Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-25

1991-04-01

CABeN: A Collection of Algorithms for Belief Networks

Steve B. Cousins, William Chen, and Mark E. Frisse

Belief networks have become an increasingly popular mechanism for dealing with uncertainty in
systems. Unfortunately, it is known that finding the probability values of belief network nodes
given a set of evidence is not tractable in general. Many different simulation algorithms for
approximating solutions to this problem have been proposed and implemented. In this report,
we describe the implementation of a collection of such algorithms, CABeN. CABeN contains a
library of routines for simulating belief networks, a program for accessing the routines through
menus on any 'tty' interface, and some sample programs demonstrating how the library would
be used... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cousins, Steve B.; Chen, William; and Frisse, Mark E., "CABeN: A Collection of Algorithms for Belief
Networks" Report Number: WUCS-91-25 (1991). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/643

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/643?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/643

CABeN: A Collection of Algorithms for Belief Networks

Steve B. Cousins, William Chen, and Mark E. Frisse

Complete Abstract:

Belief networks have become an increasingly popular mechanism for dealing with uncertainty in systems.
Unfortunately, it is known that finding the probability values of belief network nodes given a set of
evidence is not tractable in general. Many different simulation algorithms for approximating solutions to
this problem have been proposed and implemented. In this report, we describe the implementation of a
collection of such algorithms, CABeN. CABeN contains a library of routines for simulating belief networks,
a program for accessing the routines through menus on any 'tty' interface, and some sample programs
demonstrating how the library would be used within an application. CABeN implements five algorithms:
Logic Sampling, Likelihood, Weighting (Shachter's Basic algorithm), Self Importance, Pearl's algorithm,
and Chavez's algorithm. In addition, we have implemented Markov scoring as an option to any of the
above algorithms. We have compared these 10 variations with each other in a series of experiments in
which we varied the graph topologies, the number of nodes provided with evidence, and the conditional
probability values. A detailed description of each of the five algorithms is given.

https://openscholarship.wustl.edu/cse_research/643?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/643?utm_source=openscholarship.wustl.edu%2Fcse_research%2F643&utm_medium=PDF&utm_campaign=PDFCoverPages

CABeN: A Collection of Algorithms for Belief Networks

Steve B. Cousins, William Chen and Mark E. Frisse

WUCS-91-25

April 1991

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Portions of this report have been submitted to the Seventh Conference on
Uncertainty in AI (1991) and the Fifteenth Annual Symposium on Computer
Applications in Medical Care (1991).

CABeN: A Collection of Algorithms
for Belief Networks

Steve B. Cousins
William Chen
Mark E. Frisse

WUCS-91-25

Medical Informatics Laboratory
‘Washington University

October, 1990
Revised January 22, 1992

Correspond with: Steve Cousins
Medical Informatics Laboratory
Washington University School of Medicine
660 South Fuclid Ave., Box 8121
St. Louis, MO 63110 USA
email: caben@informatics, WUSTL.EDU
phone: (314) 362-4322

Portions of this report have been published in the Proceedings of the Fifteenth Annual Symposium
on Computer Applications in Medical Care (November, 1991).

Abstract

Belief networks have become an increasingly popular mechanism for dealing with uncertainty in
systems. Unfortunately, it is known that finding the probability values of beliel network nodes given
a set of evidence is not tractable in general. Many different simulation algorithms for approximating
solutions to this problem have been proposed and implemented. In this report, we describe the
implementation of a collection of such algorithms, CABeN. CABeN contains a library of routines for
simulating belief networks, a program for accessing the routines through menus on any ‘tty’ interface,
and some sample programs demonstrating how the library would be used within an application.

CABeN implements five algorithms: Logic Sampling, Likelihood Weighting (Shachter’s Basic
algorithm), Self Importance, Pearl’s algorithm, and Chavez’s algorithm. In addition, we have im-
plemented Markov scoring as an option to any of the above algorithms. We have compared these
10 variations with each other in a series of experiments in which we varied the graph topologies,
the number of nodes provided with evidence, and the conditional probability values. A detailed
description of each of the five algorithms is given.

Chapter 1

Introduction

A belief network is a formal knowledge representation and inference technique consisting of a directed
graph and a set of conditional probabilities. Belief networks are an elegant, well-founded way to
reason with uncertainty, but in general, inference with them is computationally intractable [1].
Fortunately, for many specific types of graphs, reasoning with belief networks in polynomial time
is possible. For some graphs, algorithms exist to give an exact answer in a reasonable amount of
time [2,3,4}]. For many other graphs, approximation algorithms may be used. This report describes
the implementation and use of stochastic simulation algorithms for doing approximate inference with
belief networks. The following algorithms are implemented in the package:

s Logic Sampling
o Likelithood weighting

Self Importance

Pearl’s Markov simulation algorithm

Chavez’s algorithm

Markov scoring has been implemented as an option to all algorithms in the package. In other
words, CABeN implements Likelihood weighting, as well as Likelihood weighting with Markov scor-
ing. The first three algorithms have been implemented from the description in Shachter [5], and we
consulted Pearl [2] and Chavez [6,7] for details about their respective algorithms.

We have done some analysis of the relative performance of these algorithms under various cir-
cumstances, following Shachter. Some of our results have confirmed those of Shachter, but others
contradict some of his initial findings. Although certainly not conclusive, we present our initial
results and conclusions as additional empirical data for the field.

1.1 Background

Many approaches to reasoning with uncertain knowledge have been proposed (certainty factors,
fuzzy logie, etc). The argument in favor of belief networks, made by Pearl and others, is that only
belief networks are based on a really firm theoretical foundation: probability theory.

One use of belief networks has been in the field of expert systems [8]. A rule based system
might contain a rule, “If A, then conclude B with certainty C€'.” In probabilistic terms, this would
correspond to the conditional probability statement p(B | A) = €. In general, without making
conditional probability assumptions, p(B | A) does not tell us much, because if there are any other
variables in the system, we must consider them as well as B before we can determine the probability
of B. Belief networks provide a graphical means of specifying which other variables a variable
depends on, and more importantly, which variables can be ignored.

Cousins/Chen/Frisse - CABeN Report: Beta release version 2

Figure 1.1: A simple belief network with its associated conditional probabilities and posterior
marginal probabilities (on nodes).

Figure 1.2: The node (' has been set to “TRUE’, causing the probabilities of the other nodes in the
network to increase according to the conditional probability relationships.

Inference in belief networks is performed by propagating the effects of evidence. After prop-
agation, the “posterior marginal probability of X”, for a node X in the network, corresponds to
(X |E, = e, By =ey,...,E, =e,), where E; = ¢; indicates that evidence node E; is in state e;. We
will informally use the term “probablity of X” for “posterior marginal probability of X”, to indicate
the resulting value of X once all evidence has been propagated.

For a brief example of belief network inference, consider the network in Figure 1.1. The numbers
on the nodes indicate the initial probabilities of the variables represented by the nodes. In this case,
the nodes are all boolean and the numbers represent the probability that the node state is true.
These probabilities represent the posterior marginal probabilities of the nodes given no evidence in
the network, and are calculated using the conditional probabilities given for the network.

Evidence can be given to a network in various ways. The most common means is to fix the
state of nodes in the network. For example, if we know that node C is in state “TRUE’, we fix its
state and recalculate the probabilities of the other nodes in the network (Figure 1.2). Naturally, C’s
probability will be 1.0 in the resulting configuration, but we are interested in the values of the other
nodes in the network. Note that the probabilities of nodes near €' in the network have increased,
while nodes more distant from C have not changed as much. If we now set A’s state to false, as in
Figure 1.3, notice how the probabilities again shift to reflect the new evidence.

Amnother method of giving evidence to a belief network is in terms of ratios. If we have evidence
that C 1s likely, but not certain, we can give feedback to the network to that effect through an

Cousins/Chen/Frisse - CABeN Repori: Beta release version 3

Figure 1.3: With both A and C fixed, the only probabilities of interest are those for B, D, and E.
Setting A to ‘FALSE’ had no effect on E because of the graph structure, but caused a significant
decrease in the values of B and D.

Figure 1.4: Evidence can also be specified in an odds-likelihood format. This is done by adding a
virtual evidence node (C”) whose relationship to the parent node is set according to the value of the
ratio.

odds-likelihood ratio. Figure 1.4 shows the results of giving the network 2:1 odds in favor of C being
true and no other evidence. This method is useful when belief networks are given partial feedback,
as when they are used incrementally.

With a simple network, the kind of belief network inference described above can be done exactly.
Algorithms for doing exact inference are described elsewhere [9,2]. In the rest of this introduction,
the CABeN algorithms for computing approximate solutions are described and compared.

1.2 The Algorithms

In this section we provide an informal, high-level description of the algorithms we have implemented
in this package. For a more rigorous, mathematical treatment see Shachter’s recent paper [5]. Qur
intent here is to give enough detail for the reader to get an intuitive understanding of the algorithms.

We first describe a brute force algorithm for propagating belief network values. Consider a
network with 2 nodes, A and B (Figure 1.5) where node A4 has three states and node B has two
states (boolean). This network has 32 = 6 states. For each state of the network, we can calculate
a joint probability value for the state (Table 1.1).

The probability of any variable in any state can be calculated by simply summing over all rows

Cousins/Chen/Frisse - CABeN Report: Beta release version 4

p(A=ajy) = .001
p{A=a;) = .1
p{A=az) = .899

p(B=b lA=a0)
p(B=b|A=a;)
p(B=b|A=a,)

o
o O
O ©

TFigure 1.5: A trivial 2-node belief network.

Table 1.1: Exhaustive list of joint probabilities for a trivial belief network.

A B Value

ag b | pA=ao)p(B=0b|A=ay) 0.001x1.0= 0.001
ag b [p(A=ag)p(B=b|A=ay) 0.001%0.0= 0.0
[¢53 b p(A. = al)p(B =b l A= al) 0.1%0.6 = 0.06
a b | p(A=a)p(B=b|A=a)) 0104 = 0.04
a; b [plA=a)p(B=b|A=u0ay) 0899+0.01= 0.00899
a2 b | p(A=a)p(B=b|A=ay) 0.899+0.99= 0.89001

in which the variable is assigned the state. For exarnple, p(A = ag) is the sum of the first two rows,
or 0.001 4+ 0.0 = 0.001. Evidence restricts the cases to those in which the evidence node is in the
desired state, and then normalizing. We normalize a variable by dividing each of its possible states
by the sum of its possible states. For example, if B is set to b, we only consider the 3 rows where B
is false. In this case, the calculated value for A = ag would be gprrserohsssr = 0.957.

Unfortunately, the size of this table is exponential in the number of nodes, so this algorithm
quickly becomes intractable as the number of nodes increases. Simulation algorithms select a subset
of the rows and use the values calculated to estimate the values for the variables. The simulation
algorithms we consider here differ primarily in the method they use to select rows. Each time a row
is selected, the probability of selecting that row, p-selecting, is used to normalize the values.

The first three algorithms for simulating belief networks all have a common structure. The
ey steps for each simulation run are seleciing a state for each node in the network and scoring the
outcome of that selection. The algorithms differ in the method they use to select states for the nodes
and how they score each iteration. The score is dependent on how the states were chosen, reflected
in the variable p-selecting. In logic sampling, for example, the states are chosen randomly, and
p-selecting is a constant, while in Likelihood weighting, the conditional probabilities are taken into
account when selecting states, so p-selecting reflects the conditional probabilities used. Pseudocode
for the top-level simulation algorithm is as follows:

Preprocess the network
Loop for the number of simulations
Select states for nodes (while keeping track of p-selecting)
(see individual algorithm descriptions)
Calculate a score (total probabilities / p-selecting)
Score the net
End Loop
Normalize the node values
Cleanup

The total probabilities value used in caleulating the score is the product of the conditional
probability values given the states chosen for all nodes in the network (except fixed evidence nodes).
For example, in the very simple belief network in Figure 1.5, given a state selection (A = a1, B = b),
the total probability would be p(A = a;)+p(B =b| A = a1).

Cousins/Chen/Frisse - CABeN Report: Beta release version 5

1.2.1 Logic Sampling

The simplest simulation algorithm, logic sampling, randomly chooses a state for each node in the
network from among the possible states by giving an equal chance to all states. The value of p-
selecting for this algorithm is a constant (Hna%—es, where states; is the number of states of the
node i), but since normalization will negate the effects of this constant, we avoid the computation
and use 1.0. The following pseudocode describes this algorithm.

Loop for the number of simulations
For each non-evidence node in the network
Set the state of the node to one ¢f its possible states at random
End For
Set p-selecting to 1.0
Calculate a score (total probabilities / p-selecting)
Scoxe the net (using traditional or Markov blankel scoring)
End Loop
Normalize the node values

For example, consider a very simple graph with two nodes, A and B. Node A represents the
arrival time of a student a summer job, and is one of three mutually exclusive and exhaustive states:
ap means the student arrives before 7:30, ¢; means the student arrives between 7:30 and 9:00, and
as means the student arrives after 9:00. Node B represents the proposition that the student will
find a parking space within a ten minute walk of the laboratory, and is conditioned on node 4. Tor
simplicity, we will let a; stand for the expression A = a;, and b or b stand for the expressions B = b
or B = b. The initial probabilities would then be:

plag) = 0.001 Tt is very unlikely the student will arrive before 7:30
plar) = 0.1 It is unlikely the student will arrive before 9:00
plaz) = 0.899 TUsually the student shows up after 9:00

plblag) = 1.0 Before 7:30 there is always parking

plbler) = 086 There is usually parking between 7:30 and 9:00

plblaz) = 0.01 It is hard to park close after 9:00

Scores for each node are stored in a table for that node, and are accumulated across all of the
simulations before being normalized. At the beginning of the simulation, the scores are all zero. The
initial scoring tables would look like this:

Ar a [O] B: b
a, n b 0
as

‘The pseudo-code defines the score on an iteration in terms of the total probabilities. The total
probabilities is the probability that the network is in a given state, which in this example is p(A)p(B |
A). If A is in state a; and B is in state b, then the total probability of the network in that state is
pla)p(bla) =0.1%0.6 = 0.06.

Stepping through Logic Sampling

We will now run through three iterations of the algorithm, and approximate the values of the
network.

A 4 [0 B: b [0]
Iteration 1 a; | 0 b0] =

ay | 0] <=
We randomly choose a state for each node in the network. We use the symbol <= in the diagram
above to denote our choices. On this iteration, we chose the case where the student arrived

Cousins/Chen/Frisse - CABeN Report: Beta release version 6

after 9:00 (a2) and did not find a parking space (b). Intuitively, this is a likely possibility which
should be given a high score. We calculate that

score = total probability = p(a2)p(b | ¢2) = 0.899 x 0.99 = 0.89001

which we will round to 0.890. The score is actually the total probability divided by p-selecting,
but in this algorithm we always use 1.0 for p-selecting because p-selecting would always be
a constant, and we will normalize at the end anyway. (In this example, p-selecting would be
p(selecting A) * p(selectingB) = § + + = §).

The final step on each iteration is to score the network, and is done by updating the tables.
On this iteration, we add 0.890 to the bin for A = a3 and to the bin for B = b.

A q 0 B: b 0
Iieration 2 ay 0 = & 0.890 | «=
as 0.89

This time we choose A = @y and B =} as the states,

score = total probability = p(a;)p(b | a1) = 0.04

If we were to stop after only two iterations, p(ag) would be zero and p(b) would be 0 just
because those states were never chosen. It is important, even in small networks, to take
enough samples to ensure that the expected value of the stochastic error is minimized.

A ag 0 B: b 0 =
Tteration 3 a; | 0.04]| <= b1 0.93
ap | 0.89

For our final iteration, we chose A = @ and B = .

score = {otal probability = 0.06

A ag 0 B: 51]0.06
Final score tables a; | 0.1 b 093
as 089
Normalization The final step, normalization, yields the values
A apt 0.0 B: &]0.061
a; | 0.101 b | 0.939
ay 0.899

Once normalized, these numbers represent the probabilities of the node being in the given
state, so p(ay) = 0.101.

Stepping through Logic Sampling with evidence

Using this belief network, it is possible to estimate the time our student arrived given that we know
that he found a parking space. We do this by fixing the state of node B to state b. Since the state
of node B is known, we will not bother to update its table throughout this example.

A ag |0
Iteration 1 a | 0] &=
as 0
score = total probability = p(a;)p(b | a,) = 0.06
A ap 0
Iteration 2 a; | 0.06
ao 0 <~

Cousins/Chen/Frisse - CABeN Report: Beta release version 7

score = total probability = p(az)p(b | a2) = 0.009

A ag 0
Ifteration 3 a; | 0.06
asz | 0.009 | «

score = total probability = p(ag)p(b | ag) = 0.001

A: ap [0.001
Finally a; | 0.06
ay | 0.009

A: ag | 0.014
Normalize a; | 0.857
as | 0.129

Note that these are the correct answers, since we selected each possible state exactly once.
Unfortunately, for a non-trivial number of nodes, this calculation is intractable. Note also that these
answers agree with our intuition. Given our initial probabilities, it was extremely unlikely that the
student would arrive before 7:30 (p(ag) = 0.001). Given that we know he found a parking space, the
chances of early arrival increase ten-fold, but are still small. The most likely explanation, given that
the student found parking, is that he arrived between 7:30 and 9:00. Finally, notice that although
p-selecting has changed (it would now be 1), it is still a constant, and would therefore be lost in the
normalization anyway.

1.2.2 Likelihood weighting

Another simple algorithm is called the Likelitood weighting. We consider it more advanced than logic
sampling because it uses more information to choose its states, Likelthood weighting differs from
logic sampling by weighting the node states before selecting them. The node states are weighted by
their prior probabilities. For example, node 4 in the previous example will be assigned to state ag
in 0.1% of the trials, to state a; in 10% of the trials, and to state @ in all other trials. Node B in
our example can not be weighted until A’s state has been chosen. However, once we have chosen A4
state for node A, we can select a state for B. This implies that a preprocessing step is needed for
this algorithm: we need to order the nodes such that parent states are always chosen before child
node states are selected. This can always be done in linear time since belief networks are acyclic.
Choosing states in this way affects p-selecting. We can calculate p-selecting for scoring purposes
by taking the product of the probabilities of all of the states we chose. The Likelihood weighting
algorithm is:

Sort the nodes of the graph so that parents always proceed children
Loop for the number of simulations
p-selecting = 1.0
For each non-evidence node N in the network (in graph order)
where N has kL parents P;...FP; in states sp,
Choose a state sy according to the conditional probability of that state
p-selecting = p-selecting * p{(N =sy | L =sp,, ..., P = 5p.)
End Fer
Calculate a score {total probabilities / p-selecting)
Score the net (using traditional or Markov blanket scoring)
End Loop
Normalize the node values

Cousins/Chen/Frisse - CABeN Report: Beta release version 8

Stepping through Likelihood weighting

We will now run through five iterations of Likelihood weighting, using the same example as we used
for logic sampling. Selecting states in Likelihood weighting requires more work than was required
in Logic Sampling. To choose a state for A, we generate a random number »n between 0 and 1. We
then select a state for A from its initial conditional probability table:

ag if rn < 0.001
A=<¢ a; if0.001 <rn<0.101
as if rn > 0.101

A will always be chosen using this method because it is a root node in the network. We can not
defirte the equation for choosing B until we know the state of A. In the iterations that follow, we
will note the random number that caused the selection of the given state.

A: ag | 0| B: b <=
Iteration 1 (0.03) a; [0 | <= (0.03) b[0]
an “
Qur first random numbers was 0.03, so we chose A = a;. Since p(b] a;) = 0.6, we choose B
according to the following equation:

B:{ b ifrn <06

b rn>086

We happen to choose 0.03 for our second random number, so B = b. Then

total probability = p(a1)p(b|a;) =0.1%0.6 =0.06
p-selecting = pla1)p(d | a1) = 0.06
total probability —10
p-selecting ’

sCore =

Note that in this algorithin, total probability will always equal p-selecting unless there is
evidence in the network. When evidence is present, p-selecting will change because the nodes
with evidence will not factor into the p-selecting,

A: ag | 0] B: b1
Iteration 2 (0.37) o (0.074) &[0] <=
as n A=

We select A = ay using the same table as above {rn = 0.37), but for B we now select

B = b ifrn<0.01
18 rn>0.01

Since our second random number is 0.074, we will add 1 to the bins for A = a5 and B = b.

A: ag [0] B: b
Iteration 3 (0.56) z (0.58) & =
az | 1] <=
Ar ap [0] B: b
Tteration 4 (0.13) a; |1 | (0.75) & =
as | 2| &

Cousins/Chen/Frisse - CABeN Report: Beta release version

A: ap [0] B: b1

Iteration 5 (0.014) ay = (0.703) 813 | «=
az
A o [0] B: b

Finally ay | 2 b

[+ 2] 3

Ar ap | 0.0 B: b [02
Normalize a; | 0.4 5108

ag 0.6

Stepping through Likelihood weighting with evidence

Now we will step through Likelihood weighting assuming our student finds a parking space (B = b).

A: ag
Iteration 1 (0.24) a; [0]
[#3] n <=

total probability plaz2)p(b | ap) = 0.899 * 0.01 == 0.009

p-selecting = pla;) = 0.899
total probability

score = - 0.01
p-selecting
Note that the score will always be 0.01 as long as A = as.
Iieration 2 Iteration 3 Iteration 4
A ag 0 A: an 0 A: Qg 0
(0.96) a4 0 (0.69) @y 0 (0.16) a4 0
as | 0.01 | <« as | 0.02 | « ar [0.03 | <
{teration 5 Heration 6
A: ag 0 A ag 0
(041) ay 0 (0.33) a4 0
as | 0.04 | <= az | 0.0 | &«
A tig 0
Iteration 7 (0.07) o1 | 0 | <«
az | 0.06
In this case,

total probability = p(ay)p(b|a1)=0.1%0.6 =0.06
p-selecting = p(az) = 0.1

total probability

p-selecting

0.6

s¢ore =

A ap 0
Finally a; | 0.6 | «
az { 0.06
A ap 0
Normalizing ap | 091) «
az | 0.09

Cousins/Chen/Frisse - CABeN Report: Beta release version 10

1.2.3 Self Importance

The self imporiance algorithm differs from Likelihood weighting in that it periodically updates its
state selection criteria. This self importance sampling selects more likely states of the network
more often, and then adjusts the final results to avoid bias. It does this by using an ‘importance’
distribution rather than the original conditional probabilities as Likelihood weighting does. In
Self Importance, the original importance distribution is just the conditional probabilities, but it is
regularly updated in a normalization step to take into account the results of the simulation so far.

Self Importance requires two additional tables with each node, one for a normalized-score (the
evolving importance distribution), and one for a total-score. The total-score table for each node
is initialized to zero, and on every update the cell corresponding to the state of the network is
ineremented by the score for that iteration. The pseudo-code for Self Importance is exactly like
that of Likelihood weighting, except that rather than using the conditional probability tables, the
normalized-score tables are used:

Sort the nodes of the graph so that parents always proceed children
Initialize the normalized-score and total-score tables
Loop for the number of simulations
If this is the 100th iteration (ihis implemeniation), normalize {see below)
p-selecting = 1.0
For each mon-evidence node in the network (in graph order)
Choose a state according to the normalized table entry for that state
p-selecting = p-selecting * normalized probability of chosen state
End For
Calculate a score (total probabilities / p-selecting)
Score the net (using traditional or Markov blanket scoring)
End Loop
Normalize the node values

A normalizing step, invoked every 100 iterations in this implementation, replaces the values in
normalized-score with a combination of the total score and the original conditional probabilities.
The longer the algorithm runs, the smaller the weight the original conditional probabilities have in
this combination, Pseudo-code for the normalization algorithm is given here:

Weight-ratio = constant / iteration number
For each non-evidence node in the network (in graph order)
Copy the entries from total-score to mormalized-score for this node

Normalize normalized-score
Calculate a weighted average between the accumulated score in
normalized~score and the conditional probabilities, using Weight-ratio
Re—Normalized normalized-score
End For

Stepping Through Self-Importance

Self-Importance keeps two additional tables per node as compared to Likelihood weighting, the totals
tables and the normalized tables. The trials will give the same results as Likelihood weighting until
iteration number 100.

Cousins/Chen/Frisse - CABeN Report: Beta release version 11

Iteration 1 2
w[0] 2[0 w[0] b[0]«
Score ap {0 b{0| <« a; {0 <= b
Tables az [0] <= az [1]
ag 41 ada ap 41 dg
a |05 0]JO0TO ap [O|d[OO | O
Totals Ta- ar t0}b] 0| 0G0 a; [0]d] 010 1
bles as I as | 1
g ay dn ag ay dy
ap | 0.001 | 5 /1.00.6]0.01 ap | 0.001 151006001
Normalized ay 0.1 b{10.0]|0470.99 a 0.1 b 100]04]0.99
Tables as | 0.899 as | 0.899
Iteration 3 100
ap [0 b [1 ag [0 b [6]«
Score a; |1 bll] <« a; | 9 b |93
Tables ay | 1| <= as | 90 | «
- ag dy ds agp 41 do
a (0fb]0]17T0 a | 0 ([0 f5]1
Totals Ta- a;r | 11810 0 1 ay | 960} 4189
bles az | 1 as | 90
ay 4y da g d1
apg | 0.001 | & [1.0 | 0.6 | 0.01 ap | 0.001 | 5 [1.0]0.6 {001
Normalized a 0.1 651001047 0.99 a1 01 |b|00}04]0.99
Tables as | 0.899 as | 0.899

During the first 100 iterations of Self-Importance, the values in the Score Tables are updated
exactly as they were in Likelihood weighting. The Totals Tables are updated on each iteration by
adding the score to the appropriate bin based on the state chosen (remember that in our notation
we are showing the tables before each iteration, so the scores for iteration 1 are not noted until iter-
ation 2). The algorithm is actually using the Normalized Tables for choosing states and computing
p-selecting, but since the Normalized Tables are identical to the conditional probability tables, there
is no difference in output from Likelihood weighting.

On iteration 100, the Normalized Tables are updated with a combination of the Totals Tables and
the original conditional probability tables. The second parameter to Self-Importance (the first was
how many iterations to go between normalization) is a weight parameter. In this implementation,
we use a weight of 100. The weight parameter determines how much influence the conditional
probabilities have compared to the Totals Tables in computing the new Normalized Tables. We
calculate a ratio .

_ weight _ loo
~ Number of Simulations ~ 100

Cousins/Chen/Frisse - CABeN Report: Beta release version 12

Let norm(T’) represent a normalizing function for a table 7", T'T represent the Totals Tables, NT
represent the Normalized Tables, and CP represent the original conditional probability tables. Then,
the new normalized tables are computed as follows:

NT = norm(norm(TT) + (CP % R))

After 100 iterations, the Totals Tables were:
ag dy dy

a [0 [0 [5[2
a) 9 b 0 4 89
as 91

Normalizing these, we get

ap ay do
ag [0.0 é 1.0 | 0.58 | 0.015
a; | 0.09 6000421 0.985
as 0.91

Adding these to the original conditional probability tables (times 1.0} and normalizing again, we
get our new Normalized Tables:
ag a as
ag | 0.0005 | &} 1.0 | 0.58 | 0.015
a; | 0.095 | b [0.0]0.42770.985
az | 0.9045

Note that these tables are very close to the original conditional probability tables. This is because
there is no evidence given to the network. The point of Self-Importance sampling is to use tables
more relevant to the problem at hand, so Self-Importance will be more tailored to problems with
evidence present.

With the normalization step complete, we can now continue for another 100 iterations. Remember
that we now use the Normalized Tables when selecting states for A and B, so, for example, it is now
only half as likely that we will select state aq.

Iteration 101 102
ag | 0 b1 7 Qo 0 b 7 <
Score ai | § b 83] <« ay 9 < b 93.999
Tables ao | 91 | <= as 1 91.999
ay dy dn ap i Qg
ao | 06| 0[5]2 ap §] b0 5 2
Totals Ta- ar | S| EF 0] 4 |89 ay 9 b1 0 4 | 89.999
bles ay | 91 an | 91.999
g iy da ap a =
ag | 0.0005 { & | 1.0] 0.58 | 0.015 ag | 0.0005 | 1 1.0 | 0.58 [0.015
Normalized a; | 0.095 | b 0.0] 042 0.98 a; | 0.095 | &1 0.0 0.42] 0.985
Tables ag | 0.9045 as | 0.9045

Cousins/Chen/Frisse - CABeN Report: Beta release version 13

Figure 1.6: Simple example extended to 5 nodes.

The change to the Normalized Tables changed p-selecting, so the score added on each new
iteration will no longer be 1.0. For convenience, we will refer to the probabilities in the Normalized
Tables as p. The new score is calculated as follows:

total probability = p(as)p(b | az) = 0.890
p-selecting = p(a)p(b | az) = .9045 + .985 = .06
total probz‘iblhty — 999
p-selecting

score =

Note that we used the original conditional probability tables to calculate the total probability,
but the Normalized Tables (§) to calculate p-selecting.

At any point, we can stop the simulation and calclate final probabilities by normalizing the Score
Tables, just as we did in Likelihood weighting.

1.2.4 Markov Blanket Scoring

In our examples so far, we have been using a simple scoring method in which the calculated score
is added to a single bin in each Score Table. Markov Blanket Scoring is an alternative method in
which the score is broken up and spread over multiple bins according fo some distribution. Markov
Blanket scoring has a significant computational cost associated with it, but in many cases pays for
itself with more accurate resulfs.

The Markov blanket of a node takes into account the states of the parent nodes, child nodes,
and parents of child nodes in order to derive a value for every state of the current node. Given node
N with py parents and ¢y children, let P(N); represent the ith parent of node N (1 <7 < py),
C(N); represent the ith child of node N (1 <i < en), and sy represent a particular state of node
N. A Markov blanket value is calculated for each state sy of NV as follows:

mb(sy) = p(N =sn[P(N)1=35pnys s P(N)py = 5p(n),,,) *

cN
11 p(C(¥): = scuvy. | P(C(N)1 = spie@y: - --

i=1

P(C(N)i)pc(n)f = SP(C(N)!')PC(N),-

The values of mb(sy) for all states of N together constitute the Markov blanket of N. Note that
the Markov blanket values based on the states of the neighbor nodes of N.

In order to demonstrate Markov Blanket Scoring, we need to add some nodes to our sample
two-node network. Qur extended example, shown in Figure 1.6, has three additional nodes:

Cousins/Chen/Frisse - CABeN Report: Beta release version 14

C - The boss is in town (boolean: ¢ or ¢)
D - The student stayed up late last night (d or d)
E - Today is Monday (e or &)

The full conditional probability table is as follows:

ple) = 0.2 One in five working days is Monday
plele) = 0.5 Half of the time the boss is gone on Monday
plc|€ = 085 Other days the boss is likely in town
p(d]e) = 085 Student is almost always up late Sundays
p(d]g) = 038 In fact, the student is up late a lot
plag [e,d) = 0.001 Same as previous example
plai |e,d) = 0.1
ples |e,d) = 0.899
plaoje,d) = 0.01 More likely to come in early if went to bed early
plas fe, CD = 04
plas | ¢,d) = 0.59
plag |c,d) = 0.0 If boss is away, no chance of early arrival
play |&,d) = 0.01
p(ag <, d) = 0.99
plas | C,d} = 0.001 DBoss away, but went to bed early...
plar]e,d) = 0.2 slight chance of early arrival
plaz [8,d) = 0.799
plblag) = 1.0 Same as hefore
plble) = 086
p{blas) = 0.01

Stepping Through Logic Sampling with Markov Blanket Scoring

We will use this scenario to demonstrate Markov Blanket Scoring. In this example, we will use Logic
Sampling with no evidence present. The same technique is used to use Markov Blanket Scoring with
any of the other algorithms.

A B C D E
. 0 0 0 0= 01 <«
Iteration 1 0 7 <= 51 « [0 0
0} <«

Since we are using Logic Sampling, the states are selected from a uniform distribution. We
begin by computing a score as usual.

p(e)p(e | e)p(d [e)p(as | & d)p(b | as)
0.240.5+0.95+0.990.99
0.093
p-selecting 1.0
score = (0.093

total probability

I3

IR

With traditional scoring, we had to add the score to a state of each node. With Markov
Blanket Scoring, the work at each node is more complex. The Markov Blanket (mb) for each
node is calculated, and used to update the Score table for that node.

For A: The Markov Blanket contains C, D, B, and A. C, D, and B remain fixed in their
states (Z,d, b} and we calculate the mb vector for the states of A:

Cousins/Chen/Frisse - CABeN Report: Beta release version 15

mblag) = plag | & d)p(d|as) =0.0
mbla1) = plar |,d)p(d|a1) = 0.004
mb(ay) = plaz | d)p(b|az) =0.98

The Markov Blanket is then normalized, multiplied by the score, and added to the Score
table for A. This ensures that the same total amount of score is added to the Score table,
but the score will be distributed across the states of A based on the likelihood of those
states given the states of A’s neighbors.

For B: The Markov Blanket contains only A and B.

mb(b) = p(b|as)=0.01
mb(d) = p(b|as)=0.99

Again, this vector is normalized, multiplied by the score, and added to the Score table
for B.

For C: The Markov Blanket contains A, &, D, and C.

mb(e) = plc|e)plas | c,d) = 0.5%0.899 = 0.4495
mb(E) p(Z | e)plas | €,d) = 0.5 % 0.99 = 0.495

For D: The Markov Blanket contains A, F, C, and D.

mb(d)
mb(d)

p(d | e)p(as | e,d) = 0.95 + 0.899 = 0.8541
p(d | e)p(az | ¢,d) = 0.05 0.59 = 0.0295

For E: The Markov Blanket contains C, D, and E.

mble) = ple)p(c|e)p(d]e) =0.2%0.5%.95 = 0.095
mb(&) = p(E)p(z|&)p(d|2) = 0.2%0.15%0.8 = 0.024
A B C D E
Lteration 2 |__00__| < [-00093 0443 0899 | « [.0742
on < 00372 09207 | <« [0487 | <« | .0031 0188 | «

.092628

This scenario represents an impossible day for the student. After staying up late, he came in
early but did not find a parking space. The boss is not even in town to see him. At least it
is not Monday. This is the kind of state that can happen with Logic Sampling, but which is
impossible using the weighted selection of Likelihood weighting,.

total probability = p(&)p(¢ | &)p(d | &)p(ao | E d)p(b | ap)
= 0.8*0.15+0.8%00%0.0
= 0.0
p-selecting = 1.0

score = 0.0

Cousins/Chen/Frisse - CABeN Report: Beta release version 16

The score indicates the kind of weight we would give to such an hmpossible situation: 0. We will
not go through the Markov steps for this example since they all involve multiplying by zero.

This example continues, and the final normalization step is performed on the Score Table as
usual. Note that Markov Blanket Scoring could be turned on and off on a node-by-node basis, and
the results would still converge. The challenge to using this feature is to know when Markov Blanket
Scoring is appropriate, and when its expense does not justify its use.

1.2.5 Pearl

PearP’s Markov blanket algorithm is more complicated than the above algorithms because it requires
the calculation of a Markov blanket for a node in all cases. Markov blanket scoring can be added to
the other algorithms, but is integrally required in Pearl’s algorithm. In addition, Pearl’s algorithm
can and should use Markov Blanket Scoring, because since the Markov Blanket is already calculated,
the incremental cost of this method is very smali.

Pearl’s algorithm begins by assigning each node a random state, and thereafter using the Markov
blanket to choose a new state for each node as it is processed:

Make a unbiased random state assignment for each non-evidence node
For each node, N, and each state of N, sy, let bin(N,sy) = 0

Repeat for desired number of iteratiomns
For each non—evidence node in the network, N
Calculate mb(sy) for all states sy of NV
Add a score to bin{N,sy), where sy iz the current state (see below)
Set the new state of N based on the distribution in mb
End Fox
End Repeat
Normalize the values in bin for all nodes
Use the normalized values as the node probabilities.

Pearl’s algorithm can be implemented with or without Markov blanket scoring. Markov blanket
scoring is especially useful with Pearl’s algorithm because the Markov blanket is already calculated,
so there is no added cost to using this scoring technique. To use Markov blanket scoring with Pearl,
the scoring step is as follows:

For each state sy of N
bin(N,sx5) = bin(N,sy) + mb(sy)
End For

If Markov blanket scoring is not used, the scoring step reduces to simply
bin(N ,sy) = bin(N,sy) + 1

where sy Is the current state of M.

Stepping through Pearl

We will demonstrate this algorithm with the example we introduced in the previous section. Since
this algorithm has significant state changes in an inner loop, we will use notation such as 1-A to
indicate that we are on the first iteration, considering node A. In this example, we have given the
network no evidence, and will use Markov Blanket Scoring.

Pearl’s algorithm begins by assigning a random state to the network, using the same technique
as Logic Sampling. For this example, the initial state chosen is

(alsb;(_::c;fae)

Cousins/Chen/Frisse - CABeN Report: Beta release version 17

A B C D E
. 0 0]«<1}0 0 0| <
Iteration 1-A 71 < [0 0le«i0l<(0
0
mb{A) _
ao [0.0 | = plao|ed)p(d|ao)
ar 0.12 = P(al I E: ﬂ})p(b i a’l)
ap [0.00799 | = plaz | & d)p(b | az)
norm({mb(A))
o ao 0
Normalizing, we get a 09375
as 0.0625

At this point, we both assign a new state to A, and update A’s score bins. We use the
normalized Markov Blanket to assign a state to A, as follows:

ag ifrn < 0.0
A=(a1 f0.0<rn<09375
as if rn > 0.9375
On this iteration, we generated rn = 0.97, so we chose A = a. Using Markov Blanket Scoring,

we add the norm(mb(A)) vector directly to the scoring bins for A. If we had been using non-
Markov Blanket Scoring, we would have scored by adding 1 to the a3 bin, since we chose state

A:O‘.g.
A B c D £

: 0 01«0 o 7] «

Tteration 1-B | —ymaer 0 T« [0] <« [0
00625 | «
mb(B)
b1 001 |= p(bfan)
bl 099 | = plb]as)

This table happens to be normalized already (norm(mb(B)) = mb(B)))}, so we proceed to
choose a new state for B. We generate rn = 0.57, so we choose B = b.

A B C D E
. 0.0 0.01 0 0 0] «=
Tteration 1-C I55ar 099 |« [0] <« [0] « [0
0.0625 | «
mb(C)]
c| 0205 | = plc|e)plaz|e,d)
€103995 | = p(é]e)p(as | & d)
norm(mb(C))
Normalizing, we get ¢ 0.425
c 0.575

We choose a new state for C given a random number rn

oo [ifrn<0ass
Tl & ifrn>0425

In this case, we choose rrn — 155, so C' = c.

Cousins/Chen/Frisse - CABeN Report: Beta release version 18

A B C D E
. 0.0 0.01 0425 | <= | O 0] <«
Tteration 1-D I-ygrs 099 | « [057 0] < [T
0.0625 | «
mb(D)
d| 0854 | = p(d]e)p(az]ec,d)
d|0.0205 | = p(d|e)plas|ed)
norm(mb(D))

Normalizing, we get d 0.960

d 0.034
We choose rn = .637,s0 D = d.

A B3 C D E
. 0.0 0.01 0425 | «= | 0966 | <= |0 | «
Tteration 1-E o7 099 | « [057 0.034 0
0.0625 | <
mb(L)
e | 0095 | = ple)p(c|e)p(d]e)
el 0544 | = p(&)p(c|&)p(d]e)
norm(mb(E))

Normalizing, we get ¢ 0(.149

e 0.851

We choose rn = .721, s0 it is not Monday: F = &.

At this point we have completed a single iteration of Pearl’s algorithm. At the end of any
iteration we can stop and normalize by simply dividing all scoring bins by the number of
iterations. This simple normalization method works as long as we score each node on each

iteration*®.
A B C D E
Tteration 2-A 0.0 0.01 0.425 | < { 0.966 | <= | 0.149
0.9375 0.99 | <= | 0.575 0.034 0851 | <=
0.0625 | «
mb(A))
a0 [00] = plao|c,d)p(]as)
a [000 | = plo|cdp(d|ar)
az | 089 | = plaz]ecd)p(b]az)
norm(mb(A))
.. ag O
Normalizing, we get a 0043
(25} 0.957

We pick n = 0.562, so our new state for A is a. We also add norm(mb(A4)) to the scoring
bins for A, giving ap = 0, a; = 0.9805, and a; = 1.0195.

1.2.6 Chavez

The Chavez’s algorithm essentially executes multiple separate runs of Pearl’s algorithm. Scores are
only updated each suite of runs of Pearl’s algorithm. By interrupting and restarting the algorithm
periodically, the Chavez algorithm avoids local minima, thereby allowing one to calculate error
bounds for each node’s value. These bounds allow computation to be directed on specific high-
interest areas of a network. In some settings, this potential may offset the Chavez algorithm’s

*Updating every node on every iteration is not necessary, but is the way CABeN implements Pearl’s algorithm

Cousins/Chen/Frisse - CABeN Report: Beta release version 19

generally higher computation cost, suggesting that it is not always ideal to select an algorithm solely
on the basis of its execution time.

Repeat for desired number of iterations
Make a unbiased random state assignment for each non-evidence node
For each node, N, and each state of N, sy, let bin(N,sy) = 0
Repeat for number of iterations of Pearl (before restari)
For each non-evidence node in the network, N
Calculate mb{sp) for all states sy of N
Set the new state of N based on the distribution in mb
End For
End Repeat (Pearl)
For each non-evidence node in the network, N (now score)
Add a score to bin{N,sy), where sy is the current state (see below)
End For
End Repeat

In addition to having multiple restarts, Chavez’s algorithm differs from Pearl’s algorithm in that
scores are only computed before each restart (and at the end). Initially, the scoring tables for
Chavez’s algorithm look like those for Pearl:

A B C b E

0 0]<=1|0 0 0|«
0l<=| 0 0l<=t0}<=]0

0

The special parameter of this algorithm is how many Pearl iterations to do before each restart.
CABeN uses 20 as the default number of Pearl iterations before scoring and restarting, so we will
use 20 here.

Iteration 1.A Initially, we have (a1,b,¢,d,) (chosen at random using logic sampling, as in Pearl).
We compute mb(A), normalize it, and use it to choose a state for A as in Pearl’s algorithm.

norm(mb(A))
agp 0
ag 0.9375
as 0.0625

"This time, we have rn = 0.671, so we choose state A — a;. Note that the scores remain zero,
because unlike Pearl’s algorithm, Chavez will not score until iteration 20.

Iteration 1.B (a1,b,¢,d,e). Choose a new state for B based on norm{(mb(B)).

Tteration 20.E (as,b,c,d, &)

norm(mb(E))
e 0.149
g .851

Let rn = 0.5568, so choose K = &

Scoring Step: If we are using non-Markov Blanket Scoring, we add 1 to each currently selected
bin (as,b,¢,d,&). For Markov Blanket Scoring, we compute the normalized Markov Blanket
for each node, and add that to the scoring bins, exactly as we did in Pearl.

1.3 Algorithm Comparison

In this section, we describe an ongoing series of experiments designed to assess how the various
algorithms perform under different circumstances. Although it is clear that more rigorous study is

Cousins/Chen/Frisse - CABeN Report: Beta release version 20

00O

{A) FlatGraph

{B) LineGraph

(C) BipartiteGraph (D) ExpertSystem | (E) MESHGraph

Figure 1.7: Five graph topologies used to compare the algorithms.

needed, it is clear that the biggest variable to algorithm performance is the structure of the belief
network itself. Features of the belief network which we have studied are the topology, the extreme
conditional probabilities, and the amount of evidence to consider. In addition, we have examined
how well the algorithms perform in terms of the number of iterations required for convergence, the
time required for convergence, and whether Markov scoring helps. Table 1.2 summarizes many of
our findings. The following paragraphs describe the experiments which led to the conclusions in
Table 1.2.

We compared the algorithms on the five network topologies shown in Figure 1.7. The networks
are: FlaiGraph, a hierarchical graph with one parent “root” node and nine child nodes; LineGraph,
a serial order of ten nodes; BipartiteGraph, a two-layer graph with five parent nodes and five child
nodes in which each node in the child node layer is connected to each node in the parent node
layer; FrxperiSysteml, a graph taken from an influential paper by Lauritzen and Spiegelhalter [3];
and MeSHGraph, a slightly modified 109-node graph taken from the MeSH cardiovascular diseases
subtree. Probabilities were assigned to nodes in BipartiteGraph, LineGraph, FlaiGraph, and MeSH-
Graph by assigning root nodes probabilities of 0.5 and assigning conditional probabilities between
parent (p) nodes and child (¢) nodes p{c]p) = 0.8 and p(c | §) = 0.05. Conditional probabilities for
nodes with more than one parent were computed using the noisy-or function [8]. Probabilities for
FErpertSystem! were the same as those assigned by Lauritzen [3] with the exception that probabilities
of 1 or 0 were modified slightly to simplify evaluation of the Pearl and Chavez algorithms (which
require special treatment for values of 1 and 0).

Figures 1.8 and 1.9 present our experimental results. For each algorithm, absolute mean-squared-
error (mse) is plotted against CPU-time. Each point is the average of at least 20 trials. The lines in
the graphs represent the best-fit logarithmic models of the data, generated using Cricket Graph on
a Macintosh. Each algorithm was run both with and without Markov blanket scoring. We present
data only for the mode in which each algorithm performed the best (as determined by previous
criteria [10}). In the illustrations, Markov scoring is indicated by a °/M’ following the algorithm’s
name.

Algorithm performance was examined by plotting the mse value against CPU-time (Figures 1.8-

Cousins/Chen/Frisse - CABeN Report: Beta release version

MSE {absolute)

MSE (absolute)

Figure 1.8: Overall performance evaluation on the four simple networks.

107

ARl Algorithms on LineGraph

BasicBF mse
ChavezF mse
Logic®F mse
Pear1T mse
Sell SF mse

ek an

107

Time (seconds)

Chavez
Logic
Pearl/
Basic
Self
L b L ¥ L L] T L] 1 T L L]
0 20 40 60 80 100 120
Time (seconds}
All Algorithms on ExpertSystem|
@ S5M-mse
* BasicM-mge
= Chavez-mse
& PeariM-mse
= Selft-mse
Chavez
Peari/tt
Basic/M
Logic/
Self/™
3 T T T T T T T 3
0 H 20 30 40 50

algorithm does well on each network topology.

MSE {absolute)

MSE (absolute)

21

All Algorithms on FlatGraph

1571
® BasicRF mse
_ * ChavezF mse
10 m Logic®F mse
& PearlT mse
= Self®%T mse
107
Chavez
_ Peari/t-
10
Loglc
ot
Self/M
Basic
1676,
I0_7| L B I S S N S BRan Naue e Dame
¢4 S 10 15 20 25 30

Time (seconds}

All algorithms on BipartiteGraph

LeglcRF mse
ChavezF mse
BaslcBT mse
PearlT mse
SeH®&T mse

g
[
ESN &K

Logic
Chavez

Basic/M

Pearl/M
Sel{/M

0 5 10 1S 20 25 30

Time {seconds)

The Self-Importance

Cousins/Chen/Frisse - CABeN Report: Beta release version 22

Al Algorithms on MESHGraph

167

Logic/M

- e Peari/M
Chavez

Basic-Markov
Legic+Markov
Pearl+Markov
Self+Markov
Chavez-Markov

EoEReDn

Mean Square Error (absolute)

- Basic
10
Self/tM
H G_ T T T T T ¥ T T T T T ¥
0 200 4¢0 600 800 1000 1200

Time (seconds)

Figure 1.9: Performance of the algorithms on MeSHGraph. Likelihood weighting and
Self-Importance algorithms both perform very well.

Cousins/Chen/Frisse - CABeN Report: Beta release version 23

Table 1.2: Comparison of the algorithms under various circumstances.

Topology Markov Scoring Conditional Proba-
bilities near 0 or 1
Logic Sampling Performs well on sim- | May hurt No effect
ple topologies
Likelihood Performs well on sim- | Improvement No Effect
weighting ple topologies
Self-Importance || Slow when many par- | Big Improvement No Effect
ents
Pearl Performs well with | Helps, and has nc | Does not converge to
complex networks cost exact solution
Chavesz Exponential with | No Help (but no cost) | Does not converge to
largest Markov blan- exact solution, but
ket performs better than
Pearl
Logic vs. Logic with Markov Logic vs. Logic with Markov
(LineGraph} (FlatGraphl
1G] 1!
% Logic®F mse @ LogickF mse
¢ Logic®T mse ¢ Logic®T mse

MSE (absolute)
MSE (absoiute)

Time {seccnds) Time (seconds)

Figure 1.10: Markov blanket scoring actually does worse on very simple network topologies with
Logic Sampling.

1.9). All algorithms appear to have similar performance profiles; the mse decreases as a function of
the square root of the number of iterations. Lower values for mse indicate better performance. For
the MeSHGraph network, both the Self-Importance and Likelikood weighting algorithms performed
well. The Chawer algorithm required eight times as much CPU time to achieve the same mse
as the Likelihood weighting algorithm, but error bounds obtained during the Chavez algorithm
calculation suggest that the algorithm may help identify where more extensive computations are
needed to achieve better probability estimates. Other, more qualitative conclusions about algorithm
performance are listed in Table 1.2.

We compared scoring methods {Markov blanket or traditional) for each algorithm for each net-
work. EzpertSysteml and BipartiteGraph shared similar results when compared with the two trivial
networks, LineGraph and FlaiGraph. For the Logic Sampling algorithm, there was no significant dif-
lerence with or without Markov blanket scoring on complex graphs (EzpertSystem!, BipartiteGraph)

Cousins/Chen/Frisse - CABeN Report: Beta release version 24

Basic vs. Basic with Markov Basic vs. Basic with Markoy
(Expert3ystem1) (BipartiteGraph)
-2 =2
10 10
Basic-mse @ Basic®F mse
¢ BasicM-mse ¢ Basic®T mse

3 10% E;
r o 2
3 1 5
(=] . 0
®] 0
8 8
= 1 B
2 g b
e . y r
0 I 2 3

Time (seconds) Time {seconds}

Figure 1.11: Markov blanket scoring helps Likelihood weighting on relatively complex graph topolo-
gles.

and Markov blanket scoring actually performed worse on simple graphs (Figure 1.10). Markov blan-
ket scoring did not seem to affect the results of Likelihood weighting on simple graphs, and appeared
to do better on the two complex graphs (Figure 1.11). Self-Importance algorithm behavior was sim-
ilar to that of Likelihood weighting: Markov scoring did little to improve performance on simple
graphs but was a great aid when applied to complex graphs (Figure 1.12). Markov scoring slightly
improved Pearl algorithm performance when applied to the EzpertSystem! network and very signif-
icantly improved performance when applied to the BipartiteGraph network (Figure 1.13). We note
that Markov scoring imposed no additional computation burden when applied to Pearl’s algorithm
because this calculation is an intrinsic part our implementation. The Chavez algorithm derives no
benefit from Markov scoring in any of the cases examined.

Deteriorating performance is noted in some approximation algorithms when individual node val-
ues approach zero or one. To examine this phenomenon, we varied the conditional probabilities at a
node in the EzperiSysiem network while keeping the number of iterations constant (Figure 1.14). As
expected, the results clearly show a degradation of performance in the Pearl and Chavez algorithms
as conditional probabilities approach zero.

Cousins/Chen/Frisse - CABeN Report: Beta release version

Self vs. Self with Markov Self vs. Self with Markov
(ExpertSystem1{) {BipartiteGraph)
107! 10
B Self-mse 8 3elf®F mse
¢ SelfM-mse ¢ Self®T mse
D o
- B
=2 =
© S
1] n
= £
3 =
w w
w 2]
T r
Time {seconds) Time (seconds)

Figure 1.12: Self-Importance does better on complex networks with Markov blanket scoring.

Pearl vs. Pearl with Markov Pearl vs. Pearl with Markov
(ExpertSystem1) (BipartiteGraph)
1572 T
B Pearl-mse H PearlF mse
¢ PearlM-mse "o @ PeariT mse
5 107 3
5] 5
©] ©
W n
En) 1 Ee)
8 L 3
Lt iu
£ 10y z
102 . . .
0 ¥ 2 [¢] 1 2 3 4 S
Time (seconds) Time {seconds)

Figure 1.13: Pearl’s algorithm does very well when Markov blanket scoring is used.

Cousins/Chen/Frisse - CABeN Report: Beta release version 26

MSE as Conditional Probalities approach ©

100+
] B Basic/M
] & Basic
1 m Logic/M
J ¢ Logic
o 4 A ® Self/M
107 g a o self
] EEREE Ny A Peari/M
] " . A pearl
i B Chavez/M
. A n + Chavez
~ 107
e]
5 : n
) .
3 1 A
(343
Z ee B
g]0_3_- °o° °°8°°°°°°°°°°°°
] a L °
] <] 4 on - |
AdAan gan a [-
] oo - g B %g
- A A A a A .
4] A A , A o
10" oo M oo Aguoul e
] x} = "
.ggggogoegﬁxxguoox‘a
] "
1 5] ¥
' HH-E-EH-““H“!
]
1072 .
MR] FTTITImg LA | LA | bl | AR | LU R L
1077 16 02 104 g0 10?2 90! q0°

Conditionatl Probability

Figure 1.14: The eflects of varying one node’s conditional probability value on the convergence of
the various algorithms.

Chapter 2

User’s Manual

CABeN can be used in a variety of environments. The default environment is a menu-based system
for a tiy environment. This system runs on PC and unix platforms at the current time, and
should be easily portable to any environment which has a C compiler. We are also working on an
interactive LISP-based environment, which would be interfaced with a LISP-based graph- browsing

tool [Cousins88a].
We have defined a belief-network file format which can be used to move belief-networks between

applications. The details of the format are included in Appendix A.

2.1 The Menu Interface

‘The menu interface provides interactive access to the features of CABeN on virtually any screen.
Networks can be created, edited, saved, and loaded; probabilities can be set or defaults may be
used; and any of the algorithms can be run using this interface. An overview of the menu interface

is shown in figure 2.1.
To access any of the menu items, simply type the letter next to the action you with to perform,

and then press the return key. When you are prompted for information, values in square brackets
‘]’ indicate the current value. This is also the value which will be used if you press return rather

than typing a response to a prompt.
The rest of this section will describe the features of the various menus. In this interface, every

menu has an ‘X- Exit’ option. Exiting from a submenu returns to the parent menu; exiting from
the top level menu terminates the program.

2.1.1 Belief Network Options

The top level ‘Belief Network Options’ menu provides basic network management functions:

e ‘Start new network’ clears out the current network.

¢ ‘Modify network’ leads to another menu (‘Change Network Menu’, described below) which
allows the network (including node probabilities) to be edited.

» ‘Save network’ writes the current network to disk in our belief network file format (see Ap-
pendix A). If answers have been generated with the correct answers (brute force) algorithm
or a confidence test, they are saved along with the network.

e ‘Read network from disk’ loads a file in belief network file format, replacing any network in
memory.

e ‘Add a node type’ allows new node types to be added. Node types define the states which
nodes can have. For example, nodes of type ‘Boolean’ have two states, “T" and ‘F’. When this
menu option is chosen, the system prompts for the name of the new type, the number of states

27

Cousins/Chen/Frisse - CABeN Report: Beta release version

Belief Network Options ;
A- Start new network
B- Modify network w—| Change Network Menu :
C- Save network
D- Read network from disk A- Add a node
E- Add a node type B- Delete a node
F- Stochastic Menu — C-Adda llnig
X- Exit D- Delete a link
E- Modify probabilities of a node

F- Modify settings of nodes

G- Set Odds Likelihood of a node
H- Examine a node

I- Examine all nodes

X- Exit
Y

Stochastic Simulations Menu Choose Stochastic Algorithm
A-Select algorithm won 1] A-Togic Sampling
B- Toggle Markov flag B- Basic Algorithm
C- Enter number of iterations C- Self Importance
D- Log to file D- Peayl
E- Choose error test E- Chavez
F- Run a simulation F- Correct Answer
G- Set number of confidence runs X- Exit
H- Run confidence test
X- Exit

__am-| Choose ERR test

A- Absclute ERR [p=0]
B- Fertig ERR {p=1]
C- Relative ERR [p=2]
X- Exit

Figure 2.1: Overview of the menu interface.

Cousins/Chen/Frisse - CABeN Report: Beta release version 29

it has, and the names of the states. The type definitions of all nodes in a network are saved
along with the network in the belief network file format. Type names may not contain white
space characters (such as spaces, tabs or newline characters)

The ‘Stochastic Menu’ option gives access to another menu from which simulation algorithms
and their parameters can be set, and simulations can be run.

2.1.2 Change Network Menu

The ‘Change Network Menu’ is a simple network editor. It allows the user to change the structure
of the network, as well as the probabilities of nodes. In addition, nodes may be fixed in one of their
states, or given ‘evidence’ in favor of one of their states:

‘Add a node’ requests a name for a new node in the network. The name must be unique
among nodes in the network. Node names may contain spaces: they are terminated by a
newline character.

‘Delete a node’ removes a node from the current network. The node name must be specified
exactly.

‘Add a link’ requests a parent node and a child node, and creates a link from parent to child.
Whenever a node’s parents change in a belief network, its conditional probabilities may have
to be updated. CABeN provides a default probability by making a conditional independence
assumption. When the link is added, this default may be accepted, or rejected. If the default
is rejected, CABeN asks for values for all affected probabilities.

‘Delete a link’ removes a link between two nodes. Once again, probabilities for the child
node will change, and CABeN gives the choice of taking default reconditioned probabilities or
explicitly specifying new ones.

‘Modify probabilities of a node’ iterates through the conditional probabilities of the node
named, and allows each to be set.

‘Modify settings of nodes’ allows a node to be fixed in a given state (with possible states
defined by the node’s type).

‘Set Odds Likelihood of a node’ gives evidence to a node in favor of one or more of its states.
In the limit, by giving enough evidence to a particular state, the results of this operation are
the same as using the previous option.

‘Examine a node’ prints a report describing a node.

‘Examine all nodes’ prings a report describing all nodes in the network.

2.1.3 Stochastic Simulations Menu

The ‘Stochastic Simulations Menu’ allows simulation parameters to be set (such as which algorithm
to run, the number of iterations, etc.) and allows a simulation to be run. A confidence test runs a
simulation multiple times and generates an estimate of the correct answers. It is intended to convey
a degree of confidence in the answers given by running an algorithm a certain number of times.

‘Select algorithm’ leads to another menu (which will not be described in more detail) which
simply allows one of the available algorithms to be chosen.

“Foggle Markov flag’ changes the state of the Markov flag. The Markov flag indicates whether
or not Markov scoring will be used with the selected algorithm.

‘Enter number of iterations’ sets the number of iterations the selected algorithm will run for.

Cousins/Chen/Frisse - CABeN Report: Beta release version 30

e ‘Log to file’ allows the results of the simulation to be written to a file.

e ‘Choose error test’ lets the error test be changed. Note that an error test is only relevant if the
correct answer for the run is known in advance. This option is useful for comparing algorithms

only.

* ‘Run a simulation’ starts the selected algorithm with the network in memory and the param-
eters set in the rest of this menu. The posterior marginal probabilities of all nodes in the
network are printed when the algorithm terminates, along with the running time and an error
estimate. The error estimate is based on the correct answers stored in memory. If no answers
are available, the error will be reported as unknown. Answers may be loaded with a graph,
may be generated using the 'Correct Answer’ brute force algorithm (if the graph is small), or
may be approximated by running a confidence test.

* ‘Set number of confidence runs’ sets the number of times to run a simulation during a confidence
test.

» ‘Run confidence test’ runs a selected simulation multiple times and computes an expected
mean squared error.

2.2 The LISP Interface

We have been working on an interface to a dynamic graphical browser in LISP, but this work is not
yet completed.

2.3 The Macintosh Interface

We are working on an interface for the Macintosh which allows more direct manipulation of the
network, probabilities, and parameter settings, but this interface is not available yet.

Chapter 3

Programmer’s Manual

This section describes the functions a C-programmer would need to access to implement a new inter-
face to the CABeN functionality. We divide the operations on belief networks into four basic groups:
operations on graphs, operations on probabilities, operations which initiate the belief-network algo-
rithms, and operations which compute statistics about algorithm performance. The graph operations
are pretty standard, so we will not spend much time here describing them. The other operations,
while they also operate on graphs, are specific to belief networks, and we will spend more time

describing each algorithm here.

3.1 Manipulating Networks

Most of the functions for manipulating graphs are in net.c (functions for saving and loading belief
networks are in file.c). The file caben.h must be included to access these operations.

3.1.1 Data Structures

We will not go into the details of the data structures here, except to enumerate them and point
out things which may not be obvious. Further documentation may be found in the comments in
caben.h.

A State defines a state type, (e.g. 'Boolean’), including what values the state may hold (e.g. *T°
or 'F’). A Node is a vertex of a belief network, and contains in addition to a name field, the node’s
state, its parents and children, its conditional probabilities and current probabilities. A NodeList
is a list of nodes, currently implemented as an array. Finally, a Network holds a belief network.

3.1.2 Graph Operations

o Create
¥etwork *malloc net()
A network is created by calling malloc_net(). The resulting pointer to a Network will have no

nodes and one state (Boolean).

o Destroy
int InitNet(Network *net)
To free the space used by a network, call InitNet.

s Save (in file.c)
int SaveNet(Network *net)
int SaveNetFile(Network #*net,char *filename)}
SaveNet is interactive: it asks the standard input for a filename. SaveNetFile can be used
programmatically. Both write a file in belief network file format (see Appendix A).

31

Cousins/Chen/Frisse - CABeN Report: Beta release version 32

s Load (in file.c)
int ReadNet(Network #net)
int ReadNetFile(Network *net,char *filename)
ReadNet is interactive: it asks the standard input for a filename. ReadNetFile can be used
programmatically. Both read a file in belief network file format (see Appendix A).

3.1.3 Node Operations

e Add
Node* add.node(Network #*net, char *name)
Creates a new node named name, adds it to net, and returns it.

o Delete
void kill node{Network #*net, Node #node)
Removes node from net.

¢ Node names
node—>name
Node* find node{Network *net, char *name)
A node’s name is accessed through its name field, as in node->name. Given a node name (as
a string), the corresponding node can be found with find node.

e List
There is no function to directly return a list of nodes. Instead, a macro is provided to iterate
over the available nodes. The following code fragment would print the names of all of the

nodes in the network:

LOOPNODES{net)
printf{"¥%s\n",node->name);
ENDNODES

e Set & Get Evidence
Two different types of evidence settings are posssible. The simplest method is to set the state
of the node directly, by changing node->PRIOR. The statement:
node->PRIOR = 353
sets the node to state s-1 (i.e. the state with name node->state->names[s-1]), for s > 0. If
5 < 0t no direct evidence is set. node~>PRIOR may also be accessed as a variable.

Another method is by setting an odds likelihood ratio for the nodes in a given state:
net->proto->setodds(net, node, double *odds);

where odds(s] consists of the ratio for state s. The odds array does not have to be normalized
to sum to 1. For example if T is state 0 and F is state 1, odds[0] = 2, odds [1] = 1 would
set a 2:1 ratio for the node being T. The odds likelihood ratio (unnormalized) is stored in
node->odds.

3.1.4 Edge Operations

e Add
void connect(Node *mom, Node *kid)
Add a link from mom to kid.

¢ Delete
disconnect(Node #mom, Node *kid)
Removes an edge between mom and kid.

Cousins/Chen/Frisse - CABeN Report: Beta release version 33

® Test for link
int is_link(Node *mom, Node *kid)
Returns 0 if there is no link between mom and kid, non-zero otherwise.

» List
As with nodes, listing edges is done by executing a macro. Two macros are available, one for
listing the child nodes (outgoing edges) and one for listing the parent nodes (incoming edges).
The following code fragments print all the child nodes and parent nodes, respectively:

LOCPKIDS (node)
printf("¥s\n", kid->name);
ENDKIDS

LOOPHOHS (node)
printf("%s\n",nom->name);
ENDMOMS

3.2 Manipulating Probabilities

Probabilities in CABeN are manipulated through a “probability prototype” (even though at the
current time only one is implemented). All of these functions are accessed through net->proto,
which is a structure containing pointers to the appropriate functions. To access a specific conditional
probability value, p(c | p1,...pn), an index containing numeric values for the states of ¢ and p;...p,
is passed to net—>proto->proto(nede,ind), with ind[0] being the state of the node, ind[1] being
the state of the first parent, and so on.

The easiest way to understand this may be to look at the code in the file modimenu. <. The func-
tion ModiProb(net} there calls net->proto->modify() which is a pointer to full modify(node)
in proto.c. full modify(node) in turn calls ask_probs{node) which interactively prompts a user
for conditional probability values.

An array called node->calc.probs is used to store posterior marginal probabilities calculated
by the algorithms, where the #** element of the array is the probability that the node is in the it#
state.

Default conditional probabilities are given to nodes without parents by assigning equal probability
to each possible state of the node. Default probabilities are given when new parents are added to
a node using the probabilities the node had before the parent was added. For example, if boolean
node B has no parents, its default probability will be p(B = TRUE) = 0.5. If A is added as a
parent of B, p(B | A) will be:

p(B=TRUE|A=TRUE)=p(B=TRUE | A= FALSE) = p(B = TRUE) = 0.5

3.3 Belief Network Algorithms

The CABeN package implements many different belief network algorithms. In this section, we
describe how to call the routines which implement the algorithms.

There are some parameters common to all of the algorithms, which we will describe first, and
then refer to when discussing particular algorithms.

Markov The scoring part of most of the algorithms can be done either by computing a score value
for each node individually, or by using the Markov blanket of the nodes for scoring. Using
Markov blanket scoring takes more time on each iferation, but tends to cause the algorithms
to converge in less iterations. This boolean parameter selects whether or not Markov scoring
is used.

Cousins/Chen/Frisse - CABeN Repori: Beta release version 34

N-iterations The normal way to run these algorithms is to specify a number of iterations in
advance. This integer parameter is used for this purpose. The number of iterations needed for
convergence varies with each algorithm.

The following sample program performs logic sampling on a network read from a file in belief
network file format:

#include '"be_all.h™

extern Selecting *logic_sampling;
extern Proto test;

main(argc,argv)
int argc;
char #axgv[];

Network *net;
int numsims;
double exror = 0.0;

if (argc < 4){
printf("Usage: sample <net> <numsims>\n");
exit(1);

1

sscanf (argv[2],"
net = mallocmet();
net->proto = &test;

ReadNetFile (met,argv[i]);
CopyPriors(net);

if (simulate(net,(Selecting *) &logic.sampling,numsims,FALSE)) {
printf{“\n\n Error in simulation routine!");
return ERR;

I¥

/* The nodes of net now contain simulated answers in node->calc.probs */

}

3.4 Statistics on Algorithm Performance

The relevant statistics regarding algorithm performance are run time and error. The easiest way
to calculate these parameters is by calling SimRun(}. SimRun takes a StochParms structure which
contains an algorithm and set of relevant parameters, and a number of times to repeat the experi-
ment, and returns the time for one simulation, the error (as mean squared error), and a performance
number which is the product of error and time.
SimRun{StochParms *sp, int numdo, double *rtime, double #mse, double *perform);
A good example of the use of this function is in the example program compare.c.

Chapter 4
Conclusions

The CABeN toolkit is a vehicle for experimenting with belief networks. No theory yet exists to
predict whether or not a specific belief network is computationally tractable, or to suggest which
algorithm might work best. Our simple experiments provide further guidelines on the applicability
of stochastic simulation algorithms to a number of Bayesian network topologies. Our area of primary
research interest is the applicability of these techniques to information retrieval problems where node
values reflect the degree of belief in the value of a specific index term and conditional probabilities
reflect the probability that a child index term will be relevant given that documents indexed under
the parent node ferm are deemed relevant [11,12]. These networks resemble larger versions of the
LzperiSystem! network. Our experiments suggest that from the perspective of response time, the
Self Importance algorithm may perform best. Although our experiments provide support for reliable
and rapid computation using stochastic simulation algorithms, we believe that other factors (e.g.
conditional probability values, amount of evidence expected, degree of acceptable estimation error)
must be considered with graph topology to determine the optimal algorithm for each application.

35

Acknowledgements

This work was supported in part by grants from Apple Computer, Inc. and the Center for Intelligent
Computing at Washington University. We would like to thank Tim Oren of Apple Computer, Inc.
and Roberto Lozano of Technology Resources Incorporated, a subsidiary of Southwestern Bell for
their support, and Ron Loui and Michael Kahn for help with earlier drafts of this paper. Dr. Frisse
is a Teaching and Research Scholar of the American College of Physicians.

The authors appreciate any comments, criticisms or enhancements. Please let us know what you

think.*

*The authors can be reached at the Medical Informatics Laboratory, Washington University School of Medicine,
660 South Euclid Ave, Box 8121, St. Louis, MO 63110, or by electronic mail at caben@informatics, wustLedu

36

Appendix A

Belief Network File Format

A file containing a belief network has three parts: A list of state types; A list of nodes and their
types; and a list of edges and probabilities. The list of state types begins with a line of the form

STATES <# of states>

where (# of states) is the number which will be subsequently defined, and then that many lines
of the form

<5tate type name> <# states> <State 1> ... <State n>
For example, the following would define a single state type, boolean:

STATES 1
Boolean 2 T F

The list of nodes and types is simple also. It begins with
NODES <# of nodes>

and then has (# of nodes) lines of the form
<State type name> <Node name>

For example, we could define 3 boolean nodes as

NODES 3

Boolean A

Boolean B

Boolean William Chen

Note that the third node has a name which contains a space. State names may not contain white
space, but node names may — The node name contains all characters after the type and some white
space, up to but not including the carriage return. These nodes are numbered implicitly by their
position in the list, from 0 through n-1.

The final part of the file, the edges and probabilities, begins immediately after the NODES. Each
node number should appear once, followed on the same line by the number of parents it has, the
numbers of those parents, and the number of probabilities which will be specified:

<pnode num> <# parents> <pil> ... <pn> <# probs>

The probabilities are specified as they were in the state types, implicitly in the order of the
parents:

37

Cousins/Chen/Frisse - CABeN Report: Beta release version 38

<node state> <pl state> ... <pn state> <value of p(nodelpl...pn)>
If node "William Chen” (number 2) has parents A and B, with probabilities:

p(a=T} = 0.1
p(B=T) = 0.2
p("¥William Chen"=T | A=T B=T)
p("William Chen"=T | A=T B=F)
p("William Chen"=T | A=F B=T)
p("William Chen"=T | A=F B=F)

1

1l
QO OO
Lo I B - P

n

then the probability section would look like

B B B B> B L I I I P S)
ME T AN 0000
b B B B e B I B I T+ I T TP Py

SO OO0 00 QM
e B O~ W

A belief net file can contain other, optional fields as well. Lines beginning with “Answers” store
the answer values for nodes for use in error tests. A line beginning with “Answer_source” indicates
the source of the answers. For example,

Answer_Source 0 Direct Calculation
Answer 0 0.4 0.6
Answer 1 0.7 0.3

indicates that the correct answer for node 0 (True) is 0.4 and for node 1 (True) is 0.7 (assuming
nodes 0 and 1 are boolean), and that the source for those answers is direct calculation (the brute

force algorithm}.
Evidence can also be specified in the belief net file using the “Set” command, as in

Set 0T

Bibliography

[1] Cooper GF. Probabilistic inference using belief networks is NP-hard. Technical Report KSL-
87-27. Medical Computer Science Group, Stanford University, Stanford, California. 1987.

(2] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San
Mateo, CA: Morgan Kaufmann, 1938,

[3] S.L.Lauritzen, Spiegelhalter D. Local computations with probabilities on graphical structures
and their application to expert systems. J. Royal Statistical Society 1988;9:157—224.

[4] Neapolitan RE. Probabilistic Reasoning in Ezpert Syslems: Theory and Algorithms. New York,
NY: Wiley Interscience, 1990.

[5] Shachter R, Peot M. Simulation approaches to general probabilistic inference on belief networks.
In: Henrion M, Shachter R, Kanal L, Lemmer J, eds. Uncertainty in Artificial Intelligence 5.
Amsterdam: Elsevier Science Publishers B.V. (North-Holland), 1990:221-31.

[6] Chavez RM, Cooper GF. A fully polynomial randomized approximation scheme for the bayesian
inference problem (working paper). Technical report. Stanford University, Stanford California.

TFall, 1988.

[7] Chavez RM, Cooper GF. A randomized approximation algorithm for probabilistic inference on
bayesian belief networks. Networks 1990;20:661-85.

[8] Cooper GF. Current research directions in the development of expert systems based on belief
networks. Applied Stochastic Models and Data Analysis 1989;5:39-52.

[9] Henrion M. An introduction to algorithms for inference in belief nets. In: Henrion M, Shachter
R, Kanal L, Lemmer J, eds. Uncertainty tn Artificial Intelligence 5. Amsterdam: Elsevier
Science Publishers B.V. (North-Holland), 1990:129-38.

[10] Cousins SB, Chen W, Frisse ME. CABeN: A collection of algorithms for belief networks.
Technical Report wucs-91-25. Washington University, St. Louis, MO. 1991.

[11] Frisse ME, Cousins SB. Information retrieval from hypertext: Update on the Dynamic Medical
Handbook Project. In: Meyrowitz N, ed. Proceedings of Hypertext 89. New York: ACM Press,

1989:199-212.

[12] Cousins SB, Frisse ME. Query networks for medical information retrieval—assigning proba-
bilistic relationships. In: Miller RA, ed. Proceedings, Symposium on Computer Applications in
Medical Care. New York, NY: IEEE Computer Society, 1990:800-4.

39

	CABeN: A Collection of Algorithms for Belief Networks
	Recommended Citation
	CABeN: A Collection of Algorithms for Belief Networks

	tmp.1455646060.pdf.SR3_P

