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ABSTRACT OF THE DISSERTATION 

Identification of Viral Determinants of Murine Norovirus Pathogenesis 

by 
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Doctor of Philosophy in Biology and Biomedical Sciences 

(Immunology) 

Washington University in St. Louis, 2012 

Professor Herbert W. Virgin IV, Chairperson 

 

 Human noroviruses are responsible for the majority of cases of epidemic non-bacterial 

gastroenteritis.  Despite their importance as human pathogens, knowledge of the viral life cycle 

and host pathogenesis is limited due to the lack of practical models to study.  In contrast, murine 

norovirus (MNV) has been a critical surrogate for the study of human noroviruses as it is the only 

member of this genus that establishes infection in a small animal model, can be grown in cell 

culture, and has a reverse genetics system.  Noroviruses are divided into genogroups which can 

contain many viral strains.  These viral strains can display dramatic variation in their virulence and 

ability to persist, but the factors responsible for these differences are poorly defined.  The focus of 

this work is to describe biological differences between two MNV strains, CW3 and CR6, and to 

use molecular genetics tools to identify the viral determinants that contribute to these differences. 

 Here, we have cloned CW3 and CR6 into a reverse genetics system for production of 

virus and genetic analysis.  We show virus production by this method limits the emergence of 

viral quasispecies.  This makes the analysis of biological phenotypes less complex.  We identify 

four phenotypes in which our cloned viruses behave differently from one another and have 

chosen two, lethality in STAT1-/- mice and persistent infection in wild type mice, for further study.  
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We show that the sequence of the protruding (P) domain of the viral capsid protein determines 

whether MNV infection is lethal in mice lacking STAT1, a regulator of innate immunity.  The P 

domain is also a determinant of viral growth and dissemination in these mice.  Further, we have 

identified the N-terminal non-structural protein (NTerm) as the viral determinant of persistent 

infection in wild type mice.  Remarkably, a single amino acid in NTerm dictates the persistence 

phenotype of these two viral strains.  This is the first demonstration of a function for the norovirus 

NTerm protein during infection of a host.  We believe the system and reagents we have 

developed will be invaluable tools for associating norovirus genes and protein domains with 

specific pathogenic properties. 
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MATERIALS AND METHODS 

 

Cloning and production of recombinant MNV.  CW3 and CR6 were cloned into the 

pMNV* vector as previously described {10571}.  Briefly, each strain was amplified by PCR (using 

the primers AACTTGGGATCCACCGGTGTGAAATGAGGATGGCAACGC and 

ATGCGGCCGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAATGC

ATCTAA) and cloned into the pCR2.1 TOPO vector (Invitrogen, Carlsbad, CA).  The sequence 

was then moved into the pMNV* vector in fragments (CW3: AgeI-SacII and SacII-NsiI; CR6: AgeI-

DraIII, DraIII-NsiI and NsiI-NsiI).  The coding sequence of each clone was verified by sequencing. 

Deviations from the consensus sequence of CW3 were repaired using the Quick Change II XL 

mutagenesis kit per manufacturer’s protocol (Agilent Technologies, Santa Clara, CA) to reflect the 

previously published sequence (GenBank accession # EF014462.1).  A single non-coding T→C 

substitution at nucleotide 5530 was identified in the CR6 clone as compared to the cDNA 

sequence published in GenBank (accession # JQ237823). A non-coding single nucleotide 

mutation was made in each strain, introducing a restriction enzyme site to facilitate identification 

of engineered virus (CW3 nucleotide 1001 C→A; creates an EcoRV site; CR6 nucleotide 512 

C→G; creates a SacII site).   

For production of recombinant virus, 293T cells were seeded at 5x105 cells per well in a 6 

well culture dish.  Cells were incubated 16-24hr and transfected with virus encoding plasmid 

using FugeneHD according to the manufacturer’s protocol using a 5:2 ratio.  48hr after 

transfection, cells were lysed by freeze-thaw at -80°C and the supernatant was clarified by 

centrifugation.  Virus was passed in RAW 264.7 cells 1-2 times at multiplicity of infection (MOI) 

<0.05.  Using this protocol, three independently generate virus stocks were sequenced and 

observed to have no deviations from the input sequence (data not shown).  Viral RNA was 

isolated from infected cells using trizol according to the manufacturer's protocol, or from clarified 

viral supernatant using the RNeasy Kit (Qiagen, Valencia, CA) according to the manufacturer's 

protocol.  For cDNA synthesis, 1µg of total RNA from cell lysate or 7 µL of RNA purified using the 
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RNeasy Kit was combined with 2.5 µM of the MNV specific primer used for whole genome 

amplification, 100µM (each) deoxynucleoside triphosphates, and incubated at 65°C for 5 minutes 

and on ice for 1 minute.  1x first strand buffer (Invitrogen, Carlsbad, CA), 10 mM dithiothreitol, 40 

U RNasin (Promega), and 200 U of Superscript III reverse transcriptase (Invitrogen, Carlsbad, 

CA) were added to a final volume of 20 µL.  The reaction was then heated at 50°C for 60 

minutes.  The reaction was inactivated by heating at 70°C for 15 minutes.   2µL of cDNA was 

PCR amplified using the primers for whole gene amplification listed above.  The PCR product 

was sequenced using the primers in table 2-1, which give roughly two fold coverage of the 

genome.  At least two independently generated viral stocks were used for each experimental 

group. 

Cell culture, viral growth and quantification.  RAW 264.7 cells (ATCC# TIB-71) were 

cultured in DMEM supplemented with 10% fetal calf serum, glutamine, HEPES, and penicillin-

streptomycin.  Bone-marrow derived macrophages (BMMs) were harvested from the femur and 

tibia of C57BL/6 mice.  LCMed differentiated cells were produced by culturing as described 

previously {1677}.  CMG14-12 differentiated cells were produced with the following modifications: 

media used for the harvest and culture of bone marrow was DMEM supplemented with 10% fetal 

calf serum, 5% horse serum, 2mM L-glutamine, 1mM sodium pyruvate, 1x non-essential amino 

acids (Mediatech, Manassas, VA), and 10% CMG14-12 supernatant {13284} was substituted for 

LCMed. 

For virus growth curves 4x105 RAW 264.7 cells or 2x105 BMMs were seeded in 24-well 

culture dishes and MOI 5 or 0.05 growth curves were completed as previously described {6091} 

with the following modifications: viral inoculum was diluted in 0.2 mL per well; samples underwent 

one freeze thaw cycle before plaque assay titration.  Viral titer of each sample was determined by 

plaque assay on an indicator layer of RAW 264.7 cells as previously described {6091}. 

Western blots.  Viral supernatants were mixed with Laemmli sample buffer and boiled 

for 5 minutes prior to western blot analysis.  Samples were resolved on a 10% polyacrylamide 
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SDS gel and transferred to PVDF membrane.  The membrane was probed with a polyclonal 

rabbit antibody generated against MNV-1 virus-like particles {6091}. 

Quantitative PCR.  Viral RNA was extracted using the RNeasy kit (Qiagen, Valencia, 

CA) following the manufacturers protocol.  For cDNA synthesis, 5 µL of purified RNA was 

combined with 0.5 µg of random hexamers, incubated at 70°C for 5 minutes and on ice for 5 

minutes.  1x ImProm-II reaction buffer (Promega, Madison, WI), 3 mM MgCl2, 0.5 mM (each) 

deoxynucleoside triphosphates, 40 U RNasin (Promega), and 1 µL of ImProm-II reverse 

transcriptase (Promega) were added to a final volume of 20 µL.  The reaction was then heated at 

25°C for 5 minutes and 42°C for 60 minutes.  The reaction was inactivated by heating at 70°C for 

15 minutes.   PCR amplification was done using primers and a probe targeting the conserved 

junction between open reading frames 1 and 2 (sense: CACGCCACCGATCTGTTCTG; 

antisense: GCGCTGCGCCATCACTC; probe (Applied Biosystems, Foster City, CA): 

CGCTTTGGAACAATG).  2 µL of cDNA from each sample was PCR amplified in triplicate using 

the Step One Plus Real-Time PCR System (Applied Biosystems).  Reaction conditions were as 

follows: 0.2 mM (each) deoxynucleoside triphosphates, 1x AmpliTaq buffer (Applied Biosystems), 

2 mM MgCl2, 0.2 µM sense primer, 0.2 µM antisense primer, 0.2 µM probe, 0.5 U AmpliTaq 

(Applied Biosystems) in a final volume of 20 µL.  Genome copies were quantified by comparison 

against a standard curve of viral plasmid. 

Mutation analysis.  A segment of the MNV genome encompassing the P2 region was 

amplified by PCR using primers AAGGGTGCACGTTGATGGGAC and 

CTGACGCATGTAGGTCCGGAAC.  The PCR product was cloned into the pCR4 TOPO vector 

(Invitrogen, Carlsbad, CA).  Individual clones were isolated and sequenced by the Washington 

University Genome Sequencing Center using the T7 sequencing primer.  Sequences were 

aligned and the number of mutations per sequence read was quantified using Sequencher (Gene 

Codes Corporation, Ann Arbor, MI). 

Mouse infection and sample collection.  All mice were bred and housed at Washington 

University in accordance with the rules and policies of the university animal protocol review 
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board.  For infection of mice, virus was diluted in PBS and delivered per os using a pipette. Fecal 

pellets were harvested from live mice three or thirty-five days post-infection.  Alternatively, mice 

were sacrificed three days post infection and tissues harvested as previously described {11271}. 

Mouse immunization with cholera toxin and serum harvest.  For immunization with 

cholera toxin, 10 µg of toxin was diluted in PBS and delivered per os using a pipette.  Fourteen 

days after immunization, mice were anaesthetized by intra-peritoneal injection of 0.1 mL of a 

ketamine and xylazine solution, and approximately 0.05 mL of blood was collected from the retro-

orbital sinus using a micro-capillary tube.  Samples were spun at 6,000 x g for five minutes in a 

serum separator tube (BD Franklin Lakes, NJ, USA).  Serum samples were stored at -20°C. 

Cholera toxin antibody ELISA.  ELISA buffers were made up of the following: coating 

buffer: 15 mM Na2CO3 , 3.5 mM NaHCO3 pH 9.6; ELISA III buffer: 150 mM NaCl, 1mM EDTA, 50 

mM Tris-HCl, 0.05% Tween 20, pH 7.4; wash buffer: 150 mM NaCl, 0.05% Tween 20.  Each well 

of a high binding microtiter plate (Thermo Fisher Scientific, Waltham, MA) was coated with 0.25 

µg of cholera toxin (List Biological Laboratories, Campbell, CA) diluted in coating buffer over night 

at 4°C or for 1 hour at 37°C.  Plates were blocked with 1% BSA in coating buffer for 1 hour at 

37°C followed by incubation with a 1:1 dilution (ELISA III buffer) series of sample serum from an 

original dilution of 1:100 for 1 hour at 37°C.  Plates were then incubated with a horseradish 

peroxidase conjugated goat anti-mouse secondary antibody (Jackson ImmunoResearch 

Laboratories, West Grove, PA) diluted 1:1000 in ELISA III buffer for 1 hour at 37°C.  Between 

each step plates were washed twice with ELISA wash buffer.  The colorimetric assay was 

developed using 1-Step Ultra TMB-ELISA substrate (Thermo Fisher Scientific, Waltham, MA) and 

stopped using 2 molar sulfuric acid.  Absorbance was measured at 450 nanometers. 
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Noroviruses as Human Disease Agents   

Noroviruses are increasingly being recognized as a major cause of human disease.  

Studies have shown noroviruses to be the causative agent in between 80% and 95% of 

outbreaks of non-bacterial gastroenteritis, and approximately half of all outbreaks (2, 8, 28, 84).  

Further, the number of reports describing the role of noroviruses in cases of community acquired 

gastroenteritis is growing (10, 22, 33, 41, 51, 58, 60, 76).  These studies report that between 5% 

and 20% of individuals seeking medical care for sporadic symptoms of gastroenteritis are positive 

for norovirus.  Together, these studies implicate noroviruses as the single biggest cause of 

epidemic gastroenteritis and a major contributor to endemic gastroenteritis. 

Norovirus infection is prevalent in all age groups (71).  A seasonal association has been 

observed, with many more infections occurring in winter months (54).  During norovirus 

outbreaks, symptomatic infection usually lasts 48 to 72 hours and is self-limiting, while community 

acquired infection may be indolent with symptoms lasting longer than one week (71).  Symptoms 

of infection can include nausea, vomiting, diarrhea, and abdominal cramping and discomfort. 

In 1999, the Centers for Disease Control and Prevention estimated that there are 23 

million cases of norovirus gastroenteritis each year in the United States (53).  Norovirus 

outbreaks occur most frequently in settings where a large number of people are housed in close 

quarters such as on cruise ships or in the military, with the largest percentage of outbreaks 

occurring in nursing homes, retirement centers, and hospitals (8).  Norovirus infection in the latter 

settings is particularly significant, as infection in elderly and immuno-compromised individuals 

carries increased risk of morbidity and mortality (30, 40, 48, 49, 52, 57, 93).  In immuno-

suppressed individuals, complications such as viral shedding and diarrhea for months to years, 

symptoms resembling allograft rejection in intestinal transplant recipients, and necrotizing 

enterocolitis in neonatal intensive care unit patients can occur (30, 40, 57, 75, 85). 

 The source of many norovirus outbreaks is unknown.  To date no animal reservoir has 

been identified for human noroviruses, although a porcine reservoir has been proposed (15, 16, 

83, 86, 87).  Person-to-person spread along with prolonged stability of virus in the environment 
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could account for outbreaks.   Another possibility is that asymptomatic shedders of virus seed 

epidemic outbreaks.  Several studies have documented prolonged shedding of norovirus in the 

feces of post-symptomatic individuals (25, 26, 32, 59, 62, 71).  Strikingly, one study reported 

norovirus shedding in the stool of children under the age of six months for at least six weeks after 

initial symptoms (56).  Other studies have reported the frequency of asymptomatic norovirus 

shedders to be between 4% and 13% of the populations surveyed (4, 17, 67).  One study found 

that the frequency of asymptomatic shedders is age dependant, with the highest prevalence in 

children under five years of age (67).  This phenomenon of asymptomatic shedding, along with 

the very low infectious dose of norovirus (80) may account for outbreaks with an unidentified 

source.  This indicates the importance of understanding the molecular basis of persistence. 

 

Susceptibility and Immunity to Noroviruses   

The gene FUT2 has been identified as a susceptibility factor to infection with the Norwalk 

strain of human noroviruses (43).  FUT2 catalyzes and enzymatic reaction which adds a fucosyl 

residue to the H type 1 precursor to generate the H type 1 carbohydrate antigen.  This 

carbohydrate is found on epithelial cells of the intestine and in mucosal secretions of individuals 

with a functional FUT2 enzyme.  Recombinant Norwalk virus like particles (VLPs) have been 

demonstrated to bind the H type 1 antigen (50).  Binding to this carbohydrate is believed to 

facilitate viral entry and infection of cells, but this remains unproven, as human noroviruses have 

not been cultured to date.  Individuals homozygous for an inactivating mutation in FUT2 are 

resistant to infection with Norwalk (82).  However, resistant persons are still susceptible to other 

norovirus strains (42).  Norovirus binding to carbohydrate antigens is strain specific, with each 

virus having its own binding profile (35, 44).  Thus, an individual’s susceptibility to infection is 

dependent on which carbohydrate antigens they produce as well as the carbohydrate binding 

profile of the virus they come in contact with. 

Human challenge studies demonstrate that, in limited circumstances, immunity to 

norovirus infection does exist.  After a first viral challenge, volunteers showed immunity for at 
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least six months if challenged with the same viral strain (24, 37, 61, 94).  However, volunteers 

exhibit no immunity if given an antigenically distinct norovirus strain during the second viral 

challenge.  Additionally, no long term immunity to re-challenge with the same or a different 

norovirus strain was observed.  If 27 months or more passed after the first norovirus challenge, 

volunteers were no longer protected from a second challenge.  These studies show that there is 

short term immunity to homologous but not heterologous norovirus challenge and no long term 

immunity. 

 

Norovirus Structure and Function   

 Noroviruses are a member of the viral family Caliciviradae.  They are small, non-

enveloped single strand positive-sense RNA viruses with an approximately 7.5 kilobase genome.  

Within this viral family are four genera of which Norovirus is one.  Noroviruses are further divided 

into five genogroups, each of which has many strains.  The genome structure of Caliciviruses is 

generally conserved across this family of viruses.  Noroviruses are composed of three open 

reading frames (ORF’s).  ORF one encodes the viral non-structural proteins.  The transcript is 

translated to a poly-protein, which is then processed by the viral proteinase into the six non-

structural proteins.  From N-terminus to C-terminus, they are arranged in the following order: 

NTerm, NTPase, p22, VPg, Protease (Pro), Polymerase (Pol).  The gene order of ORF1 and 

sequence preference for cleavage sites is also highly conserved across noroviruses.  Much of 

what is known of the function of norovirus proteins is derived from expression studies of individual 

genes in recombinant expression systems.  One problem with this approach is that protein 

functions important for the viral life cycle may be dependent on the expression of other viral 

proteins.  Also, viral protein function may be affected by the cell type the protein is expressed in.  

Since the cell population targeted by human noroviruses in vivo is unknown, these over 

expression studies are fundamentally limited in their applicability to understanding pathogenesis.  

The function of some norovirus proteins has been speculated based on the function of similar 

proteins found in other viruses.  Most frequently, norovirus proteins are compared to those of 
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poliovirus, as poliovirus has been studied in detail and these two viruses share an enteric tropism 

and have a similar genomic organization.  While these types of comparisons are often useful as a 

starting point for the investigation of norovirus protein function, they have limited applicability as a 

basis to propose any model of viral pathogenesis in the absence of experimental data. 

 NTerm.  The NTerm protein is of variable size dependent on norovirus strain.  This 

protein may have two or more functional domains as additional proteolytic processing following 

cleavage by the viral protease has been reported (72).  Cleavage of the NTerm protein by 

caspase 3 has been reported for murine norovirus (MNV) (74).  When expressed in mammalian 

cells, the NTerm protein of the human norovirus strain Norwalk produces a peri-Golgi localization 

pattern, and has been shown to interact directly with VAP-A, a protein that plays a role in vesicle 

fusion (90).  Finally, Golgi disassembly and inhibition of transport to the cell surface has been 

observed after expression of NTerm (27, 29).  Whether these effects are mediated by specific 

interactions of the viral protein with host factors, or represent an artifact of overexpression is not 

known. 

 NTPase.  Little is known regarding the function of the norovirus NTPase protein.  Using in 

vitro assays, the NTPase from the human norovirus strain Shouthampton virus (SHV) was shown 

to bind and hydrolyze NTPs (66).  One potential function for an NTP hydrolyzing protein is as a 

helicase, however the SHV NTPase failed to demonstrate helicase activity when tested in vitro 

(66). 

 p22.  Stable expression of the p22 from human norovirus genotype II.4 variant 2002, in a 

cell line resulted in a slight increase in the frequency of apoptotic cells (34).  Further, p22 

expression resulted in impaired actin rearrangement and monolayer repair following single cell 

lesions and a decrease in trans-epithelial resistance over time (34).  The authors speculate that 

these impairments in maintenance of monolayer integrity contribute to the development of 

diarrhea following norovirus infection. 

 VPg.  The VPg protein is covalently linked to the genomic and sub-genomic RNA.  

Calicivirus RNA lacking the VPg is not infectious (11).  The VPg interacts with proteins of the eIF3 
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translation initiation complex in infected cells (21).  These interactions recapitulate those 

observed in vitro using human norovirus VPg (20).  These data suggest a role for VPg in the 

translation of viral RNA.   

 Pro.  Pro is the viral protease responsible for cleavage of the ORF 1 poly-protein into 

individual proteins.  The catalytic site and substrate specificity of norovirus protienases have been 

defined (45, 73).  Identification of the cleavage map for MNV shows that this process is 

conserved between human and mouse noroviruses (74).  Detailed studies of protease processing 

have also shown the presence of stable precursors with protease activity (5).  Similar protease 

precursors have been observed in MNV infected cells, although function of these precursors was 

not demonstrated (74). 

 Pol.  The RNA-dependant RNA polymerase or Pol is responsible for synthesizing viral 

RNA.  As described above, a Pro-Pol fusion precursor has been documented for both in vitro 

synthesis assays, using the ORF1 sequence of the human norovirus strain MD145 (5), and after 

infection of cells with MNV (74).  A similar precursor protein has been observed while studying 

poliovirus, where the presence of the polymerase alters the specificity of the protease (95). 

 VP1.  ORF two encodes the capsid protein, which aggregates into ninety dimers to form 

the norovirus capsid (68, 69).  The capsid protein is composed of two domains.  The S or shell 

domain forms the inner shell of the viral capsid and encloses the viral genome.  This region is 

highly conserved between norovirus strains.  The P or protruding domain extends from the capsid 

surface and is composed of two sub-domains, the proximal P1 domain and the more distal P2 

domain.  The P2 domain of the capsid protein is highly variable and is proposed to encode 

binding epitopes for anti-viral antibodies and a putative virus receptor (77, 78, 91).  Studies of 

Human noroviruses, as well as FCV, have shown that the P2 domain mutates during persistent 

infection (1, 19, 38, 57, 63, 70).  In the case of FCV, these mutations allow viral escape from 

immune pressure by changing antibody binding epitopes. 

 Using the MNV model, the binding epitope for a virus neutralizing antibody was mapped 

to the P2 domain of the viral capsid (46).  Neutralizing antibody escape mutants were isolated 
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and the amino acid substitution responsible was identified as a leucine to phenylalanine change 

at position three-hundred-eighty-six in the P2 domain of the capsid.  The antibody binding epitope 

overlaps with an amino acid motif that is conserved across all noroviruses (47). Further, when the 

MNV capsid sequence is aligned with the human norovirus capsid sequence of Snow Mountain 

virus (SMV), the MNV epitope is adjacent to a SMV epitope responsible for the binding of an 

antibody that inhibits SMV virus-like particle (VLP) induced haemagglutination (47). This data 

confirms that the norovirus P2 domain can encode binding domains important for norovirus 

attachment and growth.  As the SMV and MNV binding domains overlap in a region that is 

conserved in all noroviruses, this may represent a conserved P2 motif that is important for 

norovirus receptor binding. 

VP2.  ORF three encodes a small basic protein.  VP2 is a minor component of the capsid 

which plays a role in virion assembly and stability (6, 7, 31).  Expression in insect cells of VP2 

with VP1 resulted in increased VP1 protein half life as compared to expression of VP1 alone (6).  

Additionally, expression of VP2 with VP1 increased resistance of VP1 to degradation by the 

protease pancreatin (6).  Because of the positively charged amino acids in this protein, VP2 has 

been proposed to play a role in packaging of the viral RNA. 

 

Norovirus Persistence   

There are two categories of persistence regarding noroviruses.  One type is persistence 

of viral infection at the population level.  This is characterized by the continual circulation of 

norovirus strains within the community.  Another type of persistence occurs at the level of 

infection of individuals (25, 26, 32, 56, 59, 62, 71).  This type of persistence is characterized by 

the continual shedding of virus in stool following the resolution of symptomatic infection.  These 

two categories of persistence are likely inter-related, with persistent shedding at the level of the 

individual helping to facilitate viral spread and persistence in the community.  This model of 

persistence has been described for the genetically related feline calicivirus (FCV). 
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A study investigating the mechanism of persistence at the population level found that the 

capsid protein evolves over time by antigenic drift and likely under immune system selective 

pressure.  The capsid protein from epidemic noroviruses isolated over a twenty year period were 

sequenced (44).  Over time, mutations accumulated in the P2 domain of the capsid and clustered 

around the carbohydrate binding domain (12, 44).  Mutations in this location were shown to alter 

the structure of the P domain and binding of carbohydrate ligands.  The authors propose a model 

explaining how these findings could contribute to viral persistence at the population level.  First, 

the altered carbohydrate binding could facilitate infection in new groups of people, previously 

immune by virtue of the particular carbohydrate antigens which they express.  Second, antigen 

drift functions as an immune-evasion strategy allowing repeat infection of previously exposed 

individuals.   

This model of persistence has been described in detail for FCV, and its relation to 

persistent shedding in individual cats has been studied.  Shedding cats can be divided into three 

categories; those that consistently shed virus at high titer, those that shed intermittently, and 

those that appear resistant to infection (18).  In continuously shedding cats, the immuno-dominant 

variable regions of the capsid protein mutate to evade the immune response (18, 19, 38, 63, 70).  

This leads to the introduction of variant FCV strains into the population.  The re-infection of 

animals by consistent shedders further contributes to the persistence of FCV within a cat 

population (19).  FCV can be shed from the oropharynx of cats for as long as two years after 

resolution of acute infection (89).  In persistently shedding cats, virus was found in superficial 

epithelial cells of the tonsil and in the stratum germinativum of the adjacent fossa mucosa (23).  In 

comparison, human noroviruses are shed in the stool of infected individuals and the site of 

persistent viral replication has not been identified. 

 

Murine Norovirus 

The murine norovirus (MNV) model system is a valuable model for the study of 

noroviruses and host-norovirus interactions.  MNVs are genogroup V noroviruses that, like human 
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noroviruses have many genotype strains (81).  Unlike human noroviruses, MNV grows in cell 

culture (92) and can readily be studied in its native host. For these reasons, the MNV model has 

been used to study details of viral replication and in vivo pathogenesis, as well as mechanisms 

involved in the host immune response.   

To better understand norovirus pathogenesis, the MNV model has been used to study 

the host immune response to infection.  Studies show that components of both the adaptive and 

innate immune system contribute to host defense against MNV infection (13, 14, 39, 55).  RAG1 

deficient mice, which lack T and B cells, fail to clear virus (39).  Furthermore, both CD4 and CD8 

T cell subsets, as well as antibody produced by B cells contribute to viral clearance (13, 14).  The 

innate immune system is also critical for resistance to MNV.  Signal transducer and activator of 

transcription 1 (STAT1) is downstream of both type I and II interferon receptor signaling, and is 

critical for host defense against MNV (39, 55).  Infection of mice lacking STAT1 with the first 

identified strain of MNV (MNV-1) results in lethality (39).  STAT1 regulates viral growth in vitro 

and in vivo, with cells and animals lacking STAT1 growing virus to higher titer (39, 55, 92).  These 

data demonstrate that both adaptive and innate immune mechanisms play an essential role in 

host defense to MNV infection, and that STAT1 is a key factor in the host response to infection. 

In cell culture MNV grows in dendritic cells and macrophages (92).  Consistent with the 

ability to bind carbohydrates observed for human noroviruses, sialic acid linked carbohydrates 

play a role in the binding of MNV (79).  MNV infection of cultured cells is pH independent, as 

chloroquine treatment does not affect viral entry or growth (64).  Further, MNV entry into 

permissive cells is partially dependent on cholesterol and dynamin II requiring processes (65).  

These reports have provided valuable insight to the early steps of norovirus entry and infection.   

The MNV cell culture system has been used to identify and characterize host and viral 

factors important for viral replication.  Similar to observations in vivo, STAT1 and type I interferon 

restrict MNV growth in cell culture (92).  Microarray of infected cells was used to identify genes 

that are differentially regulated during infection.  Survivin is an anti-apoptotic gene and was 

confirmed to be down regulated during MNV infection.  This is potentially a mechanism for the 
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induction of apoptosis observed following MNV infection in cultured cells (9).  The cellular 

distribution of MNV non-structural proteins following infection has also been investigated (36).  All 

non-structural proteins had a similar staining pattern in infected cells and co-localized with double 

stranded RNA to peri-Golgi vesicular structures identified as replication complexes (36).  Despite 

these advances in our understanding of noroviruses, significant questions remain.  The functions 

of most viral proteins remain unknown.  Even proteins with a known function may have additional 

unknown roles in the viral life cycle.  Another critical task will be to identify and characterize 

interactions between viral and host proteins. 

Another benefit of studying MNV is the availability of a reverse genetics system (88).  

Using this system it is possible to functionally investigate viral factors important to MNV 

pathogenesis.  Previously, we identified a lysine to glutamic acid mutation at amino acid position 

296 of the MNV-1 capsid protein capable of attenuating STAT1 mediated lethality (3).  In addition 

to identifying host factors important in norovirus pathogenesis, the MNV model is a valuable tool 

for identifying and characterizing viral factors critical to pathogenesis.  The goal of this thesis work 

is to identify viral determinants that play a role in MNV infection and pathogenesis. 
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CHAPTER 2 

Cloning and Characterization of Two MNV Strains: CW3 and CR6 
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Introduction 

 Human noroviruses are the number one cause of epidemic non-bacterial gastroenteritis 

worldwide (1).  Despite their importance as human pathogens, progress in our understanding of 

these viruses has been limited.  The lack of a small animal model and the inability to grow virus in 

cell culture has made the study of human noroviruses difficult.  Enteric murine noroviruses are 

closely genetically related to human noroviruses (10).  They infect mice, can be grown in cell 

culture, and a reverse genetics system is available (9, 10, 13, 14).  These tools make MNV 

amenable to descriptive and mechanistic studies which may provide valuable insight into the 

pathogenesis of noroviruses. 

 The MNV model system has been used to study factors important to host defense 

against MNV, the immune response to MNV infection, viral attachment, entry and replication.  

Mice lacking STAT1 succumb to lethality following MNV infection (10).  The adaptive immune 

system also contributes to host defense against MNV infection (3, 4).  RAG1 deficient mice, 

which lack T and B cells, fail to clear virus (10).  CD4 and CD8 T cell subsets, as well as antibody 

produced by B cells contribute to viral clearance (3, 4). 

 Despite these advances in our understanding of norovirus biology, our understanding of 

the functions of norovirus proteins is incomplete.  One goal of the work described here is the 

development of reagents that can be used for the study of individual MNV proteins in the context 

of viral infection.  Here, we clone two MNV strains and show that this system of viral production is 

superior to viral propagation by serial passage in limiting heterogeneity in the viral quasispecies.  

Further, we compare the virus clones with their parental strain in the standard virus assays of in 

vitro growth and particle to plaque forming unit (PFU) ratio.  Finally, we construct a panel of single 

gene viral chimeras that will be used to identify the viral determinants of lethality and persistent 

infection, to be discussed in more detail later.  This system provides an opportunity to gain insight 

into the functions of norovirus proteins during infection. 

 

Results   
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In order to confirm that production of virus using the reverse genetics protocol is a 

suitable surrogate for the parental MNV strains, we generated plasmid derived virus stocks 

(pCW3 and pCR6) and compared them to their parent virus in two standard virus measures: in 

vitro growth and particle to PFU ratio. 

Parental and cloned MNV grow similarly in vitro.  To determine whether parental MNV 

strains and their cloned derivatives grow with similar kinetics in vitro, growth curves at multiplicity 

of infection (MOI) 5 and 0.05 were done in bone marrow derived macrophages (BMMs) and RAW 

264.7 (RAW) cells.  The serially passaged CW3 (14) parent strain was compared to clone derived 

virus (pCW3) (Figure 2-1).  There was no statistical difference in growth between the two viruses 

at MOI 5 and 0.05 in RAW cells.  In BMMs the mean titer of CW3 was higher than that of pCW3 

at later time points for both MOIs. This difference was not statistically significant.  Serially 

passaged CR6 (11) was compared to its cloned derivative (pCR6) (Figure 2-1).  In RAW cells the 

growth of the two viruses was indistinguishable at MOI 5 and 0.05.  In BMMs, CR6 and pCR6 

grew similarly at both MOIs.  This data confirms that the clonal MNV derivatives behave similar to 

their parent virus in vitro in primary and transformed macrophages.  While there was no 

difference in the growth of plasmid derived viruses compared to their parent strain, we did 

observe a statistically significant difference between the growth of CW3 and CR6 at early times 

after infection of RAW 264.7 cells.  This observation will be discussed in chapter 5. 

 

Parental and cloned MNV strains have similar particle to PFU ratio.  Another 

important characteristic to evaluate when comparing the cloned and parental viral strains is the 

particle to PFU ratio.  Two assays were used for this measure (Figure 2-2).  First, an equal 

number of PFU of the parental strain or recombinant viral supernatant were probed by western 

blot using polyclonal antisera generated against the MNV capsid protein.  A single band migrating 

at the expected size of approximately 58kD was observed.  For each comparison between the 

parent and clone viral strain, bands of similar intensity were observed, indicating that cloned CW3 

and CR6 produce similar amounts of capsid antigen per PFU as their parent virus (Figure 2-2).  
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Second, we used quantitative PCR to measure the number of genome copies per PFU for each 

parent virus and its clone.  There was no statistical difference in the genome to PFU ratio 

between the viral pairs calculated at two dilutions of virus (Figure 2-2B).  Together, these data 

suggest that there is no difference in particle to PFU ratio between CW3 and pCW3 or CR6 and 

pCR6.  This analysis was repeated four times using at least two independently generated plasmid 

derived virus stocks. 

 

Analysis of quasispecies in plasmid derived and parental virus stocks.  As viral 

RNA polymerases have poor fidelity in comparison to DNA polymerases, repeated replication 

cycles result in the introduction of mutations in the viral genome and the generation of a viral 

quasispecies (5).  In order to generate the MNV stocks used for study, RAW 264.7 cells are 

infected at MOI 0.05 and allowed to grow virus for 36-48 hours.  This results in multiple rounds of 

viral replication, where mutations can be introduced into the viral genome.  Each time a new virus 

stock is generated, the mutations introduced from the previous rounds of growth are still present, 

and there is another opportunity for mutations to be introduced.  This method of repeatedly 

expanding a virus stocks will subsequently be referred to as serial passage.  In contrast, when 

virus is produced using the reverse genetics system, all viruses come from the defined sequence 

of the plasmid.  While two rounds of passage in RAW 264.7 cells are required to produce a large 

volume of virus, the total number of passages, and thus opportunities for the introduction of new 

mutations is limited.  As discussed in the materials and methods section, after two tissue culture 

passages, the consensus sequence of the viral stock is still identical to the plasmid sequence 

from which it is derived.  Virus produced using the reverse genetics system is hereafter referred 

to as plasmid derived virus. 

Previous work has shown that as few as three tissue culture passages can change the 

consensus sequence of a virus stock resulting in a new virus phenotype (2, 14).  Thus, serial 

passage of virus stocks is potentially a complicating factor for studies of viral phenotype.  

Production of virus using reverse genetics is advantageous in that all viruses originate from a 
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single sequence and the number of tissue culture passages can be limited.  In order to analyze 

the quasispecies diversity in serially passaged and plasmid derived virus stocks, virus from these 

two sources was analyzed using the procedures described in the mutation analysis section of 

materials and methods.  We examined a segment of the MNV genome encoding the P2 region of 

the capsid protein as this is a highly variable region of the norovirus genome (6, 11, 12).  Figure 

2-3 shows the frequency of mutations observed in a 414 base pair segment of the MNV genome 

in a serially passaged viral stock of CW3 or a twice passaged viral stock of pCW3 generated 

according to the protocol described in materials and methods.  The CW3 encoding plasmid was 

used as a control for the fidelity of PCR amplification, cloning, and sequencing.  In this control 

group 85% of sequences were identical to the plasmid sequence from which they originated.  4% 

had one mutation and <3% of the sequences had three, four, or five mutations.  8% of the 

sequences had greater than five mutations.  For the clone derived virus, ~60% of the sequences 

were identical to the original plasmid sequence. 10% of sequences had a single mutation, 5% 

had two mutations, and <6% had three, four, or five mutations.  17% of the sequences had more 

than 5 mutations.  In comparison, only 3% of sequences from the serially passaged virus were 

identical to the known consensus sequence.  19% of the sequences had one mutation, 33% had 

two, 4% had three, 5% had four, and 2% had five mutations.  34% of the sequences from this 

group had more than five mutations.  This data shows that viral stocks from serially passaged 

MNV have a more diverse quasispecies than virus produced using the reverse genetics protocol.  

Use of virus generated through reverse genetics will reduce the potential for MNV phenotypes to 

be confounded by the heterogeneity of the viral quasispecies.  Stocks derived from pCW3 or 

pCR6 were used for all subsequent experiments unless otherwise noted. 

 

MNV chimeras as a tool for the identification of viral determinants of phenotype.  

Our hypothesis is that individual viral genes can be identified as determinants of phenotypic 

differences between CW3 and CR6 such as the previously reported difference in establishment of 

persistent infection (11), or the difference in ability to cause lethality in STAT1-/- mice (described 
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in chapter 3).  To test this hypothesis, a panel of virus chimeras was generated.  Individual genes 

from one viral strain were substituted to replace the same gene in the other MNV strain.  Table 2-

2 lists all of the single gene chimeras that we were able to construct and recover virus from using 

the reverse genetics protocol.  Using these viruses we can determine whether individual viral 

genes are a necessary and sufficient determinant of the phenotypes described following infection. 

 

Discussion 

The ability to generate recombinant MNV strains provides an opportunity to study 

norovirus pathogenesis in a manipulable system.  Here we have cloned and characterized two 

strains of MNV with distinct differences in biological behavior.  We report that the clonal MNV 

strains behave similar to their parental virus in standard measures of viral growth and particle to 

PFU ratio.  Further, we report the construction of a panel of virus chimeras, where individual MNV 

genes have been exchanged between CW3 and CR6.  Using these virus chimeras, we propose 

to identify viral genes and protein domains that contribute to aspects of MNV pathogenesis as 

described in chapters three and four. 

 One important advantage we intend to gain by producing virus through reverse genetics 

is the limitation of the emergence of viral quasispecies in our viral stocks.  We have shown that 

MNV stocks produced using the protocol described here result in a viral stock expressing fewer 

mutations from a consensus sequence than serially passaged virus.  In our control population of 

sequences derived from plasmid, 15% of the sequences had one or more mutations.  We believe 

this represents the baseline frequency of mutations and incorrect base calls as a result of the 

PCR and sequencing steps in the analysis. Roughly 60% of the sequences in the clonal virus 

stock had no mutations from the input sequence.  As this is different from our baseline 

observation, it is clear that some amount of quasispecies variation does develop in virus stocks 

derived from plasmids using this protocol.  However, we believe this system is preferable to the 

alternative of serial passaged virus, as the quasispecies development can be limited by limiting 

the number of passages.  Further, the quasispecies variation and biological behavior of 
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independent plasmid derived virus stocks can easily be compared to one another.  This is 

important because as discussed previously, very few tissue culture passages can alter a virus 

phenotype (14).  If independent plasmid derived virus stocks were to display inconsistent 

biological behavior, the limited quasispecies variation would make sequencing and identification 

of the responsible mutation more practical.  In comparison to the sequence variation observed in 

plasmid derived stocks, only 3% of sequences from serially passaged virus were free of 

mutations.  The numbers quoted here are likely an underestimate of the frequency of mutations in 

each sample as only a 414 base pair segment of genome was analyzed.  This segment of 

genome was chosen because it encodes the P2 region of the capsid protein, a highly variable 

region of noroviruses (6, 11, 12).  We reasoned that analysis of this region would allow detection 

of the maximum amount of quasispecies variation.  Nonetheless, this data makes it clear that 

significant viral quasispecies exist in MNV stocks and there is the potential for them to confound 

analysis of viral phenotypes.  Using the serial passage method for producing virus, a new 

passage must be generated each time a new viral stock is needed.  Producing virus in this 

manner will maintain and likely expand the viral quasispecies over time.  Production of virus with 

the reverse genetics system is preferable for generating consistent and defined virus stocks, as 

tissue culture passage can be limited and virus stocks can more easily be compared to one 

another for consistency in sequence and biological behavior. 

 Like human noroviruses, murine noroviruses have many strains.  Previous reports that 

identified and characterized multiple MNV strains, report that despite high sequence similarity, 

MNV strains can have remarkably divergent phenotypes (7, 8, 11).  In order to study these 

phenotypes, we cloned CW3 and CR6 into a reverse genetics system whereby virus is produced 

from a DNA plasmid encoding the viral genome.  We then generated a panel of single gene viral 

chimeras to use in the identification of viral determinants for each phenotype.  Interestingly, we 

were unable to recover virus from three of the chimera constructs: CW3 Pro CR6, CR6 NTerm CW3, 

and CR6 Pol CW3.  This may indicate that the protease of CR6 is not compatible with the other 

genes of CW3, and that the NTerm and polymerase of CW3 are incompatible with the genes of 
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CR6.  An alternate explanation is that these chimeras do produce virus, but do so with such low 

efficiency that it cannot be detected with the methods used here.  The reverse genetics protocol 

produces only a small amount of virus following transfection of 293T cells.  An ideal transfection 

produces roughly five-thousand PFU of virus (unpublished observation).  If 100% of cells produce 

virus, this translates to an average production of 0.01 PFU per cell.  Thus, even a small decrease 

in efficiency caused by viral proteins that do not work well together could result in failure to 

recover virus using this system.  Nonetheless, the panel of chimeras that do produce virus will be 

sufficient for phenotype mapping studies.  We have at least one chimera for each viral gene, thus 

we can determine whether a gene is necessary and or sufficient for each phenotype.  It is 

possible that one or all of these phenotypes is determined by multiple viral genes.  In this case it 

will not be possible to identify a single gene chimera that results in a gain of function.  However, 

we would expect to see multiple chimeras that result in loss of function.  If this does occur, we will 

attempt to characterize the group of genes responsible for the phenotype by making viruses 

chimeric for multiple genes. 

 Here, we have described the development of a system to study aspects of MNV biology.  

Due to the inability to grow human noroviruses in vitro and the lack of a tractable model for the 

study of host infection, our understanding of this genus of viruses has expanded very slowly.  

With the development of the MNV model, we now have tools that allow us to study norovirus 

biology in its native host and at the level of cellular replication.  Previous publications have 

described a difference in the ability to establish persistent infection for distinct MNV strains (8, 

11).  Here, we have identified additional differences in phenotype between CW3 and CR6, which 

will be detailed in subsequent chapters.  We have developed reagents that should facilitate the 

identification of viral determinants for each phenotype.  This has the potential to greatly expand 

our knowledge of norovirus pathogenesis and gene function. 
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Table 2-1.  MNV Sequencing Primers 

 

Primer 
Name 

CW3 Primer Sequences CR6 Primer Sequences Primer 
Direction 

F149 GACCCCTCCTGAGCAGGAAGC GACCCCTCCTGAGCAGGAAGC Sense 
F1197 ATGGCATGGATCTGGCC ATGGCATGGATCTGGCC Sense 
F2156 GCCTTCAAAGCCATGGCGGC TGCCTTCAAGGCTATGGCAG Sense 
F3726 CAGGTCATGCGAGATCAGC CAGGTCATGCGAGATCAGC Sense 
F4631 GAGGCGGTACGGTCTCCTC GAAGCGGTATGGTCTTCTCC Sense 
F5618 CACTCCGCACAAACAGCCC CACTCCGCACAAACAGCCC Sense 
F6698 TTGGAGCGATTGGAGGTGGCC TTGGAGCGATTGGAGGTGGCC Sense 
F6928 AAGCCCAGGCGCAGGCCC AAGCCCAGGCGCAGGCCC Sense 
R604 CAGTCATGCCCACGCACTTCC CAGTCATGCCCACGCACTTCC Antisense 

R1082 CCCGATCCCGCCCAACAGG GCCAATCCCACCAAGAAGA Antisense 
R1652 TCTGGCTCCCTTGTAAGCATC TCTGGCGCCCTTGTAGGCGTC Antisense 
R2563 GGTCCGTCACGGTAGGTGTA GGTCCGTCACGGTAGGTGTA Antisense 
R3863 GAACGTCCAGGGCTTCTGTGGC GAACGTCCAGGGCTTCTGTGGC Antisense 
R4929 CCCGGGAAGCCACAGTCC CCCGGGAAGCCACAGTCC Antisense 
R5791 GCCAACGTGCGTGCGTGCAC GCCAACGTGCGTGCGTGCAC Antisense 
R6363 CATGTAGGTCCGGAACCTCA CATGTAGGTCCGGAACCTCA Antisense 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Table 2-2.  Single Gene Virus Chimeras

MNV Strain Protein Substituted Chimera Name  
CW3 NTerm CW3 NTermCR6 
CW3  NTPase CW3 NTPaseCR6 
CW3  p18 CW3 p18CR6 

CW3  VPg CW3 VPgCR6 

CW3  Pol CW3 PolCR6 

CW3  VP1 CW3 VP1CR6 

CW3  VP2 CW3 VP2CR6 

CR6 NTPase CR6 NTPaseCW3 

CR6 p18 CR6 p18CW3 

CR6 VPg CR6 VPgCW3 

CR6 Pro CR6 ProCW3 

CR6 VP1 CR6 VP1CW3 

CR6 VP2 CR6 VP2CW3 
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Fig.2-1 Cloned and parental viruses grow similarly in vitro.  Growth of CW3, CR6, and their 

clone derivatives was evaluated in (A-D) RAW cells and (E-H) bone marrow derived 

macrophages (BMM).  Cells were inoculated at MOI 0.05 or 5. Error bars represent standard 

error of the mean from three independent experiments.   
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Fig.2-2 CW3 and CR6 have similar particle to PFU ratio.  (A) Western blot of viral supernatant 

probed using polyclonal anti-MNV serum.  A representative blot from three experiments is shown.  

(B) Genome copies for the indicated number of PFUs were quantified by Taqman. Data is from 

two independently generated stocks and represents three experimental replicates.   
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Fig.2-3 Clonal virus stock has reduced quasispecies.  RNA from serially passaged CW3 or 

clone derived CW3 (pCW3) viral supernatant was reverse transcribed and amplified by PCR.  

The CW3 encoding plasmid was PCR amplified as a control.  Data is presented as percentage of 

the total number of sequence reads analyzed with the indicated number of mutations per read.  

Total number of sequences analyzed for each group is shown in parentheses. 
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CHAPTER 3 

Protruding Domain of the MNV Capsid Protein is a Determinant of Lethal 

Infection in STAT1-/- Mice 
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Introduction 

Norovirus infection is the primary cause of epidemic non-bacterial gastroenteritis 

worldwide (6-8).  While typically a self limiting infection, severe complication can arise in elderly 

or immuno-compromised individuals (2, 10, 11, 14).  Noroviruses are divided into five 

genogroups, with those infecting humans falling into genogroups I, II, and IV.  Due to the inability 

to grow human noroviruses in cell culture, and the lack of a small animal model, it has not been 

possible to study the details of viral replication and in vivo pathogenesis.  Murine noroviruses 

(MNVs) are genogroup V noroviruses that infect mice and can be grown in cell culture.  Thus, the 

identification of these viruses affords researchers the ability to complete in depth studies of 

norovirus infection in its native host.   

To better understand norovirus pathogenesis, the MNV model is used to study the host 

immune response to infection.  Studies show that components of both the adaptive and innate 

immune system contribute to host defense against MNV infection (3, 4, 9, 13).  RAG1 deficient 

mice, which lack T and B cells, fail to clear virus (9).  Furthermore, both CD4 and CD8 T cell 

subsets, as well as antibody produced by B cells contribute to viral clearance (3, 4).  The innate 

immune system is also critical for resistance to MNV.  Signal transducer and activator of 

transcription 1 (STAT1) is downstream of both type I and II interferon receptor signaling, and is 

critical for host defense against MNV (9, 13).  Infection of mice lacking STAT1 with the first 

identified strain of MNV (MNV-1) results in lethality (9).  STAT1 regulates viral growth in vitro and 

in vivo, with cells and animals lacking STAT1 growing virus to higher titer (9, 13, 18).   These data 

demonstrate that both adaptive and innate immune mechanisms play an essential role in host 

defense to MNV, and that STAT1 is a key factor in the host response to infection. 

In addition to identifying host factors important in norovirus pathogenesis, the MNV model 

is a valuable tool for identifying and characterizing viral factors critical to pathogenesis.  

Previously, we identified a lysine to glutamic acid mutation at amino acid position 296 of the 

MNV-1 capsid protein capable of attenuating STAT1 mediated lethality (1).  This mutation arose 



  44     

 

 

after serially passaging virus in tissue culture.  Many additional strains of MNV have been 

identified and sequenced.  As some of these strains have the attenuating glutamic acid mutation, 

we sought to determine whether this mutation contributes to attenuated virulence in a naturally 

occurring strain.  Further, we sought to better define the pathogenesis following lethal norovirus 

infection and the role of viral determinants in this process. 

Here we report the cloning and characterization of two previously isolated strains of MNV. 

Our prototype strain of MNV-1 hereafter referred to as CW3, and a recently isolated strain, CR6.  

Our current study reports the contribution of the MNV capsid protruding (P) domain to viral 

pathogenesis.  We found that the capsid P domain is a necessary and sufficient determinant of 

MNV induced lethality, spleen and liver pathology, and viral growth in STAT1 deficient mice.   

 

Results 

Two strains of MNV, CW3 and CR6, differ in STAT1 mediated virulence.  With the 

identification of new naturally occurring strains of MNV (16), we sought to determine whether any 

display a virulence phenotype different from that reported for CW3.  STAT1 knockout mice on B6 

background were infected with 3x104 PFU of CW3 or CR6.  As expected, infection with CW3 was 

lethal, with all mice dying by 8 days post infection.  Lethality following CR6 infection was greatly 

attenuated with all mice surviving until the experimental endpoint of 30 days post infection (Figure 

3-1). 

Cloned MNVs recapitulate lethality phenotype of parental strain.  In order to 

manipulate the viral genomic sequence and identify the determinant(s) responsible for lethality, 

each strain was cloned into the previously published reverse genetics system for MNV using the 

strategy outlined in materials and methods (17).  Each cloned virus phenocopied the lethality of 

its parental virus.  Infection with plasmid derived CW3 (pCW3) resulted in an average time to 

death of ~5 days, while pCR6 was attenuated with only one death over the 30 day period (Figure 

3-1).  As there was no statistical difference between the parental viral strains and their plasmid 

derived counterparts, all subsequent studies were done using cloned viruses.   
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We next sought to determine the magnitude of the difference in virulence between the 

two viruses.  CW3 was extremely virulent, with 30 PFU killing all mice by 11 days post infection 

(Figure 3-1C).  At this dose the average time to death was 7.5 days, slightly delayed as compared 

to infection with 1000 fold more virus.  In contrast, 75% of mice infected with 3x107 PFU of CR6 

survived to the experimental endpoint.  This data demonstrates a greater than 100,000 fold 

difference in virulence between these two strains of MNV.   

As we have previously identified a determinant of MNV lethality in STAT1 deficient mice, 

we tested whether it was responsible for the difference observed here.  Mice infected with CW3 

containing the attenuating lysine to glutamic acid mutation at amino acid position 296 of the 

capsid protein exhibit a slight reduction in lethality, with 2 of 12 mice surviving to the 30 day 

endpoint.  This lack of complete attenuation is contrary to our previous report.  However, in the 

first report the STAT1 deficient mice used were on the 129S6/SvEv background.  In the 

experiments reported here, the mice are on a C57BL/6.  Additionally, the STAT1 gene in the mice 

used in the previous experiments was targeted by replacing the first three exons with a neo 

cassette, resulting in an N-terminal truncation of the STAT1 protein (12).  In the mice used here, 

the STAT1 gene was targeted by deleting exons encoding amino acids 221-365 of the STAT1 

gene, which resulted in complete loss of STAT1 protein expression (5).  We believe the modest 

phenotype of the capsid 296 mutation reported here is most likely due to these differences.  We 

attempted to introduce the corresponding E296K mutation into CR6, but were unable to recover 

virus after transfection of this DNA construct into 293T cells.  To ensure that this lack of viral 

production was not due to a plasmid defect introduced during mutagenesis, we removed a portion 

of the plasmid containing the desired mutation using restriction enzymes, and ligated it into the 

parental CR6 plasmid.  As we were still unable to recover virus, we believe this represents a true 

incompatibility of a lysine residue at this position of the CR6 capsid protein.  Together, these data 

show that the lysine to glutamic acid mutation previously identified is not the lethality determinant 

in our current system. 
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In vitro viral growth is not a determinant of lethality.  One potential explanation for 

the difference in lethality between CW3 and CR6 is that they differ in their ability to replicate in 

cells.  To test this hypothesis, growth curves at MOI 5 and MOI 0.05 were completed in RAW 

cells (Figure 3-2).  Recombinant CW3 and CR6 grew similarly at MOI 5 and 0.05.  While there 

was no statistical difference in overall growth, a reproducible difference in viral titer during the 

early phase of the growth curve was observed (discussed in Chapter 5).  This data shows that an 

in vitro growth defect as measured in RAW cells does not account for the difference in lethality 

between these two strains.  However, a contribution of the viral titer difference observed during 

the early phase of growth to the lethality difference remains a formal possibility. 

Another potential explanation for the difference in lethality is that there is a difference in 

the particle to PFU ratio of the viruses.  We tested this possibility using two assays (Figure 3-2).  

First, serial dilutions of each recombinant viral supernatant were probed by western blot using 

polyclonal antisera generated against the MNV capsid protein.  A single band migrating at the 

expected size of approximately 58kD was observed.  At each dilution the CW3 and CR6 bands 

were of similar intensity, indicating that these viruses produce similar amounts of capsid antigen 

per PFU (Figure 3-2C).  Second, we measured the number of genome copies per PFU for the two 

viruses using quantitative PCR.  There was no statistical difference in the genome to PFU ratio 

calculated at each dilution of virus or between the two strains (Figure 3-2D).  Together, these 

data suggest that there is no difference in particle to PFU ratio that could explain the lethality 

difference between these viral strains. 

MNV capsid P domain is the determinant of lethality in STAT1 deficient mice.  To 

identify the viral element responsible for lethal infection, STAT1-/- mice were infected with 

chimeric viruses constructed as described in Chapter 2.  All of the CW3 chimeric viruses, 

encoding a single CR6 gene substitution, were tested (Figure 3-3).  The capsid gene chimera 

was the only virus attenuated in lethality, indicating that the VP1 of CW3 is necessary for 

expression of the lethality phenotype.  On the basis of this data, we generated additional virus 

chimeras, exchanging domains of the capsid protein between CW3 and CR6, and tested their 
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lethality in order to more precisely identify the domain of the capsid responsible for the lethality 

phenotype. 

A model of the capsid protein dimer shows that the capsid protein is composed of a P 

domain and a shell domain (Figure 3-4A).  The P domain can be further subdivided into a P1 

domain and a P2 domain, which is the most distal and exposed surface of the capsid protein.  

Figure 3-4B shows that the MNV capsid is both necessary and sufficient to confer the lethality 

phenotype in the context of viral infection.  Substituting the VP1 of the lethal CW3 strain into the 

non-lethal CR6 strain resulted in a lethal virus.  Conversely, replacing the CW3 capsid protein 

with that of CR6 produced a non-lethal virus.  In order to identify the domain of that capsid protein 

that is responsible for the lethality phenotype, virus chimeras for the shell or P domain of the 

capsid were constructed and evaluated for their ability to induce lethality in STAT1-/- mice.  

Substituting the shell domain of the capsid protein (amino acids 49-218) had no effect on the 

lethality of either viral strain (Figure 3-4E).  Further, exchanging the P domain of the capsid, 

defined as amino acids 229-537, was enough to change the phenotype of the virus (Figure 4C).  

Interestingly, swapping the P domain also changed the time until death of infected mice as 

compared to infection with CW3 (p<0.001).  All mice infected with CW3 were dead by 5 days post 

infection.  In mice infected with CR6 P CW3 40% died by 5 days post infection with the remainder 

dying between days 5 and 14.  In an effort to further characterize the amino acids contributing to 

the lethality phenotype, virus chimeras of the P1 (amino acids 229-277 and 416-537) and P2 

(amino acids 278-415) sub-domains were generated.  Introduction of the CR6 P2 domain into the 

CW3 strain resulted in an attenuated virus, indicating that the lethality determinant is likely in the 

P2 domain of CW3.  Additionally, the P1 domain of CW3 was expressed in the CR6 background.  

This virus was also non-lethal, further supporting the conclusion that the lethality determinant 

resides in the P2 domain of the capsid protein.  For further confirmation of this, we attempted to 

generate chimeras expressing the P2 domain of CW3 with the P1 domain of CR6.  We were 

unable to recover CW3 and CR6 chimeras expressing this P domain construct.  This is further 

evidence of an incompatibility between elements of the capsid from distinct strains that prevents 
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production of live virus.  Taken with the inability to introduce the previously identified virulence 

mutation into CR6, this suggests an interaction between amino acid position 296 of the capsid 

protein and an as yet identified site in the P1 domain. 

MNV capsid P domain is a determinant of in vivo growth and morbidity in STAT1 

deficient mice.  To further investigate the differences between lethal CW3 infection and non-

lethal CR6 infection, spleen, liver, lung, brain, distal ileum, and mesenteric lymph node (MLN) 

were collected three days post infection and viral titer quantified by plaque assay.  All pairwise 

comparisons were statistically analyzed.  Infection with CW3 produced significantly higher viral 

titer, as compared to CR6, in all organs assayed with the exception of distal ileum (Figure 3-5).  

As with lethality, the P domain of the capsid protein was a necessary and sufficient determinant of 

the in vivo growth phenotype.  Expression of the CR6 P domain in the CW3 background resulted 

in statistically significant reduction in viral titer for every tissue examined.  Conversely, expression 

of the CW3 P domain on the CR6 background resulted in greater titer in the spleen, liver, lung, 

and MLN.  Finally, titer from CW3 P CR6 infected mice was statistically decreased compared to 

CR6 in the distal ileum and MLN.  No significant change was observed in the spleen, liver, lung, 

and brain.  Generally, infection with a lethal virus was associated with higher viral titers in the 

organs assayed as compared to infection with a non-lethal strain. 

To characterize the pathology associated with CW3 or CR6 infection, hematoxylin and 

eosin stained sections of spleen and liver from day 3 infected STAT1-/- mice were evaluated.  

Spleens of CW3 infected mice exhibited marked cell death and loss of architecture in the red and 

white pulp (Figure 3-6B).  High magnification images of the white pulp show dying cells with 

condensed nuclei and ubiquitous cellular debris.  In contrast, the only consistent finding in the 

spleen of CR6 infected mice was a mild expansion of the marginal zone (Figure 3-6D).  To 

determine whether the P domain of the capsid protein is the determinant of the pathology 

observed in the spleen, mice were infected with the P domain chimeric viruses.  Mice infected 

with CR6 P CW3 displayed a range in severity of pathology which we believe is reflective of the 

extended time to death after infection with this virus (Figure 3-3C).  Roughly 50% of mice had a 
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splenic lesion as severe as that observed in CW3 infected mice.  In the remainder of mice we 

observed cell death radiating from the T cell zone of the white pulp (Figure 3-6E).  We also 

observed expansion of the marginal zone like that described for CR6 infected mice.  We believe 

this represents the early stage of the spleen lesion observed in CW3 infected mice.  Spleens of 

mice infected with CW3 P CR6 displayed mild marginal zone expansion but lacked the cell death 

and loss of splenic architecture characteristic of infection with the lethal strains (Figure 3-6C). 

In the liver of CW3 infected mice we observed focal areas of cell death and inflammation 

(Figure 3-7A).  In order to measure the extent of liver damage and determine whether the P 

domain was the determinant of this phenotype, we counted the number of these foci per square 

millimeter of tissue in livers from mice infected with our MNV strains and their P domain chimeras 

(Figure 3-7B).  CW3 infected mice developed foci at a rate of approximately 1 per 2 mm2 of liver 

tissue.  None of the CR6 infected mice developed liver foci.  The capsid P domain was the 

determinant of liver pathology.  STAT1-/- mice infected with CR6 P CW3 developed liver lesions at 

a frequency similar to that observed in CW3 infected mice.  Mice infected with the virus CW3 P 

CR6 failed to exhibit this liver pathology.   

 

Discussion 

The pathogenesis of and host response to Norovirus infection are still not completely 

understood.  The discovery of MNV, along with its capacity to grow in a small animal model, 

provides an opportunity to investigate these questions in greater detail.  Previous work details the 

role of host genes such as RAG1 and STAT1 in the outcome of MNV infection (9, 13).  In these 

studies STAT1 was identified as a determinant of pathology, mortality, and viral spread following 

MNV infection.   Here, we show that these outcomes can also be dependent on viral factors.  We 

identified the P domain of the capsid protein as being a necessary and sufficient determinant of 

lethal MNV infection.  We showed that it is also the determinant of high titer replication and 

spread from the primary site of infection in vivo.  Finally, we have shown that the P domain is the 

viral determinant of pathology in the spleen and liver following MNV infection. 
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While expression of the P domain of a lethal virus in an attenuated strain produced a 

lethal virus, the average time until death was increased as compared to the parent strain.  This 

may represent an additional contribution from the remainder of the capsid protein, as virus 

chimeras of the full capsid protein completely reconstituted the phenotype of the parent strain.  

Our data show that the P2 domain of the CW3 capsid is necessary for MNV induced lethality.  We 

attempted to show that this P2 domain was also sufficient for the lethality phenotype by 

expressing a P domain composed of the CW3 P2 and CR6 P1 domains in both the CW3 and 

CR6 background.  We were unable to recover virus from either of these constructs.  This 

indicates that domains from distinct viral strains are not always compatible.  This is a second 

piece of data suggestive of an interaction between domains of the capsid protein.  We showed 

that the previously identified lethality attenuating mutation E296K may account for a portion of the 

lethality difference between CW3 and CR6, but clearly does not explain the entire phenotype.  

We were unable to generate a CR6 strain with the K296E, pro-lethality, mutation.  This is a third 

piece of evidence for a critical interaction between viral elements.  It is possible that this 

incompatibility of a glutamic acid residue at position 296 of the CR6 capsid protein accounts for 

our inability to generate virus chimeras expressing the P2 domain of CW3 with the P1 domain of 

CR6.  As amino acid 296 lies in the P2 domain, this would be consistent with a hypothesis for a 

direct or indirect interaction between the P1 and P2 capsid domains that is necessary for 

production of live virus.   

Our data on viral titer in various tissues following infection demonstrates a role for the 

MNV P domain in viral spread and growth in vivo.  Three days after oral inoculation with virus, 

CW3 and CR6 titers were statistically equivalent in a primary site of infection, the distal ileum.  At 

this same time point, there was a three log difference in the amount of virus that spread to the 

MLN, which is the draining lymph node for this site.  In all other tissues examined, CW3 infection 

produced a statistically higher viral titer than CR6 infection.  This is indicative of a difference in an 

intrinsic capacity to either spread systemically or grow to high titer in the tissues examined.  The 

capsid P domain is a determinant of this phenotype, as introduction of the CW3 P domain into the 
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CR6 genome was able to increase viral titer in the spleen, liver, lung, and MLN while the CR6 P 

domain decreased viral titer in these same organs.  Further examination of this data reveals that 

the P domain is clearly not the only determinant of in vivo growth and spread.  In the spleen and 

liver we observed significantly higher titer of CR6 P CW3 as compared to CW3.  Were the P 

domain the sole determinant of these phenotypes, we would expect these titers to be statistically 

equivalent.  Also, in the distal ileum and MLN, animals infected with CR6 had higher titer than 

those infected with CW3 P CR6.  This again indicates the presence of additional determinants of 

viral growth and spread in these tissues.  The alternate determinant(s) may interact directly or 

indirectly with the P domain and could be an intragenic interaction between domains of the capsid 

protein, or an intergenic interaction between the P domain and another viral gene. 

We believe that the cooperative interactions between viral elements observed here is an 

important consideration for future studies of norovirus genetics.  The relatively poor fidelity of viral 

RNA polymerases results in significant diversity between virus strains.  This is true for murine as 

well as human noroviruses.  Previously, in studying two closely related MNV strains which differ 

at only 2 amino acid positions, we identified a single amino acid determinant of lethality in STAT1 

deficient mice (1, 18).  Here we show that this site plays a minor role in determining the virulence 

of a more distantly related strain of MNV.  Our data demonstrate that the isolated study of a viral 

determinant can be predictive for the behavior of a given viral strain but irrelevant to the biological 

behavior of a more distantly related strain. 

The mechanism by which the MNV capsid protein determines lethality following infection 

of STAT1-/- mice is incompletely understood.  The data presented here characterizing viral titer in 

mouse tissues following infection with CW3, CR6, and their P domain virus chimeras is 

suggestive of a role for viral spread and high titer virus growth in vivo in producing the lethality 

phenotype.  These differences could result from a difference in the cell populations targeted by 

the viruses in vivo or the efficiency with which each strain spreads from cell to cell.  This 

hypothesis is consistent with the identification of the capsid protein, and specifically the P domain, 

as the determinant of the lethality phenotype since the P domain plays a role in MNV binding and 
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entry to permissive cells (15).  While the data from growth curves in RAW 264.7 cells shows that 

there is no difference between CW3 and CR6 in growth or cell to cell spread in vitro, this does not 

rule out the possibility of an in vivo difference that occurs in a specific cell population.  Further, it 

is possible that the difference in viral titer observed at early time points after infection of RAW 

264.7 cells may play a role in the different lethality phenotypes of CW3 and CR6. 

Finally, we demonstrated the utility of the MNV reverse genetic system for elucidating 

aspects of MNV biology.  We were able to clone two viral strains into this system and identify a 

viral determinant of pathogenesis by transferring whole viral proteins or protein sub-domains 

between the two strains.  This system will be a powerful tool for investigating in vitro and in vivo 

elements of MNV infection and will provide insight into unique functions of the proteins of this 

family of viruses.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  53     

 

 

References 

 

 1.  Bailey, D., L. B. Thackray, and I. G. Goodfellow. 2008. A single amino acid substitution 
in the murine norovirus capsid protein is sufficient for attenuation in vivo. J. Virol. 82:7725-
7728. 

 2.  Centers for Disease Control and Prevention (CDC). 2007. Norovirus activity--United 
States, 2006-2007. MMWR Morb. Mortal. Wkly. Rep. 56:842-846. 

 3.  Chachu, K. A., A. D. LoBue, D. W. Strong, R. S. Baric, and H. W. Virgin. 2008. Immune 
mechanisms responsible for vaccination against and clearance of mucosal and lymphatic 
norovirus infection. PLoS Pathog 4:e1000236. 

 4.  Chachu, K. A., D. W. Strong, A. D. LoBue, C. E. Wobus, R. S. Baric, and H. W. Virgin. 
2008. Antibody is critical for the clearance of murine norovirus infection. J. Virol. 82:6610-
6617. 

 5.  Durbin, J. E., R. Hackenmiller, M. C. Simon, and D. E. Levy. 1996. Targeted disruption 
of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 
84:443-450. 

 6.  Estes, M. K., B. V. Prasad, and R. L. Atmar. 2006. Noroviruses everywhere: has 
something changed? Curr. Opin. Infect. Dis. 19:467-474. 

 7.  Fankhauser, R. L., S. S. Monroe, J. S. Noel, C. D. Humphrey, J. S. Bresee, U. D. 
Parashar, T. Ando, and R. I. Glass. 2002. Epidemiologic and molecular trends of 
"Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. J. 
Infect. Dis. 186:1-7. 

 8.  Fankhauser, R. L., J. S. Noel, S. S. Monroe, T. Ando, and R. I. Glass. 1998. Molecular 
epidemiology of "Norwalk-like viruses" in outbreaks of gastroenteritis in the United States. 
J. Infect. Dis. 178:1571-1578. 

 9.  Karst, S. M., C. E. Wobus, M. Lay, J. Davidson, and H. W. Virgin. 2003. STAT1-
dependent innate immunity to a Norwalk-like virus. Science 299:1575-1578. 

 10.  Kaufman, S. S., T. K. Chatterjee, T. E. Fuschino, D. L. Morse, R. A. Morotti, M. S. 
Magid, G. E. Gondolesi, S. S. Florman, and T. M. Fishbein. 2005. Characteristics of 
human calicivirus enteritis in intestinal transplant recipients. Journal of Pediatric 
Gastroenterology and Nutrition 40:328-333. 

 11.  Mattner, F., D. Sohr, A. Heim, P. Gastmeier, H. Vennema, and M. Koopmans. 2006. 
Risk groups for clinical complications of norovirus infections: an outbreak investigation. 
Clin. Microbiol. Infect. 12:69-74. 

 12.  Meraz, M. A., J. M. White, K. C. F. Sheehan, E. A. Bach, S. J. Rodig, A. S. Dighe, D. H. 
Kaplan, J. K. Riley, A. C. Greenlund, D. Campbell, K. Carver-Moore, R. N. DuBois, R. 
Clark, M. Aguet, and R. D. Schreiber. 1996. Targeted disruption of the Stat 1 gene in 
mice reveals unexpected physiologic specificity of the JAK-STAT signalling pathway. Cell 
84:431-442. 



  54     

 

 

 13.  Mumphrey, S. M., H. Changotra, T. N. Moore, E. R. Heimann-Nichols, C. E. Wobus, M. 
J. Reilly, M. Moghadamfalahi, D. Shukla, and S. M. Karst. 2007. Murine Norovirus 1 
Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but 
Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses. J. Virol. 
81:3251-3263. 

 14.  Nilsson, M., K. O. Hedlund, M. Thorhagen, G. Larson, K. Johansen, A. Ekspong, and 
L. Svensson. 2003. Evolution of human calicivirus RNA in vivo: accumulation of mutations 
in the protruding P2 domain of the capsid leads to structural changes and possibly a new 
phenotype. J. Virol. 77:13117-13124. 

 15.  Taube, S., J. R. Rubin, U. Katpally, T. J. Smith, A. Kendall, J. A. Stuckey, and C. E. 
Wobus. 2010. High-resolution x-ray structure and functional analysis of the murine 
norovirus 1 capsid protein protruding domain. J Virol 84:5695-5705. 

 16.  Thackray, L. B., C. E. Wobus, K. A. Chachu, B. Liu, E. R. Alegre, K. S. Henderson, S. 
T. Kelley, and H. W. Virgin. 2007. Murine Noroviruses Comprising a Single Genogroup 
Exhibit Biological Diversity despite Limited Sequence Divergence. J. Virol. 81:10460-
10473. 

 17.  Ward, V. K., C. J. McCormick, I. N. Clarke, O. Salim, C. E. Wobus, L. B. Thackray, H. 
W. Virgin, and P. R. Lambden. 2007. Recovery of infectious murine norovirus using pol II-
driven expression of full-length cDNA. Proc Natl Acad Sci U. S. A 104:11050-11055. 

 18.  Wobus, C. E., S. M. Karst, L. B. Thackray, K. O. Chang, S. V. Sosnovtsev, G. Belliot, 
A. Krug, J. M. Mackenzie, K. Y. Green, and H. W. Virgin. 2004. Replication of a Norovirus 
in cell culture reveals a tropism for dendritic cells and macrophages.  PLOS Biology 2:e432. 

 
 



  55     

 

 

Fig.3-1 MNV strain CR6 is attenuated in lethality.  STAT1-/- mice were inoculated with the 

indicated dose and strain of virus.  (A) Parental MNV strains, (B) Clone derived parental strains 

and CW3 with K296E attenuating mutation, (C) Dose dependence of viral lethality.   
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Fig.3-2 CW3 and CR6 have similar in vitro characteristics.  Growth of clone derived CW3 and 

CR6 was evaluated in RAW cells.  Cells were inoculated at MOI 0.05 or 5. Error bars represent 

standard error of the mean from 3 independent experiments.  (A) RAW cells MOI 0.05, (B) RAW 

cells MOI 5. (E) Western blot of viral supernatant probed using polyclonal anti-MNV serum.  A 

representative blot from three experiments is shown.  (F) Genome copies for the indicated 

number of PFUs were quantified by Taqman. Data is from two independently generated stocks 

and represents three experimental replicates. 
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Fig.3-3 MNV capsid gene is a lethality determinant.  CW3 chimera viruses with a single gene 

from CR6 were evaluated for ability to induce lethality.  STAT1-/- mice were inoculated with the 

indicated dose and strain of virus.  Mice infected with CW3 or CR6 are shown on each graph for 

comparison.  (A) NTerm and NTPase chimeras, (B) p18 and VPg chimeras, (C) VP1 and VP2 

chimeras.    
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Fig.3-4 MNV P domain is necessary and sufficient determinant of lethality.  STAT1-/- mice 

were inoculated with the indicated dose and strain of virus.  (A) Model of MNV capsid protein 

(VP1) (reproduced courtesy of Dr. Tom Smith PMID: 20335264), (B) Capsid Protein virus 

chimeras, (C) P domain virus chimeras, (D) P sub-domain virus chimeras, (E) Shell domain virus 

chimeras.   
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Fig.3-5 MNV P domain is a determinant of in vivo growth.  STAT1-/- mice were infected with 

3x104 PFU of the indicated virus.  3 days after infection mice were sacrificed and tissues 

harvested.  The amount of virus in each sample was measured by plaque assay and is reported 

as LOG10 PFU/mL. n.s. not significant, *p<0.05, **p<0.01, ***p<0.001.  
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Fig.3-6 MNV P domain is a determinant of cell death in the spleen.  STAT1-/- mice were 

infected with 3x104 PFU of the indicated virus.  3 days after infection mice were sacrificed and the 

spleen was fixed in 10% buffered formalin.  H&E sections were examined by light microscope and 

photographs were taken at 2x, 20x and 100x magnification.  (A) Mock, (B) CW3, (C) CW3 P CR6, 

(D) CR6, (E) CR6 P CW3.   
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Fig.3-7 MNV P domain is a determinant of cell death in the liver.  STAT1-/- mice were 

infected with 3x104 PFU of the indicated virus.  3 days after infection mice were sacrificed and the 

liver was fixed in 10% buffered formalin.  H&E sections were examined by light microscope.  (A) 

A representative focus of dead and dying cells from CW3 infected mouse, (B) the number of foci 

observed at 4x magnification were counted and normalized per unit area.  * p<0.05 
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CHAPTER 4 

N-Terminal Non-Structural Protein is a Determinant of Persistent MNV Infection 
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Introduction 

 The phenomenon of persistent viral infection and the understanding of strategies for viral 

persistence are of major import to human health.  Viruses capable of establishing persistent 

infection must have a strategy to maintain infection of the host while overcoming the ability of the 

immune response to recognize and clear virus.  Several mechanisms by which different viruses 

accomplish these goals have been described.  Studies done using models of persistent infection 

show that persistent viruses can disrupt specific cellular processes in specialized cells (reviewed 

in (15)).  As the pathways involved in the persistence of viruses are so diverse, the study of new 

models of persistent infection is likely to uncover novel models of viral persistence. 

 Noroviruses are increasingly being recognized for their ability to establish persistent 

infection, with virus being shed in the feces of post-symptomatic individuals for prolonged periods 

(4, 5, 7, 13, 14, 16, 18).  Studies have identified the frequency of asymptomatic shedders in 

community populations at between 4% and 13% of individuals (2, 3, 17).  Despite this increasing 

awareness, the consequences of persistent norovirus infection to human health are unknown.  

One possibility is that the persistent shedders serve as a reservoir for epidemic outbreaks of 

norovirus infection.  However, the mechanisms governing establishment of persistent infection 

and the lack of an effective immune response are unknown. 

 Here, we use infection of mice with murine norovirus (MNV) as a surrogate for the study 

of human noroviruses.  MNV is closely genetically related to human noroviruses and is the only 

norovirus with a small animal model, reverse genetics system, and can be grown in cell culture 

(11, 22, 23).  Like human noroviruses, MNV is shed in the stool of its host for prolonged periods 

following initial infection (20).  In this study, we use the aforementioned tools to identify a viral 

protein responsible for the persistence phenotype.  Remarkably, a single amino acid allele in the 

non-structural N-Terminal protein (NTerm) determines whether the virus establishes persistent 

infection.  Additional studies must be done to identify the interactions between host factors and 

NTerm that result in persistent infection. 
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Results  

CR6 establishes persistent infection.  We previously reported that infection of wild type 

mice with CR6 results in the establishment of a persistent infection, while virus is cleared 

following infection with CW3 (20).  Subsequently, we cloned these two MNV strains into a reverse 

genetics system.  Figure 4-1A-B shows that as reported for the parental strains, CR6 establishes 

persistent infection while mice infected with CW3 are able to clear the virus.  Thirty-five days after 

infection with 3x104 PFU of CR6, mice shed 107 genome copies per fecal pellet.  In contrast, all 

mice infected with CW3 are at or near the limit of detection for this assay.  Clearly there is also a 

difference in infectivity between CW3 and CR6.  At three days post infection there is already a 

statistically significant difference in viral shedding between the two strains, with CR6 shedding 

more viral RNA (p<0.001).  CW3 infected mice shed at or near the level of detection for this 

assay.  There is significant variability in the amount of virus shed by CR6 infected mice at this 

early time point.  Interestingly, the level of viral shedding on day three is not a predictor of 

persistence or the level of shedding at day thirty-five.  CR6 infected mice shedding at a level 

comparable to that of CW3 infected mice on day three still establish persistent infection and are 

not distinguishable from other CR6 infected mice with regard to the level of viral shedding on day 

thirty-five post-infection. 

 In order to determine whether CR6 infection is eventually cleared by an immune 

response, we measured viral shedding at a much later time point (Figure 4-1C).  Even six months 

after initial infection, CR6 infected mice are shedding more than 107 genome copies per fecal 

pellet.  As there is no decrease in viral load between thirty-five days and six months post-

infection, we believe CR6 infection does not get cleared in these mice. 

NTerm amino acid ninety-four is a persistence determinant.  In order to identify a 

viral gene responsible for the persistence phenotype, we screened CW3 virus chimeras for the 

ability to establish persistent infection.  We identified one gene of CR6, the N-Terminal non-
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structural protein, which facilitated the establishment of persistent infection when substituted into 

the CW3 virus background (Figure 4-1D-E).  There are twenty-four amino acid differences 

between the CW3 and CR6 NTerm proteins.  We sought to define the minimal domain or a single 

amino acid allele of NTerm that could dictate the persistence phenotype.  We took the approach 

of generating CW3 chimeras encoding the five prime (amino acids 1-136) or three prime (amino 

acids 137-341) portion of the CR6 NTerm in order to identify which half of the protein encodes the 

persistence determinant (Figure 4-1F-G).  To facilitate rapid identification of the persistence 

determinant, we undertook a second strategy of generating targeted amino acid mutations, 

changing the individual residues encoded by CW3, to the CR6 allele (Figure 4-1H).  We 

prioritized which targeted mutations to generate by identifying alleles where amino acid charge or 

reactivity was not conserved between CW3 and CR6.  In some cases, where two polymorphic 

alleles were located in close proximity to one another, both were mutated simultaneously.  While 

little is known regarding the function of MNV NTerm during virus replication, two functional 

canonical DXXD caspase 3 cleavage sites have been identified (19, 21).  At the cleavage site 

encoded between amino acid positions 118 and 121, the variable amino acids differ between 

CW3 and CR6.  Based on this, we also prioritized the targeting of this allele.  We identified the 

five prime portion of the CR6 NTerm as encoding the persistence determinant.  Thirty-five days 

after infection, mice infected with the CW3 5’ NTermCR6 virus were still shedding an average of 

seven logs of viral genomes per fecal pellet (Figure 4-1G). In comparison, mice infected with 

CW3 3’ NTermCR6 were all at the limit of detection of this assay.  Of note, three days after 

infection with these two virus chimeras, there is also a large difference in virus shedding (Figure 

4-1F).  This is similar to the difference in CW3 and CR6 infectivity discussed above, and 

suggestive that the loci defining infectivity and persistence may be the same. 

From analyzing the data from day thirty-five virus shedding in mice infected with a CW3 

strain encoding  specific amino acid mutations, it is apparent that amino acid position ninety-four 

is a major determinant of the persistent shedding phenotype.  Mice infected with CW3 NTermD94E 

shed an average of seven logs of genome copies per fecal pellet thirty-five days post infection 
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(Figure 4-1H).  Interestingly, mice infected with two of the single gene CW3 chimeras (NTPase 

and VPg), and several of the single or double amino acid mutant viruses (amino acid 45, 119, 119 

and 120, 136, 157 and 159, and 192) shed a low level of virus thirty-five days after infection 

(Figure 4-1E and 4-1H).  While the mean level of virus shedding in these groups is more than two 

logs below what is observed in mice infected with CR6 or the CW3 NTermD94E mutant, this may 

indicate a small role for an additional viral locus or loci in the expression of the persistence 

phenotype.  While this conclusion cannot be definitively made from the limited sample size here, 

future experiments should investigate this possibility. 

        In order to confirm the role of the NTerm protein and specifically amino acid ninety-four in 

the establishment of persistent infection, we evaluated the phenotype of the relevant viruses 

using independently generated virus stocks.  Figure 4-1I-J shows the combined data for all 

experiments.  We confirmed that mice infected with CW3 NTermCR6 or CW3 NTermD94E 

persistently shed virus thirty-five days after infection (Figure 4-1J).  Further, we again saw that 

CR6 infected mice shed significantly more virus three days post infection than do CW3 infected 

mice (Figure 4-1A and 4-1I).  This phenotype correlated with the ability of CW3 NTermD94E to 

persist, as mice infected with this virus shed significantly more virus on day three than CW3 

infected mice (Figure 4-1I).  While the day three shedding phenotype did not map with CW3 

NTermCR6, additional experiments may show that this virus sheds at high titer on day three as 

well, since the day three shedding phenotype can be extremely variable as demonstrated for 

infection with CR6 (Figure 4-1A) and discussed above. 

We have identified a single amino acid position that controls the ability of CW3 to 

establish persistent infection.  Mutation of the aspartic acid at position ninety-four of the CW3 

NTerm protein to a glutamic acid, as encoded by CR6, allows the virus to establish persistent 

infection (Figure 4-1J).  This same allele is responsible for the difference in viral shedding on day 

three post-infection (Figure 4-1I).  Again, despite the correlation between high titer shedding three 

days post infection and long term viral persistence, there is no causal association. 
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CW3 and CR6 grow similarly in RAW 264.7 cells.  We hypothesized that the 

differences in persistent infection and viral shedding could be explained by a difference in viral 

replication at the cellular level.  We therefore evaluated growth of CW3, CR6, and CW3 

NTermD94E in RAW 264.7 cells.  There was no statistically significant difference between the 

growth curves of these viruses at MOI 0.05 or 5 (Figure 4-2).  However, the ability of CR6 to 

produce higher titer virus, as compared to CW3, at 6 hours after infection of RAW 264.7 cells was 

again evident.  This phenotype will be discussed in greater detail in Chapter 5.  As CW3 and the 

persistent CW3 mutant grow identically at early and late time points, the difference in ability to 

persist and the difference in viral shedding on day three do not correlate with a difference in in 

vitro growth as measured in RAW 264.7 cells. 

 

Discussion 

The issue of persistent viral infection is of general importance to human health and 

disease processes.  Viruses such as HIV and Hepatitis B establish persistent infections and have 

adverse sequelae over the life of the host (1).  The ability of noroviruses to establish persistent 

infection is increasingly recognized, with humans reportedly shedding virus asymptomatically for 

weeks after infection (4, 5, 7, 13, 14, 16, 18). However, the contribution of persistent norovirus 

infection to human disease is unknown.  As MNV infection of mice is the only available small 

animal model of norovirus infection, we believe study of this system can provide valuable insight 

into the mechanism of persistent norovirus infection.  Further, we believe these studies will be of 

general interest when considering mechanisms and pathways involved in establishment of 

persistent viral infections.  As we have already identified a role for the non-structural viral protein 

NTerm, which previously had no known in vivo function, in the establishment of persistent 

infection, we believe it likely that further investigation will lead to the identification of a novel 

mechanism for viral persistence. 

We show here that infection with the CR6 strain of MNV results in long term persistent 

infection which likely lasts for the life of the host.  The ability to establish persistent infection was 
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mapped to a single amino acid in the non-structural NTerm protein.  Encoding of the CR6 

glutamic acid allele at position ninety-four of this protein facilitated persistence of a previously 

non-persistent virus.  It will be important for future studies to determine whether mutation of the 

CR6 glutamic acid at NTerm position ninety-four to an aspartic acid results in a non-persistent 

virus.  If it does, this would indicate that the amino acid encoded at position ninety-four is both 

necessary and sufficient to determine the persistence phenotype of these two MNV strains.  

Alternately, it is possible that one or more additional genetic loci play a role in this phenotype, 

which would be uncovered by performing the above mentioned experiment.  Additionally, we 

observed that this same amino acid allele was responsible for the ability of MNV to shed at high 

titer in stool on day three post-infection.  Interestingly, this high titer shedding was not responsible 

for the ability to persist, as the level of shedding on day three post-infection did not correlate with 

the amount of virus being shed thirty-five days after infection in persistently infected mice.  Our 

data shows that persistent infection is not correlated with in vitro viral growth in RAW 264.7 cells.  

This finding does not preclude the possibility that differential growth in a specialized in vivo cell 

type results in persistent infection. 

The function of the NTerm protein is poorly understood.  Expression of a fluorescent 

fusion protein of the NTerm from human norovirus strain Norwalk results in co-localization with 

the Golgi apparatus marker golgin 97 in transformed cell lines (6).  Expression of a hexa-histidine 

tagged NTerm protein of MNV-1 resulted in co-localization with the endoplasmic reticulum marker 

calnexin, but not the Golgi apparatus markers GM130 or giantin (10).  However, this staining 

pattern was distinct from the peri-nuclear staining observed in infected RAW 264.7 cells, 

indicating that MNV NTerm has a different localization pattern in infected cells as compared to 

cells transfected with the individual protein.  It is possible that this results in differential protein 

function of NTerm in infected cells versus cells transfected with the protein alone.  This may be 

true for human norovirus NTerm as well, and should be considered when interpreting the results 

of exogenous expression studies. 
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The human norovirus and MNV NTerm proteins encode three recognized protein 

domains (6).  A domain composed of hydrophobic amino acids is encoded near the carboxy 

terminus and is a putative trans-membrane domain.  An H-box and NC domain are also encoded 

in NTerm and are conserved between human and MNV NTerm proteins (6).  The function of H-

box and NC domains in proteins is unknown. The H-rev107 family of proteins encodes these two 

domains as well as a carboxy terminus hydrophobic region (8).  One member of the protein 

family, H-rev107-1, has been identified as a tumor suppressor, as protein expression is absent in 

tumor cell lines from many organ sources, and in primary squamous carcinoma cells (9).  

Although the similarities in protein domain encoding between norovirus NTerm proteins and the 

H-rev107 family of proteins does not indicate a mechanism for the function of NTerm or its role in 

MNV persistence, it does facilitate data driven hypothesis formulation that may lead to studies 

that answer these questions. 

Here, we have identified a viral determinant of norovirus persistent infection.  

Surprisingly, a single amino acid in the non-structural protein NTerm dictates whether the CW3 

strain of MNV is able to establish persistent infection.  This finding necessitates consideration of a 

new model for persistence as previous hypothesis focused solely on the capsid protein as a 

mechanism for immune evasion and establishment of persistent infection.  Future experiments 

should focus on identifying a mechanism for NTerm function in the establishment of persistence 

by identifying host molecules with which NTerm interacts.  Further, the immune response or lack 

thereof to persistent infection must be investigated.  CR6 and the persistent CW3 mutant could 

establish persistent infection by inhibiting the immune response against the virus.  NTerm could 

play a role in such a mechanism by inhibiting early steps in viral recognition following cell entry.  

MDA5 has previously been identified as an intracellular sensor of MNV infection, so study of its 

role in infection with persistent and non-persistent strains is a logical follow up to this work (12).  

Alternately, the immune response may be ineffective in clearance of CR6 and the persistent CW3 

mutant due to immune evasive strategies employed by the virus, such as the mutation of 

immuno-dominant epitopes.  Again, NTerm could facilitate such a mechanism by increasing the 
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mutation rate of the viral polymerase, or targeting mutations to specific areas of the viral genome.  

Further studies are needed to identify a mechanism for this interesting phenomenon. 
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Fig.4-1 Persistent MNV shedding and identification of viral determinant.  (A-J) C57BL/6 

mice were infected with 3x104 PFU of the indicated virus per os.  Fecal pellets were collected at 

the indicated times after infection for quantification of MNV genome copies.  Dashed line 

indicates the assay limit of detection.  (I-J) statistical comparison for each group is to the CW3 

infected group. ***p<0.001 
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Fig.4-2 Persistent and non-persistent strains grow similarly in vitro.  Growth of CW3, CR6, 

and CW3 NTermD94E was evaluated in RAW 264.7 cells.  Cells were inoculated at (A) MOI 0.05 or 

(B) MOI 5. Error bars represent standard error of the mean from 3 independent experiments. 
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CHAPTER 5 

Summary and Future Directions 
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Summary and Future Directions 

 The goal of this work has been to create and use a novel set of molecular genetics 

reagents to identify viral determinants of murine norovirus (MNV) pathogenesis.  We have cloned 

two strains of MNV into a previously published reverse genetics system (23).  We show that 

production of virus using this system reduces the viral quasispecies diversity that is present in 

serially passaged virus, thereby decreasing the potential for ambiguities in the analysis of viral 

phenotypes.  A second advantage of this system is the ability to manipulate the genome 

sequence.  We have exploited this potential by constructing virus chimeras and point mutants for 

use in identifying viral determinants of pathogenesis. 

Chapters three and four detailed the use of virus chimeras to identify the MNV genes and 

protein domains responsible for differences between CW3 and CR6 in lethality in STAT1-/- mice 

and the ability to establish persistent infection in wild type mice.  These same methods and tools 

can be used to map the genes responsible for other differences between these two virus strains.  

We have identified two additional phenotypic differences between the cloned CW3 and CR6 

strains.  One additional phenotype that differentiates these viruses is a difference in how soon 

they begin to increase viral titer during growth in tissue culture.  This is the difference observed 

while analyzing viral growth curves in chapters two, three, and four.  After MOI 0.05 infection of 

RAW cells, CR6 infected cells have a higher mean viral titer at two, six, and twelve hours post-

infection as compared to CW3 infected cells.  This difference is between five and ten fold and is 

statistically significant (Figure 5-1A).  By twenty-four hours post-infection, the mean viral titer of 

each strain is statistically equivalent.  This early difference in viral titer was also observed at MOI 

5 (Figure 5-1B).  At two hours post-infection CR6 infected cells had tenfold more viral titer than 

CW3 infected cells.  By six hours the difference was one-hundred fold.  CW3 and CR6 viral titers 

were statistically equal by twelve hours post-infection.  These data show that there is an early 

difference in viral titer between CW3 and CR6 after infection of cells in vitro, but this difference is 

absent at later time points. 
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We have identified a second novel phenotype that differentiates CW3 and CR6.  Mice 

infected with CW3 or CR6 differ in their immune response to a cholera toxin challenge when 

compared to one another (Figure 5-2).  CW3 infected mice were challenged with cholera toxin 

and the antibody response was measured by ELISA fourteen days later.  These mice had a 

robust anti cholera antibody response.  By comparison, mice infected with CR6 and challenged 

with cholera toxin had a less effective antibody response.  In CR6 infected mice, the cholera toxin 

antibody binding, as measured by mean absorbance at 450nm, was only slightly above the 

background observed for cholera toxin naïve mice.  Binding of antibody from CR6 infected mice 

was statistically lower than the binding response of antibody from CW3 or uninfected mice.  This 

data indicates a role for CR6 infection in the suppression of the immune system antibody 

response. 

 

MNV Persistence 

 We have definitively identified a viral determinant of norovirus persistence.  Surprisingly, 

a single amino acid at position ninety-four of the non-structural protein NTerm determines 

whether the CW3 strain of MNV persists.  Glutamic acid at this position results in a virus capable 

of establishing persistent infection.  Aspartic acid at NTerm position ninety-four, as encoded in the 

wild type CW3 strain, facilitates clearance of virus.  It will be important to determine whether it is 

true that a single amino acid at this position determines persistence in the CR6 background as 

well. It is possible that the encoding of glutamic acid at this allele is sufficient to result in CW3 

persistent, but not necessary for the persistence of CR6.  Such a result would indicate that 

additional virus determinants can play a role in persistent MNV infection.  Interestingly, of the 

more than twenty MNV strains we have analyzed (22), all encode either glutamic acid or aspartic 

acid at this allele.  Determination of the phenotype for other amino acids at this position may be 

helpful for future studies to determine the mechanism of persistence.  Whether other amino acids 

result in a partial phenotype or are all together not tolerated by the virus at this position could 

provide insight into the protein interactions taking place.  More important in this regard is the 
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identification of host proteins that interact with NTerm.  Future studies should screen for these 

proteins using a high throughput method such as a yeast two-hybrid hybrid screen or immuno-

precipitation followed by mass spectrometry, and then determine whether encoding aspartic acid 

or glutamic acid at NTerm position ninety-four results in different interactions with the identified 

target(s).   

Little is known regarding the structure of the norovirus NTerm protein.  The NTerm 

protein sequence varies markedly between norovirus strains, and is the most variant region of 

ORF1 (8, 19).  The carboxy terminal portion of the protein is relatively conserved, and much of 

the variation occurs in the amino terminal portion of the protein (8, 19).  This same pattern of 

sequence similarity is observed when comparing human to murine norovirus NTerm proteins, with 

the amino terminal portions of the protein being most divergent (unpublished observation).  For 

this reason, it was not possible to identify an amino acid in human norovirus NTerm proteins that 

is analogous to position ninety-four of the murine proteins.  Three protein sequence motifs have 

been identified that are conserved across strains of human and murine noroviruses (9, 13).  The 

H-box and NC domains are purely descriptors of the conserved amino acid sequences encoded, 

with no known function.  A hydrophobic domain, postulated to be a trans-membrane domain, is 

also conserved between these proteins.  These same three sequence motifs are encoded in the 

H-rev107 family of proteins (13).  H-rev107 has been identified as a tumor suppressor (10, 14, 

20).  H-rev107 protein expression is absent in tumor cell lines and in primary squamous 

carcinoma cells (10, 14, 20).  Overexpression of H-rev107 inhibits the growth of RAS-transformed 

cells (20).  MNV NTerm proteins, including the CW3 persistence enabling mutant, and human 

norovirus NTerm proteins should be tested for this same activity. The identification of a cellular 

pathway in which NTerm functions will be beneficial in elucidating the mechanisms resulting in 

persistent MNV infection.  Further, determination of whether the human norovirus NTerm proteins 

can perform a function identical to their murine homologues will help in evaluating the validity of 

the MNV system as a surrogate for the study of human noroviruses.  The fact that a non-

structural viral protein regulates whether persistent infection is established suggests that the 
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ability to persist is the result of the activation or inhibition of a cellular process by NTerm in 

infected cells.  Once identified, this process could be a new pathway to consider in the study of 

persistent infections. 

 One remaining question regarding the persistence phenotype is whether CW3 is 

completely cleared from mice at thirty-five days post-infection.  The quantitative PCR assay 

described here is relatively insensitive, with a limit of detection on the order of one-thousand 

genome copies.  At thirty-five days post-infection, some of the CW3 infected mice appear to be 

shedding a small amount of virus, slightly above the limit of detection.  It is possible that this 

represents a technical problem due to variation in background or sensitivity at low numbers of 

genome copies.  Alternatively, it could indicate that some mice do shed a small amount of CW3 

persistently, and the phenotype we have described is actually a difference in the amount of virus 

shedding in infected mice rather than an absolute difference in the ability of each virus to persist.  

As only a single nucleotide mutation is required for CW3 to gain the persistent phenotype, it may 

be that a small number of viruses mutate and gain the ability to persistent after infection, and this 

virus is subsequently being detected in the day thirty-five samples.  This should be resolved by 

sequencing virus from samples that are slightly above the limit of detection to determine whether 

viral RNA is present, and if so, whether it is a mutant of CW3 capable of establishing persistent 

infection.  Another approach is to serially passage the stool filtrate from samples slightly above 

the limit of detection in RAW 264.7 cells.  If a small amount of virus is present, cytopathic effect 

on cells should be observable after growing the virus in tissue culture.  Alternately, these samples 

should be used to infect STAT1-/- mice, as they are sensitive to virus inoculums as low as 30 

PFU (Chapter 3).  Lethality in these mice would be confirmation that live CW3 is present in the 

samples in question. 

Similar experiments will help to resolve the question of whether the virus shed from 

persistently infected mice is infectious.  As CR6 is not lethal in STAT1-/- mice, mice should be 

infected and monitored for shedding of virus in stool.  Alternately, virus in the stool of persistently 

shedding mice should be measured by plaque assay, or evaluated for the ability to cause 
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cytophatic effect when repeatedly passed in tissue culture.  If these experiments show that virus 

from persistently shedding mice is infectious to mice and can replicate in cells, the infectious 

nature of persistently shed virus will be confirmed. 

  

Immune response to persistent MNV infection 

While the primary focus of the experiments presented here is the identification of viral 

factors that contribute to persistent infection, investigation of the immune response to persistent 

and non-persistent MNV strains will also be informative to the mechanisms involved in viral 

persistence.  As CW3 is recognized and cleared by the immune system while CR6 can persist, 

there is likely a qualitative difference in the immune response to these viruses.  To test this 

hypothesis, the innate and adaptive immune responses following infection with CW3 and CR6 

should be characterized.  Studies should focus on the characterization of T and B cell responses 

to MNV infection.  Identification of the viral T cell epitopes will allow quantification of specific T cell 

responses following CW3 and CR6 infection.  This is an important consideration, as impairment 

of the T cell response can lead to viral persistence (17).  To evaluate the B cell response, 

convalescent serum from CW3 and CR6 infected mice should be tested for the ability to 

neutralize both viral strains in a plaque neutralization assay.  This experiment will answer the 

question of whether CR6 persists due to failure to stimulate production of neutralizing antibodies. 

As establishment of persistent infection requires subversion of both the innate and 

adaptive immune responses, it will also be informative to characterize the innate immune 

response to CW3 and CR6 infection.  The innate immune response is known to be critical for host 

defense to MNV infection, as STAT1 has been identified as a necessary host gene to prevent 

lethality following MNV infection (15).  MDA5 is an intracellular sensor of double stranded RNA 

and has been shown to initiate the innate immune response to CW3 (16).  It is possible that a 

difference between the two viral strains in the initiation of the immune response by MDA5 or 

downstream events in this signaling pathway are responsible for one or more of the phenotype 
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differences we have observed here.  Future studies should determine whether MDA5 is equally 

effective at sensing and initiating an immune response to infection with CW3 or CR6. 

 

MNV Lethality 

 Previous work has shown that MNV infection is lethal in STAT1-/- mice (15).  Serial 

passage of virus in RAW 264.7 cells resulted in a lethality attenuating lysine to glutamic acid 

substitution in the most distal P2 domain of the viral capsid (3, 24).  Here, we identified a field 

strain of MNV that is attenuated in its ability to induce lethality in STAT1-/- mice.  We show that 

the sequence of the viral capsid P domain is predictive of lethality.  Notably, the previously 

identified lysine to glutamic acid mutation at position 296 of the capsid protein was not 

responsible for viral attenuation in this system, as CW3 encoding glutamic acid at this allele 

remained lethal (Chapter 3).  This data confirms that the P domain is an important determinant of 

viral lethality and demonstrates that the attenuated phenotype can be encoded at separate sites 

within the protein.  Further, we show that the P domain and lethality are correlated with viral 

spread from the primary site of infection, in vivo growth, and pathology in the spleen and liver. 

 The mechanism for the lethality difference between CW3 and CR6 is still unknown. As 

the capsid P domain sequence is an indicator of virulence, the data is suggestive of a role for viral 

binding and or entry in this phenotype.  While the receptor for MNV binding is not known, 

carbohydrates that enhance binding have been identified (21).  CW3 and CR6 should be tested 

for P domain dependant differential binding to these carbohydrate ligands.  Differential binding 

may indicate that these viruses infect unique cell populations in vivo, and preliminary data 

supports the hypothesis for the existence of a cell population that is permissive for the growth of 

CW3 but not CR6 (Figure 5-3).  CR6 displays a significant growth defect as compared to CW3 in 

bone marrow derived macrophages differentiated using cell supernatant from the monocyte 

colony stimulating factor (M-CSF) producing cell line CMG14-12.  This conflicts with previous 

data showing that there is no growth difference between CW3 and CR6 in bone marrow derived 

macrophages differentiated using L929 cell supernatant following the protocol described by Heise 
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et al (11) (Chapter 2 Figure 2-1).  The principal difference in the derivation of these two cell 

populations is the media used for their differentiation.  This could result in a difference in a 

number of cellular parameters such as the rate of cellular division or the cellular differentiation 

state.  Identification of the difference between these cell populations will provide a clue as to 

whether there is a difference in the requirement for a specific cell intrinsic differentiation state or 

protein expression profile for growth of these two viruses.  As these are two cell populations 

which should be similar, but display dramatically different growth permissiveness for CR6, we 

believe this data supports a hypothesis for the existence of an in vivo cell population that is 

permissive for CW3 infection but not CR6. Again, this difference could be the basis for any of the 

phenotypes described in this work.  Identification of the viral determinant for this growth difference 

will be important in determining whether it is correlated with and possibly causative to the 

difference in lethality between CW3 and CR6.  Further, the two populations of bone marrow 

derived macrophages should be studied to identify the host factor responsible for the difference in 

permissiveness to CR6 infection.  The two cell types should be tested for differential expression 

of glycosylceramide synthase, an enzyme necessary for production of the gangliosides known to 

play a role in attachment to and growth of CW3 in permissive cells.  This may facilitate the 

determination a host cell mechanism for differential growth between CW3 and CR6. 

 

Early Viral Titer Increase 

 Understanding of the early events in viral entry and replication is important for 

understanding how viruses establish infection and how the host recognizes the virus to initiate an 

immune response.  We have observed an increase in CR6 viral titer as early as two hours after 

infection of cells in vitro (Figure 5-1). Such an increase in viral titer is not observed following 

infection of cells with CW3.  This time point is well before a full round of viral replication can take 

place.  At MOI 0.05, most of the increase in viral titer takes place between time zero and two 

hours post-infection.  No further increase occurs between hours two and six after infection.  Thus, 

we think it unlikely that this represents viral growth, rather an allosteric event that results in an 
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increase in viral infectivity.  Such a phenomenon has been observed during reovirus infection, 

where a proteolysis event targeting the capsid protein occurs in the intestine, resulting in a 

conformational change in the capsid that increases infectivity (1, 4, 5).  It is possible that a similar 

interaction occurs for MNV during infection of cells in vitro. Alternately, it is possible that a 

conformational change is induced by receptor binding, as has been demonstrated for FCV (18).  

For this hypothesis to be true, it would require the presence of non-infectious particles in the CR6 

virus stock that can be converted to infectious particles.  There is evidence for the existence of 

such particles, as the genome to PFU ratio of CR6 is approximately ten-thousand to one (Chapter 

3). Thus, there may be viral particles in the stock that are not accounted for in the viral titer 

measured by plaque assay.  In order to explain the difference in titer increase between the two 

strains, the proteolysis or conformational change would have to occur differentially between CW3 

and CR6.  The next step in studying this phenotype is to use virus chimeras to map the 

phenotype to a viral gene or domain.  If the phenotype maps to the P domain of the capsid 

protein, it would further support the conformational change hypothesis and will indicate that the 

early difference in virus titer is possibly related to the lethality phenotype.  Detailed structural 

binding studies of this even must await the identification of an MNV receptor. 

 

Inhibition of Cholera Toxin Antibody Response 

We show here that the antibody response to a cholera toxin challenge is suppressed in 

CR6 infected mice as compared to those infected with CW3.  This is a long lasting effect of MNV 

infection, as the cholera toxin challenge was administered thirty-five days after initial infection.  At 

the time of the cholera toxin challenge, the immune response has successfully cleared CW3 

infection, while CR6 is still being shed in feces.  We hypothesized that the suppression of anti-

cholera toxin antibody response was due to the presence of high titer virus and not intrinsic to 

CR6 per se.  To test this hypothesis, we measured the cholera toxin antibody response in mice 

that were infected with the persistent CW3 mutant.  Surprisingly, the ability to persist does not 

correlate with the anti-cholera toxin response as both CW3 infected and CW3 NTermD94E infected 



 

  99     

 

 

mice produced a robust antibody response that was not statistically different from uninfected mice 

(Figure 5-4).  For further confirmation that this phenotype is not related to persistent viral 

infection, the cholera toxin antibody response should be evaluated in mice infected with a non-

persistent CR6 virus.  Suppression of the antibody response in these mice would indicate that the 

phenotype is the result of a CR6 determinant unrelated to persistence. 

This finding has implications for the potential of MNV to alter the immune response to, or 

infectious course of subsequent infections.  Several studies have reported on the effect of MNV 

infection on other infectious model systems.  MNV infection did not alter the course of infection of 

vaccinia virus, influenza A virus, or Friend virus (2, 12).  However it did prolong viral shedding of 

mouse parvovirus and worsen pathology in a model of helicobacter induced inflammatory bowel 

disease (6, 7, 12).  The conclusions regarding the efficacy of MNV to alter the immune response 

in these studies is complicated by the fact that most of the studies evaluated a single MNV strain 

at one dose of virus.  Data presented here clearly show that MNV induced phenotypes can be 

strain dependent.  Additionally, it is possible that the manifestation of phenotype is dependent of 

the amount of viral inoculum or length of time the animal has been infected.  Interestingly, the 

studies that found an effect of MNV infection on a subsequent pathogen challenge used a 

pathogen inoculated via the oral route.  It is possible that MNV infection has an effect specifically 

on immune responses initiated in the gut.  This hypothesis can be tested using the assay 

described here.  The anti-cholera toxin antibody response should be measured in CR6 infected 

mice following oral or peripheral cholera toxin challenge.  Further, virus chimeras should be used 

to identify the gene that facilitates CR6 suppression of the antibody response.  This series of 

experiments may lead to the identification of a pathway for the gut specific suppression of 

immune responses.  This would represent an important advance in our understanding of gut 

immunobiology.   

Overall, the work described here has resulted in the generation of novel reagents for the 

study of norovirus biology and the identification of specific viral elements that contribute to virus 

pathogenesis.  We have used this system to identify a novel in vivo function for the non-structural 
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protein NTerm, which previously had no known function during viral infection.  We have also 

identified a potential role for norovirus infection in the suppression of immune responses initiated 

in the gut.  Importantly, we have generated new testable hypothesis regarding the consequences 

of norovirus infection and the function of norovirus proteins in vivo. 
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Fig.5-1 Cloned CR6 displays rapid increase in titer during in vitro infection.  RAW 264.7 

cells were infected at (A) MOI 0.05 or (B) MOI 5.  Virus titer was measured at the indicated times 

post-infection.  Data is from two independently generated stocks and represents three 

experimental replicates.  Dashed line indicates the assay limit of detection.  **p<0.01, ***p<0.001. 
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Fig.5-2 CR6 infection suppresses antibody response to cholera toxin immunization.  Thirty-

five days after infection with 3x104 PFU of CW3 or CR6, mice were challenged with 10µg of 

cholera toxin per os.  As a control, uninfected mice were also immunized with toxin.  Serum 

antibody response to cholera toxin was measured by ELISA over the indicated dilution range.  

The plotted line represents the mean response, measured by absorbance, for the indicated 

number of mice in each group.  The background response from naïve mice was subtracted from 

each group.  Data is from two independent experiments.  Statistical comparison is between CW3 

and CR6 infected mice.  Statistical comparison is between CW3 and CR6.  
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Fig.5-3 CR6 has growth defect in CMG14-12 differentiated bone marrow derived 

macrophages.  Bone marrow derived macrophages (BMM) differentiated using cell supernatant 

from the M-CSF producing cell line CMG14-12 were inoculated at MOI 0.05 with CW3 or CR6. 

Error bars represent standard error of the mean from 2 independent experiments.  Dashed line 

indicates the assay limit of detection.  
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Fig.5-4 Viral persistence does not suppress antibody response to cholera toxin 

immunization.  Thirty-five days after infection with 3x104 PFU of CW3, CR6, or CW3 NTermD94E, 

mice were challenged with 10µg of cholera toxin per os.  As a control, uninfected mice were also 

immunized with toxin.  Serum antibody response to cholera toxin was measured by ELISA over 

the indicated dilution range.  The background response from naïve mice was subtracted from 

each group.  The number of mice in each group is indicated in parentheses.  Data is from two 

independent experiments.  Statistical comparison is between CR6 and CW3 NTermD94E.   
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