) (1-v)/2 (1-v)/2
(00,+) 0 0
(01,-) vi2 0
(01,+) 0 v/2
(10,-) 0 vf2
(10,+) v/2 0
(11, -) 0 0
(11,4) (1—wv)/2 (1-v)/2

Table 1: Two induced noise-free probability distributions obtained from distribution D for

concept class C.

Theorem 2 Let C be any concept class over the domain {0,1}" that includes the
concepts x; and x; for some t 3 j. It is possible to pac learn C to accuracy € with

ezamples from NRA, only if v < 2e¢.

Proof: We use the method of induced distributions [6].

Say C contains the concepts z; and zz. In what follows, we will put zero probability
weight on instances containing 1’s in positions 3 through n, and thus may assume
that v, = 0 for 3 € k € n. In fact, we can assume that our entire instance space is
{00,01, 10,00}, since all instances seen will have 0’s in all other attributes.

Fix some value of v in the range 0 < v < 1/2. Cousider a distribution D which
assigns weight (1 — »)/2 to 00 and 11 and weight /2 to 01 and 10. In Table I we
show the two noise-free probability distributions on examples obtained by labeling
the instances drawn from D according to concept z; or concept z,.

Now consider what happens under the following two learning problems:

1. For the first learning problem let z; be the target concept, let D be the distri-
bution on instances (so Dy is the noise-free distribution on examples), and let

the noise oracle be NRA, with »; = v and 1, = 0.

2. For the second learning problem, let z, be the target concept, let D be the
distribution (so Dy is the noise-free distribution on examples), and let the noise
oracle be NRA, with »; = 0 and v, = v.



These two learning problems have an identical probability distribution on the
observed (noisy) samples. Therefore, no pac learning algorithm has any basis for
distinguishing between these two scenarios. Thus the learning algorithm must output

a concept ¢ such that:
D(e; Ac)<e and D(c; D) < e
By tlie triangle inequality it follows that:
D(c; Ac)+ D{c; Ac) 2> D(ey Acy).

Thus the learning algorithm must a concept ¢ such that D(c; A ¢3) < 2¢. Finally,

since D{e1 A ¢2) = v, no learning algorithm can succeed unless v < 2e. O

Remark: Notice that the bound of Theorem 2 is an information-theoretic representation-
independent hardness result. No algorithm, regardless of either its sample size or
computation time, can escape this bound. Furthermore, we have made no assump-
tions on the representation class from which the hypothesis may be selected—this

bound on the tolerable noise rate holds for any hypothesis the learner may output.

6 Final thoughts

We have studied the robustness of pac learning algorithms under several forms of
random attribute noise. We presented a new algorithm for learning monomials that
tolerates large amounts of uniform random attribute noise (any noise rate less than
1/2), and only requires some upper bound on the noise rate as input. An intriguing
open question is whether one can pac learn k-DNF formulas under uniform random
attribute noise for an unknown but bounded noise rate.

However, we feel that our negative result for the more realistic nonuniform random
attribute noise oracle makes it clear that, in general, under the pac learning model
random attribute noise is quite harmful. This result was surprising to the authors.
One expects to only be able to tolerate a small amount of truly malicious noise—it is
obviously the worst sort of noise possible. Yet, one would expect that labeling noise
would be worse than random attribute noise. Indeed, in one empirical test (of the
ID-3 system), that is exactly what was found [9]. Yet, in spite of both these empirical

results and our intuition, we have shown that in the pac model random attribute noise

10



(when it is nonuniform) is significantly more harmful than random labeling noise. In
fact, nonuniform random attribute noise is significantly more harmful than malicious

labeling noise generated by a powerful adversary [11], and nearly as harmful as truly

malicious noise.
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