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ABSTRACT OF THE DISSERTATION

A Molecular Basis for Divergent, Unstable Actin Filaments

in Toxoplasma gondii

by

Kristen Michelle Skillman

Doctor of Philosophy in Biology and Biomedical Sciences

(Molecular Microbiology and Microbial Pathogenesis)

Washington University in St. Louis, 2011

Dr. L. David Sibley, Chairperson

Toxoplasma gondii is an important parasitic pathogen of the phylum Apicomplexa.

Parasite invasion of host cells involves a unique gliding motility mechanism that is

dependent on polymerization of parasite actin.   However, in non-motile parasites, the

majority of actin is monomeric and filaments only assemble upon initiation of gliding

motility.  Actin filament turnover is crucial for motility as shown by the detrimental

effects of jasplakinolide, an agent that stabilizes actin filaments. T. gondii actin

(TgACTI) is functionally highly divergent from conventional actin and only polymerizes

into very short filaments.  To understand why T. gondii actin does not form long

filaments and uncover what contributes to its unusual polymerization kinetics, TgACTI

filaments were examined using molecular modeling and biochemical assays. Phalloidin

binding to parasite actins rescued the short filaments demonstrating that although

TgACTI naturally forms short, unstable filaments on its own, it is capable of forming

longer, conventional filaments when stabilized. Molecular docking was used to identify
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divergent residues within apicomplexan actin that may impart filament stability and

revealed critical substitutions in the hydrophobic plug and phalloidin-binding pocket that

are predicted to affect subunit interactions within the filament.  Mutations were made

within TgACTI to replace residues unique to apicomplexan actins with those from

muscle actin resulting in formation of longer actin filaments in vitro.  When this

substituted, stabilized actin was expressed within the parasite, it had a deleterious impact

on gliding motility exhibited by aberrant forms of both circular and helical gliding

combined with a decrease in speed.  The ability of TgACTI to polymerize is also

controlled by a minimal set of canonical actin-binding proteins.  T. gondii encodes two

formin proteins, TgFRM1 and TgFRM2, and interaction of these proteins with TgACTI

results in a dramatic increase in polymerization.  However, T. gondii profilin (TgPRF)

acts to sequester TgACTI from the growing filament.  Finally, examination of

concentration dependent polymerization has revealed evidence that TgACTI is utilizing

an isodesmic mechanism for polymerization.  Collectively, these results demonstrate that

T. gondii has evolved multiple mechanisms for controlling the length of actin filaments

within the parasite and these adaptations appear to be critical for productive gliding

motility.
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Chapter I

Introduction

This chapter was composed entirely by Kristen Skillman.  Comments from David Sibley

are incorporated into the final version presented here.
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The Phylum Apicomplexa

Apicomplexan parasites are obligate intracellular protozoan pathogens of humans and

animals, many of agricultural importance (Dubey, 2010). There are over 5000 species

within this phylum that infect a broad range of hosts (Levine, 1988).  Noteable members

include the tissue-cyst forming coccidia Toxoplasma (the causative agent of

toxoplasmosis) and Sarcocystis (animal pathogen), enteric coccidia Eimeria (animal

pathogen largely afflicting poultry) and Cyclospora (food-borne diarrheal disease),

haemosporinids including Plasmodium (the agent of malaria), piroplasms Thelieria

(cattle parasites) and Babesia (tick-borne fever), cryptosporidians Cryptosporidium

(water-borne diarrheal disease) and Gregarines, the most ancient members of the phylum

(Levine, 1988).

Toxoplasma gondii

Toxoplasma gondii is a ubiquitous member of the Apicomplexa and it is estimated

that as much as one third of the world population has been exposed to the parasite (Tenter

et al., 2000).  T. gondii also infects all warm-blooded animals making it one of the most

common parasitic diseases to inflict humans and animals (Hill and Dubey 2002).  The

prevalence of infection with T. gondii is highly dependent on the geographical region

examined with an estimated 11-16% of the population infected in the United States

(Dubey and Jones, 2008), and 8-22% of the population infected in the United Kingdom

while there is a much greater prevalence, 51-72%, in Central and South America and 37-

58% in Europe (Tenter et al., 2000).  Despite its ubiquitous presence in the human
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population, T. gondii is an opportunistic pathogen and disease symptoms are normally

more severe in immunocompromised individuals and developing fetuses.

Different isolates of T. gondii exhibit high similarity to one another and genotyping

strains from North America and Europe revealed that the parasite exists in three clonal

lineages, each differing in the extent of virulence toward the host (Howe and Sibley,

1995).  Type I comprises the most highly virulent parasites. Type II and Type III are

avirulent and differ in the host they infect; Type II parasites are mainly found in animal

and human infections while Type III parasites have been found primarily in animals

(Howe and Sibley, 1995).  This division in virulence can be partly attributed to

differential expression of virulence factors among these lineages (Saeij et al., 2006; Su et

al., 2002; Taylor et al., 2006). Recent analysis has added a fourth clonal lineage for North

American strains (Khan et al., 2011).  Isolates collected from South America appear to

have more variability and group into a number of separate haplogroups (Dubey and Su,

2009; Khan et al., 2007; Lehmann et al., 2006).

Toxoplasma gondii Life Cycle

The T. gondii life cycle consists of a feline definitive host and non-feline intermediate

host (Frenkel et al., 1970).  The parasite has been isolated from intermediate hosts

ranging from mammals to birds.  Unlike many pathogens, disease caused by T. gondii is

less severe within the definitive host as compared to the intermediate host (Dubey, 2010).

Within these hosts, T. gondii progresses through various stages of development including

sporozoites (within the oocyst), tachyzoite and bradyzoite (within the tissue cyst).
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Sexual Cycle

T. gondii sporozoites undergo the sexual stage of the parasite life cycle within the

intestine of the cat, its definitive host (Frenkel et al., 1970).  Infected cats then shed

oocysts containing sporozoites in their feces and these oocysts can be infective to humans

or other animals if water or food is contaminated and ingested.  Oocysts are very resilient

and can survive harsh environmental conditions for up to 18 months (Dubey, 2010).

Oocyst ingestion by mammals leads to the asexual stage of the Toxoplasma life cycle

where the parasite develops into tachyzoites and can replicate within the non-feline host

(Dubey, 2010).

Asexual Cycle

Following oral ingestion, the tachyzoites, the rapidly multiplying stage of the parasite,

cross the intestinal epithelium to move into deeper tissues and can eventually cross other

barriers like the placenta, blood brain barrier or central nervous system where it can

infect virtually any nucleated cell.  The acute stage of infection results in the host

mounting a strong inflammatory response leading to the clinical manifestations of disease

(Montoya and Liesenfeld, 2004).  In healthy hosts, the immune response leads to

transformation of the tachyzoites into bradyzoites that replicate slowly and persist within

tissue cysts in the brain, skeletal and cardiac muscle and liver (Dubey, 1994).  The cysts

persist for the life of the host establishing the potential for reactivation if there is a change

in the integrity of the immune system.   

Tissue cysts may be transmitted between hosts upon ingestion of undercooked

contaminated meat thereby continuing the asexual cycle or sexual cycle if a cat ingests
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cysts (Dubey, 2010).  Upon ingestion, the cyst wall dissolves releasing bradyzoites

enabling them to infect the intestinal epithelia and differentiate back into tachyzoites for

dissemination throughout the host.

Toxoplasmosis

Non-congential infections with T. gondii occur after ingesting tissue cysts in

undercooked meat or drinking water that is contaminated with oocysts shed in cat feces.

There is evidence that the infection from ingestion of oocysts is more severe than that

from tissue cysts.  The first sign of toxoplasmosis is enlarged lymph nodes often

combined with flu-like symptoms of fever, sore muscles, sore throat and headaches.

Infection with the parasite often goes unnoticed in the majority of its otherwise

healthy hosts, but infection becomes a severe problem in immunocompromised patients

and children who are congenitally infected.  Patients with a suppressed immune system

are unable to slow tissue destruction of the rapidly multiplying tachyzoite stage.  Immune

suppression is a large problem due to progression of the infection to toxoplasmic

encephalitis.  Toxoplasmosis is a leading cause of death associated with patients who

have acquired immunodeficiency syndrome (AIDS) where infection of the brain is

common.  Encephalitis, if left untreated, is often fatal for AIDS patients (Luft and

Remington, 1992).  Ocular pathology (Roberts and McLeod, 1999) and neurological

problems (Luft et al., 1993) are other consequences of toxoplasmosis that manifest in

immunocompromised patients. Additionally, as a consequence of the high natural burden

of chronic infection in otherwise healthy hosts, organ transplant patients may become

infected with T. gondii via a seronegative recipient receiving an organ from a seropositive
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donor.  For seropositive patients, immunosuppresion from the transplant may result in

undergoing reactivation of a latent infection.  The parasite can also cause blindness,

mental retardation, or prenatal abortion if a pregnant woman is exposed to the parasite.

The severity of congential infection decreases through later trimesters (Desmonts and

Couvreur, 1974).

Treatment

Pyrimethamine and sulfonamides can control replication of Toxoplasma but do not

eradicate chronic infection (McCabe, 2001).  Spiramycin does not cross the placenta and

may be used to prevent transferring infection from mother to fetus (Desmonts and

Couvreur, 1974) although it is not marketed in the United States and it does not appear to

be effective against established fetal infections (Wong and Remington, 1994).

Clindamycin, atovaquone, and azinthromycin also have antitoxoplasmic effects and can

be used for treatment (McCabe, 2001).  Many of these drugs have numerous side effects

demonstrating a need for new treatments.

Apicomplexan Apical Complex and Cytoskeleton

T. gondii, as well as the other members of the apicomplexan phylum, have an

elongated shape with a specialized apical region (Morrissette and Sibley, 2002).  T .

gondii encounters a number of treacherous environments throughout its life cycle

including the gastrointestinal tract and must be able to maintain its cell shape in stressful

niches. Cell shape is maintained structurally by a number of elements of the

apicomplexan cytoskeleton that are conserved within the members of the phylum. In
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addition to providing structural integrity of the parasite, maintaining the cytoskeleton is

critical for invasion of host cells and replication within them.  T. gondii has an apical

complex comprised of an apical polar ring, two preconoidal rings, a conoid, and secretory

organelles (Morrissette and Sibley, 2002).  The cytoskeletal make-up of the parasite

includes microtubules, a network of intermediate-like filaments and inner membrane

complex (IMC) to create the parasite’s shape (Figure 1A).

Apical Polar Rings

T. gondii contains two preconoidal rings, an inner and outer ring. The outer ring is

found at the top of the conoid in its resting state and covers the apical rim of the IMC.

An apical polar ring is also presents beneath the conoid serving as a microtubule

organizing center and acts to anchor the 22 singlet, subpellicular microtubules that

emanate through the parasite (Morrissette and Sibley, 2002).   Ultrastructural

examination of the polar ring of Eimeria suggested that it controlled the number, spacing,

directionality and orientation of the microtubules (Russell and Burns, 1984).  Depressions

were seen within the ring where the ends of the microtubules attached leading to

predictions that the polar ring caps the microtubules (Russell and Burns, 1984).

Conoid

The conoid is a tube-like hollow cylinder of spirally woven microtubules that moves

up and down through the preconoidal polar rings.  The conoid microtubules are unusual

in that they wind into a counterclockwise spiral where the filaments are asymmetrical and

form 9 protofilaments (Hu et al., 2002).  The conoid is an element unique to Toxoplasma,
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Eimeria and Sarcocystis and protrudes at the time of host cell invasion suggesting it may

aid these parasites in penetrating intestinal epithelium (Morrissette and Sibley, 2002).

Conoid extrusion is dependent upon calcium fluxations within the parasite (Mondragon

and Frixione, 1996) and actin and myosin but not microtubules play a role in regulating

extrusion (Del Carmen et al., 2009). Following detergent extraction and sonication,

conoid-enriched preparations were subjected to MudPit analysis to identify the proteins

associated with the complex.  These studies identified TgMORN1 as a protein that

concentrates at the conoid but additionally as the first structural marker for the basal end

of the parasite.  Two centrins, dynein light chain (TgDLC) and calcium binding proteins

(TgCAM-1 and –2) were also identified as part of the complex with the later three

proteins suggested to be potential regulators of conoid extrusion in T. gondii (Hu et al.,

2006).

Subpellicular Microtubules

The subpellicular microtubules of T. gondii, organized via the apical polar ring, are

unusually stable and form filaments around 5 µM long that run along two-thirds the

length of the parasite ending just past the nucleus (Nichols and Chiappino, 1987).  T.

gondii  contains 22 singlet microtubules, comprised of 13 tubulin-containing

protofilaments, creating 22 nm hollow tubes that are equally spaced around the parasite

(Nichols and Chiappino, 1987). The number of microtubules as well as their distribution

differs among members of the apicomplexa with notable differences seen in P.

falciparum, which has only 3 microtubules that emanate down one side of the parasite

(Fowler et al., 2001), or other Plasmodium spp. where all but one microtubule is spaced



9

across two-thirds of the parasite (Morrissette and Sibley, 2002).  Despite the varied

arrangements, the subpellicular microtubules are thought to contribute to structural

stability of the parasites as demonstrated by the fact that depolymerization of

microtubules using chemical agents disrupts cell shape and polarity (Morrissette and

Roos, 1998). Additionally, T. gondii microtubules are highly stable and resistant to many

microtubule destabilizing drugs when parasites are extracellular, but intracellular

replicating parasites are sensitive to high concentrations of colchicines and

dinitroanilines, such as oryzalin (Morrissette and Sibley, 2002).  Drug-treated

intracellular parasites are unable to assemble proper subpellicular microtubules and fail to

infect host cells, demonstrating the need for proper cell shape and rigidity in host cell

invasion.

Cryoelectron tomography of the P. berghei microtubule lattice revealed 8 nm

periodicities that were not observed with the more conventional pig brain tubulin

(Cyrklaff et al., 2007).  Similar periodicities were also seen along microtubules extracted

from T. gondii tachyzoites. It was hypothesized that the microtubules of these parasites

must be elastic to undergo turns and movement into host cells.  These studies revealed

that P. berghei microtubules could undergo turns with radii as small as 86 nm

demonstrating these microtubules are not only stable but also highly elastic. Visualization

of increased luminal density of the microtubules lead to identification of an

unconventional microtubule associated protein (MAP). The microtubule structure of T.

gondii was examined using Fourier methods and a 32 nm periodicity of particles was

found, also suggesting interaction with a MAP (Morrissette et al., 1997).  In P. berghei,

uncapped microtubule ends were visualized but depolymerization was not seen
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suggesting this unidentified factor may bind to aid in preventing breakage of the

microtubules (Cyrklaff et al., 2007).  Similar phenomena have previously been seen in

other organisms with reduced microtubule treadmilling such as chlamydmonas and

trypanosomes (Nicastro et al., 2006; Vaughan et al., 2006).

Secretory organelles

Situated at the apical end of the parasite are secretory organelles containing proteins

that are discharged in a specific order to aid with various portions of the parasite life

cycle (Carruthers and Sibley, 1997).  The micronemes are small rod-shaped structures

that release microneme (MIC) proteins important for host cell attachment, motility and

host cell invasion.  Rhoptries are club-shaped organelles with a long neck.   Proteins

secreted from the rhoptries play a role host cell invasion, creation of the parasitophorous

vacuole (PV) and immune evasion.  The proteins are secreted in a hierarchical manner

with the proteins in the rhoptry neck (RONs) secreted first, followed by those in the

rhoptry bulb (ROPs). Dense granules are found throughout the parasite but are more

highly concentrated at the apical end.  The dense granule proteins (GRAs) from this

organelle are typically associated with the parasitophorous vacuole membrane (PVM).

Subpellicular Network

It is clear that cytoskeletal components provide the structure to apicomplexan cells;

however, the fact that the subpellicular microtubules do not extend the entire length of

the parasite body suggests that another element existed to provide further mechanical

stability.  Experiments extracting the cytoskeleton of T. gondii to examine protein
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composition identified a network of interwoven filaments (8-10 nm in diameter) that

extends from the polar ring along the entire length of the parasite and is anchored into a

cup-like structure at the parasite posterior (Mann and Beckers, 2001; Porchet and Torpier,

1977).  The extremely stable complex formed by this filamentous network, surrounds the

microtubule cytoskeleton and was aptly named the subpellicular network.  Further

analysis of the protein make up of the network identified the novel protein TgIMC1 as a

major component as well as a homolog in Plasmodium species (Mann and Beckers,

2001).

Inner Membrane Complex

Apicomplexans also contain a double membranous inner membrane complex (IMC)

comprised of flattened vesicles originating from the endoplasmic reticulum that are

sutured together. An exception is the sporozoite stage of Plasmodium where the IMC is

created by one large flattened vesicle (Morrissette and Sibley, 2002). Together with the

outer plasmalemma, the IMC creates a three membrane pellicle surrounding the parasite.

The IMC extends to cover the intermediate filaments that make up the subpellicular

network and delineates a compartment beneath the plasma membrane.  Cytoskeletal

components such as actin and myosin have been shown to localize to the inner membrane

space possibly for their role in parasite motility.

Intramembranous particles (IMPs) run in parallel rows down the length of the parasite

throughout the IMC and are arranged in single and double rows with a 32 nm periodicity

(Morrissette et al., 1997).  Twenty-two double rows of IMPs are present in the IMC

cytoplasmic face and follow the path of the subpellicular microtubules (Morrissette et al.,
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1997).  The double rows are thought to associate with microtubules but the IMPs extend

the full length of the parasite even though the microtubules only reach 2/3 of the length

suggesting there is also an interaction with the subpellicular network.  The single rows of

IMPs are a likely candidate for linkage of the subpellicular network to the IMC (Mann

and Beckers, 2001).

Apicomplexan Host Cell Invasion

The ability of T. gondii and other apicomplexan parasites to enter into host cells is

essential for their development.  The conserved apical complex and cytoskeleton among

the members of this phylum leads to a conserved mechanism for host cell entry.  Invasion

is an active process controlled by the parasite as seen by an absence of membrane ruffling

and host actin rearrangement that are associated with phagocytosis (Morisaki et al.,

1995).  In order to complete a full lytic cycle, T. gondii must undergo gliding motility to

find a cell to invade, attach to and enter the cell, establish a parasitophorous vacuole in

which to replicate and then egress from the cell in order to repeat the cycle and continue

infection within the host.

Gliding motility

The force for invasion of apicomplexans through host cell membranes is dependent

on forward motility of the parasite (Morisaki et al., 1995).  Typically, cells undergo one

of two types of motility:  swimming, which requires flagella or cilia to propel a

microorganism through an environment or amoeboid crawling which relies on

rearrangement of host cell actin to create lamellipodia which moves in response to certain
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stimuli.  However, apicomplexans lack flagella or cilia for swimming motility and do not

undergo a change in cell shape as the parasite migrates as in amoeboid motility.  Rather,

apicomplexans employ a gliding motility mechanism that is dependent on polymerization

of their own actin into filaments instead of utilizing host cell powered machinery for

entry (Dobrowolski and Sibley, 1996).

Gliding motility is unique to apicomplexans and conserved among the phylum.  It is a

fast, ~1 µm/sec, substrate dependent process (Håkansson et al., 1999).  Initial evidence of

gliding was seen by visualization of protein trails that these parasites leave behind as they

glide on glass coverslips.  For T. gondii, these trails can be visualized by

immunofluorescence staining with antibodies again surface antigen-1 (SAG1)

(Dobrowolski and Sibley, 1996).  Similar surface-protein laden trails have also been

reported from other apicomplexans including Plasmodium sporozoites (Vanderberg,

1974), Eimeria (Russell and Sinden, 1981) and Cryptosporidium (Arrowood et al., 1991).

These trails appear to be formed as a result of membrane shedding during motility and

contain proteins found on the parasite surface, but normally not those that are secreted

(Håkansson et al., 1999).  Interestingly, despite the high conservation of gliding motility

among the apicomplexans, one member of the phylum, Theileria, does not appear to

utilize gliding motility for host cell entry and instead relies on an zippering mechanism

for invasion that requires host cell actin, suggesting a more passive entry process (Shaw,

1999).

Further investigation of gliding motility in T. gondii using videomicroscopy observed

that the parasites undergo three distinct types of gliding motility: circular, helical and

twirling (Håkansson et al., 1999).  During circular gliding, the parasite lies on its right
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side and moves in a counterclockwise circle.  Circular gliding motility does not net any

forward movement and as a result does not allow host cell invasion.   In order to undergo

productive forward motion and entry into host cells, the parasite relies on the helical form

of gliding motility.  Helical gliding is a biphasic process that begins when the parasite lies

on its left side and undergoes a clockwise corkscrew motion of 180 degrees and nets a

forward motion of one body length.  Once the parasite turns to its concave face, it can no

longer contact the substrate so it raises itself onto its posterior end and flips back to its

left side to reinitiate the process.  The second phase of helical gliding yields no net

forward motion.  Twirling motility occurs when the parasite attaches its posterior to

substrate and spins in a clockwise motion.  This movement is similar to helical gliding

but in the z-plane and results in no forward progress.  Videomicroscopy studies were also

used to visualize parasites utilizing gliding motility as a means to drive themselves into

host cells for invasion (Håkansson et al., 1999).  Plasmodium sporozoites have been

observed to undergo similar types of motion after injection into the dermis (Amino et al.,

2006).  Plasmodium ookinetes also undergo gliding within the mosquito midgut (Vlachou

et al., 2004), although the speed of movement for the ookinetes was slower than that

observed for T.gondii tachyzoites (0.1 µm/sec vs 1-3 µm/sec) (Siden-Kiamos et al.,

2006).

 Further studies into the movements of Plasmodium sporozoites using reflection

interference contrast and traction force microscopy observed that the parasites undergo

stick-and-slip movements from specific adhesion sites that require turnover for

movement to occur (Munter et al., 2009).  Initial attachment sites at both poles where

seen to form (stick) as well as an adhesion site located more centrally.  The front patch
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then disengaged with the central patch appearing to provide some force for movement.

As the posterior patch released, the parasite moved (slide) forward.

Numerous studies of the molecular components of gliding have led to a model where

cytoskeletal elements within the parasite pellicle are capped by adhesive proteins on the

outer surface of the parasite that mediate motility.  The proteins involved in this process

have been dubbed components of the “glideosome” and are described in more detail

below.  At the onset of T. gondii gliding, the parasite secretes the micronemal adhesin,

MIC2, from its apical end, which makes contacts with receptors on the substratum or host

cell surface (Figure 1B).  Beneath the membrane of the parasite, the cytoplasmic tail of

MIC2 is linked to actin filaments via interaction with aldolase, which has been shown to

interact with both MIC2 and actin (Jewett and Sibley, 2003).  Non-processive myosin

motors that are anchored in the inner membrane complex of the parasite, translocate these

actin filaments rearward through the cell, causing movement of MIC2 along the surface.

As MIC2 moves along the parasite surface, it is cleaved by a rhomboid protein localized

in the cell membrane allowing the “conveyor belt” to continue moving (Brossier et al.,

2005; Buguliskis et al., 2010).  The final result of this process is forward motion of the

parasite and entry into host cells.  Gliding motility plays a role in transmigration of

polarized cell layers such as the intestinal epithelium, allowing greater dissemination

through the host (Barragan and Sibley, 2002).

Host attachment

The parasite must tightly attach to the host cell prior to invasion.  When the apical

end of the parasite comes into contact with the host cell, it discharges it secretory
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organelles, first the micronemes followed by the rhoptries (Carruthers and Sibley, 1997).

Many microneme proteins appear to play a role in attachment to the host cell.  Depletion

of the micronemal proteins TgMIC2 or TgAMA1 disrupts the ability of T. gondii to

attach to host cells thereby reducing invasion (Huynh et al., 2004; Mital et al., 2005).

After initial attachment has been established, the rhoptry proteins are discharged into the

host cell that play a role in establishing the parasitophorous vacuole (below).  The

parasite then creates a ring-shaped zone of intimate attachment between the parasite and

host cell known as the moving junction.  Many proteins involved in invasion localize to

this junction forming a ring around the parasite including the rhoptry neck proteins

(RONs), which form a complex with TgAMA1 at the moving junction (Alexander et al.,

2005; Lebrun et al., 2005).  The moving junction moves toward the posterior of the

parasite as invasion progresses and it enters into the host cell.  Recent evidence suggests

RON proteins may insert into the host cell membrane thereby creating a receptor for the

parasite (Besteiro et al., 2009).

Vacuole formation

As the parasite invades the host cell through the moving junction, it creates and enters

into a parasitophorous vacuole (PV), which is non-fusogenic and acts as a barrier to

provide separatation from the host cell cytoplasm (Mordue and Sibley, 1997).  The PV

initially forms via an invagination of the host cell membrane (Suss-Toby et al., 1996).

However, the moving junction is predicted to play a role in selecting what components

are present in the parasitophorous vacuole membrane (PVM) and many host cell

components appear to be excluded from the PVM.  Selective exclusion is largely based
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on how proteins are anchored in the membrane (Mordue et al., 1999). The rhoptry

contents secreted just prior to invasion form vesicles that fuse with the PVM and further

modify it (Håkansson et al., 2001).  Eventually the PV becomes associated with the host

cell ER and mitochondria (Jones et al., 1972).  Once the PV is established, dense granules

release GRAs to modify the intracellular face of the PV (Carruthers and Sibley, 1997).

Replication

Replication of T. gondii occurs within the PV by the mechanism of endodyogeny, a

process of internal budding (Striepen et al., 2007). One of the first steps in budding is the

formation of the IMC, which provides a scaffold for daughter cell formation.  Much of

the mother’s cytoplasm is incorporated into the two daughter cells while other structures

such as the conoid and secretory organelles are broken down (Striepen et al., 2007).

Actin traditionally plays a role in cell division but in T. gondii, disruption of actin

dynamics has no impact on parasite replication (Shaw et al., 2000).  However, disruption

of microtubule polymerization is detrimental to the budding of daughter cells

demonstrating T. gondii replication is a microtubule-driven process (Shaw et al., 2000).

Egress

Egress from host cells is again dependent on microneme secretion and gliding

motility.  As T. gondii undergoes its intracellular cycle, abscisic acid accumulates

signaling for egress by cADPR production and increases in intracellular calcium

(Nagamune et al., 2008).  Calcium increase stimulates the release of micronemal proteins

including TgPLP1, a perforin-like protein that aids to permeabilize the PVM and host
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membrane for parasite egress (Kafsack et al., 2009).  Many calcium dependent processes

are regulated by calcium dependent protein kinases (CDPKs).  Depletion of TgCDPK1

results in loss of microneme secretion and inability to egress from host cells (Lourido et

al., 2010).  In addition to abscisic acid accumulation, there is evidence that the parasite

can sense the loss of potassium in the host cytosol as the host cell membrane is broken

down (Moudy et al., 2001).  Decreasing potassium raises the intracellular calcium

concentration within the parasite to aid in triggering parasite egress.  Once egress from

the host cell has occurred, T. gondii employs gliding motility to move to a new host cell

and reinitiate the invasion process.

Apicomplexan Glideosome

The protein components involved in gliding motility have been termed the

glideosome (Opitz and Soldati, 2002).  The glideosome is comprised of the actomyosin

motor as well as the structural and functional proteins linking the complex together.

Glideosome proteins are localized to the pellicle in the space between the inner

membrane complex and parasite plasma membrane (Figure 1B).  The specific function of

glideosome proteins MIC2, aldolase, myosin, glideosome associated proteins and actin

are described in more detail below.

MIC2/TRAP

Microneme secretion is required for T. gondii to undergo proper invasion (Carruthers

et al., 1999).  Microneme protein 2, MIC2, has been shown to be critical in gliding

motility and host cell attachment (Huynh and Carruthers, 2006).  MIC2 contains
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extracellular adhesive domains such as integrin-like I domain (A domain) and

thrombospondin type I-like (TSP) repeats as well as an acidic cytoplasmic domain,

referred to as the C-terminal tail (Ménard, 2001).  Thrombospondin-related adhesive

protein, TRAP, was identified as the MIC2 homolog in Plasmodium sporozoites and

knockouts of TRAP revealed it is required for gliding in sporozoites (Sultan et al., 1997).

The TRAP knockouts were unable to complete proper gliding motility and instead moved

in a pendulum-like motion. The C-terminal tails of MIC2 and TRAP are functionally

homologous (Kappe et al., 1999).  Additionally, MIC2 interacts with the accessory

protein MIC2 associated protein, M2AP, (Jewett and Sibley, 2004) whereas TRAP has no

binding partner.  Further proof of the conservation of gliding motility among the

apicomplexans came with identification of MIC2/TRAP homologs in Plasmodium

merozoites (MTRAP) (Baum et al., 2006b) and CTRAP in oocysts (Dessens et al., 1999).

MIC2 contains transmembrane domains that are cleaved by rhomboid proteins located

within the membrane of the parasite (Brossier et al., 2005; Buguliskis et al., 2010).

Cleavage of MIC2 is predicted to be important for continuation of gliding motility.

Aldolase

The glycolytic enzyme aldolase was identified as the bridge that links the C-terminal

tail of the extracellular adhesin to the cytoskeleton (Jewett and Sibley, 2003).  MIC2

contains two acidic stretches in its C-terminal tail that are important for parasite survival

and one of these domains is required for interaction with aldolase (Starnes et al., 2006).

Mutants of aldolase were identified that could uncouple its role in glycolysis from its role

in MIC2 C-terminal tail binding (Starnes et al., 2009).  Parasites expressing the aldolase
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mutants that were unable to perform their role in glycolysis had severe motility defects.

Additionally, parasites expressing aldolase mutants that were unable to interact with

MIC2 showed a reduced ability to invade host cells demonstrating the bridging function

of aldolase is important for efficient invasion (Starnes et al., 2009).

Myosin

T. gondii encodes eleven myosins in total:  two belonging to class VI (MyoJ and K),

five within class XIV (MyoA, B, C, D, E), and one each within classes XXII (MyoF),

XXIII (MyoG) and XXIV (MyoI) (Foth et al., 2006). MyoB and MyoC are derived from

differential RNA splicing (Heintzelman and Schwartzman, 1997) and may be involved in

cell division (Delbac et al., 2001).  MyoA is the best studied of these myosins and has

been characterized as a fast-step, single headed, plus-end directed motor similar to

muscle myosins (Herm-Gotz et al., 2002).  However, this myosin is quite unusual with a

short neck and C-terminal tail domain, no conserved glycine at the pivot point, does not

follow TEDS rule (a position of a loop in the head domain always contains a negatively

charged amino acid) and contains degenerate IQ containing motifs in the region that

traditionally anchors the regulatory light chain.

The finding that known myosin inhibitors, butanedione monoxime (BDM) (myosin

ATPase inhibitor), and myosin light chain inhibitor KT5926, disrupted invasion and

gliding was the first evidence that MyoA was an important component in gliding motility

(Dobrowolski et al., 1997a) although the specificity of these drugs is not clear.  Use of a

tetracycline-inducible protein expression system to create parasites that conditionally
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express MyoA, confirmed this finding by revealing that depletion of MyoA disrupted

gliding motility (Meissner et al., 2002).

T. gondii myosin light chain 1, TgMLC1, was identified as the regulatory light chain

for MyoA (Herm-Gotz et al., 2002).  A homolog of this protein was identified in

Plasmodium sporozoites and named MyoA tail domain interacting protein (MTIP)

(Bergman et al., 2003).  MTIP was localized to the IMC within the sporozoites and

similar findings in T.gondii demonstrate MyoA is linked to the inner membrane complex

via MLC1, glidesome associated protein 45 and 50 (GAP45 and GAP50) (below).

Glideosome Associated Proteins

Glideosome associated protein (GAP) 45 and 50 were isolated from the T. gondii

pellicle and determined to play a role in anchoring MyoA to the inner membrane complex

(Gaskins et al., 2004).  MyoA interacts with the N-terminus of MLC1, which in turn

binds to the C-terminus of GAP45 (Frenal et al., 2010).  GAP45 is regulated through

phospohorylation and this controls the final assembly step of the motor complex as

phosphorylation of this protein blocks association of GAP45-MyoA-MLC1 with GAP50

(Gilk et al., 2009).  In addition to its interaction with the IMC, GAP45 has an N-terminal

lipid modification that anchors it to the PM, thereby spanning the entire inner membrane

space.  Knockout of GAP45 in T. gondii disrupts gliding and invasion demonstrating a

role for GAP45 in pellicle integrity (Frenal et al., 2010).  GAP40 was recently identified

as an additional member of this complex (Frenal et al., 2010).
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Actin

Actin is an essential protein in eukaryotic cells and its sequence is highly conserved

among organisms (Pollard et al., 2000).  T. gondii contains one actin gene, TgACTI,

(Dobrowolski et al., 1997b), while Plasmodium contains two actin alleles, PfACTI and

PfACTII (Gordon and Sibley, 2005).  TgACTI has 93.1% sequence identity with PfACTI

and 83% with mammalian actin (Dobrowolski et al., 1997b).  PfACTI and PfACTII have

79% sequence similarity to one another (Morrissette and Sibley, 2002), which is the

lowest similarity for any organism containing multiple actins.  The Plasmodium genes

also differ in their transcription profiles as PfACTI is expressed throughout the parasite

life cycle but PfACTII is upregulated in the sexual stages (Kissinger et al., 2003).  The

conservation of actins is low and numerous apicomplexan-specific amino acid

substitutions have been identified by phylogenic comparisons (Sahoo et al., 2006).

Phylogenetic analysis also revealed that apicomplexan actins form their own branch away

from more conventional actins.  Actin monomers from higher eukaryotes have four

subdomains with the nucleotide binding pocket located between subdomains 1 and 3, a

DNaseI binding loop within subdomain 2 and a hydrophobic loop between subdomains 3

and 4.  Many substitutions within apicomplexan actin are found within the DNaseI loop

of subdomain 2 resulting in limited flexibility, between subdomains 3 and 4, which are

predicted to impact monomer-monomer contacts or within the face of subdomain 1 near

the N-terminus, potentially impacting myosin binding (Schüler et al., 2005).

Additionally, PfACTI isolated from the parasite was analyzed for post-translational

modifications.  The only modification seen was N-terminal acetylation, methylation
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typically seen on histidine 73, which is normally important for nucleotide binding, was

noteably absent (Schmitz et al., 2005).

Role of Parasite Actin in Gliding Motility

Actin polymerization was first determined to be a critical component of

apicomplexan gliding motility through studies using cytochalasins, drugs derived from

fungal cells, which bind the barbed end of actin filaments thereby preventing further

monomer association or dissociation (Cooper, 1987). Cytochalasin D (CytD) treatment

has been shown not to prevent attachment of T.gondii to host cells but does inhibit entry

into phagocytic cells (Dobrowolski and Sibley, 1996).  Initially, this finding was

interpreted as a requirement for host cell actin polymerization during T. gondii invasion

(Ryning and Remington, 1978).  However, CytD treatment of the parasites was shown to

block parasite motility on coverslips (Dobrowolski and Sibley, 1996).  The critical

experiment to resolve the role of actin in invasion was that upon infection of CytD-

resistant host cells, wild type parasites were unable to invade in the presence of CytD

even though the host actin would be unimpaired (Dobrowolski and Sibley, 1996).

However, when the converse was done and a mutant T. gondii strain conferring resistance

to CytD was used to infect sensitive host cells, the parasites were able to invade.

Differential sensitivity to CytD demonstrated that the parasite actin, not the host cell

actin, is responsible for cell entry as the functionality of the parasite actin dictated

whether invasion could occur. A similar phenomena has been seen for other

apicomplexans as cytochalasin B blocked P. knowlesi invasion of red blood cells (Miller

et al., 1979), P. falciparum invasion (Field et al., 1993) and gliding and invasion of
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Eimeria sporozoites (Russell and Sinden, 1981).  It has also been suggested that dynamic

host cell actin is required for invasion as treatment with CytD can disrupt T. gondii

invasion at certain concentrations (Gonzalez et al., 2009).  Alternatively, this data can be

interpreted to mean that upon invasion, the actin cytoskeleton is required within the host

cell to provide an anchor for the parasite to initiate the formation of its PV.

Unusual Apicomplexan Actin

Actin exists in two states, globular actin (G-actin), which is the monomeric state, and

filamentous actin (F-actin).  The G-actin pool conventionally polymerizes into filaments

composed of two strands forming a right-handed helix containing monomers assembled

in a head to tail conformation (Pollard et al., 2000).  In actin systems of higher

eukaryotes, there is a dynamic equilibrium between the G-actin and F-actin states with

much of the actin found in a filamentous form.  Despite the requirement for actin

polymerization in order to undergo host cell invasion, a large majority of T. gondii actin

has been shown to exist in an unpolymerized state (Dobrowolski et al., 1997b; Wetzel et

al., 2003).  Consistent with this, attempts to visualize filaments in non-motile parasites

have been unsuccessful (Shaw and Tilney, 1999).  However, freeze fracture EM was used

to show actin filaments form beneath the plasma membrane and are deposited in the

membrane left behind in trails during gliding (Wetzel et al., 2003).  These filaments

appear straight and lay parallel to one another and disappear upon treatment with CytD.

Such a discrepancy demonstrates that the polymerization process is tightly regulated and

that actin filaments are very transient.
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It was also confirmed in more recent studies involving both TgACTI and PfACTI that

parasite actins do not readily polymerize and form only short filaments (Sahoo et al.,

2006; Schmitz et al., 2005; Schüler et al., 2005).  Tryptophan quenching assays

demonstrated that baculovirus-expressed TgACTI is capable of polymerization through

addition of cation or salt, conditions used for polymerization of conventional actins

(Sahoo et al., 2006).  The critical concentration (Cc) of this actin was found to be 0.04

µM, 3-4 fold below the value traditionally seen for vertebrate and yeast actin (Pollard et

al., 2000).  This low Cc suggests that TgACTI should polymerize at low protein

concentration.  However, when TgACTI was incubated in F buffer, stained with

fluorescent phalloidin, and visualized using microscopy, only small foci were seen.

Under comparable conditions, rabbit actin underwent extensive filament formation.

TgACTI was incubated in buffer conducive for polymerization and centrifuged at

100,000 x g, a speed which will sediment conventional actin filaments.  The contents of

the pellet were subsequently analyzed by electron microscopy and short actin-like

filaments were detected (0.1 µm), although the morphology was somewhat broken.  If

phalloidin was added after polymerization but prior to the EM analysis, the filaments that

formed appeared more normal and were slightly longer (0.2 µm) (Sahoo et al., 2006).

Phalloidin is a cyclic peptide derived from the fungus Amanita phalloides (Dancker et al.,

1975), which stabilizes monomer interactions and increases the rate of polymerization by

lowering the critical concentration.

Results similar to those for TgACTI have been demonstrated for PfACTI using

protein isolated by sedimenting actin filaments from parasite lysates (Schmitz et al.,

2005) or expression in yeast (Schüler et al., 2005).  One study suggested that
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centrifugation at 100,000 × g was not sufficient to pellet PfACTI and centrifugation at

500,000 × g was required to sediment these filaments (Schmitz et al., 2005).  These

sedimentation assays were also used to estimate the Cc for PfACTI to be 0.2 µM.

However, because the PfACTI was isolated from the parasite, other actin-binding

proteins are likely to be present confounding these calculations.  Additionally,

recombinant PfACTI purified from yeast was shown to polymerize slowly, and only in

the presence of gelsolin and phalloidin to form short, punctate filaments (Schüler et al.,

2005).  However, this system is artificial due to the fact that neither of these stabilizing

agents is found in Plasmodium. It has also been predicted that there is a change in the

rotational angle of the helix between PfACTI filaments and rabbit skeletal actin filaments

(Schmitz et al., 2010).  Modeling to examine the changes in rotational angle predicted

different monomer stacking within the parasite actin filament thereby forming a double

helix with a pitch that is 10% larger within the parasite actin filament compared to a

conventional filament (Schmitz et al., 2010).

Apicomplexans and Jasplakinolide

Jasplakinolide (JAS) is a membrane permeable cyclic peptide isolated from the

marine sponge, Jaspis johnstoni (Crews et al., 1986).  JAS induces actin polymerization

by decreasing the critical concentration of actin, releasing monomers from sequestering

proteins and binding to filaments for stabilization (Bubb et al., 1994; Bubb et al., 2000).

Treatment of T. gondii with JAS induces a large projection from the apical end of the

cell, which is membrane enclosed and appears to be associated with the conoid (Shaw

and Tilney, 1999).  JAS-induced projections were confirmed to contain actin that was
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decorated with myosin subfragment 1.  P. falciparium treated with JAS also induced

apical protrusions with filaments visualized within them (Mizuno et al., 2002).  It has

been suggested that the actin polymerized as a result of JAS treatment leads to a build up

of pressure that deforms the membrane (Mizuno et al., 2002).

Additionally, stabilization of TgACTI filaments with (JAS) disrupts parasite motility

and cell invasion (Poupel and Tardieux, 1999). As JAS concentration increases, more

actin is seen in pellet, trail lengths decrease and invasion decreases (Wetzel et al., 2003).

Similarly, addition of JAS to P. falciparum culture resulted in decreased parasiteamia

(Mizuno et al., 2002).  Merozoites could be released from red blood cells but reinvasion

did not occur in the presence of JAS.  JAS treatment also causes T. gondii to become

hypermotile, however, these parasites lose directionality, often reversing direction, and

no longer proceed with forward movement (Wetzel et al., 2003), demonstrating that

highly stable filaments may have a toxic effect on the gliding process. JAS treatment of

T.gondii resulted in actin relocalization to the apical and posterior poles as well as

causing a spiral pattern to emanate from the posterior end of the parasite.  Freeze fracture

EM of filaments below the plasma membrane following JAS treatment showed they

became intertwined and tangled in appearance (Wetzel et al., 2003).  These findings

demonstrate that actin polymerization within T. gondii controls directionality and speed

of the parasite.  Collectively, these results are consistent with a requirement for dynamic

actin turnover.
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Other Unconventional Actins

In addition to the members of the Apicomplexa, there are other examples among the

protozoa, as well as the ciliates, bacteria and plants where actin homologs are quite

divergent in sequence from conventional actins and this may impact their behavior.

Protozoa

Leishmania donovani has been probed with an anti-actin antibody to determine the

intracellular localization of actin, which was seen in conjunction with the flagella,

flagellar pocket, nucleus, kinetoplast and plasma membrane (Sahasrabuddhe et al., 2004).

Filaments were formed by LdACT but they were not stained by phalloidin and were

unaffected by both CytD and another actin destabilizing agent, latrunculin B

(Sahasrabuddhe et al., 2004).  Similar to what has been seen with apicomplexan actins,

LdACT shows sequence divergence in the DNase I loop and hydrophobic plug

(Sahasrabuddhe et al., 2004). LdACT appears to have a critical concentration three to

four fold lower than conventional actins and only forms actin bundles, individual

filaments are not observed during in vitro polymerization (Mizuno et al., 2002).

Giardia intestinalis encodes an extremely divergent actin (giActin) and the parasite

genome lacks all canonical actin-binding proteins (Paredez et al., 2011).  Purified giActin

was shown to form filaments during in vitro polymerization, some filaments of

conventional diameter and also those of half this diameter were observed suggesting that

in some cases, individual protofilaments were formed (Paredez et al., 2011).  Overall the

filaments appeared to be shorter and more curved than rabbit actin filaments polymerized

under the same conditions. Interestingly, giActin appears to be resistant to
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depolymerization by conventional agents such as CytD or LatB, potentially due to

divergent residues in the regions these drugs are known to interact with actin (Paredez et

al., 2011).  Knockdown of giActin resulted in numerous defects within the parasite

including abnormal cell morphogenesis, as well as disruption of membrane trafficking

and cytokinesis (Paredez, 2011).

Ciliates

Sequence divergence has also been observed in Karyorelictean, Heterotrich,

Listostome (Kim et al., 2004) and Hypotrich (Perez-Romero et al., 1999) ciliate actins.

However, microinjection of rhodamine-labeled phalloidin into the organism allowed

visualization of label within the cell and some localization to filamentous structures

within bundles (Kersken et al., 1986).  Actin is not an abundant protein in these

organisms and tubulin may be more involved in cellular processes allowing actin to

evolve at a higher mutation rate and potentially take on novel functions.  This is

supported by the fact that although ciliate actins are quite unconserved in terms of

sequence, ciliate tubulins are much more conserved with conventional tubulin (Villalobo

et al., 2001).

Sequence analysis of Tetrahymena actins have also revealed many substituted

residues (Cupples and Pearlman, 1986) and actins are not highly conserved among

species T. thermophila and T. pyriformis (Hirono et al., 1987).  Along with PACTII,

Tetrahymena actin is the least conserved known (Wesseling et al., 1988).  T. pyriformis

actin polymerizes in vitro, is dependent on cation and binds myosin but attempts to

visualize the actin using phalloidin have failed and no inhibition of DNase I binding was
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observed (Hirono et al., 1989).  Tetrahymena actin does copolymerize with skeletal

muscle actin but there is reduced binding with muscle alpha-actinin and no binding with

muscle tropomyosin (Hirono et al., 1990).

Bacteria and Plants

Bacteria have extremely divergent actin homologs including MreB and ParM.  ParM,

a bacterial actin homolog that plays a role in plasmid segregation, exhibits dynamic

instability in a manner similar to tubulin (Garner et al., 2004), although it is regulated by

ATP hydrolysis rather than GTP.  MreB plays a role in maintaining cell shape of E. coli

(Doi et al., 1988) and has been shown to be capable of forming filaments in vitro

although these appear to be single helices rather then conventional double helices (Jones

et al., 2001).  There is some speculation that MreB may form more conventional helices

in vivo due to interaction with other proteins, while it only forms linear polymers on its

own (Shaevitz and Gitai, 2010).

Plant actins have also been shown to be highly monomeric and lack an equilibrium

between monomers and filamentous actin (Staiger and Blanchoin, 2006). Maize and field

poppy only polymerize 5-10% of their actin (Gibbon et al., 1999; Snowman et al., 2002)

while tobacco only polymerizes 1-2% of its actin (Staiger and Blanchoin, 2006).

Regulation of Apicomplexan Actin Polymerization by Actin-binding Proteins

Many proteins are involved in regulation of actin filamentation in conventional

systems (Pollard and Borisy, 2003).  Because T. gondii actin diverges from conventional

actin and is critical for gliding motility, one might postulate that polymerization of these
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filaments is a highly regulated process.  However, searches of the T. gondii genome

reveal that it contains far fewer actin-binding proteins than are found in other systems.

The only conventional regulatory proteins that are found include:  the monomer-binding

proteins profilin, actin depolymerizing factor (ADF), and cyclase-associated protein

(CAP), as well as formins, but without a highly conserved FH1 domain, coronin, capping

protein, toxofilin, and actin-like proteins (Baum et al., 2006a; Schüler and Matuschewski,

2006).

Profilin

Profilin is a small actin-binding protein that is essential in all eukaryotes in which it

has been studied (Witke, 2004).  It has been shown to bind monomeric actin and to

facilitate nucleotide exchange resulting in transition from ADP-actin to ATP-actin

(Figure 2).  Nucleotide exchange prepares the actin monomer for addition to the growing

filament.  When profilin is bound to the monomer it also aids in inhibiting the hydrolysis

of ATP-bound actin allowing the monomers to maintain a high affinity for addition to the

filament (Witke, 2004).  Profilin binds directly to actin monomers but utilizes formin

proteins for interaction with the growing actin filament (Figure 2).

Profilin homologs have also been identified in apicomplexans, however, they have

low sequence conservation with profilins characterized in other systems (18-24%)

suggesting a divergent function (Kucera et al., 2010). Conditional knockouts of T. gondii

profilin (TgPRF) were made in the parasite using the tetracycline-transactivator system.

While intracellular growth and replication were unaffected, gliding, invasion and egress

were impaired (Plattner et al., 2008).  Additionally, if the profilin depleted parasites were
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used to infect animals, there was complete loss of parasite lethality as all the animals

survived.  Plasmodium profilin (PfPFN) also appears to be essential as it cannot be

knocked out in the parasite red blood cell stages (Kursula et al., 2008).  PfPFN and

TgPRF must have somewhat similar functions as PfPFN can be used to complement the

defects of the TgPRF depletion (Plattner et al., 2008). Additionally, P. berghei profilin

(PbPFN) deletions can be complemented with human profilin (HsPFN1) (Kursula et al.,

2008), but conversely TgPRF cannot complement depletion of yeast profilin (ScPRF)

(Plattner et al., 2008).

Biochemical analysis was also performed to determine if TgPRF, PfPFN and CpPRF

(from C. parvum) had behaviors consistent with canonical profilins.  Filament growth at

the barbed and pointed ends was monitored as well as steady state assembly using free

and gelsolin capped ends.  No growth was recorded at the pointed ends when the barbed

ends were capped but enhancement of polymerization was seen at free barbed ends,

consistent with conventional profilin function.  At steady state, if the barbed end was

capped, filament depolymerization was observed suggesting actin monomers were

sequestered (Plattner et al., 2008).  These assays were used to calculate dissociation

constant (Kd) of 5µM for TgPRF, 8.7 µM for CpPRF and 26 µM for PfPFN (Plattner et

al., 2008).  These Kd are higher than more conventional profilins, for example,

Acanthamoeba profilin binds amoeba actin with a Kd of 1 µM (Vinson et al., 1998).

Sedimentation analysis also demonstrated that PfPFN sequesters actin monomers and

bound polyproline sepharose, although both activities were performed less efficiently

than HsPfn1 (Kursula et al., 2008).
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Crystal structures have been solved for TgPRF and PfPFN (Kucera et al., 2010;

Kursula et al., 2008).    The PfPRF structure was also solved in conjunction with a

polyproline peptide. The C-terminal helix within conventional profilin contributes to

interaction with polyprolines, however the PfPFN interaction with polyproline is

mediated by an N-terminal tyrosine.  Contributions from the C-terminal helix, plays a

role in the interaction.  The structural folds for both PfPFN and TgPRF look like

canonical profilins, however, the apicomplexan profilins contain a unique minidomain

containing an acidic loop followed by a beta-hairpin.  The acidic loop is slightly longer in

PfPRF (Kursula et al., 2008) but more acidic in TgPRF (Kucera et al., 2010).

Additionally, the side chains contributed from actin for profilin binding appear to be

conserved while the side chain contributions from profilin for this interaction are not.

Studies with TgPRF demonstrated decreased nucleotide exchange on rabbit actin and

weak binding with a Kd of 13.9 +/-5.0 µM (Kucera et al., 2010).  The minidomain is

located within the binding region, diverging from conventional actins and potentially

impacting the nucleotide exchange.  However, if this hairpin region is deleted, even

weaker binding is observed with a Kd of >150 µM (Kucera et al., 2010).

Another interesting feature of TgPRF is that it has been identified as the ligand for

toll-like receptor 11 (TLR11) leading to interleukin-12 (IL-12) production (Yarovinsky et

al., 2005). T. gondii depeleted for profilin does not induce the TLR11 dependent IL-12

response and when these conditional knockouts are complemented with PfPRF, the

parasites still do not elicit an IL-12 response (Plattner, 2008).   Mutants with TgPRF

demonstrate the acidic loop is needed for TLR11.  If the beta-hairpin and acidic loop are

deleted, there is no IL-12 secretion (Kucera et al., 2010).  However, if these features are
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added to ScPRF, this protein can now activate TLR11.  Replacing the TgPRF loop from

C. parvum, which has only two amino acid differences, results in wildtype activation and

replacement with the loop from P. falciparum still results in activation but produces

lower levels of IL-12 (Kucera et al., 2010).

Formin

Formins are actin-binding proteins that accelerate de novo actin nucleation, alter the

elongation and depolymerization rate of actin filaments and prevent barbed end capping

by capping proteins (Higgs, 2005).  Traditionally, formins contain a FH2 domain that

interacts with the actin filament, FH1 domain that bind to monomeric profilin for

recruitment to the growing filament and diaphanous autoinhibitory domains (DAD) for

autoregulation (Kovar, 2006) (Figure 2).  The FH2 domain is approx 400 residues and

forms homodimers to interact with the actin filament.  The FH2 domain is necessary and

sufficient to nucleate actin.  It is predicted that each formin subunit interacts with one

actin monomer and then steps along as the filament elongates.  FH1 domains contain

polyproline stretches that are involved in profilin/actin recruitment.  Formin interaction

with profilin increases the rate of barbed end nucleation 5-10 fold (Kovar, 2006).

However, of these components, apicomplexans contain FH2 domains but have degenerate

FH1 domains, PfFRM1 has two pairs of proline residues while PfFRM2 has two proline

stretches, further evidence that the role of profilin in these organisms may act differently

than those from other eukaryotes (Schüler and Matuschewski, 2006).  Additionally, the

apicomplexan formins do not have Rho-GTPase domains or DAD for autoregulation

(Schüler and Matuschewski, 2006).
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T. gondii expresses three formins, TgFRM1, TgFRM2, TgFRM3 and P. falciparum

also expresses three formins, PfFRM1, PfFRM2 and MISFIT, although the third formin

from each organism has not yet been examined for a role in actin nucleation.  PfFRM1

and PfFRM2 are both expressed during the erythocyte stage but are differentially

expressed.  PfFRM1 is expressed later, around 40-48 hours into the cycle while PfFRM2

is most highly expressed around 24 hours. Incidentally, PfPFN expression peaks with

PfFRM1 and is reduced during PfFRM2 expression.  Both PfFRM1 and TgFRM1

localize at the apical tip of the parasite as well as colocalize with the moving junction

marker RON4, whereas PfFRM2 had a more cytoplasmic localization (Baum et al.,

2008). It remains to be determined whether formin interaction with actin occurs at the

apical tip then allowing actin filaments to move along parasite via myosin or if the

interaction occurs at the moving junction as filaments are needed for gliding motility.

Pull-down assays demonstrate that the FH2 domains of PfFRM1 and PfFRM2 do

associate with heterologous chicken skeletal muscle actin and modeling of these dimers

revealed that the primary interfaces that interact with conventional actins are conserved

(Baum et al., 2008). Biochemical assays were used to examine the ability of PfFRM1 and

PfFRM2 to nucleate chicken skeletal muscle actin and both formins stimulated actin

polymerization, although FRM2 was a less potent nucleator.  Total internal reflection

fluorescence microscopy was also used to show barbed end nucleation activity, and the

results were suggestive of a mechanism of processive association where the formin stays

associated with the barbed end as the filament grows.

Promoter exchange experiments within T. gondii were used to demonstrate that

TgFRM1 is essential for T. gondii to undergo gliding and invasion.  Pull-down assays
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also revealed interaction between the formin FH2 domains and TgACTI.  Expression of

dominant negative mutants of the FH2 domains demonstrate that both TgFRM1 and

TgFRM2 are required for gliding motility and invasion (Daher et al., 2010).  Biochemical

analysis also revealed that when combined with chicken muscle actin, both formins

exhibit the properties of potent actin nucleators (Daher et al., 2010). The contribution of

TgPRF to the TgFRM mediated nucleation remains to be determined but it has been

shown that a peptide of the TgFRM2-FH1 (MPPPPPPGLTP) does not bind to TgPRF

(Kucera et al., 2010).

Actin Depolymerizing Factor

Members of the actin depolymerizing factor (ADF)/cofilin superfamily play a role in

monomer sequestering, filament severing, and enhancement of depolymerization from

the pointed end.  The severing mechanism increases filaments ends and increases the rate

constant for dissociation from ends (Pollard et al., 2000).  The ADF/cofilin family of

proteins is often regulated by phosphorylation but apicomplexans are lacking the

conventional kinases involved in this process, LIM or TES kinase.  Recombinant TgADF

was initially shown to bind heterologous actin monomers and aid in depolymerizing actin

filaments (Allen et al., 1997).  Additionally, TgADF was localized below the plasma

membrane.  More extensive biochemical analysis of TgADF reveals that it has only weak

severing activity on both rabbit actin and TgACTI (Mehta and Sibley, 2010).  TgADF

binds to TgACTI and negatively impacts polymerization suggestive of a sequestering

mechanism.  TgADF also acts to inhibit nucleotide exchange on both rabbit actin and

TgACTI (Mehta and Sibley, 2010).  Combined these results show an unconventional role
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for TgADF where its mechanism in T. gondii is to sequester actin monomers rather than

to sever preformed actin filaments.  Conditional knockdowns of TgADF have a dramatic

impact on the ability of the parasite to undergo gliding motility (Mehta and Sibley, 2011).

These parasites displayed aberrant forms of both circular and helical motility and a

reduction in the speed of both forms of motility.  This likely led to the phenotype of

invasion and egress defects exhibited by the ADF-depleted parasites.  Strikingly, longer

actin filaments were visualized within the ADF-depeleted parasites demonstrating a role

for TgADF in regulation of TgACTI filament formation (Mehta and Sibley, 2011).

PfADF1 has also been shown to bind G-actin, not to have severing activity and it

does not enhance depolymerization, instead it slightly enhances nucleotide exchange

from ADP-actin to ATP-actin (Schuler et al., 2005), differing from the functions seen for

TgADF.  Additionally, a second ADF in Plasmodium, PfADF2, appears to play a role in

transitioning from the ookinete life stage to oocyst as well as sporozoite transformation to

the infectious stage (Doi et al., 2010).

Capping protein

Capping protein is a stable heterodimer of α and β subunits that binds to the barbed

ends of actin filaments to cap the end, inhibit filament growth and prevent monomer

dissociation (Cooper and Sept, 2008).  The only apicomplexan capping protein to be

examined thus far is that from Plasmodium.  PfCPβ was initially identified in a screen for

genes that are upregulated in salivary gland P. falciparum sporozoites.  The function of

CPβ, along with CPα, were then examined in the P. berghei system.  Using heterologous

non-muscle β actin, it was demonstrated that the presence of the CP heterodimer leads to
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the formation of shorter actin filaments than those formed in its absence, showing these

proteins function as canonical capping proteins (Ganter et al., 2009).  Knockouts of

PbCPβ had no impact on the erythrocytic portion of the parasite life cycle but these

knockout parasites showed reduced ookinete motility.  Additionally, sporozoites did not

have proper forward motility and as a result, there was no sporozoite transmission to the

mammaliam host from the mosquito (Ganter, 2009).

Coronin

Coronin is a bundling and crosslinking protein that binds F- actin (ATP and ADP-Pi

bound).  It has been shown to regulate Arp2/3 binding to filaments in order to mediate

actin assembly, although in the absence of filaments it appears to negatively regulate

Arp2/3 (Gandhi and Goode, 2008).  Coronin also plays a role in protecting actin

filaments from cofilin-mediated actin disassembly.  The net effect of its function is to

protect newly formed actin filaments and enable filament expansion (Gandhi and Goode,

2008).  Coronin has been identified within the apicomplexans, including Toxoplasma,

and examination of the Plasmodium coronin revealed it contains 3 WD40 repeats

identifying it into this class of proteins and has been shown to cosediment with

filamentous rabbit muscle actin (Tardieux et al., 1998).  The Plasmodium protein also

cross reacts with an antibody against coronin in Dictyostelium discoideum further

verifying it as a coronin (Tardieux et al., 1998).  Coronin could play a regulatory role in

apicomplexan parasite by acting to stabilize F-actin.
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CAP

Adenylate cyclase associated protein (CAP) is a G-actin binding protein that plays a

role in filament turnover and recycling of actin monomers (Paavilainen et al., 2004).  The

CAP proteins found within the apicomplexans are short and only have a conserved C-

terminal domain which binds to actin, while they are missing the N-terminal adenylate

cyclase binding domain and proline-rich domain traditionally found in CAP proteins

(Baum et al., 2006a).  In Cryptosporidium, CAP is a dimer forming protein that binds G-

actin and sequesters it from polymerization (Hliscs et al., 2010).  Knockouts of CAP in P.

berghei demonstrate the protein is not required in the blood cell stage, however appear to

be required for development into oocysts within the mosquito midgut (Hliscs et al.,

2010).

Actin-like Proteins

Actin-like proteins (ALPs) have been classified as actin related proteins (Arps) that

are unique to the Apicomplexa.  The members of the phylum contain between 8-10 ALPs

(Gordon and Sibley, 2005).  TgALP1 forms a phylogentic branch between traditional

Arp2 and Arp3 proteins that are absent within apicomplexan genomes.  The phylogentic

placement of ALP1 gave the appearance that it may potentially act as an actin nucleator

within the apicomplexans (Gordon and Sibley, 2005).  However, rather than playing a

role in actin polymerization, TgALP1 appears to have a role in T. gondii cell division

(Gordon et al., 2008).  Localization of ALP1 is seen with the IMC early in its formation

during endodyogeny, even prior to early markers such as IMC-1.  Additionally,



40

overexpression of ALP1 disrupted daughter cell formation (Gordon et al., 2008).

TgALP1 was also identified to exist in two states, as a soluble protein with the cytoplasm

as well as a part of a high molecular weight complex.  The presence of these two states

likely represents recycling from a soluble state to interaction with the IMC (Gordon et al.,

2010).

Toxofilin

Toxofilin is an actin-binding protein unique to T. gondii.  Toxofilin binds muscle G-

actin, sequesters monomers to inhibit actin polymerization as well as slowing down

muscle actin filament disassembly by capping filament ends (Poupel et al., 2000).

Injection of toxofilin into mammalian cells resulted in stress fiber disassembly.  Toxofilin

was also shown to bind G-actin from T. gondii lysates and co-sediments with T. gondii F-

actin.  Localization patterns show toxofilin diffuse the throughout cytoplasm but also

localizing at the apical end just prior to egress (Poupel et al., 2000).  Structural analysis

of the protein demonstrated an interaction of toxofilin with an antiparallel actin dimer in a

1:2 toxofilin to actin binding ratio (Lee et al., 2007).  It was also shown to inhibit

nucleotide exchange on actin, which may be due to the dimer formation blocking the

ability of the nucleotide to dissociate.

Despite the results that toxofilin interacts with actin within the parasite, this

protein has been found in the rhoptries and is likely secreted into the host (Bradley et al.,

2005).  As a result, it is more likely to modulate host actin and less likely to play a role in

regulating TgACTI.  Toxofilin was also identified as a secreted protein during infection

in a FRET-based assay (Lodoen et al., 2010).  Furthermore, a knockout of toxofilin had
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no effect on growth, invasion, motility or egress.  Additionally, infections of host cells

with the toxofilin knockout demonstrated no deleterious impact on the ability of

macrophages to migrate or perform phagocytosis (Lodoen et al., 2010).  Hence, the

definite role of toxofilin in T. gondii infection remains to be determined.

Aim and Scope of Thesis

Despite the fact that apicomplexan parasites produce unusually short filaments, they

are still able to glide at a speed of about 1 µm/sec.  Moreover, highly stable filaments

have a toxic effect on the gliding process.  These seemingly contradictory findings raise

the questions of why parasites assemble such short filaments and if they are only capable

of forming short filaments. One of the central questions of this thesis was to uncover

whether formation of short filaments is an inherent property of the apicomplexan actins.

The requirement for short filaments in the gliding motility mechanism was further

investigated through mutational analysis of divergent residues within Toxoplasma actin.

The highly unpolymerized nature of apicomplexan actins also reveals a large

requirement for regulation of filamentous actin. It has been suggested that shorter

filaments allow for faster polymerization and depolymerization and that rapid

depolymerization may occur at the rear of the parasite where the actin can be sequestered

until required for motility (Schmitz et al., 2005).  Actin-binding proteins have now been

identified with the genomes of apicomplexan parasites and studies have been undertaken

to reveal their functions.  However, due to the difficulties of apicomplexan actin

purification, these studies have largely relied on the use of heterologous actin.  Because

of the divergent nature of these actins, it is likely there will be differences in the
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interactions of actin-binding proteins with apicomplexan actin as compared to more

conventional actins.  The present thesis aims to uncover the role of actin-binding proteins

from T. gondii, specifically TgPRF, TgFRM1 and TgFRM2, and their interactions with

TgACTI to determine if these proteins undergo canonical roles or have evolved a more

specialized function to regulate parasite actin.

Examining the underlying structural instabilities of actin in apicomplexans as well as

regulation of the filamentation process will improve our understanding of the ability of

apicomplexan parasites to enter into host cells, spread to other cells and establish

subsequent infection.  Uncovering critical elements of this process will enable a better

understanding of apicomplexan biology including cell entry and spread and potentially

provide a target unique for use to block infection.  Due to conservation of gliding motility

in apicomplexan parasites, examining how the gliding motility process is regulated in

Toxoplasma will also have a broader impact on our understanding of actin-based motility

in eukaryotic cells.
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Figure 1.  T. gondii cytoskeleton and proteins involved in gliding motility.

(A) T. gondii cytoskeletal components and apical complex.  (B) Zoom in of glideosome

proteins beneath the T. gondii plasma membrane that play a role in the process of gliding

motility.
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Figure 2.  Mechanism of formin and profilin mediated enhancement of actin

polymerization.
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Chapter II

Divergent, Unstable Actin Filaments in Apicomplexan Parasites are Rescued by

Phalloidin
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The first complete draft of this chapter was written by KMS. Comments from David
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Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD.  Evolutionarily

Divergent, Unstable Filamentous Actin is Essential for Gliding Motility in Apicomplexan

Parasites.
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ABSTRACT

Apicomplexan parasites, including Toxoplasma and Plasmodium, invade host cells

using a unique gliding motility mechanism that is critically dependent on the

polymerization of their own actin.  However, previous studies suggest that parasite actins

form only short filaments, which contrasts polymerization of more conventional actins.

Why parasite actins form short filaments and how this affects their ability to undergo

gliding motility remain unresolved.  Recombinant Toxoplasma (TgACTI) and

Plasmodium (PfACTI and PfACTII) actins were purified using a baculovirus expression

system.  When the parasite actins were polymerized in the presence of low levels of

phalloidin, only short filaments were observed, although PfACTII filaments were slightly

more prevalent.  In contrast, when equimolar levels of phalloidin were included during

polymerization, long filaments were formed by all three actins.  Phalloidin stabilization

also impacted the parasite actin filament morphology, ability to sediment and increased

the extent of polymerization.  Parasite actins contain a conserved phalloidin binding site

as determined by molecular modeling and computational docking, yet differ in nearby

residues that are predicted to impact filament stability.  Our studies document that

parasite actins do not polymerize robustly in vitro.  However, in the presence of the

stabilizing agent phalloidin, they are capable of robust polymerization that is more

consistent with conventional actin polymerization.  The lack of long filament formation

by parasite actins suggests that inherent properties within the actin itself contribute to

polymerization, which is likely a critical adaptation for rapid turnover needed for gliding

motility and host cell invasion.
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INTRODUCTION

Apicomplexan parasites are obligate intracellular protozoan pathogens of humans and

animals (Cowman and Crabb, 2006; Sibley, 2004).  Two notable members of this phylum

are Toxoplasma gondii, an opportunistic pathogen and model for the phylum and

Plasmodium falciparum, the cause of malaria, a devastating global disease.  The ability of

these parasites to enter into host cells is essential for their development.  However, rather

than utilizing host cell machinery to power entry, apicomplexans employ a unique gliding

motility mechanism that is dependent on polymerization of their own actin into filaments

(Dobrowolski and Sibley, 1996).  Gliding and cell invasion also depend on secretion of

adhesins from the apical end that make contacts with receptors on the host cell surface

(Cowman and Crabb, 2006; Sibley, 2004).  Beneath the parasite membrane, the

cytoplasmic tails of the adhesins are linked to actin filaments via interaction with

aldolase, which has been shown to interact with both the adhesins MIC2 in Toxoplasma

(Jewett and Sibley, 2003) and TRAP in Plasmodium (Buscaglia et al., 2003), thus

bridging these adhesions to actin.  Non-processive myosin motors anchored in the inner

membrane complex of the parasite (Gaskins et al., 2004) have been shown to be essential

(Meissner et al., 2002) and are believed to translocate actin filaments rearward along the

cell surface, directing movement of the adhesin.  The culmination of this process is

forward motion of the parasite and entry into host cells.

     Actin polymerization is a critical component of apicomplexan motility and cell

invasion but, paradoxically, parasite actins have been shown to exist mostly in an

unpolymerized state, as defined by sedimentation at 100,000g (Schmitz et al., 2005;

Wetzel et al., 2003).  This is in contrast to mammalian, yeast and amoeba cells, in which
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the majority of actin is found in a filamentous form (Pollard et al., 2000).  This

discrepancy suggests that polymerization of parasite actin is tightly regulated and that

actin filaments may be very transient.  Agents that stabilize actin filaments, such as the

drug jasplakinolide, disrupt host cell invasion (Poupel and Tardieux, 1999).

Jasplakinolide treatment also causes parasites to become hypermotile, however, they lose

directionality and no longer proceed with forward movement (Wetzel et al., 2003).  These

findings demonstrate that highly stabilized actin filaments have a toxic effect on the

gliding process.  Fluorescent derivatives of phalloidin, a cyclic peptide that binds to and

stabilizes filamentous actin, are often used to visualize conventional actin filaments from

purified protein as well as fixed cells (Small et al., 1999).  However, when fluorescent

phalloidin was used to attempt to stain actin filaments within Toxoplasma or the closely

related apicomplexan parasite, Cryptosporidium, no filaments were observed, suggesting

phalloidin may be unable to bind parasite actins or that long, stable filaments do not exist

at steady state (Dobrowolski and Sibley, 1996; Forney et al., 1998; Shaw and Tilney,

1999).

Actin is an essential protein in eukaryotic cells and its sequence is highly conserved

among organisms (Pollard et al., 2000).  T. gondii contains a single actin gene, TgACTI,

(Dobrowolski et al., 1997), while P. falciparum contains two actin genes, PfACTI, that is

closely related to TgACTI and PfACTII, which is divergent (Wesseling et al., 1988).

Transcriptional analysis demonstrates that PfACTI is expressed throughout the parasite

life cycle while PfACTII is most highly expressed in the sexual stages (Wesseling et al.,

1989).  Previous studies involving both TgACTI and PfACTI have demonstrated that

parasite actin does not readily polymerize and forms only short filaments, averaging
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around 100 nm in length (Sahoo et al., 2006; Schmitz et al., 2005; Schüler et al., 2005).

Only small foci or fragmented filaments were seen when TgACTI was incubated under

polymerizing conditions and visualized using microscopy or sedimented and subjected to

electron microscopy analysis of the pellet (Sahoo et al., 2006).  Similar filament lengths

were demonstrated for PfACTI using protein isolated by sedimenting actin filaments

from lysates (Schmitz et al., 2005), although actin binding proteins may have influenced

this result.  Alternatively expression of PfACTI in yeast (Schüler et al., 2005), resulted in

slow, inefficient polymerization forming short, punctate filaments only in the presence of

phalloidin or gelsolin.

Apicomplexan actins are divergent from vertebrate actin and yet filamentous actin is

critical for gliding motility, raising the questions of why Toxoplasma and Plasmodium

actins do not form robust filaments and what contributes to their unusual polymerization

properties.  Here, we demonstrate that phalloidin can bind to parasite actins and is

capable of rescuing the lack of parasite actin polymerization. In addition to the

phenotypic impact of phalloidin on parasite actins, the parasite actin polymerization

kinetics were also increased in the presence of phalloidin.  Collectively, these findings

reveal that although the parasite actins do not polymerize robustly on their own, they are

capable of forming longer, more conventional filaments when stabilized.  This rescue

suggests the lack of polymerization may be a result of an intrinsic property within the

actins.
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RESULTS

Sequence Comparison of TgACTI, PfACTI and PfACTII

Actins are considered to be highly conserved in structure and function.  However,

apicomplexan actins are functionally divergent from actins in yeast, animals and plants

likely due to molecular differences within the parasite actin protein sequence (Figure 1).

For example, TgACTI has only 83% sequence identity with mammalian actin while

sharing 93% identity with PfACTI (Dobrowolski et al., 1997).  In contrast, PfACTI and

PfACTII have only 79% sequence similarity to one another, which is relatively low for

actin sequences (Wesseling et al., 1988).  To visualize the shared sequence differences

between these three parasite actins, homology models were created to highlight the

substitutions within each actin.  TgACTI and PfACTI are highly similar (Figure 2A,

yellow spheres) while PfACTII is more divergent (Figure 2B).  A sequence alignment of

the parasite actins compared to more conventional actins, Saccharomyces cerevisiae

(ScACT) and Homo sapiens muscle actin also demonstrates the areas of divergence

between these actins (Figure 1).

Expression and Purification of Parasite Actins

Parasite actins were expressed in baculovirus, similar to a previous report of TgACTI

(Sahoo et al., 2006).  We set out to make recombinant protein for both PfACTI and

PfACTII to analyze them in vitro and further characterize their ability to polymerize.

While it has been shown that TgACTI and PfACTI form short filaments in vitro, the

ability of PfACTII to polymerize has not yet been studied.  N-terminally HIS6-tagged

TgACTI, PfACTI and PfACTII were expressed within Hi5 insect cells and subsequently
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purified using Ni-resin chromatography.  Previous studies have shown that the presence

of this tag does not appreciably alter polymerization of TgACTI (Sahoo et al., 2006). The

yield and purity of the recombinant proteins were analyzed by Sypro Ruby staining of

SDS-PAGE gels (Figure 2C), which demonstrated that the parasite actins were well

expressed using this system and constituted the large majority of protein seen on the gel.

Saccharomyces cerevisiae actin (ScACT) was also purified using the baculovirus system

to serve as a control for the functionality of virally expressed actin.

Polymerization Kinetics of Parasite Actins

The kinetics of parasite actin polymerization were examined by light scattering

following addition of filamentation (F) buffer.  TgACTI did not polymerize under these

conditions (Figure 3, red), while both PfACTI and PfACTII were capable of low levels of

polymerization (Figure 3, blue and green, respectively).  These results are consistent with

the lack of filamentation reported previously (Sahoo et al., 2006; Schmitz et al., 2005;

Schüler et al., 2005). In contrast, polymerization of ScACT (Figure 3, orange) was much

more efficient, indicating that the inefficiency of parasite actin polymerization was not a

consequence of expression in baculovirus or the N-terminal tag shared by all of the

proteins.

Phalloidin Rescues Inherent Instability of Parasite Actins

It has previously been suggested that TgACTI does not bind phalloidin based on the

finding that actin filaments have never been visualized when the parasite is stained with

fluorescently labeled phalloidin (Heintzelman, 2006).  However, it has been shown that
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addition of phalloidin to TgACTI after polymerization results in stabilization of short

filaments (Sahoo et al., 2006).  To test the capability of phalloidin to bind to parasite

actin filaments and examine the ability of the actins to polymerize under stabilizing

conditions, purified actins were incubated with different amounts of phalloidin during

polymerization in F buffer. Consistent with previous reports (Poupel and Tardieux, 1999;

Shaw and Tilney, 1999), filaments were not detected for TgACTI in the presence of low

levels of fluorescently labeled phalloidin (i.e. 0.13 µM) that was added to visualize

filamentous actin (Figure 4A). Short, punctate filaments were observed when a slightly

higher level of labeled phalloidin (i.e. 0.33 µM) was added to TgACTI (Figure 4A). In

contrast, long clusters of filaments were observed when TgACTI was allowed to

polymerize in the presence of equimolar levels of unlabeled phalloidin combined with

lower levels of labeled phalloidin for visualization (i.e. 0.33 µM) (Figure 4A). A similar

dose-response to increasing phalloidin was seen for PfACTI and PfACTII, although these

actins also occasionally formed small clusters of short filaments even in low levels of

labeled phalloidin (i.e. 0.13 µM) (although rare, a representative example is shown in

Figures 4B and 4C).  Both PfACTI and PfACTII formed more abundant clusters of short

filaments in slightly higher levels of labeled phalloidin (i.e. 0.33 µM) and these were

further stabilized by equimolar unlabeled phalloidin (Figures 4B, 4C). Phenotypically,

PfACTII filaments clumped together and appeared to polymerize slightly more

extensively than the other actins.  As expected for a conventional actin, ScACT formed

long filaments regardless of the phalloidin concentration (Figure 4D) confirming that

virally-expressed actins can polymerize normally and that the results seen with the

parasite actins are not artifacts of the method of purification.
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Phalloidin-stabilized Parasite Actin Filaments Resemble Conventional Filaments

To further analyze the filaments formed by parasite actins, negative staining and

electron microscopy were used to examine ultrastructural details. Similar to the

fluorescent phalloidin assays, EM visualization of abundant parasite actin filaments

required incubation in F buffer containing equimolar phalloidin (Figure 5). When

TgACTI was incubated in G buffer, globular structures were observed that likely

represent aggregates (Figure 5A).  Similar structures were seen with TgACTI in F buffer

(Figure 5A), and short filaments were rarely observed under the conditions used (data not

shown).  Polymerization of TgACTI in F buffer with equimolar phalloidin resulted in

long filaments that often bundled together (Figure 5A).  PfACTI in G buffer also revealed

small clusters of protein and similar results were observed when the protein was

incubated in F buffer (Figure 5B).  Like TgACTI, PfACTI formed long filaments in the

presence of equimolar phalloidin (Figure 5B).  PfACTII incubated in G buffer also

formed small clusters (Figure 5C).  Despite the fluorescence microscopy data that

suggested PfACTII was capable of forming clusters even in low levels of phalloidin,

electron microscopy did not reveal formation of filaments when PfACTII was incubated

in F buffer (Figure 5C).  This may reflect instability under the conditions used for EM or

a low density of filaments.  Similar to both TgACTI and PfACTI, long, stable filaments

were formed when polymerization occurred in the presence of F buffer and equimolar

phalloidin.   Enlargement of the phalloidin stabilized filaments formed by the three

parasite actins revealed a spiral pattern of the actin helix and striations along the filament,

which are typical characteristics of conventional actin filaments (Figure 5).

When ScACT was incubated in G buffer, only small clusters of globular protein were
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observed, similar to what was seen with each parasite actin (Figure 5D).  In contrast to

the parasite actins, long filaments were observed when ScACT was incubated in F buffer.

Similar filaments were also seen when ScACT was incubated in F buffer with phalloidin.

Closer examination of these filaments revealed striations within the filaments as expected

for a conventional actin (Figure 5D). Both the parasite actins and yeast actin showed

prominent filament bundles, which are also seen in the fluorescence images mentioned

above.  Collectively, the fluorescence phalloidin microscopy and electron microscopy

studies verify that the instability of parasite actins is an intrinsic property of the protein

itself and that this instability can be overcome using a stabilization agent as seen by the

fact that polymerization is rescued by high concentrations of phalloidin.

Parasite Actins Exhibit Sedimentation Patterns that Differ from Conventional Actin

When conventional actins are polymerized and centrifuged at 100,000g, the majority

of the protein exists in long filaments and therefore sediments in the pellet (Pardee and

Spudich, 1982).  Previous studies with TgACTI and PfACTI have reported that the

proteins require higher force (i.e. 500,000g for 1 hour) for sedimentation of recombinant

TgACTI (Sahoo et al., 2006) or Plasmodium actin in lysates (Schmitz et al., 2005).  We

were interested to determine what effect the addition of phalloidin or higher force during

centrifugation would have on parasite actins.  When TgACTI was incubated in F buffer

to induce polymerization and subsequently centrifuged at 100,000g, the majority of the

protein remained in the supernatant similar to previous reports (Figure 6A).  Addition of

phalloidin at equimolar ratio shifted more TgACTI to the pellet (Figure 6A).

Centrifugation at 350,000g was sufficient to pellet the majority of TgACTI in F buffer
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even in the absence of phalloidin.  When TgACTI was polymerized in the presence of

phalloidin and subsequently centrifuged at 350,000g, there was essentially no further

sedimentation from that seen without phalloidin.  PfACTI behaved similarly to TgACTI

in responding to higher force and addition of phalloidin (Figure 6B).  PfACTII was also

found predominantly in the supernatant after polymerization and spinning at 100,000g

(Figure 6C).  While the addition of phalloidin shifted more protein into the pellet,

PfACTII was less responsive to phalloidin than the other parasite actins.  However,

spinning at 350,000g shifted the majority of PfACTII to the pellet.  Addition of

phalloidin to the reaction before the 350,000g spin did not further increase the amount of

PfACTII in the pellet.  These behaviors were not the result of baculovirus expression as

ScACT was tested under the same conditions and more than 90% of the protein was

found in the pellet regardless of the addition of phalloidin or speed of centrifugation

(Figure 6D).

Polymerization Kinetics of TgACTI are Enhanced by Phalloidin

Since microscopy with fluorescent phalloidin-binding revealed the parasite actins are

not capable of robust polymerization but can be phenotypically rescued by phalloidin to

form long filaments, we wanted to determine what effect adding the stabilizing agent

would have on the kinetics of parasite actin polymerization.  The extent of TgACTI

polymerization was monitored by ninety degree light scattering in the presence or

absence of phalloidin.  With the addition of only F buffer to TgACTI, very little change

was observed in the light scattering (Figure 7, red).  When 0.33 µM phalloidin (to mimic

the concentration used in the fluorescence phalloidin microscopy) was added with the F
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buffer, a minimal increase was observed (Figure 7, green).  However, if equimolar

phalloidin was added at the time polymerization of TgACTI was induced, the rate of

polymerization and maximum light scatter both increased dramatically (Figure 7, blue).

However, the levels of TgACTI polymerization were still less robust than what was

oberserved when polymerization of ScACTI was induced with F buffer (Figure 7,

orange).

Homology Modeling of the Phalloidin-binding Site within Parasite Actins

To investigate the molecular basis of phalloidin binding, we used structures from our

MD simulation of the muscle actin filament and performed molecular docking studies

with phalloidin (Figures 8A, 8B).  Our predicted phalloidin binding site is similar to that

reported previously (Oda et al., 2005), but also provides more precise information on

specific binding contacts that stem from the following improvements: 1) unconstrained

docking analyses were based on a new higher resolution actin filament model (Oda et al.,

2009); 2) flexible protein conformations were included by choosing multiple snapshots

from MD simulations and multiple binding sites were included within each snapshot; 3)

induced fit was accommodated by simulated annealing. Together these analyses precisely

mapped the phalloidin binding site in mammalian actin to the loop formed by residues

196-200 in the lower actin monomer, the 72-74 loop of the middle monomer, and the

285-290 loop of the upper monomer (Figure 8A). These three regions closely coincide

with those identified in previous experimental studies as important for phalloidin

interactions (Faulstich et al., 1993; Oda et al., 2005; Steinmetz et al., 1998).  Importantly,

residues including D179, Y198, S199, K284, I287 and R290, which were previously
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observed to be close to the phalloidin binding site (Oda et al., 2005) were also within 4 Å

of phalloidin in our model. Moreover, our more precise placement of the compounds

predicts maximum interaction between the Cys3-Pro(OH)4-Ala5-Trp6 ring in phalloidin

and actin residues while Leu(OH)7 in phalloidin faces out of the binding pocket and is

accessible to solvent. This orientation corresponds well with experimental studies

(Faulstich et al., 1993; Oda et al., 2005; Steinmetz et al., 1998) showing that derivatives

of phalloidin with a fluorophore linked to Leu(OH)7, bind actin filaments in the same

conformation.

Homology models for TgACTI and PfACTII were built using the muscle actin

filament obtained by simulated annealing. Docking studies were repeated using TgACTI

and PfACTII homology models and they yielded very similar conformations although the

specific amino acid contacts lying within 4 Å varied slightly between proteins. Residues

previously shown by mutational analysis to mediate phalloidin binding in yeast (Belmont

et al., 1999) (i.e. R177, D179), were conserved in all three models (Figure 8C).  Residues

R177 and D179 in mammalian actin, corresponding to R178 and D180 in parasite

TgACTI, both lie within 4 Å (Figure 8C). Six specific differences in the residues

contacting phalloidin in mammalian muscle actin vs. TgACTI and PfACTII were noted

(Figure 8C, Figure 1). Together, these differences may mediate the less efficient binding

to phalloidin observed for parasite actin filaments.
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DISCUSSION

Previous studies have shown that while apicomplexan motility relies on filamentous

actin, only short filaments are detected in vivo where a majority of actin appears to be

non-polymerized (Schmitz et al., 2005; Wetzel et al., 2003).  Consequently, we set out to

determine if this unusual behavior was due to an inherent property of the actins

themselves.  Insect cell-expressed Toxoplasma (TgACTI) and Plasmodium (PfACTI and

PfACTII) actins were used to demonstrate that after incubation in polymerization buffer,

the actins formed small fluorescent asters that only sedimented at 350,000g suggesting

they are small multimers or short filaments.  The extent of polymerization of the parasite

actins was also less robust than that of conventional actin.  However, when high levels of

phalloidin were added during polymerization, parasite actin polymerization was rescued

and longer filaments that more closely resembled conventional actins were formed.

Modeling of the phalloidin binding site within the parasite actins demonstrated it was

highly similar to the binding site in conventional actins with only subtle differences that

may explain the apparent difference in stability between the actins.

In this study, purified, recombinant TgACTI and PfACTI incubated under conditions

known to induce polymerization of conventional actins did not form long filaments as

viewed by fluorescence microscopy and detected with low levels of fluorescent

phalloidin staining.  When subjected to EM, no filaments were detected for TgACTI or

PfACTI, rather only small aggregates were observed.  Short filaments of TgACTI have

been observed through EM in previous studies (Sahoo et al., 2006) but we did not

observe any filaments in the current study, suggesting they are rarely detected.

Consistent with the lack of extensive filament formation, sedimentation analysis revealed
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that when centrifuged at 100,000g, the majority of the parasite actin did not sediment.

This is in contrast to the behavior of yeast actin, which sedimented efficiently at this

speed.  When the parasite actins were centrifuged at 350,000g, the majority of the protein

was now found in the pellet, indicating this higher speed was enough to sediment the

small filaments.  These results are consistent with previous reports investigating the

behavior of baculovirus-expressed TgACTI (Sahoo et al., 2006) and PfACTI isolated

from parasite lysate (Schmitz et al., 2005), which demonstrated that centrifugation at

500,000g was required to efficiently sediment the polymerized parasite actins.  Our

findings indicate that while TgACTI and PfACTI do undergo polymerization, they have a

very limited capacity to do so in comparison to yeast actin.

Prior to this study, PfACTII had not been purified and there were no reports about the

polymerization properties of this actin.  Transcriptional analysis demonstrates PfACTII is

upregulated in the sexual stages of the Plasmodium developmental cycle (Wesseling et

al., 1989) and therefore, it may have a different function and extent of polymerization

than PfACTI, which is expressed throughout the parasite life cycle.  In addition to the

differential expression, the amino acid sequences of PfACTI and PfACTII are divergent

from one another with only 79% similarity (Wesseling et al., 1988), also suggesting their

functions could differ.  When recombinant PfACTII was incubated with low levels of

phalloidin, it appeared slightly more capable of polymerization compared to either

TgACTI or PfACTI, however, the filaments were still shorter than what would be

expected from a conventional actin and filaments could still not be detected by EM.

Sedimentation analysis was also consistent with the lack of robust polymerization as seen

by the small percentage of actin that sedimented after centrifugation at 100,000g.  The
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finding that PfACTII appears slightly more capable of polymerization could have

potential significance in vivo if it is involved in processes that are not as prone to turnover

as is the mechanism of gliding motility.  It may be important for the parasite to contain a

more stable actin during stages of the parasite development that are non-motile, such as

the gametocyte stage when PfACTII is highly expressed.

In order to determine if the low level of polymerization by parasite actins could be

rescued, phalloidin was added to the polymerization reaction.  Interestingly, only when

equimolar levels of phalloidin were added, long filaments that closely resembled

conventional actin were visualized by fluorescence microscopy.  When these phalloidin-

stabilized filaments were viewed by electron microscopy, the morphology of the

filaments was similar to conventional actins.  When the phalloidin-stabilized filaments

were centrifuged at 100,000g, the majority of the protein was now found in the pellet

suggesting that the filaments had sufficient mass to sediment. The extent of

polymerization by light scattering was also increased in the presence of phalloidin.  The

phalloidin rescue suggests there may be a defect in monomer association limiting

filament formation  or alternatively differences in monomer turnover causing filaments to

assemble and disassemble more rapidy.  The phalloidin binding site sits at an interface

between protomers, and therefore phalloidin may reverse either of these potential effects

by stabilizing monomer-monomer contacts within the filament.

     Despite previous reports of failed attempts to visualize actin filaments within parasites

by staining with phalloidin (Cintra and De Souza, 1985; Dobrowolski et al., 1997; Shaw

and Tilney, 1999), the results of this current study demonstrate that purified recombinant

actin from Toxoplasma and Plasmodium are in fact capable of binding phalloidin.  The
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finding that polymerization of the parasite actins in the presence of phalloidin allows

visualization of long filaments suggests that the lack of staining from previous studies

was not due to the inability of phalloidin to bind but rather was likely due to the low level

of polymerization, which would be difficult to detect by microscopy.

Having demonstrated that parasites actins are capable of binding phalloidin, we used

molecular docking to identify the phalloidin binding site and pinpoint residues important

for this interaction.  Initially, docking was used to model the phalloidin binding site

within mammalian actin.  The binding site was in agreement with that previously

determined (Faulstich et al., 1993; Oda et al., 2005; Steinmetz et al., 1998) but revealed

additional details about the orientation of the compound and potent ion contacts between

side groups and actin residues.  Subsequently, this model was used to compare the

binding site for TgACTI and PfACTII.  Most residues previously determined to be

important for phalloidin binding, including R177 and D179, which extend into the

binding pocket and phalloidin binding is disrupted when they are mutated (Belmont et al.,

1999), are conserved among all actins compared.  It is interesting to note that most of the

residues of the three actins that are predicted to interact with phalloidin are also

conserved in Tetrahymena actin which is reported not to bind phalloidin (Hirono et al.,

1989).  However, the levels of phalloidin used in this prior study were below what was in

the current study and it is possible that higher levels would be required for phalloidin

binding to Tetrahymena actin.  Noteably, Tetrahymena shows diversity among some of

the residues that also differ when comparing parasite and mammalian actin.

Despite the highly conserved nature of the actin sequence, subtle differences are

present in the residues interacting with phalloidin among the three actins studied here that
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may affect binding and thus explain why high molar amounts of phalloidin are needed to

stabilize the parasite actins.  One potentially important predicted difference is M269 in

muscle actin, which is changed to K270 and R270 in Toxoplasma and Plasmodium,

respectively. The resulting extra positive charge introduced into the parasite phalloidin

binding site could affect interaction with the drug.  Interestingly, this residue change has

also been suggested to affect stability of the actin filament by introducing a destabilizing

force on the actin filament due to its location at the end of the hydrophobic plug region of

the actin monomer (Sahoo et al., 2006), which is thought to be important for monomer-

monomer interaction and filament stability (Chen et al., 1993).  The other important

region that differs within the phalloidin binding site of mammalian and parasite actins is

the serine at position 200 in mammalian actin, which is glycine or threonine in TgACTI

or PfACTII, respectively.  In the case of mammalian actin this residue is within hydrogen

bonding distance to Pro(OH)4 of the phalloidin ring and actin residue D179. In the case

of the glycine substitution in TgACTI and the threonine in PfACTII, this hydrogen

bonding with Pro(OH)4 is precluded due to steric hindrances.  The role that these

substitutions play in the inherent instability has not been tested directly but if mutation of

these residues to those found in conventional actins rescues the ability of the parasite

actins to form long filaments in the absence of a stabilizing agent, this would provide a

molecular explanation for why these actins are short and unstable.

It is apparent that the apicomplexan actins functionally diverge from conventional

actins as seen by low levels of in vitro polymerization in the present study.  Combined

with the data that parasite actins are rescued by high concentrations of phalloidin, these

results support a model suggesting intrinsic properties are largely responsible for
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controlling polymerization of parasite actins. The intrinsic properties of actins may be

more significant in controlling dynamics in apicomplexan parasites since they contain

only a streamlined set of actin-binding proteins, including profilin, actin depolymerizing

factor (ADF), cyclase associated protein (CAP), and capping protein (Baum et al., 2006;

Schüler and Matuschewski, 2006).

It has been suggested that shorter filaments allow for faster polymerization and

depolymerization and that rapid depolymerization may occur so the actin can be

sequestered until required for motility (Schmitz et al., 2005).  Our studies are consistent

with inherent properties of parasite actins contributing to this behavior.  Addition of

phalloidin in vitro dramatically changes the behavior of the actins to form long filaments.

However, phalloidin is not membrane permeable, precluding its use for examination of

filaments in live cells.  When live parasites are treated with jasplakinolide, another actin

stabilizing agent, they are no longer capable of invading host cells (Shaw and Tilney,

1999).  The jasplakinolide-treated parasites contain long actin filaments at both poles and

become hyper-motile and no longer undergo productive motility (Wetzel et al., 2003).

These findings imply that rapidly recycling filaments are actually required for gliding

motility and stabilizing these filaments is toxic to the parasite.  The demonstration that

apicomplexan actins are capable of forming long, stable filaments provides more insight

into the mechanism of regulation of the short parasite actin filaments that have previously

been observed and enhances the knowledge of actin dynamics in apicomplexans.
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MATERIALS AND METHODS

Plasmid Constructions and Transfection

Recombinant Plasmodium and yeast actins were expressed in baculovirus, similar to

TgACTI as previously described (Sahoo et al., 2006).  Recombinant viruses were created

for the Plasmodium actins by amplification from 3D7 strain of Plasmodium falciparum

cDNA using primers 5’-CTAGTCTCGAGAATGGGAGAAGAAGTAGTTCAA-3’

(forward) and 5’-CTAGTGAGCTCTTAGAAACATTTTCTGTGGACAATAC-3’

(reverse) for PfACTI and 5’-CTAGTCTCGAGGATGTCTGAAGAAGCTGTTG-3’

(forward) and 5’-CTAGTGAGCTCTTAGAAACATTTTCTATGAACAATACTAGG-3’

(reverse) and cloned into the viral transfer vector pAcHLT-C (BD Biosciences

Pharmingen, San Jose, CA).  The coding sequence of ScACT was amplified from

Saccharomyces cerevisiae cDNA using primers 5’-CTAGTCATATGCATGGATTCTG

AGGTTGCT-3’ (forward) and 5’-CTAGTGAATTCTTAGAAACACTTGTGGTGAA

CGAT-3’ (reverse) and cloned into the viral transfer vector pAcHLT-C (BD Bioscience

Pharmingen).  Cotransfection of the pAcHLT-C vectors, containing the respective actins,

with linearized baculogold genomic DNA into Sf9 insect cells (BD Biosciences

Pharmingen), was used to obtain recombinant virus, according to manufacturer’s

instructions.

Parasite actin homology models and alignment

Homology models for TgACTI, PfACTI, and PfACTII sequences were built on the ADP-

actin crystal structure (1J6Z) (Otterbein et al., 2001) using Modeller (Martí-Renom et al.,

2000).  Homology models were aligned and visualized using VMD (Humphrey et al.,
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1996).  Protein sequences for actins from Homo sapiens (muscle α-actin), gi: 6049633;

Saccharomyces cerevisiae, gi: 38372623; Toxoplasma gondii, gi: 606857; Plasmodium

falciparum ACTI, gi: 160053; and Plasmodium falciparum ACT2, gi: 160057; were

aligned using DNASTAR Lasergene MegAlign v7 and modified using Adobe Illustrator

v10.

Actin expression and purification

Hi5 insect cells were maintained as suspension cultures in Express-Five SFM media

(Invitrogen).  Hi5 cells were harvested at 2.5 days postinfection with recombinant virus

and lysed in BD BaculoGold Insect Cell Lysis Buffer (BD Biosciences Pharmingen)

supplemented with 5 mM CaCl2, 5 mM ATP, 5 mM NaN3, and protease inhibitor cocktail

(E64, 1 µg ml-1 AEBSB, 10 µg ml-1; TLCK, 10 µg ml-1; leupeptin, 1µg ml-1).  His-tagged

actins were purified using Ni-NTA agarose (Invitrogen).  After binding for 2 h, the

column was washed sequentially with G actin buffer without DTT (G-DTT buffer) (5

mM Tris-Cl, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP), then G-DTT buffer with 10 mM

imidazole, G-DTT buffer with 0.5 M NaCl, G-DTT buffer with 0.5 M KCl buffer, and

finally G-DTT buffer with 25 mM imidazole.  Proteins were eluted with serial washes of

G-DTT buffer containing 50 mM, 100 mM, and 200 mM imidazole, pooled together and

dialyzed overnight in G actin buffer containing 0.5 mM DTT with 100 µM sucrose.

Purified recombinant actins were clarified by centrifugation at 100,000g, 4°C, for 30 min

using a TL100 rotor and a Beckman Optima TL ultracentrifuge (Becton Coulter) to

remove aggregates.  Purified proteins were resolved on 12% SDS-PAGE gels followed

by SYPRO Ruby (Molecular Probes) staining, visualized using a FLA-5000
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phosphorimager (Fuji Film Medical Systems), and quantified using Image Gauge v4.23.

Purified actins were stored at 4°C and used within 2-3 days.

Fluorescence microscopy

Purified recombinant actins were clarified by as described above and incubated (5 µM) in

1/10th 10X F buffer (500 mM KCl, 20 mM MgCl2, 10 mM ATP), and treated with or

without equimolar amounts of unlabeled phalloidin (Molecular Probes).  Final

concentrations of 0.13 µM or 0.33 µM Alexa-488 phalloidin (Molecular Probes) were

added to each sample to stain filaments.  Following polymerization for 1 h, samples were

placed on a slide and viewed with a Zeiss Axioskop (Carl Zeiss) microscope using 63X

Plan-NeoFluar oil immersion lens (1.30 NA).  Images were collected using a Zeiss

Axiocam with Axiovision v3.1 and processed using linear adjustments in Adobe

Photoshop v8.0

Negative Staining Electron Microscopy

For ultrastructural analysis of actin filaments, purified recombinant actins were clarified

as described above and incubated (5 µM) in F buffer to initiate polymerization for 1 h at

room temperature in the absence or presence of equimolar phalloidin (Molecular Probes).

Samples were applied to glow-discharged formvar/carbon-coated Cu grids, incubated for

5 min, washed twice with dH20, and stained with 1% aqueous uranyl acetate (Ted Pella)

for 1 min.
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Actin Sedimentation Assay

Purified recombinant TgACTI, PfACTI, PfACTII, and ScACT proteins were pre-

centrifuged at 100,000g, 4°C for 30 min using a TL100 rotor and a Beckman Optima TL

ultracentrifuge (Becton Coulter, Fullerton, CA) to remove aggregates.  TgACTI (5 µM),

PfACTI (5 µM), PfACTII (3.5 µM), ScACT (5 µM) were incubated in F buffer to initiate

polymerization for 1 hr in the presence or absence of equimolar amounts of phalloidin

(Molecular Probes) at room temperature.  The samples were subsequently centrifuged at

100,000g or 350,000g for 1 hr at room temperature.  Protein in the supernatant was

acetone precipitated and washed with 70% ethanol.  All pellets were resuspended in 1X

sample buffer.  Proteins were resolved on a 12% SDS-PAGE gels, stained with Sypro-

Ruby (Molecular Probes), visualized using a FLA-5000 phosphorimager (Fuji Film

Medical Systems), and quantitated using Image Gauge v4.23.

Light scattering

Purified recombinant actins were clarified as described above and incubated (5 µM) in G

buffer containing 1 mM EGTA and 50 µM MgCl2 for 10 min (to replace bound Ca2+ with

Mg2+).  Samples were placed in a microcuvette (Starna Cells) and following addition of

1/10th volume of F buffer, light scattering was monitored with the PTI Quantmaster

spectrofluorometer (Photon Technology International) with excitation 310 nm (1 nm

bandpass) and emission 310 nm (1 nm bandpass). For experiments with addition of

phalloidin, either methanol diluted 1:8.4 (same dilution as the phalloidin stock), 0.33 µM

phalloidin or 5 µM phalloidin were also added to the actin at the same time as the F

buffer.
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Actin structure for molecular modeling

An atomic model of phalloidin was derived from the solid state structure of a synthetic

derivative (Zanotti et al., 2001), modified to contain dihydroxy-Leu7 using Maestro

(Schrödinger LLC,) and energy minimized using MacroModel (Schrödinger LLC,) with a

MMFF94s forcefield.  The model was further optimized in continuum solvent using

Jaguar (Schrödinger LLC), with DFT level of theory using a hybrid B3LYP functional

and 6-31G** basis set.  The actin filament model based on X-ray fiber diffraction data

(Oda et al., 2009) was used to create an 8-monomer filament of muscle F-actin.  A 50 ns

molecular dynamics (MD) simulation in explicit water was carried out using NAMD

(Kale et al., 1999) in an NPT ensemble with a pressure of 1 atm and a temperature of 300

K with explicit TIP3P water.  CHARMM27 forcefield was used with a 10 Å cut off for

van der Waals with a 8.5 Å switching distance, and Particle Mesh Ewald for long-range

electrostatics.  Bonded hydrogens were kept rigid to allow 2 fs time steps.  A simulated

annealed structure of muscle filament model with phalloidin in the binding site was used

as the template for building parasitic actin filament homology models using Modeller

(Martí-Renom et al., 2000).

Docking studies

Docking of phalloidin to different sites along the filament was captured using multiple

snapshots taken at intervals of 200 ps from the 50 ns simulation.  AutoDock (Morris et

al., 1998) was used to perform large scale docking runs with a coarse grid that covered

the six binding sites on the filament.  To determine the correct orientation of phalloidin in

the binding site, higher resolution docking studies were performed on each binding site
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using both AutoDock and Glide (Schrödinger LLC) in independent trials and clustered to

derive the most probable docking orientation.  For AutoDock, flexible ligand docking

was performed using Lamarckian genetic algorithm with a population size of 200, 10

million energy evaluations, and a local search probability frequency at 0.2.  Grid spacings

of 0.325 Å and 0.25 Å were used for coarse and high resolution docking, respectively,

and the results were clustered at RMSD of 3.0 Å from the lowest docked energy

conformer.  Gasteiger-Marsili charges were assigned to the ligand using Sybyl (Tripos

Inc.,).  Default parameters were used for Glide; ligand charges were derived from the

quantum optimization calculation and protein charges were derived from the OPLS2001

forcefield.
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 Figure 1. Sequence alignment for comparison of actins from Homo sapiens (muscle)

(Human), Saccharomyces cerevisiae (Yeast), Toxoplasma gondii (TgACTI), Plasmodium

falciparum (PfACTI or PfACTII).  Residues that were mapped to within 4 Å of the

phalloidin-binding site in muscle actin are highlighted. Color code: Blue – positive

charged residues (including His), Red - negative charged, Green – hydrophobic, Purple –

polar residues, Orange – aromatic.
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Figure 2.  Comparison of TgACTI, PfACTI and PfACTII conservation of residues.

(A) Model of TgACTI (blue) mapped onto PfACTI (red) highlighting amino acid

differences (yellow).  (B) Model of PfACTI (red) mapped onto PfACTII (green)

highlighting amino acid differences (yellow).  (C) Baculovirus-expressed, His6-tagged

actins were purified by Ni-chromatography, resolved using a 12% SDS-PAGE gel, and

stained with Sypro Ruby (Lane 1:  TgACTI, Lane 2:  PfACTI, Lane 3:  PfACTII, Lane 4:

ScACT).
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Figure 3.  Comparison of actin polymerization kinetics.

Polymerization of 5 µM TgACTI (red), PfACTI (blue), PfACTII (green) or ScACT

(orange) was induced by the addition of F buffer (arrow) and monitored by light

scattering.  Insert shows parasite actins on the expanded Y-axis.
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Figure 4.  In vitro polymerization of parasite actins visualized by fluorescence

microscopy of phalloidin stained actin.

(A) TgACTI, (B) PfACTI, (C) PfACTII or (D) ScACT were incubated at 5 µM with no

addition (0) or with equimolar unlabeled phalloidin (1:1) and visualized by addition of

low levels of Alexa-488 labeled phalloidin and visualized by fluorescence microscopy.

Scale bars, 5 µm. Representative of three or more similar experiments.
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Figure 5.   Ultrastructural features of parasite actins revealed by electron microscopy.

(A) TgACTI was incubated in G buffer or F buffer with or without equimolar

concentration of phalloidin for 1 h. The reactions were added to grids, negatively stained

with uranyl acetate and examined by EM. Identical conditions were used to observe (B)

PfACTI, (C) PfACTII, and (D) ScACT.  Images are representative of 3 or more

experiments.  Scale bars, 50 nm.
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Figure 6.  Sedimentation analysis of TgACTI, PfACTI, PfACTII and ScACT.

(A) TgACTI was polymerized in F buffer +/- equimolar phalloidin, centrifuged at

100,000g or 350,000g to pellet actin filaments formed during the incubation, and protein

in the pellet or supernatants of all samples was resolved on a 12% SDS-PAGE gel,

stained with SYPRO Ruby and quantified by phosphorimager analysis.  (B) PfACTI, (C)

PfACTII and (D) ScACT were tested under the same conditions as TgACTI.  The

percentages above represent averages of 3 or more experiments and the gel shown is

representative.
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Figure 7.  Effect of phalloidin on the extent of TgACTI polymerization.

Light scattering was conducted to determine the kinetics of polymerization of TgACTI in

the presence and absence of phalloidin.  TgACTI polymerization was induced by the

addition of F buffer alone (red), 0.33 µM phalloidin (green) or equimolar phalloidin

(blue) and the level of polymerization was then monitored by measuring changes in light

scattering.  ScACT polymerization was induced with F buffer as a control (orange).
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Figure 8. Predicted binding site of phalloidin in muscle and parasite actin filaments.

(A) Molecular details of the interaction of phalloidin in the muscle actin filament.  Side

chains of amino acids within 3.5 Å are explicitly shown and the protein around phalloidin

is depicted as a transparent surface. Hydrogens are omitted for clarity. (B) Position of

phalloidin (purple) in the filament showing its interaction with three individual

protomers. (C) 2D interaction diagrams showing the interaction differences between

muscle, TgACTI and PfACTII. Hydrogen bonding interaction are depicted by dashed

green lines and portions of the molecule that are solvent accessible are highlighted in

yellow.  Color code:  blue - basic residues; red - acidic residues; cyan - polar residues.
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Chapter III

Mutations that Increase Actin Filament Stability Disrupt Motility in

Toxoplasma gondii
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PREFACE

Work presented in this chapter was conducted by KMS.  Molecular modeling to identify

residues with potential to impact filament stability was performed by Karthik Diraviyam.

The first complete draft of this chapter was written by KMS. Comments from David

Sibley, David Sept and Karthik Diraviyam were incorporated into the final version

printed here.

Portions of this chapter (Figures 1-3; 6-7; 11) have been accepted for publication in PloS

Pathogens:

Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD.  Evolutionarily

Divergent, Unstable Filamentous Actin is Essential for Gliding Motility in Apicomplexan

Parasites.
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ABSTRACT

Apicomplexan parasites rely on a novel form of actin-based motility called gliding to

migrate through their hosts and invade cells. This form of motility depends on parasite

actin polymerization, however, parasite actins are divergent both in sequence and

function and only form short, unstable filaments in contrast to the stability of

conventional actins. The molecular basis for parasite actin filament instability and its

relationship to gliding motility remain unresolved.  Parasite actins contain several

divergent residues that are predicted to impact filament length and stability. Two residues

that differ from conventional actins were conserved in apicomplexan parasites that rely

on gliding motility. Substitution of divergent residues found in Toxoplasma gondii actin

(TgACTI) with those from mammalian actin resulted in formation of long filaments in

vitro. Expression of these stabilized actins in T. gondii increased sensitivity to actin-

stabilizing compounds and disrupted normal gliding motility in the absence of treatment.

These results identify the molecular basis for short, dynamic filaments in apicomplexan

parasites and demonstrate that inherent instability of parasite actin filaments is a critical

adaptation for gliding motility.
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INTRODUCTION

Actin is an essential protein that is highly conserved in sequence and function in

eukaryotic cells.  Despite this conservation, parasites within the phylum Apicomplexa

encode divergent actins that remain largely in an unpolymerized state in vivo

(Dobrowolski et al., 1997; Schmitz et al., 2005; Wetzel et al., 2003) and only form short,

unstable filaments in vitro (Sahoo et al., 2006; Schüler et al., 2005), in contrast to

conventional actins from yeast to mammals. Apicomplexan parasites are obligate

intracellular protozoan pathogens of animals including humans.  Apicomplexans move by

a unique form of gliding motility that is dependent on polymerization of parasite actin

filaments (Dobrowolski and Sibley, 1996). Gliding motility is considered to be a

conserved feature of the phylum (Heintzelman, 2006) and has been described in

Toxoplasma gondii tachyzoites (Håkansson et al., 1999), Plasmodium spp. sporozoites

(Vanderberg, 1974), Cryptosporidium spp. sporozoites (Wetzel et al., 2005) and

gregarines (King, 1981). Gliding motility powers migration through tissues, traversal of

biological barriers, and invasion into and egress from host cells (Sibley, 2010).

T. gondii contains a single actin gene, TgACTI, which shows 83% amino acid

identity with mammalian muscle actin (Dobrowolski et al., 1997). Parasite actins have

been shown to exist mostly in an unpolymerized state, as defined by sedimentation at

100,000g and an absence of staining in fixed cells with fluorescently-labeled phalloidin

(Schmitz et al., 2005; Wetzel et al., 2003). In contrast, the majority of actin in

mammalian, yeast, and amoeba cells is found in long filaments, branched networks, or

bundled fibers, which are readily stained with phalloidin and sedimented by

centrifugation at 100,000g (Pollard et al., 2000). Although uncommon in apicomplexans,
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when actin filaments have been visualized, they are short and unbranched, in keeping

with the absence of Arp2/3 in these organisms (Gordon and Sibley, 2005). Actin

filaments in T. gondii are only transiently detected beneath the parasite membrane during

gliding motility, as visualized by freeze fracture electron microscopy (Wetzel et al.,

2003). PfACTI from P. falciparum has been shown to form short filaments in vitro

(Schüler et al., 2005), and similar short filaments of ~100 nm in length were detected in

parasite lysates following sedimentation at 500,000g (Schmitz et al., 2005).

The annealing process of actin monomers into filaments has been described in

vertebrate muscle actin as resulting from increased intermolecular contacts that cinch the

filament into a tighter, more stable conformation (Schoenenberger et al., 2002). In

contrast, in vitro polymerization of TgACTI results in formation of short, irregular

filaments that rapidly disassemble in the absence of stabilizing compounds such as

phalloidin (Sahoo et al., 2006). TgACTI fails to copolymerize with mammalian actin

(Sahoo et al., 2006); however, copolymerization of PfACTI with rabbit muscle actin

reveals differences in monomer stacking and a larger helical pitch in parasite actin

(Schmitz et al., 2005). Consistent with this, previous modeling studies have suggested

that instability of parasite actin filaments might arise from structural changes (Sahoo et

al., 2006), although this hypothesis has not been directly tested.

Highly motile cells often exhibit rapid actin turnover (Pollard et al., 2000), suggesting

that the unusual dynamics of apicomplexan actins may be important in gliding motility.

Indirect evidence that actin turnover is important comes from treatment with agents that

stabilize actin filaments, such as the heterocyclic compound jasplakinolide (JAS), which

is produced by marine sponges and acts to stabilize actin filaments (Crews et al., 1986).
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JAS treatment disrupts motility and cell invasion in T. gondii (Poupel and Tardieux,

1999; Wetzel et al., 2003), as well as invasion of merozoites (Mizuno et al., 2002),

motility of ookinetes (Siden-Kiamos et al., 2006), and endocytic trafficking in

trophozoites (Smythe et al., 2008) of Plasmodium. Collectively, previous studies indicate

that apicomplexan actins spontaneously polymerize into short filaments that appear to be

intrinsically unstable; however, the molecular basis and functional significance of these

unusual properties are largely unknown.

The present study was undertaken to address two important questions: 1) what

intrinsic properties govern actin filament instability in apicomplexans? and 2) are the

unusual dynamic properties of filamentous actin important for efficient motility in

apicomplexans? Here, we demonstrate that several divergent residues partially explain

the inherent instability of parasite actin filaments and reveal that this feature is important

for efficient gliding motility.



102

RESULTS

Divergent residues within apicomplexan actins may impact filament stability

T. gondii actin (TgACTI) and mammalian muscle actin have an 83% sequence

identity, which is low for this highly conserved class of proteins.  Molecular modeling

and molecular dynamic simulations were used to identify residues that differ between

human muscle actin and TgACTI in regions that are critical for stabilizing the actin

filament. Divergent residues at positions G200 and K270 in T. gondii were identified as

candidates that likely affect monomer-monomer interactions across the filament.

However, the previously identified difference R277 in TgACTI, corresponding to

glutamate in muscle (Sahoo et al., 2006), no longer made close contact in the new

filament model, and consistent with this, no change in polymerization of substituted

TgACTI-R277E was observed (data not shown). Instead, our refined model now points to

S199 in human muscle actin as forming an important hydrogen bond with D179 of a

monomer across the filament (Figure 1A). This hydrogen bonding was observed in a

majority of inter-monomer contacts predicted in the molecular dynamic simulations of

the filament. However, at this position TgACTI contains a glycine that would eliminate

the hydrogen bond and potentially impact filament stability (Figure 1B). The second

residue of interest identified was M269 in muscle actin (Figure 1A) that corresponds to

K270 in TgACTI (Figure 1B). Mutational studies in yeast have previously demonstrated

that loss of hydrophobicity in this loop leads to destabilization of the actin filament (Chen

et al., 1993), and it has previously been suggested that this change may affect parasite

actin stability (Sahoo et al., 2006).  In comparing other actins to TgACTI, the alteration

in G200 seen in T. gondii is conserved only in ACTI homologues found in a subset of
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apicomplexans that rely on gliding motility (Figure 2). Noteably, PfACTII has a

threonine at this position.  In contrast, the substitution of K/R in the hydrophobic plug at

residue 269/270 is seen in a wider variety of protozoa including dinoflagelates, ciliates,

and apicomplexans (Figure 2).

TgACTI filament stability is restored by substitution with conventional residues

We tested the impact these residues have on TgACTI filament stability by

substituting TgACTI residues with the corresponding amino acids from human muscle

actin. The substituted proteins TgACTI-G200S (hydrogen bond substitution), TgACTI-

K270M (hydrophobic loop substitution) and TgACTI-G200S/K270M (double

substitution) were expressed using baculovirus and purified with Ni-affinity

chromatography (Figure 3A). To examine the polymerization kinetics of the substituted

TgACTI alleles, purified proteins were incubated in F buffer and light scattering was

used to examine polymerization. Wild type TgACTI underwent only limited

polymerization while the TgACTI-K270M substituted protein showed a modest

enhancement (Figure 3B). However, TgACTI-G200S and TgACTI-G200S/K270M

showed significantly increased polymerization, with both the rate (slope of the initial

phase) and maximum extent being greater than wild type protein (Figure 3B).

The results of the light scattering assays were confirmed using fluorescent phalloidin

staining and visualization via fluorescence microscopy. In all cases, filaments were

visualized by addition of low levels of labeled phalloidin (0.33 mM) combined with

different molar ratios of unlabeled phalloidin. As shown above, wild type actin (WT)

required 1:20 molar ratio of unlabeled phalloidin to form clusters of short filaments and
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long filaments only formed at a 1:1 molar ratio (Figure 3C, top panel). The TgACTI-

K270M protein showed a slight enhancement in polymerization with small filaments

appearing even in the absence of unlabeled phalloidin and reaching conventional lengths

with addition of 1:5 molar ratio of unlabeled phalloidin (Figure 3C, second panel).

Interestingly, the TgACTI-G200S substitution showed much more robust polymerization

with short filaments being detected even with addition of only low levels of labeled

phalloidin (0.33 mM) and conventional length filaments appearing with addition of 1:20

molar ratio of unlabeled phalloidin (Figure 3C, third panel). TgACTI-G200S/K270M also

formed longer filaments than seen with wild type TgACTI, similar to the TgACTI-G200S

single mutant (Figure 3C, bottom panel). Taken together, these results show that TgACTI

filaments may be less capable of polymerizing due to the presence of only a few

differences from conventional actins and that mutations designed to mimic mammalian

actin in TgACTI result in formation of more stable actin filaments in vitro.

The G200 and K270 substitutions have previously been mapped to the phalloidin-

binding pocket in TgACTI, therefore, we looked into the influence of phalloidin-binding

on polymerization.  Light scattering was used to determine if polymerization of the

mutants alone differed from that in the presence of low levels of phalloidin

(corresponding to the concentration used for filament visualization in the phalloidin

microscopy assays).  This level of phalloidin had no influence on the ability of TgACTI

to polymerize but did show a slight enhancement of polymerization of TgACTI-K270M

and a large enhancement for the polymerization of TgACTI-G200S and TgACTI-

G200S/K270M (Figure 4).



105

Due to the positive effect the tested TgACTI substitutions had on polymerization, we

wanted to determine if the converse substitutions would adversely effect yeast actin

(ScACT) polymerization.  S199G, L269K and S199G/L270K substitutions were made in

ScACT and expressed in bacuolovirus to obtain recombinant protein.  ScACT-S199G

was first compared to wild type ScACT using light scattering and polymerization was

unchanged by the substitution (Figure 5A).  Polymerization of S199G was then compared

to polymerization of L269K and S199G/L269K.  All three actins polymerized to roughly

the same extent, demonstrating the TgACTI-like substitutions did not impede the

robustness of ScACT polymerization (Figure 5B).

Expression of Stabilized TgACTI in T. gondii

To examine the effect of expressing stabilized mutants of TgACTI in T. gondii, we

generated transgenic parasites expressing a second copy of TgACTI fused to an N-

terminal degradation domain (DD), which allows regulated expression in the presence of

Shield-1 (Herm-Gotz et al., 2007). This approach was chosen over allelic replacement,

since we reasoned that the mutant alleles might be detrimental, hence compromising

attempts to evaluate their functions. The regulated nature of the DD-stabilized proteins

also allows the timing of expression to be controlled, thus minimizing the chance for

pleomorphic downstream effects or compensatory changes that can occur using

conventional dominant negative strategies. Transgenic lines expressing the DD-fusion

proteins were tested for regulated expression by Western blot using an antibody against

TgACTI (Figure 6A) and by immunofluorescence detection of the c-myc tag (Figure 6B).

The level of DD-tagged actins was approximately 50% of wild type actin and the patterns
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of staining was diffuse in the cytosol, similar to the pattern for endogenous actin

described previously (Dobrowolski et al., 1997).

The impact of expressing DD-TgACTI fusions on the life cycle of the parasite was

tested using a plaque assay, which monitors the normal intracellular growth cycle (Figure

6C). Although parasites expressing DD-G200S or DD-G200S/K270M formed plaques

comparable to the controls in the absence of Shield-1, plaque formation was almost non-

existent when parasites were treated with Shield-1 (Figure 6C), demonstrating that

expression of stabilized TgACTI disrupts the parasite life cycle. In contrast, expression of

the wild type DD-TgACTI (DD-wild type) had no effect on plaque formation either in the

absence or presence of Shield-1 (Figure 6C).

Following growth in Shield-1, parasites expressing DD-TgACT1 fusion proteins

revealed a diffuse pattern of actin staining with some discrete puncta (Figure 7A; data not

shown). The absence of detectable long filaments in cells expressing mutant stabilized

actins suggest that they behave somewhat differently in vivo than in vitro, perhaps as a

result of other proteins that regulate actin turnover. Actin dynamics are highly sensitive to

actin-stabilizing compounds like JAS, which permeates cells stabilizes actin filaments

(Bubb et al., 1994). Hence, we examined the distribution of actins in parasites expressing

DD-TgACTI alleles following treatment with low levels of JAS. Remarkably,

filamentous actin structures were revealed emanating from both the apical and posterior

poles in parasites expressing the stabilized TgACTI mutants grown in the presence of

Shield-1, whereas staining of wild type DD-TgACTI relocalized to the poles without

forming visible filaments (Figure 7A). The actin filaments seen in parasites expressing

stabilized mutants of TgACTI formed spiral patterns beneath the surface of the parasite,
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as visualized in sequential slices of a z-series (Figure 7B).

To determine if the stabilized DD-TgACTI alleles polymerized more readily in vivo,

we examined the proportion of globular and filamentous actin based on sedimentation at

350,000g, conditions previously found to be necessary to pellet short filaments that form

in parasites (Schmitz et al., 2005). Although no change in sedimented actin was detected

in control lysates, treatment with low levels of JAS induced much greater polymerization

of the DD-G200S and DD-G200S/K270M mutants compared to DD-wild type (Figure

7C). Collectively, these studies demonstrate that stabilized forms of TgACTI were more

sensitive to JAS-induced polymerization in vivo.

Consistent with previous reports (Shaw and Tilney, 1999; Wetzel et al., 2003), actin

relocalized to the poles in parasites treated with higher concentrations of JAS, leading to

characteristic apical projections (Figure 8A; Figure 9). JAS-induced actin polymerization

was also accentuated in parasites expressing stabilized TgACTI alleles, however,

treatment resulted in actin-rich projections from both ends of the parasite (Figure 8A;

Figure 9C).  Quantitation of parasites stained with anti-TgACTI revealed that while

double protrusions are rarely seen in control parasites, there was a significant increase in

the number of double protrusions seen in the parasites expressing the more stable

TgACTI alleles (Figure 8B).  Further examination of these projections by electron

microscopy revealed electron dense filament structures within the projections from the

apical end of control parasites (Figure 9A,B) that resemble actin protrusions reported

previously (Shaw and Tilney, 1999).  Additionally the posterior extensions also contained

tightly clustered bundles of filaments protruding through the base of the cell where the

inner membrane complex was interrupted (Figure 9C-F).  These results are consistent

with the idea that the mutant actin alleles are hypersensitive to jasplakinolide.

Additionally, to determine if phenotypic changes could be observed in the absence of

jasplakinolide, parasites expressing DD-wildtype, DD-G200S and DD-G200S/K270M,
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but untreated with JAS, were subjected to EM.  Interestingly, small blebs were visualized

projecting from the apical end of the DD-G200S and DD-G200S/K270M parasites but

not DD-wildtype parasites (Figure 10).  These blebs appear to contain electron dense

material although the nature of this material has not been determined (Figure 10).

Toxoplasma expressing stabilized actin undergo aberrant gliding motility

To examine the impact of stabilized TgACTI alleles on parasite motility, we

employed video microscopy to analyze the typical circular and helical motions that are

characteristic of gliding, as described previously (Håkansson et al., 1999). In contrast to

DD-wild type expressing parasites that underwent normal circular gliding (Figure 11A), a

large percentage of the circular movements in parasites expressing DD-G200S and DD-

G200S/K270M actins were aberrant (Figures 11B, 11C). For example, DD-G200S and

DD-G200S/K270M expressing parasites often stalled, were unable to complete circles, or

went off-track during gliding (Figures 11B, 11C).

Quantification of these results indicated that expression of the DD-wild type allele

resulted in a higher frequency of circular gliding than helical, relative to untransfected

parasites, however these movements were largely normal (Figure 11D). Although

parasites expressing DD-G200S and DD-G200S/K270M underwent wild type motility in

the absence of Shield-1, significantly more cells exhibited aberrant forms of gliding

motility in the presence of Shield-1 (Figure 11D). Comparison of the radii of tracks made

by DD- wild type and DD-G200S and DD-G200S/K270M expressing parasites, revealed

that parasites expressing these mutant actins traced out partial arcs that were significantly

larger than circular tracks formed by wild type parasites (Figure 11E). Collectively, these

results indicate that expression of the mutant DD-G200S and DD-G200S/K270M forms
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of TgACTI disrupts normal circular gliding motility. Consistent with previous

descriptions of normal helical motility (Håkansson et al., 1999), DD-wild type expressing

parasites underwent helical gliding at a relatively fast rate and moved through numerous

corkscrew motions, noted in the example shown (Figure 11A). In contrast, DD-G200S

and DD-G200S/K270M expressing parasites were delayed in their movements and went

through fewer flips and turns (Figures 11B, 11C). Parasites expressing the stabilized

TgACTI alleles were significantly slower in both helical and circular gliding compared to

the untransfected or DD-wild type parasites (Table 1). Taken together, these findings

reveal that expression of stabilized mutants of TgACTI significantly disrupts gliding

motility in T. gondii.
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DISCUSSION

Our studies are in agreement with previous work on the polymerization properties of

parasite actins and extend these findings by examining the molecular basis for instability

of actin filaments.  TgACTI filaments form upon initiation of gliding motility but a stable

pool of filamentous actin does not exist within the parasite (Dobrowolski et al., 1997;

Wetzel et al., 2005), suggesting TgACTI is unstable.  The findings from the current

studies demonstrate that the instability of parasite actin filaments is an inherent property

that results in part from differences in monomer-monomer interactions that normally

stabilize the filament. The inefficient polymerization of TgACTI was rescued in vitro by

reversion of several key residues in T. gondii actin to match those predicted to stabilize

mammalian muscle actin. Furthermore, in vivo expression of these stabilized actins led to

disruption of gliding in T. gondii. These findings provide insight into the molecular basis

of parasite actin filament dynamics and reveal formation of short, highly dynamic actin

filaments is an important adaptation for parasite motility.

Molecular modeling predicts that actin filaments are stabilized by interactions across

the width (inter-strand) of the filament through two key regions including the

“hydrophobic plug” encompassing residues 265-270 and a helix from residues 191-199

(Fujii et al., 2010; Oda et al., 2009). Our studies suggest that relatively few changes in

these critical regions account for the instability of parasite actin filaments. Among these

alterations, a change in the hydrophobic plug (i.e. K270 in T. gondii) plays a modest role

while an alteration in the helix (i.e. G200) has a larger affect on filament stability. The

substitution of K270M in TgACTI resulted in filaments that were detected by fluorescent

staining at low concentrations of phalloidin, although this change had less effect on actin
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polymerization as monitored by light scattering assays in the absence of phalloidin. As

this residue lies within the phalloidin pocket, it suggests that hydrophobic residues here

result in enhanced phalloidin binding. Light scattering experiments demonstrate a slight

increase in the polymerization kinetics of TgACTI-K270M in presence of low levels of

phalloidin compared to the kinetics in its absence whereas the polymerization of wild

type TgACTI is unaffected by addition of this level of phalloidin.  Mutations designed to

reduce hydrophobicity in the corresponding residue in yeast actin (i.e. L269) have no

affect on polymerization, while those at the other end of the hydrophobic plug are much

more severe (Kuang and Rubenstein, 1997). Hence, these results indicate that K270

contributes to naturally low phalloidin binding of parasite actins, while it likely plays a

lesser role in intrinsic filament instability.

Modeling predictions also indicate that S199 in muscle actin plays a role in intra-

filament stabilization via a hydrogen bond network with R177 and D179.  Consistent

with this, fluorescence microscopy revealed formation of longer, more stable filaments

when the G200S substitution was present in TgACTI.  When low levels of phalloidin

were added to protein and monitored by light scattering, a large increase in

polymerization was observed.  Because of cooperativity in binding of phalloidin to actin,

it is difficult to differentiate whether this larger increase is due to an influence of the

mutation on the ability to bind phalloidin or the fact that these filaments are longer and

therefore contain more phalloidin binding sites, leading to the further enhancement of

polymerization. Regardless, mutation of G200S had a larger impact on the in vitro

polymerization of TgACTI as shown by increased light scattering, even in the absence of

phalloidin.  Collectively, the absence of these two stabilizing interactions in TgACTI
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partially explains the inherent instability of parasite actin filaments.

Filament instability is evidently an important adaptation since expression of stabilized

TgACTI within the parasite had a detrimental effect on gliding motility. Consistent with

this, previous studies using actin stabilizing agents have revealed that increased

polymerization of TgACTI filaments adversely effects motility and host cell invasion

(Poupel and Tardieux, 1999; Shaw and Tilney, 1999; Wetzel et al., 2003).  In the present

study, stabilized mutants of TgACTI were more sensitive than wild type to JAS, as

shown by formation of spiral actin filaments and increased sedimentation at 350,000g.

The spiral patterns seen here are similar to those reported previously from wild type T.

gondii treated with high levels of JAS (Wetzel et al., 2003); however, notably here they

occur with low levels of JAS and are only seen in parasites expressing stabilized TgACTI

forms.  Unexpectedly, with higher levels of JAS treatment, they also formed actin

filament bundles at the posterior ends of the cell that protruded through posterior cap that

closes off the end of the inner membrane, a structure that forms as the last step in cell

division (Anderson-White et al., 2010).  Even without addition of jasplakinolide, changes

in the integrity of the parasite membrane where electron dense material is protruding

from the parasite were seen using EM of parasites expressing the stabilized DD-TgACTI

alleles.

Stabilized DD-TgACTI mutants also had a significant effect on disrupting normal

motility in the absence of treatment, revealing that this phenotype is not simply due to

enhanced binding to JAS or phalloidin. Intriguingly, parasites expressing stabilized actins

formed circles with larger radii, moved more slowly, and stalled in the process of gliding.

This suggests that short, highly dynamic actin filaments are required for parasites to
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complete the tight arcs and corkscrew turns that are characteristic for circular and helical

gliding (Håkansson et al., 1999) (Figure 12A).

The current model for gliding motility predicts that short, highly dynamic actin

filaments attached to transmembrane adhesive proteins are translocated along the surface

of the parasite by a small myosin (Frenal and Soldati-Favre, 2009). The myosin motor,

which is anchored in the inner membrane complex (Gaskins et al., 2004), is also highly

nonprocessive (Herm-Gotz et al., 2002), meaning it does not stay attached to a single

filament for long periods. Instead, this model predicts that short actin filaments, tethered

to transmembrane adhesins, are passed sequentially between motor complexes that

operate independently. Consistent with this model, where actin filaments have been seen

in parasites, they are quite short (i.e. 50-100 nm) (Sahoo et al., 2006; Schmitz et al.,

2005). Actin in apicomplexans may be adapted for rapid turnover of short filaments,

since long filaments would increase the likelihood of multiple motors being engaged

simultaneously, potentially leading to conflicting forces on the same filament. Although

we were not able to discern distinct filaments in parasites expressing DD-TgACTI

proteins, the observed punctate staining pattern may reflect clusters of short filaments

that are below the resolving power of the light miscroscope (in theory ~200 nm, but in

practice likely ~400 nm).  Nonetheless, we would predict based on their in vitro

properties that the G200S and G200S/K270M mutants would form more stable filaments,

which could inhibit motility by reducing free monomers needed for new filament

assembly, or by physically disrupting productive motor-actin filament complexes (Figure

12B). Alternatively, stabilized DD-TgACTI mutants could affect interactions with actin-

binding proteins in vivo, including those involved in polymerization or depolymerization
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(Figure 12C). Although apicomplexans lack an Arp2/3 complex (Gordon and Sibley,

2005), they express several formins that act to increase actin polymerization (Baum et al.,

2008; Daher et al., 2010) and actin depolymerization factor (ADF), which acts primarily

to sequester monomers and prevent polymerization (Mehta and Sibley, 2011). Regardless

of the exact mechanism, our results indicate that even subtle changes in actin filament

stability significantly affect function, underscoring the importance of rapid actin

dynamics in apicomplexans.

In comparing apicomplexans to other organisms, the alteration in G200 is conserved

only in ACTI homologues found in a subset of parasites that rely on gliding motility. In

contrast, the substitution of K/R in the hydrophobic plug at residue 269/270 is seen in a

wider variety of protozoa including dinoflagelates, ciliates, and apicomplexans.

Consistent with this, diverse actins from protozoans Leishmania (Kapoor et al., 2008),

Giardia (Paredez et al., 2011), and Tetrahymena (Hirono et al., 1989) have also been

reported not to bind well to phalloidin and display unusual polymerization kinetics or

novel actin structures. This pattern further suggests that stable actin filaments are a more

recent evolutionary development, found in amoeba, yeast, plants and animals, but not

shared by many protozoans. These differences likely reflect adaptations for stable vs.

dynamic actin cytoskeletons that are designed for very different life strategies. The

importance of such adaptations is shown by introduction of stabilizing residues in

TgACTI, changes that were sufficient to dramatically slow the speed of gliding and result

in aberrant forms of motility.

Collectively, these findings demonstrate that actin filament instability and rapid

turnover are important adaptations for productive gliding in apicomplexans, and suggest
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that small molecules designed to selectively stabilize parasite actins may have potential

for preventing infection.
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MATERIALS  AND METHODS

Plasmid constructions and transfection

Recombinant Toxoplasma actins were expressed in baculovirus, as previously described

(Sahoo et al., 2006). Recombinant viruses for mutant TgACTI alleles and were created

via site-directed mutagenesis using wild type TgACTI as a template and allele-specific

primers.  For TgACTI-K270M primers 5’-AGCCCTCCTTCTTGGGCATGGAGGCTG

CAGGTGTCCA-3’ (forward) and 5’-TGGACACCTGCAGCCTCCATGCCCAAGAA

GGAGGGCT-3’ (reverse) were used to amplify from the wild type TgACTI template.

For TgACTI-G200S and TgACTI-G200S/K270M (using K270M as template) primers 5’-

CTCCACGAGAGAGGATACTCCTTCACCACCTCCGCCGAG-3’ (forward) and

5’-CTCGGCGGAGGTGGTGAAGGAGTATCCTCTCTCGTGGAG-3’  (reverse) were

used.  The resulting products were cloned into the viral transfer vector pAcHLT-C (BD

Biosciences Pharmingen).  Recombinant viruses were obtained by cotransfection with

linearized baculogold genomic DNA into Sf9 insect cells (BD Biosciences Pharmingen),

according to manufacturer’s instructions.

Actin structure for molecular modeling

An atomic model of phalloidin was derived from the solid state structure of a synthetic

derivative (Zanotti et al., 2001), modified to contain dihydroxy-Leu7 using Maestro

(Schrödinger LLC,) and energy minimized using MacroModel (Schrödinger LLC,) with a

MMFF94s forcefield. The model was further optimized in continuum solvent using

Jaguar (Schrödinger LLC), with DFT level of theory using a hybrid B3LYP functional

and 6-31G** basis set. The actin filament model based on X-ray fiber diffraction data

(Oda et al., 2009) was used to create an 8-monomer filament of muscle F-actin. A 50 ns

molecular dynamics (MD) simulation in explicit water was carried out using NAMD
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(Kale et al., 1999) in an NPT ensemble with a pressure of 1 atm and a temperature of 300

K with explicit TIP3P water. CHARMM27 forcefield was used with a 10 Å cut off for

van der Waals with a 8.5 Å switching distance, and Particle Mesh Ewald for long-range

electrostatics. Bonded hydrogens were kept rigid to allow 2 fs time steps. A simulated

annealed structure of muscle filament model with phalloidin in the binding site was used

as the template for building parasitic actin filament homology models using Modeller

(Martí-Renom et al., 2000).

Actin expression and purification

Hi5 insect cells were maintained as suspension cultures in Express-Five SFM media

(Invitrogen).  Hi5 cells were harvested at 2.5 days postinfection with recombinant virus

and lysed in BD BaculoGold Insect Cell Lysis Buffer (BD Biosciences Pharmingen)

supplemented with 5 mM CaCl2, 5 mM ATP, 5 mM NaN3, and protease inhibitor cocktail

(E64, 1 µg ml-1 AEBSB, 10 µg ml-1; TLCK, 10 µg ml-1; leupeptin, 1µg ml-1).  His-tagged

actins were purified using Ni-NTA agarose (Invitrogen).  After binding for 2 h, the

column was washed sequentially with G actin buffer without DTT (G-DTT buffer) (5

mM Tris-Cl, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP), then G-DTT buffer with 10 mM

imidazole, G-DTT buffer with 0.5 M NaCl, G-DTT buffer with 0.5 M KCl buffer, and

finally G-DTT buffer with 25 mM imidazole.  Proteins were eluted with serial washes of

G-DTT buffer containing 50 mM, 100 mM, and 200 mM imidazole, pooled together and

dialyzed overnight in G-actin buffer containing 0.5 mM DTT with 100 µM sucrose.

Purified recombinant actins were clarified by centrifugation at 100,000g, 4°C, for 30 min

using a TL100 rotor and a Beckman Optima TL ultracentrifuge (Becton Coulter) to

remove aggregates.  Purified proteins were resolved on 12% SDS-PAGE gels followed
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by SYPRO Ruby (Molecular Probes) staining, visualized using a FLA-5000

phosphorimager (Fuji Film Medical Systems), and quantified using Image Gauge v4.23.

Purified actins were stored at 4°C and used within 2-3 days.

Light scattering

Purified recombinant actins were clarified as described above and incubated (5 µM) in G

buffer containing 1 mM EGTA and 50 µM MgCl2 for 10 min (to replace bound Ca2+ with

Mg2+).  Samples were placed in a microcuvette (Starna Cells) and following addition of

1/10th volume of F-buffer, light scattering was monitored with the PTI Quantmaster

spectrofluorometer (Photon Technology International) with excitation 310 nm (1 nm

bandpass) and emission 310 nm (1 nm bandpass).  When examining the influence of

phalloidin, 0.33 µM phalloidin was added at the time of F-buffer addition.

Fluorescence microscopy of actin filaments

Purified recombinant actins were clarified by as described above and incubated (5 mM)

in F-buffer (50 mM KCl, 2 mM MgCl2, 1 mM ATP), and treated with different molar

ratios of unlabeled phalloidin to actin from 0:1 to 1:1 (Molecular Probes). In addition,

final concentrations of 0.13 mM or 0.33 mM Alexa-488 phalloidin (Molecular Probes)

were added to each sample to visualize filaments. Following polymerization for 1 h,

samples were placed on a slide and viewed with a Zeiss Axioskop (Carl Zeiss)

microscope using 63X Plan-NeoFluar oil immersion lens (1.30 NA). Images were

collected using a Zeiss Axiocam with Axiovision v3.1 and processed using linear

adjustments in Adobe Photoshop v8.0.
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Conditional expression system

TgACTI alleles were amplified by PCR inserted into a modified vector pTUB-DD-myc-

YFP-CAT-Pst1 (Herm-Gotz et al., 2007) at unique Pst1-AvrII sites to generate DD-

TgACTI fusions using primers 5’-GCGCCTAGGATGGCGGATGAAGAAGTGCAA-3’

(forward) 5’-CTAGTCTGCAGTTAGAAGCACTTGCGGTGGA-3’ (reverse).  The

resulting plasmids were transfected into tachyzoites of the RH strain of Toxoplasma and

parasites were single celled cloned on monolayers of HFF cells and propagated as

previously described (Morisaki et al., 1995).

Immunofluorescence microscopy

For intracellular staining, parasites were allowed to invade HFF monolayers on glass

coverslips for 24 h in the presence or absence of 4 µM Shield-1.  The coverslips were

then fixed with 4% formaldehyde and stained with mouse anti-c-myc (Zymed) to detect

the DD-fusion proteins followed by goat anti-mouse IgG conjugated to AlexaFluor488

(Molecular Probes) and mAB DG52 (anti-TgSAG1) directly conjugated to AlexaFluor

594 to detect the parasite.  For actin staining, parasites were treated ± 0.25µM JAS

(Invitrogen) for 15 min and allowed to glide for 15 min on glass coverslips coated with

50 µg ml-1 BSA.  Coverslips were fixed and stained with mouse anti-c-myc (Zymed)

followed by goat anti-mouse IgG conjugated to AlexaFlour 488 and mAb DG52 labeled

with AlexaFlour 594. For projection staining, parasites were treated ± 2.5µM JAS

(Invitrogen) for 15 min and allowed to glide for 15 min on glass coverslips coated with

50 µg ml-1 BSA.  Coverslips were fixed and stained with rabbit anti-TgACTI (Sahoo et

al., 2006) followed by goat anti-rabbit IgG conjugated to AlexaFlour 488 and mAb DG52
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labeled with AlexaFlour 594.  Coverslips were mounted in Pro-Long Gold anti-fade

reagent (Invitrogen) and viewed with a Zeiss Axioskop (Carl Zeiss) microscope using

63X Plan-NeoFluar oil immersion lens (1.30 NA).  Images were collected using a Zeiss

Axiocam and deconvolved using a nearest neighbor algorithm in Axiovision v3.1.

Images were processed using linear adjustments in Adobe Photoshop v8.0.

Plaque assay

Plaque assays were conducted by adding 300 purified parasites to HFF monolayers in 6-

well dishes containing medium + DMSO or medium +3 µM Shield-1 in DMSO and

incubated at 37°C with 5% CO2 for 7 days.  Plates were then fixed with 70% ethanol and

stained with 0.01% crystal violet to visualize plaques.

Actin sedimentation analysis

Parasite strains expressing DD-tagged actins were treated ± 0.5 µM JAS for 30 min,

lysed with Triton-X-100 for 1 h, centrifuged at 1,000g, 4°C for 2 min and supernatants

centrifuged at 350,000g, 4°C for 1 h using a TL100 rotor and a Beckman Optima TL

ultracentrifuge (Becton Coulter).  Supernatant proteins were acetone precipitated and

washed with 70% ethanol.  All pellets were resuspended in 1X sample buffer, resolved on

a 12% SDS-PAGE gels, Western blotted with anti-TgACTI antibody, visualized using a

FLA-5000 phosphorimager (Fuji Film Medical Systems), and quantified using Image

Gauge v4.23. 



121

Electron microscopy

For examination of JAS-induced actin projections, parasites were grown in the presence

of Shield-1 for 40 h, harvested and treated with 2.5 µM JAS for 15 min, and fixed in 2%

paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc) in 100 mM phosphate buffer,

pH 7.2 for 1 hr at room temperature.  Samples were washed in phosphate buffer and

postfixed in 1% osmium tetroxide (Polysciences Inc) for 1 h.  Following extensive

washing in dH20, samples were en bloc stained with 1% aqueous uranyl acetate (Ted

Pella Inc) for 1 h.  Samples were then dehydrated in a graded series of ethanol and

embedded in Eponate 12 resin (Ted Pella Inc).  Sections of 95 nm were cut with a Leica

Ultracut UCT ultramicrotome (Leica Microsystems Inc), stained with uranyl acetate and

lead citrate.  Samples were viewed and photographed on a JEOL 1200 EX transmission

electron microscope (JEOL USA) and images adjusted linearly using Adobe Photoshop

v8.0.  The same procedure but without JAS treatment was used to analyze membrane

blebs.

Video microscopy

Parasite gliding was monitored by video microscopy as previously described (Håkansson

et al., 1999).  Parasites were treated with DMSO or 4 µM Shield-1 for 40 h, resuspended

in Ringer’s solution and allowed to glide on uncoated glass coverslips.  Images were

captured with 50 - 100 ms exposure times at 1 sec intervals, combined into composites

with Openlab v4.1 (Improvision), analyzed using ImageJ and saved as QuickTime

movies.  Cell motility was tracked using the ParticleTracker plug-in to evaluate average

speeds from a 3-15 tracks.  The percentage of parasites undergoing different forms of

motility was quantified from 4 separate movies containing 10-40 motile parasites each
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using Cell Counter, as described (Lourido et al., 2010).  Radii of circular patterns were

measured using the measurement feature of Axiovision software (Zeiss).

Statistical Analysis

Statistics were calculated in Excel or Prism (Graph Pad) using unpaired, two-tailed

Student’s t-tests for normally distributed data with equal variances, and two-tailed Mann-

Whitney analysis for analysis of samples with small samples sizes of unknown

distribution.  Significant differences were defined as P ≤ 0.05.
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Figure 1. Identification of substitutions within TgACTI that may affect filament stability.

(A) Modeling of S199-D179 hydrogen bond and M269 in the hydrophobic loop of

mammalian actin. (B) Modeling of loss of hydrogen bond with G200 substitution and

reduced hydrophobicity at position 270 in TgACTI.
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Figure 2.  Phylogenetic tree highlighting the diversity of actins.

Actin sequences were retrieved from Genbank and aligned using Clustal. Neighbor

joining with PAUP* was used to assemble the sequences into phylogenetic tree. The

branches are color coded to show phylogenetic differences. Red represents branches

containing a lysine or arginine at position 270, which is conventionally a methionine.

Green represents branches that contain the 270 substitution as well as a glycine at

position 200, which is conventionally a serine or threonine. Numbering based on the

TgACTI sequence.
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Figure 3.  Single substitutions with TgACTI restore filament stability.

(A) Expression of TgACTI recombinant proteins containing mammalian-like

substitutions in baculovirus, resolved using a 12% SDS-PAGE gel, and stained with

SYPRO Ruby. (B) Comparison of polymerization kinetics of TgACTI substitutions. F

buffer was added to induce polymerization of 5 µM actin and polymerization was

monitored by light scattering. (C) In vitro polymerization of TgACTI substituted with

mammalian actin residues. 5 µM actins were visualized by fluorescence microscopy

using 0.33 µM Alexa 488-phalloidin and different molar ratios of unlabeled phalloidin to

actin. Scale bars, 5 µm. Representative of three or more similar experiments.
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Figure 4. Comparison of polymerization kinetics of TgACTI substitutions +/- phalloidin.

F buffer +/- 0.33 µM phalloidin was added to induce polymerization of 5 µM actin and

polymerization was monitored by light scattering.  Solid lines represent no phalloidin

addition and dashed lines represent samples where phalloidin was added.
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Figure 5. Comparison of polymerization kinetics of ScACT substitutions.

(A) F buffer was added to induce polymerization of 5 µM ScACT or ScACT-S199G and

polymerization was monitored by light scattering. (B) F buffer was added to induce

polymerization of 5 µM ScACT substitutions and polymerization was monitored by light

scattering.
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Figure 6. Expression of degradation domain (DD)-tagged TgACTI alleles in Toxoplasma.

(A) Expression of DD-TgACTI fusion proteins following treatment ± Shield-1 for 40 h

and detected by Western blot with anti-TgACTI antibody. All strains express the

endogenous TgACTI while the fusion proteins (DD-TgACTI) were only expressed by the

transfected strains in the presence of Shield-1. (B) Expression of DD-tagged TgACTI

alleles following treatment ± Shield-1 for 24 h and stained for immunofluorescence with

anti-SAG1 (surface antigen 1, red) and anti-c-myc (green) to detect the DDTgACTI

fusion protein. (C) Effects of DD-TgACTI allele expression on plaque formation. HFF

monolayers were infected with untransfected parasites or those expressing DD-TgACTI

alleles ± Shield-1 for 7 days and visualized by crystal violet staining. Representative of

three or more similar experiments.
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Figure 7. Stabilized actin alleles are more sensitive to JAS-stabilization than endogenous

TgACTI in Toxoplasma.

(A) Localization of c-myc-tagged DD-TgACTI alleles in parasites treated with Shield-1

for 40 h as visualized by immunofluorescence with anti-c-myc antibody (green) and

SAG1 (red). Treatment with low levels of JAS (i.e. 0.25 µM) induced spiral patterns of

filaments in parasites expressing stabilized actin alleles (right). Apical end noted with

arrowhead. Scale bar, 5.0 µm. (B) Images from (A) shown as z-slices (~0.3 µm). Actin

spirals in JAS-treated parasites were visualized by staining with anti-c-myc antibody.

Apical end noted with arrowhead. Scale bar 5 µm. (C) Sedimentation analysis of F actin

in parasites expressing DD-TgACTI fusions and treated ± Shield-1 for 40 h. Cell lysates

were prepared ± 0.5 µM JAS, sedimented for 1 h at 350,000g and analyzed by

SDSPAGE and quantitative Western blotting. Mean ± S.D., n = 3 experiments with a

single replicate each. *P < 0.05 (Student’s t-test) vs. DD-wild type.
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Figure 8. Immunofluorescence staining of actin-rich projections in JAS-treated parasites.

(A) Parasites expressing stabilized TgACTI and treated ± Shield-1 for 40 h formed actin-

rich projections from their apical and posterior ends as visualized by

immunofluorescence with anti-TgACTI antibody (green) and SAG1 (red). Untransfected

and DD-fusion expressing parasites were treated with 2.5 µM JAS (top panel). Scale bar,

5 µm. (B) The percentage of parasites with one or two projections were counted from

cells after growth ± Shield-1 for 40 h. The frequency of cells expressing two actin

projections in DD-G200S and DD-G200S/K270M –expressing parasites was significantly

in the presence vs. absence of Shield-1 (bottom panel), * P < 0.05 (Student’s t-test), ** P

< 0.001 (Student’s t-test). Mean ± S.E.M., n =3 experiments.



139

Figure 9. EM examination of F-actin in parasites expressing DD fusions and treated

with JAS.

(A,B) DD- wild type expressing parasites showing apical projections (black

arrowheads). (C-F) DD-G200S expressing parasites showing apical (black arrowheads)

and posterior (white arrowheads) actin projections. F, Posterior projection of filaments

protrudes through the dense inner membrane complex (arrows). Scale bars = 1 µm A,

C, 0.5 µm, B, D-F.
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Figure 10. EM examination of parasites expressing DD-fusions in the absence of JAS.

DD-G200S, DD-G200S/K270M and DD-wild type expressing parasites showing apical

membrane blebs.  Scale bar = 0.5µm.
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Figure 11. Parasites expressing stabilized actin undergo aberrant gliding motility.

(A) Representative composite videos of normal gliding motility by parasites expressing

DD-wild type TgACTI. (B,C) Representative composite videos of gliding by parasites

expressing stabilized actin mutants revealed examples of stalled, incomplete or off-track

circular patterns and disrupted helical patterns that were classified as aberrant. For helical

gliding, the number of complete turns made during the time-lapse sequence are

numbered. Images are composite frames from 60 sec of video recording. Scale bars, 5

µm. (D) Quantification of number of parasites undergoing each category of gliding

motility following treatment ± Shield-1 for 40 h. The percentage of parasites undergoing

aberrant gliding (as defined in B,C) increased in the presence vs. absence of Shield-1 in

the mutant actins, * P < 0.005 (Student’s t-test). Mean ± S.D. (E) Comparison of radii of

circular tracks formed during normal gliding by DD- wild type expressing parasites vs.

parasites expressing mutant actins that formed aberrant circular tracks (i.e. stalled,

incomplete, or off-track). * P < 0.001 ** P < 0.0001 (Mann-Whitney test). Mean shown

by horizontal line.
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Figure 12.  Models for mechanism by which substitutions within TgACTI influence

gliding motility of T. gondii.

(A) Wild type TgACTI (red) forms short filaments providing flexibility for the parasite to

undergoe a tight turning radius.  TgACTI containing stabilizing substitutions (blue) is not

flexible enough to allow the parasite to undergo tight turns and corkscrew motions

resulting in aberrant forms of gliding motility.  (B) Turnover of stabilized TgACTI from

the filament is slowed due to the amino acid substitutions thereby disrupting normal

motility by reducing the pool of free actin monomers. (C) Substitutions within TgACTI

might also interfere with wild type binding of actin-binding proteins (green) and therefore

alter their role in actin polymerization.
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Table 1.  Quantification of T. gondii gliding motility rates from video microscopy

Strain/Shield-1      Normal Helicala  Aberrant Helical  Normal Circular  Aberrant Circular
Untransfected/ - 1.34 ± 0.23b -c - -
Untransfected/+d 1.50 ± 0.44 -       - -
DD-wild type/-  1.54 ± 0.29 - - -
DD-wild type/+ 1.35 ± 0.28 - 1.09 ± 0.40                   -
DD-G200S/- 1.49 ± 0.32 - 1.35 ± 0.46 -
DD-G200S/+ -  0.72 ± 0.32*** - 0.71±0.35*
DD-G200S/K270M/- 1.59 ± 0.41 - 1.32 ± 0.26 -
DD-G200S/K270M/+ - 0.73 ± 0.22*** - 0.64 ± 0.28**

a µm/sec
b Mean ± S.D.
c Too infrequent for analysis
d 4 µM Shield-1
* Comparison of circular gliding by DD-G200S ± Shield-1, P < 0.05, Student’s t-test.
** Comparison of circular gliding by DD-G200S/K270M ± Shield-1, P < 0.01, Student’s

t-test.
***Comparison of helical gliding by DD-G200S or DD-G200S/K270M ± Shield-1, P

<0.005, Student’s t-test.
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Chapter IV

Influence of Formin and Profilin on Polymerization of Actin in Toxoplasma gondii
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PREFACE

Work presented in this chapter was conducted by KMS.  Wassim Daher contributed by

cloning and purification of the formin proteins and the profilin used in the formin assays.

Profilin in characterization assays was cloned and purified by KMS.

The first complete draft of this chapter was written by KMS. Comments from David

Sibley were incorporated into the final version printed here.
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ABSTRACT

Apicomplexan parasites employ a gliding motility mechanism that is dependent

on the polymerization of parasite actin in order to enter into host cells.  Paradoxically,

intracellular actin populations are predominantly unpolymerized and actin filaments

appear to only assemble when required for gliding and host cell entry. Actin

polymerization is therefore likely a tightly regulated process; however, apicomplexans

encode fewer actin-binding proteins than typically found in other eukaryotes.  Previous

studies have examined the behavior of apicomplexan formins and profilin on

heterologous actin and demonstrate these proteins exhibit canonical functions to those of

homologs in higher eukaryotes.  However, the function of apicomplexan formins and

profilin on divergent apicomplexan actins is still undetermined.  We therefore analyzed

the impact of T. gondii profilin (TgPRF) and two formin isoforms (TgFRM1 and

TgFRM2) on the polymerization of T. gondii actin (TgACTI).  Light scattering assays

were used to demonstrate TgFRM1 and TgFRM2 enhanced TgACTI polymerization.

TgPRF sequestered TgACTI and hence inhibited polymerization and also slightly

inhibited nucleotide exchange, both unconventional properties.  Determination that

TgPRF sequesters TgACTI while TgFRMs enhance polymerization provides insight into

TgACTI regulation in vivo and helps to explain the unconventional actin dynamics

observed within the parasite.



149

INTRODUCTION

Toxoplasma gondii is a protozoan pathogen of the phylum Apicomplexa.  T. gondii

has an obligate intracellular life cycle and must therefore enter into host cells for

replication.  Along with the other members of the phylum, T. gondii employs a unique

form of motility for active invasion of host cells.  In the current model for this

mechanism, termed gliding motility, the parasite has been proposed to utilize myosin

motors anchored within the parasite inner membrane complex (Gaskins et al., 2004) to

translocate actin filaments toward the posterior of the parasite.  The actin filaments are

coupled to extracellular adhesions via aldolase (Jewett and Sibley, 2003), and contact of

these adhesins with the host surface results in rearward pulling of the adhesins to

facilitate forward motion of the parasite into the host cell (Sibley, 2004).

Treatment of T. gondii with cytochalasin-D (cytD) to depolymerize actin filaments

disrupts gliding motility and inhibits host cell invasion (Dobrowolski and Sibley, 1996).

Despite the apparent requirement for filamentous actin to successfully enter host cells,

intracellular parasites have been shown to maintain a highly unpolymerized population of

actin (Dobrowolski et al., 1997; Wetzel et al., 2003).  However, cytD-sensitive filaments

have been visualized within trails formed by gliding parasites using sonication and rapid

freezing followed by electron microscopy (Wetzel et al., 2003).  T. gondii contains one

actin, TgACTI, and studies with recombinant baculovirus-expressed TgACTI have

revealed formation of unconventionally short actin filaments (Sahoo et al., 2006).

Additionally, treatment with jasplakinolide to stabilize actin filaments, results in

hypermotile kinetic motility and disrupts host cell invasion (Wetzel et al., 2003).

Therefore, it appears that actin filaments within the parasite control the proper
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directionality of motility and the timing of polymerization within the parasite so that

filaments only form when required for gliding.   These features raise the questions of how

apicomplexan actin polymerization is regulated and what factors contribute to their

unusual polymerization properties.

Formation of actin filaments is regulated by either controlling the concentration of the

free actin monomer pool that can contribute to a growing filament or by controlling the

accessibility of free filament ends for addition of monomers.  This regulation is critical

for maintaining proper actin networks within cells and therefore, eukaryotic organisms

have evolved numerous actin-binding proteins to ensure proper regulation of actin

polymerization.  Searches within the genomes of apicomplexan parasites have revealed a

minimal set of actin-binding proteins as compared to other organisms (Schüler and

Matuschewski, 2006).  Noteably absent is the actin nucleator Arp 2/3 (Gordon and

Sibley, 2005).  However, two actin-binding proteins that have been identified are profilin

and formin, which collectively may be important for the regulation of parasite actin

polymerization.

Profilins are small monomeric actin binding proteins that play multiple roles in

regulation of actin polymerization.  Profilins were initially shown to sequester G-actin

resulting in filament depolymerization (Carlsson et al., 1977).  However, profilin also

plays a role in promoting polymerization by enhancing nucleotide exchange to convert

ADP-actin to ATP-actin, thus creating a polymerization competent state and lowering the

critical concentration for polymerization (Pantaloni and Carlier, 1993). More recently,

profilin has been shown to enhance polymerization through interaction with the FH1

domain of formin (Sagot et al., 2002).  Profilin has previously been demonstrated to be
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essential for gliding motility in T. gondii through the use of a conditional knockout

(Plattner et al., 2008).  Depletion of T. gondii profilin, TgPRF, results in reduced gliding

and defects in parasite egress from host cells (Plattner et al., 2008).  Biochemical assays

also demonstrate that TgPRF aids in the assembly of skeletal muscle actin filaments at

free barbed ends but not at the pointed end (Plattner et al., 2008).  Despite a conventional

interaction with heterologous actin, TgPRF is unable to complement depletion of profilin

in yeast (Plattner et al., 2008).  Additionally, unlike conventional profilins, TgPRF was

shown to inhibit nucleotide exchange by rabbit actin (Kucera et al., 2010).  Finally, the

profilin from another apicomplexan, P. falciparum, has also been shown to be essential in

the blood-stage of the parasite life-cycle (Kursula et al., 2008).

Conventional formins contain a formin-homology 2 (FH2) domain that assembles

into a homodimer that binds barbed ends of actin filaments.  Upstream of the FH2

domain is the formin-homology 1 (FH1) domain that typically contains a number of

polyproline stretches involved in recruitment of profilin-actin complexes (Higgs, 2005).

Formins have been shown to enhance actin polymerization by moving processively along

actin filaments, allowing addition of actin monomers that are donated by profilin

(Romero et al., 2004).  In the absence of homologs of other nucleating proteins in

apicomplexans, such as Arp2/3, formins have become the suspected candidate to nucleate

parasite actin filament formation. There are three formins in T. gondii and the functions

of two of them, TgFRM1 and TgFRM2, have been examined and shown to act as

nucleators of rabbit actin and contribute to parasite motility (Daher et al., 2010). P .

falciparum also encodes three formins, PfFormin1 and PfFormin2 have been shown to

act as a barbed end nucleators of chicken actin (Baum et al., 2008).
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The overall sequences of TgACTI as well as those for TgPRF, TgFRM1 and

TgFRM2 diverge from their counterparts in higher eukaryotes (Daher et al., 2010;

Plattner et al., 2008).  Hence, these regulatory actin-binding proteins may differ in their

interaction with TgACTI from what has been observed with heterologous actins in

previous studies.  Therefore, we tested the function of TgPRF along with TgFRM1 and

TgFRM2 on the regulation of TgACTI polymerization.  We observed that while T. gondii

formins are capable of enhancing TgACTI polymerization, the role of TgPRF appears to

be primarily in actin sequestration.
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RESULTS

Localization and Concentration of Profilin within T. gondii

Recombinant His-tagged T. gondii profilin (TgPRF) was purified using Ni-

chromatography and used for polyclonal antibody generation.  Rabbit anti-TgPRF (Rb

αTgPRF) was specific for recognition of TgPRF and recognized the recombinant protein

(Figure 1A, lane 1) and a band at the corresponding molecular weight to profilin within

T. gondii lysate (Figure 1A, lane 3), but did not detect anything in control host cell lysate

(Figure 1A, lane 2).  Rabbit αTgPRF was used to determine the localization of TgPRF

within intracellular parasites and revealed a punctate staining pattern throughout the

parasite (Figure 1B).  The localization of TgPRF was also examined in extracellular

gliding parasites and TgPRF was again seen in a punctate pattern within the parasite but

also in the protein trails deposited on coverslips as the parasite undergoes gliding

motility.  Interestingly, the TgPRF found within the trails was also within punctae (Figure

1C).  The TgPRF punctae observed in extracellular parasites appeared closer to the

parasite membrane than that seen within intracellular parasites.  We therefore measured

the distance of the TgPRF punctae from the parasite membrane using images of

intracellular and extracellular gliding parasites using the measurement tool in the

Volocity software (Perkin Elmer).   The distance of TgPRF from the parasite membrane

was significantly less in extracellular parasites (0.40 µm) than in intracellular parasites

(0.67 µm) (Figure 1D).  Other proteins involved in actin polymerization (TgACTI,

TgADF) have been demonstrated to relocalize to the inner membrane space beneath the

parasite plasma membrane (Mehta and Sibley, unpublished data). This relocalization
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suggests that TgPRF may also move to this region upon initiation of gliding motility,

potentially to interact with other proteins involved in motility.

The intracellular concentration of TgACTI has previously been estimated to be 40

µM (Mehta and Sibley, 2011).  To compare this concentration with that of TgPRF, we

compared the levels of TgPRF in T. gondii lysate of known parasite concentration on a

Western blot also containing recombinant TgPRF and probed with anti-TgPRF (Figure

2A) to establish a standard curve (Figure 2B).  We estimate the intracellular

concentration of TgPRF to be ~ 43 µM, about a 1:1 concentration ratio to TgACTI.

TgPRF acts to sequester T. gondii actin

Conventional profilins bind actin monomers, sequestering them to prevent

polymerization of filaments (Carlsson et al., 1977).  To determine how TgACTI

polymerization is influenced in the presence of TgPRF, sedimentation assays were used

to monitor polymerization.  We have previously demonstrated that TgPRF does not

polymerize robustly at 5 µM (Chapter 2), but is able to form longer filaments and

polymerize more extensively at 25 µM (Chapter 6, Figure 3A).  Therefore, we chose to

monitor sedimentation at 350,000g with 25 µM TgACTI in order to better observe

changes.  TgACTI was polymerized for 1 hr in the presence of varying concentrations of

TgPRF prior to sedimentation.  A dose-dependent decrease in TgACTI in the pellet

fraction was observed with increasing concentrations of TgPRF demonstrating TgPRF

inhibited polymerization (Figure 3A).  Steady state sedimentation was used to further

examine the effect of TgPRF on TgACTI polymerization.  Varying concentrations of

TgACTI were polymerized in the presence of equimolar TgPRF for 20 hrs and
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subsequently centrifuged at 350,000g.  Increasing the TgACTI concentration led to a

greater mass of protein collected in the pellet (Figure 1B).  However, addition of

equimolar TgPRF resulted in reduced mass in the pellet demonstrating decreased levels

of polymerization (Figure 1B). Collectively, these results provide evidence that TgPRF

sequesters TgACTI from polymerization.

TgFormins Enhance TgACTI Polymerization

Recent studies have demonstrated the T. gondii formins act in a conventional manner

in the presence of rabbit actin to enhance polymerization (Daher et al., 2010); however, it

is yet unknown if their influence on TgACTI polymerization will be similar.  A range of

concentrations of recombinant T.gondii FRM1 and FRM2 were added to TgACTI and

polymerization was monitored by light scattering.  Consistent with results from previous

studies, polymerization of 5 µM TgACTI alone was not robust (Figure 4A and 4B).

Upon addition of 1 nM and 10 nM TgFRM1, light scattering was increased slightly,

however, a substantial increase in polymerization was observed with addition of 100 nM

TgFRM1 to TgACTI (Figure 4A).  The same concentrations were used to test the effects

of TgFRM2, and extremely robust polymerization occurred even with addition of only 10

nM TgFRM2 and an even greater increase in light scattering was observed at 100 nM

(Figure 4B).  Concentrations of 100 nM FRM1 (1:50 molar ratio with TgACTI) and 10

nM FRM2 (1:500 molar ratio with TgACTI) were chosen for use in subsequent

experiments due to their ability to similarly increase TgACTI polymerization (Figure

4C).  Upon completion of light scattering, the samples were centrifuged at 100,000g for 1

hour and the amount of TgACTI in the pellet and supernatant were calculated using SDS-
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PAGE.  A significant increase in pelletable actin was observed in the TgACTI samples

incubated with TgFRM1 (1:50 molar ratio) or TgFRM2 (1:500 molar ratio) (Figure 4D).

These results demonstrate that the presence of formins during TgACTI polymerization

enhances TgACTI polymerization.

To examine the extent of polymerization, we visualized TgACTI filaments in the

absence and presence of TgFRM1 and TgFRM2 using fluorescence microscopy.

TgACTI (25 µM) was incubated in F buffer alone, with TgFRM1 (1:50 molar ratio) or

with TgFRM2 (1:500 molar ratio) and 0.33 µM Alexa-488 phalloidin was added to all

samples to allow for actin filament visualization.  On its own, TgACTI polymerized into

filaments of various lengths (Figure 5A).  However, in the presence of TgFRM1 or

TgFRM2, there were many more clusters of filaments, although the length of these

filaments was shorter than with TgACTI alone (Figure 5A).  Combination of TgFRM1

and TgFRM2 together resulted in more filaments (Figure 5A).  These observations,

combined with data from both light scattering and sedimentation analysis, demonstrate

that although the TgACTI appears to form shorter filaments in the presence of formins,

the amount of total filaments increases, consistent with conventional formin function.

TgProfilin Inhibits Formin-mediated TgACTI Polymerization

Biochemical assays have previously shown that TgPRF acts in a conventional manner

to promote polymerization at rabbit actin barbed, but not pointed, ends (Plattner et al.,

2008). To determine what effect TgPRF plays on formin-mediated enhancement of

TgACTI polymerization, we used fluorescence microscopy to observe TgACTI

filamentation in the presence of TgPRF.  Consistent with the sequestering observed by
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TgPRF in light scattering assays, the addition of TgPRF to TgACTI resulted in complete

loss of filaments by microscopy (Figure 5B).  Addition of TgFRM1 and TgFRM2 to the

TgACTI/TgPRF reaction restored filaments slightly, but polymerization was not as

robust as TgACTI alone or in the presence of either formin without profilin (Figure 5B).

This decrease in polymerization was surprising since profilin has been shown to interact

with formin to enhance actin polymerization (Sagot et al., 2002).  We therefore added

profilin to light scattering reactions with TgACTI and TgFRM1, TgFRM2, or both, to

examine the effect on light scattering.  In contrast to what was seen with TgFRM1 and

TgFRM2 alone, addition of TgPRF to the TgACTI polymerization reaction at a 1:1

concentration resulted in decreased light scatter (Figure 6A).  Addition of both TgFRM1

and TgFRM2 simultaneously with TgACTI resulted in an even larger increase than with

either formin alone (Figure 6B).  However, decreased TgACTI polymerization was also

seen upon TgPRF addition to TgACTI in the presence of both TgFRM1 and TgFRM2

together (Figure 6B).   Therefore, at equimolar concentration to TgACTI, TgPRF does

not contribute to the formin-nucleated polymerization.  To determine if this inhibition is a

concentration-dependent effect, TgPRF was added at a 1:10 ratio to TgACTI in the

presence of either TgFRM1 or TgFRM2.  At this lower ratio of TgPRF, TgACTI had a

slight enhancement in polymerization suggesting there is an optimal profilin

concentration where a percentage of actin monomers are free of sequestration and instead

interact with formin to enhance polymerization.
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TgPRF does not enhance nucleotide exchange of TgACTI

Profilins conventionally enhance actin polymerization by converting ADP-actin

monomers following depolymerization to ATP-actin, preparing it for addition to the

growing barbed end (Pantaloni and Carlier, 1993).  ε-ATP labeled actin can be used to

monitor the ability of profilins to exchange nucleotide by monitoring the decrease in

fluorescence of the actin upon addition of unlabeled ATP.  It was recently demonstrated

that when combined with heterologous actin, TgPRF acts unconventionally and inhibits

nucleotide exchange (Kucera et al., 2010).  The ability of TgPRF to exchange nucleotide

from ATP-TgACTI was examined over a range of concentrations.  At a 2:1 ratio of

TgPRF to ATP-TgACTI or lower, no change in nucleotide exchange was observed

(Figure 7, inset).  However, when the concentration of TgPRF was increased to 10 times

the level of TgACTI, slight inhibition of nucleotide exchange was observed by a slower

rate of loss of ε-ATP fluorescence (Figure 7).  An affinity of ~ 2.9 µM was calculated for

TgPRF interaction with TgACTI.  This affinity exceeds that typically observed for

conventional profilin/actin interaction, but consistent with previous calculations of

TgPRF binding to rabbit actin (Plattner et al., 2008).
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DISCUSSION

Previous studies have shown that while apicomplexan motility relies on filamentous

actin, filaments are only transiently detected in vivo where the majority of actin appears

to be unpolymerized (Schmitz et al., 2005; Wetzel et al., 2003).  The current studies

attempt to uncover regulatory mechanisms utilized within the parasite to maintain this

steady state pool and assemble filaments at the time they are required for gliding motility.

The genome of apicomplexan parasites contains few actin-binding proteins, such as

formins, profilins, actin depolymerizing factor (ADF) and capping protein, which may be

critical for regulating the state of polymerized actin and may contribute to turnover in the

parasite (Schüler and Matuschewski, 2006).  We have analyzed the effects of T. gondii

formins and profilin on polymerization of TgACTI.  TgFRM1 and TgFRM2 enhance

filamentation by forming filaments that are otherwise not observed for TgACTI alone.

TgPRF was shown to function primarily in sequestration of TgACTI.  These properties

help to explain both previously observed in vitro and in vivo behavior of instability and

turnover of parasite actin filaments, which are likely important adaptations for gliding

motility.

Conventional profilins have been shown to bind actin monomers and sequester them

from filament assembly making this protein an interesting candidate for regulation of

TgACTI polymerization.  Here, we demonstrate TgPRF inhibits TgACTI polymerization

in a dose-dependent manner consistent with canonical profilin activity.  However, at

equimolar concentrations to TgACTI, TgPRF decreased polymerization enhancement

caused by either TgFRM.  This was an unexpected finding as conventional profilins have

been reported to interact synergistically with formins to further enhance polymerization
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(Sagot et al., 2002).  When a TgPRF concentration at 1:10 molar ratio of TgACTI was

added with TgFRM for polymerization, the inhibition was not observed, suggesting high

concentration of TgPRF is required for efficient sequesteration.  Previous studies have

used biochemical assays to demonstrate that profilin interacts with the barbed end of

growing heterologous actin filaments to promote polymerization and report the affinity of

TgPRF for rabbit actin to be ~ 5 µM (Plattner et al., 2008). Our studies find a similar

affinity of TgPRF for TgACTI, indicating that the sequestering activity on TgACTI is not

explained by a change in binding affinity between TgACTI and rabbit actin.  It is possible

that the lack of polymerization enhancement in the presence of TgFRMs could be due to

the degenerate sequences of the T. gondii formin FH1 domains, which contain fewer

prolines than conserved FH1 domains (Daher et al., 2010).  Biochemical analysis has

previously revealed that TgPRF had a very low binding affinity for peptides of the

TgFRM2 FH1 domain (Kucera et al., 2010) and while TgFRMs were able to bind

TgACTI within parasite lysates, they did not pull down TgPRF (Daher et al., 2010).

In contrast to conventional function of profilins, TgPRF slightly inhibited nucleotide

exchange on TgACTI, consistent with the action of TgPRF on rabbit actin (Kucera et al.,

2010).  While the inhibition of nucleotide exchange diverges from the function of most

non-plant profilins, the profilins from Arabidopsis (Perelroizen et al., 1996) and

Chlamydomonas (Kovar et al., 2001) are also unconventional and either inhibit or have

no effect on actin nucleotide exchange.  It has been speculated that plant actin may have

fast enough intrinsic nucleotide turnover rate that profilin does not require this function

and the same may also be true for TgACTI.



161

 Our data suggest TgPRF functions mainly to sequester TgACTI from

polymerization.  Such a model is especially significant in light of previous studies using

TgPRF depletion to demonstrate that profilin is required for proper host cell invasion

(Plattner et al., 2008).  One interpretation of this data would be that without TgPRF to aid

in keeping the actin monomer pool high and filamentation low, the process of host cell

invasion is inhibited.  Long filaments were not immediately apparent in TgPRF depleted

parasites (Plattner et al., 2008), but further microscopy would be required to carefully

examine filaments within these parasites.  Recent work with the actin depolymerizing

factor from T. gondii, TgADF, also shows that this actin-binding protein functions to

sequester TgACTI (Mehta and Sibley, 2010).  Depletion of TgADF leads to visualization

of long actin filaments extending throughout the parasite as well as aberrant forms of

motility that are detrimental to host cell invasion and egress (Mehta and Sibley, 2011).  It

was previously calculated that the intracellular concentration of TgACTI is around 40

µM (Mehta and Sibley, 2011).  Similar concentrations have been calculated for TgADF

(35 µM) (Mehta and Sibley, 2010) and TgPRF (43 µM) (this study).  Based on these

levels, sequestration by both TgPRF and TgADF is expected to complex nearly all of

TgACTI, ensuring there is a small free monomer pool for polymerization.  Hence, these

monomer-binding proteins are predicted to contribute to the lack of long, stable actin

filaments seen within the parasite.

Formins traditionally aid in nucleation of actin filaments through dimerization and

interaction with the actin nucleus via the FH2 domain and interaction with the

profilin/actin complex via its FH1 domain (Higgs, 2005).  Previous work has shown that

the T. gondii formins TgFRM1 and TgFRM2 act as nucleators of heterologous actin



162

(Daher et al., 2010).  In the present study, we demonstrate that they also act to enhance

polymerization of TgACTI.  The increase in light scattering observed upon addition of

TgFRM1 or TgFRM2 to TgACTI is the first observation of robust TgACTI

polymerization on its own without a requirement for stabilizing agents.

When the effect of TgFRM1 and TgFRM2 on actin was studied using rabbit actin,

TgFRM1 proved to be a more potent nucleator that TgFRM2 (Daher et al., 2010).  This

trend was also observed when the formins from P. falciparum were tested for their

impact on chicken actin polymerization (Baum et al., 2008).  Conversely, in the current

studies, TgFRM2 appears about 10 times more potent than TgFRM1 for increasing light

scattering of TgACTI.  However, the increase in light scatter from ninety degree light

scattering assays is not necessarily equivalent to polymerization alone, as filament

bundling will also register as an increase in light scatter.  Sedimentation assays highlight

this caveat as the amount of pelletable TgACTI after incubation with TgFRMs was less

than what would be expected from light scattering.  This discrepancy could be attributed

to TgFRMs increasing polymerization, but not filament length, leading to formation of

many small TgACTI filaments that do not sediment at 100,000g.  Alternatively, the

formins from T. gondii may not function only to interact with the barbed end of the actin

filament, but could have side binding activity as well that would contribute to filament

bundles.  Bundling has been previously reported to occur with mammalian formins FRL1

and mDia2 (Harris et al., 2006) and with Formin1 from Arabidopsis thaliana (AFH1)

(Michelot et al., 2006; Michelot et al., 2005).  AFH1 interacts with the barbed end of the

actin filament in a non-processive manner and binds to the side of the filament following

nucleation allowing the formin to faciliate formation of filament bundles (Michelot et al.,
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2006).  The Formin2 family of apicomplexan formins is phylogenetically more related to

AFH1 (Baum et al., 2008) and it remains to be seen if this formin contributes to TgACTI

filament side binding and bundling.

The similar functions of apicomplexan formins and profilin to those in plants is not

surprising considering other unconventional actin dynamics shared between this phylum

of parasites and plants.  Like the apicomplexans, plant cells maintain a highly

unpolymerized population of actin (Gibbon et al., 1999; Snowman et al., 2002).  Plant

profilins are also maintained at a high concentration within the cell and appear to be at

about a 1:1 ratio with actin (Staiger and Blanchoin, 2006).  It may turn out that

apicomplexan actin function and regulation is more closely related to that of plants, rather

than yeast or mammals.

The transition between unpolymerized actin pools and filament formation appears to

be a highly regulated process in T. gondii, despite a minimal set of actin-binding proteins.

These studies reveal two actin-binding proteins within the parasite that have opposing

impacts on TgACTI polymerization.  TgPRF primarily sequesters TgACTI while

TgFRM1 and TgFRM2 enhance polymerization.  The presence of regulatory proteins

with these opposite functions likely aid in maintaining the precise balance between

monomeric actin and polymerized filaments within the parasite.
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MATERIALS AND METHODS

Recombinant Profilin and Formins

For the characterization of profilin, profilin was amplified from T. gondii RH strain

cDNA using primers 5’-GCGCGCCCATATGTCCGACTGGGACCCTGTTGT-3’

(forward) and 5’-CGCGGATCCTTAGTACCCAGACTGGTGAA-3’ (reverse) and

cloned into pET16b vector using the NdeI and BamHI sites to incorporate a 10X His tag

at the N-terminus.  The resulting construct was electroporated into BL21 E. coli for

protein expression.  Recombinant protein was obtained using ProBond Nickel beads and

was used for polyclonal antibody production (Covance).  Antibody specificity was

examined by running 12% SDS-PAGE gels with recombinant TgPRF, HFF cell lysate, or

T. gondii lysate, transferring to nitrocellulose, probing with the anti-TgPRF antibody,

followed by detection with anti-rabbit horse radish peroxidase antibody using a FLA-

5000 phosphorimager (Fuji Film Medical Systems).  TgFRM1 (gene ID: 20.m03963) and

TgFRM2 (gene ID: 20.m05986) were bacterially expressed by cloning the FH2 domain

and upstream proline rich domain into pETM-30 vector between NcoI and EcoRI.  GST-

tagged profilin, TgFRM1 (amino acids numbers 4582-5051) and TgFRM2 (amino acids

numbers 3317–4043) were purified using Amersham Glutation sepharose 4 Fast Flow

according to manufacturer’s instructions.  The GST tag was cleaved with Precission

protease.

Immunofluorescence Microscopy

For intracellular staining, parasites were allowed to invade HFF monolayers on glass

coverslips for 24 h.  The coverslips were then fixed with 4% formaldehyde and stained
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with rabbit anti-TgPRF to detect profilin followed by goat anti-mouse IgG conjugated to

AlexaFluor488 (Molecular Probes) and mAB DG52 (anti-TgSAG1) directly conjugated

to AlexaFluor 594 to detect the parasite.  For extracellular staining, parasites were

allowed to glide for 15 min on glass coverslips coated with 50 µg ml-1 BSA.  Coverslips

were fixed and stained with rabbit anti-TgPRF followed by goat anti-mouse IgG

conjugated to AlexaFlour 488 and mAb DG52 labeled with AlexaFlour 594.  Coverslips

were mounted in Pro-Long Gold anti-fade reagent (Invitrogen) and viewed with a Zeiss

Axioskop (Carl Zeiss) microscope using 63X Plan-NeoFluar oil immersion lens (1.30

NA).  Images were collected using a Zeiss Axiocam and deconvolved using a nearest

neighbor algorithm in Axiovision v3.1.  Images were processed using linear adjustments

in Adobe Photoshop v8.0.  Measurements to compare the distance of TgPRF from the

parasite membrane in intracellular and extracellular parasites were made using the

measurement tool in the Volocity software (Perkin Elmer).

Quantitation of Profilin Intracellular Concentration in T. gondii

To estimate the intracellular concentration of profilin within T. gondii, egressed parasite

cultures were lysed in actin stabilization buffer (60 mM PIPES, 25 mM HEPES, 10 mM

EGTA, 2mM MgCl2, 125 mM KCl) containing 1% Triton-X-100 and 1X protease

inhibitor cocktail (1 µg/ml E64, 10 µg/ml AEBSF, 10 µg/ml TLCK and 1 µg/ml

leupeptin) for 30 min followed by centrifugation at 14,000 rpm for 10 min to remove the

insoluble material.  The lysate was then resuspended in 1X sample buffer and run at

various concentrations of parasites on 12% SDS-PAGE gels along with a range of

recombinant TgPRF at known concentration, Western blotted with anti-TgPRF antibody,



166

visualized using a FLA-5000 phosphorimager (Fuji Film Medical Systems), and

quantified using Image Gauge v4.23.  The recombinant protein was used to create a

standard curve for comparison with the parasite lysate to estimate the amount of TgPRF

within a single parasite.  T. gondii tachyzoites are estimated to be 7 µm long and 2 µM

wide, therefore the volume of a single parasite can be calculated as:

Volume = 4/3 π (1/2 length) x (1/2 width)2 = 1.47 x 10-11 ml

After calculating the amount of TgPRF within one parasite, the following equation was

used to calculate the intracellular concentration of the protein (Rodrigues et al., 2002):

Molarity (M) =    protein concentration per cell in grams
____________________________________________________

molecular weight in grams x (1.47 x 10-14 L)

Time-based Ninety Degree Light Scattering

Purified recombinant actin was pre-centrifuged at 100,000g, 4°C, for 30 min using a

TL100 rotor and a Beckman Optima TL ultracentrifuge (Becton Coulter, Fullerton, CA)

to remove aggregates.  TgACTI was diluted to 5 µM in G buffer and preincubated with 1

mM EGTA and 50 µM MgCl2 for 10 min (to replace bound Ca2+ with Mg2+).  Samples

were placed in a 100 µl cuvette (Submicro Quartz Fluorometer cell, Starna Cells,

Atascadero, CA) and light scattering was monitored with the PTI Quantmaster

spectrofluorometer (Photon Technology International, Santa Clara, CA):  excitation 310

nm (1 nm bandpass), emission 310 nm (1 nm bandpass).  Once a steady reading was

obtained, the acquistition was paused and 1/10th volume of 10X F-buffer (500mM KCl,

20mM MgCl2, 10mM ATP) was added to induce polymerization.  At the same time the F

buffer was added, combinations of TgFRM1-FH1FH2, TgFRM2-FH1FH2 or TgPRF
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were added.  The acquisition was restarted and counts collected until the readings reached

a plateau.  Light scattering curves were smoothed by averaging 10 neighbors and

normalized by subtracting the values of TgFRM1-FH1FH2, TgFRM2-FH1FH2 or TgPRF

added to G buffer in the absence of TgACTI.

Sedimentation Analysis

Samples were prepared for light scattering analysis as described above and counts were

read for the stated time.  Following light scattering, the sample was transferred from the

cuvette to a centrifuge tube and subsequently centrifuged at 100,000g or 350,000g for 1

hr at room temperature.  Protein in the supernatant was precipitated in 2 volumes acetone

overnight, centrifuged at 14,000 rpm for 30 min, washed with 70% ethanol followed by

centrifugation at 14,000 for for 10 min.  All pellets were resuspended in 1X sample

buffer.  Proteins were resolved on a 12% SDS-PAGE gels, stained with Sypro-Ruby

(Molecular Probes), visualized using a FLA-5000 phosphorimager (Fuji Film Medical

Systems), and quantitated using Image Gauge v4.23.

Fluorescence Microscopy

Purified recombinant TgACTI was clarified as described above and various

concentrations were diluted to final molarity with 1/10th 10X F buffer, treated with or

without equimolar amounts of unlabeled phalloidin (Molecular Probes, Eugene, OR).  In

experiments to analyze formins, 25 µM TgACTI was incubated with 500nM TgFRM1-

FH1FH2 or 50nM TgFRM2-FH1FH2.  Final concentration of 0.33µM Alexa-488

phalloidin (Molecular Probes) was added to each sample to allow visualization of actin
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filaments.  Polymerization was then allowed to proceed for 1 hr at room temperature in

the dark following which 6 µl of the reaction was placed on a slide and viewed with a

Zeiss Axioskop (Carl Zeiss, Thornwood, NY) microscope using 63X Plan-NeoFluar oil

immersion lens (1.30 NA).  Images were collected using a Zeiss Axiocam with

Axiovision v3.1.  All Images were processed by linear adjustment in the same manner

using Adobe Photoshop v8.0.

Nucleotide Exchange

Protocol used was as previously described (Mehta and Sibley, 2010).  Briefly, purified

recombinant TgACTI was clarified as described above and treated with 10% volume of

50% slurry 1X8 Cl (200-400 mesh, Sigma Aldrich) Dowex beads to remove ATP.  Actin

was then incubated with 500 µM 1,N6-ethenoadenosine 5’triphosphate (εATP, Molecular

Probes) for 1 hr at 4°C.  Dowex beads were again added to removed unbound eATP

followed by addition of 20 µM εATP to maintain the actin. εATP TgACTI was diluted to

1 µM, preincubated with varying concentrations of TgPRF for 10 min, Mg2+ was

exchanged for Ca2+ with 1 mM EGTA and 50 µM MgCl2 for 5 min.  The sample was

placed in a submicrocuvette and read in a PTI spectrofluorometer at 360 nm excitation

and 410 nm emission until a steady reading was reached.  1.25 mM unlabeled ATP was

then added to compete with the εATP and measurements were continued.  The affinity of

TgPRF for TgACTI was calculated by curve fitting using nonlinear regression analysis of

first order exponential decay using Prism Software (GraphPad).
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Statistical Analysis

Statistics were calculated in Excel or Prism (Graph Pad) using unpaired, two-tailed

Student’s t-tests for normally distributed data with equal variances.  Significant

differences were defined as P ≤ 0.05.
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Figure 1. Expression and localization of TgPRF within T. gondii.

(A) Recombinant His-tagged TgPRF was purified on Ni-beads and used for polyclonal

antibody production.  The antibody was affinity purified and used to probe a Western blot

where it detected recombinant TgPRF (lane 1), a band at the correct molecular weight for

profilin from Toxoplasma lysate (lane 3), but nothing in host cell lysate (lane 2).  (B)

Localization of TgPRF within intracellular parasites using immunofluorescence

microscopy with anti-TgPRF (green) and SAG1 (Surface antigen 1, red) to visualize the

parasites. Scale bar, 2.5 µm.  (C) Co-localization of TgPRF within protein trails of

extracellular gliding parasites using immunofluorescence microscopy with anti-TgPRF

(green) and SAG1 (red).  Scale bar, 2.5 µm.  (D) Quantitation of relocalization of TgPRF

to parasite periphery during gliding.  Distance of TgPRF from the parasite membrane was

measured in intracellular parasites and extracellular gliding parasites.  Average distance

from the membrane for each condition is shown. * = Significantly less distance from

membrane .  Student’s t-test P < 0.0001.
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Figure 2.  Calculation of intracellular concentration of TgPRF.

(A)  Western blot to compare amount of TgPRF in parasite lysates to known

concentrations of recombinant TgPRF.  Parasite lysates and recombinant protein were

resolved on a 12% SDS-PAGE gel, transferred to nitrocellulose and probed with rabbit

αTgPRF.  Arrow denotes TgPRF band.  (B)  Standard curve used to calculate amount of

TgPRF within parasite lysate.  Bands from Western in (A) were quantitated with a

phosphorimager and used to calculate a standard curve from rTgPRF of known

concentration.  The rTgPRF values were fit with a linear regression curve.
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Figure 3.  TgPRF acts to sequester TgACTI from polymerization.

(A) Sedimentation analysis of TgACTI polymerized with varying concentrations of

TgPRF.  25 µM TgACTI was incubated in F buffer with TgPRF (0.1 –1 molar ratio) for

1.5 hr.  Reactions were centrifuged at 350,000g, run on SDS-PAGE gels to determine the

amount of protein in the pellet, stained with Sypro Ruby and visualized using a

phosphoimager.  Values were normalized to the amount of pelleted TgACTI in the

absence of TgPRF.  Means +/- S.D of three independent experiments are shown.

(B) Steady state sedimentation analysis of varying TgACTI concentrations polymerized

with equimolar TgPRF.  TgACTI was polymerized for 20 hrs +/- TgPRF, centrifuged at

350,000g, run on SDS-PAGE gels to determine the amount of protein in the pellet,

stained with Sypro Ruby and visualized using a phosphorimager.  95% confidence

interval of the best-fit line is shown. Data is combined from two independent

experiments.
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Figure 4.  TgFRM1 and TgFRM2 enhance polymerization of TgACTI.

(A) Comparison of polymerization kinetics of TgACTI in the presence and absence of

TgFRM1. Polymerization of 5 µM actin in F buffer alone (red) or with the addition of 1

µM (blue), 10 µM (green) or 100 µM (orange) TgFRM1 monitored by light scattering.

Representative of 2 experiments. (B) Comparison of polymerization kinetics of TgACTI

in the presence and absence of TgFRM2. Polymerization of 5 µM actin in F buffer alone

(red) or with the addition of 1 µM (blue), 10 µM (green) or 100 µM (orange) TgFRM2

monitored by light scattering.   Representative of 2 experiments. (C) Polymerization

curves for TgACTI with addition of TgFRM1 or TgFRM2 plotted together for

comparison of increase in polymerization kinetics.  Concentrations chosen for subsequent

experiments are denoted with asterisks. (D) Upon completion of light scattering, samples

of TgACTI alone or in the presence of 100 nM TgFRM1 or 10 nM TgFRM2 were

centrifuged for 1 hour at 100,000g to pellet actin filaments.  Protein from the pellet or

supernatants of all samples was resolved on a 12% SDS-PAGE gel, stained with SYPRO

Ruby and quantified by phosphorimager analysis.  The average percentage of protein in

the pellet fraction from three replicate experiments is shown. Percent in the TgACTI

pellet alone was compared to +TgFRM1 or +TgFRM2 and * denotes significance using

Students two tailed t-test.  P < 0.05.
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Figure 5.  Influence of TgFRM1, TgFRM2, and TgPRF on formation of TgACTI

filaments.  (A) In vitro polymerization of TgACTI with formin. 25 µM TgACTI

incubated in F buffer alone, with 500 nM TgFRM1, 50 nM TgFRM2, or 500 nM

TgFRM1 with 50 nM TgFRM2 for 1 hour then visualized by fluorescence microscopy

using 0.33 µM Alexa 488-phalloidin. (B) In vitro polymerization of TgACTI with formin

and profilin. 25 µM TgACTI incubated in F buffer alone, with 500 nM TgFRM1, 50 nM

TgFRM2, or 500 nM TgFRM1 with 50 nm TgFRM2 + 25 µM TgPRF for 1 hour then

visualized by fluorescence microscopy using 0.33 µM Alexa 488-phalloidin.  Scale bar, 5

µm.  A representative of 2 similar experiments is shown.
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Figure 6.  Effect of TgPRF on formin-mediated TgACTI polymerization.

(A) Comparison of polymerization kinetics of TgACTI in the presence or absence of

formin with and without addition of equimolar TgPRF. Polymerization of 5 µM actin in F

buffer alone (solid red), with 5 µM TgPRF (dashed red), with 100 nM TgFRM1 (solid

blue), with 100 nM TgFRM1 and 5 µM TgPRF (dashed blue), with 10 nM TgFRM2

(solid green) or with 10 nM TgFRM2 and 5 µM TgPRF (dashed green) monitored by

light scattering.  (B) Comparison of polymerization kinetics of TgACTI in the presence

or absence of TgFRM1 and TgFRM2 in combination with and without addition of

TgPRF. Polymerization of 5 µM actin in F buffer alone (solid red), with 100 nM

TgFRM1 (solid blue), with 10 nM TgFRM2 (solid green), with 100 nM TgFRM1 and 10

nM TgFRM2 (solid orange) or with 100 nM TgFRM1, 10 nM TgFRM2 and 5 µM

TgPRF (dashed orange) monitored by light scattering. (C) Comparison of polymerization

kinetics of TgACTI in the presence or absence of formin with and without addition of

1:10 concentration of TgPRF. Polymerization of 5 µM actin in F buffer alone (solid red),

with 100 nM TgFRM1 (solid blue), with 100 nM TgFRM1 and 0.5 µM TgPRF (dashed

blue), with 10 nM TgFRM2 (solid green) or with 10 nM TgFRM2 and 0.5 µM TgPRF

(dashed green) monitored by light scattering.  Representative data from 2 or 3

experiments are shown.
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Figure 7. Nucleotide Exchange of TgACTI by TgPRF.

The effect of TgPRF on nucleotide exchange of TgACTI was examined using ε-ATP

labeled TgACTI (1 µM) with various concentrations of TgPRF (0.25 µM – 100 µM) and

examining the loss of fluorescence over time following addition of 1.25 mM unlabeled

ATP.  The initial rates of fluorescence loss were used to calculate rate constants and are

plotted verses TgPRF concentration to obtain a curve of one phase decay.  The effect of

lower concentrations of TgPRF on TgACTI nucleotide exchange is expanded in the inset.

Three independent experiments were averaged and values are mean +/- S.D.
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Chapter V

Toxoplasma gondii Actin Undergoes Isodesmic Polymerization Rather than

Nucleation-Elongation
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PREFACE

Work presented in this chapter was conducted by KMS.

The first complete draft of this chapter was written by KMS. Comments from David

Sibley were incorporated into the final version printed here.
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ABSTRACT

Toxoplasma gondii is a protozoan pathogen that relies on actin polymerization for

gliding motility, which powers its unique entry mechanism into host cells.  Despite a

requirement for actin filaments, studies with recombinant actin from T. gondii (TgACTI)

have previously shown this actin forms filaments that are much shorter in length than

those of conventional actins.  Here, we demonstrate by fluorescence microscopy that at

higher concentrations of protein, TgACTI is able to form filaments of more conventional

length.  However, the majority of TgACTI still fails to polymerize even at high

concentrations as shown by sedimentation analysis and density centrifugation.  Normally,

actin filaments polymerize via a nucleation-elongation mechanism that utilizes

cooperative assembly of filaments after formation of a trimeric nucleus, which is

energetically favorable once the actin concentration reaches its critical concentration.

The nucleation-elongation mechanism for polymerization is characterized by a lag phase,

which is more pronounced at low protein concentration, and has a defined critical

concentration for filament assembly above which elongation occurs.  Analysis of

TgACTI polymerization at varying protein concentrations revealed that TgACTI does not

meet the criteria for filamentation via nucleation-elongation.  Rather, these data indicate

that TgACTI polymerizes in a concentration dependent manner that is most consistent

with an isodesmic mode of polymerization.  Isodesmic polymerization of TgACTI

explains in vivo observations and suggests a fundamentally different regulatory

mechanism for actin in protozoans.
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INTRODUCTION

Toxoplasma gondii is a parasitic protozoan belonging to the phylum Apicomplexa.  T.

gondii is an obligate intracellular parasite and penetrates host cells in order to replicate

within them.  To accomplish entry, T. gondii utilizes an active gliding motility process

that is dependent upon polymerization of its own actin into filaments (Dobrowolski and

Sibley, 1996).  Agents that influence actin polymerizaton such as the actin

depolymerizing drug, cytochalasin-D, or the actin stabilizing agent, jasplakinolide, have a

detrimental effect on the ability of T. gondii to enter into host cells (Dobrowolski and

Sibley, 1996; Poupel and Tardieux, 1999; Wetzel et al., 2003).  Despite a requirement for

actin polymerization, sedimentation of T. gondii actin (TgACTI) from parasite lysates as

well as in vitro polymerization studies with recombinant TgACTI, have demonstrated

most parasite actin is unpolymerized or only forms short filaments (Dobrowolski and

Sibley, 1996; Wetzel et al., 2003).  In addition to its unconventional functional behavior,

TgACTI contains a number of residues that diverge from conventional actins and shares

only 83% sequence identity with mammalian muscle actin (Dobrowolski et al., 1997).

Conventional actins undergo cooperative assembly to polymerize head-to-tail into

parallel helical strands that form filaments (Pollard et al., 2000). Polymerization is

dependent on Mg2+, salt (i.e. KCl), and ATP and only occurs when the actin concentration

exceeds its critical concentration (Cc).   Polymerization is initiated by a slow annealing

step due to unstable dimer and trimer intermediates that fall apart resulting in a lag phase

(Sept and McCammon, 2001). Once the protein concentration surpasses the Cc,

nucleation is thermodynamically favored allowing nucleation followed by a rapid

elongation phase (Pollard et al., 2000).  Because elongation is highly efficient, long actin
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filaments normally remain stable without the presence of small multimeric intermediates

(Sept and McCammon, 2001).  However, gradual hydrolysis of ATP and release of Pi

increase disassembly from the pointed end, creating a pool of monomers (Pollard et al.,

2000).

Similar to conventional actin, TgACTI also requires high salt, Mg2+ and ATP for

polymerization (Sahoo et al., 2006).  The polymerization of TgACTI was previously

examined by tryptophan quenching and surprisingly, the Cc was calculated to be 0.04

µM, 3-4 fold lower than mammalian actin (Sahoo et al., 2006).  Similar estimates were

made from analyzing the amount of actin that pelleted at 100,000g (Sahoo et al., 2006).

The low Cc suggests TgACTI initiates polymerization more readily, yet paradoxically, it

only forms short, transient filaments in vitro (Sahoo et al., 2006). It was initially believed

that this behavior could be explained by TgACTI having a greater capacity to initiate new

filament formation but a reduced ability to establish inter-strand contacts and form stable

filaments (Sahoo et al., 2006).

In contrast to a nucleation-elongation mechanism, polymers can form in an

uncooperative manner via isodesmic polymerization, which does not require a nucleus for

the initiation of filament formation (Miraldi et al., 2008; Oosawa and Kasai, 1962).

While monomers that assemble cooperatively have a higher affinity for filament ends

than for other monomers, in isodesmic polymerization, the affinity of monomers for

filament ends does not change as the length of the filament grows (Miraldi et al., 2008).

As the protein concentration increases, a range of filaments lengths are formed, resulting

in an average polymer size that is shorter than those formed by a nucleation-elongation

mechanism (Oosawa and Kasai, 1962).  Additionally, during isodesmic polymerization
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the population of both monomer and polymers increases with concentration, contrasting

cooperative assembly where the monomer concentration plateaus upon reaching the Cc

(Miraldi et al., 2008).

Actins undergoing nucleation-elongation are expected to rapidly assemble into

filaments when the concentration exceeds the Cc.  However, microscopy analyses have

previously demonstrated TgACTI does not assemble into long filaments above its

calculated Cc.  This contradiction raises questions regarding the mechanism of TgACTI

assembly into filaments.  Here, we reexamined the ability of TgACTI to undergo

polymerization via nucleation-elongation versus isodesmic polymerization.
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RESULTS

TgACTI polymerizes more efficiently at higher concentrations   

We have previously demonstrated that at a concentration of 5 µM, TgACTI fails to

exhibit robust polymerization and requires the addition of phalloidin for filamentation

(Chapter 1 and Figure 1A, B).  However, when polymerization is allowed to proceed with

higher concentrations of actin (10 µM, 25 µM or 40 µM), and monitored by light

scattering, the protein undergoes more robust polymerization on its own in a dose-

dependent manner (Figure 1A).  Although there is a substantial increase in light

scattering from 5 µM to 40 µM, even the polymerization at the highest concentration is

significantly less robust than the kinetics observed for the conventionally studied actin,

Saccharomyces cerevisiae actin (ScACT) (Chapter 2).  Notably, upon addition of F

buffer, there was no lag in the initiation of TgACTI polymerization.  Consistent with the

increase in light scattering, visualization of the filaments formed at these higher

concentrations by fluorescence microscopy revealed longer filaments than what is

observed at lower concentrations. (Figure 1B).  TgACTI polymerized even more robustly

in the presence of equimolar phalloidin, but it is clear that they do have increased ability

to form filaments on their own when the concentration is sufficiently high.

TgACTI sediments only slightly more efficiently at higher concentration

When conventional actins are polymerized, the majority of the protein exists in long

filaments and therefore sediments and is found in the pellet at 100,000g (Pardee and

Spudich, 1982).  Previous studies with TgACTI have reported that it requires higher force

(i.e. 350,000g - 500,000g for 1 hour) for sedimentation following polymerization in F
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buffer (Sahoo et al., 2006).  We were interested to determine how sedimentation with

higher force, or with addition of phalloidin, would influence polymerization of higher

concentrations of TgACTI.  When TgACTI at 5 µM was incubated in F buffer to induce

polymerization and subsequently centrifuged at 100,000g, the majority of the protein

remained in the supernatant, with only 29% in the pellet (Figure 2A).  Addition of

phalloidin at equimolar ratio shifted slightly more TgACTI to the pellet (61%) (Figure

2A).  Centrifugation at 350,000g was sufficient to pellet the majority of TgACTI even in

the absence of phalloidin (84%), demonstrating that this higher force efficiently

sediments TgACTI oligomers.  When TgACTI was polymerized in the presence of

phalloidin and subsequently centrifuged at 350,000g, there was essentially no further

sedimentation from that seen without phalloidin (90% TgACTI in the pellet).

Surprisingly, at 30 µM the majority of TgACTI still remained in the supernatant after

centrifugation at 100,000g (37% in pellet) (Figure 2B).  Although more of the actin was

pelleted than seen from 5 µM TgACTI, this increase was not significantly different

(Student’s t-test, P = 0.26).  In contrast to the results of sedimentation at 5 µM, addition

of phalloidin at 100,000g was sufficient to sediment nearly all of the TgACTI at 30 µM

(90%).  Centrifugation at 350,000g did not exhibit any further increase in pelletable actin

with or without addition of phalloidin (90% versus 96%, respectively) (Figure 2B). The

unusual behavior of TgACTI was not the result of baculovirus expression since ScACT

was tested under the same conditions and more than 90% of the protein was found in the

pellet regardless of the addition of phalloidin or speed of centrifugation (Figure 2C).
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Sizing TgACTI filaments by density centrifugation

       The sedimentation assays suggest that polymerized TgACTI filaments were of

different size ranges than conventional actin.  To evaluate this size distribution more

fully, TgACTI was subjected to density centrifugation.  When 5 µM TgACTI incubated

in G buffer was run on the gradient, the majority of protein was found in a peak

corresponding to the size expected for monomeric protein (Figure 3A, blue).  Incubation

of 5 µM TgACTI in F buffer shifted the protein slightly into higher fractions, although

the majority was still in low molecular weight fractions (Figure 3A, red).  A large low

molecular weight peak was also seen following addition of phalloidin although a

proportion of the actin (14.5%) was shifted to the pellet (Figure 3A, green).  Similarly, 30

µM TgACTI incubated in G buffer showed a broad low molecular weight peak consistent

with monomer and small oligomers (Figure 3B, blue).  Incubation of 30 µM actin in F

buffer resulted in spread of the protein along the gradient, although most protein still

remained in lighter fractions (Figure 3B, red).  However, addition of phalloidin to the F

buffer incubation drove the 30 µM actin into the pellet (43.5%) with little remaining in

lighter fractions of the gradient (Figure 3B, green).

In contrast to TgACTI, sucrose gradient analysis of ScACT gave results expected for

conventional actin.  In G buffer, the majority of the protein was found in fractions

corresponding to monomeric protein (Figure 3C, blue).  However, in F buffer, the

majority of the protein was found in the pellet of the gradient, suggesting that most of the

protein had polymerized into long filaments (Figure 3C, red).

In order to compare the efficiency of sedimentation to the fractions in the gradient,

we determined the fractions in the gradients that correspond to the proportion of actin
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found in the pellet at 100,000g and 350,000g (Figure 3, dashed line, solid line,

respectively).  This analysis indicates that oligomers < 4.0S sediment efficiently at

100,000g and yet only a minor percentage of TgACTI sediments (29% at 5 µM and 37%

at 30 µM).  In contrast, sedimentation at 350,000g sediments a majority of the smaller

oligomers seen in TgACTI incubated in F buffer regardless of concentration.

Collectively, these results are consistent with the presence of a stable population of small

TgACTI oligomers in F-buffer.

TgACTI undergoes isodesmic polymerization

Using sedimentation analysis and tryptophan quenching, the critical concentration of

TgACTI was previously determined to be 0.04 µM, which is three fold lower than that of

conventional actins (Sahoo et al., 2006).  Here, we have revisited the critical

concentration in light of the observation that TgACTI polymerizes more robustly at

higher concentrations than were used in the previous analysis.  A range of protein

concentrations from 0.25 to 40 µM were polymerized for 20 hours and the steady-state

levels of polymerization were then measured by light scattering.  A continued increase in

polymerization versus protein concentration was observed and this data was best fit using

a quadratic equation (Figure 4).  The intercept of this curve crosses the x-axis at very low

concentration, but there was no range where polymerization did not occur.  Collectively,

these results are inconsistent with a fixed critical concentration typical of a nucleation-

elongation model, but rather resemble the kinetics of isodesmic polymerization.

To further examine the polymerization of TgACTI, we examined the amount of

protein in the supernatant and pellet after centrifugation of various concentrations of
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TgACTI at 100,000g.  If TgACTI were undergoing nucleation-elongation, it would be

expected that upon exceeding the Cc, the concentration of protein in the supernatant

would plateau at the Cc (Oosawa and Kasai, 1962).  Strikingly, this was not observed

with TgACTI.  Rather, the amount of protein in the supernatant continued to increase up

to 40 µM TgACTI, the highest concentration tested (Figure 5, red).  This response is

again suggestive of an isodesmic mode of polymerization where increasing protein

concentration results in increased polymerization.
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DISCUSSION

Several features indicate TgACTI undergoes isodesmic polymerization rather than the

more conventional nucleation-elongation process.  First, a noticeable lack in a lag phase

was not observed, which is inconsistent with a mechanism of cooperative assembly for

formation of a nucleation step.  Second, examination of the amount of TgACTI left in the

supernatant after sedimentation with varying TgACTI concentrations revealed that the

amount of unpolymerized TgACTI does not reach a plateau but rather increases

continually with protein concentration.  Third, density centrifugation shows evidence of

small stable oligomers that would not be expected from nucleation-elongation.

Collectively, these results suggest that TgACTI does not polymerize into by a nucleation-

elongation model but is instead isodesmic.

Actins traditionally undergo cooperative assembly as evidenced by a lag phase in

polymerization due to the unfavorable assembly of the required trimeric nucleus,

formation of which is concentration dependent (Pollard et al., 2000).  At protein

concentrations exceeding the Cc, nucleation becomes favorable and elongation proceeds

until reaching equilibrium between the monomeric state and actin filaments (Carlier,

1990).  The remaining monomeric concentration at equilibrium is equal to the critical

concentration (Carlier, 1990) and will be consistent regardless of the initial protein

concentration.

Initial investigation of TgACTI polymerization reported a lag phase, albeit only at

low concentration, and polymerization at low Cc, as determined by tryptophan quenching

(Sahoo et al., 2006).  When we repeated this analysis over a much wider range, it became

more clear that there was no apparent critical concentration for TgACTI because the
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unpolymerized TgACTI pool never reached a plateau but rather increased in a

concentration dependent manner.  We also did not observe a lag phase at any

concentration tested.  Instead, the properties of TgACTI fit an isodesmic process of

polymerization where the distribution of actin monomers, oligomers and filaments are

concentration dependent.  At high concentration, some long filaments are formed, yet

these are still a minority as seen in sedimentation analysis and density centrifugation.

Prokaryotic actins have also been described to have unconventional polymerization

properties. For example, the bacterial actin homolog MreB forms both single stranded

helices and linear protofilaments (Popp et al., 2010; van den Ent et al., 2001).  However,

polymerization of MreB occurs by nucleation-elongation and a critical concentration of ~

900 nM has been determined for MreB from Bacillus subtilis (Mayer and Amann, 2009).

The polymerization properties of TgACTI differ from both conventional actins and

prokaryotic actin.  To our knowledge, this is the first example of an actin that undergoes a

mechanism other than cooperative assembly.  It is possible that other unconventional

actins may also undergo isodesmic polymerization.  For example, many plant actins that

maintain a highly monomeric state (Gibbon et al., 1999; Snowman et al., 2002) and actin

from Giardia intestinalis that has been observed to form conventional helical filaments as

well as single protofilaments (Paredez et al., 2011).

Questions remain as to the in vivo implications of the finding that TgACTI undergoes

isodesmic polymerization.  First, isodesmic polymerization occurs in a dose-dependent

manner suggesting that the extent of polymerization will depend on available subunits.

Recent calculations estimate the intracellular TgACTI concentration to be around 40 µM

(Mehta and Sibley, 2011) which according to our current findings would suggest
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filaments should be seen within the parasite.  However, actin-binding proteins within T.

gondii such as profilin (Chapter 4) and actin depolymerizing factor (Mehta and Sibley,

2011) function primarily to sequester the majority of TgACTI, restricting the pool of free

monomers available to polymerize into long filaments in vivo.

Secondly, isodesmic polymerization also suggests that lateral contacts between

individual TgACTI protofilaments within an actin helix play a minor role in filament

interactions compared to longitudinal contacts between individual monomers.  Weak

lateral contacts within TgACTI have previously been predicted by molecular modeling

and introduction of mutations into TgACTI to strengthen inter-monomer contacts resulted

in longer, more stable filaments (Chapter 3).  Weak lateral contacts are further supported

by demonstration that addition of phalloidin to recombinant TgACTI increases filament

size and stability, likely by stabilizing interactions between protomers (Chapter 2).

Additionally, the presence of actin-binding proteins in vivo may act to stabilize

interactions and drive the individual protofilaments into more stable helical

conformations as well as bundles by strengthening these lateral contacts.  One family of

candidate proteins that may provide this function in vivo is formins.  Experiments to

analyze the role of T. gondii formin on heterologous chicken skeletal actin demonstrate

these proteins participate in actin filament polymerization (Daher et al., 2010).  However,

if TgACTI undergoes isodesmic polymerization, there is no need for a nucleation step

and formin may instead be contributing to the stability of the TgACTI filament through

binding to the barbed end or by binding to the side of the filament as has been seen with

mammalian and plant formins (Harris et al., 2006; Michelot et al., 2005).  An in vivo role
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for formin in stabilizing TgACTI filaments is consistent with the finding that TgACTI

polymerization is greatly enhanced in the presence of formin (Chapter 4).

The realization that TgACTI undergoes isodesmic polymerization explains several

perplexing behaviors of actin in vivo. First, homologs of the nucleating protein, Arp 2/3,

have not been identified within the T. gondii genome (Gordon and Sibley, 2005)

consistent with the lack of nucleation required for isodesmic polymerization. Second,

following centrifugation of T. gondii lysate at 100,000g, the majority of TgACTI remains

in the supernatant and higher speeds (350,000g) were required to sediment the protein

suggesting TgACTI exists as monomers or smaller oligomers (Dobrowolski et al., 1997;

Sahoo et al., 2006; Wetzel et al., 2003).  Finally, T. gondii lacks long, stable TgACTI

filaments based on microscopy examination (Wetzel et al., 2003) (Chapter 3).

Collectively, this behavior implies the population of differentially sized oligomers are

functionally important in parasites rather than a population of monomers versus highly

stable, long filaments, typical of mammalian cells.
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MATERIALS AND METHODS

Ninety Degree Light Scattering

Purified recombinant actin was clarified by centrifugation at 100,000g, 4°C, for 30 min

using a TL100 rotor and a Beckman Optima TL ultracentrifuge (Becton Coulter,

Fullerton, CA) to remove aggregates.  TgACTI was diluted to the desired concentration

in G buffer (5 mM Tris-Cl, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 0.5 mM DTT) and

preincubated with 1 mM EGTA and 50 µM MgCl2 for 10 min (to replace bound Ca2+

with Mg2+).  Samples were placed in a 100 µl cuvette (Submicro Quartz Fluorometer cell,

Starna Cells, Atascadero, CA) and light scattering was monitored with the PTI

Quantmaster spectrofluorometer (Photon Technology International, Santa Clara, CA):

excitation 310 nm (1 nm bandpass), emission 310 nm (1 nm bandpass).  Once a steady

reading was obtained, the acquisition was paused and 1/10th volume of 10X F-buffer (500

mM KCl, 20 mM MgCl2, 10 mM ATP) was added to induce polymerization.  Light

scattering counts were averaged with 10 neighbors to smooth curves using Prism.

Fluorescence Microscopy

Purified recombinant TgACTI was clarified as described above, diluted to final molarity

with 1/10th 10X F buffer and treated with or without equimolar amounts of unlabeled

phalloidin (Molecular Probes, Eugene, OR).  Final concentration 0.33 µM Alexa-488

phalloidin (Molecular Probes) was added to each sample and polymerization was allowed

to proceed for 1 hr at room temperature in the dark following which 6 µl of the reaction

was placed on a slide and viewed with a Zeiss Axioskop (Carl Zeiss, Thornwood, NY)

microscope using 63X Plan-NeoFluar oil immersion lens (1.30 NA).  Images were
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collected using a Zeiss Axiocam with Axiovision v3.1.  All Images were processed by

linear adjustment in the same manner using Adobe Photoshop v8.0 (San Jose, CA).

Actin Sedimentation Assays

Purified recombinant TgACTI and ScACT proteins were clarified as described above and

incubated in F buffer to initiate polymerization for 1 hr in the presence or absence of

equimolar amounts of phalloidin (Molecular Probes) at room temperature.  The samples

were subsequently centrifuged at 100,000g or 350,000g for 1 hr at room temperature.

Protein in the supernatant was acetone precipitated and washed with 70% ethanol.  All

pellets were resuspended in 1X sample buffer.  Proteins were resolved on a 12% SDS-

PAGE gels, stained with Sypro-Ruby (Molecular Probes), visualized using a FLA-5000

phosphorimager (Fuji Film Medical Systems), and quantitated using Image Gauge v4.23.

Density Centrifugation

Purified recombinant TgACTI or ScACT were clarified as described above, pre-

incubated with 1 mM EGTA and 50 µM MgCl2 for 10 min (to replace bound Ca2+ with

Mg2+).  TgACTI or ScACT were then incubated in G buffer, F buffer or F buffer

supplemented with equimolar phalloidin (Molecular Probes) for 1 hr at room

temperature.  Samples were placed on the top of an 11 ml 5-40% continuous sucrose

gradient made in the corresponding buffer and generated with a gradient maker and Auto

Densi-Flow Gradient Fractionator (LabConco, Kansas City, MO) and centrifuged at

100,000g, 4°C for 20 hrs using a SW41 rotor in a L-80 ultracentrifuge (Beckman

Coulter). Amersham HMW Calibration kit for native electrophoresis (GE Healthcare,
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Buckinghamshire, UK) containing bovine serum albumin, 4.4S, lactate dehydrogenase,

7S, catalase, 11.4S, thyroglobulin, 19.4S was resuspended in 500 µl G-buffer and used as

molecular weight markers. Fractions were collected, the specific gravity of each was

measured using a refractometer  (Sper Scientific, Scottsdale, AZ), and then precipitated

in 10% TCA for 1 hr.    The precipitated protein was washed with 500 µl acetone, air

dried, resuspended in 1X sample buffer, run on 12% SDS-PAGE gels, stained with

Sypro-Ruby (Molecular Probes), visualized using a FLA-5000 phosphorimager (Fuji

Film Medical Systems) and quantitated using Image Gauge v4.23.

Steady State Polymerization

Purified recombinant TgACTI was clarified as described above, diluted to a range of

concentrations in F buffer and incubated at room temperature for 20 hours. Samples were

placed in a 100 µl cuvette (Submicro Quartz Fluorometer cell, Starna Cells, Atascadero,

CA) and monitored by light scattering using a PTI Quantmaster spectrofluorometer

(Photon Technology International, Santa Clara, CA):  excitation 310 nm (1 nm

bandpass), emission 310 nm (1 nm bandpass).  An average reading was plotted vs protein

concentration and fit with a best-fit line.
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 Figure 1. TgACTI polymerization at varying protein concentration.

(A) Comparison of polymerization kinetics. F buffer was added to induce polymerization

that was monitored by light scattering.  (B) In vitro polymerization of TgACTI at varying

protein concentrations as visualized by fluorescence microscopy using 0.33 µM Alexa

488-phalloidin +/- equimolar amounts of unlabeled phalloidin (1:1).  Scale bars, 5 µm.

Representative of three or more similar experiments.
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Figure 2.  Sedimentation analysis of parasite (TgACTI) and yeast (ScACT) actins.  (A) 5

µM or (B) 30 µM purified TgACTI was polymerized in F-buffer +/- equimolar phalloidin

and centrifuged at 100,000g or 350,000g.  Protein in the pellet or supernatant of all

samples was resolved on a 12% SDS-PAGE gel, stained with SYPRO Ruby and

quantified by phosphorimager analysis.  (C) 5 µM ScACT was sedimented under the

same conditions. The graphs above represent averages of 3 or more experiments with

mean +/- S.D. and a representative gel is shown.
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Figure 3.  Size determination of TgACTI filaments by density centrifugation.  (A) 5 µM

TgACTI was incubated in G buffer (blue), F buffer (red) or F buffer with equimolar

phalloidin (green) for 1 hr was placed on a 5-40% sucrose gradient made of the

corresponding buffer and centrifuged at 100,000g for 20 hrs.  Fractions were collected,

precipated with 10% TCA and resolved on a 12% SDS-PAGE gel.  This was repeated

with (B) 30 µM TgACTI and (C) ScACT. The dashed black line corresponds to TgACTI

oligomers expected to pellet at 100,000g based on sedimentation assays (Figure 3).  The

solid black line corresponds to TgACTI oligomers expected to pellet at 350,000g based

on sedimentation assays.  Protein standard markers (bovine serum albumin, 4.4S, lactate

dehydrogenase, 7S, catalase, 11.4S, thyroglobulin, 19.4S) run in G buffer are denoted

with black arrows.  Representative of 2 similar experiments.
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Figure 4. Determination of TgACTI polymerization versus concentration based on light

scattering.

Increasing concentrations of TgACTI were incubated in F-buffer for 20 hours to allow

polymerization to reach steady state and then monitored by ninety degree light scattering

to determine the extent of polymerization.  The values obtained were plotted against the

protein concentration and a linear regression curve (blue) or quadratic curve (red) used to

plot the relationship.  Data points are averages from 2 or more experiments.  Points from

lower concentrations are expanded in inset.
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Figure 5.  Comparison of extent of TgACTI polymerization versus concentration based

on protein sedimentation.

Varying concentrations of purified TgACTI was polymerized in F-buffer and centrifuged

at 100,000g.  Protein in the pellet or supernatant of all samples was resolved on a 12%

SDS-PAGE gel, stained with SYPRO Ruby and quantified by phosphorimager analysis.

The molar amounts of protein in the pellet (blue) or supernatant (red) was plotted versus

concentration and fit with a quadratic nonlinear regression.  Data is combined from 3

experiments.
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Chapter VI

Conclusions and Future Directions

This chapter was composed entirely by Kristen Skillman.  Comments from David Sibley

were incorporated into the final version printed here.
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CONCLUSIONS

As obligate intracellular pathogens, apicomplexan parasites must enter into host cells

to establish their replicative niche.  Rather than relying on host cell phagocytosis for

uptake and thereby alerting the host immune system, these parasite have evolved an

active mechanism for host cell entry that is dependent on their own proteins for motility

and allows entry into a protective compartment.  Apicomplexan motility, termed gliding

motility, is unique to the members of the phylum and differs from other forms of

locomotion that involve flagella or amoeboid gliding.  Rather, gliding motility depends

on the actomyosin motor of the parasite, located within the inner membrane space of the

parasite and linked to extracellular adhesins in contact with the host cell membrane.

According to the currently proposed model, for gliding motility to occur, parasite actin

must assemble into filaments that are translocated by the myosin motors toward the

posterior of the cell (Sibley, 2004).  However, examination of actin within both

Toxoplasma gondii and Plasmodium falciparum has revealed this actin is unusual in the

sense it does not polymerize into conventional filaments.  Apicomplexan actins have

been shown to be highly unpolymerized while the parasite is growing intracellularly

(Dobrowolski and Sibley, 1996; Schmitz et al., 2005) and attempts to visualize

polymerization of recombinant parasite actin have revealed the filaments formed are very

short and potentially unstable (Sahoo et al., 2006; Schmitz et al., 2005; Schüler et al.,

2005).  Additionally, when T. gondii is treated with the stabilizing agent, jasplakinolide

(JAS), the parasite was found to be unable to invade host cells and continue its life cycle

(Poupel and Tardieux, 1999; Wetzel et al., 2003).  More in depth analysis of this defect

revealed the rate of motility of JAS treated parasites was actually increased but the
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parasites lost their sense of directionality thereby impeding host cell invasion (Wetzel et

al., 2003).  Stabilization of parasite actin filaments appears to be toxic to the parasite,

therefore, the formation of short filaments in vitro may reveal a critical role for short

filaments in vivo.

Although previous attempts to visualize filaments within the parasite have failed, EM

examination of protein left behind in trails of gliding parasites revealed filamentous

structures that disappeared upon treatment with cytochalasin-D (CytD), consistent with

actin filaments (Wetzel et al., 2003).  The transient assembly of actin filaments suggests

that filament formation is tightly regulated so filaments do not form unless the parasites

are undergoing gliding motility.  Searches of the apicomplexan genome have revealed the

presence of a minimal set of actin-binding proteins that could potentially play a critical

role in this regulation (Schüler and Matuschewski, 2006).  Two specific contenders are

profilin and formin of which isoforms have been found and purified from apicomplexan

parasites.  Mechanistic studies with both proteins in combination with heterologous actin

revealed they function as canonical regulators.  T. gondii profilin (TgPRF) promoted

polymerization at rabbit actin barbed but not pointed ends while T. gondii formins

(TgFRM1 and TgFRM2) enhanced nucleation of rabbit actin (Baum et al., 2008; Daher et

al., 2010; Plattner et al., 2008).

Although numerous studies have been conducted to examine parasite actin filament

formation and its regulation, the mechanism leading to limited polymerization kinetics

and short filament formation remains elusive.  Previous studies have not addressed

whether reduced TgACTI polymerization is an intrinsic property within the actin itself, a

consequence of interaction with regulatory proteins within the parasite, or most likely, if



215

it is a combination of both.  The goal of this thesis was to address both of these questions

with more in depth studies of polymerization of parasite actins as well as a mutational

approach of TgACTI to determine if divergent residues within the parasite actin might

account for unconventionally short filament formation.  In addition, the function of

parasite actin-binding proteins has previously only been tested with heterologous actins.

Experiments conducted within this thesis were the first to look at regulation directly

using TgACTI.

Low levels of fluorescent phalloidin are traditionally added to actin polymerization

reactions to allow binding to the actin filament and subsequent visualization by

fluorescence microscopy (Wulf et al., 1979).  Previous studies with both recombinant

TgACTI and PfACTI have employed this method to reveal formation of short actin

filaments (Sahoo et al., 2006; Schmitz et al., 2005; Schüler et al., 2005).  The present

studies confirmed short filament formation by TgACTI and PfACTI, but also examined

the polymerization capabilities of the second actin from P. falciparum, PfACTII, which

has not previously been studied.  Fluoresence microscopy studies with PfACTII revealed

it is capable of forming slightly longer filaments than TgACTI and PfACTI; however,

polymerization was still not very robust and the kinetics of polymerization were almost

identical to those of PfACTI (Chapter 2). Although TgACTI, PfACTI and PfACTII did

not polymerize robustly and formed filaments shorter than conventional actins, addition

of equimolar phalloidin resulted in formation of much longer filaments that more closely

resembled filaments formed by conventionally studied actins (Chapter 2). Phalloidin

binds in a pocket that contacts three actin monomers within the filament thereby aiding to

pin the monomers together (Faulstich et al., 1993) and we wanted to determine where
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phalloidin bound parasite actin.  The phalloidin-binding pocket within the parasites actin

filaments was modeled to be in a similar location as that predicted for binding to

conventional actin filaments (Chapter 2).  The rescue of parasite actin polymerization by

equimolar phalloidin revealed that the lack of robust polymerization by parasite actins is

at least in part due to an intrinsic property of this actin itself.  TgACTI contains a number

of divergent residues within its sequence, some that have been predicted to result in

reduced contacts between monomers within the filament (Sahoo et al., 2006).  The

divergent residues may prevent formation of stable contacts within the filament or

alternatively play a role in monomer turnover.  Either scenario could result in shorter

filaments and account for the differences observed in polymerization of parasite actin

compared with yeast actin (Chapter 2).  Phalloidin rescue is consistent with such a model

as binding to the filament may help to overcome a defect within the actin that keeps it

from elongating or causes filaments to disassemble, likely through interaction with

multiple monomers thereby increasing stability and compensating for intrinsic properties

that reduce polymerization.

The model that intrinsic properties of the parasite actins result in reduced filament

formation prompted the question of what features within the actin might be contributing

to this instability.  To address this question, molecular modeling was used to uncover

residues that diverge from conventional actin, specifically in residues predicted to be

involved in inter-strand contacts that had potential to be critical for actin filament

stability (Chapter 3). The modeling identified two regions of interest, an inter-strand

hydrogen bonding interaction that occurs in muscle actin, but not TgACTI, and reduced

hydrophobicity within the hydrophobic loop of TgACTI (Chapter 3).  Mutational analysis
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substituting the residues within TgACTI with those from conventional mammalian

muscle actin revealed that TgACTI substituted in either region polymerized more

robustly than wild type TgACTI, with the substitution restoring the hydrogen bond

interaction being the most pronounced polymerization increase (Chapter 3).  The rescue

in polymerization by single amino acid substitutions was quite striking and suggested

only a few changes within TgACTI may be responsible for its unconventional

polymerization properties.  Both of the substitutions tested were predicted to strengthen

monomer-monomer contacts and in fact they rescued polymerization in a similar manner

to phalloidin, although to a lesser extent.  Enhancement of in vitro polymerization

through amino acid substitutions provides further evidence that intrinsic properties within

parasite actins influence overall polymerization.

Substituted TgACTI was introduced into T. gondii with an N-terminal destabilization

domain for conditional expression to determine the impact of substituted TgACTI in vivo.

Videomicroscopy of T. gondii expressing the stabilized mutant revealed the parasites

exhibited both aberrant circular and helical gliding motility (Chapter 3).  Additionally,

the overall speed of gliding for T. gondii expressing stabilized TgACTI was reduced

compared to control parasites.  The observation that proper gliding motility is disrupted

by introduction of substituted alleles of TgACTI into T. gondii provides insight into a

molecular basis for the intrinsic instability of TgACTI that results in formation of short

actin filaments.  The exact mechanism for how these substitutions affect gliding motility

is still undetermined.  One model for the impact on gliding is that the substituted actin

monomers result in strengthened monomer-monomer stable contacts, creating longer,

more stable filaments.  Stabilization of TgACTI could then influence the gliding ability
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of the parasite by inhibiting the tight turning radius required for productive motility,

resulting in aberrant motons and reduced speed.  The substitutions could also stabilize the

filaments by preventing monomer turnover affecting the control of timing of gliding.

Alternatively, the substitutions have an indirect impact on gliding by altering interactions

with actin-binding proteins and disrupting TgACTI regulation.

Failure to visualize filaments within the stabilized-TgACTI expressing parasites

suggests that the length of these filaments was still not above the level of detection of

microscopy approaches, yet, expression of the mutant alleles had a detrimental effect on

the ability of the parasites to undergo productive gliding motility.  Small alterations in

filamentation appear to lead to defects on the T. gondii life cycle, reminiscent of the toxic

effect of JAS treatment (Wetzel et al., 2003),  although JAS treatment results in a more

severe effect (i.e. complete loss of directionality) and leads to visualization of filaments

within the parasite.  It appears both small and large perturbations of TgACTI

polymerization dynamics disrupt proper gliding motility further demonstrating actin

polymerization is a very precise process.

It is apparent that control of the timing and extent of actin polymerization within T.

gondii is critical and these events must be strictly regulated.  T. gondii encodes fewer

actin-binding proteins than other more conventional systems.  T. gondii profilin (TgPRF)

and formins (TgFRM1 and TgFRM2) exhibit canonical behaviors on heterologous actin

(Daher et al., 2010; Plattner et al., 2008) although their effect on TgACTI polymerization

was unknown.  Because TgACTI is divergent from conventional actins and

polymerization is less robust, it was unclear if TgPRF and TgFRMs would function in the

same manner with TgACTI as they do with conventional actin.  Therefore, the current
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studies examined the function of TgPRF, TgFRM1 and TgFRM2 on TgACTI

polymerization.  TgPRF decreased TgACTI polymerization in a dose dependent manner

as assayed by light scattering and sedimentation analysis (Chapter 4). Nucleotide

exchange assays with TgPRF also demonstrated that this protein exerts a slight inhibition

for exchanging nucleotide on TgACTI, consistent with results reported from these assays

conducted using rabbit actin (Kucera et al., 2010), but contrasting the impact of many

more conventional profilins (Mockrin and Korn, 1980).  TgPRF was able to inhibit

TgACTI polymerization but did not enhance nucleotide exchange, suggesting the major

function of TgPRF is to sequester TgACTI. Further evidence of TgPRF function in

TgACTI sequesteration was observed when a 1:1 concentration of TgPRF to TgACTI

was added to light scattering assays in the presence of TgFRM.  This combination of

regulators resulted in an inhibition of polymerization indicating TgPRF does not enhance

TgFRM mediated polymerization at this concentration.  Decreasing the amount of TgPRF

to a 1:10 ratio to TgACTI reversed the inhibitory impact suggesting there is a threshold

of TgPRF concentration above which TgACTI is efficiently sequestered.  Actin

depolymerizing factor (TgADF) also functions within T. gondii to sequester TgACTI

(Mehta and Sibley, 2010).  Both TgPRF and TgADF are in roughly 1:1 concentration

with TgACTI and are expected to sequester the majority of TgACTI.  The combination of

sequestering by both of these proteins is likely to account for the high percent of

unpolymerized actin found in intracellular parasites.

TgFRM1 and TgFRM2 acted to greatly enhance light scattering in the presence of

TgACTI, suggesting these proteins are influencing polymerization (Chapter 4). Addition

of TgFRM to TgACTI provides the first evidence of robust parasite actin polymerization
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in the absence of non-physiological agents (i.e. phalloidin, JAS).  The amount of light

scattering by TgACTI increased dramatically in the presence of TgFRM suggesting

additional mechanisms other than simply polymerization were being measured.  Certain

formins have been demonstrated to stimulate actin filament bundling and this may be

occurring with the TgFRM proteins to robustly increase polymerization.  In Arabidopsis,

one formin, AFH1,  induced bundling via side-binding to actin filaments to mediate

bundling (Michelot et al., 2006; Michelot et al., 2005) and it remains to be determined if

a similar phenomena occurs with TgFRMs. Demonstration of the impact of TgPRF and

TgFRMs on TgACTI polymerization suggest that these two actin-binding proteins

perform functions that can account for major regulation of TgACTI in vitro by allowing

control between sequestering of monomers and the enhancement of polymerization.

Although apicomplexan parasites encode a more minimal set of regulatory proteins, the

small repetoire appears to contain proteins that can sequester TgACTI as well as promote

polymerization and are therefore likely to be sufficient for proper regulation of TgACTI.

TgACTI was initially reported to have a critical concentration (Cc) of 0.04 µM, about

three fold lower than that of mammalian actins, suggesting it should polymerize robustly

at low concentrations (Sahoo et al., 2006).  Yet, few filaments were formed at 5 µM, a

concentration that far exceeds the calculated Cc (Sahoo et al., 2006) (Chapter 2 and 3).

This contradiction raised questions about the exact mechanism of polymerization

employed by TgACTI. Actins traditionally polymerize via a nucleation-elongation

mechanism where polymerization does not occur until the actin concentration exceeds its

Cc.  However, closer examination of the features of TgACTI polymerization

demonstrated polymerization in a concentration dependent manner with no lag phase, no
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Cc and formed a range of filament sizes, properties that are inconsistent with nucleation-

elongation (Chapter 5). Rather, the polymerization characteristics of TgACTI provide

striking evidence that TgACTI is the first actin shown to undergo isodesmic

polymerization.  Polymerization via an isodesmic mechanism explains the lack of long,

stable filaments within T. gondii as this type of polymerization would not require

exceeding a concentration threshold to initiate polymerization but rather be expected to

result in concentration dependent polymerization. Actin-binding proteins with

sequestering roles within T. gondii are predicted to remove the majority of TgACTI from

the free monomer pool thereby preventing the intracellular TgACTI concentration from

becoming high enough for polymerization.

The results from the work of this thesis indicate that TgACTI does not polymerize

robustly on its own, is regulated by actin-binding proteins, and polymerizes in a dose-

dependent manner via isodesmic polymerization and these properties of TgACTI

collectively result in a lack of long, stable filaments within the parasite.  The efforts of

this thesis provide evidence for multiple mechanisms used by T. gondii to maintain high

levels of unpolymerized TgACTI in vivo and to ensure spontaneous polymerization of

long filaments does not occur.  TgACTI contains divergent residues to reduce monomer-

monomer contacts within the filament and ensure long filaments do not form by TgACTI

alone.  Many of these divergent residues are within regions of inter-strand contacts and

may account for the ability of TgACTI to assemble via isodesmic polymerization rather

than conventional nucleation-elongation.  Isodesmic polymerization may result from

weakened inter-strand contacts within the filament and would aid to prevent robust

polymerization by requiring a high concentration of TgACTI to form long filaments.
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Finally, TgACTI polymerization is specifically regulated by actin-binding proteins to

sequester TgACTI from polymerization and also by actin-binding proteins with an

opposing function to promote polymerization.

Together, presence of divergent residues within TgACTI and regulation by actin-

binding proteins predict a model to explain both unusual in vitro and in vivo findings for

TgACTI. In the absence of actin binding proteins in vitro, TgACTI does not polymerize

robustly and forms short filaments due to divergent residues.  Lack of inter-strand

contacts to stabilize TgACTI filaments may result in formation of a looser helix and

concentration dependent polymerization due to an isodesmic mode of assembly (Figure

1A). The addition of phalloidin or substitution of divergent residues with those from

conventional actin reverses these effects and allow for formation of more conventional

filaments.  Support for this model comes from recent modeling of the helix of PfACTI

that suggests the pitch of the helix is larger than that of conventional actin.  A larger pitch

could be evidence of a looser helical interactions but the reported results are confounded

by the addition of phalloidin and therefore this finding requires further analysis (Schmitz

et al., 2010).  In vivo, TgACTI has an additional level of regulation by actin binding

proteins where TgPRF exists at high intracellular concentrations to act in TgACTI

sequestration and inhibit spontaneous TgACTI polymerization.  Upon initiation of

gliding motility, TgFRM function becomes activated to bind TgACTI, potentially acting

as a capper or side binder to enable filament formation and possibly bundling.  If a looser

helix is formed by TgACTI alone, it is possible that TgFRMs aid to orient the filaments

into a more conventional helix (Figure 1B).
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SUMMARY

Apicomplexan invasion of host cells involves a gliding motility mechanism that is

dependent on polymerization of parasite actin. Studies involving T. gondii actin,

TgACTI, have demonstrated that parasite actin does not readily polymerize and forms

only short filaments (Sahoo et al., 2006).  Treatment of T. gondii with actin stabilizing

drugs, such as jasplakinolide, disrupts motility (Poupel and Tardieux, 1999), suggesting

that stabilization of actin filaments may inhibit gliding motility and be toxic for the

parasite.  The present work has demonstrated that divergent residues within TgACTI

contribute to its lack of robust polymerization. Changes to a minimal set of divergent

residues negatively impacted gliding motility suggesting the process of filament

formation is tightly controlled.  The sequestering properties of TgPRF as well as

polymerization enhancement by TgFRMs appear to play a critical role in the balance

between unpolymerized actin and filaments for gliding.  Reevaluation of the

polymerization properties of TgACTI also reveal they are more consistent with isodesmic

polymerization than traditional nucleation-elongation.  Together, these mechanisms

control TgACTI filament formation so polymerization occurs only when required for

gliding motility ensuring proper host cell invasion and continuation of the parasite life

cycle.  The conclusions from this thesis work advance our understanding of

apicomplexan cell biology and gliding motility and potentially provide targets unique to

Toxoplasma for therapeutic intervention to block infection.
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FUTURE DIRECTIONS

Mechanism of motility defect for parasites expressing TgACTI mutants

The mutational analysis in Chapter 3 demonstrated that introduction of amino acid

substitutions within an intermonomer hydrogen bond and hydrophobic plug resulted in

increased TgACTI filament length in vitro as well as defects in gliding motility in vivo.

However, while filaments formed by the substituted TgACTI alleles showed increased

sensitivity to jasplakinolide, all attempts to visualize filaments in the absence of

stabilization agent failed. Therefore, we were unable to definitely conclude the negative

impact on gliding motility was directly an effect of expressing stabilized TgACTI within

the parasite and other models were proposed that could be used to explain the motility

defect.  However, further experimental testing could lend additional support for the

model that stabilized filaments disrupt gliding and determine the merit of the alternative

hypotheses.

Detection of Filaments within T. gondii stability mutants

Multiple techniques for the detection of filaments in the absence of stabilizing agents

have been attempted including confocal microscopy and total internal refection (TIRF)

microscopy of parasites expressing the DD-mutant alleles or these alleles transfected with

YFP-TgACTI or GFP-LifeACT (Riedl et al., 2008) for aiding in visualization.  Despite

these efforts, filaments could not be detected within the control or mutant parasites.

However, the one method that has proven promising was to use electron microscopy of

Shld1 treated DD-TgACTI expressing parasites.  The mutant parasites, but not control

parasites, were observed to form membrane blebs that extended from the apical end of
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the parasite, similar but less pronounced than the apical projections observed upon

treatment with jasplakinolide (Chapter 3).  Intriguingly, these membrane blebs contained

filamentous structures within them.  Immuno-electron microscopy would be insightful to

identify if these structures are in fact actin filaments and if so, would be evidence that

there are more stable filaments within the mutant TgACTI expressing parasites that are

not observed within control parasites.

Defect in structural flexibility

Consistent with the model that expression of stabilized filaments within the parasite

are the cause of the gliding defects observed, is the fact that the parasites move in larger

arcs during circular gliding and are unable to undergo the tight turning radius of helical

gliding.  This hypothesis could be tested by modeling the forces applied on the surface

and changing the flexibility of the surface on which the parasite is gliding.  Glass

coverslips may make these motions more difficult but using alternative substrates may

reveal that the parasites are able to compensate and undergo more normal motility.

Turnover of actin monomers

If the TgACTI stability mutants are in fact more stable than wild type TgACTI, they

would be expected to undergo less turnover than wild type TgACTI.  To investigate this

hypothesis, fluorescence recovery after photobleaching would be used to examine the

ability of YFP-tagged mutant TgACTI expressing parasites to recover from

photobleaching relative to the YFP-TgACTI control.  A caveat with using FRAP in cells

of small size such as T. gondii is the fact that bleaching even a small region of interest
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often results in a loss of fluorescence within the entire parasite due to rapid protein

diffusion.  Previous use of FRAP within T. gondii has accounted for this by monitoring a

second region of interest that was not bleached to account for loss in fluorescence and to

use to subtract this loss in fluorescence from the FRAP results (Gordon et al., 2010).  The

prediction would be that the stabilized mutants would recover less quickly because there

would be a slower rate of turnover so slower recovery in binding new monomers.

Impact of actin-binding proteins on TgACTI substitutions

An alternative model for the effect of the TgACTI substitutions on gliding motility is

that the aberrant motility is due to changes in interactions with actin binding proteins.  To

test if TgPRF or TgFRMs function differently on wild type TgACTI or the stability

mutants light scattering and fluorescence phalloidin microscopy would be utilized.  If

disruption of interaction with these proteins is the cause of the gliding defects, light

scatter of mutant TgACTI would be expected to increase in the presence of TgPRF or

decrease in the presence of TgFRM.  TgADF has also been shown to act in TgACTI

sequesteration (Mehta and Sibley, 2010) and therefore light scattering assays with the

mutant actins would also be conducted with TgADF.   If there are differences in these

assays compared to what has been seen with wild type TgACTI, this would confirm the

alternative hypothesis that the mutations disrupt either sequestering by TgACTI or

TgADF, or polymerization enhancement by TgFRM.
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Other life cycle stages impacted

In Chapter 3, the impact the stability mutants have on gliding motility was fully

characterized but there are other life cycle stages that require gliding motility that remain

to be examined.  Another process that could potentially be affected by the mutant

TgACTI alleles is host cell invasion.  Invasion of T. gondii into host cells can be assayed

using two-color immunofluorescence.  After allowing the parasites to invade, the cells

would be fixed and stained with an antibody against a surface protein conjugated to one

fluorophore, then permeabilized and stained with the same antibody conjugated to a

second fluorophore.  This method allows differential staining of intracellular and

extracellular parasites and to determine whether or not the parasites expressing the

mutant TgACTI allele are able to invade host cells.  Initial attempts to conduct invasion

assays with mutant and control parasites did not result in a significant difference

(Skillman and Sibley, unpublished data).  However, using the standard assay protocol,

parasites are given a large window of time for invasion.  Even though there is a severe

defect on plaque formation over time, it is possible that initially the parasites can use the

slow, aberrant motility to enter into host cells especially if added to confluent monolayers

where they do not have to use extensive gliding to enter the host cells.  To alleviate these

concerns, subconfluent monolayers would be used and T. gondii would be given a shorter

time window for invasion to determine if these parasites are capable of gliding to the host

cell and invading.

After completing endodyogeny, T. gondii must egress from the host cell and use

gliding motility to move to a new cell for invasion and replication.  Intracellular calcium

levels signal to the parasite to initiate egress and this process can be induced using a
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calcium ionophore to increase intracellular calcium concentration.  The time for parasites

to egress as well as their ability to undergo gliding to move from the lysed vacuole could

be measured for parasites expressing the mutant TgACTI alleles compared to control

parasites.  The gliding defects observed in videomicroscopy would be expected to disrupt

the migration to a new host cell.

Modulate levels of stability mutants expressed within T. gondii

Using the degradation domain system to tag TgACTI, we were able to express the

TgACTI alleles at about 70% of the endogenous TgACTI expression level.  Even with

less than 1:1 expression, we were able to characterize a substantial phenotype in terms of

gliding motility.  However, it is possible that the mutant TgACTI was still able to

copolymerize with endogenous TgACTI and therefore dilute the effect of the mutants.

Non-productive interactions may also occur between the tagged proteins and endogenous

proteins that disrupt the ability of the tagged proteins to assemble into more stable

filaments.  To alleviate these issues, the mutant constructs that were transfected into

parasites would be reengineered to contain the A136G point mutant that has been shown

to confer resistance to CytD (Dobrowolski and Sibley, 1996).  These plasmids would

then be transfected into parasites and clones isolated.  Using this strategy, the parasites

would be treated with Shld1 to stabilize and express the mutants but also treated with

CytD just prior to experimentation to disrupt polymerization of the CytD-sensitive

endogenous protein.  CytD treatment would create a chemical knockdown of the

endogenous protein so only the effects of the DD-tagged proteins will be monitored and

the level of mutant expression will no longer be a concern.
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The advantage of the degradation domain system is that it requires fewer steps of

manipulating the parasite but the limitation is the presence of the endogenous allele.  A

more direct method of analyzing the impact of the TgACTI mutants would be to create a

conditional knockout of endogenous wild type TgACTI using the tetracycline inducible-

transactivator system, which has been adapted for use in parasites (Meissner et al., 2002).

This strategy would be untaken rather than a direct knock out as TgACTI appears to be

essential for completion of the T. gondii life cycle since cytD treatment inhibits invasion

(Dobrowolski and Sibley, 1996).  First, a plasmid containing the Tet operator upstream of

an HA9 tagged version of the wild type TgACTI allele along with a selectable marker

would be transfected into the Toxoplasma cell line that expresses the tetracycline

transactivator.  Parasites would be cloned to establish a cell line that now expresses both

the transactivator as well as the tagged version of wild-type TgACTI.  Merodiploid

parasites would be tested to determine if expression of this tagged copy of the gene can

be repressed in the absence of tetracycline.  Second, these cloned parasites would be

transfected with a construct containing a selectable marker with 5’ and 3’ UTRs

homologous to the endogenous TgACTI gene allowing integration of this construct into

the genome and deleting the endogenous gene through homologous recombination.

Finally, the mutant TgACTI allele would be transfected into parasites and allowed to

integrate anywhere in the genome.  YFP would be cloned downstream of the mutant

allele under control of its own promoter to use for selection of parasites that have

integrated the mutant actin.  When tetracycline is added, the transactivator will be unable

to bind the operator resulting in a conditional knockout.  Creation of this conditional-

expression system would allow testing of the phenotypes of expression of TgACTI
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mutants with no confounding effects of the wild type TgACTI.  Without having the

endogenous TgACTI present, phenotypes of the stabilized mutants may become stronger

and it may be more feasible to uncover actin filaments within the parasite if they are not

diluted with endogenous TgACTI.  Conversely, expression of the mutant actins alone

may toxic to resulting in severe defects in host cell invasion.  In this case, we will have

developed a scale to measure phenotypes that occur upon expressing variable levels of

the TgACTI mutants.

Additionally, parasites depleted of wild type TgACTI could be used as a powerful

tool to study the function of endogenous TgACTI by expressing a regulatable copy of

wild type TgACTI.  Little is known about the role of TgACTI within the parasite other

than its role in gliding motility.  Actins often play a role in cell divison but in T. gondii

this process has been demonstrated to be driven by microtubules rather than actin (Shaw

et al., 2000).  TgACTI depletion would allow determination if cell division really is

exclusively a microtubular process or whether TgACTI plays any role. Conditional

expression of TgACTI would reveal if the actin contributes to any intracellular

mechanisms independent of its role in gliding motility.

Nucleotide turnover and TgACTI stability

In addition to residues in the salt bridge and hydrophobic plug, the initial molecular

modeling of TgACTI also revealed divergent residues within the nucleotide-binding

pocket of TgACTI (Sept and Sibley, unpublished data).  A methionine at amino acid 16

corresponds with asparagine-17 in TgACTI.  This substituted residue is modeled to

protrude into the nucleotide binding pocket thereby potentially affecting ATP hydrolysis
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or Pi dissociation.  The end result of such a substitution may be increased filament

turnover that could account for the unstable TgACTI filaments observed. Serine 14 is a

conserved residue located within the nucleotide binding pocket and is proposed to make

contact with the gamma phosphate of ATP (Kabsch et al., 1990).  Mutation of Serine 14

within yeast resulted in decreased affinity for ATP as well as temperature sensitive

defects in polymerization (Chen et al., 1995; Chen and Rubenstein, 1995) adding merit to

the hypothesis that the N17 residue in the binding pocket could influence stability.

Preliminary data using a phosphate release assay suggests that this divergent

substitution in TgACTI results in release of phosphate four times greater than the amount

of protein in the reaction (Sahoo and Sibley, unpublished results).  When this assay was

performed with rabbit actin or with a TgACTI mutant, N17M, where the asparagine is

mutated back to the conventional residue of methionine, equimolar concentration of

phosphate to protein was released (Sahoo and Sibley, unpublished results).   If this

finding is reproducible, it would suggest that TgACTI is undergoing rapid turnover since

it must go through multiple steps including polymerization, hydrolysis of ATP,

dissociation of Pi, depolymerization, exchange of nucleotide and repolymerization four

times in the amount of time conventional actins would go through the process once

(Figure 3).  Both TgACTI and PfACTI contain the asparagine substitution but

interestingly, PfACTII retains the methionine found in conventional actins.

The divergent N17 residue within TgACTI has the potential to impact a number of

steps within the process of monomer turnover including ATP hydrolysis, phosphate

release and nucleotide binding (Figure 2).  To examine the phosphate release of TgACTI,

the Enz-chek phosphate release assay kit (Molecular Probes) would be utilized to



232

determine the molar ratio of phosphate released from TgACTI.  An N17M TgACTI

mutant was previously created by site-directed mutagenesis and has been expressed in

baculovirus allowing purification of recombinant His-tagged protein.  The phosphate

release assay would be compared with wildtype TgACTI, rabbit actin and the N17M

mutant of TgACTI to determine if the preliminary results suggesting increased phosphate

release in TgACTI are correct.

Additionally, the presence of non-hydrolyzable ATP and additional ATP analogs will

be used in these assays to examine if this would affect the results seen with TgACTI.

Previous studies have demonstrated that addition of beryllium fluoride can rescue

polymerization defects from reduced hydrophobicity within the hydrophobic loop (Kuang

and Rubenstein, 1997).  Beryllium fluoride acts as a phosphate analog and binds within

the Pi site after ATP hydrolysis.  Beryllium fluoride has been suggested to add stability to

the filament via enhanced contact between subdomain 2 of one actin monomer and the

monomer above it within the helix (Orlova and Egelman, 1992).

 To better understand the rate of phosphate release, it will also be important to

determine the nucleotide exchange rate of TgACTI in the G-actin state versus the F-actin

state since this is one of the steps that could be influencing turnover.  Determining how

this step compares to what is seen with conventional actins will be important in

understanding any differences observed with TgACTI.  A fluorescent ATP analog, ε-

ATP (1,N,6-ethenoadenosine 5’-triphosphate), is commonly used for measurement of

nucleotide exchange (Wang and Taylor, 1981).  Unlabeled ADP-actin is first depleted of

any unbound ATP.  The actin is then incubated with an excess of ε-ATP and the levels of

fluorescence are monitored using a plate reader giving the nucleotide exchange rate.
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In addition to analysis of the effects on ATP hydrolysis and exchange, fluorescent

phalloidin staining and sedimentation assays will be conducted on the N17M mutant.

Preliminary analysis of this mutant by fluorescent phalloidin microscopy did not reveal a

striking increase in filament length, however, addition of equimolar levels of unlabeled

phalloidin resulted in filaments that were much more kinked than seen with wild type

TgACTI (Skillman and Sibley, unpublished data).  Therefore, this mutant merits closer

examination by other means such as tryptophan quenching, light scattering, and electron

microscopy.

If it is confirmed that TgACTI has an increased intrinsic nucleotide turnover rate, it

would provide another mechanism for maintaining short filaments as rapid turnover

would make actin filaments susceptible to polymerization and prevent them from

becoming exceedingly long.  Such a finding would also explain why TgPRF does not

appear to function in enhancing nucleotide exchange as other profilins do since TgACTI

would be capable to perform this function on its own and not require an actin-binding

protein to do so.

Also related to nucleotide turnover is the methylation of His-73 that occurs in many

eukaryotic actins.  This methylation adds positive charge to this histidine, which allows it

to act within a network of interactions strengthening a hydrogen bond between H73 and

G158 aiding to bind the terminal phosphate of ATP and contributing to conformational

changes of the nucleotide binding pocket (Nyman et al., 2002).  Mutation of histidine-73

to alanine in mammalian β-actin uncoupled ATP hydrolysis and phosphate release from

polymerization.  These studies led to speculation regarding whether the effect of

methylation at this point is to aid in keeping the actin in a polymerization competent
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formation so filamentation can rapidly occur.  Mass spectrometry to examine

modifications of PfACTI extracted from the parasite revealed this methylation is not

present (Schmitz et al., 2005).  Therefore, it would be of interest to confirm this within

TgACTI isolated from T. gondii.  If this modification is missing, it may be another factor

contributing to overall filament instability through divergence in the nucleotide binding

pocket.

Mechanisms of profilin and formin function in vitro and in vivo

TgFRM mechanism of polymerization enhancement

Light scattering assays examining the impact of TgFRM1 and TgFRM2 on TgACTI

polymerization reveal a dramatic increase in light scatter (Chapter 4).  These results make

it apparent that T. gondii formins influence TgACTI, however, as ninety degree light

scattering would be influenced by filament elongation or bundling, the exact mechanism

of TgFRM function is still unresolved.   Therefore, it is important to differentiate between

possible mechanisms that explain the influence of TgFRMs on TgACTI polymerization

such as binding the barbed end acting to cap filaments thereby providing stability or

binding the sides of filaments to promote bundling.  Understanding these mechanisms

also entails determining if TgFRMs move processively or nonprocessively along the

TgACTI filament.

In nonplant systems, binding of formin to the barbed end of filament lowers the

affinity of capping protein binding to the actin filament (Kovar et al., 2003).  Therefore,

if TgFRMs act to cap filaments and stay associated with the barbed end, addition of

capping protein should not lead to a dramatic decrease in polymerization.  In the case of
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AFH1, which has been shown to move to the side of actin filaments following barbed end

binding, the presence of capping protein inhibits polymerizatin in a dose dependent

manner (Michelot et al., 2005).  Light scattering assays combining TgACTI, either

TgFRM and a conventional capping protein (from a different organism) would be used to

reveal the accessibility of the TgACTI barbed end and decipher if TgFRMs stay

associated with the barbed end to block it from binding of capping protein.

TIRF microscopy would also be employed to differentiate between potential

mechanisms of the TgFRMs.  The caveat to these assays would be the need to add a

fluorescent label to TgACTI.  Low yields of TgACTI from purification have hindered

these experiments in the past but only low levels of actin would be required for these

assays and it may therefore be feasible to obtain labeled TgACTI.  The labeled TgACTI

would be incubated with either TgFRM1 or TgFRM2 and changes in polymerization

would be observed over time.  These assays would be a direct observation to determine if

TgFRMs increase initiation of polymerization.  By observing the growth of the filaments,

the question of processivity can also be addressed.  If either formin is aiding

filamentation in a processive manner, the growth of the filament should be remain the

brightest at the originial point of assembly.  However, if the formin is acting non-

processively, the brightest point of the actin will move away from the initiation point.  If

the TgFRMs can promote bundling through side binding, similar to AFH1, they should

exhibit non-processive polymerization (Michelot et al., 2006), as the formin moves from

the barbed end to the side of the filament.

To confirm or deny the side binding hypothesis, GFP-tagged TgFRMs would be used

in fluorescence microscopy of phalloidin labeled TgACTI to observe if the formins are
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observed interacting with the filaments on the sides or only at the filaments ends.  It is

possible from the results of Chapter 5 regarding the finding that TgACTI utilizes an

isodesmic mode of polymerization that even low levels of phalloidin may influence the

polymerization results.  To verify a potential side binding interaction, immuno gold

electron microscopy of TgACTI polymerized in the presence of formin would also be

required.

The light scattering results from Chapter 4 strongly suggest filament bundling is

occurring in vitro, however, it is unclear if this occurs in vivo and what significance it

would have.  Therefore, it would be of interest to identify regions of TgFRMs that

contribute to bundling.  Regions of importance could be achieved via comparison of the

FH1-FH2 portions of TgFRMs against formins known to bundle actin filaments such as

AFH1 (Michelot et al., 2006; Michelot et al., 2005), FRL1 and mDia2 (Harris et al.,

2006) as well as comparison to more conventional processive formins to potentially

identify residues important for side binding.  Mutational analysis could then be

performed to attempt to separate barbed end binding from side binding and bundling to

determine the impact of each role on TgACTI polymerization.

In vivo analysis of TgPRF interactions

If TgPRF is acting primarily to sequester TgACTI within T. gondii, it would be

expected that parasites depleted for TgPRF would reveal longer filaments.  T. gondii cell

lines expressing a regulatable copy of TgPRF have been created (Plattner et al., 2008) by

a collaborator.  In the published work with this cell line, staining was conducted using an

anti-actin antibody but no difference was observed between wild type parasites and those
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depleted for TgPRF.  If filaments become as long as those within jasplakinolide treated

parasites, they would be immediately apparent but if they were of a more intermediate

length, more in depth analysis of the parasite could be required for visualization.

Therefore, the TgPRF-depleted parasites would be subjected to confocal microscopy with

z-slices taken to determine if filaments can be detected that are not seen in wild type

parasites.

Regulation mechanisms for controlling TgFRM function

While it appears TgFRMs function to regulate TgACTI polymerization, the

regulation of TgFRM is unknown.  Formin proteins often contain Rho-GTPase domains

or diaphanous autoinhibitory domains (DAD) to control the timing of their function in

actin assembly (Kovar, 2006) but both of these domains are lacking in apicomplexan

formins (Schüler and Matuschewski, 2006).  TgFRMs must be regulated in some manner

to dictate when they are capable of promoting polymerization in vivo because filaments

are not observed in intracellular parasites.  To determine what other parasite factors are

interacting with TgFRM and controlling their function, parasite lysates would be used for

co-immunoprecipitations with an anti-TgFRM antibody.  The proteins within the

resulting complex would be identified using mass spectrometry.  Identified proteins may

reveal binding partners that interact with conventional formins, such as Rho or cdc42, but

bind to previously unidentified domains within the formin or these assays have the

potential to identify novel binding partners that regulate TgFRM function.
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Impact of isodesmic polymerization of TgACTI filaments in vivo

The key requirements of a nucleation-elongation mechanism of actin assembly (i.e,

lag phase in elongation, critical concentration for assembly, plateau in unpolymerized

actin) were shown not to be met by TgACTI and rather the polymerization features of

TgACTI are more consistent with isodesmic polymerization (Chapter 5).  Polymerization

through an isodesmic mechanism should be concentration dependent and not require a lag

phase for nucleation.  Isodesmic polymerization would also be expected to produce

filaments of various lengths whereas nucleation-elongation polymerization would

produce two populations, monomers or long filaments.  Density centrifugation analysis

with TgACTI was consistent with isodesmic polymerization in that incubation of

TgACTI on F buffer did not induce a large population of pelletable filaments as observed

with yeast actin, but rather an slight increase in the molecular weight of the protein was

observed (Chapter 5).  However a more precise analysis of the population of filament

lengths upon polymerization of TgACTI would further confirm the hypothesis of

isodesmic polymerization and this would be achieved using dynamic light scattering.

Another possible property of isodesmic polymerization is the formation of single

protofilaments rather than helical filaments.  To date, all visualization of TgACTI

filaments have been in the presence of either low or high levels of phalloidin.  EM

images of phalloidin stabilized TgACTI filaments show characteristics of helical actin

filaments (Chapter 2), but it is possible phalloidin may influence polymerization and

could alter the native filament structure.  It is unclear how these filaments are structured

in the absence of phalloidin as attempts to visualize them have been unsuccessful.  With

the knowledge that longer TgACTI filaments form at higher protein concentrations,
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attempts to visualize the filaments by EM using these concentrations will be attempted as

they may be more successful.  In addition to negative staining EM, freeze fracture EM is

another potential mechanism to observe filaments.  If filaments are not captured by

negative staining EM due to instability and disruption during the drying process, freeze

fracture may overcome this limitation and reveal information about the filament structure.

While the TgACTI sequence does diverge from more conventional actins, it seems

unlikely that the difference would result in formation of single protofilaments.  However,

it is possible that TgACTI relies more on intrastrand contacts than on interstrand contacts

and forms a somewhat looser helix than conventional actins.  In this case, the molecular

modeling done to determine inter-strand contacts that may influence filament stability

could be utilized to examine intra-strand contacts and how disruption of these residues

may influence TgACTI polymerization.  Specifically, the DNase I loop of actin

contributes to intra-strand contacts and this region of the apicomplexan actins is highly

divergent and may be important for creating a filament that is able to undergo isodesmic

polymerization rather than nucleation-elongation.

Finally, the kinetics of increase in polymerization of different concentrations by light

scattering will be used for modeling the polymerization of TgACTI to confirm if these

kinetics are consistent with isodesmic polymerization.  In addition to wild type TgACTI,

these kinetics will also be determined for the TgACTI stability mutants in order to

determine if the divergent residues are contributing to isodesmic polymerization.
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Figure 1.  Models of in vitro and in vivo TgACTI polymerization.

(A) TgACTI polymerization in vitro.  On its own, TgACTI assembles into short, loose

actin helices due to a small number of divergent residues that weaken inter-strand

contacts.  The introduction of phalloidin to stabilize weak contacts or substitution of

divergent residues with conventional residues restores the length and helical nature of the

TgACTI filaments to appear more conventional.  (B)  TgACTI polymerization in vivo.

During intracellular growth, TgPRF (green) and other actin-binding proteins sequester

actin monomers ensuring there is no spontaneous polymerization.  Upon intiation of

gliding motility, TgFRMs (yellow) interact with TgACTI to stabilize interactions and

potentially interact with the sides of filaments for added stability and bundle formation,

also pulling the monomers into a conventional helix.



244

Figure 2.  Multiple steps must occur for rapid nucleotide turnover.

1. Polymerization     2. ATP hydrolysis     3. Pi dissociation     4. Depolymerization

5. Nucleotide exchange     6. Repolymerization.  Asteriks indicate steps that may be

influenced by the divergent asparagine at position 17 in TgACTI.
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