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Abstract

A consequence relation (CR) relates sets of beliefs to the appropriate conclusions that might be de-
duced. Of special interest to Artificial Intelligence are CRs that cope with inconsistency within the
set, of beliefs. Default reasoning, belief revision, social choice and reasoning from conflicting knowl-
edge sources are just a few examples of mechanisms that need to handle inconsistency. In this paper
we show a taxonomy in which many existing mechanisms are mapped, and new interesting ones are
revealed. We identify simple relations among the CRs and give a language for their specification.
We then show that a large portion of the CRs described by the language can be implemented using
a connectionist constraint satisfaction approach and therefore implementable in neural networks like
Boltzman machines and Hopfield nets. The result demonstrates the flexibility of these connectionist
models for the approximation of a variety of knowledge level theories.
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1. Introduction

A variety of inference mechanisms has been proposed for reasoning from a set of beliefs expressed as
logic well formed formulas (WFFs). Of special interest to artificial intelligence are those mechanisms
that infer intelligently from possibly inconsistent set of beliefs. This is the core of what Nicholas Rescher
calls a theory of plausible reasoning whose main task is “to deal with cognitive dissonance” [Rescher 76].
Default reasoning, belief revision, and reasoning from unreliable and conflicting source(s) of knowledge,
to name just few, must all deal with inconsistent knowledge. These are tasks that humans so excel in
doing, and yet formal systems find hard to solve.

Few inference engines exist to solve these problems and those that do try to solve it suffer from inher-
ently slow performance and from inflexibility to learn and adjust. Connectionist networks may provide
an answer to these problems; however, currently only few connectionist systems implement a strong
knowledge level theory (for examples of such connectionist systems see: [Shastri 85, [Derthick 88]).

In the first part of the paper we define consequence relations (CRs) that link together sets of beliefs
and their conclusions, and describe a taxonomy of such CRs. A language to describe consequence
relations is given, and operators are defined that relate and tie together different such CRs. The result
is an elegant taxonomy of new and existing inference mechanisms (for example, non-monotonic (NM)
reasoning, voting systems, belief revision, logic programming etc.) that sheds light on the relations
among those mechanisms.

In the second part of the paper we demonstrate that many such CRs can be implemented on a
connectionist constraint satisfaction architecture. Hopfield networks, [Hopfield 84], Boltzman machines
[Hinton, Sejnowski 86], mean field theory [Hinton89] or the special energy functions of [Derthick 88]
can be used as the target networks.

2. A taxonomy of cautiousness

2.1. Consequence relations

Let L be a finite set of well formed formulas (WIFs from either propositional or predicate logic). A
consequence relation (CR) is a binary relation defined over P(L) x L. We use the notation ¥Ry to
denote a pair that belongs to the CR. R, where 9 is a finite subset of L and ¢ is 2 WFF in L. 1 is the
set of beliefs used as a knowledge base while ¢ is a conclusion allowed by the relation R. The relation k=
(or I} used in standard logic is an example of a CR which in case of inconsistent set of beliefs concludes
trivially all WFFs. We’ll show that using a simple language we can define many more consequence
relations, among them is the standard |= relation, as well as other interesting ones.

Before we formally define our notation, let’s examine two examples: Given a possibly inconsistent set
of WFFs, classical logic trivially entails everything if indeed there is a contradiction in the set. However,
a more plausible mechanism may use the following inference procedure: 1} Find all maximal consistent
(MC) subsets (maximal in the sense of set inclusion). 2) Take the closure of each such subset under
classical entailment and 3) Conclude only the WFFs that are in the intersection of all the closures.
Several systems use this kind of skeptical principle (which we call Ry, see figure 1). This includes some
of the first NM systems [Reiter 1987), dealing with inconsistency [Rescher, Manor 70] and some social
choice (voting systems) with the Pareto relation [Campbell 79].

Now, assume we have a mechanism that uses the negation as failure principle on the consequences
of Ry; i.e, we conclude ¢ from a set 9 iff we can not conclude the negation of ¢ from % in Rp. If our
set of beliefs 1 is complete ! (e.g. when using a closed world assumption) then the negation as failure

14 is complete in R iff for all ¢ either YRy or ¥R,
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Figure 1: a small portion of the taxonomy that includes the examples given in this paper.

principle produces the same set of conclusion as the original CR (i.e, Rp). However, if 3 is incomplete,
we obtain a very bold CR. It concludes ¢ from a set 1 iff there exists a model that satisfy both a

MC-subset of 9 and the WEFF . We call this CR, the dual of Ry and use the notation R}; . Some voting
systems use similar mechanism; i.e, we agree to prefer candidate = to candidate y if not all voters prefer
¥ to z (the dual of the Pareto relation). Also, Derthick’s Mundane reasoning ([Derthick 88]) can be
seen as a variation on the dual of Ry, since it is based on finding a (most likely) model that satisfies

both a (most likely) subset of 1 and ¢ (see R;r in figure 1). We can observe also that Ry is much
i

more cautious than I2y; any conclusion made by Rp is also concluded by Ry and clearly they are not
equal. The dual of Ry is also not safe in the sense that both ¢ and —¢ may be concluded from some 1.
However, if we “clear” it from all these ambiguous conclusions we obtain again the original R .
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2.2. A partial order and some operations on consequence relations

We are now ready to formally define our taxonomy. We define the cautiousness relation, duality and
the clear operation. These operations tie and relate different CRs and help to identify new interesting
CRs.

A partial order of cautiousness is defined over CRs. We say that By = R (R; is more cautious
than Rp) iff Ry C Ry. If R; is more cautious than Ry, then every conclusion available by R;, is also
available by Rs. However, H; may contain some conclusions that &; is too cautious to conclude.

The dual of & CR R written as RI, is the set of of all pairs < 1,© > such that < ¥,—p >¢€ R; ie,
@bRTgo iff =(4p B—p). The dual of }= corresponds to negation as failure; i.e, we conclude the negation of
a proposition if we can’t prove the proposition itself.

The clear operation clears the ambivalent conclusions from the relation; that is, it deletes from R
all pairs 9Fy when both YRy and ¥R hold. We say that R is safe if it includes no ambivalent
conclusions.

The CRs that are generated using the clear and dual operations possess the following properties:

1) The dual of a dual is the relation itself; i.e Rt = R;

2) clear(clear(R)) = clear(R) ;

3) The clear of a relation is no less cautious than the relation itself; i.e, clear(R) = R.

4) The clear of a relation is equal to the clear of the dual of the relation; i.e, clear(R) = clear(Rf);

5) If R, is more cautious than Ry, then the dual of R is more cautious than the dual of Ry; i.e, By > R,

then Rg b RI.
6) If R is safe then clear(R) = R; if R is also complete? then R = Rf.

2.3. A language to describe consequence relations

To specify CRs, we’ll use the language of predicate logic (as a meta language) with the standard
predicates, functions and axioms for set theory augmented by the following predicates:

» Satisfiability: z}=,¢ holds iff # is a model that satisfies ¢ in standard model theory.

e Preference order: > is a partial order defined on consistent subsets of L. We call T “better” then TV
iff T'>T". T and T’ are non-comparable (equally good) if no order between them exists.

Using these basic predicates we can define new useful notations:

¢ Entailment: ¥|=¢ holds iff all the models that satisfy ¢ also satisfy ¢ (classical logic entailment).

e Entailment by consistency: $<Ow holds Hf =(19f=—); i€, ¥ and ¢ are consistent (the dual of |=).

e Maximal consistent subset (MC-subset) predicate: MC(¥,T) holds iff T is a consistent subset of 1
that is not strictly contained in any other consistent subset of .

» The preferred maximal consistent subset (P-subset) predicate: P(4,T) holds iff T' is a MC-subset of
1 and there is no “better”(>) MC-subset of 1.

* The majority quantifier ((Mc(-)2)@(z)) denotes that Q(z) holds for the majority of the z’s for which

C(=z) holds®. The dual (M) denotes not-minority.

For example: Ry is specified by (V)M C(%, T)—(T=¢), while R} is specified by (3IT)MC(¥, T) A
(T'Cw). In figure 1, we use shorthand: T represents a MC-subset and P represents a P-subset. We
therefore can use VTl=¢ to specify Ro. Observation: The language is closed under the “clear” and
“dual” operations.

2R is complete iff for every 1 and ¢ either ¢/Ry or ¥ B=ep.
3Majority is expressed in terms of cardinality: (Me(yz) P(z) iff [ {z | C(2) A Q(=)} 1> {= | C(x) A =Q(=)} |
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2.4. More examples

EXAMPLE 2.1 R is a safe CR defined as follows: tRa¢ iff all the P-subsets (preferred subsets) of
3 entails @; i.e, (VI)P(4, T)—(T E¢). It is 2 cautious CR, but many researchers find it attractive:
[Rescher, Manor 70] suggested indexing methods to determine the preference relation among the MC-
theories. Also, many skeptical NM systems can be looked as implementing Ry ([Touretzky, Horty, Thomason]*

The dual of Ry can be described by: gbR; i iff there exists a preferred subset P that is consistent with
w; i.e, (AP)P(3, P) A (P<yp). Note, that this is the CR that Derthick uses for his Mundane reasoning.

R, is still a very bold CR. and of-course Ry » Rz holds. The clear of both Ro and R; is Py itself since
Ry is a safe relation. We can also observe that By > Ry > R; > R;r .

EXAMPLE 2.2 The relation Ry is defined as follows: ¥Rz holds iff there exists a preferred subset P
of ¢ that entails ¢ and the rest of the preferred subsets are consistent with ¢. Although bolder than
Ry, it is still 2 safe CR and therefore has an advantage over mechanisms (like R4) where a conclusion

is justified based on a single preferred subset. The dual of Ry is: u’)erp iff all the preferred subsets are
consistent with ¢ or at least one preferred subset entails .

ExXAMPLE 2.3 ¥R} holds iff any MC-subset of ¢ entails ¢ and all better or equal MC-subsets ( in the
sense of the preference order >), are consistent with ¢. Argument systems like [Loui 87] may be seen as
using 12: an argument (which is a proof based on some consistent subset of beliefs) wins, unless there
is a better or equally good (>) subset that proves the negation. A variation of this CR is described in
[Packard,Heiner 83] where a conclusion is made if a consistent subset entails ¢ and all better or equal
consistent subsets are consistent with . It is still a safe CR although bolder than Ra.

ExAMPLE 2.4 ¢ R4 holds iff a preferred subset of 1) entails ¢.
It is not a safe CR, however certain credulous NM systems ([Touretzky, Horty, Thomason]), correspond

to it. The dual of R4 is: gbRIgo iff all preferred subsets are consistent with . The inference is done
by searching for at least one model consistent w1th @ for any of the most likely MC-subsets. Although

quite bold, RJr is more cautious than Derthick’s R2 Note, that By = Ry > Rg > Ra > By > RI - Ri
»ﬂ»ﬂ»ﬁ

Some other interesting examples are (see the graph of figure 1):

® R;: a MC-subset entails ¢ and all MC-subsets are consistent with ¢ (mentioned in [Packard,Heiner 83]).

e R]: All P-subsets entail ¢ and all the MC-subsets are consistent with ¢.

o 115 A P-subset entails ¢ and all the MC-subsets are consistent with ¢.

e F5: A MC-subset entails ¢ and all better (>) MC-subsets are consistent with ¢,

s Ig: A MC-subset entails ¢,

e M: The majority of the MC-subsets entail ¢. This CR is useful for social choice systems based

on democratic voting (see for example in [Campbell 79]). The dual of M is based on the quantifier
“not-minority” (A4); i.e, at least half of the MC-subsets are consistent with ®.

e M’: The majority of the models that satisfy any P-subset also satisfy . Although, not even a single

subset has to entail ¢, this CR is safe and makes sense from a probabilistic view. The dual insists that

this property holds for at least half of the models (not-minority).

Finally, from a look at figure 1, we can identify three columns: The CRs from the left are called
“conservative” CRs, since we can construct at least one subset that entails any conclusion of the CR
(an argument supporting the conclusion). The CRs from the right are called “speculative” since a

*Different, non-monotonic systems may be seen as if they are implementing different preference relation.
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conclusion is inferred based on our ability to construct at least one plausible model that justifies the
conclusion. The third column includes CRs that are based on majority (or not-minority) of models
(possibly in conjunction with other types of entailment).

Note, that the standard entailment relation is a special case of any conservative CR: When we have a
consistent set of beliefs, all conservative CRs conclude the same set of conclusions as the standard =
relation.

3. A connectionist constraint satisfaction approach

Although all of the CR’s describe in this paper can be implemented using symbolic techniques, con-
nectionist approach has the following advantages: 1) It can be implemented on a massively parallel
architecture and be used for real time applications; 2) Although the problern is NP-hard and the worse
case convergence is exponential, we can trade time with correctness®; i.e, the network may give us
an answer after arbitrary time limit and improves its probability of giving a correct answer as more
time is given; 3) The ability of these architectures to learn gives our inference engines the capability
of dynamically changing the knowledge base as well as the inference mechanism itself. A network may
learn a new set of beliefs and develop its own intuition by acquiring a new preference relation.

In the following sections we show that most of the consequence relations discussed earlier can be
implemented naturally using a constraint satisfaction approach on a connectionist network. Qur main
objective is to show that we can develop energy functions implementable using standard connectionist
models. We want to express the constraints needed for a wide range of reasoning mechanisms, so that
the global minima of the energy function developed are exactly the solutions to the reasoning problem.

3.1. Specifying weighted logical constraints in Symmetric Connectionist netwaorks

Weighted logical constraints (both hard and soft) can be translated into energy functions that can be
then implemented on a connectionist network ([Derthick 88], [Pinkas 91], [Pinkas 90b]®. The global
minima of these energy functions correspond exactly to the models that minimize the violation of the
constraints. Using these algorithms, it is possible to construct basic connectionist modules that we
further use as building blocks in order to express CRs as energy functions.

3.1.1. Preference order. Given a set (¥) of propositional logic formulas augmented by real
positive numbers called penalties, we define a partial order over subsets of 4 using the function
penalty,(S) = E‘P;Eiﬁ—s pi; i.e, we penalize S for all the ;s in 4 that are not in S.

We say that S) > 55 (S) is better than 5,), if penalty,(S1) < penalty,(Ss), and that two subsets are
non-comparable (equally good) if the have equal penalty.

A preferred subset P of 9, is a consistent subset such that no better consistent subset exist. The
preferred-subsets (P-subsets) are therefore those MC-subsets that minimize the penalty function.

3.2. Basic connectionist modules

We describe now several useful network modules. Each module we specify has the form of
name-ofmodule <logical constraints>(< visible units >), meaning that the network module is accessible

5Using architectures like Boltzman machines that are able of escaping from a local minimum as more time is given.

SIn [Derthick 88] special energy functions are generated that need special architecture. Tn [Pinkas 90b] quadratic
energy functions are generated that can be implemented on symmetric connectionist networks like Boltzman machines or
Hopfield nets,
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via the <visible units> and is wired using the <logical constraints>. The visible units for each network
module are used as inputs, by external clamping or by biasing, and as output to obtain an answer from
the system’.

The following notation will be used in describing the network modules: ¥ = {< p;,¢; >} is a set
of logical beliefs (propositional formulas augmented by penalties); ¢ is a propositional formula (the
conclusion we want to check); X is the set of visible units Xj ... X,, representing the atomic propositions
accessible in ¥ or ¢; T is a set of visible units representing the ,’s that are in 9 (the constraints T,
must be satisfied); A is the visible unit (output) representing the answer given by the network.

We assume that the following network modules can be constructed; the implementation details
appear in {Pinkas 90b} and [Pinkas 90c]:

A network that searches for a preferred model:

NETy(X) is a network module that allows us to combine hard and soft (weighted) logical constraints.
The network then searches for a truth assignment to the atomic propositions of ¥ (the visible variables
in X), such that the weighted sum of the constraints that are violated (E_,—c-#:% pi), is minimized. In

[Pinkas 90b] we show that the truth assignments are exactly the models of the preferred subsets of .

A network that searches for a proof:

PROOPFy(T, A) is a network that searches for a subset of ¢ that form an argument (a proof) for the
query . If such argument in support of ¢ is found, the network sets A to one, and the units T} in T
represent the o;’s that participate in the proof. The T}’s may be clamped (or biased) externally and
thus force the network to answer whether a proof for ¢ can be constructed using this subset (T) of 4.
Note, that we can implement Rs directly using PROOFy (T, A).

Assuming we have these two last network modules, we can build the following ones:

A network that searches for a preferred subset:

PREFERy(X,T) searches for a preferred subset of 3, and returns the subset of beliefs in the units
of T; i.e, T; is set iff ; is in the preferred subset that was found. The implementation is by using the
module N ET with the hard constraints {T}«s;} and with the soft constraints < p;, T} >.

A network that searches for a proof based on a preferred subset:

The network PREFPROOF,, »(X,T, A) searches for an answer to whether there exists a preferred
subset of ¢ that contains an argument (a proof) that supports . If such proof exists then A is set to
one. The implementation is by combining PROOFy, (T, A} with PREF ERy(X,T). By giving higher
penalties to the constraints in PREF ERy, we bias the Tjs for PROOFy (T, A), so that a proof may
be found only from a preferred subset. We can implement R, directly with PREFPROOFy (X, T, A).

A network that checks for consistency with a preferred subset:

The network PREFCONSy (X, A) checks whether there exist a preferred model (one that satisfies
a P-subset of ) that also satisfies . If such model exists then A4 is set to one, Implementation is by
combining the hard constraint (A+) and the soft constraint < ¢, A > with NETy(X). The network
then tries to satisfy both a preferred-subset of 4 and . If it is possible to satisfy both of the constraints,
then ¢ is consistent with a preferred subset and A is set; otherwise, the soft constraint < ¢, 4 > cannot
be satisfied and 4 becomes zero®.

3.3. Some consequence relations that can be stated as connectionist constraint satisfaction.

All preferred subsets entail (#;): We want to build the network R, v»,lP(A) such that A = 1 holds
I 9 Rap. We start using the network module PREFE Ry, (T) adding the hard constraints A; <+ and

?Visible units have a binary value (zero or one) and the global minima of the energy functions associated with the
network projected into the visible units are the solutions to the problem specified.

8¢ is a bias that is weaker then the rest of the constraints. The network should satisfy it only if the other constraints
are maximally satisfied.
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-4+ A. We also add the soft bias < ¢,mA4; >. The new network searches for a model that satisfies
both a preferred subset of 1 and —wp. If it succeeds in finding such a model, we conclude that there is a
preferred subset consistent with —¢ and therefore < 1, ¢ > is not in Ry, else we conclude that ¥ Ra¢.
The ¢ bias causes the network to prefer a P-model that does not satisfy ¢, causing —4;to hold and
therefore set A to one. However, if such a preferred model cannot be found, then A; becomes true and
A is set to zero.

A preferred subset entails and all preferred subsets are consistent (R3):

We want to build the network R3 ‘,“(P(A) that sets A = 1 iff ¥ Rap. We combine the network modules
PREFPROOFy (X, T, A;) with PREFPROOFy (X, T, A;) and add the hard constraint (4; A
—As)e+A. The new network searches for a preferred subset with an argument supporting ¢ and a
preferred subset with an argument supporting —¢. Only if there exists such an argument for ¢ and
no such argument exists for -, are we ready to set A = 1 meaning that ¥ Rap. Using the module
PROOFy,, instead of PREFPROOFy, » we can build also the network for R;.

A subset entails and all better or equal subsets are consistent (R}): We want to generate

Q% (p(A) that sets A = 1 iff there exists a subset of 4 that supports ¢ and there is no better or equally
good subset of ¢ that supports its negation. Implementation is by combining PROOFy (T, A) with
PROOFy ~p(T', A’) and adding the hard constraint A« A’ and the soft constraint < ¢, A’ >. The
network searches for proofs for either ¢ or . Because of mA«—A’ only one proof will win; the one
that is “better”. If both proofs are equally good then the bias (¢) for A’ causes the network to prefer
the proof for ~¢ and A becomes zero (false).

In a similar way we can implement also the rest of the conservative CRs that are in figure 1.

Implementing the dual: If R is implementable on a constraint satisfaction connectionist network,

then Rf isalso implementable on such network using the following construction:
Let Ry o(A) be the network that searches for the answer to whether 1 Ri. The net Ry (A’ plus the
hard constraint A’—+—A, searches for an answer to whether =(1pRyp) holds. Tt is exactly the answer to

whether beTgo holds.

Conclusion: We can implement Rq, By, Ry, Ra, R}, Rs, R4, R}, Rs, Rs and all their duals. In fact we can
implement any CR that can be described using a subset of the language of section 2.3. This subset
includes any boolean combination® of basic expressions of either the form

(1) { ﬂi?ifbé.,? }/\ ({ g,i } { fgo }) or the form
an "5ty haae{ %, haema {3 bo-wo{ £ by

i = g

4. Summary

We have shown a taxonomy of consequence relations from possibly inconsistent set of beliefs. Many
existing inference mechanisms can be mapped into this taxonomy. A partial order and several op-
erations defined on CRs reveal an elegant structure that underlies the taxonomy and shed light on
the relationships among them. Some interesting new CRs appear that deserve further research (e.g.,

R, Ry, Ry, BRI, RY, M)

Most of the CRs discussed can be stated as constraint satisfaction problems and be implemented?®
on connectionist architectures like Boltzman machines, Hopfield networks or using the special energy

9A boolean combination of such expressions uses the connective: v, A, — and most important —, that enables us to
use also the ¥, < and < inside the basic expressions.
1¥We have not figured out how to implement the majority quantifier.
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functions of [Derthick 88]. In fact we show that a significant portion of the CRs that our language can
express may be implemented. The capability of expressing such variety of mechanisms demonstrates
the flexibility of these architectures as well as their potential to implement a wide range of knowledge
level theories.

Acknowledgments:We thank Jon Doyle and Fritz Lehmann for helpful discussions.
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